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Abstract 

The MEdium Resolution Imaging Spectrometer (MERIS) satellite data of 16th April, 

14th July, 2003 and the combined image created by layer stacking the images of these 

two dates were used to produce land cover maps of the major land cover types present 

in the Netherlands. Classification accuracy for the single dates and the multitemporal 

MERIS image were compared using testing dataset collected from the aggregated 

Dutch land use database (LGN4) as a reference. To do the land cover classifications 

different classification methods were used: maximum likelihood (MLH), minimum 

distance to mean (MDM) and decision tree (DT). The latter classification method was 

performed using CART (Classification and Regression Tree) software. The 

classification accuracy achieved with these classifiers are presented and compared in 

this study. Finally, the effects of the training dataset size, the splitting criterion, and 

the data dimensionality on the decision tree classifier were also examined. 

The overall classification accuracy achieved by the MLH and DT classifiers for the 

April image (69.76% and 68.56%, respectively) and for the combined image (70.96% 

and 70.84%, respectively) were almost the same. The accuracy obtained by the MLH 

classifier for the July image (71.11%) was higher than for the DT classifier (67.13%). 

The classification accuracies of the MDM for all the images were smaller than for 

both MLH and DT classifiers. The multitemporal classification by the DT and MDM 

classifiers were better than monotemporal classification with the same classifiers. The 

results indicate that classification accuracy of the DT increases with the training 

dataset increase up to a certain point. The splitting rule, Gini, offered the best overall 

classification accuracies in all the training dataset sizes. In this study, the data 

dimensionality has no effect on DT classifier. The study also indicates the ability of 

the CART model of the DT classifier to weight the importance of the discriminating 

variables in classification, thereby ignored redundant variables.  

 

Keywords: MERIS, CART, MLH, DT, MDM, Land cover classification, 

Multitemporal, Remote sensing 
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MERIS                  MEdium Resolution Imaging Spectrometer 
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DT Decision tree 
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LGN Dutch land use database 

TOA Top of atmosphere 

NIR Near infrared 

ENVISAT ENVIronment SATellite 

FR Full resolution 

RR Reduced resolution 

RD Dutch national coordinate system 

MODIS Moderate Resolution Imaging Spectroradiometer 

CORINE Coordination of information on the environment 

TM Thematic mapper 

NOAA National Oceanic and Atmospheric Administration 

AVHRR Advanced Very High Resolution Radiometer 

 

 

 
 
 
 
 

 

 
 

 

 
 
 



 VII 

 
 
Table of contents 
 
Acknowledgments........................................................................................................IV 

Abstract .........................................................................................................................V 

Abbreviations ...............................................................................................................VI 

List of figures ...............................................................................................................IX 

List of tables..................................................................................................................X 

1. Introduction................................................................................................................1 

1.1 Background ..........................................................................................................1 

1.2 Problem definition ...............................................................................................3 

1.3 Research objectives..............................................................................................3 

1.4 Detailed objectives...............................................................................................3 

1.5 Thesis outline .......................................................................................................4 

2  Literature review........................................................................................................5 

2.1 Land cover classification and remote sensing .....................................................5 

2.2 Multitemporal image classifications ....................................................................5 

2.3 Classification methods .........................................................................................6 

2.3.1 Decision tree classifiers ................................................................................6 

2.3.1.1 Univariate decision tree.............................................................................9 

2.3.1.2 Multivariate decision tree ..........................................................................9 

2.3.1.3 Hybrid decision tree.................................................................................10 

2.3.2 Maximum likelihood classifier ...................................................................10 

2.3.3 Minimum Distance to Mean classifier ........................................................11 

3 Material and Methodology........................................................................................13 

3.1 Study area...........................................................................................................13 

3.2 Data description .................................................................................................13 

3.2.1 Main input data: MERIS data .....................................................................13 

3.2.2 Reference data: LGN4 Database.................................................................15 

3.3 Research methodology.......................................................................................16 

3.3.1 Data pre-processing ....................................................................................18 

3.3.2 Training and testing areas ...........................................................................18 

3.3.3 Land cover classes used for the study.........................................................19 



 VIII 

3.3.4 Multitemporal analysis of the MERIS image .............................................18 

3.3.5 Classification...............................................................................................18 

3.3.6 Overview of CART 5 model.......................................................................20 

3.3.7 Application of CART for DT classifier ......................................................21 

3.3.8 Classification accuracy assessment.............................................................24 

4 Result and discussion................................................................................................26 

4.1 Spectral signatures analysis ...............................................................................26 

4.2 Classification results of MLH classifier ............................................................29 

4.3 Classification results of MDM classifier ...........................................................34 

4.4 Classification results of DT classifier ................................................................38 

4.4.1 Effect of training dataset size and splitting rule..........................................39 

4.4.2 Dimensionality of the feature space............................................................40 

4.4.3 Final Decision Tree classification...............................................................42 

4.5 Comparison among different classifiers ............................................................46 

5. Conclusion and Recommendation ...........................................................................47 

5.1 Conclusion .........................................................................................................47 

5.2 Recommendation ...............................................................................................48 

6. References................................................................................................................49 

7. Appendices...............................................................................................................52 

 

 

 

 

 

 

 

 

 

 

 



 IX 

List of figures 

Figure 1. General Structure of a data mining decision tree ...........................................8 

Figure 2. The minimum distance to means classification strategy ..............................11 

Figure 3. The study area (The Netherlands) ................................................................12 

Figure 4. Overview of the main procedure involved in the methodological process. .16 

Figure 5. Building a classification tree: Finding a balance between overfitting the  

               training data set and underfitting the test data set……………………….... 22 

Figure 6. Spectral signature for main land covers of April 16, 2003 MERIS image...27 

Figure 7. Spectral signature for main land covers of July 14, 2003 MERIS image ....28 

Figure 8. Classified land cover using MLH: April, July and the combined MERIS  

               images with reference to LGN4....................................................................33 

Figure 9. Classified land cover using MDM: April, July and the combined MERIS  

               images with reference to LGN4....................................................................37 

Figure 10. Decision tree generated by the CART model for the combined MERIS  

                 image...........................................................................................................38 

Figure 11. Variation of classification accuracy with increasing number of training size  

                 and different splitting rules using decision tree classifier on April 16, 2003,  

                 MERIS image..............................................................................................40 

Figure 12. Classification accuracies using the combined MERIS image with fixed  

                  training set and increasing number of features. .........................................41 

Figure 13. Classified land cover using DT: April, July and the combined MERIS  

                 images with reference to LGN4..................................................................45 

 

 

 

 

 

 

 

 

 

 
 
 



 X 

List of tables 

Table 1. General characteristics of MERIS .................................................................13 

Table 2. The spectral bands of the MERIS images of April 16, and July 14, 2003 ....14 

Table 3. Main land cover types in the Netherlands derived from LGN4. ...................15 

Table 4. Different training set sizes used to study their effect on classification  

              accuracy of the DT classifier. ........................................................................23 

Table 5. Information contributed to combined MERIS image by different bands based  

              on the first four principal components. ..........................................................24 

Table 6. Accuracy assessment of April 16, 2003, MERIS image by MLH classifier .29 

Table 7. Accuracy assessment of July 14, 2003, MERIS image by MLH classifier ...29 

Table 8. Accuracy assessment of combined MERIS images by MLH classifier ........30 

Table 9. Accuracy assessment of April 16, 2003, MERIS image by MDM classifier 34 

Table 10. Accuracy assessment of July 14, 2003, MERIS image by MDM classifier 34 

Table 11. Accuracy assessment of combined MERIS images by MDM classifier .....35 

Table 12. Accuracy assessment of April 16, 2003, MERIS image by DT classifier...42 

Table 13. Accuracy assessment of July 14, 2003, MERIS image by DT classifier.....42 

Table 14. Accuracy assessment of combined MERIS images by DT classifier ..........43 

Table 15. Comparison of MLH, MDM, and DT classifiers using overall classification  

                accuracy using validation dataset.................................................................46 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

1. Introduction 

1.1 Background 
 
Land cover classification and monitoring using remotely sensed images have been 

widely applied for its effectiveness in time, labor and cost; particularly for studies at 

regional scales (Defries and Chan, 2000; Mucher et al., 2000). Various remotely 

sensed data ranging from high to low spatial resolution are used for land cover/change 

studies. Medium spatial resolution sensors, which have a pixel size about 250 – 300 

meter, are appropriate for mapping of large areas since not too many images are 

needed and the images are not too coarse (Verstraete et al., 1999). 

With increasing frequency, remotely sensed data sets have been used to classify land 

cover for monitoring large areas such as Europe (Clevers et al., 2003; Hansen et al., 

2000). Earlier land cover mapping was based on the visual interpretation of Landsat-

TM and SPOT-XS hard copies at a landscape level in the CORINE land cover project 

by producing an ecological legend (Bossard et al., 2000). Besides this, digital 

classification of the same kind of images is also used to map agricultural land cover at 

national level (Thunnissen et al., 1992; Fuller et al., 2002). Even though both 

approaches are well known, they use high spatial resolution images that make them 

too expensive and very time consuming for application at the European scale (Clevers 

et al., 2003). 

Other approaches of land cover mapping are the use of coarse spatial resolution 

sensors such as the NOAA_AVHRR (Friedl et al., 1999; Mucher et al., 2000). 

However, according to Clevers et al. (2003) the use of coarse scale AVHRR imagery 

is limited for monitoring purposes due to the fine scale at which most land cover 

changes take place in Europe.  

Medium spatial resolution images like the one from MERIS and MODIS can bridge 

the gap between high and low spatial resolution sensors for multiscale land cover 

assessment (Addink, 2001). MERIS pixel area is more than ten times smaller than an 

AVHRR pixel. That means more detailed information can be obtained from MERIS 

imagery. 

As shown by Verstraete et al. (1999), the MERIS spatial resolution of 300m (full 

resolution) is sufficient to monitor heterogeneous land cover at continental and global 

scales. 
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Therefore, MERIS could be an interesting sensor for land cover mapping at regional 

scale. This study will illustrate the use of MERIS level 1b full resolution images for 

multitemporal land cover classification in the Netherlands. Land cover mapping using 

remotely sensed images is based on the classification of individual pixels or groups of 

pixels with similar spectral responses or spectral signatures (Zhan, 2003). Ideally, 

pixels are expected to be more or less grouped in the multispectral space in clusters 

corresponding to different land cover types (Keuchel et al., 2003). In remote sensing 

literatures there are different classification algorithms being used to group pixels into 

similar categories. One of these algorithms is the maximum likelihood (MLH) 

classifier, which is the most common technique presented in the literature (Erbek et 

al., 2004; Foody et al., 1992). The MLH was selected as a conventional classifier to 

perform multitemporal land cover mapping. The MLH approach has the limitation of 

assuming that the members of each class follow a Gaussian frequency distribution in 

the feature space and this is sometimes not fully true with remotely sensed data. The 

minimum distance to mean (MDM) classifier was also selected as another 

conventional classifier. The decision tree (DT) classifier, which is not yet tested with 

MERIS data, was chosen as an alternative to the traditional land cover classification 

methods. Unlike the MLH and MDM, decision trees are strictly non-parametric and 

do not require assumptions regarding the normal distribution of the input data. In 

addition, they have the ability to handle non-linear relationships between features and 

classes. They can also accept a wide variety of input data including non-remotely 

sensed ancillary data in the form of continuous and /or categorical variables. In 

contrast to neural networks, decision trees can be trained quickly, and are rapid in 

their execution. The analyst can easily interpret a decision tree. It is not a ‘black box’, 

like the neural networks, the hidden working groups of which are concealed from 

view (Pal and Mather, 2003; Friedl and Brodley, 1997).                                                 

The study also involves a comparison among (MLH), (MDM) (both are parametric 

methods) and (DT) (non-parametric methods) classifiers. The last classifier can be 

performed with the CART (Classification and Regression Tree) analysis software. 

