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Abstract: In this paper a projective modeling approach for ecologi-
cal/environmental systems is introduced. The basic idea behind projective mod-
eling is to define (possible) future output behavior and to use identifiable time-
varying system parameters, representing underlying sub-processes, as an (addi-
tional) agent for control in order to investigate potential off-normal system changes.
Recursive estimation techniques are used to calculate the parameter trajectories,
which subsequently, for full understanding of the problem, are subject to physical
interpretation. This idea of projective modeling is motivated by a real-world
eutrophication example and further explained in some more detail on a class-room
example, describing the outflow from a reservoir. c©IFAC 2006
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1. INTRODUCTION

In the last decades the main stream of modeling
approaches was on predictive modeling. That is,
modeling as a vehicle to predict system’s behavior
in the near or far future. The prediction-error
methods (see e.g. Ljung (1987)), as a generaliza-
tion of the common system identification methods
that aimed at minimizing the residuals, may cer-
tainly have contributed to this. In this approach,
in addition to (some) prior knowledge of the sys-
tem, the availability of experimental data was a
prerequisite for system identification and para-
meter estimation. However, the main limitation
of the predictive modeling approach is that the
model predictions only reflect the past system’s
behavior, as described by the model equations
and experimental data. Physical or mechanistic
modeling in its pure form, on the contrary, focuses
on the deduction of models from prior knowledge
only. Hence, in general, the resulting model, in
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ular suitable for process design, reflects the
of-the-art of mathematical modeling of a
c process. As an alternative to these ap-

hes, in the mid-eighties, J.C. Willems intro-
a so-called behavioral approach to modeling
.g. Antoulas and Willems (1993) for details
ntification issues).

ially, in environmental systems modeling
expected environmental change the key

ion is: how does an internal system change
the system’s behavior in the future? This

ion cannot be answered with the existing
ling approaches. First of all no experimen-
ta is available and, in addition to this, it

known how system mechanisms change in
. For this type of problem we introduce the
pt of projective modeling, which is closely
d to Ormell’s definition of projective model-
rmell (1977) asserts: ”... Mathematics is the
e of ifs. It is concerned with the possibilities,



rather than with the actualities, of the world. (...)
Mathematics used in this way, to ’look at’ the
implications of a theory or a proposal, we call
projective modeling.”

The aim of this paper is to further describe the
projective modeling approach for dynamic sys-
tems, without focusing on mathematical techni-
calities. Hence, in essence the philosophy behind
projective modeling is exposed. The basic idea is
to define (possible) future output behavior and
to use identifiable time-varying system parameters
as an (additional) agent for control. This idea is,
especially, useful for environmental systems with
(i) limited prior knowledge of the mechanisms that
govern the processes, (ii) large response times, and
(iii) limited options for collecting experimental
data. Furthermore, and this is essential for our ap-
proach, it uses feedback unlike the commonly used
error propagation studies with stochastic (see e.g
Tiwari and Hobbie (1976)) or bounded parame-
ters (see e.g Keesman and van Straten (1987), van
Straten and Keesman (1991) and Kurzhanski and
Varaiya (2000)). This work has been inspired by
the ideas as presented in Beck (2002), in particular
chapters 18 and 19 (Keesman (2002); Kryazhim-
skii and Beck (2002)). For educational purposes
only, a very simple theoretically identifiable dy-
namic system will be used to illustrate the ideas.

First, in Section 2 the role of system parameters
is discussed. Then in Section 3 the reservoir man-
agement examples are presented. The implications
of the results are discussed and conclusions are
drawn in Section 4.

