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Abstract 
 
The demand for timely and accurate information on the status and functioning of forest 
biomes for monitoring land biosphere and variety of purposes is increasing. Leaf Area 
Index (LAI) is thus the key biophysical variable influencing land surface processes such 
as photosynthesis, transpiration and energy balance and is required for various ecological 
models. Recent advances in validation of vegetation products have led to new ground 
based methods to assess the accuracy for small and large spatial footprint sensors. 
 
We conducted a study to generate a continuous, validated, spatially explicit map of 
vegetation variables (e.g., LAI, Fraction of Absolved Photosynthetically Active Radiation 
(fAPAR), Fractional Cover (fCover)) in a softwood forest derived from HyMap data. 
These products were also compared with a geostatistically-interpolated map of ground 
measurements following the VALERI sampling scheme in a river floodplain of the 
Netherlands. Millingerward is located near the German-Dutch border with a natural 
reserve area composed of softwood forest species namely Populus nigra L., Salix alba L., 
and Salix fraglis L. and dense understory namely Urtica dioica L. Calamagrostis 
epigejos (L.) Rubus caesius L.  
 
The ground measurement was done using hemispherical photography to assess the forest 
biophysical products through measuring gap fraction and gap size distribution in the 
forests for calibration of the airborne measurements taken over the Millingerwaard during 
summer 2004. A total of 156 points (e.g., 13 plots, each with 12 sub-sampling points) 
have been measured and processed using a neural network based approach for validation 
and calibration purposes of LAI. 
 
The WDVI was used to derive LAI from the imaging spectrometer data and calibrated 
based on the ground measurements. The ground measured LAI and the HyMap derived 
LAI using WDVI has shown a good correlation (r2 = 0.82). The results from the ground 
measurements coupled with the HyMap derived fCover was used for the geo-statistical 
interpolation approach. The LAI values are interpolated over the whole area of the 
softwood forest by simple kriging method with varying local mean and spatial explicit 
map, which can be used for the validation and calibration of larger footprint sensors was 
produced. The sensitivity of the different vegetation indices was also tested using various 
LAI retrieval algorithms such as; RSR, FVC, and NDVI. Even though, the different 
vegetation indices have resulted in different values, the LAI value derived using WDVI 
and RSR showed good correlation (r2=0.88). Generally the selected approaches enabled 
to produce validated continuous fields of biophysical products with good accuracy and 
well suited to derive LAI on a forest stand scale. 
 
Keywords: Imaging Spectroscopy, Leaf Area Index, hemispherical photography, 
geostatistical interpolation, validation, forest biophysical products 
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1. Introduction 

1. Introduction 
 
1.1. Background 
Nowadays the demand for timely and accurate information on the status and functioning 
of forest biomes, for a variety of purposes, is increasing. While traditionally forest 
information was gathered using in-situ methods, the role of remote sensing is becoming 
more and more central because of the need to the spatial and temporal variability of the 
key forest processes. Forests provide essential economic and ecological services and their 
essential role in the planetary system is being increasingly recognized.  However, as of 
today, it is still not known for sure if forests will become a sink or a source of CO2 in the 
long run (Cox et al., 2000).  
 
Several studies have shown that hyperspectral remote sensing techniques can be applied 
for quantitative characterization of biophysical and biochemical variables to fulfill this 
information gap. These studies have shown that biophysical and biochemical variables 
can be measured with quantifiable uncertainty (Hu et al., 2000; Rast et al., 2004; Kotz et 
al., 2004;  Schaepman et al., 2004 ; Schlerf et al., 2005) . 
 
Leaf area index (LAI) is essential for numerous studies of atmosphere- vegetation 
interaction, as it is very often a critical parameter in process-based models of vegetation 
canopy response to global environmental change (Jonckheere et al., 2004). It determines 
the size of the plant-atmosphere interface and thus plays a key role in the exchange of 
energy and mass between the canopy and the atmosphere. Moreover, under certain 
assumptions, knowledge of canopy structure variables Leaf area Density (LAD) and Leaf 
Inclination Distribution Function (LIDF) allows the evaluation of the fraction of 
Absorbed Phothesynthetically Active Radiation (fAPAR), which is required to model the 
canopy’s phothesynthetic activity in a straightforward way (Monteith, 1977). LAI is 
therefore mentioned as a key variable frequently used as input for crop growth models 
(Broge and Leblanc, 2001) . 
 
Consequently, recent in-situ and above canopy remote sensing techniques have focused 
on the measurement and use of LAI as a structural variables since the variables that 
describe vegetation canopy structure and its energy absorption capacity are required by 
many of the EOS Interdisciplinary Projects (Myneni et al., 1997). LAI can be estimated 
for, indirect light measurement within the canopy by an instrument looking at zenith or 
towards the sun. Several techniques provide angular information about the amount and 
distribution of openings in the canopy, often called gap fraction (Normal and Campbell, 
1989).  
 
Hence assessment of relevant forest variables can be adequately performed by the use of 
Radiative Transfer Models (RTM) since these models take into account physical 
processes describing the interaction of radiation with the diverse canopy components at 
foliage and canopy levels (Myneni and Ross, 1991). Radiative transfer models have 
already been successfully employed with homogeneous canopies to derive quantitative 
information on canopy structure and foliage biochemistry (Faurtyot and Baret, 1997; 
Weiss and Baret, 1999; Weiss et al., 1999; and Jacquemoud et al., 2000). Some models 
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have been compared in performance and quality extensively (Pinty et al., 2001, 2004) and 
are toady used in many remote sensing derived products (e.g., MODIS MOD15). Usually 
this approach considers the spectral reflectance of a plant canopy which  is known to be 
primarily a function of the foliage optical properties, the canopy structure, the understory 
and soil background reflectance, the illumination conditions, and also the viewing 
geometry (Goel and Grier, 1988; Chen et al., 2000). 
 
Recently hemispherical photography has been increasingly used to characterize the 
structure of canopies and measure the gap fraction directional variation to retrieve 
variables such as the LAI, fAPAR and clumping factor due to its potential to overcome a 
number of problems (e.g., greenness confusion and gap size distribution for  computing 
foliage clumpiness) (Jonckheere et al., 2004; Weiss et al., 2004). These approaches are 
now used to validate LAI on WGCV (global) scales (Privette et al., 2001). 
 
We will use regional LAI measurements made with a hemispherical camera and 
subsequent analysis for calibration and validation purposes of airborne imaging 
spectrometer data and the retrieved biophysical products from this image will be 
compared to a geo- statistically interpolated map of LAI over a softwood forest in a river 
floodplain in the Netherlands.  
 
1.2. Problem Definition 
Direct methods of LAI estimation are the most accurate, but they have the disadvantage 
of being extremely time-consuming and as a consequence making large-scale 
implementation only marginally feasible. Accuracy problems may in this case result from 
the definition of LAI, the up-scaling method, or from the error accumulation due to 
frequently repeated measurements. As it has been explained by (Chason et al., 1991) 
because of its time-consuming and labor-intensive character and operational constraints, 
it can be said that direct LAI determination is not really compatible with long-term 
monitoring of spatial and temporal dynamics of leaf area development. However, the 
need for validation of indirect methods remains, so the direct techniques can be 
considered important as calibration methods. 
 
Several studies have been carried out on the use of different vegetation indices for LAI 
estimation (Qi et al., 1994; Brown et al., 2000; and Haundance et al., 2004). A major 
problem in the use of the different vegetation indices arises from the fact that canopy 
reflectance in the visible and near infrared is strongly dependent on both the structural 
(i.e., LAI) and biochemical properties (e.g., chlorophyll) of the canopy. Moreover LAI 
and chlorophyll content have a similar effect on canopy reflectance particularly in the 
spectral region ranging from the green (500 nm) to the red edge (750 nm), (Goel and 
Grier, 1988; Jacquemoud et al., 2000; Zarco-Tejada et al., 2001). 
 
Therefore this study focuses on the use of hemispherical camera for an improved 
estimation of the gap fraction, since hemispherical photograph is a convenient technique 
that offers the potential to account for foliage clumping and greenness confusion, which 
may very significantly affect the characterization of important vegetation types 
(Fernandes et al., 2002).  

 2



1. Introduction 

1.3. Research objectives  
  
The research objectives of this study are therefore: 
1. to generate a spatially explicit map of vegetation structure in a softwood forest, 
 
2. to calibrate and validate the biophysical variable retrieval (LAI, fAPAR and      

fCover) from imaging spectrometer data using ground measurements, and 
 
3. to interpolate ground measurements using geostatistical approach supported by 

products derived from Imaging Spectrometer data and  ground measurements for 
validation of large footprint sensors. 

 
The specific objectives are to: 

− quantify spatially distributed structural characteristics of a softwood forest 
canopy using a hemispherical camera and neural network based analysis 
software to retrieve the gap fraction, LAI clumping factor, fAPAR, and 
fCover, 

− test the sensitivity of a set of procedures to retrieve spatially distributed LAI 
from imaging spectrometer data, 

− interpolate the ground measurements using kriging and scaling approaches for 
comparison of product quality, and 

− build a spectral library of leaf optical properties of the softwood forest for 
spectral unmixing of species. 

 
The Research questions related to the objectives are: 

− How can we build a spatially distributed LAI map from hemispherical 
photographs for calibration of imaging spectrometer data at the stand scale? 

− Can quality measures be derived to estimate the potential of LAI maps for 
ecological modeling based on the selected approach? 

− Can these approaches further be supported using leaf optical properties 
measurements for spectral unmixing approaches? 

 
1.4. Structure of the Report 
 
Chapter one of this report is an introduction about a general background and explanation 
about the definition of the topic and the use of biophysical products where specifically 
the LAI is included. The objectives of this study and research questions are also covered 
in this chapter. Chapter two deals with   review of relevant literatures and discusses 
similar studies conducted in the field of biophysical vegetation products. The third 
chapter describes the methodologies followed in order to achieve the research objectives. 
The results of this study are also presented and discussed in chapter four and conclusion 
and recommendations are given in the fifth chapter. Lists of cited literatures and appendix 
are given at the end of the thesis. 
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2. Literature Review 

2. Literature Review 
This chapter of this paper deals with relevant literatures and studies conducted in similar 
areas of interest. It also gives an insight about the theoretical background about this 
research topic by discussing related works.  
 
2.1. Definition of terms 
The most commonly used terminologies in this study are defined in the following sub 
sections based on the referred literatures. 

2.1 1. LAI Definition According to Different Literatures 
The definition of LAI was given by different authors and all the definition vary according 
to the interest of the individuals. Here are some of the definitions about LAI from the 
literature. LAI was first defined as the total one-sided area of photosynthetic tissue per 
unit ground surface area (Watson, 1947). For broad-leaved trees with flat leaves, this 
definition is applicable because both sides of a leaf have the same surface area. However, 
if foliage elements are not flat, but wrinkled, bent or rolled, the one-sided area is not 
clearly defined. Similar problems exist for coniferous trees, as needles may be cylindrical 
or hemi-cylindrical (Chen and Black 1992). Some authors therefore proposed a projected 
leaf area in order to take into account the irregular form of needles and leaves (Bolstad 
and Gower, 1990; Smith, 1991). However, in this case the choice of projection angle is 
decisive, and a vertical projection does not necessarily result in the highest values. 
Myneni et al. (1997) consequently defined LAI as the maximum projected leaf area per 
unit ground surface area. Within the context of the computation of the total radiation 
interception area of plant elements, and based on calculations of the mean projection 
coefficients of several convex and concave objects of different angular distributions. 
Lang (1991), and  Chen and Black (1992) suggested that half the total interception area 
per unit ground surface area would be a more suitable definition of LAI for non-flat 
leaves than the projected leaf area. Their theoretical reasoning behind abandoning the 
projection concept was that the latter has neither physical nor biological significance, 
whereas the total intercepting area has a physical meaning (e.g., radiation interception) 
and the total area has a biological connotation (e.g., gas exchange). Still other definitions 
and interpretations of LAI have been proposed. These vary depending on the technique 
used to measure the LAI. Following current literature and also in this study, LAI is 
defined as one half the total leaf area per unit ground surface area (Chen et al., 1991; 
Chen and Black 1992; Fassnacht et al., 1994; and Stenberg et al., 1994). It is therefore 
important to note that the choice of the LAI definition can result in significant differences 
between calculated LAI values. 

2.1 2. Canopy Structure 
The knowledge of temporal and spatial variability of vegetation canopy properties is 
recognized as a key element for understanding terrestrial biosphere process and can assist 
the parameterization of various physical and ecological models which include the 
vegetation as a dynamic component (e.g., Sellers and Schmid, 1993; Verstaete et al., 
1994). 
 

 4



2. Literature Review 

Canopy structure is characterized by the position orientation, size, and shape of the 
vegetative elements (Ross, 1981). The distribution of optical properties may also be 
considered as being part of the canopy structure. Canopy architecture changes with time 
scales varying from fraction of seconds and minutes (wind water stress, etc) to seasons 
(phenological evolution, environmental constraints) and years (ecosystem dynamics). An 
exhaustive and detailed description of a canopy structure is not easy due to its spatial 
heterogeneity and thus, large number of measurements required which is tedious and time 
consuming (Lang et.al., 1985). Therefore in many cases, the canopy structure is described 
with only a few variables, such as the Leaf Area Density (LAD) and the Leaf Inclination 
Distribution Function (LIDF) (Weiss et al., 2004). 