Overviews of all the classifiers are given in chapter 2. A more detailed description of 

the objectives and purpose of this thesis can be found in the following section. 
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1.2 Problem definition  
 
Preliminary classification of land cover at national scale using a single MERIS image 

gave promising results. However, some classes could not be well distinguished 

(Clevers et al., 2003). The spectral reflectance of vegetation changes with seasons, 

and it is also different for each vegetation type (Mucher et al., 2000). Different 

vegetation types often show similar spectral responses within a single image at one 

moment. Because of this spectral similarity, it is difficult to separate them. In general 

there is a significant temporal variation in the reflectance of the same object by plant 

growth (Yang et al., 2003). As a result the use of more than one image becomes 

crucial to get a proper land cover classification. 

1.3 Research objectives 
 
The general objective of this research is to study the advantage of multitemporal land 

cover classification by using full resolution MERIS images. 

1.4 Detailed objectives 
 

• To classify full resolution MERIS images using “Classical” classifiers like 

MLH and MDM 

• To classify full resolution MERIS images using Decision Tree (DT) classifiers  

• To study the effect of training size, data dimensionality, and splitting rules on 

the performance of a decision tree classifier algorithm 

• To compare the classification accuracies between monotemporal and 

multitemporal full resolution MERIS images  

• To compare the classification accuracies among MLH, MDM and DT 

classifiers 

• To study which classes have high separablity 
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1.5 Thesis outline 
 
The organization of this report is as follow: 
 
Chapter 1 gives the introduction to the main subject, the problem definition, the main 

objective and the detail objectives of the thesis. 

 
Chapter 2 reviews the most relevant literature related to the classifiers used in this 

study. 

 

Chapter 3 explains the methodological aspects of this study. 

 

Chapter 4 illustrates the results obtained from the analysis of data and discussion of 

the results. 

 

Chapter 5 includes conclusions obtained from the results and recommendations. 
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2 Literature review  

2.1 Land cover classification and remote sensing  
 
The effective management and use of land resources requires knowledge of the 

properties and spatial distribution of these resources. The rapid evolution and 

increasing number of applications of remote sensing methods in the last 20 years have 

shown that such methods are becoming more widely accepted for resource survey, 

especially for the observation of land cover (Pal and Mather, 2003). 

Land cover, i.e. the composition and characteristics of the land surface element, 

(Cihlar, 2000) is a fundamental environmental information. It is an important 

determinant of land use and thus of the value of that land to the society. Land cover 

mapping and classification is a product of the development of remote sensing. This is 

because ‘viewing’ large areas repeatedly is necessary for acquiring information about 

land cover. For the same reason, land cover mapping has been perhaps the most 

widely studied problem employing satellite data (Cihlar, 2000). 

Multispectral and multitemporal properties of remotely sensed data are of great 

importance for land cover classification. Accurate classification of land cover from 

remotely sensed data is essential information for agricultural and forest monitoring, 

ecological monitoring of vegetation communities, land cover change detection, 

resource management and planning, and policy purposes (Brown et al., 2003). 

A considerable body of work related to classification of land use/land cover categories 

using remotely sensed data is reported in the literature (e.g., Cihlar, 2000; Loveland 

and Belward, 1997; Mucher et al., 2000). 

2.2 Multitemporal image classifications 
 
A monotemporal image analysis, which relies on one image obtained at a single point 

in time, is usually used for classification of different vegetation types. However, 

sometimes it does not work well for classification of vegetation species types which 

show similar spectral signatures at that date (Paxlenney and Woodcock, 1997). 

Therefore, the use of multitemporal images can help to improve the classification 

accuracy of very similar vegetation types. Classification of landscapes characterized 

by a seasonal variation of vegetation features such as deciduous forests and 
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agricultural fields show improved accuracy when obtained from multidate imagery 

compared to single date imagery (Mucher et al., 2000). 

Oetter et al. (2000) found that multitemporal data sets consisting of different dates 

from a single year provide significant improvements in accuracy of vegetation 

classification. In addition to this, classification accuracy is significantly improved by 

using multiseasonal imagery (Jeon and Landgrebe, 1999). 

2.3 Classification methods 
           

Different types of classifiers have been used for land cover mapping over large areas. 

Techniques range from unsupervised clustering and parametric supervised algorithms 

(like maximum likelihood) to non parametric and machine learning algorithms such as 

decision tree classifier and neural network (e.g. Loveland and Belward, 1997; Defries 

and Townshend, 1994; Hansen et al., 2000; Brown et al., 2003; Erbek et al., 2004) can 

be mentioned.  

Generally classification procedures can be divided into two main broad categories 

based on the method used: Supervised and unsupervised classification.  

The decision tree, maximum likelihood, and minimum distance to mean classifiers are 

supervised classification methods that were used in this study for classification. A 

brief summary of the properties of each classifier is given in this section. 

2.3.1 Decision tree classifiers 
 
Decision tree classifiers have not been as widely used within the remote sensing 

community as either the statistical or the neural methods (Pal and Mather, 2003) since 

it is a relatively new technique, which was developed about 20 years ago (Breiman et 

al., 1984). Recently, decision trees are increasingly being used for the analysis and 

classification of remotely sensed digital imagery particularly with regard to land cover 

classification at continental to global scales. DT has been used successfully for 

classification of multispectral (Friedl and Brodley, 1997; Hansen et al., 1996) and 

hyperspectral imagery (Lawrence and Labus, 2003). In addition, ancillary data can be 

added to the DT classification procedure to increase the final accuracy (Lawrence and 

Wright, 2001), and DT can also be used for change detection analysis (Rogan et al., 

2003).  
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A decision tree is defined as a classification procedure that recursively partitions a 

data set into smaller subdivisions on the basis of a set of tests defined at each branch 

in the tree (Friedl and Brodley, 1997). Unlike conventional statistical and 

neural/connectionist classifiers which use all available features simultaneously and 

make a single membership decision for each pixel, the decision tree uses a multi-stage 

or sequential approach to the problem of label assignment. The labeling process is 

considered to be a chain of simple decisions based on the results of sequential tests 

rather than a single, complex decision. Sets of decision sequences form the branches 

of the decision tree, with tests being applied at the nodes (Pal and Mather, 2003). The 

node containing all of the data before any splitting is called the root node. A node 

from which the data can be split again is called a mother node. In all other cases, 

subsets are known as terminal (leave) nodes, and the subsequent split nodes are 

termed child nodes (Figure 1). Each node in a decision tree has only one mother node 

and two or more descendent nodes. 
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Figure 1. General Structure of a data mining decision tree 
 
 
Figure 1 shows the general architecture of a DT model. The decision tree starts from 

the root node and applies the condition (A) to split the input data. If the input data, in 

the condition (A), is larger than the threshold (X), it is classified to node 1; otherwise, 

the input data is classified to node 2. For example, if the reflectance of waveband (A) 

in the remote sensing data is larger than the split point (X), the data is assigned to 1; 

otherwise to node 2. Then, if the reflectance of waveband (B) in the data at node 2 is 

less than or equal to the split point (Y), the data is assigned to node 3; otherwise to 

node 4. This procedure is repeated until all input data have been assigned to one of the 

target categories (output) (Yang et al., 2003). 

More commonly, the splits defined at each internal node of a decision tree are 

estimated from training data. The techniques used for this work are called learning 
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algorithms. They require high-quality training data from which relations among the 

features and classes present within the data are “learned”. Therefore, a set of training 

samples representative of the population to be classified must be available to construct 

an accurate decision tree (Friedl and Brodley, 1997). The decision tree classification 

algorithms can be distinguished according to whether a uniform or a heterogeneous 

set of algorithms is used to estimate the splits at internal nodes. Such algorithms are 

described as having homogeneous or heterogeneous hypothesis spaces, respectively. 

Univariate and multivariate decision trees are considered as homogeneous decision 

trees while a hybrid decision tree is a heterogeneous decision tree.   

2.3.1.1 Univariate decision tree 
 
In a univariate decision tree, the decision boundaries at each node of the tree are 

defined by the result of a test applied to a single feature that is evaluated at each 

internal node (Swain and Hauska, 1977). On the basis of the test outcome, the data are 

split into two or more subsets. Each test is required to have a discrete number of 

outcomes. A univariate decision tree classification proceeds by recursively 

partitioning the input data until a leaf node is reached, and the class label agreed with 

the leaf node is assigned to the observation. The value of the decision boundaries in a 

univariate decision tree are estimated empirically from the training data. In the case of 

continuous data, a test of the form Y1 > C is performed at each internal node of the 

decision tree, where Y1 is the feature in data space and C is a threshold estimated from 

the observed feature Y1. The value of C is estimated by using some objective measure 

that maximizes the dissimilarity or minimizes the similarity of the descendant nodes, 

using one feature at a time. As each test in a univariate decision tree is based on a 

single feature, it is restricted to a split through the feature space that is orthogonal to 

the axis representing the selected feature (Pal and Mather, 2003; Friedl and Brodley, 

1997). For this study the univariate decision tree was used because of the availability 

of the software.  

2.3.1.2 Multivariate decision tree 
 
Multivariate decision trees are similar to univariate decision trees, but the splitting test 

at each node may be used on more than one feature of the input data. Specifically, a 

set of linear discriminant functions are estimated at each interior node of a 
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multivariate decision tree, where the coefficients for the linear discriminant function 

at each node are estimated from training data (Friedl and Brodley, 1997). The splitting 

test at each has the form cxa ii
n

i
≤�

=1
, where xi represents a vector of measurements 

on the n selected features, �� is a vector of coefficients of a linear discriminant 

function, and c is a threshold value.      

2.3.1.3 Hybrid decision tree 
 
A hybrid decision tree is a decision tree where different classification algorithms may 

be used in different subtrees of a large tree. The learning algorithms used to estimate a 

hybrid tree allow different splitting methods to be applied within different subtrees of 

larger decision trees (Friedl and Brodley, 1997).   

2.3.2 Maximum likelihood classifier   
 
The maximum likelihood (MLH) classifier is based on the assumption that the 

members of each class are normally distributed in the feature space. The MLH 

classifier is a pixel based method and can be defined as follows:  

A pixel with an associated observed feature vector X is assigned to class Cj of N 

classes if   

X � Cj if h j (X) > hk (X) 
For all j � k, with j, k = 1,…,N. 

For a multivariate Gaussian distributions hk (X) is given by: 

hk (X) = ln (p(Cj)) – 1/2ln ��k�– 1/2(X – Mk)t �k 
-1

(X– Mk), 

Where Mk  and  �k  are the sample mean vector and sample covariance matrix for class 

k , and hk , the discriminating function. 