2. THE ROLE OF SYSTEM
PARAMETERS

Traditionally, system parameters are constant co-
efficients in a mathematical model structure. Since
the introduction of modern systems theory with
its state-space framework system parameters are
also allowed to vary with time. Lee (1964) was
among the first who pointed out the link be-
tween parameter and state estimation, so that
the resemblance between the Kalman filter and
the recursive least-squares parameter estimator
became very clear. In this interpretation parame-
ters are seen as time-varying unobserved states.
Alternatively, after rewriting the solution of an
LTI system in terms of a linear regression, states
can be interpreted as linear regression parame-
ters (e.g. Milanese and Belforte (1982)). In the
early system theoretic literature on LQ theory
the resemblance between optimal state estimation
and optimal control has already been pointed
out. In the eighties, and in particular within the
framework of nonlinear control theory (see e.g.
Nijmeijer and van der Schaft (1990)), inputs are
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States

puts Parameters

. The links between states, inputs and para-
eters.
considered as states to arrive at a sys-

epresentation that is affine in the control
. Moreover, in input estimation studies the
wn inputs are usually considered as states

uivalently as time-varying parameters (e.g.
ss and Tu (1998)). Fig. 1 summarizes the
between states, inputs and parameters.

ially, the bold arrow in Fig. 1, indicating
terpretation of time-varying parameters as
s of control (Keesman (2002)), needs further
ion. This link between parameters and con-
puts will be further subject of the paper. For
terpretation of the results an additional view
tem parameters is needed, i.e parameters as
entatives of unknown sub-processes (see e.g.
head (1979), Young (1984), Norton (1986)
vironmental applications). Let us here illus-
this view by an ecological example.

ple 1. Consider the substrate consumption
ichaelis-Menten kinetics in a batch reactor

lated lake. The substrate concentration is
bed by

dS

dt
= −μ(S) (1)

μ(S) = Vmax
S

Km+S , the substrate degrada-
ate. Let S0 = 30, Km = 3, and Vmax = 2.
ermore, over a period of 25 minutes, every
e the substrate concentration is sampled.
ecursive estimation results, using the sim-
model

dS

dt
= −μ (2)

e sampled data, are presented in Fig. 2 and
s can be seen from Fig. 3, the parameter
ot a constant, indicating dependencies on
internal/external system variables. In fact,
simplified model the parameter μ represents
idden’ Michaelis-Menten kinetics. In other
, via the recursively estimated parameters,
using a filter or smoothing algorithm, one
e able to discover unknown sub-processes
qualitative knowledge of the (bio)physics
lying the dynamics.
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Fig. 2. Substrate concentration.
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Fig. 3. Estimated substrate degradation rate.

Let us now further stress the role of time-varying
parameters in management of environmental sys-
tems, potentially subject to system change. Con-
sider, therefore, the feedback scheme of Fig. 4 with
P the process and C the controller. It is well-
known that in the denominator of the transfer
function of the LTI feedback system the product
”PC” always appears. Hence, instead of focussing
on the design of C (as in traditional control theory
and engineering) one could equally well focus on
adjustment of P, e.g. via parameter changes, or
on both. This view on management and control
of environmental systems can also be seen as an
extension of the ideas on process design under
feedback control via optimization, as initiated by
e.g. Grossmann and Sargent (1978). Backward
uncertainty propagation (Abusam et al. (2003)),
where specific characteristics of an output prob-
ability density function, as for instance its tails,
are related to regions in the parameter space, is
another approach which shows links with the con-
tents of this paper. As opposed to the previous two
ideas, in our framework, however, the parameters
are allowed to vary with time.

In conclusion, projective modeling opens the pos-
sibility to explore the effects, in terms of internal
system changes, of user-defined, expected system
outputs. In the next section this idea will be
first illustrated on a real-world lake restoration

Fig. 4
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. Total phosphorus concentration in Lake
eluwe 1978-1980.

ple and finally worked out in more detail on
ple reservoir management example.

3. RESERVOIR MANAGEMENT
EXAMPLES

ake restoration

ake eutrophication problem in The Nether-
(see Keesman and van Straten, 1989; van
n and Keesman, 1991) will be used here as
ample of projective modeling. However, in
irness, we have to admit that at that time
roblem was approached from the opposite.
s first follow the steps taken in that study
hen apply a reverse way of reasoning. In
udy the effective flushing strategy (Hosper
eyer (1986)) had already been implemented.
ltimate goal of the restoration program was
it the amount of phosphorus in one of the
up to a specific norm (approx. 300 mg/m3).
nsitivity analysis and prior knowledge of the
ng strategy it was found that a reduction
background concentration of phosphorus in
diment (represented by a single model para-
β) to 25% of its original value in November

gave rather good predictions, see Fig. 5.



