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Abstract 
 
The main objective of the study was to evaluate and compare performances of two 
selected inversion techniques, and to explore the capability of the AISA image to 
estimate LAI of a young Norway spruce (Picea abies (L.) Karst) forest stand at the 
Beskydy Mts. (Czech Republic). A NADIR AISA hyperspectral image of very high 
spatial resolution (0.4 m pixel size) was used to retrieve the forest stand leaf area 
index. A 3-D radiative transfer model (DART) was appropriately parameterized to 
generate the spectral look-up table database, which was inverted by means of two 
inversion techniques: i) minimization of a cost function and ii) neural networks 
approach.  
 
The mean LAI value of the observed forest stand retrieved by the minimization 
approach was equal to 6.33, and retrieved by the neural network approach was equal 
to 6.17. Both values are reliable, in comparison with the literature sources, 
nevertheless, the comparison with ground measurements showed very low 
correlations. The root mean square error (RMSE) calculated between estimated and 
measured LAI was equal to 2.442 in case of the minimization by a cost function, and 
equal to 2.621 in case of neural network inversion. None of the inversion techniques 
was capable to estimate high (generally higher than 9) values of leaf area index from 
the AISA image accurately. Comparison of the results of selected inversion methods 
showed very high reciprocal correlations (R>0.98), which indicated their comparable 
performance.  
 
 
Keywords: Leaf Area Index, Norway spruce, DART, AISA image 
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1. Introduction and research objective 

1. Introduction and research objective 
 

Norway spruce (Picea abies (L.) Karst) is one of the most important tree species, 
growing mainly in North, East and Central Europe. Norway spruce is fast growing 
species and thus is often used for a timber production. Norway spruce is the most 
important production species of the Czech Republic, 53.5% of the total forested area 
was covered by Norway spruce forests in 2003 (Anonymous, 2004).  
 
In the recent years a lot of research has been done to determine the causes of Norway 
spruce forest decline in Europe (Cape,  Paterson et al., 1989; Herman,  Smidt et al., 
2001; Hruska, Cienciala, 2003). The forest decline is a complex process caused by the 
multiple stress factors (chronic and acute). Several biochemical and biophysical 
indicators can be related with the current health stage of forest stands. One of the 
essential biochemical indicators is the content of photosynthetic pigments (chlorophyll a 
+ b), which can be attributed to overall fitness and greenness of the vegetation. Acute 
stress of the vegetation decreases the chlorophyll content which, cause changes in the 
optical properties of green leaves. This allows remote sensing methods to detect and 
classified the stressed vegetation by means of changes in chlorophyll concentration 
(Demarez, Gastellu-Etchegorry, 2000; Zarco-Tejada,  Miller et al., 2004). 
 
The most important biophysical parameter, describing the structure of vegetation 
canopies is leaf area index (LAI), which can be used as an indicator of tree defoliation 
(Hall,  Hogg et al., 2003). Negative statistical relationship is expected between LAI and 
defoliation. The spatial and temporal variability of LAI values within forest ecosystems 
is influenced by many different factors (species composition, development stage, site 
condition and management practices). The above mentioned factors in combination 
with different methods of LAI assessments may therefore lead to a variety of LAI 
estimates of forest stands (Pokorny, 2002). 
 
Extraction of biophysical parameters such as leaf area index using remote sensing data 
has been proposed in many studies. The methodological approach to derive 
biophysical parameters from remote sensing data can be basically divided into two 
groups: i) empirical approach based on vegetation indices and ii) physical approach 
based on radiative transfer modelling  
 
Number of optical vegetation indices (VI) derived from multi or hyperspectral remote 
sensing data for estimation of leaf area index have been reported in literature (Chen, 
Cihlar, 1996; Colombo,  Bellingeri et al., 2003; Haboudane,  Miller et al., 2004). The 
major problems in the use of vegetation indices for estimation of biophysical 
parameters are: i) asymptotic trend of the relation LAI-VI preventing accurate LAI 
estimates, when leaf area index exceeds a certain value (Baret, Guyot, 1991) and ii) 
external effect of atmosphere, background reflectance and illumination geometry 
(Broge, Leblanc, 2001). An alternative to empirical relationships is a modelling 
approach based on theory of radiative transfer theory. In this approach an inversion 
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technique of a vegetation reflectance model may be used to estimate biophysical 
parameters such as leaf area index (Jacquemoud,  Baret et al., 1995; Hu,  Inannen et 
al., 2000; Kimes,  Gastellu-Etchegorry et al., 2002; Fang, Liang, 2005).  
 
The issues of spatial and spectral resolutions of remote sensing data used for the 
estimation of biophysical and biochemical parameters have been addressed by several 
authors. Treitz (1999) give the overview of the possible use of hyperspectral data for 
biophysical parameters estimation in forest ecosystems. The hyperspectral remote 
sensing data provide ancillary and more detailed spectral information than multispectral 
data, which could be the advantage when estimating LAI from RS data (Broge, 
Leblanc, 2001; Lee, 2004). The impact of the different coarser spatial resolutions of RS 
data on LAI retrieval was explored by Tian (2003). The use of the RS data of very high 
spatial resolution (around 1m pixel size) for the LAI estimations is discussed in Gascon 
(2004). Compared with pixels of images with coarser spatial resolutions (such as 20m), 
pixels of images with very high spatial resolution carry qualitatively different information, 
which is related to parts of landscape elements (e.g. trees, shrubs). In the same 
publication Gascon explains why traditional VI (such as NDVI) could not be used for 
LAI estimations from RS data of very high spatial resolutions. Thus a special interested 
has to be paid to these data, when estimating biophysical parameters. 
 
Forests ecosystem is a complex three-dimensional structure varying largely in amount, 
orientation and architectural placement of the vegetative elements (e.g. leaves, 
branches). All these attributes cause high variability of canopy reflectance (Asner, 
1998). Imaging spectroscopy in combination with radiative transfer modelling might be 
an appropriate tool to resolve and map the forest complexity. For instance a Discrete 
Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry,  Demarez et al., 
1996) is capable to simulate radiative transfer within the three-dimensional scenes 
representing any spatial combinations of trees, soil and other forest ecosystem 
elements. 

1.1. Research objectives 
The main objective of this research is to evaluate and compare two recent inversion 
methods estimating LAI within a young Norway spruce forest using a radiative transfer 
modelling combined with an airborne hyperspectral image of a very high spatial 
resolution (0.4 meters of pixel size): i) minimization by a merit function, and ii) inversion 
by an artificial neural network. 
 
The research hypothesis is that LAI can be estimated with reasonable accuracy from 
the airborne NADIR hyperspectral image by means of the radiative transfer modelling 
on the level of forest stand. Based on the above mentioned hypothesis the following 
research questions were set: 
1/ How reliable are values of LAI retrieved from the airborne NADIR hyperspectral 

images using current methods of radiative transfer modelling? 
2/ Can the NADIR hyperspectral data resolve the full range of the LAI values present 

within the studied forest stand? 
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3/ Which inversion method of LAI estimation at the forest stand level is performing 
better from the following aspects: 
a/ Accuracy: Which method is giving more accurate results? 
b/ Feasibility: Which method is more feasible considering input data, time and 

technical requirements? 
A new version of the Discrete Anisotropic Radiative Transfer (DART) model, extended 
by new forest structural parameters, was used for LAI estimation. However, the primary 
focus of this study was not the evaluation of these new structural features.  

1.2. Set-up of the report 
Chapter 1 introduces a brief overview about a general background of the research. 
Main research objective and subsequent research questions of the study are defined in 
that section. In the second chapter a literature review is conducted in order to deeply 
understand the topic of leaf area index retrievals. The overview of several methods of 
leaf area index estimations, focusing on the physically based approaches using 
radiative transfers, is discussed. Common methods of field LAI measurements are 
briefly introduced in this chapter. Chapter 3 describes the methodology used in the 
study. Description of the study area, field and airborne data acquisition, DART 
parameterization, and set up of the LAI retrieving methods is given there. Chapter 4 
provides an extensive summary of the achieved results, which are interpreted and 
discussed in following chapter 5. Final conclusions and recommendations are stated in 
the last chapter 6. 
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2. Literature review 

2. Literature review 

2.1. Canopy structure 
A Norway spruce crown is presented by a non-random and highly organized structure 
of needles. Needles are clumped along woody twigs into shoots (set of needles 
developed in the same year). The shoots are formed into branches which are 
assembling a tree crown. The crown architecture is determined by the genetic and 
environmental factors and the ontogeny of a tree. A tree goes through three phases of 
shoot formation during its life. The phases are called proleptic, regular and 
preventitious and they cause development of different shoot types (Gruber, 1994). In 
the vertical direction one can distinguish three functional parts of a spruce crown 
(Cudlin,  Novotny et al., 2001). 

 
The crown (canopy) architecture of Norway spruce trees changes during the 
development stages of trees and during the growing seasons. A few basic parameters 
are used to describe the structure of trees and/or canopy. The most frequent 
parameters are: leaf area index (LAI), leaf angle distribution (LAD), and leaf clumping 
index (Ω). 
 
The leaf angle distribution describes the geometry of leaves. It is often referred to the 
probability density of the distribution of the leaf normals with respect to the upper 
hemisphere (Liang, 2004). Direct and indirect methods were developed to measure 
LAD and so several mathematical descriptions of LAD can be found in the literature 
(Kucharik,  Norman et al., 1998; Liang, 2004; Weiss, 2004). 
 
The leaf clumping index quantifies the effect of non-random distribution of foliage. It is 
an important parameter to correct the indirect optical field measurements of LAI. Chen 
(1996) separated the clumping index into two components: clumping of needles at the 
shoot level and clumping of shoots within branches and crowns. Similar approach to 
quantify the clumping of needles within a shoot is introduced by Stenberg (1996). 
According to Chen and Liu  (2003) it is possible to derive clumping index from multi-
angular optical remote sensing data. 
 
The leaf area index is a dimensionless variable that is basically defined as the total 
one-sided area of photosynthetic tissue per unit ground surface area (Watson, 1974). 
This definition is fully applicable for broad-leaved vegetation, because both sides of 
broad leaves have the same area. The needles of coniferous trees may occur  in a 
cylindrical or a hemi-cylindrical shape (Chen, Black, 1992), and the definition of LAI is 
not applicable. Thus several authors proposed adjusted definition of LAI, taking into 
account the irregular shape of leaves or needles. For instance Chen and Black (1992) 
suggested as a more appropriated definition of LAI for coniferous canopies: half of the 
total interception area per a unit ground surface area.  
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The leaf area index drives the microclimate of canopy, controls water interception, 
radiation extinction and gas exchange (Bréda, 2003), therefore, LAI is an important 
input parameter for the ecological and plant physiology models (Nikolov, Zeller, 2003),  
 

2.2. Ground-based measurements of leaf area index 
There are two main categories of the ground-based estimates of leaf area index: direct 
and indirect methods (see reviews of these methods in Jnockheere et al.(2004), Bréda 
(2003) and Gower et al. (1999)).  
 
The direct methods involve a measurement of leaf area, which is usually measured on 
a sub-sample of leaves and related to dry leaf mass. This relation is used to up-scale 
the information to the unit of observation (e.g. whole tree, stand). The direct methods 
are usually the most accurate, but they have the disadvantage of being time-
consuming. They provide the reference for the calibration or evaluation of indirect 
methods. 
 
Indirect methods infer leaf area from observation of another variable. These methods 
are generally faster than direct methods and thus more suitable for extensive sampling. 
The indirect methods of LAI estimation in situ can be divided in two categories: contact 
LAI measurements (e.g. inclined point quadrats method (Wilson, 1960) ) and non-
contact measurements. 
 
Non-contact indirect methods of LAI estimations can be based on the Beer-Lambert 
extinction law applied to plant canopies (Monsi, Saeki, 1953). The law express the 
attenuation of the radiation in a homogenous turbid medium, which can be described 
by equation (1) 

I = I0*e(-k*LAI)                                                                                                                    (1) 

where I0 is the incident radiation, I is the radiation transmitted below canopy, k is the 
extinction coefficient and LAI is the leaf area index. LAI measuring devices, using the 
above mentioned principle, are for instance DEMON (CSIRO, Canberra, Australia) or 
ceptometer (Decagon Devices Inc., USA) 
 
The second group of optical indirect methods is based on the probabilistic approach of 
foliage elements (or complementary gap fraction) distribution, size and arrangement 
within a canopy. LAI is calculated by an inversion of the exponential expression of the 
gap fraction: 

P(θ) = e –G(θ,α)LAI/cos(θ)                                                                                                      (2) 

where θ is the view zenith angle, α is the leaf angle, P(θ) is the gap fraction distribution 
and G(θ, α) is named the G-function and it corresponds to the fraction of foliage 
projected on the plane normal to the zenith direction. Available measuring devices are: 
LAI-2000 Plant Canopy Analyzer (Li-Cor, USA), TRAC (Tracing Radiation and 
Architecture of Canopies, Wave Engineering, Canada) and cameras equipped with 
hemispherical lens. 
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Most of indirect optical methods do not distinguish leaves from other plant elements 
such as stem and branches. Alternative terms for leaf area index have been proposed: 
vegetation area index (Fassnacht,  Gower et al., 1994), effective leaf area index (Chen, 
Black, 1992). The main assumption of the optical indirect methods is the random 
distribution of the foliage within a canopy. Several papers compared performances of 
indirect methods of LAI estimations with direct methods (Chason,  Baldocchi et al., 
1991; Smith,  Chen et al., 1993; Fassnacht,  Gower et al., 1994). The papers 
concluded that indirect methods underestimated LAI compared with direct 
measurements. The main reason of this underestimation is the non-random distribution 
of foliar elements, expressed by the leaf clumping effect. (Chen, 1996)  
 
• LAI-2000 Plant Canopy Analyzer 
The LAI-2000 (Li-Cor Inc., Nebraska) measures the attenuation of diffuse sky radiation 
in blue part of spectra at five zenith angles simultaneously. A measurement with the 
LAI-2000 consists of the readings above and below canopy, in both cases the sensor is 
looking up the sky. Five values of canopy transmittance are calculated for each pair of 
readings. From transmittance at the zenith angles, the LAI-2000 calculates foliage 
amount (effective leaf area index) and foliage orientation (LI-COR, 1992). 
 