2.1.3. Contact Frequency and Gap Fraction 
Contact frequency is the probability that a beam (or a photon) penetrating inside a canopy 
will come in to contact with a vegetative element (Chen and Black, 1991). Conversely, 
gap frequency is the probability that this beam will have no contact with the vegetative 
elements until it reaches a reference level (generally the ground). Then the term ‘gap 
fraction’ is often used and refers to the integrated value of the gap frequency over a given 
domain and thus, refers to the quantity that can be measured. Therefore, measuring gap 
fraction is equivalent to measuring the transmittance at ground level, at wavelengths for 
which the assumption of black vegetative elements is valid. (Weiss et al., 2004).  
 
It is then possible to consider the mono-directional gap fraction, which is the fraction of 
ground observed in a given viewing direction (or illuminated in a given incident 
direction). The bi-directional gap fraction is the fraction of soil (or area of a horizontal 
reference level) which is both illuminated in a given direction and observed in another 
(Qin and Goel, 1995). When both directions are collinear, the bi-directional gap fraction 
is equal to the mono-directional gap fraction. This corresponds to the well-known "hot-
spot" feature observed in the backscattering direction when measuring canopy 
reflectance; in other words, no shadow except that of the sensor can be observed in this 
particular geometric condition (Gerstl and Simmer, 1986; Breon et al. 1997). 

The contact frequency is a very appealing quantity to indirectly estimate LAI because no 
assumptions on leaf spatial distribution, shape and size are required. Unfortunately, the 
contact frequency is a very difficult to measure in a representative way within canopies. 
This is why the use of gap fraction is generally preferred in this study. The contact 
frequency linearly related to LAI, while the gap fraction is highly non-linear with respect 
to LAI (Weiss et al., 2004). Nilson (1971) demonstrated, citing both theoretical and 
empirical evidences, that the gap fraction can generally be expressed as an exponential 
function of the LAI, even when the random turbid medium assumptions associated with 
the Poisson model are not satisfied. This allows the description of regular leaf 
arrangement when less than one contact per layer is assumed and clumped arrangement 
when more than one contact per layer is considered. 

The gap fraction is related to the LAD and the leaf inclination distribution function 
(LIDF). Therefore, this function needs to be investigated before focusing on LAI retrieval 
from gap fraction measurements. 

 5



2. Literature Review 

2.1.4 Leaf Area Density (LAD) and (LIDF) 
The leaf area density is defined as the total one-sided leaf area of photosynthetic tissue 
per unit canopy volume. The leaf area index is then derived by integrating the leaf area 
density over the canopy height. It corresponds to the one-sided leaf area per unit 
horizontal ground surface area (Watson, 1947). 
 
Following (Goel, 1988), leaf inclination distributions can be divided in to different  
distribution functions based on the canopy type. Uniform and Spherical distribution 
functions. However, continuous expressions have been proposed to describe the many 
basic distributions, which are convenient when inverting gap fraction models in to beta, 
ellipsoidal and modified elliptical model distributions (Goel and Strebel, 1984; Campbell, 
1986; and Campbell 1990 and Kuusk, 1995).  
 
However due to the difficulty in accurately assessing the LIDF from gap fraction 
measurements, the simplest model is generally sufficient. The ellipsoidal distribution is 
the least complex and flexible distribution, since it requires only one parameter, whereas 
the others require additional parameters (Weiss et al., 2004). Moreover, the ellipsoidal 
distributions allows for the representation of he unique case of spherical distribution, 
which is widely used to describe the actual leaf inclination of many canopies. Therefore 
in these conditions, the average leaf angle is sufficient to characterize the leaf angle 
distribution function. Hence, in this study, we considered the canopy as a random turbid 
medium where the Poisson model is applicable, with an ellipsoidal LIDF. 
 
2.2. Indirect LAI Measurement 
 
Indirect LAI measurement methods, in which leaf area is inferred from observations of 
another variable, are generally faster, amendable to automation, and thereby allow for a 
larger spatial sample to be obtained. Due to their convenience as compared to the direct 
methods, they are becoming more and more important.  
 
Indirect methods of estimating LAI can be either in-situ measurements or based on air-
/spaceborne methods. In-situ measurements are carried out on ground-based 
measurements that usually integrate over one single stand only. This can be done through 
either indirect contact LAI measurements or indirect non-contact measurements. 
However, air-/spaceborne methods on the other hand are used for LAI determination on 
forest or landscape level. These methods are based on differences in spectral reflection 
between vegetation and other coverage (Ripple et al. 1991, Wulder et al. 1998). 
 
In recent years, the range of instruments has been developed to indirectly assess LAI of 
plant canopies in real time. These instruments are based on measuring the gap fraction 
and gap size distribution. 
 
To study the gap size distribution, hemispherical photography is the most widely used 
method. Documented research has proven this instrument to be very efficient and 
reliable, where it concerns the measurement of LAI in forest environments (Welles, 
1990). Based on error analysis, Chen (1996), stated that in coniferous stands optical 
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methods, if combined with clumping analysis, hold the potential to provide LAI estimates 
that are more representative than direct estimates obtained via destructive sampling 
techniques.  
 
A characteristic of the gap fraction-based approach is that it does not distinguish 
photosynthetically active leaf tissue from other plant elements such as stem, branches or 
flowers. Alternative terms for leaf area index have therefore been proposed, among them 
Vegetation Area Index (VAI) (Fassnacht et al., 1994), Plant Area Index (PAI) (Neumann 
et al., 1989), and Foliage Area Index (FAI) (Welles and Norman, 1991). Chen and Black 
(1992) used the term effective LAI (LAIeff) to describe LAI estimates derived optically. 
 
Since LAI by definition represents one-half of the total leaf area per unit ground surface 
area and therefore does not include non-photosynthetic components of the canopy, 
indirect optical sensors do not discriminate between foliage, branches and boles, and 
therefore produce gap fractions that include the shading effects produced by all 
aboveground components of the forest-trunk, branches, cones, seeds and flowers 
(Jonckheere et al., 2004).  

2.3. LAI Estimation Based on Gap Fraction Measurement 
 
LAI can be estimated using an indirect light measurement within the canopy by an 
instrument looking at zenith or towards the sun. Several techniques provide angular 
information about the amount and distribution of openings in the canopy, which is often 
also called the gap fraction (Normal and Campbell, 1989). 
 
Algorithms developed for LAI calculations from hemispherical sensor involve a division 
of 2π steradian (180-degree) filed of view (FOV) into concentric equiangular annuli. For 
imaging systems like hemispherical photos, the gap fraction for each of these annuli is 
the ratio between the number of pixels in a gap (pixel illuminated by the sky) and the 
total number of pixels in this angular sector. The gap fraction, which can also be 
interpreted as the probability  can be expressed mathematically by (Lang et al., 
1985; and Campbell and Norman 1889) as: 

( )θoP

 
)cos(/)()( θθθ LAIG

o ep −= , (1)

 
where ( )θG  is the projection coefficient of the foliage on a plane (normal) perpendicular 
to incoming radiation (Nilson 1971; Campbell and Norman 1989), )cos(θ is the zenith 
angle, and LAI is the Leaf Area Index of the forest canopy including all above ground 
structural components (branches, boles cones, and epiphytes).  
 
The projection coefficient depends greatly on the angular distribution of the foliage, and 
determines the light interception by the canopy. Several foliage angle distributions (e.g., 
planophile, spheric or elliptical) are used to simulate real leaf angle (Campbell and 
Norman 1989). 
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There should be two important corrections to be applied to LAI measurements from 
indirect optical methods to compensate the effects of foliage clumping and the light 
obstruction from canopy components other than foliage. The first limitation is technical, 
in which gap fractions measured with hemispherical sensors do not differentiate between 
the obstructions caused by foliage and other canopy difference between the obstructions 
caused by foliage and other canopy components like branches, boles and reproductive 
components. In addition, in the case of conifer canopies optical sensors are insensitive to 
the surface area of individual needles because they lack the power of resolving elements 
this small. The second limitation is theoretical; the indirect methods for LAI calculations 
are most often based on foliage within a specified canopy volume, an assumption that 
doesn’t hold true in most forest stands (Chen and Cihlar, 1995).  Larson and Kershaw 
(1996) suggested that the gap fraction calculations underestimate LAI by about 38%, 
whereas Gower and Norman (1991) found LAI underestimation between 35 and 40% in 
four conifer stands. Furthermore, Cutini et al. (1998) found an average underestimation 
of about 26.5% compared to the LAI from litter collection. Based on a literature review, 
Gower et al. (1999) suggested a generalized underestimation of LAI by indirect 
techniques of about 25 to 30% in most forest canopies. It is also reported that clumping 
of canopy elements is considered as the primary source of LAI underestimating by 
inversion of gap fractions.  
 
Foliage clumping occurs mostly at the shoot level for conifer trees, but may occur at the 
branch and crown levels for most forest types (Chen et al. 1991). Therefore, the LAI 
values calculated with all the equations are almost always systematically underestimated 
unless the foliage is randomly distributed within the canopy volume and the contributions 
from branches, boles and other plant components are negligible. Nilson (1971) was the 
first to modify the Poisson model to take into account the non randomness of canopy 
elements: 
 

)cos(/)()( θλθθ tLAIG
o ep −= , (2)

 
where represents the total stand LAI, and tLAI λ represents the stand clumping factor. 
 
The product ( λ.tLAI ) is the LAI based on the inversion of the Poisson model. It is 
suggested that the term ‘effective LAI’ ( ) be used for values directly calculated 
from gap fraction information (Oker-Blom et al. 1991; Chen et al. 1991). While the true 
stand LAI can be obtained by introducing a general clumping coefficient: 

effLAI

 
λ.teff LAILAI = , (3)

 
The clumping factor becomes one when the foliage distribution is random and uniform, 
and decreases towards zero as leaf clumping increases. Therefore according to equation 
(3), the Effective Leaf area and the true LAI will be the same. However, for a given LAI, 
clumped canopies allow more light into the understory than those with random 
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distributions of canopy elements (Smith, 1993). Optical instruments estimate , where 

as  is calculated from the hemispherical distribution of gap fractions obtained 
form a wide range of view angles. 

( )θoP

effLAI

 
Neumann et al. (1989) developed a unique method based on the spatial autocorrelation of 
canopy gaps to retrieve clumping factors directly from hemispherical photographs. The 
clumping factor was computed from a conditional probability of a light ray passing 
through the canopy in the same opening separated by a distance. However, the choice of 
a change in distance had a strong influence on the computed conditional probability and 
was theoretically difficult to justify. According to Weiss et al., (2004), the computation of 
the clumping index is based on method of Lang and McMurtie (1992). To compute the 
clumping index, the hemispherical images are divided in concentric rings and for each of 
these cells, the hypothesis of the Poisson law is applied, i.e., the leaves are more or less 
randomly distributed. The gap fraction is computed for each cell, as well as its logarithm. 
The gap fraction is finally averaged and its logarithm is taken. The ratio of these two 
quantities provides the clumping index: 
 

))(log(/))(log( oo PmeanPmean=λ , (4)
 
where λ  is foliage clumping index,  is gap fraction and is the natural 
logarithm of gap fraction.  

oP )log( oP

 
2.4. LAI Assessment Techniques and Instruments 
 
Gap fractions can be measured directly using hemispherical photos or indirectly as the 
proportion of direct or diffuse light penetrating through the canopy. Nevertheless, both 
approaches are considered to be indirect, since no direct contact with the canopy is 
required. Indirect optical techniques also require mathematical models to predict LAI and 
other structural parameters like Average Leaf Inclination Angle (ALIA) from the 
distribution of canopy gaps (this is known as gap fraction analysis or gap-fraction 
inversion; c.f., Norman and Campbell (1989)). For passive methods, the response of the 
canopy to solar radiation is measured under suitable conditions and the model is then 
inverted in order to be designed for indirect optical measurement of LAI are used from 
ground level while looking upwards or towards the sun.  
 
To study the gap size distribution the Tracing Radiation and Architecture of Canopies 
(TRAC) instrument and hemispherical photography can be used. In this study the most 
important instrument which is used to measure a gap fraction and gap size distribution is 
used. The most widely used LAI measuring instruments are also discussed in the 
following section. 

2.4.1 LAI-2000 Plant Canopy Analyzer (PCA) 
The LAI-2000 (Licor Inc., Nebraska) is a portable instrument that does not require 
additional data acquisition and processing, but it is able to provide immediate LAI 
estimates, measuring simultaneously diffuse radiation by means of a fisheye light sensor 
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in five distinct angular bands, with various configurable central zenith angles. The light 
level is measured in clearings without trees and below the canopy. Moreover, there is a 
built-in optical filter that rejects incoming radiation with wavelengths above 490 nm in 
order to minimize the radiation scattered by the canopy. Thereby, a maximum contrast 
between leaf and sky is achieved. The ratio of the two values gives the transmittance 
simultaneously for each sky sector. LAI is then estimated by inversion of the Poisson 
model by comparing the transmittances. 
  
The calculations, which are automatically derived by the internal software, are based on 
four assumptions: (1) foliage is an optically black body that absorbs all the light it 
receives; (2) light blocking plant elements are randomly distributed in the canopy; (3) 
plant elements have the same projection as simple geometrical convex shapes; and (4) 
plant elements are small compared to the area spanned by each ring.  
 