Let us now reverse the reasoning and start from
the situation where we have to find appropri-
ate control strategies. After defining the desired
maximum phosphorus level, while remaining the
periodicity of the phosphorus concentration, tech-
niques to calculate the dominant parameter tra-
jectories can be used. When it appears that (i)
β is a dominant parameter, and (ii) a jump in
β(t) suffices to reach the desired goal, we have to
start thinking on the real implementation. One
of the options is flushing, but dredging could be
another option to reduce the concentration of
phosphorus in the sediment. In the next step,
when it appeared that reduction of the back-
ground phosphate concentration in the sediment
via flushing is most effective in reaching the goal, a
(weekly/monthly) flushing strategy has to be de-
veloped such that the background concentration
in the sediment is reduced accordingly. Hence, a
type of cascade control results, where β is deter-
mined in the primary loop and the inflow of fresh
water in the secondary loop (see Keesman (2002)).

In the next subsection the focus is on the calcula-
tion and physical interpretation of the appropriate
dominant parameter trajectories.

3.2 Reservoir capacity management

Consider a reservoir with volume V and area A.
Furthermore, the outflow is proportional with the
height (h = V/A), so that the following LTI state-
space model, describing the inflows and outflows,
may result,

dh

dt
=−Kh +

u

A
(3)

y = Kh (4)

The input-output model, using the Euler forward
difference method, in discrete-time is given by

yk = (1 − KT )yk−1 +
KT

A
uk−1 (5)

Let K = Ko = 0.5 d−1, A = Ao = 25 km2,
y(0) = 5 md−1 and sample time T = 0.1 d.
Define the desired output r(t) as given by Fig. 6,
where a sudden internal system change occurs at
t = 20 d and let u(t) = 106 m3d−1, a constant
inflow to the reservoir. Let us further explain
the choice of r(t). In Fig. 6, for t ∈ [0, 20], r(t)
is a model response with parameters estimated
from available experimental data, while for t >
20 r(t) is exact and pre-specified by the user.
Alternatively, for t ∈ [0, 20], the corresponding
experimental data could have been used, but
here we have chosen to utilize a smooth r(t)
to emphasize the effects of an internal system
change.

Fig. 6
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at follows, given the reference signal r and
signal u, model predictive control (MPC) as
s recursive parameter estimation methods
ed to find trajectories of K and A such that
r(t) for almost all t.

MPC design In MPC design, without
weighting, the objective function to be min-
is usually given by

J =
∑
i∈P

[
rk+i/k − yk+i/k

]2 (6)

P the set of indices i which correspond
incidence points, in our case the sample

of r(t). Let us start, in addition to (5),
aluating the next model predictions, i.e. for

/k = (1 − KkT )yk +
KkT

A
uk (7)

/k = (1 − Kk+1T )yk+1 +
Kk+1T

A
uk+1

...

i/k = yk

i∏
n=1

(1 − Kk+i−nT ) + · · ·

+ uk

i−1∏
n=1

(1 − Kk+i−nT )
KkT

A
+ · · ·

+ uk+1

i−2∏
n=1

(1 − Kk+i−nT )
Kk+1T

A
+ · · ·

e that, as result of our choice to view K as a
l input, bilinear terms result. Consequently,
ly it appears that a non-linear program
o be solved. However, if we consider each
dual prediction step separately with yk = rk

k unbounded, then for this deterministic
input case a direct inversion approach is

priate. Its solution with A = Ao is given by:
= 0.5, 0 ≤ t < 20 and K(t) = 1.0, t ≥ 20. If,
contrary, we choose as control input α = 1

A ,
he following predictions are obtained.
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Fig. 7. Optimal inputs α(t) and A(t).

yk+1/k = (1 − KT )yk + KTukαk (8)

yk+2/k = (1 − KT )yk+1 + KTuk+1αk+1

...

yk+i/k = (1 − KT )iyk + · · ·
+ (1 − KT )i−1KTukαk + · · ·
+ (1 − KT )KTuk+i−2αk+i−2 + · · ·
+ KTuk+i−1αk+i−1

After some elementary algebraic manipulations,
(8) can be written as a linear regression where its
solution (see Fig. 7) can be easily found by Gauss
elimination.