The final product (effective leaf area index LAIef)  obtained from the LAI-2000 has to be 
corrected for the effect of foliage clumpiness and effect of supportive woody materials, 
when measuring the leaf area index of for instance coniferous forest canopies. 
Following the Chen’s methodology (1996), clumping index is a correction factor to 
convert LAIef to LAIt. 

LAIt = LAIef/Ω                                                                                                                 (3) 

The smaller the clumping index, the more clumped canopy is. By treating the shoots as 
a basic unit of foliage, clumping index can be separated into two compounds (eq. 4): 
• element clumping index (ΩE) quantifying the effect of foliage clumping at the scale 

larger than the shoot, 
• needle-to-shoot area ratio (γE) for the foliage clumping within the shoots. 

Ω = ΩE / γE                                                                                                                      (4) 

The plant area index LAIt is the sum of the leaf area index (LAI) and the wood area 
index (WAI) and therefore combining equations 3 and 4 the final equation for 
calculation of “true” leaf area index is: 

LAI = (1 – α)*LAIef x γE / ΩE                                                                                            (5) 

where α = WAI / LAIt.                                                                                                     (6) 
 
• Hemispherical photographs 
Hemispherical canopy photography is a technique studying plant canopies via 
photographs acquired through a camera equipped by a hemispherical (fisheye) lens, 
providing an extreme angle of view (FOV = 180°). The photographs can be acquired 
from beneath the canopy (oriented up to the sky) or placed above the canopy looking 
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downward. A hemispherical photograph provides a permanent record about position, 
size, density and distribution of the canopy gaps. 
 
Crucial problem of the hemispherical photography for LAI determination is the selection 
of the optimal brightness threshold in order to distinguish leaves from sky. Often 
occurring methodological errors have been discussed by Rich (1993). A series of 
software packages for hemispherical images processing have been developed: CAN-
EYE (Baret, Weiss, 2004), Gap Light Analyzer (GLA: www.rem.sfu.ca/forestry/), or 
Hemiview (Delta-T Device). 

2.3. Inversion methods used to estimate LAI from remote sensing data 
Biophysical parameters, such as LAI, can be estimated from remote sensing data by 
means of two basic approaches: empirical and physical approach. The empirical 
approaches use the statistical relationship between a vegetation index and LAI. Many 
studies were carried out using different vegetation indexes to estimate LAI from remote 
sensing data.  
 
Radiative transfer model inversion consists in adjusting the values of input canopy 
biophysical and biochemical variables V in such a way that the bidirectional reflectance 
distribution function (BRDF) simulated with the radiative transfer model M matches the 
best BRDF measured by a sensor R. The model M requires a set of nvar input variables 
and the corresponding measurement configuration C (such as sun illumination 
direction, observation angles and wavelengths) (Combal,  Baret et al., 2002). Than  

R = M(V,C)                                                                                                                    (7) 

where the uncertainty ε accounts for measurement and model uncertainties. The 
simplest way how to solve the equation 7 is to compute and store the graph of the 
function M(V,C). Different mechanisms are applied to find the modelled reflectance that 
resembles the measured reflectance most precisely. 
 
Several algorithms solving the inverse problem can be found in the literature. The first 
method, so called look-up table (LUT) approach, is widely used in combination with 
different minimization techniques of different merit functions. An example of a merit 
function can be root mean square error used for instance by Ufer Gil (2004) to estimate 
the chlorophyll content by inversion of the DART model. Next minimization techniques 
are based on a quasi-Newton algorithm (QNT) (Meroni,  Colombo et al., 2004) or a 
simplex method (Kimes,  Gastellu-Etchegorry et al., 2002). The common problem of 
LUT based methods is the potential to obtain multiple solution of the model inversion, 
so called ill-posed problem (Combal,  Baret et al., 2002). Artificial neural network (NN) 
is another inversion technique used for LAI estimation. Several studies compared 
performances of NN and merit function approach (Kimes,  Gastellu-Etchegorry et al., 
2002; Ufer Gil, 2004). In both cases NN method gives better estimates of LAI. A new 
approach of object based retrieval of biophysical canopy variables using NN and RT 
modelling was introduce by Atzberger (2004). The object based approach shows very 
promising improvement, especially for LAI estimates, than the pixel-based approach. 
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Finally, Fang and Liang (2003) introduced the genetic algorithm to optimize the merit 
function to estimate LAI of homogenous canopies. 
 

2.4. Reflectance models using the theory of radiative transfer 
The radiative transfer (RT) theory describes a path of solar emitted photons from the 
moment of their penetration into the atmosphere layers, through interactions with the 
Earth surface, up to the backward reflection and detection by a sensor.  
 
Vegetation reflectance can be modelled either at canopy level or leaf level. The optical 
properties simulated at the leaf level are often coupled with canopy reflectance models 
(Jacquemoud,  Baret et al., 1995; Dawson,  Curran et al., 1999; Demarez, Gastellu-
Etchegorry, 2000; Meroni,  Colombo et al., 2004). A well known leaf reflectance model 
is PROSPECT (Jacquemoud, Baret, 1990), which is based on the so-called “plate 
model” developed by Allen at al. (1969). PROSPECT was developed for broadleaf 
canopies, whereas a LIBERTY model was designed for conifer needles (Dawson,  
Curran et al., 1998). Turbid medium model LEAFMOD (Ganapol,  Johnson et al., 1999) 
is another model operating at the leaf level, based on Kubelka-Munk theory. 
 
Depending on the complexity of a canopy representation, one-dimensional (1D) or 
three-dimensional (3D) canopy reflectance models can be differentiated. The 
vegetation canopy of a 1D RT model is assumed to be a turbid medium with randomly 
distributed leaf clumps and gaps in between. SAIL model developed by Verhoef (1984) 
is an example of 1D RT model. In case of horizontally heterogeneous canopies, such 
as row crops or forests, the turbid medium analogy is not applicable. Thus Kimes and 
Kirchner (1982) developed a first RT model handling heterogeneity within vegetation 
canopies. Gastellu-Etchegorry et al. (1996; 2004) extended this model into 3-D 
Discrete Anisotropic Radiative Transferm (DART) model. Kuusk has designed so-called 
Markov canopy reflectance model, based on Markov chain theory. Gobron et al. (1997) 
developed a semi discrete RT model, and Goel and Grier (1986) introduced a hybrid 2-
D model for row-planted vegetation, later extended into three-dimensional model (Goel, 
Grier, 1988). Basically there are two solutions to calculate canopy directional 
reflectance: numerical and approximate. For an extensive overview of possible 
solutions of canopy radiative transfer equations see Liang (2004). 
 
Beside 3-D radiative transfer modes, which are the most suitable for dense vegetation 
canopies, the geometric optical models and computer models were introduced. 
Geometric optical models are more suitable for sparse canopies with regular pattern. 
The most of the canopy geometric optical models have been evaluated in the review of 
Chen (2000). The computer models provide the simulation of radiation regime over a 
complex canopy configuration using two methods: ray tracing and radiosity method. 
Ray tracing methods are based on sampling the photon trajectories within a canopy 
adopting so called Monte Carlo (MC) method. Alternative to the MC ray tracing method 
is a method of radiosity (Borel,  Gerstl et al., 1991), which describes the amount of total 
energy leaving a surface per unit time per unit area (flux density). 
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• DART 
DART (discrete anisotropic radiative transfer) is a 3-D model simulating bidirectional 
reflectance distribution function (BRDF) of a heterogeneous scenes. The model is 
using a similar approach as model proposed by Kimes and Kirchner (1982), which was 
based on the discrete ordinance method and iterative approach, but trying to avoid the 
main drawbacks of that model (Gastellu-Etchegorry,  Demarez et al., 1996). 
 
The 3-D scene is represented by the matrix of cells, which do not require the equal 
dimensions of cells. Cells are identified by x, y, z coordinates of theirs centers. 
Considering the information content of the cells, they are simulated as the turbid media 
(e.g. leaves, grass, trunks) or the solid media (e.g. soil, water). Each of them requires 
specific optical and structural characteristics.  
 
The DART model processes the interactions of all source vectors of radiation within 
connected cells of the scene. Interaction mechanism depends on the cell type based 
on the structural and optical properties of different elements defined within a cell. The 
source vectors are transmitted through the gaps, totally intercepted by opaque cells 
and partly intercepted and transmitted by semi-opaque cells. Intercepted radiation 
gives rise to absorption or scattering mechanisms. Each cell, where scattering occurs, 
becomes a secondary radiation source. All direct solar source vectors, produced during 
the first radiative transfer iteration, are processed till they are totally absorbed and 
scattered, or till they reached a threshold value. In the second iteration all source 
vectors originates from secondary vectors and atmospheric source vectors are 
processed. The iterations are systematically done for all sources and for all directions. 
Once all source vectors have been processed, directional reflectance factors are 
computed for all upper cells of the scene. 
 
The 1996 version of DART was successfully validated against field reflectance 
measurements (Gastellu-Etchegorry,  Guillevic et al., 1999) and in frame of the RAMI 
exercise  (Pinty,  Gobron et al., 2000), where DART was compared with other 3-D RT 
models. The DART simulations showed consistent results in the visible part of spectra, 
however in the NIR part significant differences appeared. Based on first RAMI exercise 
three major approximations were successfully improved without increasing computation 
time (Gastellu-Etchegorry,  Martin et al., 2004). 
 
The last DART model version (2005) introduces several new structural features 
describing the growing strategy of the trees in more realistic way. The implemented 
improvements, based on a growing pattern of Norway spruce tree, are as follows 
(Malenovsky,  Martin et al., 2003): 

• vertical variability of leaf volume density,   
• horizontal variability of leaf volume density and air cells, 
• inconstant optical properties of leaves in vertical direction, 
• variable stem diameter in vertical direction, 
• direct simulation of branches of the first order, and 
• simulation of twigs around the branches of the first order. 
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3. Material and methods 

3.1. Methodological conceptual model 
The general working methodology of the proposed study followed the schema indicated 
by a conceptual model in figure 1. First, the field data, acquired during the field 
campaign in the Beskydy Mts., was pre-processed. The DART model was used to 
simulate radiative transfer of the pre-prepared forest scenes. Their spectral signatures 
were stored in look-up tables (LUT), which were subsequently inverted for LAI 
estimation. Two different methodological approaches of inversion were applied: i) 
Minimizing merit function, and ii) Neural network approach. Verification of retrieved LAI 
values was done by direct comparison with ground truth data (measurements of LAI in 
the field). Finally, statistical analyses were carried out to validate the performance 
capabilities of both inversion methods.  
 
 
 

FIELD DATA

LAI DART 
inputs

AISA 
images

DATA PRE-PROCESSING

DART 
simulations

LAI values at 
stand level

Spectral sign. 
of simulated 

scenes

Spectral 
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Generation of 
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Validation of LAI estimates and comparision of 
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Figure 1. Conceptual model explaining a general working methodology. 
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3.2. Study area 
The study area, called Bílý Kříž, is located in the Moravskoslezke Beskydy Mts., the 
eastern part of the Czech Republic at the borders with Slovakia (18.53863°E, 
49.50256°N, 936 m a.s.l.) (see figure 2) The locality Bílý Kříž is an experimental study 
area of the Academy of Sciences of the Czech Republic (ASCR). 
 

 

Figure 2. Location of the study area Bílý Kříž and Kykulka. 

 
The geological bedrock of the area is sandstone from the Mezosoic era. The soil type is 
the humic podzol soil combined with the loamy sand soil. The depth of humic horizon is 
60-80 cm with the gravel fraction of 30-40% and clay fraction of 15-38%. The average 
annual air temperature is about 5.5 ºC, the average annual precipitation amount is 
between 1000 and 1400 mm. The mean number of days with snow cover is 160 days 
per year. The average slope gradient of the study site is 13% with the slope oriented 
towards south-south-west (SSW). 
 
The studied young forest stand is the experimental forest stand periodically monitored 
by the Laboratory of Ecological Physiology, Institute of Landscape Ecology, (ASCR). 
The forest stand represents the corridor plantation of Norway spruce (Picea Abies, (L.) 
Karst.) trees established in the regular spacing 2x1 m in 1981. The monoculture is 
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currently 27 years old with the average tree height of 10.6 m, and average diameter at 
breast height (DBH) of 12.8 cm. Several tending treatments were applied to reduce 
increasing forest stand density during last few growing periods. Two parts of two 
different tree densities were differentiated within the forest stands. The denser part of 
the forest contains currently 2044 trees/ha, the sparse one contains about 1362 
trees/ha. 
 
Second area involved in this study, called “Kykulka”, is located 11 km to NW from Bílý 

3.3. Field data and data processing 
 complex field/flight campaign carried out 

3.3.1. Canopy structural parameters of sample trees 
ere mapped in order to 

ollowing parameters were measured within the mature forest stand: position of the 

nly two parameters were measured for 16 sample trees of the young forest stand: 

3.3.2. Destructive measurements of branch samples 
 structural parameters: i) 

Kříž. At that secondary site eight mature Norway spruce trees, two trees representing 
one of four long-term stress response categories (Cudlin,  Novotny et al., 2001), were 
selected for purpose of branch destructive sampling.  
 