The LAI-2000 is also capable of doing all computations on-board, and stores 
measurements and results. It has been used with success to estimate LAI in continuous 
and homogeneous canopies, such as millet and grasslands, validated by direct estimates 
of LAI based on harvesting (Levy and Jarvis, 1999). In discontinuous and heterogeneous 
canopies, the potential of this instrument is restricted by a general tendency towards 
underestimating LAI (Chason et al., 1991; Dufrene and Breda 1995). Until now, the 
underestimation errors caused by clumping could not be satisfactorily addressed 
including correction factors or adapting radiation models. Adapted models such as the 
Markov model or the negative binomial model are not compatible with the data measured 
by the LAI-2000 and are not in an operational form (Chason et al., 1991). Usually two 
LAI- 2000 devices are used for best results; one in open space, and the other in the 
canopy. In the case of perfect diffuse conditions or during an overcast sky, one LAI-2000 
instrument can be used. 
 
Impact of external factors (illumination conditions and boundary effects) can be 
minimised by means of a 270° view cap (Nackaerts and Coppin, 2000). A potential 
practical weakness of the LAI-2000 approach is the requirement for an above canopy 
reference reading in order to get an accurate LAI estimation (Welles, 1990). A 
disadvantage is that it captures the forest canopy with only a coarse resolution of five 
concentric rings using immediate integration procedures, so making a posteriori detailed 
spatial analyses (i.e. foliage distribution) is impossible. 

2. 4.2. Tracing Radiation and Architecture Canopies (TRAC) 
The Tracing Radiation and Architecture of Canopies (TRAC) instrument (3rd Wave 
Engineering, Ontario, Canada) accounts not only for canopy gap fraction but also canopy 
gap size distribution (the physical dimensions of a gap). The canopy gap size distribution 
or clumping index quantifies the effects of non-random spatial distribution of foliage that 
often occurs in mixed-stands with broad-leaved and conifer species TRAC is a new 
optical instrument for measuring the LAI and the fAPAR by plant canopies. It is hand-
carried by a person walking at a steady pace. Using the solar beam as a probe, it records 
by means of three photosensitive sensors the transmitted direct light at high frequency. 
The TRAC technology has been validated in several studies (Chen et al., 1997 and 
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Kucharik et al., 1997). The clumping index obtained from TRAC can be used to convert 
effective LAI to true LAI. When TRAC is used for at least half a clear day, an accurate 
LAI value for a stand can also be obtained using TRAC alone. It is recommended (Chen 
et al., 1997) that TRAC be used to investigate the foliage spatial distribution pattern, 
while LAI-2000 is useful to study foliage angular distribution pattern. So the combination 
of TRAC and LAI-2000 allows quick and accurate LAI assessment of a canopy.  
 
The TRAC quantifies the clumping effect by measuring the canopy gap size distribution. 
For deciduous stands the clumping index measured from TRAC includes the clumping 
effect at all scales, but in conifer stands it only resolves the clumping effect at scales 
larger than the shoot (the basic collection of needles).  

2.4.3. Hemispherical Canopy Photography 
Hemispherical canopy photography is a technique for studying plant canopies via 
photographs acquired through a hemispherical (fisheye) lens from beneath the canopy 
(oriented towards zenith) or placed above the canopy looking downward. A 
hemispherical photograph provides a permanent record and is therefore a valuable 
information source for position, size, density, and distribution of canopy gaps. It is able to 
capture the species-, site- and age-related differences in canopy architecture, based on 
light attenuation and contrast between features within the photo (sky versus canopy). 
Hemispherical photographs generally provide an angle of view, generally with a 180° 
field of view. In essence hemispherical photographs produce a projection of a hemisphere 
on a plane (Rich, 1990). The exact nature of the projection varies according to the used 
lens. The simplest and most common hemispherical lens geometry is known as the polar 
or equi-angular projection (Herbert, 1986).  
 
Hemispherical photography provides also information on the clumpiness through the gap 
size distribution (Chen and Cilhar 1995b). Due to this quality and use of the images for 
future processing, hemispherical photographs are progressively replacing LAI2000 
devices. Furthermore, hemispherical photographs are used in the case of low vegetation 
canopies by taking downward looking photographs. They are also used in more variable 
illumination conditions, particularly when looking upwards, which make the 
measurements more flexible as compared to LAI2000. 
 
The image resolution is critical to avoid mixed pixels and thus misclassification. This 
could be achieved by using larger matrices sensors and also by  limiting the field of view 
of the lens to values in the range 0–60° or 75°. As a matter of fact, for higher zenith 
angles, the elements are quite far away from the sensor as compared to nadir viewing, 
and the gaps are therefore very small posing important problems for classification. In 
addition, explicit accounting for the mixed pixels as proposed by (Leblanc et al., 2002) 
could also improve the classification performances.  
 
2.5. Imaging Devices and Image Processing 
 
Various authors (e.g.Bonhomme and Chartier, 1972;Bonhomme et al., 1974; Anderson, 
1981; Chan et al., 1986) have analysed hemispherical photographs to obtain LAI, often 
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using some form of automated scanning of photographs. They consistently inverted a 
Poisson model to obtain LAI estimates. Mussche et al. (2001) concluded after a 
comparative study that the exponential model for light extinction was not appropriate and 
created an underestimation of LAI, which could be avoided using another light extinction 
model (e.g. negative binomial model). Moreover they suggested that underestimation of 
LAI by hemispherical photographs could also partially be due to the exposure and 
development of the film.  
 
With the advent of affordable digital technologies, standard graphic image formats, and 
more powerful desktop computing, digital image analysis techniques have been used 
increasingly to examine hemispherical canopy photographs (Rich, 1988,). In that context, 
analysis of hemispherical photographs has been successfully used in a diverse range of 
studies to characterise plant canopy structure and light penetration, as has been 
investigated by several researchers (Canham et al., 1990, Rich et al., 1993, and Easter and 
Spies, 1994).  
 
When traditional analogue hemispherical photography is used to determine LAI, apart 
from the time-consuming processing, difficulties in distinguishing sunlit leaves from 
relative small and underexposed gaps in the canopy arises. As such, camera exposure 
settings have a major impact on the LAI measurements and are a major cause of 
measurements errors as demonstrated by Chen et al. (1991). 
  
Today, however, digital cameras offer forest scientists a practical alternative to overcome 
some of these technical problems, mainly those concerning the development of the 
traditional film photography (Frazer et al., 2001b). Digital cameras are available now 
with a very large number of pixels that provides a spatial resolution close to that of 
classical photographic films (Hale and Edwards, 2002). In comparison to analogue 
cameras, these digital sensors have better radiometric image quality (linear response, 
greater dynamic range, wider spectral sensitivity range (King et al., 1994) and offer some 
practical advantages: (1) digital images make the expense and time associated with 
photographic film, film development, and scanning unnecessary and thereby eliminate 
errors that may occur during this procedure; (2) the potential of real time processing and 
assessment in the field; and finally (3) the unlimited image treatment possibilities.  
 
One of the main problems cited in the literature of hemispherical photography for 
determination of LAI is the selection of the optimal brightness threshold in order to 
distinguish leaf area from sky area thus producing a binary image (Weiss et al., 2004). A 
series of software packages for hemispherical images processing have been developed 
(e.g. Becker et al., 1989, Baret et al., 1993 and Nackaerts, 2002), Hemiview (Delta-T 
Device), SCANOPY (Regent, Rich et al., 1993), GLA (Frazer, 1999) and CAN_EYE 
(Weiss, 2002). Previous research demonstrated that with a high resolution digital camera, 
the choice of the threshold level would be less critical, because the frequency of mixed 
pixels is reduced in comparison to the aggregation of pixels in cameras with lower 
resolution (Blennow, 1995). 
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2. 6. Vegetation Indices for LAI Estimation  
 
Several optical indices have been reported in the literature and have been proven to be 
well correlated with various vegetation parameters such as LAI, biomass, chlorophyll 
concentration, photosynthetic activity, and more. Exhaustive comparative studies have 
been already carried out to assess the prediction power of different optical indices and 
their sensitivity to various canopy parameters and external factors (e.g., Bannari et al., 
1995; Baret & Guyot, 1991; Broge & Leblanc, 2001; Chen, 1996; and Zarco-Tejada et 
al., 2000). Much effort has been expended to improve vegetation indices and render them 
insensitive to variations in illumination conditions, observing geometry, and soil 
properties. Thus, the performance and the suitability of a particular index are generally 
determined by the sensitivity of the index to a characteristic of interest. For this reason, 
and based on the conclusions of the above-mentioned studies, indices specifically 
designed to detect leaf pigments, vegetation stress, or vegetation fraction may result in 
different outcome. Different algorithms are applied to retrieve the LAI of which WDVI is 
selected by determining the initiative value and constants in the case of this study. 
 
A recent study by Broge and Leblanc (2001) using vegetation indices has found that 
MSAVI is the best LAI estimator in terms of sensitivity to canopy effects for precision 
agriculture. It was proved to be less affected by variations in canopy parameters as well 
as soil spectral properties. Furthermore, it was the best LAI estimator in dense canopies.  
So far, it has not been possible to design an index which is sensitive only to the desired 
variable and totally insensitive to all other vegetation parameters (Govaerts et al., 1999). 
Therefore, different indices were defined for different purposes, and optimized to assess a 
process of interest.  
 
A major problem in the use of these indices arises from the fact that canopy reflectance, 
in the visible and near-infrared, is strongly dependent on both structural (e.g., LAI) and 
biochemical properties (e.g., chlorophyll) of the canopy (Goel, 1988; Jacquemoud et al., 
2000 and Zarco-Tejada et al., 2001). Moreover, LAI and chlorophyll content have similar 
effects on canopy reflectance particularly in the spectral region from the green (550 nm) 
to the red edge (750 nm). 
 
Conversely, no studies have focused on the retrieval of LAI without interference of 
chlorophyll effects. In practice, LAI prediction from remotely sensed data faces two 
major difficulties: (1) vegetation indices approach a saturation level asymptotically when 
LAI exceeds certain value, depending on the type of vegetation index; (2) there is no 
unique relationship between LAI and a vegetation index of choice, but rather a family of 
relationships, each a function of chlorophyll content and/or other canopy characteristics. 
To address these issues, a few studies have been carried out to assess and compare 
various vegetation indices in terms of their stability and their prediction power of LAI 
(Baret & Guyot, 1991 and Broge & Leblanc, 2001) while others have dealt with 
modifying some vegetation indices to improve their linearity with, and increase their 
sensitivity to, LAI (Chen, 1996; Brown et al., 2000 and Nemani et al., 1993). 
Consequently, some indices have been identified as best estimators of LAI because they 
are less sensitive to the variation of external parameters affecting the spectral reflectance 
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of the canopy, namely soil optical properties, illumination geometry, and atmospheric 
conditions.  
 
2.7. Linear Spectral Unmixing to Derive fCover.  
 
The goal of linear mixture models is to estimate the fractional cover of each major 
landscape unit of interest (end member) within image pixels. The inputs to mixture 
models are end member reflectance and an image of observation vectors (Pixel 
reflectance) and the output is a fraction image containing an error of it.  
 
In contrast to vegetation indices, fractional cover estimates describe a physical property 
of the landscape and land themselves to straightforward interpretation based on 
established ecological knowledge. For example, canopy cover is often closely related to 
important structural and functional landscape properties, such as LAI, biomass and net 
primary production (NPP)  (Hall et al., 1995). They have been applied to multispectral 
shortwave measurements, such as from that airborne visible Near Infrared imaging 
spectrometer (AVIRS), and even multispectral thermal data (Gillespie1992). 
 
2.8. Geostatistical Approach 
 
Geostatistical data often exhibit small-scale variations that can be modeled based on 
spatial correlation. Spatial variability is modeled as a function of distance between 
sample locations. Locations that are closer to each other are often more similar than 
locations that are farther apart, and are thus more highly correlated. Spatial variability is 
often modeled with a semi-variogram instead of a correlation function (Haining 1993). 
The semi-variogram represents variance (γ) as a function distance between sample 
locations. Gamma (γ) is defined as;(Isaaks and Srivastava, 1989)  
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where N(h) is the set of all pairs of observations such that the distance between i and j is 
h. |N(h)| is the number of distinct pairs in N(h), and Zi and Zj are data values at locations 
i and j, respectively. 

2.8. 1.Geo-statistical Interpolation Method 
 
Interpolation is the estimation of values for points in an area not actually sampled. There 
are many different interpolation techniques, ranging from simple linear techniques that 
average the values of nearby sampled points, to more complex techniques like kriging 
that use base weights on distance to nearby sample points and the degree of 
autocorrelation for those distances. 
 
Environmental monitoring programs are increasingly linked to remotely sensed and field 
information in order to integrate the descriptions of small-scale processes up to regional 
and global scales. A major shortcoming of these links is the inability of current methods 
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to incorporate the spatial autocorrelation inherent in remotely sensed and ground based 
data while simultaneously resolving the frequently disparate scales of the two types of 
data.  
 
By calibrating the remotely sensed multispectral data with a small number of ground 
measurements, characteristics of the forest measured at sample points can be interpolated 
across a large geographical region. This is a significant advantage of interpolation 
methods. The main issues in geostatistics is the prediction of values of a variables 
distributed in space and time. The prediction is based on interpolation methods where the 
predicted values for a larger area come from the ground measurements. However, the 
selection of the best interpolation method is related to specific needs.  
 