3.2.2. Recursive parameter estimation Alterna-
tively, either K or A, or both, can be calculated
using recursive estimation techniques. For the re-
construction of K(t) from the pre-defined output
data (Fig. 6), we define the state-space model

Kk+1 = Kk + wk (9)

yk+1 − yk =
[
−Tyk +

Tuk

A

]
Kk + vk (10)

where vk and wk originate from zero mean white
noise processes with (constant) covariance matri-
ces Q and R. In what follows Q = 1, which allows
sufficient parameter variations, and R = 0.001 to
express the presence of some model structure error
due to e.g. errors in some of the other parameter
values or approximate modeling errors. Hence, in
the reconstruction of the parameter trajectories
these errors must be taken into account. Fig. 8
shows the estimation results of K for three differ-
ent cases: A < Ao, A = Ao, A > Ao. Notice then
that for A = Ao similar results are found as in
the MPC design case. For further interpretation
of this result we note that for these choices of Q
and R, Q � R and thus: limk→∞ Pk+1/k → Q and
limk→∞ Pk/k → R, where Pk+1/k is the covariance
matrix related to the predicted states and Pk/k

the covariance matrix related to the corrected
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. Under these noise assumptions analytical
ons to this estimation problem can also be
, but due to space limitations these are not
here. A possible physical explanation of the

tory of K is that due to leakage (e.g. as a
of future erosion) extra water is extracted

the reservoir for t > 20 d. In other words, we
find changes in physical sub-processes that
presented by this single parameter in order
ther understand the system’s behavior under
rmal conditions.

e reconstruction of α(t) from the pre-defined
t data (Fig. 6), we define

αk+1 = αk + wk (11)

yk+1 − (1 − KT )yk = KTukαk + vk (12)

, Q = 1 and R = 0.001. The results for dif-
values of K are presented in Fig. 9. Notice

Fig. 9 that for some K negative values of
ult, so that Ak shows some singular points.

ly, in these cases a physical interpretation of
ot allowed. However, if we interpret α as a
arying control input weight, then a negative
of α indicates that extra water should be
from the reservoir, for instance by pumps,
er to meet the desired output. If, however,
0.98: α̂k ≥ 0 ∀k ≥ 0. In these cases positive
result, which implies a reservoir equipped
oving barriers, as in e.g lake IJsselmeer in
etherlands.

estimation results of both K and A are
in Fig. 10. From Fig. 10 we notice that

ematic error in K̂ appears (K̂ = 0.75, while
1 for t ≥ 20). To compensate this, negative
of α appear in the period t ∈ [20, 40], which
s extra extraction of water.

DISCUSSION AND CONCLUSIONS

ly, other scenarios can be evaluated, as for
ce a sudden jump in the outflow lead-

o a sudden reduction of the estimates of
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K or A. Apart from the determination of the
most dominant (identifiable) parameter(s) and
the reconstruction of the parameter trajecto-
ries, in practice the crucial step remains the
(bio)physical/chemical interpretation of the esti-
mation results.

The following concluding remarks can be made:

• the interpretation of parameters as agents for
control is very valuable in modeling future
system changes.

• recursive estimation techniques provide a
tool to reconstruct parameter trajectories
from predefined future output behavior.

• in the projective modeling context the view
of parameters representing underlying sub-
processes helps to find new control strategies
or ”unexpected” system disturbances

• future research will focus on projective mod-
eling under uncertainty.
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