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Abstract	

The	main	objective	of	this	research	was	to	 investigate	the	simultaneous	growth	

and	 metabolite	 production	 by	 yoghurt	 starters	 and	 different	 probiotic	 strains,	 i.e.	

Lactobacillus	 rhamnosus	 GG,	 Bifidobacterium	 animalis	 subsp.	 lactis	 BB12	 and	

Lactobacillus	 plantarum	 WCFS1,	 during	 set‐yoghurt	 fermentation	 and	 refrigerated	

storage.	 In	 this	 context,	 the	 microbial	 activity	 was	 evaluated	 in	 terms	 of	 bacterial	

population	 dynamics,	 milk	 acidification	 and	 formation	 of	 volatile	 and	 non‐volatile	

metabolites	 in	set‐yoghurt.	A	complementary	metabolomics	approach	using	headspace	

SPME‐GC/MS	 and	 1H‐NMR	 was	 applied	 for	 characterization	 of	 biochemical	 changes	

associated	with	the	microbial	metabolism	during	fermentation	and	storage.	The	results	

revealed	that	incorporation	of	the	three	probiotic	strains	did	not	significantly	influence	

the	acidity	and	concentrations	of	key‐aroma	volatile	compounds	of	set‐yoghurt.	Still,	the	

presence	of	probiotics	substantially	 contributed	 to	 the	 formation	of	a	 large	number	of	

volatile	 and	 non‐volatile	 metabolites	 detected	 at	 low	 concentration.	 Because	 many	

probiotic	strains	are	not	able	 to	survive	well	 in	 fermented	milk,	a	 strategy	 to	enhance	

their	survival	was	additionally	applied	by	preculturing	the	three	probiotic	strains	under	

sublethal	 salt	 and	 low	 pH	 stress	 conditions	 prior	 to	 inoculation	 in	 milk.	 The	 results	

revealed	 an	 improved	 survival	 of	L.	 rhamnosus	 GG	 and	B.	animalis	 subsp.	 lactis	 BB12,	

specifically	by	preculturing	at	relatively	 low	pH	conditions.	Moreover,	 incorporation	of	

sublethally	 precultured	 L.	 plantarum	 WCFS1	 significantly	 impaired	 the	 survival	 of	 L.	

delbrueckii	 subsp.	 bulgaricus,	 which	 consequently	 reduced	 the	 post‐acidification	 of	

yoghurt.	Metabolomics	analyses	revealed	that	the	presence	of	stress‐adapted	probiotics	

induced	significant	changes	 in	 the	overall	metabolite	profile	of	yoghurt.	This	 finding	 is	

important,	 since	 variations	 in	 the	 relative	 abundance	 of	 various	 organic	 acids,	 aroma	

volatiles	 and	 proteolytic‐derived	 compounds	 may	 directly	 influence	 the	 organoleptic	

quality	 of	 product.	 Finally,	 multivariate	 analysis	 enabled	 to	 distinguish	 yoghurts	

fermented	by	different	types	of	starter	combinations	and	different	durations	of	storage	

according	 to	 their	 metabolite	 profiles.	 This	 research	 provides	 new	 information	

regarding	 the	 impact	 of	 probiotics	 on	 the	 metabolome	 of	 yoghurt	 and	 potential	

application	of	stress‐adapted	probiotics	in	an	actual	food‐carrier	environment.	
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1.1	 Definition	of	yoghurt	

Yoghurt	 is	 one	 of	 the	 most	 popular	 fermented	 milk	 products	 and	 the	

consumption	 is	 increasing	 worldwide	 [64].	 Based	 on	 the	 CODEX.STAND.243‐2003:	

Standard	for	fermented	milks,	yoghurt	 is	obtained	by	fermentation	of	milk,	which	may	

have	 been	 manufactured	 from	 products	 derived	 from	 milk	 with	 or	 without	

compositional	 modification,	 by	 the	 action	 of	 specific	 microorganisms,	 i.e.	 symbiotic	

cultures	 of	 Streptococcus	 thermophilus	 and	 Lactobacillus	 delbrueckii	 subsp.	 bulgaricus,	

which	shall	be	viable,	active	and	abundant	in	the	product	until	the	date	of	expiration.	If	

the	 product	 is	 heat‐treated	 after	 fermentation	 the	 requirement	 for	 viable	

microorganisms	does	not	apply	[12].		

	

1.2	 Diversity	of	yoghurt	

Fermented	milk	has	been	consumed	ever	 since	 the	domestication	of	animals.	A	

wide	range	of	products	has	constituted	a	vital	part	of	 the	human	diet	 in	many	regions	

around	the	world	[11].	Originally,	the	primary	function	of	fermenting	milk	was	to	extend	

its	 shelf‐life.	 The	 fermentation	 process	 generated	 further	 advantages	 including	 the	

distinctive	consistency,	flavor,	texture	and	digestibility	of	the	products	[69].	Nowadays,	

different	types	of	yoghurt	have	been	introduced	to	the	dairy	marketplace	in	response	to	

consumer	 preferences,	 changing	 lifestyles,	 and	 health	 concerns	 [71].	 Yoghurt	 can	 be	

categorized	according	to	manufacturing	processes	and	variations	in	physical,	chemical,	

flavor	 and	 compositional	 modifications	 [69].	 Examples	 of	 various	 types	 of	 yoghurt	

available	in	the	marketplace	are	listed	in	Table	1.1.		

	

1.3	 Manufacturing	of	yoghurt	

The	fundamental	basis	of	yoghurt	manufacturing	 is	the	acid	coagulation	of	milk	

proteins,	 i.e.	 mainly	 caseins,	 by	 the	 activity	 of	 starter	 cultures.	 The	 milk	 coagulation	

results	 in	 a	 three‐dimensional	 gel	 network	 capable	 to	 capture	 the	 liquid	 serum	phase	
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1
[39].	Based	on	the	physical	characteristics,	three	common	types	of	yoghurt	are	available	

in	the	daily	marketplace:	(i)	set‐yoghurt,	(ii)	stirred‐yoghurt	and	(iii)	drinking	yoghurt	

[69]	(Figure	1.1).		

Table	1.1.	Examples	of	various	types	of	yoghurt	available	in	the	marketplace			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Source	of	variation	 Product	category	

Milk	from	various	sources	 	
 Bovine’s	milk	yoghurt	
 Goat’s	milk	yoghurt	
 Sheep’s	milk	yoghurt	
 Buffalo’s	milk	yoghurt	
 Camel’s	milk	yoghurt	
 Mare’s	milk	yoghurt	
 Soy‐milk	yoghurt	
 Corn‐milk	yoghurt	
 Organic‐certified	milk	yoghurt	
	

Manufacturing	process	  Set‐yoghurt	
 Stirred‐	yoghurt	
 Drinking	yoghurt	
 Concentrated/strained	yoghurt	
 Frozen	yoghurt	
 Dried	yoghurt	
 UHT	yoghurt	
	

Flavor	fortification	  Plain	yoghurt	
 Fruit	flavored	yoghurt	
 Miscellaneous	flavored	yoghurt	
	

Rate	of	post‐acidification	  Traditional	yoghurt	
 Semi‐mild	yoghurt	
 Mild	yoghurt	
	

Fat	content	and	composition	  Full‐fat	yoghurt	
 Low‐fat	yoghurt	
 Non‐fat	yoghurt	
 Fat‐substitutes	yoghurt	
 Vegetable	oil	yoghurt	
	

Health‐promoting	yoghurt  Low	calorie	yoghurt	
 Lactose	hydrolyzed	yoghurt	
 Probiotic	yoghurt	
 ABT	yoghurt	
 Bio‐yoghurt	
 Biogarde	yoghurt	
 Omega‐3	enriched	yoghurt	
 Cholesterol	free	yoghurt	
 Vitamin	supplemented	yoghurt	
 Fiber	enriched	yoghurt	
	

Information	compiled	from		Chandan	[11],	Varnam	&	Sutherland	[76],	A.	
Y.	Tamime	&	Robinson	[69]	and	Walstra	et	al.	[78].	
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Fig.	1.1.	Flowchart	outline	for	the	manufacturing	of	yoghurt.	Information	adapted	from	Chandan	[11],	A.	
Y.	Tamime	&	Robinson	[69],	Varnam	&	Sutherland	[76]	and	Walstra	et	al.	[78].	
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1
Set‐yoghurt	 is	usually	fermented	in	package;	and	has	a	firm	gel‐like	texture	and	

natural	 flavor	 associated	 with	 its	 more	 traditional	 image.	 Stirred‐yoghurt	 is	 sheared	

after	fermentation,	which	produces	a	semi‐solid	pourable	product,	and	then	stabilizers,	

fruit	 mixtures	 as	 well	 as	 other	 ingredients	 are	 commonly	 added.	 Drinking	 yoghurt	 is	

produced	by	mixing	an	ordinary	yoghurt	with	water	and/or	fruit	concentrate,	resulting	

in	a	low	viscosity	and	drinkable	characteristics	of	the	product	[39].	

Although	 manufacturing	 stages	 of	 the	 three	 types	 of	 yoghurt	 have	 much	 in	

common,	the	acidification	rate	greatly	differs	between	set‐yoghurt	and	stirred‐yoghurt	

due	to	the	difference	in	inoculum	size	and	incubation	temperature	[78].	This	condition	

reflects	substantial	changes	on	the	rheological	and	organoleptic	quality	of	the	fermented	

products.	The	research	described	in	this	thesis	concentrates	on	the	simultaneous	growth	

and	 metabolite	 production	 by	 yoghurt	 starters	 and	 probiotics	 during	 set‐yoghurt	

fermentation	and	refrigerated	storage.	

	

1.4	 Yoghurt	starter	bacteria	

1.4.1	 Streptococcus	thermophilus	

S.	thermophilus	is	widely	used	for	the	manufacturing	of	fermented	dairy	products	

and	is	considered	as	the	second	most	important	species	of	industrial	lactic	acid	bacteria	

(LAB)	after	Lactococcus	lactis	[31].	It	is	a	Gram‐positive,	catalase‐negative,	thermophilic,	

facultatively	 anaerobic	 LAB.	 Young	 cells	 of	 S.	 thermophilus	are	 spherical	 in	 shape	 and	

occur	in	chains.	This	bacterium	has	an	optimum	growth	temperature	of	40	–	45	oC	and	

an	optimum	pH	near	6.0	–	6.5	 [46].	One	of	 the	main	 functions	of	S.	 thermophilus	 is	 to	

provide	a	rapid	acidification	in	milk.	S.	thermophilus	is	homofermentative	and	generates	

L(+)	lactic	acid	as	the	main	product	from	lactose	metabolism.	It	exhibits	β‐galactosidase	

(β‐gal)	and	metabolizes	only	the	glucose	moiety	of	lactose	[69].	S.	thermophilus	is	unable	

to	 metabolize	 galactose	 and	 thus	 expels	 this	 sugar	 from	 the	 cell	 into	 the	 medium.	

Glucose,	fructose	and	mannose	can	also	be	metabolized,	but	the	fermentation	of	maltose	

and	 sucrose	 is	 strain	 specific	 [51].	 The	 rate	 of	 acidification	 is	 a	 strain‐dependent	
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metabolic	trait	that	may	be	influenced	by	other	factors,	such	as	proteolytic	system	and	

urease	activity	 [31].	Most	of	S.	 thermophilus	strains	display	 limited	proteolytic	activity	

due	 to	 the	 lack	of	 cell‐enveloped	proteases	 (PrtS).	Normally,	 the	 level	of	 free	nitrogen	

sources	available	in	milk	is	insufficient,	and	thus	supplementation	is	usually	required	to	

support	their	full	growth.	One	of	the	strategies	used	in	the	manufacturing	of	yoghurt	is	

co‐cultivation	the	non‐proteolytic	S.	thermophilus	with	a	suitable	proteolytic	culture,	i.e.	

L.	delbrueckii	subsp.	bulgaricus	[28].	Several	S.	thermophilus	strains	also	have	capacity	to	

produce	 aroma	 volatiles	 and	 exopolysaccharides	 (EPS).	 These	 strains	 are	 used	 to	

facilitate	 the	distinctive	 flavor	and	 texture	characteristic	of	yoghurt	 [81].	Recently,	 the	

complete	 genome	 sequence	 and	 functional‐genomic	 analyses	 of	many	 S.	 thermophilus	

strains	have	been	extensively	published	[6,	18,	32,	67].			

1.4.2	 Lactobacillus	delbrueckii	subsp.	bulgaricus	

L.	delbrueckii	subsp.	bulgaricus	is	one	of	the	economically	most	important	species	

of	 LAB,	with	 a	worldwide	 application	 in	 yoghurt	manufacturing.	 It	 is	 a	Gram‐positive,	

thermophilic,	 facultatively	 anaerobic,	 non‐motile,	 non‐spore	 forming	 LAB.	 It	 occurs	 as	

single	or	short	chains	of	rod	cells,	with	rounded	ends.	This	bacterium	has	an	optimum	

growth	 temperature	 in	milk	between	40	and	45	 oC	and	an	optimum	pH	near	5.0	–	5.5	

[50].	 Its	basic	sugar	metabolism	is	obligate	homofermentative.	When	grown	in	milk,	L.	

delbrueckii	 subsp.	 bulgaricus	 transports	 lactose	 into	 the	 cell	 in	 association	 with	 the	

expulsion	of	galactose	similar	to	that	found	in	S.	thermophilus.	Lactose	is	hydrolyzed	by	

β‐galactosidase	with	only	glucose	being	metabolized	but,	in	this	case,	the	end	product	is	

D(–)	lactic	acid	[50].	This	form	of	lactic	acid	is	less	readily	metabolized	by	humans	than	

the	 L(+)	 isomer	 [51].	 Unlike	 S.	 thermophilus,	 L.	 delbrueckii	 subsp.	 bulgaricus	 is	 more	

proteolytic,	 and	 thus	 it	 can	 hydrolyse	 caseins,	 especially	 β‐casein,	 by	 means	 of	 cell‐

enveloped	 proteases	 (PrtB)	 to	 generate	 free	 amino	 acids	 and	 oligopeptides	 [51].	 A	

number	of	commercial	yoghurt	starters	contain	L.	delbrueckii	subsp.	bulgaricus	strains	

that	 produce	 substantial	 amount	 of	 volatiles	 and	 EPS	 [81].	 The	 complete	 genome	

sequences	 and	 functional‐genomic	 analyses	 of	 certain	 L.	 delbrueckii	 subsp.	 bulgaricus	

strains	have	been	recently	published	[66,	75].						
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1
1.4.3	 Interaction	between	S.	thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	

Even	though	S.	thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	are	able	to	grow	

independently	in	milk,	these	bacteria	perform	a	symbiosis	interaction	known	as	“proto‐

cooperation”	in	mixed	culture	[14,	69].	The	proto‐cooperation	is	based	on	the	exchange	

of	several	metabolites	which	provide	growth	stimulating	effects	to	each	other	(Fig	1.2).		