The most common techniques for interpolation is the kriging method, whose estimations 
are based on the function between individual values of a variable (s), its variance, 
covariance and its spatial relation (distance and direction) and minimizes the variance of 
the errors by creation of a probabilistic model of the data set. From the various techniques 
of kriging, simple kriging is selected in this study.  
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3. Methodology  
 
3.1. Study Area 
The study area for the validation of the remote sensing data (HyMap imaging 
spectrometer) and ground measurement is located at a large flooding area of the river 
Rhine, very close to the German-Dutch border called Millingerwaard (c.f., Figure 1). It 
covers approximately an area of 16 km2. It is situated at 51.5o N and 5o E. The mean 
altitude of this site is 12 m a.s.l. with the minimum of 8.8 m a.s.l. and a maximum of 15.6 
m a.s.l. The Millingerwaard is a managed natural ecosystem which covers a wide range 
of ecology and vegetation of dominant softwood forests comprised of Salix fragilis L. 
(crack willow), Salix alba L. (white willow), Populus nigra L. (Lombardy poplar); and 
dense undergrowth namely Urtica dioica L. (common nettle), Calamagrostis epigejos 
(L.) Roth (wood small-reed), Rubus caesius L. (European dewberry). Significant 
supporting data (e.g. vegetation maps, LIDAR data, CASI data, species composition 
maps, etc.) are available. 
 

 
Figure 1. Location of the study area,top Millingerward at Dutch -German border, middle- topographic map 
of Millingerward area and bottom- softwood forest image from HyMap sensor. 
Source, http://baserv.uci.kun.nl/~hvreenen/20020707_Millingerwaard/millingerwaard_map.jpg, top     and   
http://baserv.uci.kun.nl/~hvreenen/20020707_Millingerwaard/millingerwaard_map.jpg, middle   
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3.2. Airborne and Field Data 
The Hyperspectral images were acquired by the HyMap sensor. At the same time, a field 
work was coupled to this campaign which includes measurement of LAI using digital 
hemispherical camera. The ground measurements were used for calibration and 
validation of imaging spectrometer data. These point measurements area also used for 
krigigng interpolation purposes based on the ground measurements for producing LAI 
map for validation of big footprint sensors (Figure 2).  
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Figure 2. Conceptual model for deriving spatially distributed LAI map from airborne and   ground 
measurements and processing steps. 
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3.3. LAI Ground Sampling  
The gap fraction of this softwood forest was assessed with a high-resolution digital 
camera and by subsequent image analysis. Thirteen sample plots in the closed canopy 
were selected for ground measurement with digital hemispherical camera. The sample 
plots were selected following a random sampling scheme to cover the representative soft 
wood canopy densities. This study site was setup according to the VALERI protocol 
http://www.avignon.inra.fr/valeri/ as described hereafter. For each elementary sample 
unit (ESU), a square area of 20m x 20 m was defined by its 12 subplots starting from the 
center point and continues systematically. The points within the sample plots are evenly 
spaced from each other by 10 meters. Each sample plots are established within a 
minimum of 20-meter distance from each other. Measurements of the biophysical 
parameters describing the spatially distributed canopy structure in general were 
performed in these plots (c.f., figure 3).  
 
The establishment of the center point for the plot was determined by the GPS and the 
other corners were determined by the use of measuring tape and compass. From each 
sample plot, 12 points were selected for the measurement. At each point in the sample 
plot, two measurements with the hemispherical camera were taken. One measurement 
was taken with 180o upward and the other was taken downwards with the same zenith 
angle away from the tree. All the points in the sample plots were measured in similar 
sequence of measurements through out the whole sampled area. 
  

             

a). 

b). 

Figure 3. a).Distribution of sample plots in the softwood forest on top of HyMap image, and (b).the field 
layout for digital hemispherical photography according to VALERI protocol.  
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3.4. Hemispherical Photograph Acquisition and Processing 
 
The ground measurements have been carried out after establishing the sample plots in the 
forests. Thenafter, the photographs are captured by the use of Nicon hemispherical digital 
camera and the images captured were arranged in similar orders in a folder to be 
processed by a software developed for this specific purpose. Accordingly, the images in 
one elementary sample unit were arranged in folders named UP and Down for upward 
and downward photos (c.f. figure 4) for the processing purpose. 
 

                    
Figure 4. Hemispherical photographs. Left, downward hemispherical photograph  right, upward 
hemispherical photographs taken from one point in the sample plots.    

 
The dedicated software, CAN_EYE, which was developed to process the color 
hemispherical photographs with special emphasis on green element, was used to do the 
classification and processing of a series of twenty photographs at a time. The software 
processes with optimal performances a large number of photographs to derive canopy 
characteristics. This neural network system based CAN_EYE software was used to 
compute the gap fraction and LAI of the softwood forest. As compared to currently 
existing software available for processing hemispherical images, CAN_EYE has a set of 
specific features that improves its efficiency, accuracy, flexibility, portability and 
traceability (Weiss, 2002). 
 
The LAI in a single plot is based on the photos in the 12 sampled points and computed 
with CAN_EYE. The software first computes gap fraction for LAI determination. The 
gap fraction is then estimated by the substitution of the equiangular annuali’s of the 
hemispherical photograph’s image in to smaller parts and computing the fraction of areas 
with leaves and without leaves. Then after, true LAI, effective LAI and clumping factor 
will be derived. The software also offers the possibility to test the sensitivity of clumping 
function to the LAI saturation value. 
 
In the algorithm of CAN_EYE, for a little part of image, the Poisson law is applied. The 
hemispherical image is therefore divided in to rings in the azimuthal direction, the gap 
fraction is averaged over the azimuthal direction and then each ring is divided in cells in 
zenithal direction. In each cell, the gap fraction and the logarithm of the gap fraction is 
computed. If there is no gap (according to this case, in the 5 degree cells, only 
vegetation), it is assumed that the gap fraction is equal to PoSat (derived from simple 
Poisson law, using given LAI saturation value from 8 to 12).The gap fraction (Po)  and its 
average is used to compute clumping index as explained in equation 4.  
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The computation of the true LAI is then computed using a look-up table and taking in to 
account the clumping factor. These procedures are implemented on the photographs 
arranged in folders according to the direction and the plot from which they are taken 
based on CAN- EYE, http://www.avignon.inra.fr/can_eye/summary. 

3.4.1. Basic Principles of Hemispherical Photograph Processing 
The basic principle in the processing of CAN_EYE involves different steps (Figure 2). 
The photographs taken at the field during sampling are arranged in to directories of 
similar category. After selecting the directory where the photographs to be processed are 
stored, the next step is defining the characteristics of the processing. Then after the 
images will be loaded and displayed in a window to allow selection of the images not to 
be processed interactively.  
 
Images may include the legs of the observers, tripod and stars from the sun. These 
undesirable parts of the image are excluded during the preprocessing of the image 
through masking. In addition, the gamma factor was used to increase the brightness of the 
image or darkening the image to provide better visual discrimination between the 
vegetation elements and the background.  At the end of preprocessing, the colors are 
reduced to a sufficient number to get good discrimination capacities. The classification 
step differentiates the leaf and the non leaf areas in to different classes. Then after, the 
gap fraction is computed to derive LAI, fAPAR and fCover. 

3.4.2. Algorithms implemented to derive LAI by CAN_EYE 
The gap fraction measurement by the hemispherical camera allows estimating the LAI of 
canopies with an assumption of random distribution of vegetation elements. The LAI 
calculation in this case involved the division of the field of view in to concentric 
equiangular annuli and computing the ratio between the numbers of pixels in the gaps, 
that is the pixel illuminated by the sky and the total number of pixels in this angular 
sector. For a single image, the LAI is estimated using the gap fraction computed at 57.5°. 
At 57.5°, according to Bonhomme and Chartier (1972), the gap fraction is independent 
on leaf angle and is equal to:  
 

)93.0/()5.57(log()5.57( −= o
o

o
o PP  (6)

 
The technique to derive the canopy architecture variables, leaf area index (LAI) and 
average leaf inclination angle (ALA), is based on the use of a look-up-table (LUT), i.e. 
reference table composed of gap fraction value in different view zenith angle and the 
corresponding LAI and ALA parameters(Weiss et al., 2000). 
 
Following Weiss et al. (2004), where ellipsoidal distributions are satisfied, the average 
leaf angle is considered as a sufficient parameter to characterize the leaf angle 
distribution function.  
 
The general methodology developed to compute LAI by the CAN_EYE is based on the 
LUT and simulated according to the Poisson model with an aggregation parameter equals 
to one, using an ellipsoidal leaf inclination distribution. Only two parameters are 
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therefore needed to describe the canopy architecture: the Leaf Area Index (LAI) and the 
Average Leaf Angle (ALA). The simulations correspond to 5000 cases, with a random 
distribution of LAI between (0-9) and ALA between (0-90o). 
 
The search for solution in the LUT is from a measured gap fraction. The searching 
algorithm computes a cost function between the measured gap fraction and the simulated 
one for all the cases. Then, the cost function value is stored in an ascending order and the 
200 first solutions in the data base are retained. The estimated LAI and ALA are then 
computed as the average value of the first 200 solutions. The cost function of C for each 
element k of the LUT is computed based on (Weiss et al., 2004) as: 
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mesiP  is measured gap fraction, is  LUT gap fraction,  is cost function,  
is   number of total Pixels,  is the  number of masked pixels and 
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iNmask iw    is weight 
that take in to account the fact that some ring may contain a lot of masked pixel and 
therefore, the corresponding gap fraction may not be very representative of the image.    
 

3.5. Spectroradiometric Field Measurements 
 
Reflectance measurement of leaf optical properties (leaf reflectance) of representative 
plant leaves of the softwood forest species were performed using an ASD field 
spectroradiometer (Analytical Spectral Devices1997, http://www.asdi.com) covering the 
wavelength range between 350 -2500 nm. This instrument is equipped with a leaf clip 
with white and black coated spectralon reflectors and own source of light. The calibration 
is done with its built-in background after measuring 15 leaves. For each case of the three 
major species of this forest, 50- 100 leaf reflectances were recorded randomly from the 
leaves in both the upper and lower sides. Maximum care was also taken not to remove the 
leaves from the branch of the trees to avoid the effect of water stress which indirectly 
affects the reflectances of the leaves.  The spectral library was built based on this field 
data by removing bad bands. The leaves of these major species (i.e. Populus nigra L., 
Salix alba L., and Salix purpurea) are arranged in a way to cover the total area of the 
sensitive sampling surface of instrument. 
 
3.6. Description of HyMap Data quality 
 
The HyMap data are shipped in calibrated radiance units and checked for quality 
(Kooistra et al., 2005). To support a less storage intensive data format, they have been 
rescaled according to the data scaling information given in table 1.  All the data are 
calibrated to radiance, which is expressed as L. HyMap data is also geocoded and 
delivered in the map projection UTM (Zone 31 N, geodetic datum WGS84).  
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The metadata of the HyMap data used in this study has the general parameters and 
explained in table 1. The specific data take is also listed in the table 2. in detail.  
 
Parameter Description / Unit 
Instantaneous Field of View (IFOV) 2.5 mrad along track 

2.0 mrad across track 
Field of View 61.3 degrees 
Pixels Campaign dependent along track 

512 across track 
Swath 2300 m at 5 m GIFOV (along track) 

4600 m at 10 GIFOV (along track) 
Spectral Configuration (Details c.f.,   Appendix 6)  
VIS Spectrometer (1) 
 Number of  bands 
 Band numbers 
 Spectral range 
 Spectral resolution 

 
30 
1-30 
450-890 nm 
8.1-16.2 nm 

NIR Spectrometer (2) 
 Number of  bands 
 Band numbers 
 Spectral range 
 Spectral resolution 

 
32 
31-62 
890-1350 nm 
14.5-16.9 nm 

SWIR1 Spectrometer (3) 
 Number of  bands 
 Band numbers 
 Spectral range 
 Spectral resolution 

 
32 
63-94 
1400-1800 nm 
13.1-15.6 

SWIR2 Spectrometer (4) 
 Number of  bands 
 Band numbers 
 Spectral range 
 Spectral resolution 

 
32 
95-126 
1950-2480 nm 
18.3-21.3 nm 

Data Scaling  
Final HyMap units (calibrated at-sensor radiance) L [µW / cm2 sr nm] 
Data rescaling L = 1000 DN (bands 1-62) 

L = 4000 DN (bands 63-126) 
Data Formats  
HyEco-1_rad.bsq Band Sequential (BSQ) 

Calibrated radiance 
X,y: pixels [ ] Z: [µW / cm2 sr nm] 

HyEco-1_rad_geo.img Band Interleaved by Line (BIL) 
Geocoded, calibrated radiance 
X,y: [m] Z: [µW / cm2 sr nm] 

Sampling  
Line rate (lines per second) 16 Hz 
Pixel size 5 x 5 m 
Resampling Bilinear 
Map projection UTM, Zone 31 N 
Geodetic Datum WGS-84 

Table 1. HyMap parameters and units for the HyEco’04 campaign. 
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HyEco’04, July 28, 2004  
Strip Number 1 
Flight altitude 2300 m (above sea level) 
Flight heading 0 deg 
Solar position1 Air mass: 1.192 

Zenith: (refracted): 33.050 
Azimuth: 178.913 
Cos incidence: 0.838 
Cos zenith: 0.838 

Solar day Solar time: 717.495 
Julian day: 53214.984 

Acquisition time calculation UTC (Universal Time) = GMT (Greenwich Mean Time) 
GMT = MEST -2 (Middle European Summer Time) 
MEST = Local time 

Acquisition time 11:38 hrs UTC 
13:38 hrs MEST (or local time) 

Start latitude / start longitude 51.8953 N / 5.9947 E 
End latitude / end longitude 51.8525 N / 5.9936 E 
Dimensions raw (x = across track, y = along track, z = 
spectral bands) [pixels] 

512, 1538, 126 (198’438’912 bytes = 189 MB) 

Dimensions geocoded (x = long., y = lat., z = spectral 
bands) [pixels] 

581, 1416, 126 (207’319’392 bytes = 197 MB) 

Table 2. HyMap parameters for HyEco’04: covering  the softwood area. 