The field data were acquired in frame of a
during August and September 2004 at the locations of Bílý Kříž and Kykulka. Ancillary 
ground data concerning the young forest stand were requested from the Institute of 
Landscape Ecology, ASCR. These data were used mainly for an appropriate 
parameterization of the DART model and for the validation purposes. 

Structural parameters of matured and young sample trees w
describe the architecture of Norway spruce crowns and stand canopies. Automatic 
mapping was done by the laser rangefinder Impulse 200 and an electronic compass 
MapStar combined with the FieldMap software (IFER, 2004). 
 
F
trees (X, Y coordinates), DBH, height of the trees, height of the live and death part of 
crowns, and ground projection of the crowns (at least 8 points were needed to 
determine the perimeter of the crowns). 
 
O
position of the trees (X, Y coordinates), and DBH. Other required structural parameters 
of the young trees were provided by Dr. Radek Pokorny from the Institute of Landscape 
Ecology (ASCR) acquired during his continual research of Norway spruce physiology. 

Destructive measurements were carried out to obtain following
the ratio of needle age classes, ii) horizontal distribution of leaf density from a branch 
base towards crown periphery, and iii) the foliage clumping index. Eight mature trees 
were selected for the purpose of destructive sampling at the second study site Kykulka. 
One representative branch of first order was collected from each functional crown part 
(i.e. juvenile, productive, saturation part (Cudlin,  Novotny et al., 2001)). The positioning 
within a crown and dimensions of each branch were measured directly in the field. The 
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collected branches were immediately transported into the laboratory for further 
processing. The methodology of subsequent analyses was as following: 
• Each branch was divided into several segments approximately 60 cm long for 

branches from production and saturation crown part, and approximately 40 cm long 
for branches of juvenile crown part. The final length of the segments was depending 
on the overall length and shape of the branch. 

• Length, depth and diameter of woody part at the base and the top of each segment 
were measured. The percentage ratio of needle age classes (current year (c), one 
year old (c+1), two years old (c+2), three years old (c+3) and the rest age classes 
(r)) was calculated. 

• Ten representative shoots were selected based on the distribution of needle age 
classes from each segment and analyzed in following manner: 

o shoots were scanned on a desktop double lamp scanner in a very fine 
resolution of 600 dpi in true colors to get their projected area, 

o scanned shoots were dipped into liquid nitrogen and all the needles were 
pruned away from a woody twig, 

o the remaining woody twigs were again scanned to get their projected area, 
o and the separate needles were also scanned to obtain their projected area, 
o finally, the needles and twigs were dried in a laboratory oven (60°C, 48 

hours), and weighted to obtain their dry mass.  
• The remaining shoots of each segment were placed in dark dry condition and the 

dry weight of needles and twigs were determined after two months. The woody 
parts of branches with diameter larger than 1 cm were analyzed separately. Their 
diameters at both ends and total length were measured and total wood volume was 
computed. 

• The projected needle area obtained from the representative shoot analyses was 
scaled up to the branch segment level by means of the specific leaf area ratio (SLA 
[cm2/g]  = projection area of fresh needles [cm2] / dry biomass of the needles [g]). 

3.3.3. Leaf area index field measurement 
The real values of leaf area index were measured in field by two indirect optically-
based methods using: i) the Li-cor LAI-2000 Plant Canopy Analyzer (PCA), and ii) a 
digital camera with a hemispherical lens. The sampling scheme within the young forest 
stand followed the regular pattern of three parallel transect lines placed in the east-west 
direction, each of 14 points. The sampling points were distributed regularly in the 
pattern of 5x3 m. 
 
• PCA LAI-2000 
The measurements and further processing of the data were conducted by Dr. Radek 
Pokorny from the ASCR. Due to the time constrains, the measurements were taken 
only for the sample points of the middle transect. The complete transect measurement 
was repeated twice, always under the diffuse radiation conditions. The field of view 
(FOV) of the optical device was restricted to zenithal angle of 43°, masking fourth and 
fifth ring of detectors. A view cap restricting azimuthal view angle from 360° to 270° 
was used to remove an operator from the sensor FOV. The values of an effective leaf 
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area index per each point were calculated using the software utility called comma.exe 
(LI-COR, 1992). The effective LAI values had to be corrected from the effect of leaf 
clumpiness and effect of supportive wood in order to get the real values of leaf area 
index. The coefficient to correct the effective LAI to “true” values was obtained from the 
destructive and PCA-2000 measurements conducted within the same forest stand 
during growing period 1997 (Pokorny, Marek, 2000; Pokorny, 2002). The ratio 
computed between the LAI resulted from the destructive measurements and LAIef 
gained from PCA LAI-2000 measurements was considered as the clumping correction 
coefficient of the leaves and woody parts.  
 
• Hemispherical photographs 
Hemispherical photographs were taken with digital camera Nikon Coolpix 8700 with the 
fish-eye lens, offering the FOV of 180º. For each sampling point set of 6 images were 
taken (one upward and one downward looking image (see figure 3) and four images of 
oblique views (at zenith angle 57.5°). The images were first enhanced using the Adobe 
Photoshop software in order to eliminate differences in illumination condition during 
acquisition of the photographs. A neural based software called CAN-EYE (Baret, 
Weiss, 2004) was used for a further processing. Currently CAN-EYE is able to handle 
only upwards and downwards looking images from which calculates one value of leaf 
area index per plot and for each image the effective leaf area index (LAIef) is given. The 
images were first sorted into the groups representing subplots of 3x3 sampling points 
and all nine images of such a subplot were processed together in CAN-EYE. The 
essential and most sensitive step in the whole processing procedure was the 
classification of images. The images were interactively classified into two classes: i) sky 
or soil in case of downward looking images, and ii) leaves. Based on the classification 
the average gap fraction was derived end effective and the “true” LAI and clumping 
index were calculated. 
 

 

Figure 3. Example of the upward looking (left) and downward looking (right) 
hemispherical photograph taken for the field determination of leaf area index. 
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3.3.4. Optical properties of needles and background elements. 
The directional hemispherical reflectance and transmittance of spruce needles and 
background elements (spruce bark, leaves of understory species like black-berry, 
beech, mountain ash, etc.) were measured by field spectrometer ASD FieldSpec Pro 
combined with Li-Cor integrating sphere Li 1800-12. The spectral range of measured 
data was between 350-2500 nm with the step of 1 nm. The representative samples of 
three needle age classes (c, c+1, c+2) were taken from sunlit part (3rd whorl) and 
shaded part (7th whorl, inside a crown) of ten sample trees selected within the young 
forest stand. The method proposed by Daughtry (1989) and extended by Mesarch et al. 
(1999) was adapted for reflectance and transmittance measurements of the Norway 
spruce needles (Malenovský,  Cudlín et al., submitted). 
 
The optical properties of study site background elements (soil, senescent needles) and 
spruce bark were measured with Li-Cor spectroradiometer Li-1800 and integrating 
sphere Li 1800-12 during the field campaign at Sumava Mts. in September 2003 (Ufer 
Gil, 2004). 
 

3.4. AISA hyperspectral images acquisition and post-processing 
The airborne hyperspectral images were acquired by the AISA Eagle (Airborne 
Imagining Spectroradiometer) sensor. AISA Eagle is a pushbroom system equipped by 
a CCD matrix of 1024 spatial pixels and 512 active spectral pixels, operating within the 
spectral range of 400 – 970 nm. The sensor is capable to acquire any spectral band 
combination up to datasets of 244 bands (SPECIM, 2004). The final spatial and 
spectral resolution of the acquired images is related to the flight properties (i.e. altitude 
of the plane, speed of flight) and a sensor set-up (e.g. focal length of fore optics) (see 
table 1). A set of NADIR hyperspectral images of very high spatial resolution (0.4m) 
was acquired over the study area “Bílý Kříž” at September 18th 2004. 

Table 1. Parameters of the flight set-up for flight campaign over the study area “Bílý 
Kříž” (September 18th 2004). 

Parameters  
Spatial resolution /Ground pixel size [m] 0.4 
Band widths [nm] 8.6-10,0
Number of bands 64 
Flight speed [m/s] 50 
FPS (Frames per second) 125 
Swath width [m] 204.8 
Altitude [m] 384 
Focal length of lens [mm] 23 
FOV (Field of view) [º] 29.9 
Binning of pixels (spectral x spatial) 8x2 
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3.4.1. Radiometric calibration 
The radiometric calibration is a process that converts sensor recorded digital numbers 
(DN) to the values of radiance [uW/cm2 sr nm].  
 
The radiometric corrections of the AISA image were performed using a special software 
CaliGeo, compatible with ENVI standard format, designed and provided for the AISA 
sensor by the SPECIM company (SPECIM, 2004). The sensor calibration coefficients 
used for the radiometric correction, were measured in laboratory by SPECIM, using an 
integration sphere and an illumination source of known light intensity. 

3.4.2. Atmospheric correction 
The atmospheric correction of the AISA image, converting the radiance values into the 
reflectance values, was done using the Empirical Line approach. This method requires 
selection of at least one calibration target and its reflectance signature measured in the 
field during the same time as an image acquisition (under the same illumination 
conditions). The correction uses a constant gain and offset for each band to perform 
the best fit between measured spectra and image spectra of the same ground target 
and thus removing the atmospheric effects.  
 
The set of five Lambertian surface calibration panels (each 2.5x2.5m large), with stable 
reflectance response from 5% to 60% in the color range from black to white, were 
placed on the flat ground. Their reflectance was measured by the field spectrometer 
(FieldSpec Pro) during the AISA image acquisition. The calibration panels were easily 
localized at the AISA image and Empirical Line approach was applied (ENVI software) 
using the ground spectra only of four of them (signal of the brightest panel was 
oversaturated at the AISA image, hence it was excluded from the correction 
procedure). 

3.4.3. BRDF correction 
The reflectance of surface covers depends on the viewing and sun illumination 
geometry, which is described by the bidirectional reflectance distribution function 
(BRDF). Due to the sensor view angle (FOV > 20º) the brightness gradient over an 
airborne image may occur with the increasing view angle. When scanning in the 
principal plane, the brightness effect is very strong in the hot spot. The BRDF effect 
occurs in the terrain with slopes facing to the sun and away from the sun. Therefore, 
the nadir normalization method was applied on the AISA reactance image using the 
ATCOR-4 tool (Richter, 2005) to exclude the BRDF influence. 

3.4.4. AISA image classification 
An area, containing the forest stand of interest was selected and cut out from the AISA 
image. The image subset was automatically classified to differentiate the shaded and 
sunlit part of crowns from the other ground surfaces, adopting an approach designed 
for very high spatial resolution imagery (Gascon,  Gastellu-Etchegorry et al., 2004).  
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Two classification methods were applied and their performances compared by means 
of the error matrices and the best result was used for the LAI retrieval. Spectral angle 
mapper (SAM) (Kruse,  Lefkoff et al., 1993), the first classification procedure applied to 
the AISA image, is a physically based spectral classification developed for a 
hyperspectral data. The algorithm determines the spectral similarity between two 
spectra by calculating the angle between the spectra, treating them as vectors in n-
dimensional space (depends on the number of spectral bands). The spectral 
endmembers were derived from the regions of interest (ROI) in ENVI for each ground 
cover class. In order to improve the results of SAM classification the minimum noise 
fraction (MNF) transformation of the AISA image was performed. The MNF 
transformation consists of two cascaded principal component transformations and it is 
used to segregate noise from the data. 
 
Maximum likelihood (MLH) classification was second approach used to classify the 
AISA image. MLH assumes that the distributions of points for each class in each band 
are normally distributed (Gaussian) and the algorithm calculates the probability that a 
given pixel belongs to a specific ground cover class (Lillesand, Kiefer, 2000). A high 
pass convolution filter (window size of 3x3 pixels) was applied to the AISA band no. 41 
(764 nm) to enhance differences between sunlit part of crowns and shaded crowns. 
Resulting image was added as a pseudo-band to the initial AISA image to improve the 
MLH classification process.  
 

3.5. Parameterization of the DART model 

3.5.1. Directional parameters 
The position of the sun over the research area was calculated for the particular location 
and exact time of the flight, which was September 18th, 2004 at 11:50 a.m. (GMT). The 
sun zenith angle (Θ) was equal to 47.8° and the sun azimuth angle (Φ) was equal to -
3.5° (measured from South). Both angular parameters had to be transformed to fit the 
definition of sun zenith and azimuth angles in DART resulting in DART sun zenith angle 
of 183.5°, and DART sun azimuth angle of 137.8°. 

3.5.2. Selection of spectral bands and RT parameters 
The bands in red part of spectra are strongly influenced by the chlorophyll 
concentration of the needles. The leaf water content is influencing the wavelength from 
800 nm. The canopy structure affects the reflectance at the NIR plateau (750 – 1000 
nm) (Lillesand, Kiefer, 2000; Meer van der, Jong de, 2001). Unfortunately, the spectral 
information captured by the AISA sensor was found to be noisy for the wavelength 
higher than 900 nm. Based on this knowledge the suitable spectral bands for LAI 
retrieval were selected between 700 to 800 nm. The parameters of the selected 
spectral bands simulated by DART were according to the position of AISA bands (table 
2). Four AISA bands were selected (band no. 37, 38, 40 and 42) for the RT simulations 
and building the look-up-table (LUT) database. 
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Table 2. Description of the AISA spectral bands selected for DART simulations. 