	

	

	

	

	

	

	

Fig.	 1.2.	 Schematic	 representation	 of	 the	 proto‐cooperation	 between	 Streptococcus	 thermophilus	 and	
Lactobacillus	 delbrueckii	 subsp.	 bulgaricus	 and	 their	 contribution	 to	 the	 characteristics	 of	 yoghurt.	 (+)	
growth	stimulatory	effect;	(–)	growth	inhibitory	effect;	LCFA:	long‐chain	fatty	acids.	Information	adapted	
from	Chandan	[11],	Sieuwerts	et	al.	[65],	A.	Y.	Tamime	&	Robinson	[69]	and	Walstra	et	al.	[78].	

	

Traditional	yoghurt	 starters	 consist	of	weakly	proteolytic	S.	 thermophilus	 strain	

and	 proteolytic	 L.	 delbrueckii	 subsp.	 bulgaricus	 strain	 [78].	 During	 the	 early	 stage	 of	

fermentation,	 the	 initial	 pH	 of	 milk	 (ca.	 6.7)	 is	 more	 favorable	 to	 the	 growth	 of	 S.	

thermophilus.	These	bacteria	develop	by	using	free	amino	acids	and	peptides	available	in	

milk.	However,	the	contents	of	these	free	nitrogen	sources	are	not	sufficient	to	promote	

their	 full	 growth	 [37],	 then	S.	 thermophilus	utilizes	amino	acids	and	peptides	obtained	

from	 the	 proteolytic	 activity	 of	 L.	 delbrueckii	 subsp.	 bulgaricus.	 On	 the	 other	 hand,	 S.	

thermophilus	produces	 lactic	acid	which	consequently	 lowers	the	pH,	hence	retards	 its	

growth,	 and	 creates	 a	 favorable	 growth	 condition	 for	L.	 delbrueckii	 subsp.	 bulgaricus.	

Furthermore,	 pyruvic	 acid,	 formic	 acid,	 folate,	 ornithine,	 several	 long‐chain	 fatty	 acids	

and	CO2	produced	by	S.	thermophilus	are	the	growth	stimulants	of	L.	delbrueckii	subsp.	

bulgaricus	[2,	65,	70,	81].	The	proto‐cooperation	has	an	important	role	on	the	growth	of	

S.	thermophilus 
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the	 two	 species,	 rate	 of	 milk	 acidification	 and	 development	 of	 distinctive	 flavor	 and	

texture	characteristics	of	the	fermented	product	[11,	81].	Although	interaction	between	

S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	 is	 often	 positive,	 absence	 of	

interaction	 or	 even	 negative	 effects	 can	 take	 place	 depending	 on	 the	 combination	 of	

bacterial	strains,	type	and	pre‐heating	process	of	base	milk	and	fermentation	conditions	

[14].	

 

1.5	 Probiotics	

Functional	foods	are	defined	as	foods	that	potentially	provide	health	benefits	in	

addition	to	the	nutrients	they	contain	[64].	One	way	in	which	foods	can	be	modified	to	

become	 functional	 is	 by	 addition	 of	 health‐associating	 	 microorganisms	 referred	 as	

probiotics	 [63].	The	term	“probiotics”	 is	originated	 from	Greek	meaning	“for	 life”	 [24].	

According	 to	 the	 FAO/WHO:	 Guidelines	 for	 the	 evaluation	 of	 probiotics	 in	 food,	

probiotics	 are	 defined	 as	 live	 microorganisms	 which	 when	 administered	 in	 adequate	

amounts	confer	a	health	benefit	on	the	host	[22].	Several	criteria	need	to	be	considered	

in	 the	 selection	 of	 probiotic	 microorganisms	 including	 the	 clinical	 safety,	 functional	

properties	and	technological	characteristics	[54].	

Most	commercial	probiotics	incorporated	in	dairy	products	are	strains	belonging	

to	the	genera	Lactobacillus	and	Bifidobacterium	[38].	Members	of	these	two	genera	have	

a	long	history	of	safe	use	in	the	manufacture	of	fermented	foods	and	found	as	a	part	of	

normal	microbiota	in	the	human	gastrointestinal	tract	[62].	A	number	of	health	benefits	

is	 claimed	 in	 favor	 of	 the	 consumption	 of	 probiotic	 lactobacilli	 and	 bifidobacteria	

including	modulation	 of	 immune	 system,	 prevention	 and	 reduction	 of	 gastrointestinal	

disorders,	alleviation	of	 lactose	intolerance,	prevention	of	allergy,	reduction	of	the	risk	

associated	 with	 mutagenicity	 and	 carcinogenicity,	 inhibition	 of	 intestinal	 pathogens,	

prevention	of	 inflammatory	bowel	disease	and	reduction	 in	serum	cholesterol	 [26,	59,	

64,	77].	However,	it	should	be	mentioned	that	the	beneficial	health	effects	imparted	by	

probiotics	 are	 completely	 strain	 specific.	 Among	 the	 probiotic	 strains	 incorporated	 in	

dairy	products,	L.	rhamnosus	GG	(Valio),	L.	casei	Shirota	(Yakult)	and	B.	animalis	subsp.	
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1
lactis	 BB12	 (Chr.	 Hansen)	 are	 of	 extensively	 studied	 strains	 with	 most	 clinical‐

documented	effects	in	humans	[63].										

1.5.1	 General	characteristics	of	the	genus	Lactobacillus	

Lactobacillus	 is	 the	 largest	 genus	 within	 the	 group	 of	 LAB.	 The	 general	

characteristics	 are	 as	 described	 previously	 in	 L.	 delbrueckii	 subsp.	 bulgaricus.	 Most	

strains	have	an	optimum	growth	temperature	between	35	–	45	oC,	and	the	optimum	pH	

ranges	 from	 5.5	 –	 6.0	 [69].	 The	 level	 of	 proteolytic	 activity,	 EPS	 and	 bacteriocins	

production	differs	between	species	of	Lactobacillus	and	varies	even	among	the	strains	of	

the	 same	species	 [16,	36].	They	are	mostly	 fastidious,	 chemo‐organotrophic,	 requiring	

nutrient‐rich	media	to	grow	[16].	Members	of	the	genus	Lactobacillus	are	classified	into	

three	 distinct	 groups	 based	 on	 their	 carbohydrate	 metabolism:	 (i)	 obligate	

homofermentative,	which	ferment	hexoses	almost	entirely	to	lactic	acid;	(ii)	facultative	

heterofermentative,	which	ferment	hexoses	either	almost	entirely	to	lactic	acid	or,	under	

glucose‐limiting	conditions,	to	lactic	acid,	acetic	acid,	ethanol,	and	formic	acid;	and	(iii)	

obligate	heterofermentative,	which	ferment	hexoses	to	 lactic	acid,	CO2,	acetic	acid,	and	

ethanol	 [16].	Lactobacillus	 can	be	 found	 in	diverse	environments,	 such	as	 foods	 (dairy	

products,	 fermented	 meat,	 sour	 dough,	 fermented	 vegetable,	 beverages),	 respiratory,	

gastrointestinal	 and	 genital	 tracts	 of	 humans	 and	 animals	 as	well	 as	 in	 various	 plant‐

based	 materials	 [23].	 Moreover,	 they	 have	 been	 the	 most	 common	 bacterial	 species	

isolated	from	the	human	intestine	[77].	The	safety	and	functional	properties	of	probiotic	

lactobacilli,	 particularly	 the	 strains	 of	 L.	 acidophilus,	 L.	 casei,	 L.	 rhamnosus,	 and	 L.	

johnsonii,	 have	been	extensively	 studied	 [63].	To	date,	 the	 complete	genomes	of	many	

probiotic	Lactobacillus	strains	have	been	sequenced	and	published	[1,	34,	43,	80].	This	

information	 has	 notably	 facilitated	 to	 understand	 the	 functionality	 and	 technological	

attributes	of	these	bacteria.	
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1.5.2	 General	characteristics	of	the	genus	Bifidobacterium		

Bifidobacterium	 are	 naturally	 found	 as	 major	 inhabitants	 of	 the	 gut	 of	 a	 large	

variety	of	mammals	 including	humans.	They	were	 first	 isolated	 from	breast‐fed	 infant	

faeces	by	Tissier,	 at	 the	Pasteur	 Institute	 in	1900,	who	discovered	a	bacterium	with	a	

characteristic	Y	shape	and	named	it	as	Bacillus	bifidus.	In	1957,	Dehnart	first	realized	the	

existence	 of	 multiple	 biotypes	 of	 Bifidobacterium	 and	 proposed	 a	 scheme	 for	 the	

differentiation	 of	 these	 bacteria	 based	 on	 the	 different	 carbohydrate	 metabolism	 [4].	

Bifidobacterium	 are	 Gram	 positive,	 obligately	 anaerobic,	 non‐motile,	 catalase‐negative	

and	 non‐spore	 forming	 LAB.	 They	 have	 polymorphic	 branched	 rod	 shapes	 including	

short	 curved	 rods,	 club	 shaped	 rods,	 and	 typical	 bifurcated	 Y	 shaped	 rods	 that	 may	

occur	 singly,	 in	 chains	 or	 clumps.	 The	 branching	 nature	 of	 bifidobacteria	 not	 only	

depends	 on	 the	 strains	 but	 also	 on	 the	 media	 used	 for	 cultivation	 [49].	 Most	

Bifidobacterium	strains	originating	from	humans	have	been	reported	to	grow	optimally	

at	 a	 temperature	 of	 36	 –	 38	 oC.	 The	 optimum	 pH	 for	 the	 growth	 of	 bifidobacteria	 is	

between	 6.0	 –	 7.0	 [63].	 Since	 bifidobacteria	 are	 strictly	 anaerobic	 LAB,	 oxygen	 is	

considered	 as	 a	 significant	 factor	 affecting	 their	 survival	 in	 fermented	 milk	 products	

[33].	 Bifidobacterium	 strains	 are	 heterofermentative.	 All	 bifidobacteria	 from	 human	

origin	are	able	to	utilize	glucose,	galactose,	lactose	and	fructose	as	carbon	sources	[63].	

Bifidobacterium	 metabolize	 hexoses	 using	 the	 “Bifidus	 pathway”	 by	 which	 acetic	 and	

lactic	acid	(ratio	3:2)	are	generated	from	the	fermentation	of	glucose	while	galactose	is	

metabolized	 through	 the	 Leloir	 pathway	 [69].	 Specific	 health‐promoting	 properties	 of	

probiotic	Bifidobacterium	strains	have	been	extensively	documented	[63,	77].		

1.5.3	 Technological	aspects	of	probiotics	in	yoghurt	

Nowadays,	 there	 has	 been	 a	 notable	 increase	 in	 the	 variety	 of	 probiotic	 dairy	

products	including	pasteurized	milk,	 ice	cream,	frozen	desserts,	 fermented	milk,	dairy‐

based	beverages,	cheeses	and	infant	milk	powder	[68].	Among	the	mentioned	products,	

yoghurt	 is	 remarkably	 the	 most	 important	 food‐carrier	 for	 the	 delivery	 of	 probiotics	

[60].	 Although	 the	 primary	 criteria	 for	 selection	 of	 probiotic	 strains	 are	 based	 on	 the	

clinical	safety	and	functional	properties	[77],	the	following	aspects	must	be	considered	
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1
from	a	technological	standpoint:	(i)	the	interaction	between	probiotics	with	traditional	

yoghurt	 starters,	 (ii)	 the	 ability	 of	 probiotics	 to	 grow	 in	 milk,	 (iii)	 the	 robustness	 of	

probiotics	 to	withstand	 the	manufacturing	process	 and	 storage	 condition	 and	 (iv)	 the	

influence	of	probiotics	on	the	sensory	characteristics	of	yoghurt	[42,	48,	68].			

There	 are	 several	 approaches	 by	 which	 probiotics	 can	 be	 added	 during	 the	

production	of	yoghurt:	(i)	probiotics	are	inoculated	as	an	adjunct	direct‐vat	inoculation	

(DVI)	 culture;	 (ii)	probiotics	 are	propagated	 in	one	batch	of	milk	or	 suitable	media	 in	

order	 to	 achieve	 a	 high	 biomass	 and	 then	 mixed	 together	 with	 yoghurt;	 and	 (iii)	

probiotics	 are	 used	 as	 a	 starter	 culture,	 e.g.	L.	 casei	 Shirota	 (Yakult),	 or	 a	 part	 of	 the	

starter	consortium,	e.g.	L.	acidophilus	and	B.	bifidum	(ABT	culture)	[68].	Most	commonly,	

however,	 many	 probiotic	 strains	 grow	 slowly	 in	 non‐supplemented	 milk	 and	 the	

traditional	 fermentation	 temperature	 is	 often	unsuitable	 for	 their	 growth,	 particularly	

the	strains	originating	from	the	human	GI	tract	[78].	Thus,	the	suitable	milk	acidification	

with	 satisfactory	 sensory	 properties	 is	 rarely	 occurs	 by	 pure	 culture	 of	 probiotics.	

Furthermore,	the	limited	growth	of	probiotics	in	milk	results	in	the	risk	of	overgrowth	of	

undesirable	 microorganisms	 which	 may	 cause	 undesirable	 flavor	 and	 texture	 in	 the	

fermented	product	[42].		

In	practice,	it	is	common	to	used	probiotics	as	an	adjunct	culture	in	combination	

with	traditional	yoghurt	starters.	The	activity	of	yoghurt	starters	can	create	a	favourable	

growth	 condition	 for	 probiotics.	 For	 example,	 S.	 thermophilus	 creates	 an	 anaerobic	

environment	 which	 subsequently	 stimulates	 the	 growth	 of	 bifidobacteria	 while	 L.	

delbrueckii	 subsp.	bulgaricus	 sustains	 the	 amino	 acid	 requirement	 of	 probiotics	 by	 its	

proteolytic	 activity	 [77].	 On	 the	 other	 hand,	 organic	 acids	 and	 volatile	 compounds	

produced	 by	 the	 activity	 of	 probiotics	 may	 contribute	 to	 the	 organoleptic	 quality	 of	

yoghurt	 [45].	Thus,	 the	 interaction	between	yoghurt	starters	and	probiotics	 is	another	

important	 aspect	 that	 must	 be	 considered	 in	 order	 to	 select	 the	 most	 suitable	

combination	regarding	the	functionality	and	sensory	quality	of	product	[68].	