 
Following the description of acquisition and scene parameters, the following section will 
discuss the spectral parameters. Figure 5, lists the so called FWHM (Full Width at Half 
the Maximum) of each HyMap spectral band assuming a Gaussian shaped response 
function for each band. The four HyMap spectrometers can be easily identified in the 
graph. 

 
Figure 5: HyMap spectral band positions vs. spectral resolution (FWHM) of all 126 spectral bands. 

 

                                                 
1 Computed following http://www.nrel.gov/midc/solpos/solpos.html 
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The FWHM for each spectral band as well as the centre wavelength of all 126 HyMap 
bands are listed in figures 6,7, 8, and 9. The graphs are divided into the four HyMap 
spectrometers and for clarity a general reflectance spectrum of green vegetation is plotted 
on the right axis. The FWHM are offset for better readability, the left y-axis has no 
physical meaning. 
 

 
Figure 6. HyMap VIS detector band positions and FWHM. 

 

 
Figure 7. HyMap NIR detector band positions and FWHM. 

 

 24



3. Methodology 

 
Figure 8. HyMap SWIR1 detector band positions and FWHM. 

 

 
Figure 9. HyMap SWIR2 detector band positions and FWHM. 

3.6.1. Mean and Standard Deviation 
For the HyMap image taken on July 28, 2004, the mean and the standard deviation over 
the whole spectral range is computed (Kooistra et al., 2005). In addition typical very 
‘bright’ and ‘dark’ targets are listed. The results allowed getting an estimate of the 
radiometric dynamic range in the images. The analysis is performed for the DN as well as 
the radiance images. 
 
The mean and standard deviation of the raw digital numbers as well as the radiance 
calibrated HyMap data are plotted in Figure 10. The mean signal is usually a good 
indicator for the general brightness of the scene. Whereas the standard deviation is a good 
measure for detecting large differences in signal.  
 
Even though the data take was acquired at a considerably lower sun zenith angle, the 
overall higher ‘brightness’of the scene can be identified in Figure 11. Excess presence of 
bright targets or sun glint might be the cause of this effect, but a visual inspection of the 
quicklook resulted in limited identification of such features. Kooistra et al.(2005) 
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reported the presence of a significant atmospheric attenuation visible in the images and 
recommended a cautionous use for some parts of it. This is also visible in the presence of 
zero reflecting targets (or too little sensitivity) in certain HyMap spectral bands (c.f., fig 
10). In particular the detector first and last bands are crticial with increasing low signal 
towards the SWIR region. 
 

 
Figure 10. HyMap minimum, maximum, mean and standard deviation,  

 

 
Figure 11. HyMap very bright and very dark target  

3.6.2. Saturation 
Depending on the illumination conditions of the scene and the presence of specularly 
reflecting targets (e.g., sun glint on water surface, mirror like roofs of greenhouses, etc.), 
as well as the integration and dwell time of the HyMap sensor, saturation might be 
occurring. Hence, the test for pixels which are affected by saturation are performed and 
no problem of saturation is reported (Kooistra et al., 2005). 

 26



3. Methodology 

3.6.3. Correlation Matrices 
Imaging spectrometer bands are usually highly correlated, due to their inherent 
contiguous nature. The correlation coefficient between all spectral bands is therefore 
computed to express the quality of the noise present in all spectral bands. The correlation 
coefficient r is the covariance between two spectral bands m and n, divided by the 
product of their standard deviation. 
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With the covariance between bands m and n defined as 
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Where N is the number of pixels per band, L indicates the radiance value of pixel p in 
band m and n. µ is the mean of the spectral bands and c the standard deviation of the 
respective bands. 
 
High correlation coefficients result from low standard deviations or a large covariance. 
They usually express redundant information, i.e., only minor additional information from 
one spectral band to the next. 
 
The correlation matrices of the processed HyMap data take reveals the dominance of 
vegetated areas. Examining spectral bands that have a very low correlation coefficient 
with their direct neighbours, is a good indication of a non-continuous coverage of the 
spectrum (typically inbetween the detectors NIR-SWIR1 and SWIR1-SWIR2) or noisy 
bands. Accordingly, the following bands are reported to be used with care due to 
increased noise presence: SWIR1 band 1 (1403.9 nm), SWIR2 band 1, 2, 3 (1951, 
1969.9, 1988.6 nm), and SWIR band 30, 31, 32 (2448.8, 2464.5, 2479.9 nm).The band to 
band correlation for all 126 HyMap bands for the relevant data take. The result of 
correlation matrixies are shown in Appenidx. 

3.6.4.Image Based Signal to Noise Ratio (SNR) 
Noise might be present in the images, which will introduce a non-systematic bias on the 
data. A flat field approach is used to estimate image based SNR. A dark region of the 
image is selected and the noise is subsequently defined as the absolute standard deviation 
of the radiance of the selected area. The SNR of the image is calculated by using 
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Where µ is the average of the radiance in band m, c is the standard deviation of the 
radiance in band m. 
 
Image based SNR is derived from dark, homogenous areas. Even though the absolute 
figures seem to be not very high, the image derived SNR is consistent within the scenes 
(no significant change in instrument performance) and excellent. 
 
3.7. Biophysical Parameter Retrieval from HyMap Image 
 
The data used for the retrieval of canopy parameters were described in section 3.6. The 
LAI and fCover images are produced for the softwoods site investigated from the HyMap 
data using algorithms of vegetation indices and spectral unmixing techniques 
respectively. A linear spectral unmixing technique by the use of ENVI/IDL software was 
applied to the airborne images in order to retrieve fractional cover of this softwood. 
 
Extraction of quantitative information on the state of the earth’s surface from remote 
sensing data is based on methods that can be subdivided in to three categories: empirical 
and semi empirical approaches, statistical approaches and modeling approaches 
(Jacquemoud and Ustin, 2001). 
 
Empirical approaches are based on simple relations established between a variable of 
interest and spectral data. Correlation of single bands or spectral indices with ground 
truth data is a prominent technique of empirical data extraction. Semi-empirical 
approaches have a physical basis. Their mathematical formulation of a parameter’s state 
is related empirically to spectral data. Clevers’s WDVI concept for estimating LAI of a 
green canopy (Clevers 1988, 1989) is based on the latter. 
 
Statistical approaches determine parameter characteristics statistically, i.e.  the choice of 
the wavelengths for data extraction is not predetermined. Spectral mixture analysis, that 
reduces spectral information in to independent sources of variability, called 
endmemebers, and multiple stepwise regression analysis are two methods of quantitative 
information retrieval based on statistics of a calibration set of samples. 
 
Modeling or analytical approaches offer a formal representation of the process involved 
in light interaction with remotely sensed surfaces. These physically based models 
encapsulate the actual knowledge about the system under study. Verstraete (1994) 
emphasized that physically based models can be truly validated, because they can be 
inverted, whereas validation of empirical models can not be done a priori because any 
polynomial or other function with enough adjustable parameters can be made to fit any 
dataset. As a consequence empirical approaches can only be considered validated if the 
values of the parameters retrieved by a validation set match the values of these 
parameters as measured or observed. 
 
This study is using quantitave statistical and semi empirical approaches to retrieve 
biophysical products from HyMap data based on ground measurements. 
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For the retrieval of the vegetation variables, empirical and semi empirical methods are 
implemented and linear spectral unmixing is also used. A correction for soil background 
is necessary when ascertaining the relation between reflectance and forest characteristics 
such as LAI. 
 
All the vegetation indices are based on ratios of single wavelength bands of the visible 
and near infra-red region. Low transmittance of a green leaf in the visible region implies 
that only reflectance of the upper layer to contribute significantly to the total measured 
reflectance. This multiple reflectance indicates that the near infra red reflectance is 
suitable estimator of LAI. However, the lower layer’s contribution strongly decreases 
with increasing depth in the canopy making indices insensitive to changes in leaf area 
(Kneubuhler, 2002). 

3.7.1. Weighted Difference Vegetation Index (WDVI) 
Several vegetation indices are incomplete in their physical basis and as a result of this a 
simplified reflectance model for estimating LAI, introduced by (Clevers 1988, 1989) is 
chosen for this study. The model computes a corrected near infrared reflectance known as 
Weighted Difference Vegetation Index (WDVI), by subtracting the contribution of the 
soil from measured reflectance. It is assumed that the ratio between the reflectance of 
bare soil in different spectral bands is constant for a given soil background and 
independent of soil moisture content. This enables to calculate the corrected near-infrared 
reflectance without knowing soil reflectance. WDVI is used for estimation of LAI 
according to the inverse of an exponential function. 
 
The WDVI determination requires a coefficient C for correction of the canopy soil 
composite for soil background changes with varying moisture content. The ratio of the 
reflectance in two spectral bands can be assumed as a constant and independent of soil 
moisture content. The existence of a soil line in red and near-infrared wavelength space is 
widely accepted in literature (Condit, 1970, and Huete, 1985). WDVI is therefore derived 
as follows (Clevers, 1988): 
 

soilRED
NIRsoilC

ρ
ρ

= , 
(11)

 
where, soilNIRρ  is reflectance of NIR band of bare soil   and soilREDρ   is reflectance of 
Red band of bare soil. 
 
The value of C is considered to be known from empirical data of bare soil. 
 

REDCNIRWDVI ρρ −= , (12)
 
where NIRρ  and REDρ  are the reflectance of the vegetation canopy. This equation 
represents the corrected for soil background.  
 

 29



3. Methodology 

)1ln(1
∞

−
−

=
WDVI
WDVILAI

α
, 

(13)

 
where   α      [0, 1] 
WDVI∞    [0, 100] are to be determined empirically from the ground data or  previously 
published results. The HyMap bands 17 (665 nm) and 29 (862 nm) are utilized for the 

REDρ  and NIRρ  respectively. 
 
The vales forα and  to retrieve LAI are determined based on the ground 
measurements. To keep the value of LAI in acceptable range with that of CAN_ EYE out 
put by fitting a regression and a value of 0.30 and 35 for

∞WDVI

α and the WDVI  is considered 
respectively.  

∞

3.7.2 Green Red Vegetation Index (GRVI) 
With an increased vegetation cover, a decrease of the reflectance and transmittance in the 
near infrared region can be observed together with an increase of the absorption. Above 
the vegetation fraction of 70%, the reflectance in the red remains invariant. Thus, the 
NDVI decreases with an increase in canopy density. This phenomenon is well known as 
saturation of the NDVI which leads to inaccuracies of especially the LAI estimated by the 
NDVI. Therefore, the Green-Red Vegetation Index (GRVI) was developed by (Gitelson, 
1999).  
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The indicated wavelengths were found to be the most sensitive to vegetation fractions 
striding 70%. In this research, the reflectance data of HyMap spectral bands 8 (543 nm) 
and 16 (665 nm) are used to compute GRVI. 
 
3.8. Sensitivity Test of LAI Retrieval Algorithms 
 
1. Based on  RSR (Chen et al., 2002) 
LAI was retrieved from the imaging spectrometer data following an algorithm proposed 
by Chen et al. (2002).Chen used Reduced Simple Ratio (RSR) to derive LAI. This 
algorithm considers SWIR band in addition to the RED and NIR bands.  
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where RSR, Reduced Simple Ratio and NIRρ , REDρ , and SWIRρ are the reflectance in 
NIR, RED and  band respectively. SWIR minSWIRρ and maxSWIRρ are the minimum 
and maximum  reflectance found in the scene of the Millingerwaard image and  
defined as the 1% minimum and maximum cut-off points in the histograms of SWIR 
reflectance in the HyMap image. 

SWIR
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Therefore for the softwood forests LAI is computed following (Chen et al., 2002) as: 
 

)5.9/1ln(86.3 RSRLAI −−= , (16)
 

In the analysis of this case he reflectance data of HyMap spectral bands 15 (650 nm) and 
28 (846 nm) and 82 (1661 nm) were considered for RED, NIR and SWIR bands 
respectively. 

 
2. Based on FVC (Roujean and Lacaze, 2003) 
The other algorithm tested for retrieval of LAI was that of Roujean and Lacaze 2003. 
FVC was considered for deriving the LAI. Hence, 
 

5.0,,2.0, +−=≥−= REDNIRFVCthenREDNIRFVCIf ρρρρ  (17)
 
where REDρ  and NIRρ are the ground reflectance values for Red band 15 (650 nm) and 
nearinfra red band 28 (846) nm band respectively.  

 
LAI is then computed following (Roujean and Lacaze 2003) as: 

 

FVCLAI −= 1ln(
)5.0*945.0(

1  
(18)

 
3. Based on NDVI (Weiss et al., 2002) 
Weiss (2002) also derived LAI by using NDVI. The bands utilized in this case are also 
the RED and NIR.at  
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 Where NDVI is computed as: 
 

REDNIR
REDNIR
ρρ
ρρ

+
−  

(20)

 
3.9. Vegetation Fractional Cover (fCover) 
 
Fractional cover is one of the indicators for the type of ecosystem, the amount of biomass 
on a land surface and the photosynthetic productivity. This variable is directly related to 
absorbed radiation in the visible spectrum. Thus for an fCover from 0 through 60 %, the 
reflectance over the entire visible spectrum steadily decreases. For vegetation covers 
exceeding 70%, the reflectance in the red range of the spectrum tends to be invariant, i.e. 
a saturation of the absorption effect can be observed (Gitelson, 1999). It is also reported 
that at least for fCover up to 60%, a direct relation to remotely sensed data can be 
observed.  
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fCover is one of the products which can be derived from the HyMap image and used for 
computing biophysical parameters. In this study this product is used to support the 
interpolation of the biophysical product, LAI, since it has a direct relationship.   
3.9.1 Retrieval of fCover Using Linear Spectral Unmixing Approach 
fCover was done first by spectral unmixing based on two end members namely 
vegetation and soil. Based on this, the processed image resulted in an abundance map of 
these two end members. 
 