Band No. Band centre [nm] FWHM
37 726.76 9.35 
38 736.11 9.35 
40 754.88 9.51 
42 773.92 9.52 

 
The multispectral mode of DART was used for RT simulations. Multiple scattering was 
simulated within ten iterations of radiative transfer and the output images were 
requested for each iteration. Due to the no changes in the albedo the simulations were 
stopped after sixth simulation. The Gauss-Seidel approach (Gastellu-Etchegorry,  
Demarez et al., 1996) was used to extrapolate the multiple scattered radiation in the 
last iteration. 

3.5.3. Basic 3-D landscape representation 
The DART model is working with the basic scene (also called maket or mock-up), 
which is a 3-D representation of a simulated landscape (figure 4). The forest landscape 
was created as a repetition of the basic pattern of four trees forming a rectangular cell 
matrix. The pixel size of the basic scene cell was set to be 0.2 m. The dimensions of 
the scenes varied with different canopy closures. 
 

 

Figure 4. Representation of a cell matrix (left) and the visualisation of 55% canopy 
closure basic scene of spruce stand in DART (right) 

 

3.5.4. Canopy closure of the simulated forest 
Six categories of percentage of canopy closure (55%, 65%, 75%, 85%, 90% and 95%) 
were simulated in order to describe different densities of forest stands (figure 5). The 
selection of canopy closures categories was based on the exploration of the AISA 
image and preliminary calculation of possible canopy closures. The scene dimensions 
and spacing between trees (exact tree location) were linearly decreased with 
increasing canopy closure to achieve selected canopy closures in DART. 
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Figure 5. Schematic representation of six canopy closure categories used for building 
the spectral look-up tables (the legend of 55% CC is applicable for all canopy closures 
categories). 

 

3.5.5. Tree structural and optical properties 
A tree, used for the scene building, was defined by exact location (X, Y coordinates), 
and specific structural and/or optical parameters. Each tree was treated as one “DART 
tree species”, which means that all input parameters could be defined separately for 
each species. One suppressed tree, one dominant and two average trees were defined 
within the scene. The basic allometric parameters (e.g. tree height, trunk diameter) 
were derived from the field measurements accomplished by the laser rangefinder 
Impulse 200 and FieldMap system, or from the direct measurements of the same forest 
stand provided by Dr. Radek Pokorny (ASCR). 
 
• Crown architecture 
Several geometric simplifications of tree crown shape are available in the DART model. 
The truncated cone with zero upper radius was used to represent the Norway spruce 
crowns in this study. The height of a live crown and the bottom radius of a crown were 
derived from the field destructive measurements in 1997 and the parameters were 
linearly recomputed to reflect the current growing stage of the young forest stand. 
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• Crown vertical levels 
Any number of crown vertical levels can be defined by an operator within a simulated 
tree. Specific tree parameters (e.g. trunk diameter, distribution of leaf volume density 
and percentage of full leaf cells) can be defined per each level separately. Height of a 
tree levels has to be specified as a percentage of the total crown length, expressed as 
a relative value between 0 and 1. The total sum of relative heights’ of tree levels must 
be smaller or equal to one. The number of tree levels was defined according to the 
height of crowns, i.e. 10 levels for the suppressed tree and 11 levels for the dominant 
and average tree.  
 
• Trunk definition 
Trunk height and diameters of each “DART tree species” are defined separately inside 
and outside a crown. The trunk height within a crown was specified 2 meters lower than 
length of the crown in order to avoid unrealistic influence of a trunk at the crown top. 
The trunk diameters were derived from the destructive measurements of the 
experimental forest stand in 1997, carried out on eleven specific trunk heights. A simple 
ratio DBH04/DBH97, where DBH04 is diameter at breast height (DBH) of the universal 
DART trees derived from the field measurements, and DBH97 is an average measured 
DBH, was used to compute trunk diameters at the same tree heights as measured in 
1997. Finally, a statistical exponential function was applied to calculate a trunk 
diameter at any tree height for each “DART tree species” (see figure 6). 
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Figure 6. Estimation of the trunk diameters at any height of universal “DART tree 
species” (exponential function of species no. 3 is given). 
 

• Vertical distribution of leaf area within a crown 
The varying leaf distribution in the vertical direction is introduced in a new version of 
DART through the vertical weights of unit leaf volume density uf [m2/m3]. The leaf 
volume density of a cell at any location can be described by the following equation:  

uf[j,x,y,z] = uf[j].w[j,l].w[j,x(l),y(l)]                                                                                     (8) 

where uf[j,x,y,z] is leaf volume density of tree species j in particular location (x,y,z) and 
uf[j] is unit leaf volume density of tree species j. The vertical weight of uf at tree level l of 
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tree species j is denoted as w[j,l] and w[j,x(l),y(l)] is horizontal weight of uf, which is 
discussed in the next section. 
 
The required vertical weights were generated from the vertical distribution of total leaf 
area for an average suppressed, co-dominant and dominant tree, obtained from the 
destructive measurements in 1997 (Pokorny, 2002). First, the total leaf area of four 
DART trees was estimated from an empirically derived linear equation 9. based on the 
crown surface area (Pokorny, 2002). 

LAt = 3.2010*Ca – 25.687                                                                                              (9) 

where LAt is total needle area in m2 and Ca is crown surface area [m2], which was 
derived from the simplified shape (cone) of spruce crown. The adjusted correlation 
coefficient (r2) equal to 0.94 ensured statistical significance of the derived allometric 
linear relationship. 
 
Percentage of total leaf area presented in each tree level was derived from the graphs 
of vertical distributions of total leaf area. The vertical weights of leaf area distribution 
were computed for each tree level as the ratio between unit leaf volume density of the 
whole tree and leaf volume density within each crown level. 
 
• Horizontal distribution of leaf area and empty cells 
Another structural feature of the last DART version allows to define varying leaf volume 
density also in the horizontal direction (parameters α, β, γ and κ) and to specify the 
horizontal distribution of full leaf and empty (air) cells (parameters a and b) within each 
tree level l. Function of the horizontal distribution of leaf volume density is indicated in 
figure 7.  
 
The position of each leaf cell can be expressed as the relative ratio r(x,y,z)/Max r(x,y,z), 
where r(x,y,z) is current position of a leaf cell and Max r(x,y,z) is the position at the 
crown periphery. Depending on the horizontal parameters of leaf volume density α, β, γ 
and κ, specified for each crown level, the leaf volume density of each leaf cell is 
calculated in following manner: 
• if ratio ∈ 〈0,α) than uf[j,x,y,z] = 0 
• if ratio ∈ 〈α,β) than uf[j].w[j,l].w[j,x(l),y(l)], where w[j,x(l),y(l)] = (ratio–α)/(β-α) 
• if ratio ∈ 〈β,γ) than uf[j,x,y,z] = uf[j].w[j,l] 
• if ratio ∈ 〈γ,κ) than uf[j].w[j,l].w[j,x(l),y(l)], where w[j,x(l),y(l)] = (κ-ratio)/(κ- γ) 
• if ratio ∈ 〈κ,1〉 than uf[j,x,y,z] = 0 
 
If the crown air spaces (empty cells) need to be defined, then two additional horizontal 
parameters a and b must be specified. These parameters determine zones of total 
(100%) inner and peripheral crown defoliation.  
• if ratio ∈ 〈0,a) than 100% of empty cells is defined 
• if ratio ∈ 〈a,b) than percentage of leaf cells is specified by an operator 
• if ratio ∈ 〈b,1) than 100% of empty cells is defined 
(The detailed explanation is given in the DART user manual.) 
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Figure 7. DART function for horizontal distribution of leaf volume density uf [m2/m3]. 
 
It was assumed that parameters κ and b are equal to 1, which means that none 
peripheral crown defoliation was considered for the young trees. Parameter α was 
assumed to be equal zero. Based on those assumptions only parameters β, γ and a 
had to be determined. 
 
Because the data describing the horizontal distribution of leaf area of the young trees 
were not available, the horizontal parameters were derived from the analyses of 
representative branches of mature Norway spruce trees, which were collected during 
the field campaign at Sumava Mts. in 2003 (Ufer Gil, 2004). Seven branches from 
juvenile crown part and five from productive part were used for mapping of the leaf 
horizontal distribution after exclusion of four non-representative branches. The juvenile 
branches of mature tree were considered to have similar horizontal distribution of leaf 
area as the branches at the upper crown half of young trees. The first productive 
branches of mature trees were considered to be similar to the lower branches of the 
young tree crowns.  
 
The branches were divided into the regular segments (see section 3.3.2), and a digital 
photograph of each segment was taken in the laboratory. The boundaries of segments 
and holes within branches were digitized using ArcGIS software. The digitized branch 
segments were assembled into the whole branch with the initial point O[0,0] located at 
the beginning of each branch. The multiple buffer rings of 0.2 m were created around 
the initial point O with the distance corresponding to the dimension of a cell size 
defined in DART. The branch digital coverage was intersected with the buffer coverage 
and a sector of a circle occupied by a single branch was determined for each of the 
analysed branches (figure 8). It was assumed that the branches are not overlapping 
each other within a whorl and they are distributed evenly. 
 
 
 
 
 
 
 
 
 

r(x,y,z) Max r(x,y,z) 
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Figure 8. Example of the reconstruction of a juvenile (left) and 1st productive (right) 
branches. 

 
 1/ Horizontal structural parameters β and γ of leaf volume density 
First of all percentage of total branch segment area per each sector ring was 
calculated. The same procedure of destructive branch analyses as described in chapter 
3.3.2 was used during the field campaign in 2003. The result of the total needle area 
per segment was used to compute the total needle area [m2] within each sector ring 
and in final step recomputed into the percentage of the half of total needle area per 
sector ring. The average values of these percentages for juvenile and first productive 
branches were plotted in cumulative way. The cumulative curve was fitted by a sigmoid 
function:  
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The first and second derivative of the sigmoid function was calculated. Finally, the 
parameter β was estimated as the maximum and the parameter γ as the minimum of 
the second derivative function. 
 
 2/ Horizontal parameter a of inner zone of defoliation 
Only first productive branches were taken into account for calculation of the parameter 
a. The length of non-leaf part for each examined branch was determined, averaged and 
converted into the percentage of total branch length. The average value of non-leaf 
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length of a branch was considered to be representative for the bottom part of the tree 
crowns simulated in DART. The inner defoliation zone was not introduced for the 
juvenile part of DART crowns (last two crown levels). Radius of the defoliation inner 
zone was assumed to be horizontally linear, thus the radius values of inner defoliation 
zone were interpolated for any tree height using a linear equation.  
 
 3/ Percentage of full leaf cells 
Percentage of the sector ring area occupied by the branch segments was first 
determined for each sector ring separately. Averaging these values over all sector rings 
gave a percentage of full leaf cells per one crown whorl. It was assumed that one 
crown level is occupied by two whorls, thus the final percentage value of full leaf cells 
had to be doubled. The analysis of 1st productive branches gave the value for the 
bottom part of crown and the juvenile branches gave the value at the middle of the 
young tree height. The values for tree levels in between were linearly extrapolated. The 
constant percentage as obtained from juvenile branches was defined for remaining 
upper crown levels, except 85% of full leaf cells for the last upper level and 80% for the 
second upper crown level. 
 
• Simulation of the first order branches 
Simulation of branches of the first order is next structural feature introduced in the new 
DART version. Each branch has to be defined by a relative height of its branch base on 
a trunk. The orientation of a branch is defined by its zenith and azimuth angle. In 
average two branch whorls per a crown level were created along the trunk each 
assembled from four to six branches. The branch zenith angle linearly decreased from 
90° to 60° with growing tree height. 
 
• Tree optical properties 
The latest DART version allows specifying the optical properties of needles for each 
crown level separately. DART leaf optical properties were calculated as a weighted 
average of hemispherical optical characteristics of last three needle age classes of 
sunlit and shaded needles. The vertical distribution of needle age classes, expressed 
as percentage of c, c+1 and r needle age class, were obtained from destructive 
sampling within the same forest stand in 1997 (Pokorny, 2002). For the purpose of this 
study the vertical distribution of needle age classes was assumed to be comparable 
with situation in 1997. Seven zones of different optical properties (directional 
hemispherical reflectance and transmittance) were differentiated according to the 
relative tree heights. The optical properties of first three bottom zones were based only 
on the optical properties of shaded needles. The optical properties for transition middle 
zones were calculated as an average optical property of shaded and insolate needles, 
and last two upper zones were represented only by insolate needles.  
 
The optical properties of woody elements, i.e. Norway spruce bark of branches and 
trunks, were measured during the field at Sumava Mts. in 2003. 
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3.5.6. Leaf area index in DART 
The value of LAI can be specified as the leaf area index of a “DART” tree species 
related to the area of whole sub-scene or as a value expressing leaf volume density 
(uf). The tree LAI was entered as a variable value of leaf volume density. Different 
combinations of leaf volume density and canopy closures led to the targeting values of 
leaf area index of the whole simulated scene, which was used to build the spectral 
look-up table database. 

3.5.7. Background structural and optical properties 
The ground cover of the young forest stand consists mainly of litter (senescent 
needles) and bare soil. There are not many understory species growing due to the lack 
of light. Therefore, the effect of understory vegetation was not impeached for the DART 
simulations. The final optical properties of the ground surface were calculated as a 
weighted value of the optical properties of bare soil (weight 0.5) and optical properties 
of senescent needles (weight 0.5). 

3.6. Building of the spectral look-up table database 
The combination of two free variables (canopy closure and leaf volume density) led to 
the different values of stand leaf area index per a simulated scene (see appendix 1). 
The look-up table (LUT) databases were build for each simulated canopy closure (55%, 
65%, 75%, 85%, 90% and 95 %). In total 336 simulations were carried out to build the 
LUT database. The simulated spectral bands correspond to the AISA spectral bands 
(particularly the spectral band no. 37, 38, 40 and 42; the wavelengths are indicated in 
table 2). The DART simulated spectral images were classified per each canopy closure 
into the following three thematic classes: illuminated tree crown (IC), shaded tree crown 
(SC) and non-covered ground. An average reflectance of shaded and sunlit crowns 
was extracted and a simple ratio between average reflectance of shaded and sunlit 
crowns were calculated and stored in the LUT’s for each combination of uf and CC.  
 