The	definition	of	probiotics	underlines	that	these	functional	bacteria	need	to	be	

viable,	 metabolically	 active	 and	 present	 in	 sufficiently	 high	 number	 at	 the	 time	 of	
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consumption	 to	 ensure	 their	 beneficial	 health	 effects	 [22].	 It	 is	 recommended	 that	 a	

probiotic	product	should	contain	at	 least	106	cfu/g	of	viable	probiotic	cells	throughout	

the	entire	shelf‐life	 [77].	However,	numerous	studies	have	demonstrated	 that	many	of	

probiotic	 strains	 are	 not	 able	 to	 survive	well	 in	 fermented	milk	 [19,	 27,	 56,	 62].	 The	

survival	 of	probiotics	 can	be	adversely	affected	by	 certain	metabolites	 including	 lactic	

acid,	 hydrogen	peroxide,	 and	bacteriocins	 produced	by	 yoghurt	 starters	 [42].	Besides,	

various	factors	accountable	for	the	viability	loss	of	probiotics	during	yoghurt	production	

and	 storage;	 including	 sensitivity	 of	 the	 strains	 used,	 inoculation	 rate	 and	 level,	

fermentation	temperature,	level	of	oxygen	permeation	through	the	package,	presence	of	

other	competitive	LAB,	and	application	of	food	additives,	have	been	extensively	reported	

[42,	48,	63].	

1.5.4	 Strategies	for	improving	the	survival	of	probiotics	in	yoghurt		

Certain	 approaches	 have	 been	 applied	 for	 improving	 the	 survival	 of	 probiotics	

during	yoghurt	production	and	storage.	The	most	prevalent	of	which	are	the	selection	of	

appropriate	strains	on	the	basis	of	their	acid	and	bile	tolerances,	supplementation	of	the	

milk	with	nutrients,	addition	of	protective	compounds,	manipulation	of	starter	cultures,	

selection	 of	 appropriate	 packaging	 materials,	 application	 of	 oxygen	 scavengers,	

performing	 two‐stage	 fermentation	 and	 application	 of	 microencapsulation	 technique	

[61,	62,	68].			

An	 alternative	 strategy	 to	 improve	 the	 survival	 of	 probiotics	 in	 yoghurt	 is	 to	

enhance	 their	 ability	 to	 cope	 with	 the	 harsh	 environments	 during	 production	 and	

storage.	Stress	adaptation	is	one	of	the	strategies	to	improve	the	survival	of	probiotics	

by	pre‐treating	(preculturing)	them	in	a	sublethal	stress	condition	prior	to	exposure	to	a	

more	harsh	or	lethal	environment	[73].	This	approach	allows	probiotic	cells	to	develop	

adaptive	 stress	 responses,	 i.e.	 a	 genotypic	 and/or	 phenotypic	 reaction	 to	 growth	

inhibition	 induced	 by	 environmental	 or	 physiological	 imbalances	 [17],	 leading	 to	 an	

increase	in	their	survival	compared	to	those	that	are	directly	shifted	into	the	same	lethal	

stress	condition	[55].	Adaptive	responses	on	various	types	of	stress,	i.e.	heat,	cold,	acid,	

bile,	 osmotic,	 oxygen,	 high	 pressure	 and	 nutrient	 starvation,	 in	 lactobacilli	 and	
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bifidobacteria	have	been	well	 investigated	[15,	53,	72,	74].	These	stress	conditions	are	

characterized	 due	 to	 the	 environmental	 challenges	 where	 probiotics	 are	 typically	

encountered,	i.e.	during	human	gastrointestinal	transit,	 industrial‐scale	production	and	

in	the	food	systems	[53].	Nevertheless,	it	should	be	mentioned	that	stress	responses	in	

LAB	 are	 expressed	 in	 a	 very	 specific	 process	 depending	 on	 the	 species,	 strains	 and	

particular	types	of	stress	[74]	

Recent	 advances	 in	 post‐genomics	 technologies,	 i.e.	 transcriptomics	 and	

proteomics,	 have	 extensively	 provided	 novel	 insights	 into	 how	 probiotics	 counteract	

with	 environmental	 stresses	 from	 a	 molecular	 perspective	 [58].	 Adaptive	 stress	

responses	in	probiotics	are	associated	with	the	expression	of	a	 large	number	of	genes,	

synthesis	 of	 stress‐response	 proteins	 and	 alteration	 of	 various	 physiological	 features	

[35,	 53,	 57,	 74].	 As	 a	 consequence,	 stress	 adaptation	not	 only	 enables	 to	 enhance	 the	

survival	 of	 probiotics	 but	 also	 induces	 substantial	 changes	 in	 their	 performance	 in	 a	

system.	This	information	is	important	for	the	application	of	stress‐adapted	probiotics	in	

yoghurt	 since	 their	metabolic	 activity	may	 influence	 the	biochemical	 and	organoleptic	

characteristics	of	the	product.	

	

1.6	 Metabolomics	approach	

1.6.1	 Metabolomics	in	food	research		

The	suffix	“~omics”	derives	from	the	Latin	voice	“~omne”	that	means	everything,	

entirety	 or	 totality	 [44].	 Metabolomics	 is	 an	 emerging	 field	 of	 ~omics	 research	 that	

focuses	 on	 comprehensive	 characterization	 of	 small	 molecular	 weight	 metabolites	 (<	

1,000	Da)	present	in	a	biological	system.	The	collective	set	of	metabolites	found	within	a	

system	 is	 commonly	 referred	 as	 “metabolome”	 [79].	 The	 advanced	 technologies	 in	

metabolomics	 have	 provided	 a	 high‐throughput	 characterization	 of	 hundreds	 of	

metabolites	 in	 a	 single	 measurement.	 Metabolomics	 technologies	 are	 generally	

employed	 by	 means	 of	 targeted	 and	 non‐targeted	 analyses.	 The	 targeted	 analysis	

focuses	 on	 a	 group	 of	 metabolites	 that	 require	 the	 specific	 identification	 and	
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quantification	 process.	 This	 analysis	 is	 important	 for	 assessing	 the	 behavior	 of	 a	

particular	 collection	 of	 metabolites	 under	 certain	 conditions.	 On	 the	 other	 hand,	 the	

non‐targeted	 analysis	 focuses	 on	 the	 detection	 of	 as	 many	 groups	 of	 metabolites	 as	

possible	 to	 discover	 the	 overall	 profiles	 or	 fingerprints	 of	 the	 samples	 [10].	 Recently,	

metabolomics	 has	 been	 applied	 to	 many	 disciplines	 including	 food	 and	 nutritional	

research	 [9].	This	analytical	platform	provides	opportunities	 to	discover	and	establish	

new	 biochemical	 pathways,	 metabolite	 database,	 molecular	 profiles,	 potential	

biomarkers	 and	 bioactive	 compounds	which	 can	 be	 directly	 correlated	 to	 the	 quality,	

safety,	fermentation,	processing,	traceability	and	authenticity	of	food	products	[9,	10,	25,	

29,	44,	79].	

1.6.2	 Metabolomics	for	the	study	of	microbial	activity	in	yoghurt		

Metabolomics	 has	 widely	 been	 applied	 to	 investigate	 the	 biochemical	 changes	

related	 to	 microbial	 activity	 during	 fermentation	 and	 the	 possibility	 to	 predict	 the	

sensory	 and	 nutritional	 quality	 of	 fermented	 food	 products	 [44].	 From	 a	 molecular	

perspective,	yoghurt	 is	considered	as	a	complex	food	system	consisting	of	hundreds	of	

biomolecules	 including	 proteins,	 lipids,	 carbohydrates	 and	 many	 other	 small	

compounds,	such	as	amino	acids,	organic	acids,	nucleic	acids,	 fatty	acids,	minerals	and	

other	 aroma	 volatiles	 responsible	 for	 its	 distinctive	 flavor	 characteristics	 [69].	

Regarding	 this	 range	 of	 chemical	 classes,	 measurement	 of	 all	 metabolites	 in	 yoghurt	

using	 a	 single	 analytical	 platform	 is	 usually	 unattainable.	 The	 application	 of	 mass	

spectrometry	 (MS)‐based	 and	 nuclear	 magnetic	 resonance	 (NMR)‐based	 techniques	

have	 shown	 to	 be	 very	 effective	 for	 determining	 a	 wide	 range	 of	 metabolites	 in	

fermented	foods	[44].	Headspace	SPME‐GC/MS	has	been	applied	in	the	determination	of	

volatile	metabolite	profile	in	liquid	milk	and	yoghurt	[13,	21,	30,	40].	1H‐NMR	has	been	

used	 for	 better	 understanding	 the	 overall	 biochemical	 changes	 associated	 with	 the	

microbial	activity	 in	fermented	milk	and	cheeses	[3,	7,	8,	44,	47,	52].	The	outcome	has	

provided	new	insights	regarding	the	variation	in	metabolite	profiles	of	products	related	

to	specific	type	of		starter	culture,	fermentation	process	and	storage	condition	[47].	
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Fig.	1.3.	General	workflow	of	the	metabolomic‐based	analytical	approach	in	this	research.	

	

1.6.3	 Interpretation	of	metabolomics	data		

The	key	success	strategies	 for	metabolomics	research	are	challenged	by	how	to	

(i)	 collect	 high‐throughput	 data	 (metabolome)	 and	 (ii)	 interpretation	 of	 multi‐

dimensional	 datasets	 by	 which	 essential	 knowledge	 in	 advanced	 analytical	 chemistry	

and	chemometrics	needs	to	be	combined	[5].	The	application	of	multivariate	statistical	

analysis	reduces	the	dimension	of	metabolomic	dataset	and	enables	to	identify	possible	

patterns	among	the	samples	[41].	In	this	research,	the	two	most	common	unsupervised	

algorithms:	(i)	principal	component	analysis	(PCA)	and	(ii)	hierarchical	cluster	analysis	

(HCA)	were	 applied	 to	 distinguish	 significant	 patterns	 from	 the	metabolite	 profiles	 of	

set‐yoghurts	 (Fig.	 1.3).	The	 two	algorithms	 reveal	 the	 comparative	metabolite	profiles	

among	 yoghurt	 samples	 from	different	 perspectives.	 The	 PCA	 enables	 to	 visualize	 the	

relationships	between	samples	and	metabolites	by	means	of	two	component	plots.	The	

score	plot	 illustrates	how	 the	 samples	 are	distinguished	 according	 to	 their	metabolite	

profiles.	The	loading	plot	indicates	how	much	each	metabolite	is	relatively	contributed	

on	 that	 specific	 principal	 component	 corresponding	 to	 the	pattern	observed	 [20].	 The	

HCA	 classifies	metabolite	 profiles	 of	 the	 samples	 according	 to	 the	 overall	 similarities	

determined	 by	 a	 metric	 consisting	 of	 Pearson’s	 correlation	 distances	 with	 average	

Set‐yoghurt Metabolomics	
analysis 

Data	
acquisition

Pre‐processing Chemometrics

Yoghurt	
samples 

Metabolite	profiling	:
Signal	assignment 
Metabolite	identification

Volatile	metabolites	
determined	by	SPME‐GC/MS

Data	
normalization

Pattern	recognition:
PCA 

Non‐volatile	metabolites	
determined	by	1H‐NMR 

Classification:
HCA 



Chapter	1	

26	
 

linkages.	The	results	are	demonstrated	 in	 terms	of	a	 list	of	clusters	(dendrogram)	and	

their	members	at	each	level	of	the	hierarchy	[20].	

		

1.7	 Objectives	and	outline	of	the	thesis	

The	main	objective	of	this	research	was	to	 investigate	the	simultaneous	growth	

and	metabolite	production	by	traditional	yoghurt	starters	and	different	probiotic	strains	

in	 set‐yoghurt.	 A	 strategy	 to	 enhance	 the	 survival	 of	 probiotics	 in	 acidic	 condition	 of	

yoghurt	 was	 additionally	 applied	 by	 preculturing	 these	 functional	 bacteria	 under	

sublethal	 salt	 and	 low	pH	stress	conditions.	This	approach	would	enable	probiotics	 to	

develop	adaptive	responses	leading	to	an	increase	in	their	survival	prior	to	inoculation	

in	milk.	The	activity	of	yoghurt	starters	and	probiotics	was	investigated	by	monitoring	

bacterial	population	dynamics,	milk	acidification	and	changes	in	the	molecular	profiles	

of	yoghurt	(Fig.	1.4).	

		

Fig.	1.4.	Schematic	representation	of	 the	approaches	used	to	 investigate	 the	activity	of	yoghurt	starters	

and	probiotics	in	this	research.	
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A	complementary	metabolomics	approach	using	headspace	SPME‐GC/MS	and	1H‐

NMR	 was	 applied	 for	 characterization	 of	 biochemical	 changes	 related	 to	 microbial	

metabolism	 during	 set‐yoghurt	 fermentation	 and	 refrigerated	 storage.	 Finally,	

metabolite	profiles	of	yoghurts	 fermented	with	different	 types	of	 starter	combinations	

and	different	durations	of	storage	were	statistically	compared	by	means	of	multivariate	

analysis.	The	outcomes	are	expected	to	provide	new	insights	concerning	the	 impact	of	

probiotics	 incorporation	 in	 yoghurt,	 since	 their	 metabolic	 activity	 may	 substantially	

affect	 the	 biochemical	 and	 organoleptic	 characteristics	 of	 this	 product.	 Understanding	

the	 activity	 of	 probiotics	 in	milk	 and	 yoghurt	 is	 an	 essential	 step	 for	 optimizing	 their	

performance	yielding	in	a	higher	quality	product.		

The	 outline	 of	 this	 thesis	 consists	 of	 the	 following	 chapters	 devoted	 to	 specific	

investigations:	

 Chapter	2	focuses	on	the	interaction	between	different	proteolytic	strains	of	S.	

thermophilus	in	co‐culture	with	L.	delbrueckii	subsp.	bulgaricus	in	set‐yoghurt.	