Implementing the MLH classifier involves the estimation of class mean vectors (Mk) 

and covariance matrices (�k) from a training dataset chosen from known examples of 

each particular class. MLH evaluates the variance and the covariance of the trained 

spectral response patterns when classifying an unknown pixel. Based on this value, 

the MLH classifier evaluates the membership probability of an unknown pixel for 

class j. The pixel is assigned to the class for which it has the highest membership 

probability value (Lillesand and Kiefer, 2000).  
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2.3.3 Minimum Distance to Mean classifier  
 
The minimum distance to mean (MDM) classifier calculates the mean spectral value 

in each band and for each category, and relates each mean value by a vector function. 

MDM classifier computes the distance between the value of a pixel of unknown 

identity and each category mean in the feature space to assign the unknown pixel to 

the closest class. It is mathematically simple and computationally efficient, but it has 

certain limitations. Most importantly, it is insensitive to a different variance in the 

spectral response data. Because of such problems, it is not widely used in applications 

where spectral classes are close to one another in the measurement space and have 

high variance (Lillesand and Kiefer, 2000).  

In a minimum distance to mean classifier, suppose we have nc known class centers 

C = {C1, C2, …, Cnc}, Ci, i = 1, 2, …, nc is the grey-level vector for class i. 

 

Ci =
{ }
{ } form  ereflectanc spectralin       ,...,2,1

formnumber  digitalin        ,...,2,1
Tinbririr

TinbDNiDNiDN
 

In a general form, an arbitrary pixel with grey-level vector g = (g1, g2, …, gnc), is 

classified as Ci if  

d(Ci, g) = min (d(Ci1,g1), d(Ci2,g2),…, d(Cinc,gnc)) where d is distance. 
 
As an example, we show a special case in Figure 2 where we have 3 classes (nc = 3)  

and two spectral bands (nb = 2) 

 
 
 
 
 
 
 
 
 
 
Figure 2.The minimum distance to means classification strategy 
 
 
If we have a pixel with a grey-level vector located in the B1-B2 space shown as A (an 

empty dot) it is possible to determine to which class it should belong by calculating 

the distance between A and each of the centers. A is assigned to the class whose 

center has the shortest distance to A.   

C3  

� 

� 

 0    

Pixel value with unknown class    

C1    

C2    

A   

B2    

B1    
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3 Material and Methodology 

3.1 Study area 
 
The study area covers the whole of the Netherlands. The Netherlands is located in 

Western Europe bordering the North Sea, between Belgium and Germany. It is 

geographically located at about 520 30’N latitude and 50 45’E longitude. The area 

coverage of the study area is about 41,526 km2, in which water and land occupy about 

7643 km2 and 33,883 km2, respectively (URL 1)  

                                
 
  

                                         
                                         Figure 3. The study area (The Netherlands) 

THE  NETHERLANDS 
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3.2 Data description 

3.2.1 Main input data: MERIS data 
 
The MEdium Resolution Imaging Spectrometer (MERIS) is one of the main payload 

components of the European polar platform ENVISAT-1 system that was launched in 

March 2002. MERIS is a 68.50 field-of-view push-broom imaging spectrometer that 

measures the solar radiation reflected by the Earth, at ground spatial resolution of 

300m (Full Resolution) and 1200m (Reduced Resolution). MERIS is a 15 band 

programmable imaging spectrometer, which allows for change in band position and 

bandwidths throughout its lifetime. It is designed to acquire data at variable 

bandwidth of 3.7 to 20nm over the spectral range of 390 – 1040nm. MERIS data will 

be provided at 3 different levels of processing, namely Level 0, Level 1, and Level 2 

(URL 2). Table 1 shows the general characteristics of MERIS. 

MERIS products will be available at two spatial resolutions: Full Resolution (FR) 

with a resolution at subsatellite point of 300 meter and Reduced Resolution (RR) with 

a resolution at subsatellite point of 1200 meter. In this study a Full Resolution (FR) 

MERIS level 1b data set for The Netherlands was used. Two cloud free MERIS 

images which were acquired on April 16, and July 14, 2003 were used for this study. 

The data included geocoded top-of-atmosphere (TOA) radiances (Wsr-1m-2 µm-1). The 

specification of the MERIS spectral channels of the two images are given in table 2. 

 
Table 1. General characteristics of MERIS  

              

  

 

 

 

 

 

 

Scenes  

dimension Altitude 

Field-of-

view 

Global  

coverage Scanning 

Spatial  

Resolution 

Spectral 

band 

range(nm) 

Swath 

width 

575 km(FR) 

1150 km(RR) 
800 km 68.50 3 days 

CCD 

arrays 

300m (RR) 

1200m (FR) 
390 -1040 1150 km 
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Table 2. The spectral bands of the MERIS images of April 16, and July 14, 2003 
 

3.2.2 Reference data: LGN4 Database 

The Dutch land use database (LGN) is a geographical database that describes the land 

use in the Netherlands. It has a grid structure with 25 meters cell size; the scale is 

about 1:50,000. The nomenclature of the LGN4 database contains 39 classes covering 

urban areas, water, forest, various agricultural crops and ecological classes. LGN is 

created for an important part on the base of satellite imagery, but also other data is 

integrated into the database. Currently 4 versions exist (LGN1 - LGN4) which span a 

time period of 1986 to 2000. For this study LGN4 was used as reference data for 

validation. The overall classification accuracy of LGN4 is 85-90% (URL 3). The 39 

classes of LGN4 were recoded to nine main land cover classes (Appendix B-table I) 

and the grids were aggregated to 300 meters by assigning the most frequently 

occurring class as label. Thus, the aggregated LGN4 was used as reference data 

(Table 3). 

 

 

 

Band No. Band center(nm) Band width(nm) 
1 412.5 9.9 
2 442.4 9.9 
3 489.7 10 
4 509.7 10 
5 559.6 10 
6 619.6 10 
7 664.6 10 
8 680.9 7.5 
9 708.4 10 

10 753.5 7.5 
11 761.6 3.7 
12 778.5 15 
13 864.8 20 
14 884.8 10 
15 899.8 10 
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Land cover Total area (%) Class value 

Grassland 37.7 1 

Arable land 24.3 2 

Water 18.2 6 

Built up area 9.3 7 

Coniferous forest 4.8 5 

Natural vegetation 1.7 9 

Deciduous forest 3.0 4 

Greenhouse 0.3 3 

Bare soil 0.6 8 

  
 Table 3. Main land cover types in the Netherlands derived from LGN4. 
 

3.3 Research methodology 
 
The methodology used in this research involves four main steps. 

The first step comprises pre-processing of the data set and preparation of training and 

testing areas. 

The second step deals with supervised classification by maximum likelihood and 

minimum distance to mean classification for mono and multitemporal classification 

The third step deals with preparation of input data for the implementation of CART 

analysis to study the effect of training size, data dimensionality, and splitting rule on 

classification accuracy of the decision tree classifier. 

The fourth step deals with accuracy assessment and validation of classified images to 

draw conclusions for all the classifiers used. 

The overall scheme of the whole methodology is illustrated in figure 4. 
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Classified land cover by MLH Classified land cover by MDM 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Figure 4. Overview of the main procedure involved in the methodological process.  
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3.3.1 Data pre-processing 
 
After the two MERIS full resolution images (in ENVI 4.0 format) of the Netherlands 

were obtained, they were imported to Erdas Imagine 8.7 using the import function for 

further analysis. The images were already geo-referenced to the Dutch national 

coordinate system (RD). Masking was applied to have a data set covering the study 

area. Finally, the geocoded TOA radiances were multiplied by 10 to allow the 

inversion during classification by the MLH classifier. 

3.3.2 Training and testing areas 
 
Training and testing samples were delineated on the image by using the LGN4. They 

are used as learning (i.e. training site) paradigm for the classification of images and 

for the accuracy assessment (i.e. testing site) of classification (Lillesand and Kiefer, 

2000). Both sites were selected in a random way, and at the same time keeping the 

spatial distribution of the classes over the whole study area. 

For parametric classifiers that involve the estimation of statistical parameters, an 

important requirement is that the number of pixels included in the training data set for 

each class should be at least 10–30 times the number of features (Mather, 1999). 

Accordingly, four different training sets were tested and the best one, 9272 training 

pixels, was delineated on the image with reference to the aggregated LGN4 data 

(Appendix F-figure I).  

Congalton and Green (1999) presented a method for estimating the sample size of the 

testing set for the accuracy assessment of classification results. The sample size n is 

derived from the relationship: 

n = B IIi (1-IIi)/bi
2  

Where,     n = Minimum number of pixels in testing data            

                B = the upper (�/k) x 100th percentile of the chi-square distribution with one  

                      degree of freedom 

                k = number of classes 

                �  = required confidence level 

                bi = the required precision 

                IIi = proportion of the area covered by class i  

The approach can be made much clearer with a numerical example. In this study the 

number of classes (k) used was 8 (section 3.3.3). The proportion of the area covered 
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by grassland (II), the largest one, is 37.8%. The required precision is 0.05. The 

required confidence level is 95% i.e. � is 0.05. The value of chi-square for the 

probability level (0.05/8) = 0.00625 with one degree of freedom is 7.568. 

n = B IIi (1-IIi)/bi
2  

n = 7.568 (0.378) (1-0.378)/ (0.05)2 

n = 712  

Thus, the minimum number of pixels for the testing set should be 712. 

3.3.3 Land cover classes used for the study  
 
Initially, the land cover types were recoded into 9 main land cover classes (Table 3). 

Greenhouses cover relatively only a small area. In the analysis presented in this thesis 

greenhouses were added to the built-up area. Therefore, the remaining 8 main land 

cover types were used for the analysis. 

3.3.4 Multitemporal analysis of the MERIS image 
 
To perform a multitemporal analysis, the two dates of MERIS images were registered 

into one master data set. The 12 bands (band 1, 2, and 11 were excluded (see section 

4.1)) of the MERIS image from one date were combined with the same 12 bands 

(band 1, 2, and 11 were excluded) for an image acquired on another date, resulting 

into a 24 bands data set to be used in the classification. So, the two images of April 16 

and July 14, 2003 were combined using the stack layer function in Erdas Imagine 8.7. 

3.3.5 Classification 
 
Supervised classifications were preformed using image signatures collected by 

training sets. But before performing classification, the signatures of the training sites 

were studied to see if signatures of different classes were well separated. Based on the 

spectral signatures analysis (see section 4.1), the first two bands of the visible region 

(band 1 and 2) and NIR band 11 of both images were not utilized for any analysis in 

this study. Three classification algorithms, MLH classifier, MDM classifier, and DT 

classifier, were tested over all input data. The 9272 training pixels and a test dataset of 

2510 pixels were employed for the classification performed by the MLH and MDM 

classifiers. DT classifier was performed by CART software.  
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3.3.6 Overview of CART 5 model 
 

CART (Classification and Regression Trees) can be used to analyse either categorical 

(classification) or continuous data (regression). The CART model is a well-known 

example of a univariate decision tree that is described by Breiman et al. (1984). A full 

CART analysis consists of three main steps.  