3.7. Methods of leaf area index retrieval 
Two methods were applied for leaf area index retrieval from the remote sensing data of 
very high spatial resolution (the AISA image) using the LUT generated by means of the 
radiative transfer model DART. The selected inversion methods are: i) minimization of a 
cost function, and ii) application of the neural networks. The estimation of LAI was done 
for two extents of a sliding square window (dimensions of 10 and 8 meters), moving 
pixel by pixel over the AISA image. One uf value and subsequently LAI value was 
extracted within the sliding window and assigned to the central pixel of the window. 
 

3.7.1. Minimization of a cost function 
The minimization algorithm was basically comparing simulated spectral LUT database 
values with observed AISA imagery hemispherical directional reflectance factor (HDRF) 
values and searching for the best matching case by means of minimizing a cost 
function (equation 11) in a LUT of corresponding canopy closure. Consequently, the 
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input leaf volume density (uf) of the lowest RMSE was selected as an appropriate 
solution. The whole inversion procedure of the spectral LUTs was programmed and 
automated in Matlab environment by Raul Zurita. 
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First, the category of canopy closure was derived for the extent of a sliding window by 
means of calculating a ratio between number of crown pixels and the total number of 
pixels in the window. After that the ratio between shaded and sunlit crown pixels was 
calculated. The minimization algorithm was applied in proper canopy closure spectral 
LUT database calculating root mean square error (RMSE) between spectral values of 
the sliding window and LUT. The value of uf for the case with the smallest RMSE was 
assigned to the central pixel of the sliding window. Afterwards the retrieved uf values 
were converted into the LAI values using the canopy volume of the DART basic 
scenes. 

3.7.2. Artificial neural networks 
Neural network (NN) is a non-linear mathematical tool designed to estimate an 
unknown parameter based on the set of known input data. The most important part is 
to select the proper NN architecture and learn (train) properly your neural network for a 
desired response. A training dataset has to be build for learning purpose. The training 
set consists of the input data and known outputs. After the learning procedure, the 
neural network is applied to a testing dataset to derive the desired output values. 
 
The look-up tables created from the DART simulations (section 3.6) were used as a 
training datasets. In total six training datasets were used, one for each canopy closure 
category. Chosen neural network belongs between the classification networks, which 
means that it is able to work only with the number in the range from 0 to 1. Thus all the 
values of leaf volume density (uf) had to be normalized to fit the range. 
 
There are many NN architectures available in the used software package ThinksPro. 
Unfortunately, there is no general rule to choose the best NN architecture. After testing 
several NN architectures the best performances were obtained for the Cascade 
architecture with the standard input setting, 10 nodes in one hidden layer and the quick 
propagation learning rule specified for hidden and output layer. The number of NN 
iterations was trained specifically per each canopy closure and it varied between 230 
and 400 iterations. The testing dataset was created from the AISA image during the 
process of the cost function minimization (see section 3.7.1). The canopy closure value 
and the ratio between shaded and sunlit crowns reflectance for each spectral band 
were calculated within specific sliding window and assigned in to the central pixel. The 
NN architectures of each canopy closure were applied to the training spectral dataset 
to derive leaf volume density. The masks of the canopy closure categories of the sliding 
windows were used to filter the corresponding uf values, which were afterwards 
converted into the LAI map of the AISA image subset. 
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4. Results  
4.1. Field measurements of leaf area index 

4.1.1. PCA-2000 measurements of LAI 
The ground truth measurements done by PCA-2000 were post processed by the 
specialist from the ASCR providing values of the effective leaf area index per each 
point of the middle transect. The values of effective LAI had to be converted to the 
“true” LAI values. The revision of the conversion factor led to the similar value as 
published by Pokorny (2002). The value of 1.62 was used to obtain the “true” leaf area 
index values, applying a linear equation: LAI = 1.62*LAIef. The LAI values of transect 
points were ranging between 4.13 – 7.29 for LAIef and between 6.68 – 11.81 for LAI. 
The overview of the PCA-2000 measurement results is given in table 3. 

Table 3. The values of effective leaf area index and the real values of LAI for each of 
the measured transect point. 

point LAIeff 1 LAIeff 2 average 
LAIeff

true LAI 

1 4.87 4.91 4.89 7.92 
2 5.19 5.13 5.16 8.36 
3 5.05 5.01 5.03 8.15 
4 6.37 5.95 6.16 9.98 
5 5.63 5.65 5.64 9.14 
6 5 4.92 4.96 8.04 
7 7.25 7.33 7.29 11.81 
8 6.78 6.83 6.81 11.02 
9 5.68 5.43 5.56 9.00 

10 4.46 4.52 4.49 7.27 
11 4.47 4.45 4.46 7.23 
12 6.56 6.66 6.61 10.71 
13 5.51 5.53 5.52 8.94 
14 4.06 4.19 4.13 6.68 

average 5.49 5.47 5.48 8.87 
 

4.1.2. Hemispherical photographs and results from the CAN-EYE software 
Hemispherical photographs processed by means of the CAN-EYE software provide 
estimates of both effective and “true” LAI (table 4). The average values of LAI were 
2.82 and 4.88 for effective and “true” LAI respectively. The LAI values obtained from 
CAN-EYE were compared with the LAI estimates obtained from PCA-2000, see figure 
9. The resulting LAI values from CAN-EYE are generally much lower than from PCA-
2000. Destructive measurement of leaf area index within the same forest stand done in 
1997 (Pokorny, 2002) indicated stand LAI around 8.5. Based on the comparison with 
destructive LAI measurement and with the PCA-2000 measurements the estimates of 
LAI by means of hemispherical photographs and CAN-EYE software were considered 
to be underestimated. Therefore, it was decided to exclude the results obtained from 
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hemispherical photographs from further analysis and validation of the LAI estimation 
from the AISA image. 
 

Table 4. Summary of the effective and “true” LAI values obtained from the processing 
of hemispherical photographs using the CAN-EYE software. 

plot LAIef true LAI
1 3.4 5.8 
2 3.3 5.3 
3 2.4 4.1 
4 2.8 5.6 
5 3 5.8 
6 2.5 4 
7 2.7 4.7 
8 2.9 5.1 
9 2.8 4.6 
10 2.9 5 
11 2.6 4.3 
12 2.5 4.2 

average 2.82 4.88 
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Figure 9. Comparison between PCA-2000 and hemispherical photographs estimates of 
effective LAI (left graph) and “true” LAI (right graph). 

 

4.2. Results of DART parameterization and simulations 
Proper parameterization of DART model was a very intensive and time consuming 
procedure, but it was the most essential step of the selected physically based study 
approach. Especially parameterization of newly introduced DART structural features 
(as described in sections 2.1 and 3.5.5) took a lot of time and raised many unexpected 
problems. This study demonstrates that it is feasible to obtain all the required input 
parameters for the case of a young Norway spruce forest stand. The most important 
intermediate results, obtained during the process of the DART parameterization, are 
summarized in the following paragraphs. 
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4.2.1. Structural characteristics of trees 
The forest basic scenes in DART were build from four representative tees, trying to 
resemble the current growing stage of the young forest stand at Bílý Kříž study site. 
The overview of the simulated tree species basic allometric characteristics is given in 
table 5. 
 
Coniferous trees, such as Norway spruce, are characterized by a highly organized 
structure of leaves within a crown. This kind of structural heterogeneity is introduced in 
DART through vertical and horizontal weights of leaf volume density uf (described in 
chapter 3.5.5).  
 
Vertical weights of leaf volume density were derived from the distribution of total leaf 
area in vertical direction for an average, suppressed and dominant tree. The graphs of 
vertical distribution (figure 10) indicate that most of the leaf area is cumulated between 
20 -50 % of a tree height in case of an average tree, around 40% of relative height for a 
suppressed tree and between 25-60% in case of dominantly growing tree. The vertical 
weights reflected varying distribution of foliage in vertical direction, which is mainly 
affected by mutual position of trees within a canopy. 
 
Digital reconstruction of the representative mature branches and their analysis in 
horizontal direction led to the expected horizontal distribution of leaf area as required 
for the DART simulations (compare figure 7 and figure 11). Two structural parameters 
(β and γ) were estimated as the results of the analyses of the leaf horizontal 
distribution. For the juvenile branches, which are related to the upper part of the 
“DART” trees, the β value was computed to be equal to 0.39 and γ parameter equal to 
0.64. First productive branches, providing the estimates of the parameters for lower 
part of trees specified in DART, gave values of β and γ of 0.29 and 0.62, respectively 
(see figure 12). 
 
The last parameter derived from the analyses of leaf horizontal distribution was the 
inner zone of defoliation indicated by parameter a (see section 3.5.5). The bottom 
radius of defoliated cone inside the crown, corresponding with the length of defoliated 
part of first productive branches, was found to be 23.3% of the average branch length. 
 
 

Table 5. Basic allometric parameters of the universal trees used for DART simulations. 

Trunk height [m] Trunk diameter [m] Crown radius [m] 
 below 

crown 
inside of 
crown 

below 
crown 

inside of 
crown 

bottom upper 

Crown 
height 

[m] 
Species 0 0.4 8.2 0.4 0.18 1.56 0.00 10.2 
Species 1 0.2 7.0 0.2 0.15 1.26 0.00 9.0 
Species 2 0.4 8.0 0.4 0.17 1.46 0.00 10.0 
Species 3 0.6 9.2 0.6 0.20 1.83 0.00 11.2 
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Figure 10. Vertical distribution of total leaf area [%] for an average, suppressed and 
dominant tree of the young Norway spruce forest stand. 
 
 
 

 

Figure 11. Horizontal distribution of leaf area based on the analysis of juvenile and 1st 
productive branches of mature spruce trees (Sumava Mts. 2003). 
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Figure 12. Determination of structural horizontal parameters (β and γ) of leaf volume 
density based on the analyses of representative branches (juvenile and 1st productive) 
of mature Norway spruce trees. Graphs were created by the trial version of TableCurve 
sowtware 2D version 5.01 (Systat http://www.systat.com/) 
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4.2.2. Optical properties of the DART scenes 
Based on the measured optical properties of Norway spruce needles of last three age 
classes (see figure 13) and the distribution of needle age classes in vertical direction 
(table 6), the average optical properties (directional hemispherical reflectance and 
transmittance) of needles, used as a DART input, were calculated for seven vertical 
tree zones (see figure 14). 
 
Extensive directional RT simulations in DART and their comparison with AISA image 
was conducted by Emmanuel Martin (CESBIO, France). This simulations stressed out 
that reflectance of the Norway spruce crowns, particularly in NIR part of spectra, is 
lower than observed reflectance values at AISA image (Martin, 2005). This fact led to 
the revision of input leaf optical properties. Values of transmittance in NIR were 
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compared with measured transmittance of Norway spruce needles from previous years, 
which indicated that optical properties used for DART simulations had in average 8% 
lower transmittance in NIR bands. Therefore, new optical properties were generated by 
means of linear increase of the transmittance intensity within the simulated NIR 
wavelengths (see table 2). 
 

Table 6. Vertical distribution of needle age classes in percentage for the young Norway 
spruce trees obtained from destructive measurements (according to (Pokorny, 2002)). 

% of needle year classes Relative tree height
[%] c c+1 c+2 (r) 

Needle type 

I 0 – 15 1 5 94 shaded 
II 15 - 30 11 15 74 shaded 
III 30 - 45 25 51 54 shaded 
IV 45 - 60 50 24.5 25.5 shaded + insolated 
V 60 - 75 56.5 20.5 23 shaded + insolated 
VI 75 - 90 63.5 25 11.5 insolated 
VII 90 - 100 75 16 9 insolated 

 

 

Figure 13. Measured directional hemispherical reflectance and transmittance by the 
field spectrometer (FieldSpec Pro) for the last three needle age classes (c, c+1 and 
c+2) of sunlit (EC) and shaded (SC) Norway spruce needles. 

 

 

Figure 14. Final optical properties of Norway spruce needles in seven crown vertical 
zones, used as inputs of DART simulations. 
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Average optical property (reflectance) of ground cover used in DART is indicated in 
figure 15. The average reflectance at NIR plateau is around 25%. Calculated standard 
deviation of reflectance for the simulated spectral bands equal to 0.17 was used to 
introduce heterogeneity of the ground cover optical properties in the DART simulations. 
The optical properties of Norway spruce bark for trunks and branches are presented at 
figure 16. 
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Figure 15. Reflectance of bare soil and senescent needles of the forest litter and the 
final optical property of the ground cover in the young forest stand, used as the DART 
input. 
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Figure 16. Optical properties (reflectance) of the Norway spruce branch and stem bark, 
used as the DART input. 

 

4.2.3. Results of the DART simulations 
A set of images for each spectral band was created for each simulated combination of 
canopy closure and leaf volume density. Example of NADIR view and one of the 
oblique views is given in figure 17. Shaded and sunlit crowns and shaded and sunlit 
ground cover could be easily detected at the images by visual as well as automatic 
classification. The average reflectance of the shaded and sunlit crown parts was 
extracted for each combination of uf and CC and for each of the simulated spectral 
band (table 2). The example of the overall scene reflectance (BRF) and the average 
reflectance of shaded and sunlit crowns for the spectral band no. 42 are presented at 
figure 18. The spectral signatures derived for the rest of the simulated spectral bands 
can be found in appendix 2. 
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Figure 17. Example of the DART image outputs: representation of 55% canopy closure 
scene with uf = 10 m2/m3; NADIR view (left) and oblique view (right). Both images are 
RGB colour composite (R 774, B 680, G 736 nm). The indigo blue represents the 
Norway spruce crowns and the pink colours represent the ground cover. 
 