The	 impact	 of	 proto‐cooperation	 on	 the	 growth	 of	 the	 two	 species,	 milk	

acidification	 and	 changes	 in	 volatile	 and	 non‐volatile	 metabolite	 profiles	 of	

yoghurt	 are	 discussed.	 The	 importance	 of	 suitable	 strain	 selection	 for	

achieving	the	best	technological	performance	regarding	the	quality	of	product	

is	underlined.	

	

 Chapter	3	 reveals	 the	 impact	 of	 probiotics	 incorporation	 on	 the	metabolite	

formation	in	set‐yoghurt.	Two	commercial	probiotic	strains,	L.	rhamnosus	GG	

and	B.	animalis	subsp.	lactis	BB12,	were	co‐cultivated	with	traditional	yoghurt	

starters.	The	microbial	activity	during	fermentation	and	storage	is	discussed	in	

terms	 of	 bacterial	 population	 dynamics,	 milk	 acidification	 and	 changes	 in	

volatile	and	non‐volatile	metabolite	profiles	of	yoghurt.	

	

 Chapter	 4	 introduces	 preculturing	 under	 sublethal	 stress	 condition	 as	 a	

potential	strategy	to	improve	the	survival	of	L.	rhamnosus	GG	and	B.	animalis	

subsp.	 lactis	 BB12	 in	 yoghurt.	 The	 two	 probiotic	 strains	 were	 precultured	
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under	 elevated	 NaCl	 and	 low	 pH	 stress	 combinations	 in	 a	 batch	 fermentor	

prior	 to	 inoculation	 in	 milk.	 Adaptive	 responses	 of	 sublethally	 precultured	

probiotics	are	discussed	 in	 terms	of	 significant	 increase	 in	 their	survival	and	

substantial	impact	on	the	metabolite	formation	in	yoghurt.	

	

 Chapter	5	continues	on	the	framework	of	the	previous	study	by	evaluating	the	

growth	 and	 survival	 of	 potential	 probiotic	 L.	 plantarum	 WCFS1	 in	 co‐

fermentation	 with	 traditional	 yoghurt	 starters.	 The	 influence	 of	 sublethally	

precultured	 L.	 plantarum	 WCFS1	 on	 the	 survival	 of	 L.	 delbrueckii	 subsp.	

bulgaricus,	 post‐acidification	 and	 metabolite	 formation	 in	 yoghurt	 are	

discussed.	

	

 Chapter	6	provides	a	general	discussion	including	technical	aspects	of	the	two	

metabolomic‐based	analytical	platforms	and	 the	main	 findings	of	 the	 studies	

described	in	the	earlier	chapters.	The	main	conclusions	and	implications	of	the	

studies	 are	 addressed,	 and	 recommendations	 for	 future	 research	 are	

proposed.						
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Abstract	

Proto‐cooperation	between	S.	thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	is	

one	 of	 the	 key	 factors	 that	 determine	 the	 fermentation	 process	 and	 final	 quality	 of	

yoghurt.	 In	 this	 study,	 the	 interaction	 between	 different	 proteolytic	 strains	 of	 S.	

thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	was	investigated	in	terms	of	microbial	

growth,	 acidification	 and	 changes	 in	 the	 biochemical	 composition	 of	 milk	 during	 set‐

yoghurt	fermentation.	A	complementary	metabolomics	approach	was	applied	for	global	

characterization	 of	 volatile	 and	 non‐volatile	 polar	 metabolite	 profiles	 of	 yoghurt	

associated	with	proteolytic	activity	of	the	individual	strains	in	the	starter	cultures.	The	

results	demonstrated	that	only	non‐proteolytic	S.	thermophilus	 (Prt‐)	strain	performed	

proto‐cooperation	with	L.	delbrueckii	subsp.	bulgaricus.	The	proto‐cooperation	resulted	

in	significant	higher	populations	of	the	two	species,	faster	milk	acidification,	significant	

abundance	 of	 aroma	 volatiles	 and	 non‐volatile	 metabolites	 desirable	 for	 a	 good	

organoleptic	 quality	 of	 yoghurt.	 Headspace	 SPME‐GC/MS	 and	 1H‐NMR	 resulted	 in	 the	

identification	 of	 35	 volatiles	 and	 43	 non‐volatile	 polar	 metabolites,	 respectively.	

Furthermore,	 multivariate	 statistical	 analysis	 allows	 discriminating	 set‐yoghurts	

fermented	by	different	 types	of	 starter	 cultures	 according	 to	 their	metabolite	profiles.	

This	finding	underlines	that	selection	of	suitable	strain	combinations	in	yoghurt	starters	

is	 important	 for	achieving	 the	best	 technological	performance	regarding	 the	quality	of	

product.	
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2.1	 Introduction	

Yoghurt	 is	 one	 of	 the	 most	 popular	 fermented	 dairy	 products	 and	 its	

consumption	 is	 increasing	 worldwide	 [40].	 According	 to	 the	 Codex	 standard	 for	

fermented	milks	 [7],	yoghurt	 is	specifically	characterized	by	 the	presence	of	symbiotic	

cultures	 of	 Streptococcus	 thermophilus	 and	 Lactobacillus	 delbrueckii	 subsp.	 bulgaricus.	

During	 fermentation,	 these	 bacteria	 perform	 three	 major	 biochemical	 conversions	 of	

milk	components:	(i)	conversion	of	lactose	into	lactic	acid	(fermentation),	(ii)	hydrolysis	

of	caseins	into	peptides	and	free	amino	acids	(proteolysis)	and	(iii)	breakdown	of	milk	

fat	into	free	fatty	acids	(lipolysis)	[44].	These	reactions	lead	to	the	production	of	various	

metabolites	 resulting	 in	 a	 decrease	 of	 the	 pH,	 formation	 of	 a	 semi‐solid	 texture	 and	 a	

distinctive	 yoghurt	 flavor	 [23].	 Even	 though	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	

bulgaricus	are	able	 to	grow	 individually	 in	milk,	 they	can	have	a	symbiotic	 interaction	

called	 “proto‐cooperation”	 in	 mixed	 cultures	 [43].	 The	 interaction	 is	 based	 on	 the	

exchange	of	several	metabolites	which	provide	mutual	growth	stimulating	effects	[41].	

In	 summary,	 S.	 thermophilus	 produces	 pyruvic	 acid,	 formic	 acid,	 folic	 acid,	 ornithine,	

long‐chain	 fatty	 acids	 and	 CO2	 which	 stimulate	 the	 growth	 of	 L.	 delbrueckii	 subsp.	

bulgaricus.	 Lactic	 acid	 produced	 by	 S.	 thermophilus	 also	 reduces	 the	 pH	 of	milk	 to	 an	

optimum	 level	 for	 L.	 delbrueckii	 subsp.	 bulgaricus.	 Consequently,	 the	 growth	 of	 	 L.	

delbrueckii	 subsp.	 bulgaricus	 supplies	 peptides,	 free	 amino	 acids	 and	 putrescine	 that	

stimulate	 the	 growth	 of	 S.	 thermophilus	 [41].	 Recent	 post‐genomic	 studies	 in	 mixed	

culture	of	S.	thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	have	revealed	new	insights	

in	 physiology	 and	 molecular	 basis	 of	 the	 interaction	 [18,	 33,	 36,	 41,	 42].	 Although	

interaction	 between	 the	 two	 species	 is	 often	 positive	 (proto‐cooperation),	 absence	 of	

interaction	 or	 even	 negative	 effects	 can	 take	 place	 depending	 on	 the	 combination	 of	

bacterial	 strains,	 type	 and	 heating	 process	 of	 base	 milk	 and	 fermentation	 conditions	

[11].		

Proteolytic	 systems	 in	 lactic	 acid	bacteria	 rely	 on	 the	 function	of	 bacterial	 cell‐

envelope	 proteinases,	 peptide	 transport	 systems	 and	 intracellular	 peptidases	 [30].	

Proteolytic	 activity	 of	 one	 of	 the	 species	 in	 the	 mixed	 cultures	 (mostly	 L.	 delbrueckii	

subsp.	 bulgaricus)	 plays	 an	 important	 role	 in	 proto‐cooperation	 as	 mentioned	
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previously.	Traditional	yoghurt	cultures	consist	of	non‐proteolytic	(Prt‐)	S.	thermophilus	

and	high	proteolytic	L.	delbrueckii	subsp.	bulgaricus	[46].	Thus,	the	former	bacteria	take	

advantage	 from	 active	 proteolytic	 system	 of	 the	 latter	 ones	 to	meet	 their	 amino	 acid	

requirement.	 Furthermore,	 metabolism	 of	 amino	 acids	 generates	 volatile	 metabolites	

responsible	 for	 the	aroma	profile	of	product	[30].	The	contributions	of	S.	thermophilus	

and	L.	delbrueckii	 subsp.	bulgaricus	 to	aroma	volatile	 formation	 in	 fermented	milk	are	

well	documented	[22,	34,	39].	 	However,	the	expression	of	proteolytic	activity	(Prt+)	in	

several	 S.	 thermophilus	 strains	 allows	 them	 to	 grow	 independently	 in	milk	 leading	 to	

substantial	acidification.	This	strong	impact	of	proteolytic	activity	on	acidifying	capacity	

of	S.	thermophilus	has	been	reported	[10,	12,	15].	Despite	extensive	publications	on	the	

strain	 selections,	 mechanisms	 of	 amino	 acid	 biosynthesis,	 genome	 sequences	 and	

potential	application	of	proteolytic	S.	thermophilus	strains	[12,	21,	25],	the	role	of	these	

proteolytic	 streptococci	 in	 mixed	 culture	 with	 L.	 delbrueckii	 subsp.	 bulgaricus	 hardy	

received	attention.				

The	 developments	 in	 metabolomics	 allows	 discovery	 of	 a	 wide	 range	 of	

metabolites	in	complex	biological	systems	including	food	matrices	[17].	The	application	

of	 mass	 spectrometry	 (MS)	 and	 nuclear	 magnetic	 resonance	 (NMR)	 technique	 have	

shown	 to	 be	 very	 successful	 in	 determining	 a	 wide	 range	 of	 metabolites	 related	 to	

microbial	 activity	 during	 fermentation,	 ripening	 and	 storage	 of	 fermented	 dairy	

products	[9,	13,	14,	16,	32,	38].	However,	to	our	knowledge,	a	complementary	approach	

has	never	been	applied	to	attain	information	regarding	the	effects	of	proteolytic	activity	

of	 individual	 strains	 of	 S.	 thermophilus	 in	 mixed	 culture	 with	 L.	 delbrueckii	 subsp.	

bulgaricus	during	yoghurt	fermentation	on	the	global	metabolite	profile	of	product.	

The	objective	of	this	study	was	therefore	to	 investigate	the	interaction	between	

proteolytic	 and	 non‐proteolytic	 strains	 of	 S.	 thermophilus	 in	 mixed	 culture	 with	 L.	

delbrueckii	 subsp.	 bulgaricus	 during	 set‐yoghurt	 fermentation.	 Growth	 of	 starter	

cultures,	changes	in	milk	pH	and	titratable	acidity	were	monitored.	Biochemical	changes	

related	 to	 the	 interaction	 between	 the	 two	 species	 were	 characterized	 in	 terms	 of	

volatile	 and	 non‐volatile	 polar	 metabolite	 profile	 of	 yoghurt	 using	 headspace	 SPME‐

GC/MS	and	1H‐NMR	technique.	
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2.2	 Materials	and	methods	

2.2.1	 Milk	preparation	

The	milk	was	obtained	by	reconstituting	10%	(w/v)	Nilac	skimmed	milk	powder	

(NIZO,	Ede,	The	Netherlands)	in	milli‐Q	water	(45	°C)	to	obtain	final	liquid	milk	at	9.5%	

dry	matter	content.	The	milk	was	pasteurized	at	90	 oC	 for	5	min	and	 then	was	cooled	

down	in	a	water	bath	until	the	temperature	of	42	oC	was	reached.	

2.2.2	 Starter	cultures	

Frozen	direct‐vat‐inoculation	pellets	of	S.	thermophilus	Prt+	(ST‐Prt+)	strain	C38,	

S.	 thermophilus	Prt‐	 (ST‐Prt‐)	 strain	C44	and	L.	delbrueckii	subsp.	bulgaricus	Prt+	 (LB)	

strain	 C49	 were	 supplied	 by	 CSK	 Food	 Enrichment	 (Ede,	 The	 Netherlands).	 The	

difference	 in	proteolytic	 activity	between	 the	 two	S.	 thermophilus	 strains	 refers	 to	 the	

extracellular	 protease	 PrtS	 targeting	 milk	 proteins	 during	 yoghurt	 production.	 The	

pellets	were	stored	at	‐45	oC	and	were	placed	at	ambient	temperature	(20	±	3	°C)	for	15	

min	before	use.	 Inoculation	was	performed	 to	obtain	an	 initial	 viable	bacteria	 level	 at	

106	cfu/g.	Five	different	types	of	single	strain	and	mixed	cultures:	(i)	pure	ST‐Prt+,	(ii)	

pure	 ST‐Prt‐,	 (iii)	 pure	 LB,	 (iv)	 mixed	 ST‐Prt+/LB	 and	 (v)	 mixed	 ST‐Prt‐/LB	 were	

investigated	in	this	study.	The	combinations	of	S.	thermophilus	and	L.	delbrueckii	subsp.	

bulgaricus	 were	 inoculated	 at	 the	 ratio	 106:106	 cfu/g	 because	 in	 preliminary	

experiments,	this	ratio	had	demonstrated	the	best	profile	(bacterial	growth,	acidity	and	

texture)	for	yoghurt	(data	not	shown).						