The abundance of the endmemebrs resulting from the linear spectral unmixing algorithm 
can adapt negative values as well as values exceeding one which also happened in this 
case. The fCover computed from linear spectral unmixing in this case is then taken as the 
values between zero and one. The values below zero and above one are set to zero and 
one respectively. Accordingly, the results of abundance are considered to represent 
fCover. Thenafter the values of fCover per pixel was aggregated to a plot level and 
considered as a fractional cove per VALERI sample plots for comparing the airborne and 
ground measured  products. 
3.9.2. fCover from Hemispherical Camera Measurements. 
Hemispherical camera measurements are used to derive the fCover from both upward and 
downward hemispherical photographs with an assumption of independency between the 
upward gaps and downward gaps. Therefore fCover is computed as: 
 

)1(*)1(1 downup fCoverfCoverfCover −−−= , (21)
 
where ,is fraction of vegetation cover, is fCover value from upward 

hemispherical photographs and  is fCover value from downward 
hemispherical photographs of VALERI sample plots. 

fCover upfCover

downfCover

 
3.10. Fraction of Absorbed Photosynthetically Active Radiation (fAPAR)  
 
The fAPAR is a key parameter fro the plant growth and important for crop modeling. It 
was computed from both the ground and airborne measurements based on equation 22 
and 23. 

3.10.1. fAPAR from Hemispherical Photographs 

The assumption of the interdependency between the upward gaps and downward gaps are 
considered and the instantaneous fAPAR is computed by taking the mondirectional gap 
fraction values. For instantaneous fAPAR, )(1 θoP− was considered as fAPAR, where 
the solar zenith angle )(θ is taken for the Millingerward during the day and time of 
HyMap image acquisition. Therefore, )(θ was computed following 
http://www.jgiesen.de/sunmoonpolar/ and the overall fAPAR is obtained from both the 
upward and downward measurements as: 

)1(*)1(1 downup fAPARfAPARfAPAR −−−= , (22)
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3. Methodology 

where  is the fraction of Absorbed Photosynthetically Active Radiation, 
 is fPARR value from upward hemispherical photographs and   is 

fAPAR value from downward hemispherical photographs of VALERI sample plots. 

fAPAR

upfAPAR downfAPAR

3.10.2. fAPAR from HyMap data 
Plants absorb solar radiation in the 400 to 700 nm region for photosynthetic purposes. 
Absorbed photosynthetically active radiation (APAR) is defined as the amount of 
photosynthetically active radiation (PAR) absorbed by vegetation canopy.  
 

)(1( 21 LAIbExpbbfAPAR o −−= , (23)
 
Where  are to be determined from field measurements 21,, bbb ando
3.11. Geo-statistical Interpolation 
Remote sensing based geostatistical procedure for softwood forest LAI characterization 
was done based on ground measurements. Field sampled measurements of LAI and other 
biophysical variables are interpolated by simple kriging to create spatially distributed 
LAI map for the forest structure.  
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Figure 12. Flow chart of methodology for interpolation of LAI in the softwood forests in Millingerward 
using simple kriking method. 

The sampled values of LAI from thirteen VALERI sample plots are used for producing a 
spatially distributed LAI map over softwood forests at Millingerwaard. Software like 
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Gstat and PCRaster were used for this purpose. The geo-processing of the study area was 
done by converting dataset in to a compatible format by ArcGIS. The softwood is clipped 
and converted to grid format. After the conversion the data was changed to ASCII format 
to be used by Gstat (c.f., in figure 2 and 12). 
 
After determining the equation for the variogram, the interpolation of the spatial data was 
done according to the selected interpolation methods. In this case simple kriging was 
chosen for producing the spatially distributed LAI map. The first guess of LAI was done 
based on the relation ship between the fractional cover and ground measured LAI values 
and simple kriging was performed based on the residuals of LAI for local improvement 
of the first guess.  
 
The first step in simple kriging is to construct a variogram from the scatter point set to be 
interpolated. An equation was derived from the shape of the variogram by specifying the 
range, sill and nugget. 
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4. Result and Discussion 

4. Results and Discussion 
 
4.1. Biophysical products from Hemispherical Photography 
 
All the biophysical products from the ground measurements are derived using CAN_EYE 
software for every elementary sample units (ESU).The over all processing results are 
explained in the next section. 

4.1.1. LAI 
Hemispherical photograph processing by the use of neural network based software, 
CAN_EYE, gave an estimation of both effective and true LAI. The result of the analysis 
from the softwood forest results in LAI values ranging from 4.7 - 6.5m2/m2 and 2.9 - 4.0 
m2/m2 for true and effective LAI respectively (c.f., table 3). These results are mainly 
explaining the values in the forested areas and there is no LAI measurements taken from 
open areas within the surrounding of the forest site and as a result, both the effective and 
true LAI are exhibiting a narrow interval. Therefore the absence of too low LAI values in 
the analyzed result revealed the presence of dense understory and densely vegetated 
nature of the soft wood forest. 
 

Plot no. 
CE_LAIef[ 
[m2/m2] CE_LAItrue[m2/m2] CE_fCover 

CE_gap 
fraction CE_fAPAR 

1 3.9 5.9 0.96 0.244 0.554 
2 3.4 5.5 0.94 0.203 0.475 
3 4 5.8 0.95 0.176 0.389 
4 3.4 5.7 0.93 0.245 0.485 
5 3.9 6.2 0.97 0.172 0.414 
6 3.5 6 0.94 0.222 0.510 
7 3.8 6.5 0.94 0.184 0.406 
8 3 5.1 0.89 0.270 0.505 
9 3.4 5.1 0.91 0.232 0.460 
10 2.9 4.7 0.84 0.323 0.663 
11 3.3 5.6 0.93 0.261 0.563 
12 3.5 5.1 0.93 0.197 0.366 
13 3.7 5.5 0.92 0.207 0.451 

Table 3. Summary of all ground measured biophysical products in the 13 VALERI sample plots in 
softwood forests of the Millingerwaard. 

 
The estimation of all the biophysical products from the ground measurements using 
hemispherical camera in general and the LAI in particular could be liable to different 
sources of errors which can occur at any stage of image acquisition as in any remote 
sensing instrument or during image analysis. Rich et al., (1993) mentioned the possibility 
of errors as with any remote sensing technique, at any stage of image acquisition or 
analysis. Rich et al., (1988) discussed the problems and summarized it as an error in the 
case of image acquisition, which includes camera positioning, horizontal/ vertical 
positioning, exposure, evenness of sky lighting, evenness foliage lighting (reflections), 
direct sunlight, and optical distortion. The other possibility of committing an error 
according to him is classified as during image analysis while distinguishing foliage from 
canopy openings, assumed direct sunlight distribution, assumed diffuse skylight 
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distribution, assumed surface of interception, image editing/enhancement, consideration 
of missing areas and finally in the case of violation of model assumptions like assessment 
of G-function variations, leaf angle variability and consideration of clumping factors.  
 
Even though, there are a number of steps listed in literature (e.g., Rich et al., 1988, 1993), 
where an error can be committed, a maximum care has been taken in each and every step 
of image acquisition and analysis. The availability and use of the color plates in the latest 
version of CAN_EYE (i.e. CAN_EYE Version 3.2.4) during the classification process 
gives a better chance to accurately assign the leaves, sky, and the soil in the proper 
classes based on the percentage of the availability of each class in the input image.  The 
results computed from the ground measurements are therefore gave good estimation of 
biophysical products.  

4.1.2. Gap Fraction 
 The results of the gap fraction measured with the hemispherical camera ranged from 
0.172 to 0.323.The sample plot in which the low gap fraction is measured also showed a 
low LAI value since the gap fraction and LAI are related inversely and exponentially 
(c.f., Figure 13).  The gap fraction result, within a limited range of LAI value, showed a 
correlation with effective LAI with an R2 = 0.667. Gap size computed from 56 -59o 
shows small distribution percentages in the plot level analysis of the ground 
measurements (c.f., figure 14) which also indicated the high vegetation cover. The 
clumping index is also computed based on equation 4 and shown in figure 17. It increases 
as a view Zenith angle increases. The outputs of CAN_EYE, which are computed, based 
on the gap fraction (c.f figure 16) is also generated based on the leaf inclination angle and 
LUT is used to comput LAI per sample plot (c.f., figure 15).  
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Figure 13.  Inversed exponential relation ship of measured LAIeff  and gap fraction obtained from 
hemispherical photographs over the 13 VALERI sample plots in the softwood forests at the 
Millingerwaard. 
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Figure 14.  Gap size distribution for rings between 55 -60o from downward hemispherical photographs of 
softwood forest at Millingerwaard inVALERI sample plot 2. 

 
Figure 15 Measured gap fraction vs LUT gap fraction and average LAI, ALA, fCover from  downward 
hemispherical photographs of VALERI sample plot 2. 
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gap fraction 

Figure 16 Gap fraction image after CAN_EYE processing from downward hemispherical photographs of 
VALERI sample plot 2. 

 

 

 
 

Figure 17 Clumping factor at different view Zenith angle from downward hemispherical photographs of 
VALERI sample plot 2. 
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4.1.3. Fractional Vegetation Cover (fCover) 
 
The mean fCover values observed from all the sampled plots is 93% with a minimum and 
maximum fCover of 84% and 97% respectively (Table 3).  This is a very closed canopy 
with little openings. In this heterogeneous softwood forest structure, especially the 
presence of dense undestory contributed to the larger value of fCover. The standard 
deviation of the fCover assessed by this method is 0.8 which also showed the 
heterogeneity of the vegetation elements sampled (Appendix 1 and Appendix 2). 
 
The estimation was done based on both, the upward and downward measurements of the 
hemispherical photographs. Hence, the fCover is calculated based on the assumption of 
independency between the upward gaps and downward gaps. fCover can also be used to 
computed transmittance in the forest floor by subtracting one from it.  
 
According to the result from the hemispherical camera measurements processed with 
CAN_EYE, the correlation between the effective LAI and the fCover has showed an r2 of 
0.69. This indicated the independent relationship of the two products namely LAI and 
fCover. Therefore, areas with higher fractional cover are expected to have higher value of 
LAI. This can be clearly observed in Figure 23.  

4.1.4. Fraction of Absorbed Photosynyhetically Active Radiation (fAPAR) 
The average value of ground measured instantaneous fAPAR for the whole sampled plots 
of the softwood is 0.48. The same principle of computation from the upward 
hemispherical measurement is considered and it is derived based on equation 22. 
 
4.2. Biophysical Products Derived from HyMap 
 
The biophysical products are derived from the HyMap data using different algorithms 
and the results are presented and explained in the following sections.  

 4.2.1. LAI  
The summary of all the biophysical products derived from the HyMap image for all 
VALERI sample plots are shown in Table 4 . LAI is retrieved from the hyperspectrral 
remote sensing data by using various retrieval algorithms. The Weighted Difference 
Vegetation Index WDVI (Clevers, 1989) which is corrected for soil factor was used to 
retrieve the LAI from the airborne measurements (HyMap image) after calibrating with 
ground measured LAI values. 
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Plot 
no. WDVI 

HyMap 
LAI meas

HyMap 
LAI true fAPAR GRVI_fCover

SUM 
fCover 

1 19.01 3.13 4.02 0.77 0.60 1.00 

2 22.91 3.54 5.77 0.84 0.60 0.94 

3 18.85 2.58 3.96 0.76 0.65 0.99 

4 22.39 3.40 5.48 0.83 0.61 0.88 

5 23.57 3.73 6.16 0.85 0.59 0.98 

6 18.40 2.49 3.80 0.75 0.61 0.97 

7 20.88 3.03 4.76 0.81 0.58 1.00 

8 20.56 2.95 4.62 0.80 0.64 0.96 

9 22.71 3.49 5.66 0.84 0.63 0.97 

10 21.47 3.17 5.03 0.82 0.63 0.88 

11 21.14 3.09 4.88 0.81 0.66 0.95 

12 21.68 3.22 5.13 0.82 0.63 1.00 

13 19.38 2.69 4.16 0.77 0.56 0.88 

Table 4. Summary of biophysical products derived from HyMap image per each sample plots for the 
softwood forests at Millingerwaard 

The true and the effective LAI are determined by optimizing theα and the WDVI∞  
based on the ground measured values. Accordingly the calibration of LAI value was done 
by taking the measured LAI from the hemispherical photography as a reference LAI 
value for a particular point of interest.  The constant for an α  and WDVI  from the 
literature was suggested to be 0.5 and 60 (Strub, 2001, and Kenebuhler, 2002). But these 
values get different weight based on the land cover type. In the case of forest area the 
reflectance is scattered in the large volume of the forest canopy and also affected by 
shadows in the forest floor. As a consequence the proposed values for agricultural crops 
could not be applicable for forest areas.  The spatially distributed LAI map using WDVI 
is produced for the Millingerwaaard soft wood area (c.f., figure 18).  