The first step consists of tree building by splitting nodes. The building of a 

classification tree begins with a root node and then through a process of yes/no 

questions, it generates descendent nodes. CART finds the best possible variable to 

split the root node into two child nodes. In order to find the best variable, the software 

checks all possible splitting variables (called splitters), as well as all possible values 

of the variable to be used to split the node (Speybroeck et al., 2004). The extension to 

a categorical response variable (j categories) is obvious. CART then tries to obtain 

nodes, which contain as many subjects as possible belonging to only one of j 

categories. Finally, a saturated tree is obtained, which has one case or only “pure” 

cases (of only one category of the response) in each terminal node. Based on the 

distribution of classes in the training data set which would occur in that node and the 

decision cost matrix, each node is assigned to a predicted class. The assignment of a 

predicted class to each node occurs whether or not that node is subsequently split into 

child nodes (Lewis, 2000). This is necessary, as there is no way to know, during the 

tree building process, which nodes will end up being terminal nodes. Here the 

misclassification is not different for different categories and therefore the criteria for 

assigning classes to nodes can be based on the following rule: 

Node is class I, if  

                                                    Ni (t)           Ni 

                                                    Nj (t)           Nj 

With      Ni is the number of class I in the data set  

              Ni (t) is the number of class I in the node 

              Nj is total number of class in the data set 

  Nj (t) is total number of class in the node 

 

At the end of this process the result is often a very large and complex tree. In most 

cases, fitting a DT until all leaves contain data for a single class may overfit to the 

noise in the training data as some training samples may not be members of the class 
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that they purport to represent. If the training data contain any errors, then overfitting 

the tree to the data in this manner can lead to poor performance on unseen cases. To 

reduce the impact of this problem, the original tree can be pruned which is the second 

step of CART analysis. The tree pruning results in the formation of a sequence of 

simpler and simpler trees, through the cutting off of increasingly important nodes. The 

pruning relies on a complexity parameter �, which is a measure of how much 

additional accuracy a split must add to the entire tree to warrant the additional 

complexity (Speybroeck et al., 2003). This parameter can be calculated for all internal 

nodes and the first pruning is done on the smallest one. By repeating this process a 

number of nested trees are obtained, going from the saturated tree to the root node 

only. As more nodes are pruned away, a simpler and simpler tree results. 

The third step consists of selecting an optimal tree from the sequence of pruned trees. 

Large trees are highly accurate but they provide poor results when applied to new data 

sets (Friedl et al., 1999) and they are also difficult to interpret. The goal is thus to 

select the optimal tree with respect to the expected performance on an independent set 

of data, so that the information in the training dataset is fit but not overfit (Speybroeck 

et al., 2003). This depends on comparing the misclassifications for all the nested trees. 

The quality of a tree is a result reflecting the purity of its terminal node. If sufficient 

data is available, the simplest method is to divide this data into learning and test 

subsamples. The learning sample is then used to split nodes, continuing until the 

largest tree is grown. The test subsample is used to select the optimal tree among the 

different pruned trees.  

Figure 5 shows the relationship between tree complexity, reflected by the number of 

terminal nodes, and a measure for misclassification cost for an independent test data 

set and for the original training dataset. As the number of nodes increases the decision 

cost decreases monotonically for the learning data. This corresponds to the fact that 

the maximal tree will always give the best fit to the training dataset. In contrast, the 

expected cost for an independent dataset (testing dataset) reaches a minimum, and 

then increases as the complexity increases. This reflects the fact that an overfitted and 

complex tree will not perform well on a new data set (Lewis, 2000).  

For small data sets it is impossible to split the data into learning and testing data sets 

of reasonable sizes. A cross-validation method can be used, which consists of dividing 

the entire sample randomly into N (usually 10) subsamples, stratified by the response 
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variable. One sub-sample is then used as the test sample and the other N-1 are used to 

construct a large tree. The process is repeated N times, with a different subset of the 

data as the test dataset each time.  
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Figure 5. Building a classification tree: Finding a balance between overfitting the 

training data set and underfitting the test data set (Lewis, 2000)  

3.3.7 Application of CART for DT classifier 
 
The decision tree classification was carried out using CART software version 5.0. The 

training dataset with an identification number for each land cover type and the 

spectral bands of the MERIS image are the fundamental input for the CART analysis 

to make the DT classification. The 12 bands of the single image and 24 bands of the 

combined image were used as the predictor variables which are independent variables. 

The identification numbers for each land cover type (1, 2, 4, 5, 6, 7, 8, and 9 for 

grassland, arable land, deciduous forest, coniferous forest, water, built up, bare soil, 

and natural vegetation, respectively) represented the target variable which is a 

dependent variable. The land cover class itself was also considered as the categorical 

variable that is to be categorized according to the predictor variable. 

Prior functions, one of the important options used in CART which help to shape the 

classification analysis, were used. By means of definition of class priors the CART 

software has the ability to compensate for over- or under-representation of classes 

(McIver and Friedel, 2002). By default the assumed priors are equal, that means all 

categories have equal probability which means that the classes are treated as if they 

were uniformly distributed in the sample. But in this study the probability was given 

Training data 

Test data 

Optimal tree 

“Over fit” 

“Under fit” 

High 

Low 
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to each class based on the proportion of the area covered by each class (Table 3).  For 

minimum node sizes, parent node minimum cases and terminal node minimum cases 

were set to 12 and 5, respectively. For testing the classification accuracy, a separate 

set of testing data was used.  

To evaluate the effect of the size of training dataset on the overall classification 

accuracy of the DT classifier, seven subsets of training data for the April 16, 2003, 

MERIS image were formed by randomly sampling from the large training dataset 

(9272 pixels) used for the parametric classifiers. A total of 810 testing pixels was used 

to perform this experiment. 

The numbers of pixels used in each of these training exercises were 800, 1330, 1860, 

2390, 2920, 3450, and 3980 pixels, 100 pixels for each class at the starting point. 

Subsequently the training sizes were increased by 100 for four classes (due to their 

large area occupation and heterogeneity), 50 for one class, 30 for two classes and 20 

for one class (Table 4). Finally, the large training data set (9272 pixels) was also used 

for comparison. 

To study the effect of the splitting rule on the DT classifier, all the training data 

subsets (Table 4) used for studying the effect of training size were employed. Five 

splitting rules of CART software were analyzed, namely Gini, Symmetric Gini, 

Entropy, Twoing, and Order Twoing. 

The Gini splitting rule looks for the largest class in the data set and isolates it from all 

other classes. Once the first split is made, Gini continues to split the data that require 

further segmentation based on the same class dominant criteria. 

The twoing method operates by recursive segmentation trying to keep the same 

classes proportion (50%-50%) in each “child” node.  

Entropy is another well-known splitting rule related to the likelihood function that, 

with multilevel targets, tends to look for splits where as many levels as possible are 

divided perfectly or near perfectly. As a result Entropy puts more emphasis on getting 

rare levels right relative to common levels than either Gini or Twoing. 

Order Twoing is a modification of Twoing designed to handle ordered targets. This 

splitting rule only considers grouping together target classes adjacent to each other. It 

works best with targets with numerical levels. 

To study the effect of the data dimensionality of the feature space over the 

performance of the DT classifier, the 9272 training and 810 testing pixels, and Gini 

splitting rule were used for the combined (April 16, and July 14, 2003) MERIS image. 
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A principal component analysis was performed for the combined image in order to 

know the relative importance of each band in the principal component analysis. 

Accordingly, the first four principal components contain about 99.7% of information 

of the combined image (Appendix D-table I). After that the information contributed 

by different bands to the first four principal components was ranked (Table 5). The 

number of features was initially set to 1 (the first bands that have high rank 

information in the combined image) and then increased by 1 at each iteration. Thus, 

the first experiment is based on one band of high rank information to the combined 

image 1, the second on bands 1-2, the third on 1-3, and so on. 

 

 
Table 4. Different training set sizes used to study their effect on classification 
accuracy of the DT classifier. 

 

 

 

 

 

 

 

 

Land cover 

type      

Training 

data 1 

Training 

data 2 

Training 

data 3 

Training 

data 4 

Training       

data 5 

Training 

data 6 

Training 

data 7 

Training 

dataset 

Grassland 100 200 300 400 500 600 700 3619 

Arable land  100 200 300 400 500 600 700 1999 

Water 100 200 300 400 500 600 700 1372 

Built up 100 200 300 400 500 600 700 909 

Coniferous 

forest 
100 150 200 250 300 350 400 499 

Natural 

vegetation 
100 130 160 190 220 250 280 313 

Deciduous 

forest 
100 130 160 190 220 250 280 326 

Bare soil 100 120 140 160 180 200 220 235 

Total 800 1330 1860 2390 2920 3450 3980 9272 



 24 

 

Band contribution (%) Real band number 
Band number in the  
combined image 

12.11 10* 10 
12.03 12* 12 
9.50 13* 13 
9.00 14* 14 
6.13 10 25 
5.89 12 27 
4.70 13 28 
4.57 14 29 
4.29 15* 15 
3.34 3 18 
2.98 4 19 
2.87 3* 3 
2.72 15 30 
2.60 4* 4 
2.42 5 20 
2.41 5* 5 
2.26 9* 9 
2.14 9 24 
1.66 6 21 
1.42 7 22 
1.36 6* 6 
1.35 8 23 
1.01 7* 7 
0.93 8* 8 

 
Table 5. Information contributed to combined MERIS image by different bands 
based on the first four principal components. 
(*) = Band number from July image. The rest are the bands from April image. 

3.3.8 Classification accuracy assessment 
 
To compare the different classifiers, the CART results (based on 9272 training pixels) 

were converted to an image and validation was made using 2510 testing pixels with 

the same software, i.e. Erdas Imagine 8.7, as was used for MLH and MDM 

classification. The CART ASCII results were transformed to an image using the 

decision tree function of ENVI 4.0 software. The classified images were imported to 

Erdas imagine and masking was applied since the background (no data area) is also 

classified when ENVI 4.0 software is used for classification purpose. Therefore, the 

same test and training data sets were used for each classifier. Thus, any difference 

resulting from sampling variations is avoided. 
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No classification is complete until its accuracy has been assessed. In this context the 

term accuracy means the level of agreement between labels assigned by the classifier 

and class allocations based on ground data collected by the user, known as test data. 

Ground data do not necessarily represent reality, due to observation and recording 

errors, mislocation of test data sets, differences caused by change in land cover 

between the time of observation and the date of imaging, etc. 

The accuracy of the classification process was evaluated using testing sets different 

from the training sets. For each classification the confusion (error) matrix was 

generated. The overall accuracy, the producer’s accuracy, and the user’s accuracy 

were calculated from the confusion matrix. The overall accuracy was used to compare 

the performance of classifiers. It is obtained by dividing the number of pixels 

correctly classified (i.e. the sum of the main diagonal entries of the confusion matrix) 

by the total number of pixels included in the validation process. 

For individual classes, the producer’s accuracy and user’s accuracy were evaluated. 

The producer’s accuracy measures the proportion of pixels in the test dataset that are 

correctly recognized by the classifier. The user’s accuracy tells us the proportion of 

pixels identified by the classifier as belonging to class i that agrees with the test data.  
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4 Result and discussion 

4.1 Spectral signatures analysis 

To study the spectral reflectance of land cover types, the spectral signatures of main 

land covers were derived from training samples of different MERIS images. Figures 6 

and 7 show the spectral signatures of the main land covers of April 16, 2003, and July 

14, 2003, respectively. 

In general, vegetation classes showed a steep slope between red (681nm) and NIR 

(778.5nm). The first two MERIS bands (412.5 and 442.4nm) of the visible spectrum 

have shown a relatively high radiance value when they are compared to other visible 

parts. This is due to atmospheric scattering in the blue part of the spectrum. On the 

other hand, in the NIR region band 11 (762nm) showed an absorption dip for all 

classes due to the oxygen absorption in the atmosphere. Clevers et al. (2003) have 

also obtained similar results on the spectral signature analysis of the MERIS image of 

June 16, 2003. 