2.2.3	 Set‐yoghurt	fermentation	

After	inoculation,	set‐yoghurt	fermentation	was	carried	out	in	a	water	bath	at	42	

oC	for	4	h.	Samples	were	taken	every	hour	during	fermentation	for	microbiological	and	

chemical	 analysis.	 The	 enumeration	 of	 viable	 bacteria	 and	 determination	 of	 pH	 and	

titratable	 acidity	 were	 carried	 out	 directly	 after	 sampling.	 For	 1H‐NMR	 analysis,	 the	

samples	were	 stored	 at	 ‐20	 °C	 until	 the	 analysis.	 The	 fermentation	was	 performed	 in	

three	replicates	for	each	type	of	starter	culture.				
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2.2.4	 Enumeration	of	viable	bacteria	

Viable	 bacteria	 in	 set‐yoghurt	were	 enumerated	 using	 the	 standard	 pour	 plate	

technique.	 Viable	 counts	 of	 S.	 thermophilus	were	 determined	 on	 S.	 thermophilus	 agar	

after	 aerobic	 incubation	 at	 37	 °C	 for	 24	 h	 [3].	 Viable	 counts	 of	 L.	 delbrueckii	 subsp.	

bulgaricus	were	determined	on	MRS	 agar	 pH	5.70	 (Merck,	Darmstadt,	 Germany)	 after	

anaerobic	 incubation	 (Anoxomat™‐Mart®	Microbiology,	 Drachten,	 the	 Netherlands)	 at	

37	°C	for	48	h	[3].		

2.2.5	 Determination	of	acidification	profile	

Production	 of	 acid	 during	 fermentation	 was	 expressed	 by	 changes	 in	 pH	 and	

increases	 in	 titratable	 acidity.	 Yoghurt	 samples	 were	 weighed	 to	 25.0	 g	 and	 the	 pH	

measurements	 were	 performed	 using	 a	 laboratory	 pH	 meter	 (InoLab	 pH720,	 WTW,	

Weilheim,	 Germany).	 The	 samples	were	 titrated	with	 0.1	N	NaOH	 (Merck,	 Darmstadt,	

Germany)	with	continuous	magnetic	stirring	until	pH	8.30	was	reached.	The	amount	of	

0.1	N	NaOH	(mL)	used	to	titrate	100	g	of	yoghurt	was	referred	as	Titratable	acidity	(TA).	

The	TA	value	was	expressed	as	%	acid	 equivalent	 to	 lactic	 acid	 (%	LA)	 in	 the	 sample	

[24].			

2.2.6	 Analysis	of	volatile	metabolites	by	headspace	SPME‐GC/MS	

For	 headspace	 SPME‐GC/MS	 analysis,	 a	 mimic‐scenario	 of	 set‐yoghurt	

fermentation	 was	 carried	 out	 directly	 in	 GC	 vials	 to	 avoid	 loss	 of	 these	 compounds	

during	sample	preparation.	The	inoculated	NILAC	milk	was	directly	divided	(3	mL)	into	

a	 series	 of	 five	 clear	 headspace	 GC	 vials	 (10	mL,	 46	 x	 22.5	mm)	 sealed	 with	 20	mm	

silicone/PTFE	septa	and	magnetic	caps	(Grace,	Albany,	OR,	USA).	The	vials	were	placed	

in	a	water	bath	at	42	°C	for	4	h.	The	samples	were	stored	at	‐20	°C	until	the	analysis.	In	

order	to	ensure	that	the	results	were	comparable	with	the	yoghurt	fermented	in	section	

2.3,	the	final	pH	(4	h)	from	in‐vial	fermentation	was	regularly	verified	(data	not	shown).	

The	fermentation	was	performed	in	three	replicates	for	each	type	of	starter	culture.		
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a)	Extraction	of	volatile	compounds	by	Solid	Phase	Micro	Extraction	(SPME)	

Frozen	 samples	 were	 thawed	 and	 incubated	 at	 60	 °C	 for	 1	 min.	 Afterward,	

volatile	 compounds	 in	 the	headspace	were	extracted	at	60	 °C	 for	5	min	with	 a	75	µm	

Carboxen™–PDMS‐SPME	 fiber	 (Supelco,	 Bellefonte,	 PA,	 USA)	 using	 TriPlus™	

autosampler	(Thermo	Scientific,	Austin,	TX,	USA).	Milli‐Q	water	was	analyzed	as	blank	

sample.	This	method	was	based	on	the	method	developed	by	Hettinga	et	al.	[19].	

b)	Determination	 of	 volatile	 compounds	 by	 gas	 chromatography	 coupled	

with		mass	spectrometry	(GC/MS)	

The	 SPME	 fiber	was	 desorbed	 for	 10	min	 in	 the	 GC	 injection	 port.	 The	 GC/MS	

analysis	was	performed	using	Trace	GC	Ultra	connected	with	DSQ	II	mass	spectrometer	

(Thermo	 Scientific,	 Austin,	 TX,	 USA).	 The	 Stabilwax®‐DA‐Crossband®‐Carbowax®‐

polyethylene‐glycol	column	with	30	m	length,	0.32	mm	internal	diameter,	and	1	µm	film	

thickness	(Restek,	Bellefonte,	PA,	USA)	was	used.	The	oven	temperature	was	maintained	

at	40	°C	for	3	min,	then	increased	at	15	°C/min	to	220	°C	and	maintained	for	1	min.	The	

carrier	gas	was	helium	fed	with	a	constant	flow	rate	at	1.5	mL/min.	The	MS	iron	source	

was	maintained	at	225	 °C	with	 full	 scan.	Electron	 impact	mode	was	at	70	eV	with	 the	

mass	 range	 33‐250	m/z.	 This	 procedure	 was	 modified	 based	 on	 Hettinga	 et	 al.	 [19].	

Volatile	 metabolites	 were	 identified	 using	 AMDIS	 software	 (NIST,	 Gaithersburg,	 MD,	

USA)	referred	 to	NIST/EPA/NIH	database	and	 library	provided	by	Hettinga	et	al.	 [20].	

Peaks	 from	 column	 bleed	 and	 SPME	 fiber	 were	 corrected	 using	 the	 blank	 sample.	

Specific	retention	time	and	m/z	model	were	used	for	automated	peak	integration	in	the	

XCalibur	software	package	(Thermo	Scientific,	Austin,	TX,	USA).	

2.2.7	 Analysis	of	non‐volatile	polar	metabolites	by	1H‐NMR	spectroscopy	

a)	Sample	preparation	and	1H‐NMR	analysis	

For	 1H‐NMR	 analysis,	 the	 samples	 from	 two	 replicates	 were	 analyzed.	 Frozen	

yoghurt	samples	were	 thawed	at	 room	temperature	and	pH	was	adjusted	 to	6.0	using	

1.0	 N	 NaOH	 to	 achieve	 low	 variation,	 i.e.	 location	 and	 shape	 of	 peaks,	 in	 the	 spectra	

obtained	 [31].	 Residual	 lipids	 were	 removed	 by	 dichloromethane	 extraction.	 The	

samples	were	diluted	1:2	 (w/w)	with	dichloromethane	 (Merck,	Darmstadt,	Germany),	
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then	were	mixed	and	centrifuged	(Multifuge	X3R,	Thermo	Scientific,	Austin,	TX,	USA)	at	

4,100g	for	15	min	at	4	°C.	The	clear	liquid	was	collected	and	ultra‐centrifuged	(Beckman	

L60	Ultracentrifuge,	Boulevard	Brea,	CA,	USA)	at	117,500g	for	75	min	at	4	°C	to	remove	

the	 protein	 fraction.	 The	 clear	 serum	 was	 collected	 and	 ultra‐filtrated	 using	

microcentrifugation	 (Spectrafuge™	16M	Microcentrifuge,	 Labnet	 Int.	 Inc.,	Woodbridge,	

NJ,	USA)	at	13,800g	for	20	min	at	room	temperature	through	a	Pall	Nanosep®	centrifugal	

device	with	3	kDa	molecular	weight	 cutoff	 (Pall	 life	 science,	Ann	Arbor,	MI,	USA).	The	

filtrate	was	mixed	1:1	(v/v)	with	phosphate	buffer	pH	6.0	(300	mM	KH2PO4,	10%	(w/w)	

D2O	 and	 1	 mM	 3‐(Trimethylsilyl)	 propionic‐2,	 2,	 3,	 3‐d4	 acid	 sodium	 salt	 (TSP))	 as	

internal	standard.	All	chemicals	used	to	prepare	the	buffer	were	obtained	from	Sigma‐

Aldrich	(Steinheim,	Germany).	The	mixture	was	stabilized	at	4	°C	overnight	and	then	re‐

centrifuged	 at	 13,800g	 for	 20	min	 at	 room	 temperature	 for	 final	 precipitate	 removal.	

Finally,	350	µL	of	the	mixture	was	transferred	into	a	4.25	mm	NMR	tube.	NOESY	1D‐1H‐

NMR	measurements	were	performed	at	300	K	in	a	600	MHz	NMR	spectrometer	(Bruker,	

Rheinstetten,	Germany)	equipped	with	a	cryogenic	probe,	using	Bruker	sample	handler	

(BACS‐60)	operated	under	full	automation,	with	similar	parameters	as	described	by	Lu	

et	al.	[29].	

b)	1H‐NMR	spectra	processing	

The	 1H‐NMR	 spectra	 were	 baseline‐corrected,	 phase‐corrected,	 aligned	 and	

calibrated	based	on	the	internal	standard	(TSP)	peak.	For	each	spectrum,	chemical	shift	

(δ)	across	 the	 range	of	0.00	 ‐	10.00	ppm	was	segmented	 (binning)	with	an	 interval	of	

0.02	ppm	[1].	The	signal	intensity	in	each	bin	was	integrated	and	expressed	in	arbitrary	

units	 using	 AMIX	 software	 (Bruker,	 Rheinstetten,	 Germany).	 The	 bins	 corresponding	

with	the	water	region	(δ	=	4.73	‐	4.99	ppm)	and	methanol	(δ	=	3.35	‐	3.37	ppm)	were	

eliminated	from	the	analysis.	Metabolite	labels	were	presumptively	assigned	to	the	bins	

by	means	 of	 Chenomx	NMR	 suite	 7.5	 library	 (Chenomx	 Inc.,	 Alberta,	 Canada),	Human	

Metabolome	 Database	 version	 3.0	 [47]	 and	 from	 literature	 [5,	 26,	 29].	 For	 unlabeled	

bins,	 significant	 variables	were	 selected	based	on	one‐way	ANOVA	at	 95%	confidence	

level.		
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2.2.8	 Statistical	analysis	

One‐way	 ANOVA	 with	 multiple	 comparisons	 by	 Tukey’s	 test	 were	 performed	

using	IBM	SPSS	statistics	package	version	19	(SPSS	Inc.,	Chicago,	IL,	USA).	A	probability	

at	p	<	0.05	was	considered	statistically	significant.	Metabolomics	data	from	GC/MS	and	

1H‐NMR	 were	 normalized	 by	 median‐centering	 and	 log2‐scaling	 before	 multivariate	

statistical	 analysis.	 Principal	 component	 analysis	 (PCA)	 and	 heat‐map	 visualization	

combined	 with	 Pearson’s	 correlation‐based	 hierarchical	 cluster	 analysis	 (HCA)	 were	

performed	using	Multi‐Experiment	Viewer	(MeV)	version	4.8	(www.tm4.org/mev/).	

	

2.3	 Results	and	discussion		

2.3.1	 Bacterial	growth	profiles			

The	growth	(increase	in	biomass)	of	ST‐Prt+	with	LB	(as	pure	and	mixed	culture)	

(Fig.	2.1A)	and	ST‐Prt‐	with	LB	(as	pure	and	mixed	culture)	(Fig.	2.1B)	were	monitored	

during	fermentation.	In	pure	cultures,	the	two	ST	strains	grew	rapidly	during	the	early	

part	of	fermentation	(0	–	3	h),	while	LB	remained	in	the	lag‐period	for	at	least	one	hour.	

This	can	be	explained	by	the	initial	pH	of	Nilac	milk	(6.5	±	0.1)	which	is	more	favorable	

for	the	growth	of	ST	[46]	and	their	effective	capacity	to	use	nutrients	available	in	milk.	

These	bacteria	initially	utilize	free	amino	acids	and	peptides	available	in	milk.	However,	

the	 free	 nitrogen	 content	 in	 milk	 is	 very	 limited,	 usually	 not	 exceeding	 100	 mg/L	

depending	on	 the	animal	breed,	milking	season,	heat‐treatment	and	storage	 [28],	 thus	

only	 the	 ST‐Prt+	 is	 expected	 to	 be	 able	 to	 continue	 growing	 with	 support	 of	 its	

proteolytic	activity.	Even	though	the	LB	 in	this	study	 is	a	proteolytic	strain,	 its	growth	

was	found	to	be	retarded	by	a	lower	optimum	pH	and	higher	nutritional	requirements	

[41].	 At	 the	 end	 of	 fermentation,	 the	 viable	 counts	 of	 pure	 ST‐Prt+	were	 significantly	

higher	 (p	<	0.05)	 than	 those	of	pure	ST‐Prt‐	and	pure	LB	which	were	not	significantly	

different	from	each	other.	The	final	numbers	increased	by	an	average	of	1.5	log	cfu/g	for	

pure	 ST‐Prt+	 and	 1.2	 log	 cfu/g	 for	 pure	 ST‐Prt‐	 and	 for	 pure	 LB.	 These	 results	

demonstrate	 that	 the	 ST‐Prt+	 strain	 exhibited	 a	 significant	 higher	 capacity	 to	 develop	
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individually	in	milk	compared	to	ST‐Prt‐	and	LB.	This	observation	is	in	agreement	with	

the	work	of	Courtin	et	al.	[10].	