 

 

Figure 18. The spectral characteristics derived from the output DART images for each 
canopy closure category. The examples are given for the simulated AISA band no. 42. 
The average reflectance of the simulated scenes (BRF) is presented on the left graph. 
The average reflectance extracted from sunlit and shaded crown parts is presented on 
the right graph.  
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Figure 19. The spectral characteristic (the ratio between shaded and sunlit crown pixels) used to 
build the spectral LUT database. The example of the resultant ratios for each of the CC 
categories is presented for spectral band no. 42. 
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4.3. The look-up table database 
The reflectance ratio between shaded and sunlit pixels of the Norway spruce crowns 
were calculated for each simulated combination of uf and CC (the summary is given in 
appendix 1) and stored in spectral look-up table database. In total six LUTs were 
generated, each for one canopy closure category (section 3.5.4). The example of the 
ratio functions derived for the spectral band no. 42 is given at figure 19. The ratios for 
the rest of the simulated spectral bands are presented in appendix 3. 
 

4.4. Processing of the AISA hyperspectral image 
Example of the georeferenced AISA image lines after radiometric and atmospheric 
correction is given at figure 21. The ground measurements of reflectance of several 
ground cover surfaces, which were measured by the field spectrometer FieldSpec Pro 
during the flight campaign, were used to evaluate quality of the atmospheric and 
radiometric corrections of the AISA image. Comparing the measured ground 
reflectance and reflectance derived from the corrected AISA image for the same natural 
surfaces indicates good correlations within most of the wavelengths except several NIR 
spectral bands (from approximately 800 to 1000 nm), see figure 20.  
 

 

Figure 20. Evaluation of atmospheric and radiometric corrections of the AISA image. 
Comparison between ground measured and AISA derived reflectance of three selected 
ground cover surfaces. 

 
Two different classification approaches, as described in chapter 3.4.4, were applied to 
the selected subset of the AISA image in order to properly differentiate shaded, sunlit 
Norway spruce crowns from the rest of the ground surface. The performances of both 
classification methods were evaluated by means of error matrixes using the testing 
regions of interest.  
 
The overall accuracy of SAM classification was equal to 80.5%. The major problem of 
the SAM classification was the mixing of shaded and sunlit crown pixels. That is why 
Maximum likelihood classification approach was tested. MLH classification results in 
overall accuracy of 96%, improving significantly the separation of shaded and sunlit 
Norway spruce crowns. Because of that the MLH classification results were used 
further on in the LAI retrieval procedure. The error matrix for the MLH classification and 
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the result of classification are available in table 7 and figure 22. Producer and user 
accuracies of the MLH classification are given in table 8. 
 

 

Figure 21. Example of the georectified mosaic of two AISA image flight lines of the 
spatial resolution of 0.4m and the AISA subset of the selected area of interest within 
the observed young forest stand. 

 

 

Figure 22. Classification result of the AISA image subset, using the Maximum likelihood 
classification. 

N 
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Table 7. The error matrix for the MLH classification of the AISA image subset (the 
values are in percentage) 

 testing data  

class name 
shaded 
ground 

illuminated 
crown 

shaded 
crown 

illuminated 
ground 

total 

shaded 
ground 

91.82 0.00 0.00 0.00 15.23 

illuminated 
crown 

0.00 100.00 1.54 0.00 32.43 

shaded 
crown 

7.27 0.00 92.31 0.00 28.36 

illuminated 
ground 

0.91 0.00 6.15 100.00 23.98 

total 100.00 100.00 100.00 100.00 100.00 

 

 
Table 8. Overview of producer and user accuracies, overall accuracy of the MLH 
classification and kappa coefficient. 

class name Producer accuracy [%] User accuracy [%] 
shaded ground 91.82 100.00 

illuminated crown 100.00 98.60 
shaded crown 92.31 95.74 

illuminated ground 100.00 95.74 
overall accuracy 96.38 
kappa coefficient 0.957 

 
 

4.5. Results of leaf area index estimations from the AISA image 
Two methods retrieving the leaf area index form AISA image subset were used and 
evaluated within this study: i) minimization of a cost function, and ii) application of 
neural networks. These methods of LAI retrieval were not a pixel based, but the sliding 
windows of two extents (10 m and 8 m), moving over the AISA image, were applied. 
Application of LAI retrieving methods resulted in spatial maps of leaf volume density uf 
and subsequently maps of leaf area index distributions over the observed forest stand. 
The values of LAI were not retrieved directly, but first leaf volume density uf was 
estimated for each sliding window position. After that uf was recalculated into the LAI 
using a simple linear relation (equation 12) with conversion coefficients (see table 9) 
based on the canopy volume.  

LAI = c * uf                                                                                                                   (12) 

 
The canopy volume was directly derived from the DART scenes of each canopy 
closure, as shown in figure 23. The volume of canopy was systematically decreasing 
with increasing canopy closure. Only in case of 90% CC the canopy volume was out of 
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expected range, which might be due to the number rounding in DART. Therefore, the 
canopy volume of 90% CC was adjusted to fit a linear decreasing trend and 
corresponding conversion coefficients table 9 was calculated from the adjusted value. 
 
 

 

Figure 23. Canopy volumes for each CC representation derived directly in DART (left) 
and linear regression for canopy volume correction of outlying 90% CC (right) 

 
 

Table 9. Canopy closure coefficients for conversion of retrieved leaf volume density into 
the LAI values  
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95 1.8817 
90 1.6066 
85 1.4983 
75 1.3030 
65 1.1448 
55 0.9541 

 

4.5.1. Canopy closure of the forest stand 
Application of the sliding windows over the MLH classification of the AISA image 
produced spatial outputs of canopy closure categories (figure 24). This additional 
information was needed to convert spatial maps of uf, resulting from the minimization 
method and the neural network approach, into the map of LAI distribution. 
 
The mean canopy closure of the young forest stand was equal to 89% with standard 
deviation of 8.33% for 10m sliding window. In case of 8m sliding window the average 
canopy closure was 88.6% with standard deviation of 9.08%. In both cases 95% CC 
class was the most abundant, particularly 49.02% of whole forest stand area in case of 
10m sliding window and 49.91% and for the sliding window of 8m. 
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Figure 24. Map of canopy closure categories generated form the MLH classification of 
the AISA image for the sliding window of 10m (left) and 8 m (right) in size. 

 
 
 
 
 

 
Figure 25. The spatial map of the differences between canopy closures derived for two 
sliding window extents (the result of subtraction: win 10m – win 8m) 
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4.5.2. Minimization of a cost function 
The results of the spectral LUT inversion by means of a minimization cost function per 
each extent of sliding window are given in figure 26 for leaf volume density, and in 
figure 27 for forest canopy leaf area index. The mean uf values of the observed forest 
stand were 3.748 m2/m3 and 3.733 m2/m3 for the sliding window of 10 m and 8 m 
respectively. The average value of the estimated forest stand LAI was 6.35 for 10 m 
sliding window and 6.307 for 8 m sliding window. 
 
 

 
Figure 26. Minimization approach: maps of estimated leaf volume density uf [m2/m3] 
from the AISA image for the sliding window extent of 10 m (left) and 8 m (right). 
 
 

 

Figure 27. Minimization approach: maps of estimated leaf area index from the AISA 
image for the sliding window  extent of 10 m (left) and 8 m (right). 
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4.5.3. Artificial neural networks 
The results of the spectral LUT inversion by means of the neural network approach, 
including both sliding window extents, are given in figure 28 for leaf volume density, 
and at figure 29 for leaf area index. The mean retrieved uf values of the observed forest 
stand were equal to 3.667 m2/m3 and 3.687 m2/m3 for the sliding window of 10 m and 8 
m respectively. The average estimated LAI of the observed forest stand was 6.197 for 
10 m and 6.141 for 8 m sliding window. 
 
 

 

Figure 28. Neural networks approach: maps of estimated leaf volume density uf [m2/m3] 
from the AISA image for the sliding window extent of 10 m (left) and 8 m (right). 

 
 

 

Figure 29. Neural networks approach: maps of estimated leaf area index from the AISA 
image for the sliding window extent of 10 m (left) and 8 m (right). 
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4.5.4. Evaluation of the LAI retrieving approaches 
The short summary of the estimated LAI and uf values for the whole observed forest 
stand is presented in table 10. The field measurements of leaf area index obtained form 
the Li-Cor PCA-2000 were used for the validation of the LAI values estimated from the 
AISA image subset. One-to-one relations between ground measured and hyperspectral 
image retrieved LAI values are indicated in figure 30. In addition, the predicting 
capability of each inversion method was evaluated within the root mean square errors 
(RMSE) and Pearson correlation coefficients, which are shown in table 11.  
 
 

Table 10. The summary of the estimated LAI and uf values from the AISA image by 
means of neural network inversion approach and inversion by minimization of a cost 
function for each extent of the sliding window (10 and 8 meters). The values are 
extracted from the spatial maps of LAI and uf , presented at figures 26 – 29. 

  Cost function Neural Networks 
  win10 win 8 win10 win 8 

mean 3.748 3.733 3.667 3.687 
st. dev. 0.721 0.860 0.718 0.855 

min 2.000 1.500 1.841 1.591 
uf 

[m2/m3] 
max 7.800 9.000 7.780 8.688 

mean 6.350 6.307 6.197 6.141 
st. dev. 1.414 1.640 1.337 1.564 

min 2.290 1.431 2.332 1.681 
LAI 

max 12.531 14.460 12.499 13.959 
 

Table 11. Overview of the LAI retrieving methods performances by comparison with the 
field measurements of LAI (PCA-2000). 

Method mean R* Sig.** RMSE 
Minimization cost function (window 10m) 7.12 0.024 0.936 2.457 
Minimization cost function (window 8m) 7.07 0.094 0.748 2.427 
Neural Networks (window 10m) 6.88 0.080 0.979 2.629 
Neural Networks (window 8m) 6.84 0.064 0.828 2.613 

* Pearson correlation coefficient; ** significance within confidence interval of 95% 
 

Table 12. Pearson correlation coefficients (R) computed between used inversion 
methods (LUT min = inversion of the LUT by the minimization cost function; NN = 
inversion of the LUT by the neural networks). 

pair of method R sig.* 
LUT min (win 10m) x LUT min (win 8m) 0.985 0.000 
NN (win 10m) x NN (win 8m) 0.984 0.000 
LUT min (win 10m) x NN (win 10m) 0.998 0.000 
LUT min (win 8m) x NN (win 8m) 0.999 0.000 
• significance within the confidence interval of 95% 
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Figure 30. Comparison of the methods of LAI retrieval against the ground 
measurements; left graphs corresponds to sliding window extent of 10 m and right 
graphs to 8 m sliding window. 

 
 
Subtraction the map of LAI estimated by the minimization cost function from the LAI 
map of the NN approach (see figure 31), the following mean difference values were 
obtained: -0.142 and -0.153 for the sliding window extent of 10m and 8m. These results 
showed that neural networks provide slightly lower estimates of LAI than minimization 
function approach. 
 
The evaluation of the effect of different sliding window extent on the LAI estimation was 
done through subtraction of the final LAI map for window of 8m from window of 10m 
per each inversion method. The results of the subtraction are presented in figure 32. 
The mean values of resulting images are 0.026 and 0.012 for NN and minimization 
approach, respectively. 
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Figure 31. Spatial map of subtraction between both LAI retrieval methods (NN – 

 

Figure 32. Spatial map of subtraction between two different extents of sliding window 

LUTmin) for the window extent of 10m (left) and 8m (right). 

 
 
 

(win.10m-win.8m) for neural network approach (left) and minimization approach (right). 
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5. Discussion 

5.1. Leaf area index obtained from field measurements 
Ground truth data for the validation of LAI retrieved from the AISA image were collected 
by means of two indirect optical methods: i) plant canopy analyzer (PCA-2000), and ii) 
hemispherical photographs taken by a digital camera equipped by the fish-eye lens. 
Both devices are deriving effective leaf area index (or plant area index) from the gap 
fraction distribution. The measurements have to be free from the influence of woody 
materials and clumping effect of foliage elements to obtain true values of LAI. The 
coefficient to correct PCA-2000 measurements was presented by (Gower, Norman, 
1991) as 1.6 for Norway spruce canopies. The coefficient is in agreement with the 
results of Pokorny (2002), derived for the 0-43º field of view of PCA-2000. Our revision 
of the correction factor led to the similar result (1.62), which suggests universality of the 
LAIef correction coefficient for young Norway spruce stands.  
 
The original motivation why to acquire hemispherical photographs was a possibility to 
eliminate the effect of woody materials (branches and trunk) during the post-processing 
of the images in CAN-EYE software. The presence of woody parts is an important 
source of errors (Chen,  Rich et al., 1997) when estimating LAI from gap fraction. 
Although, the processing of the hemispherical photographs in CAN-EYE allowed 
discrimination of wood from leaves, in the next processing step the class “wood” had to 
be assigned to either leaf or sky class. We chose to assign the wood class into the 
class of leaf, which should lead to the potential overestimation of LAI. Nevertheless, the 
results presented in section 4.1.2 showed lower estimates of “true” and effective LAI 
and poor correlation with PCA-2000 measurements. 
 