∞

 
A study by Fanssnacht et al., (1994) showed that comparing LAI derived from optical 
devices with the true LAI measured with destructive sampling leads to an 
underestimation in the case of aggregated canopies where the clumpiness is less than one 
and overestimation for regular foliage where clumpiness is greater than one. The 
clumpineses depends on the plant structure (foliage location) shape and size of the leaves. 
In this study it is also demonstrated that the remote sensing LAI is overestimated when 
compared to the CAN_EYE measured values. This is in agreement with the work of 
others in this area (Gower and Norman, 1991; and Larson and Kershaw, 1996). The 
comparision is done based only  on the LAI values and not based on the thechnical or 
basic differences in the way  the different instument considers while measuring the LAI 
values. 
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LAI

 

Figure 18. Spatially distributed map of LAI based on WDVI at Millingerwaard. 

 
For testing the sensitivity of different algorithms towards estimating LAI, the algorithms 
of Reduced Simple Ratio (RSR) based on Chen et al. (2002), Fractional Vegetation 
Cover (FVC) based on Roujean and Lacaze (2003) and NDVI based on Weiss et al. 
(2002) methods were used. These vegetation indices are considered and implemented as 
suggested by the authors and their sensitivity is tested against the ground measurements 
spatially distributed LAI map (Figure 19, Figure 20 and Figure 21) show different LAI 
values when compared to each other.  
 LAI

 
 

 
Figure 19. spatially distributed map of LAI based  on RSR in Millingerwaard  
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 LAI

 
 

Figure 20. Spatially distributed Map of LAI based on FVC  in  Millingerwaard 

 

 

LAI

 
Figure 21.spatially distributed Map of LAI based on NDVI at Millingerwaard 
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The overall results from the different algorithms are compared to the ground measured 
LAI value (Figure 22). As the center HyMap pixel in the VALERI sample plot falls in 
left or upper side of the ground sample plots, the pixels representing the 5m resolution 
was aggregated to 20 meters pixel by taking four different averaging patterns by 
assigning the pixel to four different directions in the plot. The average of these four 
readings was considered as a corresponding plot value for the ground measurements.  By 
doing so, the result clearly shows the LAI estimated from calibrated HyMap image using 
the WDVI and the one derived based on the RSR method based on Chen et al.(2002) are 
showing closer values of LAI. A very low value of LAI is observed after applying FVC 
method based on Roujean and Lacze (2003).   
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Figure 22.  Graphical plot of the results of application of different algorithms to HyMap image and 
CAN_EYE derived LAI values at a plot level in the softwood forests at Millingerwaard 

 
Therefore, the different methods followed show different trends and value when 
compared to the ground sample LAI values. In the case of Roujean and Lacaze (2003), 
the derived LAI values are very low and couldn’t estimate the LAI as it was 
demonstrated by the others (i.e., by using CAN_EYE, RSR and WDVI). This could be 
due to application of the broad band algorithm (Vegetation) to a narrow band imaging 
spectrometer data. 
 
LAI derived from HyMap image by using WDVI and Chen (2002) is best when 
compared to CAN- EYE at plot level. The correlation of LAI based on WDVI and RSR 
following Chen et al.(2002) showed high value (r2 = 0.88). The empirical method for 
optimization of  and alpha (∞WDVI α ) in the case of WDVI and the use of SWIR band 
in the case RSR have contributed to the better estimation of LAI. 

 43



4. Result and Discussion 

4.2.2. Fraction of Vegetation Cover (fCover) 
The fractional vegetation cover was retrieved by calculating Green Red Vegetation Index 
(GRVI) and abundance of soil and vegetation using linear spectral unmixing. 
 
The fCover retrieval by GRVI and spectral unmixing are analyzed to compare the 
performance of these methods in assessing the fraction of the vegetation with the ground 
measured values. 

4.2.1.1. Fractional Vegetation Cover Derived Using GRVI 
 The computed fCover using GRVI ranged from -0.18 to 0.36 with a mean of 0.13. These 
values do not represent the fraction of vegetation cover directly. Theoretically, fCover 
should range from zero to one. Therefore the results of GRVI values are scaled to a range 
of zero and one and considered as fCover. Finally the mean fCover over the softwood 
forest area is raise to 0.51.  The statistical analysis of the GRVI includes the computation 
of minimum, maximum mean and standard deviation for the softwood forests (Table 5). 
Gitelson (1999) found a linear relationship between the GRVI and measured vegetation 
fraction. 
 
The result of the fCover per each sample plots is also computed and shown in Table 4. 
The minimum fCover measured is therefore 0.58 with a maximum fCover of 0.65. The 
result is therefore showed lower values of GRVI and thus the vegetation cover. The linear 
relation ship assessed with ground truth measurement resulted in a correlation of (r2 = 
0.25). 
 
However, the underestimation of fCover by GRVI can be explained by the fact of high 
irradiance values during noon and as a result low vegetation cover values are common for 
images taken during noon time (Strub et al., 2001). 
 
The study by Strub et al. (2001) also showed the fraction of vegetation cover calculated 
by GRVI depends on the solar zenith angle. Also the physiological changes of plants 
occurring over the day time may be of importance due to changing leaf angle and with an 
increasing leaf angle, the projected area of the leaf gets bigger so that the vegetation 
cover will be higher.  
 

GRVI min max Values range mean stdv 
Forest area -0.18 0.36 0.54 0.1305 0.081692 

 
GRVI 

scaled to 1 
min max Values range mean stdv 

Forest area 0 1 1 0.513 0.2614 
Table 5. Statistics of GRVI results before and after scaling the values to 0 and 1. 

4.2.1.2 Fractional Vegetation Cover Using Linear Spectral Unmixing Approach 
The calculated mean fCover ranged between 0 and 1 with a mean of 0.91 (Table 4) and 
with a standard deviation of 0.212 over the total softwood area of the Millingerwaard 
image. 
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The results of spectral unmixing appeared as a series of images, one for soil, one for the 
vegetation and a root-mean-square error image. The higher abundances are represented 
by brighter pixels approximately with fCover of greater than 0.8 (c.f., Figure 23).As it 
has been reported from the quality assessment of the image, most of the pixels specially 
in the forest area are covered with vegetation and the resulting fCover in this area is also 
high. Since the forest floor is covered with dense understory and canopies of the trees, the 
majority of the pixels showed an fCover value of one.  

The shortcoming of traditional mixiture model approaches is the failure to account for 
variability in endmember reflectance within and between images. A mixture model 
assumes that end member reflectance properties of vegetation and soils can exhibit 
significant spatial and temporal variability. Jacquemoud et al. (1995) and Ross (1981) 
reported the sources of this variability for soil includes changes in mineralogy organic 
reflectance and varies widely with changes in canopy structure and leaf chemistry.  

SUM min max Values range mean stdv 
Forest area -0.735 2.28 3.015 1.125 0.403 

 
SUM scaled to 1 min max Values range mean stdv 

Forest area 0 1 1 0.91 0.212 
Table 6.  Statistics of linear spectral unmixing results before and after scaling to 0 and 1. 

 

fCover 

Figure 23. fCover map for  the softwood forest area in the Millingerwaard (pixel size aggregated to 20x20 
meter) 

4.2.3. Fraction of Absorbed Phothosynthetically Active Radiation (fAPAR) 
The coefficients for computing fraction of absorbed photosynthetically active radiation 
are also determined based on the field measurements.  The LAI derived from HyMap by 
WDVI method is taken to estimate the fAPAR. Consequently, the way the LAI is 
estimated affects the estimation of fAPAR in the same manner. The fAPAR, which is 
related to LAI, and its constants are determined from the field measurements and the 
coefficient values are set to the following and resulted in average value of 0.81. 

)(1( 21 LAIbExpbbFAPAR o −−= .  
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0b  = 0.9,  = 1.0   and      = 0.38 1b 2b

The initial values for the range of the coefficients are taken from literature (Keneubuhler, 
2002, Strub eat al., 2001). Then after based on the fitness of the regression line, the above 
values are determined to fix the final points.  
 
4.3. Geostatistically Interpolated LAI  
 
The spatial interpolation of LAI index for the whole area of the softwood was done by the 
support of fractional cover and produced the spatially distributed LAI map based on the 
ground measured data .The fractional cover used for this case is derived from the HyMap 
image through spectral unmixing technique. Fractional cover in an unvisited area was 
used to interpolate the LAI from the areas so that the interpolation is done in the same 
relationship with the initial correlation of LAI and fCover. The equation used from the 
sample points of residual LAI values in Millingerwaard is 0Nug (0) + 0.09 Sph(30). 
Unfortunately the sample points used to derive the semivarigram model couldn’t give the 
nugget. Therefore the sill and the range are used to model the semivarigram (Figure 24). 
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Figure 24.  Semivarigoram of residual LAI plots for the 13 VALERI sample  plots of softwood forest.  
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Figure 25 LAI and fCover relationship derived from ground measurements using CAN_EYE for all 13 
sampling plots in the softwood forests at the Millingerwaard site. 

 

 

 
Figure 26. LAI values per VALERI sample plot vs LAI values from kriging and CAN_EYE in the 
softwood forest at Millingerwaard. 

Based on the correlation of the two products (fractional cover from spectral unmixing and 
LAI), spatial interpolation of the LAI was applied by using the secondary variable. 
Accordingly, the fractional cover and the LAI are correlated and the spatially distributed 
LAI map is produced by simple kriging method. 
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LAI 

 
 

Figure 27. Spatially distributed map of LAI interpolated by simple kriging in the soft wood forest areas at 
Millingerwaard (pixel size of grid 20 m x 20 m). 

 

LAI 

 
Figure 28. LAI derived from HyMap based on WDVI in the softwood forest at  Millingerwaard. 
 
Generally, the mean of spatially interpolated LAI map by the use of simple kriging(c.f., 
figure 27) showed almost similar LAI values. Forest areas with lower fCover values can 
be identified visually from the LAI map (c.f., Figure 28). A slight difference between the 
mean of the estimated and measured values might be caused by taking a point 
measurement values to produce a spatially distributed map within the sampled plots (i.e 
the interpolation of point measurements to an aggregated block of HyMap pixels with 20 
x 20 meter). 
 
4.4. Comparison of LAI Results from Hemispherical Camera and HyMap 
 
The point measurements in the softwood forest of 13 sample plots with 20m X 20m area 
are compared with the value of aggregated pixels of HyMap. There is no significance 
difference between the mean of the point measurements in all the plots. A slight 
underestimation is observed for the HyMap derived LAI values (c.f., Figure 29). 
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Figure 30  Correlation of effective LAI from HyMap and hemispherical photographs for 13 VALERI 
sample plots in the soft wood forest in the Millingerwaard. 

 
The percentage difference of LAI measured by hemispherical digital camera and 
interpolated using simple krigigng interpolation method with varying local mean is 
compared per aggregated pixels over the whole area of the softwood (c.f., Figure 31). The 
result showed a slight differences with the fCOver supported interpolation. The pixels 
with bigger difference are located at the border of the forest areas where roads and 
irregular vegetation pattern exits. Areas showing negative difference are those which are 
relatively underestimated by kriging and positive difference are those relatively over 
estimated by kriging. 
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Figure 31. The percentage difference Map of LAI from WDVI and spatially interpolated approach. 

diff.(%) 

 
4.5. Spectral Library Building 
 Spectral library was built for the three dominant forest species in the softwood forests 
(Liras, 2005). The result shows that the color of the three species has resulted in 
difference in the reflectance. The maximum minimum and mean reflectance for each plot 
is computed (c.f.,Figure 32). The spectral library result shows the reflectance of Populus 
nigra has an average of higher reflectance compared to the Salix species. From the Salix 
species, Salix alba has shown a lower value of reflectance due to its darker green leaf 
color. Salix fragilis is characterized by its pale green leaf color and the linear spectral 
unmixing based on this spectral library resulted in unsatisfactory classification of the 
species due to the overlapping effect of the reflectance of the three species and the result 
was not used for further processes in the softwood area. 
 

a).  
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b).  
 

 
c). 
Figure 32. Average reflectance from Spectral library for the major tree species in softwood forests at leaf 
level measured by ASD field spectrometer .a) an average of maximum, minimum and average reflectance 
of Populus nigr’s a leaves b) an average of maximum, minimum and average reflectance of Salix alba’s 
leaves c.)  an average of maximum, minimum and average reflectance of Salix fragilis’s leaves. 
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5. Conclusions and Recommendations 
 
5.1. Conclusions 
 
The ground measurement of the forest structure by hemispherical photography approach 
is found to be an easy and quick to use and accounts for clumping factor, which is the 
major problem in underestimation of LAI and all the biophysical products derived form 
remotely sensed images. It also measures monodirectional and  bidirectional gap fractionf 
for studies requiring fine details of the canopy structures and proven useful (Nilson and 
Ross, 1979 and Chen et al, 1991). The improved classification techniques in CAN_EYE 
gave a good discrimination possibility for sorting the recorded vegetation elements in to 
appropriate classes. Biophysical products in the softwood forests at Millingerwaard are 
therefore assessed and estimated for calibration of the HyMap data using this method and 
subsequent analysis by a neural network based system software. 
 
The geo-statistical interpolation of LAI using simple kriging with varying local mean 
based on the HyMap derived fractional cover has resulted in spatially distributed map of 
LAI which can be used for validation of larger footprint sensors (eg., MERIS and 
MODIS) with good accuracy (scaling issues).  
 
Several approaches for the retrieval of biophysical parameters from the Hymap image 
have been applied in order to test the sensitivity of the LAI retrieval algorithms to derive 
LAI. From the selected LAI retrieval algorithms, WDVI (corrected for soil factor) and 
RSR (takes in Red, NIR and SWIR bands) algorithm estimated LAI values with a 
correlation (r2 = 0.88) to each other. Applying the vegetation indices developed for 
broadband sensors may not perform in the same way for the narrow bandwidth sensors. 
This effect is clearly shown in FVC methods with lower LAI value estimation.  
 