	

Fig.	2.1.	Changes	in	viable	counts	during	set‐yoghurt	fermentation	with	a	pure	culture	of	S.	thermophilus	
Prt+	 ( ,	 panel	A),	 pure	 culture	of	L.	delbrueckii	 subsp.	bulgaricus	 ( ,	 panel	A)	and	 their	mixed	
culture	( , ,	panel	A)	compared	with	pure	culture	of	S.	thermophilus	Prt‐	( ,	panel	B),	pure	
culture	of	L.	delbrueckii	subsp.	bulgaricus	( ,	panel	B)	and	their	mixed	culture	( , ,	panel	B).	
Error	 bars	 represent	 standard	 deviations	 based	 on	 three	 independent	 replicates.	 Letters	 (a‐c)	 indicate	
significant	differences	among	mean	values	(p		<	0.05)	of	samples	at	the	end	of	fermentation	(4	h).	
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In	mixed	 culture	with	 LB,	 growth	 of	 the	 two	 ST	 strains	 started	 deviating	 from	

each	other	after	2	h.	The	viable	counts	of	ST‐Prt+	remained	virtually	constant	towards	

the	end	of	 fermentation	whereas	those	of	ST‐Prt‐	strongly	 increased	(2	–	3	h),	with	an	

average	of	0.9	log	cfu/g	before	remaining	at	a	stable	level.	The	results	suggested	that	ST‐

Prt‐	 took	 advantage	 of	 the	 proteolytic	 activity	 of	 LB	whereas	 ST‐Prt+	 did	 not	 benefit	

from	this	interaction.	At	the	end	of	fermentation,	the	viable	counts	of	ST‐Prt+	in	mixed	

culture	were	not	significantly	different	(p	>	0.05)	from	the	pure	culture.	In	contrast,	the	

viable	 counts	 of	 ST‐Prt‐	 were	 significantly	 higher	 (p	 <	 0.05)	 from	 those	 of	 the	 pure	

culture.	The	final	numbers	of	ST‐Prt+	and	ST‐Prt‐	increased	by	an	average	of	1.5	and	2.3	

log	cfu/g,	respectively.	The	growth	of	LB	in	mixed	culture	with	either	ST‐Prt+	or	ST‐Prt‐	

took	place	during	1	–	3	h.	However,	during	3	–	4	h,	the	viable	counts	of	LB	were	constant	

in	 mixed	 culture	 with	 ST‐Prt+	 while	 the	 counts	 in	 mixed	 culture	 with	 ST‐Prt‐	 still	

increased.	This	could	be	related	to	the	continuous	growth	of	ST‐Prt‐	which	consequently	

produces	acid	and	lowers	the	pH	to	a	level	which	favors	for	the	growth	of	LB.	Moreover,	

the	 LB	might	 be	 stimulated	by	 several	metabolites	 produced	by	 ST‐Prt‐	 as	mentioned	

previously	[41].	At	the	end	of	fermentation,	the	viable	counts	of	LB	in	pure	culture	and	in	

mixed	culture	with	ST‐Prt+	were	not	significantly	different	(p	>	0.05)	whereas	its	counts	

were	significantly	higher	(p	<	0.05)	in	mixed	culture	with	ST‐Prt‐.	The	final	numbers	of	

LB	in	mixed	culture	with	ST‐Prt+	and	ST‐Prt‐	increased	by	an	average	of	0.9	and	1.9	log	

cfu/g,	 respectively.	 This	 observation	 clearly	 demonstrates	 the	 proto‐cooperation	

between	ST‐Prt‐	and	LB	resulting	in	significant	higher	populations	of	the	two	species	at	

the	 end	 of	 fermentation.	 This	 mutual	 growth	 stimulation	 between	 ST	 and	 LB	 is	 in	

agreement	with	the	results	of	Courtin	&	Rul	[11]	and	Herve‐Jimenez	et	al.	[18].	However,	

these	 results	 contrast	with	 the	 findings	 of	 Courtin	 et	 al.	 [10]	who	mentioned	 that	 the	

proteolytic	activity	of	ST	has	no	significant	effect	either	on	bacterial	growth	or	final	pH	

of	 yoghurt	 in	 mixed	 culture	 with	 a	 proteolytic	 LB.	 This	 might	 be	 explained	 by	 the	

differences	in	bacterial	strains	employed	leading	to	their	particular	proteolytic	profiles	

and	other	experimental	 factors	such	as	 type	and	pre‐treatment	of	base	milk	as	well	as	

fermentation	conditions.				
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2.3.2	 Acidification	profiles	

The	changes	in	pH	were	monitored	every	hour	during	fermentation	(Fig.	2.2A).	At	

the	end	of	 fermentation,	 the	pH	values	of	 all	 yoghurts	 fermented	by	different	 types	of	

starter	 cultures	 were	 significantly	 different	 (p	 <	 0.05).	 Mixed	 ST‐Prt‐/LB	 showed	 the	

best	capacity	to	acidify	milk	followed	by	mixed	ST‐Prt+/LB,	pure	ST‐Prt+,	pure	ST‐Prt‐	

and	pure	LB	respectively.	The	two	mixed	cultures	were	able	to	acidify	milk	to	a	pH	value	

below	 5.0.	 However,	 only	 mixed	 ST‐Prt‐/LB	 was	 efficient	 in	 lowering	 pH	 to	 a	 value	

below	 4.6	 at	 which	 caseins	 aggregate	 [46].	 Gel	 formation	 was	 only	 observed	 in	 the	

samples	 fermented	with	 this	mixed	 culture	 (data	 not	 shown).	 The	 similar	 capacity	 to	

lower	milk	pH	by	a	mixed	culture	of	ST	and	LB	has	also	been	reported	by	others	[10,	18,	

37].			

Titratable	acidity	was	expressed	as	%	acid	equivalent	to	lactic	acid	(Fig.	2.2B).	In	

pure	cultures,	ST‐Prt+	showed	the	best	capacity	to	produce	acid	with	an	amount	that	is	

two‐times	higher	than	ST‐Prt‐	and	four‐times	higher	than	LB	at	the	end	of	fermentation.	

In	mixed	 culture,	 ST‐Prt+	did	 not	 show	good	 interaction	with	 LB.	 The	 amount	 of	 acid	

produced	 by	 mixed	 ST‐Prt+/LB	 (0.50%)	 was	 slightly	 higher	 than	 the	 sum	 of	 acid	

produced	by	pure	ST‐Prt+	and	pure	LB	together	(0.41%).	This	result	can	be	associated	

with	 the	 populations	 of	 ST‐Prt+	 and	 LB	 which	 are	 not	 significantly	 different	 in	 pure	

culture	and	mixed	culture.	On	the	other	hand,	the	amount	of	acid	produced	by	mixed	ST‐

Prt‐/LB	(0.64%)	was	almost	three‐times	higher	than	the	sum	of	acid	produced	by	pure	

ST‐Prt‐	and	pure	LB	together	(0.22%).	This	observation	is	in	accordance	with	the	proto‐

cooperation	observed	on	the	growth	of	ST‐Prt‐	and	LB	in	mixed	culture.	Obviously,	the	

significant	 higher	 populations	 of	 the	 two	 species	 are	 expected	 to	 lead	 to	 higher	 acid	

production.			
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Fig.	2.2.	 Changes	 in	pH	 (panel	A)	and	 titratable	acidity	 (panel	B)	during	 set‐yoghurt	 fermentation	by	a	
pure	 culture	of	S.	 thermophilus	 Prt+	 ( ,	 ),	 pure	 culture	of	S.	 thermophilus	 protease	Prt‐	 ( ,	 ),	 pure	
culture	of	L.	delbrueckii	subsp.	bulgaricus	( ,	 ),		mixed	culture	of	S.	thermophilus	Prt+	with	L.	delbrueckii	
subsp.	bulgaricus	( ,	 )	and	mixed	culture	of	S.	thermophilus	Prt‐	with	L.	delbrueckii	subsp.	bulgaricus	( ,	
),.	 Error	 bars	 represent	 standard	 deviations	 based	 on	 three	 independent	 replicates.	 Letters	 (a‐e)	

indicate	significant	differences	among	mean	values	(p		<	0.05)	of	samples	at	the	end	of	fermentation	(4	h).	

	

2.3.3	 Volatile	metabolite	profiles	determined	by	headspace	SPME‐GC/MS		

In	 this	 study,	 a	 total	 of	 35	 compounds	 consisting	 of	 alcohols,	 carbonyl	

compounds,	 organic	 acids,	 sulfur	 compounds	 and	 heterocyclic	 compound	 were	

identified	 in	 Nilac	 milk	 and	 set‐yoghurts	 (Table	 S2.1).	 This	 list	 is	 comparable	 to	 the	

volatiles	identified	in	yoghurt	using	headspace	SPME‐GC/MS	in	other	studies	[8,	14].	The	

c

b
a

d

e

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 1 2 3 4

pH

Fermentation time (hour)

A 

a

b
c

d

e

0.00

0.15

0.30

0.45

0.60

0.75

0.90

0 1 2 3 4

In
cr

ea
se

 in
 T

itr
at

ab
le

 a
ci

di
ty

 
(e

xp
re

ss
ed

 a
s 

%
 e

qu
iv

al
en

t 
la

ct
ic

 a
ci

d)

Fermentation time (hour)

0.75

0.60

0.45

0.30

0.15

0.00

-0.15

B 



Chapter	2	

48	
 

35	 compounds	 were	 introduced	 as	 variables	 for	 multivariate	 analysis.	 If	 necessary,	

missing	values	were	replaced	by	the	median	of	respective	variables.			

 

Fig.	2.3.	PCA	score	plots	and	loadings	of	PC1	derived	from	volatile	metabolite	profiles	(panel	A)	and	non‐
volatile	polar	metabolite	profiles	(panel	B)	of	Nilac	milk	(X)	and	set‐yoghurt	fermented	by	a	pure	culture	
of	S.	thermophilus	Prt+	(○),pure	culture	of	S.	thermophilus	protease	Prt‐	(□),	pure	culture	of	L.	delbrueckii	
subsp.	bulgaricus	 (∆),mixed	culture	of	S.	 thermophilus	Prt+	with	L.	delbrueckii	 subsp.	bulgaricus	(●)	and	
mixed	culture	of	S.	thermophilus	Prt‐	with	L.	delbrueckii	subsp.	bulgaricus	(■).	

	

An	overall	 PCA	 score	plot	was	 constructed	with	 a	 total	 variance	of	 73.4%	 (Fig.	

2.3A).	The	samples	fermented	with	mixed	ST‐Prt‐/LB	were	clearly	separated	from	Nilac	

milk	and	from	the	samples	 fermented	with	pure	LB	along	PC1	(51.9%	variance)	while	

the	distinction	among	the	samples	fermented	with	pure	ST‐Prt+,	pure	ST‐Prt‐	and	mixed	

ST‐Prt+/LB	was	 not	 clearly	 visible.	 PC1 loading	 indicated	 that	 acetaldehyde,	 diacetyl,	

acetoin,	 acetic	acid	and	butyric	acid	mainly	accounted	 for	 the	 separation	of	mixed	ST‐

Prt‐/LB	from	Nilac	milk	and	other	yoghurt	samples.		
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Fig.	 2.4.	 Heat‐map	 and	 hierarchical	 clustering	 of	 volatile	 metabolite	 profiles	 from	 Nilac	 milk	 and	 set‐
yoghurts	fermented	by	different	types	of	starter	cultures.	Dendrogram	represents	sample	clusters	based	
on	 Pearson’s	 correlation	 coefficient	 with	 average	 linkage.	 Each	 square	 in	 the	 heat‐map	 expresses	
normalized	 volatile	 content	 respected	 to	 the	 color	 range.	 The	 red	 color	 indicates	 higher	 content	 of	 the	
corresponding	compound.	

	

Heat‐map	 visualization	 combined	 with	 HCA	 (Fig.	 2.4)	 demonstrated	 that	

acetaldehyde,	 dimethyl	 sulfide,	 2‐butanone,	 diacetyl,	 2,3‐pentanedione,	 acetoin,	 3‐

pentanol,	 2‐hydroxy‐3‐pentanone,	 acetic	 acid,	 butyric	 acid	 and	 hexanoic	 acid	 were	

present	in	high	relative	abundance	(shown	in	red)	in	the	samples	fermented	with	mixed	
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ST‐Prt‐/LB.	These	compounds	are	desirable	for	a	good	organoleptic	quality	of	yoghurt.	

The	 dendrogram	 showed	 that	Nilac	milk	 and	 different	 yoghurt	 samples	 could	 be	well	

grouped	 according	 to	 their	 volatile	 metabolite	 profiles.	 Unlike	 PCA,	 the	 samples	

fermented	 with	 pure	 ST‐Prt+,	 pure	 ST‐Prt‐	 and	 mixed	 ST‐Prt+/LB	 could	 be	 clearly	

assigned	into	different	clusters.	

In	 terms	 of	 technological	 relevance,	 all	 major	 yoghurt	 aroma	 volatiles	 [6];	 i.e.	

acetaldehyde	 (fresh,	 green,	 pungent),	 diacetyl	 (buttery,	 creamy),	 acetoin	 (buttery),	 2‐

butanone	 (sweet,	 fruity),	 2,3‐pentanedione	 (buttery,	 vanilla‐like)	 and	 acetic	 acid	

(vinegar,	 pungent)	 were	 detectable	 in	 this	 study.	 The	 contributions	 of	 ST	 and	 LB	 to	

aroma	volatile	formation	in	fermented	milk	are	well	documented	[4,	6,	45,	46].	In	pure	

cultures,	 the	 total	 numbers	 of	 volatiles	 identified	 were	 almost	 equal	 in	 the	 samples	

fermented	with	pure	ST‐Prt+	(n	=	20)	and	ST‐Prt‐	(n	=	19)	but	higher	compared	to	those	

in	the	samples	fermented	with	pure	LB	(n	=	16)	(Table	S2.1).	Acetaldehyde	is	the	most	

important	compound	contributing	to	typical	yoghurt	aroma	which	can	be	derived	from	

amino	acid	catabolism	[6].	In	case	of	ST,	threonine	is	converted	into	acetaldehyde	by	the	

activity	 of	 threonine	 aldolase	 [25].	 The	 two	pure	 ST	 cultures	 showed	high	 capacity	 of	

acetaldehyde	 production	 without	 difference	 depending	 on	 their	 proteolytic	 activity.	