The direct destructive measurement of leaf area index provided the LAI of 8.6 for the 
same young forest stand in 1997. The lower estimates by means of hemispherical 
photographs have been reported by Kraus (Kraus,  Broich et al., 2005). He mentioned 
possible saturation of LAIef estimates around 4-5 for the method of LAI measurement 
using hemispherical photographs. This statement corresponded to our results. The 
mean values did not exceeded 3 and 5 for case of LAIef and LAI, respectively. Very 
high values of LAI, measured by PCA-2000, were not revealed from the hemispherical 
photographs.  
 
One of the possible causes of LAI underestimations could be inappropriate sampling 
scheme. CAN-EYE software is mainly used for processing of hemispherical 
photographs acquired within a VALERI sampling plot (Baret,  Weiss et al., 2005). Such 
a plot consists at least out of 12 sample points, over those a special neural network 
(NN) is created during the image processing. Our sampling scheme was a matrix of 
only 3x3 observation points, which might be insufficient number for NN architecture of 
CAN-EYE. 
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5.2. AISA image post-processing 
The result of the MLH classification was used to derive the canopy closure over the 
AISA image subset and reflectance ratio of sunlit and shaded Norway spruce crowns. 
Both of the products were directly used during the retrieval of leaf area index from the 
AISA image, thus the accuracy of the retrieval results depends on the accuracy of the 
image classification. 
 
The canopy closure was calculated as the ratio between number of crown-classified 
pixels and total number of pixels within a window extent. Unfortunately, the edges of 
the crowns appeared in shades of surrounding trees, which is represented by a low and 
noisy signal. It was very difficult to determine a clear boundary between the Norway 
spruce crowns and ground cover based purely on spectral information. The advantage 
of used AISA image was its very high spatial resolution (0.4 m pixel size) which allows 
detection of individual tree crowns even in a dense coniferous stand. Application of an 
automated detection and crown delineation (segmentation) algorithm (Gougeon, 1995; 
Culvenor, 2002; Leckie,  Gougeon et al., 2005) could lead to more reliable results in 
calculation of canopy closure. When delineating crowns properly, the background could 
be masked, and the classification algorithm might be applied only on the detached 
crown pixels. This might improve the separation between the shaded and sunlit parts of 
the crowns. 
 

5.3. DART parameterization 
The proper parameterization of DART was the most time demanding step of the whole 
study. The new version of DART model, offering new forest structural parameters (see 
section 2.4), was used within this research. It was assumed that new features 
implemented in DART will improve the overall performances of RT simulation. It would 
be necessary to evaluate the effect of the new parameters by means of sensitivity 
analysis and comparison the performance with the old DART version, which is not 
objective of this study. 

5.3.1. Structural characteristics of young Norway spruce trees 
The DART representation of a tree is a geometric simplification of the reality. Taking 
the advantage of the new structural parameters (described in section 2.4 and 3.5.4), we 
tried to depict the real growing strategy and crown architecture of the young Norway 
spruce trees.  
 
Basic allometric characteristics (table 5) of the “DART trees” were based on the 
extensive field measurements in 1997 (Pokorny, 2002), and recalculated to the current 
growing stage of the trees. It was necessary to adjust the original field data according 
to requirements of the DART model simulations. For instance, the height of the trunk 
within crown had to be shortened by two meters to minimize strong effect of trunk 
reflectance in the upper part of simulated canopy. The presence of a trunk, in 
combination with a very narrow conical shape at the top part of a crown, led to the 
unrealistic pattern, visible on the output images of simulated spectral bands. 
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Several geometric simplifications of a tree crown shape are available in the DART 
model. The truncated cone, with the upper diameter equal to zero, was applied in this 
study. Rautiainen (2004) studied the effect of four crown shapes (conical, ellipsoid, 
cylinder and cylinder+cone) on the reflectance of Norway spruce stand. For higher 
values of LAI, stands with conical crowns had much smaller reflectance than ellipsoid 
crowns. Further comparison of tree crown shapes showed the smallest scattering for 
cylindrical crowns, highest for the ellipsoid and combination cylinder+cone somewhere 
in between. Unfortunately, no comparison was made to the real images of coniferous 
stands to conclude which crown shape was the best fitting. The field observation of 
Norway spruce trees indicates that much better approximation of the crown shape 
should be a combination of truncated cone with cylinder at the top. It would be 
interesting to evaluate the best crown shape for Norway spruce using the DART model, 
and compare the results with real reflectance values of the airborne images (AISA). 
Especially to compare the current DART representation of a crown used for Norway 
spruce (truncated cone with zero top radius) with the proposed combination of 
truncated cone + cylinder. 
 
The determination of the horizontal distribution of leaf volume density and distribution of 
empty cells was based on destructive analysis of the mature branches, because similar 
data were not available for a young forest stand. This age discrepancy might be a 
source of potential errors. The mature branches, especially the first productive 
branches, have more heterogeneous structure than young branches due to the general 
differences in the crown architecture. When analyzing the branches in horizontal 
manner we were assuming that the branches were not overlapping each other within a 
whorl. This assumption does not fully agree with the reality, because small parts of the 
neighboring branches within the whorl can overlap. Thus, it is not easy to determine a 
representative space occupied by a branch inside the crown collecting just a one 
sample branch (see figure 8). The growing strategy of a tree is to occupy the empty 
spaces evenly. It means that branches can substitute each other within a whorl or even 
from adjacent whorls if there is an empty space in the crown. It was impossible to 
describe this fact with our field data and thus the results concerning the horizontal 
distribution of the leaf area within the crown may not represent the real distribution 
properly. 
 
Light Detection and Ranging (LiDAR) devices are widely used in forestry to depict 
horizontal and vertical structure of a forest stand. LiDARs have been used to detect 
canopy (Zimble,  Evans et al., 2003) or individual tree (Persson,  Holmgren et al., 2002) 
height. Roberts et. al. (2005) estimated a leaf area of individual loblolly pines. The 
LiDAR technique might be more appropriate solution to describe vertical and horizontal 
structure of foliage elements and overcome the drawbacks of the field destructive 
methods. 

5.3.2. Optical properties used for DART simulations 
The input optical properties of scene elements can be either measured or simulated by 
a leaf reflectance model (Jacquemoud, Baret, 1990). Within this research, all the 
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optical properties used in DART (figures 13 – 16) were measured. The advantage of 
the new version of DART model is an option to specify different leaf optical properties 
in the vertical direction of tree crowns, which increase the inner heterogeneity of the 
crowns. Another way how to increase variability of optical characteristics is by 
specifying a standard deviation value. Unfortunately, only one value can be defined for 
all the wavelengths. It would be more appropriate to specify this standard deviation 
separately for reflectance and transmittance and even more, specifically for each 
particular spectral wavelength. 
 
The extensive directional RT simulations, carried out by Martin (Martin, 2005), indicated 
differences between DART simulated and AISA measured reflectance of the selected 
subplot of the Norway spruce stand. The simulated reflectance was lower than the 
observed one. The reason could be either wrong specification of the optical properties 
of Norway spruce needles (section 4.2.2) or inappropriate implementation of new 
DART structural features (section 2.4). Currently, we are not able to evaluate the effect 
of the new structural features, this should be done in near future. Therefore the revision 
of the optical properties was the only option to solve the underestimation problem. The 
Daughtry method (Daughtry, 1989), used to measure the optical properties of conifer 
needles, can underestimate the transmittance signatures due to a gap fraction between 
measured conifer needles. Mesarch et al. (1999) studied this effect and conclude that 
gap fraction less than 20% yields acceptable transmittance values. The gap fraction of 
our measured samples was in average 28%, which could result in underestimation of 
the needle transmittance signature. This conclusion is supported by the comparison 
with transmittance of Norway spruce needles measured in previous years, which 
reveals 8% decrease in transmittance of NIR part of spectra. 

5.3.3. Results of RT simulations 
In general a decrease of the simulated scene BRF with increasing leaf volume density 
was observed within the NIR spectral bands. The similar decreasing trend was 
observed for the average reflectance of shaded and/or sunlit crowns (as indicated in 
figure 18 and appendix 2). This might be explained in a following way. Increase in leaf 
volume density means higher amount of foliage which can absorb more radiation. This 
leads to lower scattering between the leaves and woody elements (branches and 
trunk), which finally decrease the NIR reflectance of simulated canopy. This relation, 
described as the exponential function, was used to estimate LAI from the AISA image. 
 
The decrease of canopy volume, directly derived from the DART basic scenes (figure 
23), was expected with increasing canopy closure. The number rounding within the 
DART model adjusts dimensions of the objects according to the scene size cell size 
(0.2m in our case). This rounding is responsible for slight changes in tree position, even 
if their exact coordinates were specified. Unfortunately, even a small shift in tree 
positions can affect significantly the final canopy closure and consequently the canopy 
volume, especially if the basic scene is rather small. Secondly, the accuracy of canopy 
volume calculation depends on the dimension of basic scene cell and on the 
percentage of empty/full leaf cells within a canopy. Hence, it would be more appropriate 
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to generate the real volume of the observed canopy directly from an additional 
measurements, e.g. from a LiDAR observation. 
 

5.4. Results of the leaf area index retrieval 

5.4.1. Ratio between shaded and sunlit crown pixels 
First, the average reflectance (BRF) of the whole scene was extracted for each spectral 
band of each canopy closure category. The results are presented in figure 18 and 
appendix 2. The relation between leaf volume density and average scene BRF 
indicated the saturation for the high values of leaf volume density. The saturation leads 
to impossible identification a unique value of uf for a particular scene reflectance, which 
is called ill-posed problem (Combal,  Baret et al., 2003).  
 
The very high spatial resolution of the AISA image (0.4 m) allowed us to differentiated 
individual tree crowns. Even further, shaded and sunlit part of Norway spruce crowns 
could be distinguished. Exclusion of the forest background and extraction of the 
reflectance only from the individual crowns increased the purity of the information 
content and reflect an actual state of the only forest canopy. The reflectance ratio 
between shaded and sunlit crown pixels did not indicate such a strong saturation for 
high uf values as the scene BRF. That is why, the ratio was considered to be more 
suitable spectral parameter for the LAI retrieval. 

5.4.2. Sliding window extent 
The extent of the window, sliding over the AISA image during the LAI retrieval, was one 
of the factors determining the canopy closure category and the reflectance ratio 
between the shaded and sunlit crown pixels. The minimum extent of our sliding window 
was driven by the condition that both categories, shaded and sunlit crowns, had to be 
present within the window. We have used only two different window extents, but it 
would be appropriate to explore systematically what is the effect of the changing 
window dimensions and the optimum window size for the LAI retrieval. 

5.4.3. Canopy closure 
A priori knowledge about the canopy closure is used in this study to prevent so called 
ill-posed problem of the spectral LUT inversion (Combal,  Baret et al., 2003), i.e. the 
possibility to find two or more LAI solutions for one spectral value stored in the LUT. 
The canopy closure category was directly derived from the classified AISA image using 
a sliding square window of varying size. The classified CC category, assigned into the 
central pixel of the sliding window, is influenced by the window dimensions. From figure 
25 one can interpret that the most frequent difference between CC images for both 
extents of the sliding window is equal to zero, followed by difference +/- 5% and more. 
Hence we can conclude that used extents of the sliding window are not the major 
drivers of the uncertainty behind the canopy closure and subsequently LAI estimation 
from the AISA image. 
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5.4.4. Retrieval of LAI by means of minimization by a cost function and 
neural networks approach 
 
According to RMSE values shown in table 11, the minimization approach inverting the 
spectral LUT for the sliding window of either 10 m or 8 m could be evaluated as slightly 
better performing method than neural network approach. However, low values of the 
Pearson correlation coefficient R, computed between ground measured and estimated 
LAI, suggest their very low dependency, and also low accuracy of the LAI estimation. 
As shown in figure 30 and figure 33, none of the retrieval methods was capable to 
estimate accurately high values of LAI (generally higher than 9 and 10). It seems that 
spectral ratio of the shaded and sunlit crown pixels is still not sufficient enough to 
distinguish the high leaf volume density of the crowns. The exponential function 
describing relationship between LUT reflectance signature ratios and leaf volume 
density is flattening for high values of uf (see figure 19), which means that small change 
in AISA spectral information causes important change in retrieved LAI value. 
Integration of the spectral bands from red and/or SWIR part of the electromagnetic 
spectra may help to resolve this spectral saturation and improve the LAI estimation. 
 
The difference between measured and average retrieved LAI bigger than 2.5 was 
established to find the outlying LAI values. Although the Pearson coefficients increased 
after exclusion of the outliers, they sill remained non-significant on the significance level 
of 0.01 (see table 13). An explanation of this LAI prediction bias is uncertainty in the 
ground measurements of leaf area index by PCA-2000. The measurements were 
carried out only for the middle transect of the sample points and the complete set of the 
measurements was repeated only twice. The sampling scheme of the transect points 
was set up in order to cover the variability of the young forest stand densities (the 
dense and sparse part of the forest). However, the visual interpretation of the ground 
measurements results did not reflect any clear difference between the dense and 
sparse part of the young forest stand. The revision of the sampling scheme and more 
ground measurements of LAI should increase the reliability of the PCA-2000 ground 
measurements.  
 
Positioning of the transect ground measurement points within the AISA image subset 
might be another source of uncertainties. Shift in position of the ground points on AISA 
image causes inappropriate location of the PCA-2000 hemispherical FOV, which 
means that LAI values obtained from the AISA image do not correspond spatially with 
the ground truth measurements. High quality ortho-rectification, using a digital elevation 
model (DEM) of the same pixel size as the hyperspectral image, should be 
accomplished for elimination of this positioning error. Most effective option could be 
irreversible rectification, allowing to transform geocoded resampled hyperspectral 
image back to the original spectral form, as provided for instance by the PARGE 
software (Richter, 2005) 
 
Recently, several authors reported that multi-directional and multi-angular remote 
sensing data are more sensitive to vegetation structure than NADIR data and therefore 
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can provide advanced structural descriptions of vegetation canopies (Chen,  Liu et al., 
2003; Schaepman,  Koetz et al., 2005). The airborne AISA images of Bílý Kříž research 
site were acquired according to the multi-directional flight pattern. The exploration and 
the use of these data might improve the estimates of biophysical parameters (LAI) of 
this forest ecosystem. 
 