Generally, the selected approaches enabled to produce validated continuous fields of 
biophysical products over the study area and also the fCover, which can improve the 
estimate of LAI and biomass from remotely sensed data, was derived from the linear 
spectral unmixing techniques by considering the soil and vegetation end members. 
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5.2. Recommendations 
 
Based on this study, some points are mentioned to be considered through further studies.  
 
We recommend the use of radiative transfer models such as GeoSAIL, PROSPECT and 
DART for improving the estimation of LAI from the imaging spectrometer data in this 
softwood forest, since it considers the physical processes describing the interaction of 
radiation with different canopy elements under different conditions. 
 
The processing of the directional measurements of the vegetation structure at an angle of 
57.5 degree has to be included for better estimation of the gap fraction. Taking more 
ground samples from different types of land cover may also result in widening the range 
of LAI estimation and improving the semivairogram equations for interpolation method 
through kriging. Deriving LAI value from single sample point will also improve this 
estimation. 
 
Further study on comparison of CAN_EYE validated HyMap derived LAI to MERIS 
reduced resolution LAI can be done for calibration and validation of big footprint 
sensors.  
 
Further research using currently derived biophysical products and other available 
meteorological and soil factors provides inputs for ecological models (e.g. NPP study at 
Millengerward). This derived data can be further used as an input in land biosphere 
system or in (global) validation of LAI products (e.g. BELMANIP, CEOS-LPV). 
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7. Appendix 
Appendix 1. Summary of downward measurement analysis report by CAN_EYE for all the plots in the softwood forest 

  DOWN 
              Clumping 
          LAI ALA 0o 30o 57.5o

Plot no. Soil(%) Leaf(%) fCover stdv. LAIeff LAIe.57.5 LAItrue Effective TRUE TRUE TRUE TRUE 
1 16 84 0.889 0.974 2.1 1.9 2.7 10 10 0.71 0.78 0.83
2 16 84 0.854 0.963 2 2 2.7 18 10 0.63 0.73 0.73
3 14 86 0.879 0.969 2.2 2.2 2.9 20 10 0.63 0.76 0.78
4 19 81 0.836 0.968 1.8 1.6 2.5 14 10 0.6 0.72 0.74
5 15 85 0.873 0.971 2.2 2.2 3 22 10 0.7 0.68 0.75
6 15 85 0.87 0.97 2.1 2 2.7 18 10 0.67 0.77 0.82
7 16 84 0.867 0.978 2 2 2.9 12 10 0.63 0.7 0.76
8 23 77 0.746 0.944 1.5 1.4 2.3 18 10 0.6 0.62 0.66
9 22 78 0.786 0.975 1.6 1.6 1.9 14 10 0.78 0.83 0.86

10 24 76 0.721 0.968 1.8 1.7 2.3 40 24 0.64 0.67 0.72
11 16 84 0.845 0.963 2 1.9 3.1 18 10 0.55 0.61 0.67
12 19 81 0.798 0.962 1.9 1.8 2.6 26 10 0.56 0.69 0.73
13 15 85 0.857 0.98 2.1 2 2.9 18 10 0.68 0.7 0.76
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Appendix 2. Summary of upward hemispherical photograph measurement analysis report by CAN_EYE for all the plots in the softwood forest 

  UP 
              Clumping 
      LAI ALA 0o 30o 57.5o

Plot no. Sky(%) Leaf(%) fCover stdv. LAIeff LAIe.57.5 LAItrue Effective TRUE TRUE TRUE TRUE 
1 26 74 0.663 0.916 1.8 1.6 3.2 52 32 0.42 0.45 0.53
2 33 67 0.606 0.97 1.4 1.5 2.8 38 26 0.47 0.49 0.5
3 30 70 0.566 0.904 1.8 1.5 2.9 58 36 0.46 0.51 0.56
4 32 68 0.571 0.928 1.6 1.5 3.2 56 40 0.36 0.41 0.48
5 26 72 0.739 0.937 1.7 1.7 3.2 32 10 0.43 0.47 0.54
6 37 63 0.558 0.959 1.4 1.4 3.3 52 48 0.4 0.41 0.46
7 31 69 0.557 0.883 1.8 1.7 3.6 62 54 0.46 0.42 0.52
8 35 63 0.553 0.944 1.5 1.3 2.8 58 44 0.5 0.45 0.49
9 28 72 0.587 0.949 1.8 1.7 3.2 58 50 0.49 0.51 0.57

10 48 52 0.411 0.946 1.1 0.96 2.4 60 56 0.43 0.43 0.45
11 38 62 0.577 0.924 1.3 1.2 2.5 48 34 0.38 0.47 0.49
12 30 70 0.641 0.871 1.6 1.5 2.5 44 10 0.38 0.52 0.56
13 37 63 0.46 0.95 1.6 1.3 2.6 66 52 0.44 0.48 0.53
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Appendix 3. The Net primary production as comnputed from the VALERI sample plots in the soft 
wood forest at Millingerwaarad 

plot no. NPP/tons/yr/ha 
1 2.24  
2 2.15  
3 2.11  
4 2.19  
5 2.24  
6 2.21  
7 2.18  
8 2.13  
9 2.13  

10 2.12  
11 2.19  
12 2.13  
13 2.08  

 

Appendix 4. Map of NPP  in the study area per year per Pixel 
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Appendix 5. LAI per single points in the VALERI sample plots vs. HyMap derived LAI per pixel. 
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Appendix 6. HyMAp band positions 
Module Module 

Band 
HyMap
Band 

Center 
 Wvl 

Atmo. 
Corr. Wvl. 

FWHM  

 VIS 1 1 445.00 442.00 8.10  
VIS 2 2 454.70 451.70 13.60  
VIS 3 3 469.30 466.30 16.50  
VIS 4 4 485.20 482.20 15.60  
VIS 5 5 500.10 497.10 15.60  
VIS 6 6 515.00 512.00 15.40  
VIS 7 7 530.70 527.70 16.40  
VIS 8 8 546.30 543.30 15.90  
VIS 9 9 561.40 558.40 15.20  
VIS 10 10 576.30 573.30 15.30  
VIS 11 11 591.50 588.50 15.50  
VIS 12 12 607.00 604.00 16.10  
VIS 13 13 622.50 619.50 15.30  
VIS 14 14 637.60 634.60 15.40  
VIS 15 15 652.60 649.60 15.10  
VIS 16 16 667.60 664.60 15.30  
VIS 17 17 682.80 679.80 15.50  
VIS 18 18 698.20 695.20 15.90  
VIS 19 19 713.50 710.50 15.30  
VIS 20 20 728.50 725.50 15.20  
VIS 21 21 743.50 740.50 15.40  
VIS 22 22 758.70 755.70 15.60  
VIS 23 23 773.80 770.80 15.10  
VIS 24 24 788.60 785.60 15.30  
VIS 25 25 803.70 800.70 15.60  
VIS 26 26 818.90 815.90 15.70  
VIS 27 27 834.10 831.10 15.60  
VIS 28 28 849.20 846.20 15.90  
VIS 29 29 864.50 861.50 16.20  
VIS 30 30 879.60 876.60 16.20  
NIR 1 31 880.50 879.35 16.90  
NIR 2 32 897.10 895.95 16.10  
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NIR 3 33 913.30 912.15 16.70  
NIR 4 34 929.40 928.25 16.00  
NIR 5 35 945.20 944.05 15.90  
NIR 6 36 961.10 959.95 16.20  
NIR 7 37 976.80 975.65 16.10  
NIR 8 38 992.70 991.55 15.90  
NIR 9 39 1008.50 1007.35 15.70  
NIR 10 40 1024.10 1022.95 15.90  
NIR 11 41 1039.60 1038.45 15.50  
NIR 12 42 1055.00 1053.85 15.30  
NIR 13 43 1070.10 1068.95 15.50  
NIR 14 44 1085.20 1084.05 15.40  
NIR 15 45 1100.30 1099.15 15.20  
NIR 16 46 1115.10 1113.95 15.10  
NIR 17 47 1130.00 1128.85 15.30  
NIR 18 48 1144.70 1143.55 15.10  
NIR 19 49 1159.20 1158.05 14.80  
NIR 20 50 1173.80 1172.65 15.20  
NIR 21 51 1188.50 1187.35 15.20  
NIR 22 52 1202.80 1201.65 14.80  
NIR 23 53 1217.00 1215.85 14.90  
NIR 24 54 1231.40 1230.25 15.20  
NIR 25 55 1245.80 1244.65 15.00  
NIR 26 56 1259.90 1258.75 14.80  
NIR 27 57 1273.90 1272.75 14.80  
NIR 28 58 1288.00 1286.85 14.90  
NIR 29 59 1301.90 1300.75 14.80  
NIR 30 60 1315.90 1314.75 14.90  
NIR 31 61 1329.90 1328.75 14.80  
NIR 32 62 1343.30 1342.15 14.50  
SWIR1 1 63 1403.90 1404.40 15.50  
SWIR1 2 64 1418.40 1418.90 15.60  
SWIR1 3 65 1432.50 1433.00 15.50  
SWIR1 4 66 1446.80 1447.30 15.50  
SWIR1 5 67 1460.80 1461.30 14.90  
SWIR1 6 68 1474.70 1475.20 15.10  
SWIR1 7 69 1488.60 1489.10 15.10  
SWIR1 8 70 1502.40 1502.90 14.80  
SWIR1 9 71 1515.90 1516.40 14.70  
SWIR1 10 72 1529.10 1529.60 14.90  
SWIR1 11 73 1542.70 1543.20 15.20  
SWIR1 12 74 1556.20 1556.70 14.80  
SWIR1 13 75 1569.30 1569.80 14.50  
SWIR1 14 76 1582.30 1582.80 14.70  
SWIR1 15 77 1595.20 1595.70 14.90  
SWIR1 16 78 1608.30 1608.80 14.50  
SWIR1 17 79 1621.10 1621.60 14.40  
SWIR1 18 80 1633.90 1634.40 14.70  
SWIR1 19 81 1646.70 1647.20 14.60  
SWIR1 20 82 1659.40 1659.90 14.30  
SWIR1 21 83 1671.70 1672.20 14.10  
SWIR1 22 84 1684.10 1684.60 14.40  
SWIR1 23 85 1696.70 1697.20 14.40  
SWIR1 24 86 1709.00 1709.50 13.90  
SWIR1 25 87 1721.20 1721.70 13.70  
SWIR1 26 88 1733.30 1733.80 14.00  
SWIR1 27 89 1745.50 1746.00 14.00  
SWIR1 28 90 1757.50 1758.00 13.50  
SWIR1 29 91 1769.40 1769.90 13.60  
SWIR1 30 92 1781.20 1781.70 13.60  
SWIR1 31 93 1793.10 1793.60 13.50  
SWIR1 32 94 1804.90 1805.40 13.10  
SWIR2 1 95 1951.10 1953.20 21.00  
SWIR2 2 96 1969.90 1972.00 20.90  
SWIR2 3 97 1988.60 1990.70 20.90  
SWIR2 4 98 2007.30 2009.40 21.20  
SWIR2 5 99 2026.00 2028.10 21.10  
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SWIR2 6 100 2044.70 2046.80 21.30  
SWIR2 7 101 2063.20 2065.30 21.00  
SWIR2 8 102 2081.20 2083.30 20.20  
SWIR2 9 103 2098.80 2100.90 20.10  
SWIR2 10 104 2116.50 2118.60 20.10  
SWIR2 11 105 2134.20 2136.30 20.30  
SWIR2 12 106 2151.90 2154.00 20.50  
SWIR2 13 107 2169.50 2171.60 19.90  
SWIR2 14 108 2186.20 2188.30 19.00  
SWIR2 15 109 2203.10 2205.20 20.40  
SWIR2 16 110 2221.30 2223.40 19.50  
SWIR2 17 111 2238.00 2240.10 19.70  
SWIR2 18 112 2255.50 2257.60 20.40  
SWIR2 19 113 2272.30 2274.40 19.80  
SWIR2 20 114 2289.00 2291.10 19.50  
SWIR2 21 115 2305.40 2307.50 19.20  
SWIR2 22 116 2321.50 2323.60 19.20  
SWIR2 23 117 2337.70 2339.80 19.40  
SWIR2 24 118 2354.20 2356.30 19.60  
SWIR2 25 119 2370.40 2372.50 19.40  
SWIR2 26 120 2386.40 2388.50 19.00  
SWIR2 27 121 2402.20 2404.30 18.60  
SWIR2 28 122 2417.80 2419.90 18.50  
SWIR2 29 123 2433.30 2435.40 18.60  
SWIR2 30 124 2448.80 2450.90 18.90  
SWIR2 31 125 2464.50 2466.60 18.60  
SWIR2 32 126 2479.90 2482.00 18.30  

 

 

Appendix 7. HyMap band by band correlation matrix 
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Appendix 8. HyMap band by band covariance matrix for 28. July 2004, Strip 1 - Millingerwaard. 

 
Appendix 9. HyMap band by band Eigenvector matrix 
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Appendix 10. HyMap Quicklook ‘Millingerwaard’, 28. July 2004, Strip 1 (RGB = 15/10/5 (652.6 nm, 
576.3 nm, 500.1 nm)) (left = Raw DLR quicklook, right = Geocoded and calibrated VITO quicklook). 
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