Indeed,	 the	 proteolytic	 activity	 of	 ST	 strains	 was	 expected	 to	 have	 an	 impact	 on	 the	

concentrations	of	various	volatiles	derived	from	amino	acid	catabolism;	e.g.	1‐methoxy‐

2‐propanol	 (Val),	 2‐methyl‐1‐butanol	 (Ile/Leu),	 3‐methyl‐3‐butanol	 (Leu),	

benzaldehyde	 (Trp/Phe),	 3‐methyl‐2‐butenal	 (Ile/Leu),	 2,3‐pentanedione	 (Ile),	 3‐

methyl‐butanoic	acid	(Leu),	2‐methyl‐propanoic	acid	(Val),	acetic	acid	(Thr)	and	sulfur	

compounds	 (Cys/Met)	 [2,	 44].	 However,	 the	 two	 pure	 ST	 cultures	 only	 showed	

significant	differences	between	each	other	 in	concentration	of	2‐methyl‐1‐butanol	and	

3‐methyl‐3‐butanol.	 Possibly,	 the	 formation	 of	 these	 compounds	 by	 the	 two	 pure	 ST	

cultures	initially	relies	on	the	utilization	of	free	amino	acids	available	in	milk.	Thus,	the	

impact	of	different	proteolytic	activity	between	the	two	ST	strains	was	not	observed.	In	

mixed	 cultures,	 although	 the	 total	 numbers	 of	 identified	 volatiles	 increased,	 relatively	

low	 numbers	 were	 found	 in	 the	 samples	 fermented	with	mixed	 ST‐Prt+/LB	 (n	 =	 25)	

compared	 to	mixed	 ST‐Prt‐/LB	 (n	 =	 32)	 (Table	 S2.1).	 It	was	 apparent	 that	mixed	 ST‐
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Prt+/LB	 did	 not	 show	 a	 significant	 capacity	 to	 increase	 the	 concentration	 of	 major	

yoghurt	aroma	volatiles	compared	 to	 their	pure	cultures.	On	 the	other	hand,	all	major	

aroma	volatiles	were	detected	in	significant	higher	abundance	in	the	samples	fermented	

with	 mixed	 ST‐Prt‐/LB	 (Fig.	 2.4).	 Furthermore,	 3‐methyl‐2‐butanol,	 3‐octanone,	 3‐

acetyl‐2,5‐dimethyl‐furan,	 3‐methyl‐butanoic	 acid,	 2‐methyl‐propanoic	 acid	 and	

pentanoic	 acid	 were	 exclusively	 detected	 in	 the	 samples	 fermented	 with	 this	 mixed	

culture.	 As	 previously	 mentioned,	 these	 compounds	 are	 derived	 from	 amino	 acid	

catabolism.	 Because	 the	 proteolytic	 activity	 of	 ST‐Prt‐	 is	 low,	 the	 formation	 of	 these	

compounds	 relies	 on	 proteolytic	 activity	 of	 LB	 in	 the	 mixed	 culture.	 The	 results	

demonstrated	that	interaction	between	these	two	strains	generated	a	favorable	yoghurt	

volatile	 profile	 resulting	 in	 highest	 numbers	 of	 compounds	 identified	with	 significant	

abundance	 of	 key‐aroma	 compounds	 desirable	 for	 a	 good	 organoleptic	 quality	 of	

yoghurt.	 This	 finding	 confirms	 the	 proto‐cooperation	 between	 ST‐Prt‐	 and	 LB	 as	

previously	observed	for	bacterial	growth	and	acidification	profile.		

2.3.4	 Non‐volatile	polar	metabolite	profiles	determined	by	1H‐NMR	

In	 this	 study,	 a	 total	 of	 43	 metabolites	 including	 amino	 acids,	 carbohydrates,	

organic	 acids,	 lipid	 derivatives,	 carbonyl	 compounds,	 a	 sulfur	 compound	 and	 a	

nucleoside	were	presumptively	identified	(Fig.	S2.1).	The	quantification	was	performed	

by	 summation	 of	 signal	 intensities	 in	 all	 bins	 corresponding	 to	 the	 target	metabolite	

[35].	 The	 integrated	 intensities	were	 finally	 expressed	 in	 log10	 transformed	 (arbitrary	

unit)	 (Table	 S2.2).	 For	multivariate	 analysis,	 it	 should	 be	 noted	 that	 the	 43	 identified	

metabolites	accounted	for	labeling	of	149	bins.	A	complementary	data	filtering	by	one‐

way	 ANOVA	 was	 performed	 for	 selection	 of	 the	 remaining	 unknowns	 [27].	 Finally,	 a	

total	of	165	bins	were	introduced	as	variables	for	the	analysis.		

An	overall	 PCA	 score	plot	was	 constructed	with	 a	 total	 variance	of	 73.6%	 (Fig.	

2.3B).	All	yoghurt	samples	could	be	distinguished	according	to	different	types	of	starter	

cultures	 along	 PC1	 (58.6%	 variance).	 A	 complete	 distinction	 was	 observed	 between	

Nilac	milk	 and	 yoghurts	 fermented	with	mixed	 cultures.	 The	 distinction	 between	 the	

samples	 fermented	 with	 pure	 ST‐Prt‐	 and	 pure	 LB	 was	 small	 but	 they	 could	 still	 be	
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separated.	Loading	of	PC1	indicated	that	lactose,	citrate	and	unknown	bins	contributed	

to	 the	 separation	 of	Nilac	milk	 from	 fermented	milk	 samples.	 The	 samples	 fermented	

with	mixed	cultures	were	clearly	determined	by	lactate,	glucose,	galactose	and	most	of	

the	metabolites	in	aliphatic	and	aromatic	region	including	organic	acids	and	free	amino	

acids.	 These	 compounds	 are	 well	 known	 as	 major	 products	 derived	 from	 milk	

fermentation	 [45,	48].	Thus,	 the	 loading	plot	provides	 a	 good	 indication	 for	metabolic	

activity	of	mixed	cultures	of	ST	and	LB	during	set‐yoghurt	fermentation.	

Heat‐map	 visualization	 combined	 with	 HCA	 (Fig.	 2.5)	 demonstrated	 that	 the	

majority	of	metabolites	were	present	in	high	abundance	(shown	in	red),	with	exceptions	

for	 citrate	 and	 lactose,	 in	 the	 samples	 fermented	with	mixed	 ST‐Prt‐/LB.	 Free	 amino	

acids	were	present	in	high	relative	abundance,	especially	in	the	samples	fermented	with	

pure	 ST‐Prt+	 and	mixed	 ST‐Prt‐/LB.	 Interestingly,	 these	 protein‐breakdown	 products	

were	less	present	when	ST‐Prt+	was	inoculated	in	mixed	culture	with	LB,	although	they	

are	 both	 proteolytic	 strains.	 The	 dendrogram	 showed	 that	 metabolite	 profiles	 of	 the	

samples	 fermented	with	pure	LB	and	pure	ST‐Prt‐	were	 less	different	 from	Nilac	milk,	

i.e.	 closely	 clustered	 together.	 This	 suggests	 lower	 metabolic	 activity	 of	 these	 two	

cultures	during	fermentation.	Another	main	cluster	consisted	of	the	samples	fermented	

with	pure	ST‐Prt+	which	was	well	separated	from	mixed	ST‐Prt+/LB	and	mixed	ST‐Prt‐

/LB.	 It	 can	be	 observed	 that	Nilac	milk	 and	 yoghurt	 samples	 are	 clearly	 grouped	 into	

different	 clusters	 according	 to	 their	 non‐volatile	 polar	 metabolite	 profiles.	 This	

observation	corresponds	with	the	results	obtained	from	PCA.		

Changes	 in	 lactose,	 galactose	 and	 lactic	 acid	 concentration	 in	 milk	 directly	

indicate	the	primary	metabolic	activity	of	ST	and	LB	during	yoghurt	 fermentation	[45]	

(Table	S2.2).	In	pure	cultures,	a	significant	decrease	in	lactose	was	only	observed	in	the	

samples	 fermented	 with	 pure	 ST‐Prt+.	 The	 concentration	 of	 lactate	 was	 significantly	

increased	 in	 the	 samples	 fermented	 with	 pure	 ST‐Prt+	 followed	 by	 pure	 ST‐Prt‐	 and	

pure	 LB	 respectively.	 This	 observation	 agrees	with	 the	 acidification	profiles.	 In	mixed	

cultures,	 the	concentration	of	 lactose	and	citrate	significantly	decreased	while	those	of	

glucose,	galactose	and	lactate	were	significantly	increased.	Moreover,	dynamic	changes	

in	several	organic	acids,	e.g.	acetate,	benzoate,	citrate,	formate,	isobutyrate,	orotate	and		
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Fig.	 2.5.	 Heat‐map	 and	 hierarchical	 clustering	 of	 non‐volatile	 polar	 metabolite	 profiles	 from	 Nilac	 milk	 and	 set‐
yoghurts	fermented	by	different	types	of	starter	cultures.	Dendrogram	represents	sample	clusters	based	on	Pearson’s	
correlation	 coefficient	with	average	 linkage.	Each	 square	 in	 the	heat‐map	expresses	normalized	metabolite	 content	
respected	to	the	color	range.	The	red	color	indicates	higher	content	of	the	corresponding	compound.	
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succinate,	 were	 also	 revealed	 by	 1H‐NMR.	 It	 should	 be	 mentioned	 that	 these	 organic	

acids	also	contribute	partially	to	the	titratable	acidy	of	yoghurt.	The	results	demonstrate	

that	mixed	ST‐Prt‐/LB	shows	a	higher	capacity	to	generate	these	compounds	compared	

to	mixed	ST‐Prt+/LB.	

The	 influence	of	proteolytic	activity	was	characterized	by	an	overall	 increase	 in	

free	 amino	 acid	 concentrations	 (proteolytic	 profile)	 (Table	 S2.2).	 In	 pure	 cultures,	

significant	increases	in	N‐acetyl	amino	acids,	phenylalanine	and	valine	were	observed	in	

the	 samples	 fermented	 with	 pure	 ST‐Prt+	 whereas	 most	 of	 free	 amino	 acids	 were	

significantly	decreased	 in	 the	 samples	 fermented	with	pure	 ST‐Prt‐	 and	pure	LB.	This	

result	 demonstrates	 the	 impact	 of	 different	 proteolytic	 activity	 between	 the	 two	 ST	

strains.	 Interestingly,	 the	 proteolytic	 profile	 of	 samples	 fermented	 with	 mixed	 ST‐

Prt+/LB	was	not	significantly	different	 from	those	observed	 in	pure	cultures,	although	

both	strains	have	an	extracellular	proteolytic	activity.	On	the	other	hand,	the	proteolytic	

profile	 of	 samples	 fermented	 with	 mixed	 ST‐Prt‐/LB	 was	 evidently	 increased.	 The	

concentrations	of	all	free	amino	acids	were	significantly	increased	with	an	exception	for	

tyrosine.	 The	 proto‐cooperation	 between	 ST‐Prt‐	 and	 LB	 provides	 not	 only	 growth	

stimulatory	 effect	 on	 the	 two	 species	 but	 also	 exclusively	 stimulates	 the	 proteolytic	

activity	of	LB	in	mixed	culture.	This	assumption	is	supported	by	the	work	of	Sieuwerts	et	

al.	 [42]	who	 reported	 a	 considerably	 higher	 expression	 of	 the	 proteolytic	 gene	 (prtB‐

LBUL‐1105)	responsible	for	the	extracellular	protease	activity	of	LB		in	mixed	culture.		

In	 summary,	 the	 samples	 fermented	 with	 mixed	 ST‐Prt‐/LB	 demonstrated	 a	

significant	 higher	 level	 of	 non‐volatile	 flavor	 compounds	 (Table	 S2.2),	 i.e.	 lactate,	

pyruvate,	 formate,	 succinate	 and	 free	 amino	 acids	 (as	 precursors	 for	 yoghurt	 aroma	

formation)	 for	 a	 good	 organoleptic	 quality	 of	 yoghurt	 [6].	 These	 results	 confirm	 the	

proto‐cooperation	between	ST‐Prt‐	and	LB	as	observed	previously	for	bacterial	growth,	

acidification	and	formation	of	aroma	volatile	compounds.	
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2.4	 Conclusions	

The	 present	 study	 demonstrated	 that	 selection	 of	 suitable	 strain	 combinations	

between	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	 in	 yoghurt	 starters	 is	

important	 for	 achieving	 the	 best	 technological	 performance	 regarding	 the	 quality	 of	

product.	Although	S.	thermophilus	Prt+	showed	the	best	capacity	to	grow	individually	in	

milk,	it	did	not	interact	well	in	mixed	culture	with	L.	delbrueckii	subsp.	bulgaricus.	On	the	

other	 hand,	 proto‐cooperation	 between	 S.	 thermophilus	 Prt‐	 and	 L.	 delbrueckii	 subsp.	

bulgaricus	was	evidently	observed.	The	proto‐cooperation	resulted	in	significant	higher	

populations	of	the	two	species,	more	efficient	milk	acidification,	significant	abundance	of	

aroma	volatiles	and	non‐volatile	metabolites	desirable	for	a	good	organoleptic	quality	of	

yoghurt.	A	complementary	metabolomics	approach	using	headspace	SPME‐GC/MS	and	

1H‐NMR	 resulted	 in	 the	 identification	 of	 35	 volatiles	 and	 43	 non‐volatile	 polar	

metabolites,	 respectively.	 Furthermore,	 multivariate	 statistical	 analysis	 allows	

discriminating	set‐yoghurts	fermented	by	different	types	of	starter	cultures	according	to	

their	metabolite	profiles.	
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Supplementary	data	

Fig.	S2.1.	Representative	NOESY	1D‐1H‐NMR	
spectra	 of	 a	 set‐yoghurt	 sample	 fermented	
by	mixed	culture	of	S.	thermophilus	protease	
(‐)	and	L.	delbrueckii	subsp.	bulgaricus	(panel	
A)	 and	 expansions	 corresponding	 for	
aliphatic	 region	 (panel	 B),	 sugar	 region	
(panel	C)	and	aromatic	region	(panel	D)	with	
assigned	 peaks:	 TSP:	 internal	 standard,	 1:	
valerate	derivatives,	2:	valerate,	3:	butyrate,	
4:	 isoleucine,	 5:	 leucine,	 6:	 valine,	 7:	
isobutyrate,	8:	lactate,	9:	alanine,	10:	acetate,	
11:	 N‐acetyl	 amino	 acids,	 12:	 N‐acetyl	
glucosamine,	 13:	 acetone,	 14:	 acetoacetate,	
15:	 proline,	 16:	 pyruvate,	 17:	 succinate,	 18:	
oxoglutarate,	 19:	 citrate,	 20:	 creatine,	 21:	
creatinine,	 22:	 dimethyl	 sulfone,	 23:	
acetylcarnitine,	 24:	 choline	 derivatives,	 25:	
betaine,	 26:	 glucose,	 27:	 lactose,	 28:	
galactose,	 29:	 ascorbate,	 30:	 choline,	 31:	
phosphocholine,	 32:	 glycerophosphocholine,	
33:	 dihydroxyacetone,	 34:	 sugar	 residues,	
35:	 uridine,	 36:	 orotate,	 37:	 fumarate,	 38:	
amino	 acid	 residues,	 39:	 tyrosine,	 40:	
phenylalanine,	 41:	 benzoate,	 42:	 hippurate,	
43:	formate.	
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Table	S2.1.	Volatile	metabolites	identified	in	base	milk	and	set‐yoghurts	(samples	at	4	h)	fermented	by	different	types	of	starter	cultures	using	
headspace	SPME‐GC/MS	