Estimated LAI values for each transect point

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

transect point

es
tim

at
ed

 L
AI

MIN-w10

MIN-w8

NN-w10

NN-w8

ground
truth

 

Figure 33. Estimated and measured values of LAI for each of the transect point used 
for the validation. (MIN = inversion of the LUT by the minimization cost function; NN = 
inversion of the LUT by the neural networks; w10 = sliding window of 10 m; w8 = sliding 
window of 8 m). 

 
Table 13. Overview of the LAI retrieving methods performances by comparison with the 
field measurements of LAI (PCA-2000) after removing the outlaying values of transect 
points 7,8,9 and 12 (see figure 33). 

Method mean R* Sig.** RMSE 
Minimization cost function (window 10m) 7.23 0.292 0.412 1.478 
Minimization cost function (window 8m) 7.15 0.337 0.341 1.460 
Neural Networks (window 10m) 7.01 0.302 0.396 1.610 
Neural Networks (window 8m) 6.93 0.331 0.350 1.616 

* Pearson correlation coefficient; ** correlation is significant at the 0.01 level (2-tailed) 
 

5.4.5. Comparison and evaluation of LAI inversion methods 
From figure 30 and figure 33 is obvious that both inversion methods, no matter what 
extent of sliding window was used, gave very similar estimates, following the same 
trend. Neglected influence of the sliding window size is supported by the results of 
figure 31. The change in estimated LAI due to different window size is mostly +/- 1.5. 
Estimation carried out by 10m window size is giving only 0.014 higher LAI values in 
average than 8m window size estimation. However, dimension of the sliding window 
does affect the resultant LAI maps, and that is why its complete influence should be 
explored by including more window size variations. It is expected that especially larger 
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window extents (e.g. about 20-30m) could have stronger influence on the overall LAI 
prediction.  
 
The inter-comparison of both LUT inversion methods, mentioned in table 12, showed 
clearly high similarity in their performances (Pearson correlation coefficients higher than 
0.98 in all cases). Difference in predicted LAI maps of both inversion approaches 
ranges in general from 0.5 to -0.7. These results invoke a conclusion that both chosen 
inversion methods can fully substitute each other in LAI estimation from hyperspectral 
image of very high spatial resolution. Moreover, a type of the selected inversion 
approach seems to cause smaller inaccuracy in LAI estimation than selection of the 
involved spectral bands. Nevertheless, this hypothesis is speculative and needs to be 
verified by a further systematic research including new additional reflectance 
information or reflectance derived products (e.g. optical indices). 
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6. Conclusions and recommendations 
 
An extensive literature review done by Pokorny (2002) reported the possible LAI values 
for Norway spruce stands ranging between 2 – 17 (Leverenz, Hinckley, 1990; Bartak,  
Dvorak et al., 1993). The destructive measurement of leaf area index conducted in 
1997 at the research site Bílý Kříž, resulted into the value of 8.6 for leaf area index of 
the young forest stand (Pokorny, 2002). Regular temporal monitoring of leaf area index 
variability denotes the mean LAI values of 11.49 and 8.47 for dense and sparse part of 
the young Norway spruce forest stand measured by Pokorny (2005) during the growing 
period 2003. The mean LAI values of the whole stand of interest derived from the AISA 
image are 6.33 and 6.17 for the minimization approach inverting LUT and neural 
network approach, respectively. The retrieved values fit to the expected range of leaf 
area index values reported in literature, which could be taken as a proof of reliability of 
the inversion methods to estimate leaf area index of a young Norway spruce stand from 
NADIR hyperspectral data. On the other hand, the estimated values are in general 
lower than observed LAI values within the same stand. Moreover, the comparison of 
estimated LAI values with ground measurements showed very poor correlations, which 
indicates insufficient accuracy of the LAI estimates from the AISA image.  
 
The ground-based measurements of leaf area index of the sample points, using Li-Cor 
PCA LAI-2000, indicated the range of the measured LAI values approximately between 
6.5 - 12. In general the LAI values higher than 9 were not detected properly by none of 
the inversion methods. The results indicate that selected AISA spectral bands and/or 
the ratio between shaded and sunlit crown pixels are not the optimal indicators to 
estimate LAI from hyperspectral data. Therefore, it is recommended to include 
additional spectral bands (e.g. from red and SWIR part of spectra) or their derivatives to 
improve the current performances of the selected inversion methods. Also an additional 
image processing (e.g. automatic crown segmentation, or advanced AISA image 
orhorectification) should enhance accuracy of the LAI retrieval. 
 
High Pearson correlation coefficients (R > 0.98) relating LAI estimates of both inverting 
approaches indicated no significant difference in their prediction accuracy. The 
minimization approach by a cost function could be evaluated as slightly better 
performing method than neural network approach based on comparison of the RMSE 
values computed between retrieved and measured LAI values (the mean RMSE = 
2.442 for minimization approach while for NN the mean RMSE = 2.621). However, the 
difference is very small and so we can conclude that there is no significant difference in 
accuracy between selected inversion methods, operating at the level of a young 
Norway spruce forest stand. 
 
Both of the inversion methods were inverting the spectral look-up tables generated 
from the RT simulations combined with the AISA image classification. The AISA image 
post-processing, a proper DART parameterization and building the look-up tables were 
more demanding and time-consuming procedures then both of the inversion 
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approaches. From this point of view, there is no feasibility difference between the 
selected inversion methods. The inversion of the look-up tables with the cost 
minimization function was fully automated, and whole procedure took about three 
hours. While the inversion procedure by means of artificial neural network method, 
using the ThinksPro software package, took more time. Establishment of the NN in 
ThinksPro required extensive testing of several NN architectures, training of the 
selected NN architecture for each canopy closure separately, and finally application of 
the trained NN. Based on this, the minimization approach by a cost function is 
considered to be more efficient, taking into account the input data, time and technical 
requirements. On the other hand, usage of more advanced neural network software 
may speed up the NN inversion process and even increase the result accuracy. 
 
A performance evaluation of the Discrete Anisotropic Radiative Transfer (DART) model 
extended by the new structural features was not the main objective of this study. Our 
research only demonstrates feasibility of the DART parameterization, based purely on 
the field measurements of the Norway spruce structural characteristics. Nevertheless, 
several drawbacks were revealed during the DART parameterization process. Their 
revision and correction should improve performance of the next version of the DART 
model. 
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8. Appendix 
 
APPENDIX 1. THE OVERVIEW OF THE COMBINATIONS OF CANOPY CLOSURE (CC) AND LEAF 

VOLUME DENSITY (UF) SIMULATED BY THE DART MODEL AND USED TO BUILD THE LUT 
DATABASE. DIFFERENT COMBINATION OF UF AND CC GAVE DIFFERENT LEAF AREA INDEX 
VALUE OF THE SIMULATED SCENES, WHICH IS SHOWN IN THE TABLE. 60 

APPENDIX 2. THE EXTRACTED SPECTRAL CHARACTERISTICS FROM THE DART OUTPUTS FOR 
THE SIMULATED AISA SPECTRAL BANDS NO. 37, 38 AND 40. THE LEFT COLUMN OF 
GRAPHS PRESENTS THE OVERALL REFLECTANCE (BRF) OF THE SIMULATED CANOPY 
CLOSURE SCENES. THE RIGHT COLUMN OF GRAPHS PRESENTS SPECTRAL 
CHARACTERISTICS EXTRACTED FOR SHADED AND SUNLIT PART OF NORWAY SPRUCE 
CROWNS. 61 

APPENDIX 3. THE RATIOS, USED TO BUILD THE SPECTRAL LUT DATABASE, BETWEEN SHADED 
AND SUNLIT PARTS OF CROWNS DERIVED FOR EACH CANOPY CLOSURE CATEGORY, 
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8. Appendix 

Appendix 1. The overview of the combinations of canopy closure (CC) and leaf volume 
density (uf) simulated by the DART model and used to build the LUT database. 
Different combination of uf and CC gave different leaf area index value of the simulated 
scenes, which is shown in the table. 

uf [m2/m3] 95% 90% 85% 75% 65% 55% uf [m2/m3] 95% 90% 85% 75% 65% 55% 
0.8 1.5 1.3     6.5  10.7 9.7    
1 1.9 1.7 1.5 1.3   6.6 12.4 10.9 9.8 8.6 7.6 6.3 

1.2 2.3 2.0 1.8    6.7  11.1 10.0    
1.4 2.6 2.3 2.1    6.8 12.8 11.2 10.1 8.9 7.8 6.5 
1.5    2.0 1.7 1.4 6.9  11.4 10.3    
1.6 3.0 2.6 2.4    7 13.2 11.6 10.4 9.1 8.0 6.7 
1.7       7.1  11.7 10.6    
1.8 3.4 3.0 2.7    7.2 13.5 11.9 10.7 9.4 8.3 6.9 
1.9       7.3   10.9    
2 3.8 3.3 3.0 2.6 2.3 1.9 7.4 13.9 12.2 11.0 9.6 8.5 7.1 

2.1 4.0      7.5   11.2    
2.2 4.1 3.6 3.3    7.6 14.3 12.6 11.3 9.9 8.7 7.3 
2.3 4.3      7.7   11.4    
2.4 4.5 4.0 3.6    7.8 14.7 12.9 11.6 10.2 9.0 7.4 
2.5 4.7 4.1  3.3 2.9 2.4 7.9   11.7    
2.6 4.9 4.3 3.9    8 15.1 13.2 11.9 10.4 9.2 7.6 
2.7 5.1 4.5 4.0    8.1       
2.8 5.3 4.6 4.2    8.2  13.6 12.2 10.7 9.4 7.8 
2.9 5.5 4.8 4.3    8.3       
3 5.6 5.0 4.5 3.9 3.4 2.9 8.4  13.9 12.5 10.9 9.7 8.0 

3.1 5.8 5.1 4.6    8.5    11.1 9.8 8.1 
3.2 6.0 5.3 4.8 4.2   8.6  14.2 12.8 11.2 9.9 8.2 
3.3 6.2 5.5 4.9    8.7    11.3 10.0 8.3 
3.4 6.4 5.6 5.1 4.4   8.8  14.6 13.1 11.5 10.1 8.4 
3.5 6.6 5.8 5.2  4.0 3.3 8.9    11.6 10.2 8.5 
3.6 6.8 6.0 5.4 4.7   9  14.9 13.4 11.7 10.3 8.6 
3.7 7.0 6.1 5.5    9.1     10.5 8.7 
3.8 7.2 6.3 5.7 4.9 4.4  9.2   13.7  10.6 8.8 
3.9 7.3 6.4 5.8    9.3       
4 7.5 6.6 5.9 5.2 4.6 3.8 9.4   14.0  10.8 9.0 

4.1 7.7 6.8 6.1    9.5    12.4   
4.2 7.9 6.9 6.2 5.5 4.8 4.0 9.6   14.3  11.0 9.2 
4.3 8.1 7.1 6.4    9.8   14.6  11.3 9.4 
4.4 8.3 7.3 6.5 5.7 5.1 4.2 10   14.9 13.0 11.5 9.5 
4.5 8.5 7.4 6.7    10.2     11.7 9.7 
4.6 8.7 7.6 6.8 6.0 5.3 4.4 10.4      9.9 
4.7 8.8 7.8 7.0    10.5    13.7 12.1  
4.8 9.0 7.9 7.1 6.3 5.5 4.6 10.6      10.1 
4.9 9.2 8.1 7.3    10.8      10.3 
5 9.4 8.3 7.4 6.5 5.7 4.8 11    14.3 12.6 10.5 

5.1 9.6 8.4 7.6    11.2      10.7 
5.2 9.8 8.6 7.7 6.8 6.0 5.0 11.4      10.9 
5.3 10.0 8.8 7.9    11.5    15.0 13.2  
5.4 10.2 8.9 8.0 7.0 6.2 5.2 11.6      11.1 
5.5 10.3 9.1 8.2    11.8      11.3 
5.6 10.5 9.3 8.3 7.3 6.4 5.3 12     13.8 11.4 
5.7 10.7 9.4 8.5    12.2      11.6 
5.8 10.9 9.6 8.6 7.6 6.7 5.5 12.5     14.4 11.9 
5.9 11.1 9.8 8.8    13     14.9 12.4 
6 11.3 9.9 8.9 7.8 6.9 5.7 13.5      12.9 

6.1 11.5 10.1 9.1    14      13.4 
6.2 11.7 10.3 9.2 8.1 7.1 5.9 14.5      13.8 
6.3 11.9 10.4 9.4    15      14.3 
6.4 12.0 10.6 9.5 8.3 7.4 6.1 15.5      14.8 
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8. Appendix 

 
Appendix 2. The extracted spectral characteristics from the DART outputs for the 
simulated AISA spectral bands no. 37, 38 and 40. The left column of graphs presents 
the overall reflectance (BRF) of the simulated canopy closure scenes. The right column 
of graphs presents spectral characteristics extracted for shaded and sunlit part of 
Norway spruce crowns. 
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8. Appendix 

Appendix 3. The ratios, used to build the spectral LUT database, between shaded and 
sunlit parts of crowns derived for each canopy closure category, calculated for the AISA 
spectral bands no. 37, 38 and 40. 
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