The spectral signatures of April 16, 2003, image (figure 6) showed a clear spectral 

signature for grassland, bare soil and arable land. Water is also clearly observed in the 

NIR part. A clear vegetation spectrum for grassland can be easily seen. The grassland 

has the highest radiance value in the NIR portion of the spectrum. On the contrary, 

water showed the lowest radiance value in the same region. Arable land showed a flat 

spectral reflectance like bare soil. This is what was expected for arable land since in 

early spring most arable land is bare. The spectral signatures of built up area, 

coniferous forest, deciduous forest and natural vegetation revealed high overlap and 

have also quite similar radiance values. So, these classes will be the most difficult to 

distinguish. 

The spectral signatures for the July 14, 2003, image (figure 7) are different from the 

April image. All vegetation classes showed a nice vegetation spectrum due to increase 

in their biomass. The spectral signature of grassland is more or less similar to the 

April one even though it increased in biomass (radiance value showed further 

increment particularly in the NIR region). In contrast, the spectral signature of arable 

land completely changed to a clear vegetation spectrum. It has also more biomass than 

grassland. The built up area signature also has a bit a vegetation spectrum. This 

indicates that built up has some contamination of vegetation in its signature. The 

radiance value of bare soil is larger than the one in April. This is because the soil 
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becomes drier in July than in April. Water has almost the same spectrum as that of 

April. In general, in the visible part of the spectrum the radiance value of all land 

covers are quite close to each other which make them difficult to separate. 

Generally, when comparing the spectral signatures of the two dates, there is a 

decrease in radiance value for vegetation classes in the visible part (band 7 and 8) for 

the July image. It can be observed that the most pronounced decrease is for arable 

land in this region of the spectrum. In the NIR part of the spectrum, temporal 

differences are more pronounced; the July image showed quite an increase of radiance 

values for all land covers except water. This was more pronounced for arable land and 

deciduous forest. 

 

MERIS specteral signature of April 16, 2003 image
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Figure 6. Spectral signature for the main land covers of April 16, 2003 MERIS 
image 
 
 
 
 

[W
sr

-1
m

-2
 µ

m
-1

]  



 28 

MERIS spectral signature of July 14, 2003 images
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Figure 7. Spectral signature for the main land covers of July 14, 2003 MERIS 
image 
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4.2 Classification results of MLH classifier 
 
The Maximum likelihood (MLH) classification was applied to all the MERIS images. 

Table 6, 7, and 8 show the results of classification by MLH classifier for April 16, 

July 14 and the combined images, respectively. 

 

Table 6. Accuracy assessment of April 16, 2003, MERIS image by MLH classifier 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overall Classification Accuracy = 69.76%          kappa statistics = 0.6147 
 
 
 
Table 7. Accuracy assessment of July 14, 2003, MERIS image by MLH classifier 

 
 
 
 
 
 
 
 
 
 
 
 
 

Overall Classification Accuracy = 71.11% kappa statistics = 0.6304 
 
 
 
 
 
 
 
 
 
 

Land cover types Producer’s accuracy User’s accuracy 
Grassland 60.88% 81.39% 
Arable land 83.72% 55.52% 
Deciduous forest 53.76% 31.25% 
Coniferous forest 51.61% 79.21% 
Water 86.44% 94.95% 
Built up 64.65% 77.19% 
Bare soil 57.89% 50.00% 
Natural vegetation 59.62% 45.59% 

Land cover types Producer’s accuracy User’s accuracy 
Grassland 64.53% 80.21% 
Arable land 81.75% 58.74% 
Deciduous forest 53.76% 38.76% 
Coniferous forest 47.74% 78.72% 
Water 86.92% 95.99% 
Built up 67.20% 79.03% 
Bare soil 63.16% 32.43% 
Natural vegetation 73.08% 36.89% 
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Table 8. Accuracy assessment of combined MERIS images by MLH classifier 

 
 
 
 
 
 
 
 
 
 
 
 
 

Overall Classification Accuracy = 70.96% kappa statistics = 0.6268 
 
 
When the April image was analyzed, the overall accuracy was 69.76% (Table 6). The 

results for each class showed a producer’s and user’s accuracy ranging from 51.61% 

to 86.44% and 31.25% to 94.95%, respectively. Producer’s accuracy (86.44%) and 

user’s accuracy (94.95%) of water were quite satisfactory, which means that most of 

the water area can be correctly recognized. Although it was observed from the 

spectral signatures (figure 6) that grassland could be well differentiated from other 

classes, the producer’s accuracy (60.88%) of grassland was not as good as expected. 

This may be due to variation in biomass for the various grassland pixels that results in 

larger variation than what was observed in the spectral signatures. But grassland has a 

good user’s accuracy (81.39%). Arable land has a good producer’s accuracy (83.72%) 

and a moderate user’s accuracy (55.52%). Coniferous forest has the lowest producer’s 

accuracy (51.61%) and good user’s accuracy (79.21%). This indicates that although 

51.61% of the pixels were correctly classified as coniferous forest, 79.21% of the 

areas labeled as coniferous forest actually belong to that class on the ground. Built-up 

area has 64.65% producer’s accuracy and 77.19% user’s accuracy which were nice for 

such highly variable class. Deciduous forest, bare soil, and natural vegetation have 

low user’s accuracy (31.25%, 50%, and 45.59%, respectively) as compared to other 

classes. 

The main confusion occurred between grassland and arable land. This may be due to 

the area covered with winter wheat, which will be confused with grassland at this 

season (Mucher et al., 2000). Small amounts of grassland were confused with built-up 

area, deciduous forest, and natural vegetation. Coniferous forest was confused with 

Land cover types Producer’s accuracy User’s accuracy 
Grassland 62.43% 82.00% 
Arable land 86.58% 53.54% 
Deciduous forest 58.06% 40.91% 
Coniferous forest 43.23% 83.75% 
Water 86.68% 95.72% 
Built up 66.24% 81.89% 
Bare soil 63.16% 48.00% 
Natural vegetation 63.46% 63.46% 
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grassland and arable land but it was mainly confused with deciduous forest. 

Deciduous forest was also confused with grassland and arable land. Built-up areas 

were particularly confused with arable land (Appendix C-table I). 

 

Using only the July image, the overall accuracy was 71.11% (Table 7). Producer’s 

and user’s accuracy of each class ranges from 47.74% to 86.92% and 32.43% to 

95.99%, respectively. In this image also water has the highest producer’s and user’s 

accuracy. It has almost the same accuracies as for the April image. Similarly as in the 

April image, coniferous forest has the smallest producer’s accuracy (47.74%) but bare 

soil has the lowest user’s accuracy (32.43%). Grassland has good producer’s accuracy 

(64.53%) that is larger than in the April image. Deciduous forest, bare soil and natural 

vegetation have a low user’s accuracy like in the April image. These small area 

classes are found to have higher producer’s accuracies than user’s accuracies. The 

reason may be that a small area class often can not occupy the absolute majority in a 

300m * 300m MERIS pixel.  

Here also significant mixing was seen between grassland and arable land. It can be 

concluded that there is high spectral overlap between these two classes for both 

images. Coniferous forest was mainly confused with deciduous forest. It was also 

confused with natural vegetation. Built-up area was mainly confused with arable land. 

Some pixels of deciduous forest were also misclassified as grassland (Appendix C-

table II). 

The overall accuracy of the combined MERIS image was 70.96% (Table 8) which is 

almost the same as for the April (69.76%) and July (71.11%) images. These results 

are contrary to Oetter et al. (2000) who found that multiseasonal images provide 

significant improvements in accuracy of vegetation classifications. This may be due to 

the number of images used in one growing season for the classification. The results of 

the combined image showed producer’s and user’s accuracy ranging from 43.23% to 

86.68% and 40.91% to 95.72%, respectively. The only land cover type that showed 

improvement in both accuracies was deciduous forest, about 5% and 3% increment in 

producer’s and user’s accuracy, respectively (Table 6 and 7). Natural vegetation has 

shown about 27% significant increment in user’s accuracy although 10% decrease has 

been observed in producer’s accuracy (Table 6 and 7). About 8% decrease in 

producer’s accuracy and 4% increment in user’s accuracy have been observed in the 

class coniferous forest (Table 5 and 7). This class has still the lowest producer’s 
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accuracy.  Water has almost the same accuracies in all three images. There was no 

significant change in both accuracies for grassland. On the other hand, arable land has 

shown about 3% increment in producer’s accuracy and it decreases about 2% in user’s 

accuracy (Table 5 and 7). Figure 8 shows the classified land covers using the MLH 

classifier for monotemporal and multitemporal MERIS image with reference to 

LGN4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 33 

a. LGN4                                                                            b. April 16, 2003 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

c. July 14, 2003                                                              d. Combined MERIS image 
  
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
  
 

Figure 8. Classified land cover using MLH: April, July and the combined MERIS 
images with reference to LGN4 
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    Coniferous forest 
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4.3 Classification results of MDM classifier 
 
The minimum distance to mean (MDM) classification was also employed in order to 

compare with other classifiers. Table 9, 10 and 11 show the classification results of 

the MDM classifier for April, July and the combined MERIS image, respectively. 

 
Table 9. Accuracy assessment of April 16, 2003, MERIS image by MDM classifier 
 
Land cover 
types 

Producer’s 
accuracy User’s accuracy 

Grassland 65.86% 79.26% 
Arable land 52.95% 58.50% 
Deciduous forest 47.31% 13.50% 
Coniferous forest 56.77% 67.69% 
Water 85.47% 94.64% 
Built up 55.10% 57.28% 
Bare soil 31.58% 75.00% 
Natural 
vegetation 51.92% 24.32% 

Overall Classification Accuracy =      63.07%               Kappa Statistics = 0.5376 
 
 
 
Table 10. Accuracy assessment of July 14, 2003, MERIS image by MDM classifier 
 

Land cover types 
Producer’s 
accuracy 

User’s 
accuracy 

Grassland 73.48% 62.80% 
Arable land 35.78% 73.26% 
Deciduous forest 60.22% 38.10% 
Coniferous forest 44.52% 74.19% 
Water 86.92% 94.72% 
Built up 63.38% 67.69% 
Bare soil 42.11% 44.44% 
Natural vegetation 63.46% 13.64% 

Overall Classification Accuracy =     63.31%                Kappa Statistics = 0.5281           
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Table 11. Accuracy assessment of combined MERIS images by MDM classifier 
 

Land cover types 
Producer’s 
accuracy 

User’s 
accuracy 

Grassland 64.20% 80.25% 
Arable land 64.04% 65.45% 
Deciduous forest 67.74% 20.66% 
Coniferous forest 46.45% 71.29% 
Water 86.68% 93.72% 
Built up 60.51% 70.90% 
Bare soil 36.84% 36.84% 
Natural vegetation 61.54% 19.88% 

Overall Classification Accuracy =     66.18%             Kappa Statistics = 0.5776       
 
 
The classification result of the April image was 63.07% (Table 9). The producer’s and 

user’s accuracy ranged from 31.58% to 85.47% and 13.50% to 94.64%, respectively. 

Water has quite satisfactory producer’s (85.47%) and user’s (94.64%) accuracies. 

Grassland was well separated having 65.86% producer’s and 79.26% user’s accuracy. 

Arable land has a moderate producer’s (52.95%) and user’s (58.50%) accuracy which 

was not as expected because the signature of this class was well separated from other 

classes (Figure 6). The class deciduous forest was the most disappointing class that 

has 47.31% producer’s and 13.50% user’s accuracy. This is because most of its pixels 

were misclassified as coniferous forest, grassland and natural vegetation. Moreover, 

grassland, arable land, coniferous forest and built up area were confused with it 

(Appendix C-table IV).  Substantial mixing was observed among grassland, arable 

land and deciduous forest. Arable land was also mixed with built up area since most 

of the arable land was still bare. The smallest area classes have low accuracies when 

compared to other large area classes. The reason may be that small area classes often 

can not occupy the absolute majority in MERIS pixels. 

 

The result from the July image has shown 63.31% overall accuracy which was quite 

similar to the April image (Table 10). The producer’s and user’s accuracy ranged 

from 35.78% to 86.92% and 13.64% to 94.72%, respectively. Water has almost the 

same accuracies as for the April image. The producer’s accuracy of grassland was 

73.48% which is higher than for the April image, but its user’s accuracy (62.80%) was 



 36 

reduced by 16%. This is because more than half of the arable land reference pixels 

were classified as grassland (Appendix C-table V). For the same reason arable land 

has the smallest producer’s accuracy (35.78%). It can be concluded that there was 

high spectral overlap between these two classes which was also observed from their 

spectral signatures (Figure 7). Coniferous forest and built up area were mainly 

confused with natural vegetation which has the smallest user’s accuracy (13.64%). 

Both accuracies of built up area have shown an increment of almost 10% as compared 

to the April image since arable land is no more bare at this time. 

 

The result from the combined MERIS image showed that the overall accuracy was 

66.18% (Table 11) which was higher than for both single images. The producer’s and 

user’s accuracy ranged from 36.84% (bare soil) to 86.68% (water) and 19.88% 

(natural vegetation) to 93.72% (water), respectively. Arable land was the class that 

showed improvement in producer’s and user’s accuracy by 12% and 7%, respectively, 

when compared to the April image. Figure 9 shows the classified land covers of the 

April, the July and the combined MERIS image using the MDM classifier with 

reference to LGN4. 
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                       a. LGN4                                                                  b. April 16, 2003 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               c. July 14, 2003                                                              d. Combined image 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Classified land cover using MDM: April, July and the combined MERIS 
images with reference to LGN4 
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4.4 Classification results of DT classifier 
 
The decision tree (DT) classification using the CART model was tested versus MLH 

and MDM. The performance of the decision tree was optimized by investigating the 

effect of the training dataset size, splitting rule, and data dimensionality on the 

classification accuracy of the DT.  

The decision tree classifier starts by producing a tree from the root node that contains 

all input data. The thresholds for each class were generated by deriving information 

from different bands that were used as input data. After that, it recursively partitions 

the data set into simpler forms (See chapter 2 for a more detailed description). 

Figure 10 shows the decision tree obtained from the CART analysis for the combined 

image. In this tree each node (root, internal and terminal nodes) contains a decision 

rule. All the terminal (leaf) nodes represent land cover types that are the target 

variables.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Decision tree generated by the CART model for the combined MERIS 
image 
Numbers in shaded part indicate TOA radiances multiplied by 10 
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4.4.1 Effect of training dataset size and splitting rule 
 

The characteristics of the data used to train a supervised classification have a 

considerable influence on the accuracy of the resulting classification (Thomas et al., 

1987). It is essential that the training data provide a representative description of each 

class. For statistical classification the number of pixels incorporated in training set for 

each class must be at least 10-30 times the number of features. The required training 

set size must therefore be large when the classification involves a large number of 

classes or utilizing data acquired in many bands. This number could further rise due to 

the effect of other variables (for example, if variations in soil background have an 

effect on the spectral response of a crop) (Foody and Arora, 1997). Clearly acquiring 

such a large training datasets is difficult in such conditions. On the other hand, non 

parametric classifiers can perform successfully using training data sets that are smaller 

than those required to train statistical classifiers (Foody et al., 1995; Pal and Mather, 

2003). 

Figure 11 shows the relationship between classification accuracy and the training 

dataset size with the different splitting rules implemented in CART. The results 

indicate that the level of accuracy increases with the size of training set which is 

almost linear up to the third training data set over all splitting rules. However, the 

fourth training set (2390 pixels) showed a decrease in accuracy for all splitting rules. 

Afterwards, the level of accuracy started to increase until the sixth training set (3450 

pixels) and decreased for the seventh data set (3980 pixels) for all splitting rules. The 

largest training set (9272) also showed almost the same level of accuracy as the 

seventh training set for all splitting rules except Gini. The highest accuracy was 

obtained at a 3450 pixels training set for all splitting rules (Figure 11). These results 

indicate that the accuracy of the decision tree classifier increased as the size of the 

training set increased but only up to a certain point. In addition to this, the decision 

tree classifier does not need very large training sets to be effective. These results 

match with the findings of Pal and Mather (2003) although the increment was not 

absolutely linear as the finding of Pal and Mather.  

The CART program also allows to choose the splitting rule considering the levels of 

target variables (the number of land cover type). Accordingly, the CART software 

manual recommends to test the result with different splitting criteria such as Gini, 

Symmetric Gini, Entropy, Twoing and Ordered Twoing. The results of figure 11 
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indicate that the Gini splitting rule gave the best overall accuracy in all training set 

sizes. Particularly for training set size 3450 and 9272 pixels, Gini generated about 

67.2% and 67.6% accuracy, respectively. This result contradicted with Salford 

systems (2002) which recommend the Twoing splitting rule that fits for a target 

variable analysis with 4 up to 9 levels. The results indicate that choosing splitting 

rules does not only depend on the level of target variables but also on another factor 

such as type of input data used for analysis. 
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Figure 11. Variation of classification accuracy with increasing number of training 
size and different splitting rules using a decision tree classifier on April 16, 2003, 
MERIS image.  
 

4.4.2 Dimensionality of the feature space 
 
The ability to discriminate spectrally between classes is generally a function of the 

dimensionality of the data used. Typically, class separability is positively related to 

the number of discriminating variables used. These discriminating variables are 

generally data acquired in specific spectral wavebands, but could also be data 

acquired at different time periods. Shahshahani and Landgrebe (1994) have shown 

that the class separablity and ultimately classification accuracy rise initially with an 

increase in the number of wavebands used up to a point beyond which the addition of 
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data acquired in other spectral wavebands has either no significant effect or results in 

a decrease in classification accuracy. 

Figure 12 shows the levels of overall classification accuracy obtained using the DT 

classifier on the combined MERIS image. These results indicate that the accuracy of 

DT classification increased for the first four bands of the July image. A slight 

decrease was observed for band 10 of the April image and then the accuracy started to 

increase on band 12 and 13 of the same image. By adding band 14 of the April and 15 

of the July image, a change of level of accuracy was not observed. A possible reason 

for this may be due to the high correlation of NIR bands of MERIS images of the two 

dates (Appendix E –table I). At band 3 of both dates, the level of accuracy has shown 

high increment. This is due to the fact that band 3 of the MERIS image does not 

correlate to the NIR bands (Appendix E). Another increment of accuracy was 

observed at band 9 of the July image which is not correlated to visible and NIR bands 

of the MERIS image (Appendix E-table I). The rest of the bands have not any effect 

on the accuracy of DT classification since their information was already utilized by 

the former bands that correlated to them. From these results it is possible to conclude 

that the CART model of DT classifier can weight the importance of the discriminating 

variables in the classification, thereby ignoring redundant variables.  

 

 

 
 
 

  

 

 

 

Figure 12. Classification accuracies using the combined MERIS image with 9272 
training pixels and increasing number of features. 
(*) = Band from July image. The rest is band from April image 
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4.4.3 Final Decision Tree classification  
 
The final DT classification was done in order to compare its overall accuracy with the 

other classifiers: MLH and MDM classifiers. Table 12, 13 and 14 show the results of 

the DT classifier for April, July and the combined MERIS images, respectively. 

 

 
Table 12. Accuracy assessment of April 16, 2003, MERIS image by DT classifier 
 

Land cover types Producer’s accuracy User’s accuracy 
Grassland 75.47% 72.27% 

Arable land 57.42% 64.07% 

Deciduous forest 49.46% 22.12% 

Coniferous forest 52.26% 66.94% 

Water 85.47% 94.64% 

Built up 64.33% 68.01% 

Bare soil 21.05% 80.00% 

Natural vegetation 59.62% 51.67% 
Overall Classification Accuracy =      68.56%             Kappa Statistics = 0.5925 
 
 
Table 13. Accuracy assessment of July 14, 2003, MERIS image by DT classifier 
 
Land cover types Producer’s accuracy User’s accuracy 
Grassland 71.27% 64.37% 

Arable land 52.59% 56.11% 

Deciduous forest 59.14% 40.44% 

Coniferous forest 56.13% 72.50% 

Water 87.89% 94.78% 

Built up 69.11% 70.45% 

Bare soil 5.26% 100.00% 

Natural vegetation 44.23% 63.89% 
Overall Classification Accuracy =     67.13%            Kappa Statistics = 0.5683 
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Table 14. Accuracy assessment of combined MERIS images by DT classifier 
 
Land cover types Producer’s accuracy User’s accuracy 
Grassland 75.24% 71.08% 

Arable land 64.04% 63.03% 

Deciduous forest 54.84% 38.35% 

Coniferous forest 55.48% 69.35% 

Water 87.17% 94.74% 

Built up 69.11% 70.45% 

Bare soil 10.53% 100.00% 

Natural vegetation 44.23% 62.16% 
Overall Classification Accuracy =     70.84%            Kappa Statistics = 0.6212 
 
An overall accuracy of 68.56% was obtained for the April image (Table 12). The 

result of producer’s and user’s accuracy ranged from 21.05% to 85.47% and 22.12% 

to 94.64%, respectively. Water has the highest accuracies. Bare soil has the lowest 

producer’s accuracy (21.05%) but it has a high user’s accuracy (80%). That means 

80% of the area labeled as bare soil was actually bare soil on the ground. Grassland 

has quite a good producer’s (75.47%) and user’s (72.27%) accuracy. The producer’s 

accuracy (57.42%) of arable land was not as expected even though its user’s accuracy 

(64.07%) was good. Some substantial mixing between grassland and arable land was 

also seen with the DT classifier (Appendix C-table VII). Deciduous forest was the 

class that has low producer’s (49.46%) and user’s (22.12%) accuracy. It was typically 

confused with grassland and coniferous forest. Coniferous forest was also confused 

with deciduous forest and grassland. The small area classes have also shown low 

accuracy as compared to large area classes. 

 

The result from the July image has shown that the overall accuracy was 67.13% 

(Table 13) which was lower than for the April image. The results indicated that 

producer’s and user’s accuracy range from 5.26% to 87.895 and 40.44% to 100%, 

respectively. Grassland and arable land were the classes that have lower producer’s 

and user’s accuracy than for the April image. This was because confusion occurred 

between grassland and arable land which was already seen from their spectral 

signatures (figure 7). Bare soil was the class that showed the lowest producer’s 

accuracy (5.26%) and highest user’s accuracy (100%). Deciduous forest, coniferous 

forest and built up area have shown better accuracies than for the April image. Within 
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this image there was also confusion between coniferous and deciduous forest. Built up 

area was typically confused with grassland and arable land (Appendix C-table VIII). 

 

The results from the combined MERIS image indicated that the overall accuracy was 

70.84%, which was higher than for the April and July images by about 3%. The 

producer’s and user’s accuracy of this image ranged from 10.53% to 87.17% and 

38.35% to 100%, respectively (Table 14). Arable land was the only class that has 

shown accuracy improvement in this combined image. Grassland and arable land 

were also confused as they were on other images. Deciduous forest was confused with 

coniferous forest and grassland. Coniferous forest was also confused with deciduous 

forest and grassland (Appendix C-table IX). Figure 13 shows the classified land 

covers of the April, the July and the combined MERIS image using the DT classifier 

with reference to LGN4. 
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                    a.   LGN4                                                              b. April 16, 2003 
                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

    
c. July 14, 2003                                                               d. Combined image 

 

 

 

 

 

 

 

   

 

 

 

 

 
Figure 13. Classified land cover using DT: April, July and the combined MERIS 
images with reference to LGN4 
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4.5 Comparison among different classifiers 
 
MLH, MDM, and DT classifiers were used for classification to see the performance of 

each classifier and to make comparison among them. 

 

Type of classifier April image July image Combined image 
Maximum likelihood (MLH) 69.76% 71.11% 70.96% 
Decision tree (DT) 68.56% 67.13% 70.84% 
Minimum distance to mean (MDM) 63.07% 63.31% 66.18% 

 

Table 15. Comparison of MLH, MDM, and DT classifiers using overall 
classification accuracy for the validation dataset (see appendix C) 
 

From table 15 we can observe that the overall classification accuracy of MLH and DT 

classifiers were almost the same except for the July image. The performance of the 

MDM classifier was less than the two other classifiers for all images. The possible 

reason for this may be due to insensitivity of the MDM classifier for different 

variance in the spectral response data. The accuracy of the MLH classifier for the July 

image was higher than for the DT classifier. This may be due to the high spectral 

overlap between grassland and arable land that makes it difficult to separate them by 

the DT classifier which utilizes one spectral feature at a time for decision. The 

accuracy obtained by the DT and MDM classifiers for the combined image 

(multitemporal image) was better than the monotemporal images (the April and July 

image). This shows that, using only two dates, seasonality plays an important role in 

classification of different land covers.  

The overall classification accuracy of all the images using the three classifiers was 

reduced by about 4-5% when using the whole land cover database (LGN4) as a 

reference (Appendix G-table I). This may be because the samples used for validation 

was not 100% representative of the total population dataset (LGN4). 
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5. Conclusion and Recommendation 

5.1 Conclusion 
 
The main objective of the study described here is to assess the advantage of 

multitemporal land cover classification using full resolution MERIS images and to 

compare different types of classification methods used in remote sensing. 

Accordingly, three classifiers (MLH, MDM and DT) were applied on two MERIS 

images from different dates (April 16, and July 14, 2003) and the combined MERIS 

image. 

The result presented in this study provided some analysis on the use of different 

classification algorithms and the merit of a combined image for land cover 

classification in the Netherlands using full resolution MERIS images. 

First, the results of all the three classifiers were satisfactory. The MLH and DT 

classifiers were performing better than the MDM classifier. The MLH classifier seems 

better than the DT classifier on the single date images. The classification with the 

combined imagery (multitemporal) has shown improved accuracies for the DT and 

MDM classifiers as compared to the MLH one. The size of the training dataset and 

splitting rule have great influence on the performance of the DT classifier. The 

training dataset at 3450 pixels with Gini splitting rule gave better result. The study 

also concludes that the data dimensionality has no effect on DT classifier. The 

advantage of the DT classifier was that it weights the importance of discriminating 

variables and thereby ignored redundant variables. 

Water was quite well classified by all the classifiers in all the images. Considering 

different factors that affect classification accuracy, particularly within this study, 

grassland, arable land and built-up area were also well classified by the MLH and DT 

classifiers in all the images and by the MDM classifier in the combined image. 

Basically, coniferous forest, deciduous forest, natural vegetation and bare soil were 

not well classified in the images by all the classifiers. Coniferous forest and deciduous 

forest were the classes that confused with each other in all the images. Natural 

vegetation was mainly confused with grassland and arable land. This concludes that 

these classes have similar spectral behavior so they could not be classified well. 

Moreover, the main confusion was also occurring between grassland and arable land 

in all the images. 
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Generally, what can be concluded is that multitemporal analysis is quite useful to 

classify land cover types but the improvement of classification accuracy of land cover 

classification using multitemporal data is not only depending on the attributes of data 

but also on the algorithms used to classify land cover. 

 

5.2 Recommendation 
 

• From a more general perspective, it is clear that the classification results 

produced by supervised algorithms are highly reliant on the quality and 

representativeness of the training data used. Thus, care must be taken during 

selection of spectrally representative training data. 

• There is no single classification algorithm that is expected to provide 

maximum accuracies with all data since the statistical method that can best 

distinguish between classes is likely dependent upon the specific attributes of 

the data such as resolution (spectral, spatial, radiometric, and temporal) and 

quality of training data. Accordingly, 

� MLH algorithm is highly recommended for land cover classification if 

no ancillary datasets are available. 

� If ancillary datasets are available, DT classifier will be highly 

preferable. 

• Based on the results obtained, grassland and arable land could be merged to 

one class agriculture and coniferous and deciduous forest could also be 

merged to one class forest since they show significant spectral overlap in all 

images. 

• Traditional methods of land cover classification have typically relied on 

image-derived variables, but evidence from multitemporal land cover mapping 

studies indicates that including non-spectral variables may help to improve 

discrimination between land cover classes (Rogan et al., 2003). Therefore, to 

improve the accuracy and to extend the work to regional scale use of more 

than two MERIS images at different dates in the season and use of ancillary 

datasets has to be given attention. 
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7. Appendices 
  
Appendix A.  Projection information 
 
Table I. Projection information 
Projection type Stereographic 
Spheroid name Clarke 1866 
Datum name Clarke 1866 
Longitude of center of projection 5:23:15.000000E 
Latitude of center of projection 52:09:22.006800N 
False easting 155000.000000 meters 
False northing 463000.000000 meters 
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Appendix B.  Descriptions of the aggregated 9 main land covers from 39 LGN4 
classes 
 
Table I. Descriptions of the aggregated 9 main land covers from 39 LGN4 classes 
Main land 
covers 

Klasse naam(Dutch) Class name(English) Class 
value 

Gras Pastures 1 
Gras in bebouwd gebied Grass in urban area 1 
Veenweidegebied Swampy pastures in peat areas 1 

Grass land 

Overig open begroeid natuurgebied Other open nature areas 1 
Mais Maize 2 
Aardappelen Potato 2 
Bieten Sugar beet 2 
Granen Cereals 2 
Overige landbouwgewassen Other agricultural crops 2 
Boomgaarden Orchards 2 

Arable land 

Bloembollen Flower bulb cultivation 2 
Green house Glastuinbouw Green houses 3 

Loofbos Deciduous forest 4 
Loofbos in bebouwd gebied Deciduous forest in urban area 4 Deciduous 

forest 
Bos in moerasgebied Forest in swamp area 4 
Naaldbos Coniferous forest 5 
Naaldbos in bebouwd gebied Coniferous forest in urban area 5 
Bos met dichte bebouwing Forest with dense built up 5 

Coniferous 
forest 

Bos in hoogveengebied Forest in raised bogs 5 
Zoet water Fresh water 6 Water 
Zout water Salt water 6 
Bebouwing in agrarisch gebied Building in agricultural area 7 
Stedelijk gebied Urban area 7 
Bebouwing in buitengebied Building in rural area 7 

Built-up 
area 

Hoofdwegen en spoorwegen Main roads and railroads 7 
Kale grond in bebouwd gebied Bare soil in rural area 8 
Open zand in kustgebied Bare soil in coastal areas 8 
Open duinvegetatie Sparsely vegetated dune 8 
Open stuifzand Shifting sands 8 

Bare soil 

Kale grond in natuurgebied Bare soil in nature area 8 
Kwelders Salt marshes 9 
Gesloten duinvegetatie Vegetated dune 9 
Duinheide Heath in coastal area 9 
Heide Heath lands(1) 9 
Matig vergraste heide Heath lands(2) 9 
Sterk vergraste heide Heath lands(3) 9 
Hoogveen Raised peat bogs 9 
Overige moerasvegetatie Other swamp vegetation 9 

Natural 
vegetation 

Rietvegetatie Reed swamp 9 
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Appendix C.  Accuracy assessment of mono and multtemporal MERIS images 
 
Table I. Confusion Matrix MLH classifier of April 16, 2003 MERIS image 

 
 
Table II. Confusion Matrix MLH classifier of July 14, 2003 MERIS image 
 

 Reference data 
Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest  

Coniferous 
forest 

     
Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Grass land 584 71 19 12 14 22 2 4 728 80.21% 
Arable 
land 211 457 9 16 15 63 2 5 778 58.74% 

Deciduous 
forest 28 12 50 34 2 0 0 3 129 38.76% 

Coniferous 
forest 6 3 7 74 0 2 0 2 94 78.72% 

Water 9 0 0 0 359 5 1 0 374 95.99% 
Built up 39 8 2 2 4 211 1 0 267 79.03% 
Bare soil 9 1 0 0 13 2 12 0 37 32.43% 
Natural 
vegetation 19 7 6 17 6 9 1 38 103 36.89% 

Column 
Total 905 559 93 155 413 314 19 52 2510  

Producer's 
accuracy 64.53% 81.75% 53.76% 47.74% 86.92% 67.20% 63.16% 73.08%   

Overall accuracy = 71.11%                                                               Kappa Statistics = 0.6304 

 

 

 
 
 
 
 

 Reference data 
Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest  

Coniferous 
forest 

     
Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Grass land 551 61 12 16 14 21 0 2 677 81.39% 
Arable 
land 248 468 11 21 19 70 2 4 843 55.52% 
Deciduous 
forest 38 19 50 33 2 8 3 7 160 31.25% 
Coniferous 
forest 3 1 11 80 0 3 0 3 101 79.21% 
Water 9 0 3 0 357 4 2 1 376 94.95% 
Built up 38 8 2 3 8 203 1 0 263 77.19% 
Bare soil 0 0 0 0 7 0 11 4 22 50.00% 
Natural 
vegetation 18 2 4 2 6 5 0 31 68 45.59% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 60.88% 83.72% 53.76% 51.61% 86.44% 64.65% 57.89% 59.62%     
Overall accuracy = 69.76%                                                                  Kappa Statistics = 0.6147                
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Table III. Confusion Matrix MLH classifier of combined (April 16 and July 14, 2003) 
MERIS image 

 
 
 
Table IV. Confusion Matrix MDM classifier of April 16, 2003 MERIS image 

 
 
 
 
 
 
 
 
 
 

Reference Data 
Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest  

Coniferous 
forest 

     
Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Grass land 565 53 17 19 10 23 0 2 689 82.00% 
Arable 
land 265 484 13 29 26 74 6 7 904 53.54% 
Deciduous 
forest 24 14 54 34 1 2 0 3 132 40.91% 
Coniferous 
forest 3 1 6 67 0 1 0 2 80 83.75% 
Water 8 0 1 0 358 5 1 1 374 95.72% 
Built up 29 7 1 2 7 208 0 0 254 81.89% 
Bare soil 0 0 0 0 9 0 12 4 25 48.00% 
Natural 
vegetation 11 0 1 4 2 1 0 33 52 63.46% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 62.43% 86.58% 58.06% 43.23% 86.68% 66.24% 63.16% 63.46%     
Overall accuracy = 70.96%                                                   Kappa Statistics = 0.6268 

Reference data 
Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest  

Coniferous 
forest 

     
Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Unclassified 2 0 0 0 0 0 0 0 2   
Grass land 596 88 14 15 13 23 0 3 752 79.26% 
Arable land 127 296 6 5 22 39 5 6 506 58.50% 
Deciduous 
forest 114 70 44 37 5 52 2 2 326 13.50% 
Coniferous 
forest 8 7 19 88 0 5 0 3 130 67.69% 
Water 8 1 2 0 353 3 2 4 373 94.64% 
Built up 39 64 1 1 13 173 4 7 302 57.28% 
Bare soil 0 0 0 0 1 1 6 0 8 75.00% 
Natural 
vegetation 11 33 7 9 6 18 0 27 111 24.32% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 65.86% 52.95% 47.31% 56.77% 85.47% 55.10% 31.58% 51.92%     
Overall accuracy = 63.07%                                                  Kappa Statistics = 0.5376 
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Table V. Confusion Matrix MDM classifier of July 14, 2003 MERIS image 
Reference data 

Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest  

Coniferous 
forest 

     
Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Unclassified 5 0 0 0 0 0 0 0 5   
Grass land 665 286 16 18 19 43 3 9 1059 62.80% 
Arable land 58 200 2 1 4 8 0 0 273 73.26% 
Deciduous 
forest 43 26 56 16 1 0 0 5 147 38.10% 
Coniferous 
forest 6 2 10 69 0 2 0 4 93 74.19% 
Water 10 0 0 0 359 6 3 1 379 94.72% 
Built up 52 24 2 0 13 199 4 0 294 67.69% 
Bare soil 1 1 0 0 6 2 8 0 18 44.44% 
Natural 
vegetation 65 20 7 51 11 54 1 33 242 13.64% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 73.48% 35.78% 60.22% 44.52% 86.92% 63.38% 42.11% 63.46%     
Overall accuracy  = 63.31%                                            Kappa Statistics = 0.5281           
 
 
 
Table VI. Confusion Matrix MDM classifier of combined (April 16 and July 14, 
2003) MERIS image 

 
 
 
 
 
 
 
 
 

Reference Data 

Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest 

Coniferous 
forest 

     
Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

 
Row 
Total 

User's 
accuracy 

Unclassified 3 0 0 0 0 0 0 0 3   
Grass land 581 82 6 13 12 28 0 2 724 80.25% 
Arable land 124 358 7 2 10 34 4 8 547 65.45% 
Deciduous 
forest 102 88 63 32 5 11 0 4 305 20.66% 
Coniferous 
forest 8 2 11 72 0 3 0 5 101 71.29% 
Water 10 0 3 0 358 7 3 1 382 93.72% 
Built up 44 13 1 0 17 190 3 0 268 70.90% 
Bare soil 2 0 0 0 6 4 7 0 19 36.84% 
Natural 
vegetation 31 16 2 36 5 37 2 32 161 19.88% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 64.20% 64.04% 67.74% 46.45% 86.68% 60.51% 36.84% 61.54%     
Overall accuracy = 66.18%                                                 Kappa Statistics = 0.5776       
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Table VII. Confusion Matrix DT classifier of April 16, 2003 MERIS image 

 
 
Table VIII. Confusion Matrix DT classifier of July 14, 2003 MERIS image 

 
 
 
 
 
 
 
 
 
 
 
 

Reference Data 
Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest 

Coniferous 
forest Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Grass land 683 149 20 25 21 44 0 3 945 72.27% 
Arable 
land 101 321 4 3 19 40 8 5 501 64.07% 
Deciduous 
forest 53 34 46 40 9 18 1 7 208 22.12% 
Coniferous 
forest 10 5 17 81 0 5 0 3 121 66.94% 
Water 9 1 2 0 353 4 3 1 373 94.64% 
Built up 44 32 3 2 10 202 2 2 297 68.01% 
Bare soil 0 0 0 0 1 0 4 0 5 80.00% 
Natural 
vegetation 5 17 1 4 0 1 1 31 60 51.67% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 75.47% 57.42% 49.46% 52.26% 85.47% 64.33% 21.05% 59.62%     
Overall accuracy = 68.56%                                                   Kappa Statistics = 0.5925 

Reference Data 
Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest 

Coniferous 
forest Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Grass land 645 233 20 32 20 40 2 10 1002 64.37% 
Arable 
land 154 294 5 4 9 44 8 6 524 56.11% 
Deciduous 
forest 29 18 55 24 2 2 0 6 136 40.44% 
Coniferous 
forest 11 3 10 87 1 3 0 5 120 72.50% 
Water 9 0 0 0 363 6 5 0 383 94.78% 
Built up 53 11 3 1 18 217 3 2 308 70.45% 
Bare soil 0 0 0 0 0 0 1 0 1 100.00% 
Natural 
vegetation 4 0 0 7 0 2 0 23 36 63.89% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 71.27% 52.59% 59.14% 56.13% 87.89% 69.11% 5.26% 44.23%     
Overall accuracy = 67.13%                                                   Kappa Statistics = 0.5683  
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Table IX. Confusion Matrix DT classifier of combined MERIS image 
Reference Data 

Classified 
Data 

Grass 
land 

Arable 
land 

Deciduous 
forest 

Coniferous 
forest Water 

Built 
up 

Bare 
soil 

Natural 
vegetation 

Row 
Total 

User's 
accuracy 

Grass land 681 159 20 31 21 40 2 4 958 71.08% 
Arable 
land 121 358 7 7 12 43 7 13 568 63.03% 
Deciduous 
forest 24 25 51 23 2 3 0 5 133 38.35% 
Coniferous 
forest 13 4 12 86 1 3 0 5 124 69.35% 
Water 9 0 0 0 360 6 5 0 380 94.74% 
Built up 53 12 3 1 17 217 3 2 308 70.45% 
Bare soil 0 0 0 0 0 0 2 0 2 100.00% 
Natural 
vegetation 4 1 0 7 0 2 0 23 37 62.16% 
Column 
Total 905 559 93 155 413 314 19 52 2510   
Producer's 
accuracy 75.24% 64.04% 54.84% 55.48% 87.17% 69.11% 10.53% 44.23%     
Overall accuracy = 70.84%                                                   Kappa Statistics = 0.6212 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59 

Appendix D. Principal component analysis of Combined MERIS image 
 
Table I. Principal component analysis of Combined MERIS image 

    Eigenvalue 
% 
variance 

Cumulative 
sum 

Cumulative 
sum (%) 

1 PC1 1678993.732 0.9142958 0.914296 91.43 
2 PC2 100254.9768 0.0545938 0.96889 96.89 
3 PC3 35138.59904 0.0191347 0.988024 98.80 
4 PC4 16338.3813 0.0088971 0.996921 99.69 
5 PC5 3817.400889 0.0020788 0.999 99.90 
6 PC6 721.68027 0.000393 0.999393 99.94 
7 PC7 353.370768 0.0001924 0.999586 99.96 
8 PC8 238.34064 0.0001298 0.999715 99.97 
9 PC9 155.451067 8.465E-05 0.9998 99.98 

10 PC10 112.689531 6.137E-05 0.999861 99.99 
11 PC11 96.222471 5.24E-05 0.999914 99.99 
12 PC12 57.341948 3.123E-05 0.999945 99.99 
13 PC13 25.684587 1.399E-05 0.999959 100.00 
14 PC14 24.615182 1.34E-05 0.999972 100.00 
15 PC15 14.218925 7.743E-06 0.99998 100.00 
16 PC16 11.858936 6.458E-06 0.999987 100.00 
17 PC17 7.843401 4.271E-06 0.999991 100.00 
18 PC18 5.425079 2.954E-06 0.999994 100.00 
19 PC19 4.931253 2.685E-06 0.999997 100.00 
20 PC20 2.230814 1.215E-06 0.999998 100.00 
21 PC21 1.385309 7.544E-07 0.999999 100.00 
22 PC22 1.155124 6.29E-07 0.999999 100.00 
23 PC23 0.987748 5.379E-07 1 100.00 
24 PC24 0.536002 2.919E-07 1 100.00 

  Total 1836379.059       
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Appendix E. Correlation matrix for a subset of MERIS images 
 
Table I. Correlation matrix for a subset of July 14, 2003 MERIS image 
 
  3 4 5 6 7 8 9 10 12 13 14 15 
3 1                       
4 0.996 1                     
5 0.911 0.939 1                   
6 0.939 0.957 0.960 1                 
7 0.926 0.940 0.924 0.992 1               
8 0.916 0.930 0.917 0.988 0.999 1             
9 0.355 0.407 0.645 0.602 0.590 0.603 1           

10 -0.315 -0.269 0.016 -0.096 -0.111 -0.093 0.696 1         
12 -0.337 -0.291 -0.007 -0.118 -0.133 -0.115 0.678 0.999 1       
13 -0.352 -0.306 -0.023 -0.128 -0.141 -0.122 0.678 0.997 0.998 1     
14 -0.353 -0.308 -0.024 -0.129 -0.141 -0.123 0.679 0.997 0.998 0.999 1   
15 -0.361 -0.315 -0.033 -0.137 -0.149 -0.130 0.673 0.994 0.996 0.999 0.999 1 
 
 
 
Table II. Correlation matrix for a subset of April 16, 2003 MERIS image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  3 4 5 6 7 8 9 10 12 13 14 15 
3 1                       
4 0.997 1                     
5 0.972 0.985 1                   
6 0.947 0.965 0.978 1                 
7 0.891 0.915 0.931 0.985 1               
8 0.888 0.912 0.926 0.982 0.999 1             
9 0.727 0.754 0.823 0.846 0.863 0.865 1           

10 0.274 0.287 0.386 0.326 0.316 0.320 0.728 1         
12 0.128 0.146 0.257 0.207 0.214 0.219 0.657 0.985 1       
13 0.128 0.144 0.252 0.205 0.215 0.221 0.661 0.984 0.998 1     
14 0.205 0.218 0.318 0.264 0.264 0.270 0.695 0.993 0.990 0.994 1   
15 0.230 0.242 0.338 0.284 0.281 0.287 0.705 0.993 0.984 0.989 0.999 1 
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Appendix F. Overall classification accuracy of different sizes of training datasets of 

the MERIS images. 

 

Figure I. Overall classification accuracy of April 16 and July 14, 2003, and the 

combined image based on different sizes of training datasets using MLH and MDM 

classifiers to select the best training datasets for final land cover classification. 
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Overall accuracy with different number of training 
sizes for July 14,2003
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sizes for combined image
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Appendix G. Overall classification accuracy of April 16, and July 14, 2003, and the 

combined images by the MLH, MDM, and DT classifiers using the whole land 

database (LGN4) as reference. 

 

Table I. Overall classification accuracy of all the images by the MLH, MDM, and DT 

classifiers using the whole land database (LGN4) as reference. 

Type of classifier April image July image Combined image 

Maximum likelihood (MLH) 64.78% 66.11% 67.29% 

Decision tree (DT) 62.88% 62.06% 66.26% 

Minimum distance to mean (MDM) 57.48% 58.25% 61.83% 

 

 

 

 

 

 