Chemical group Compound Pasteurized  Starter cultures 

Nilac milk Pure ST-Prt+ Pure ST-Prt- Pure LB Mixed  
ST-Prt+/LB 

Mixed 
ST-Prt-/LB 

Alcohol 1-Butanol -a - - - 5.44b ± 0.06ac 5.48 ± 0.15a 
Ethanol - - - - 5.89 ± 0.10a 6.48 ± 0.06b 

 2-Ethyl-hexanol - - - 5.46 ± 0.18a 5.51 ± 0.11a 5.65 ± 0.09a 
 1-Hexanol - 5.60 ± 0.02a 5.56 ± 0.01a - 5.55 ± 0.08a 5.58 ± 0.04a 
 1-Methoxy-2-propanol - - - - 6.33 ± 0.23a 6.26 ± 0.33a 
 2-Methyl-1-butanol - 4.78 ± 0.09b - - 4.41 ± 0.08a 5.43 ± 0.35c 
 3-Methyl-2-butanol - - - - - 5.51 ± 0.04 
 3-Methyl-3-butanol - 5.18 ± 0.01a 5.50 ± 0.05b - 5.10 ± 0.04a 5.71 ± 0.05c 
 1-Octanol - - - 4.88 ± 0.32 - - 
 1-Pentanol 4.79 ± 0.08a 5.09 ± 0.06ab 5.04 ± 0.06ab 4.91 ± 0.18ab 5.15 ± 0.07b 5.18 ± 0.02b 
 3-Pentanol - 5.37 ± 0.03b 5.60 ± 0.17b - 5.07 ± 0.12a 6.63 ± 0.07c 
   
Carbonyl compound Acetaldehyde 4.07 ± 0.08a 6.49 ± 0.08c 6.26 ± 0.17bc - 6.11 ± 0.13b 7.39 ± 0.04d 

Acetoin 5.30 ± 0.20a 7.32 ± 0.03b 7.77 ± 0.12c 5.06 ± 0.20a 7.25 ± 0.10b 8.41 ± 0.06d 
 Acetone 7.29 ± 0.03a 7.31 ± 0.03a 7.29 ± 0.01a 7.35 ± 0.09a 7.33 ± 0.07a 7.42 ± 0.01a 
 Benzaldehyde 5.77 ± 0.06ab 5.76 ± 0.02ab 5.69 ± 0.04a  6.09 ± 0.21b 5.90 ± 0.04ab 5.86 ± 0.04ab 
 2-Butanone 6.49 ± 0.05a 6.48 ± 0.03a 6.58 ± 0.01a 6.53 ± 0.11a 6.50 ± 0.07a 7.55 ± 0.16b 
 Diacetyl 5.25 ± 0.03a 6.49 ± 0.03b 6.98 ± 0.06c 5.53 ± 0.15a 6.30 ± 0.10b 7.38 ± 0.03d 
 2-Heptanone - 5.59 ± 0.04ab 5.47 ± 0.06a 5.37 ± 0.00a 5.73 ± 0.06b 5.97 ± 0.01c 
 Hexanal 5.62 ± 0.02a - - 5.63 ± 0.05a - - 
 2-Hydroxy-3-pentanone - 4.93 ± 0.09ab 5.18 ± 0.21b - 4.64 ± 0.10a 6.25 ± 0.04c 
 3-Methyl-2-butenal - - - - 4.40 ± 0.07a 5.21 ± 0.06b 
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 2-Nonanone - 5.40 ± 0.05a - - 5.58 ± 0.08ab 5.78 ± 0.08b 
 3-Octanone - - - - - 5.88 ± 0.06 
 2,3-Pentanedione - 5.91 ± 0.09b 6.02 ± 0.07b - 5.38 ± 0.09a 6.88 ± 0.06c 
 2-Undecanone - - 4.65 ± 0.10ab 4.54 ± 0.24a - 4.89 ± 0.07b 
   
Heterocyclic compound 3-Acetyl-2,5-dimethylfuran - - - - - 5.75 ± 0.32 

     
Sulfur compound Dimethyl disulfide 5.64 ± 0.02a - - 5.82 ± 0.07b - - 

Dimethyl sulfide 6.69 ± 0.07ab 6.77 ± 0.03b 6.81 ± 0.03b 6.90 ± 0.18b 6.41 ± 0.16a 6.72 ± 0.15ab 
Dimethyl sulfone 6.21 ± 0.07a 6.45 ± 0.18a 6.52 ± 0.27a 6.43 ± 0.14a 6.64 ± 0.06a 6.55 ± 0.18a 

Volatile organic acid Acetic acid 6.21 ± 0.01a 6.48 ± 0.10ab 6.75 ± 0.24b 6.21 ± 0.25a 6.78 ± 0.02b 7.91 ± 0.08c 
 Butyric acid 5.92 ± 0.05a 6.27 ± 0.11b 6.56 ± 0.27b 6.50 ± 0.31b 6.30 ± 0.02b 7.63 ± 0.09c 
 3-Methyl-butanoic acid - - - - - 5.19 ± 0.08 

2-Methyl-propanoic acid - - - - - 5.10 ± 0.08 
Pentanoic acid - - - - - 5.63 ± 0.06 

 Hexanoic acid - 5.70 ± 0.11a 5.92 ± 0.21a - 5.85 ± 0.16a 7.07 ± 0.07b 

a (-) indicates compound not detected. 
b Metabolite contents are expressed as log10 [peak area of respective compound in arbitrary unit]. Values are mean ± standard deviation from three independent replicates.  
c Letters (a-d) indicate significant difference (p  < 0.05) among sample means within the same row.  
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Table	S2.2.	Presumptive	polar	metabolites	identified	in	base	milk	and	set‐yoghurts	(samples	at	4	h)	fermented	by	different	types	of	starter	cultures	
using	NOESY	1D‐1H‐NMR			

Chemical group Compound Pasteurized Starter cultures 

Nilac milk Pure ST-Prt+ Pure ST-Prt- Pure LB Mixed  
ST-Prt+/LB 

Mixed 
ST-Prt-/LB 

Amino acid and Alanine 6.75a ± 0.00cb 6.78 ± 0.07bcd 6.58 ± 0.10a 6.72 ± 0.01b 6.69 ± 0.03ab 6.89 ± 0.07d 
derivatives Creatine and Creatinine 7.39 ± 0.00a 7.37 ± 0.07ab 7.41 ± 0.02ab 7.42 ± 0.07ab 7.44 ± 0.03b 7.52 ± 0.01c 
 Isoleucine 7.49 ± 0.01c 7.54 ± 0.05cd 7.39 ± 0.05ab 7.32 ± 0.09a 7.41 ± 0.01b 7.62 ± 0.04d 

 Leucine 7.53 ± 0.01c 7.56 ± 0.02c 7.36 ± 0.00a 7.38 ± 0.06ab 7.42 ± 0.04b 7.64 ± 0.03d 
 N-Acetyl-amino acids 7.95 ± 0.01d 8.01 ± 0.03e 7.88 ± 0.00b 7.90 ± 0.00c 7.83 ± 0.02a 8.01 ± 0.02e 
 Phenylalanine 6.26 ± 0.01a 6.54 ± 0.14c 6.14 ± 0.14a 6.26 ± 0.11ab 6.32 ± 0.03b 6.56 ± 0.07c 
 Proline  7.17 ± 0.02b 7.23 ± 0.09bc 6.97 ± 0.09a 7.14 ± 0.03b 7.16 ± 0.04b 7.30 ± 0.06c 
 Tyrosine 6.52 ± 0.01a 6.66 ± 0.12ab 6.40 ± 0.18a 6.65 ± 0.14ab 6.74 ± 0.02b 6.82 ± 0.12b 
 Valine 7.23 ± 0.01c 7.32 ± 0.03d 7.04 ± 0.10a 7.19 ± 0.01b 7.26 ± 0.03cd 7.43 ± 0.07e 
 Amino acid residues 7.78 ± 0.01a 7.86 ± 0.07ab 7.70 ± 0.10a 7.73 ± 0.04a 7.87 ± 0.04b 8.00 ± 0.07c 
        
Carbohydrate and  Galactose 8.36 ± 0.01a 8.63 ± 0.04c 8.55 ± 0.06b 8.62 ± 0.03c 8.89 ± 0.00d 8.95 ± 0.01e 
derivatives Glucose 8.29 ± 0.00a 8.62 ± 0.03d 8.40 ± 0.04b 8.49 ± 0.02c 8.81 ± 0.03e 8.87 ± 0.01f 
 Lactose 9.63 ± 0.01c 9.53 ± 0.03b 9.66 ± 0.02c 9.59 ± 0.05bc 9.32 ± 0.03a 9.38 ± 0.07a 
 N-Acetylglucosamine 7.38 ± 0.01c 7.40 ± 0.04c 7.33 ± 0.04bc 7.31 ± 0.01b 7.23 ± 0.05a 7.48 ± 0.09c 
 Sugar residues 7.22 ± 0.00a 7.34 ± 0.01b 7.20 ± 0.03a 7.23 ± 0.02a 7.21 ± 0.01a 7.39 ± 0.04b 
        
Organic acid Acetate  6.96 ± 0.02a 7.17 ± 0.05b 7.06 ± 0.11ab 7.35 ± 0.15bc 7.37 ± 0.02c 7.42 ± 0.10c 

 Acetoacetate 6.90 ± 0.01c 6.93 ± 0.06cd 6.72 ± 0.09a 6.82 ± 0.00b 6.80 ± 0.04ab 6.99 ± 0.05d 
 Ascorbate 7.75 ± 0.01a 7.94 ± 0.01c 7.86 ± 0.06b 7.94 ± 0.02c 8.07 ± 0.00d 8.12 ± 0.02e 
 Benzoate 6.51 ± 0.00b 6.68 ± 0.04c 6.32 ± 0.02a 6.77 ± 0.13cde 6.76 ± 0.02d 6.91 ± 0.05e 
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 Butyrate 7.10 ± 0.01b 7.18 ± 0.08bc 7.03 ± 0.09ab 7.08 ± 0.03ab 6.97 ± 0.10a 7.23 ± 0.05c 
 Hydroxybutyrate 7.36 ± 0.01c 7.33 ± 0.03c 7.22 ± 0.01b 7.15 ± 0.10ab 7.16 ± 0.01a 7.41 ± 0.01d 
 Citrate 7.72 ± 0.06b 7.57 ± 0.16ab 7.71 ± 0.03b 7.73 ± 0.02b 7.44 ± 0.06a 7.52 ± 0.11a 
 Formate 6.45 ± 0.00b 6.41 ± 0.05ab 6.38 ± 0.16ab 6.38 ± 0.03a 6.55 ± 0.00c 6.85 ± 0.01d 
 Fumarate 5.65 ± 0.04a 6.35 ± 0.16b 6.32 ± 0.24b 5.51 ± 0.16a 5.59 ± 0.02a 5.70 ± 0.15a 
 Hippurate 7.11 ± 0.00b 7.18 ± 0.05c 6.94 ± 0.09a 6.93 ± 0.01a 6.91 ± 0.06a 7.18 ± 0.06c 
 Isobutyrate  6.23 ± 0.01b 6.46 ± 0.01d 6.08 ± 0.11a 6.29 ± 0.06b 6.41 ± 0.02c 6.56 ± 0.08e 
 Lactate 7.52 ± 0.01a 9.05 ± 0.16d 8.79 ± 0.06c 8.51 ± 0.02b 9.34 ± 0.01e 9.38 ± 0.01f 
 Orotate 6.52 ± 0.01b 6.68 ± 0.00c 6.54 ± 0.01b 6.54 ± 0.03b 6.49 ± 0.01a 6.63 ± 0.05c 
 Oxoglutarate 7.10 ± 0.00a 7.06 ± 0.04a 7.10 ± 0.10a 7.07 ± 0.06a 7.51 ± 0.07b 7.38 ± 0.16b 
 Pyruvate 6.95 ± 0.01a 7.06 ± 0.09b 7.05 ± 0.18abc 7.00 ± 0.06ab 7.40 ± 0.04d 7.26 ± 0.06c 
 Succinate 6.70 ± 0.04a 6.91 ± 0.02b 6.88 ± 0.16abc 7.34 ± 0.07d 7.06 ± 0.10c 7.50 ± 0.09d 
 Valerate and derivatives 7.61 ± 0.01c 7.61 ± 0.01c 7.47 ± 0.01b 7.45 ± 0.08ab 7.44 ± 0.01a 7.68 ± 0.04d 
        
Lipid derivatives Acetylcarnitine 6.86 ± 0.01c 6.82 ± 0.01b 6.66 ± 0.01a 6.84 ± 0.05bc 6.79 ± 0.13abc 6.99 ± 0.01d 
 Choline and derivatives 7.48 ± 0.02a 7.58 ± 0.04b 7.56 ± 0.01b 7.67 ± 0.02c 7.79 ± 0.02d 7.79 ± 0.04d 
 Glycerophosphocholine 7.28 ± 0.02a 7.27 ± 0.03a 7.37 ± 0.02b 7.33 ± 0.09ab 7.24 ± 0.03a 7.37 ± 0.14ab 
 Phosphocholine 7.33 ± 0.01a 7.55 ± 0.01b 7.49 ± 0.09b 7.66 ± 0.03c 7.82 ± 0.00d 7.89 ± 0.00e 
        
Carbonyl compound Acetone 6.75 ± 0.02b 6.87 ± 0.07c 6.94 ± 0.15c 6.66 ± 0.06a 7.11 ± 0.01d 7.24 ± 0.02e 
 Dihydroxyacetone 7.16 ± 0.01a 7.17 ± 0.05a 7.29 ± 0.04c 7.23 ± 0.07abc 7.24 ± 0.00b 7.37 ± 0.10c 
        
Miscellaneous  Dimethyl sulfone 6.82 ± 0.00c 6.76 ± 0.01a 6.79 ± 0.01b 6.85 ± 0.04c 6.83 ± 0.04bc 6.92 ± 0.02d 
 Uridine 6.10 ± 0.01c 6.06 ± 0.09c 5.72 ± 0.06a 5.81 ± 0.03b 5.74 ± 0.01ab 6.02 ± 0.11c 
 

a Metabolite contents are expressed as log10 [sum of intensity of respective metabolite in arbitrary unit]. Values are mean ± standard deviation from two independent replicates.  
b Letters (a-e) indicate significant difference (p < 0.05) among sample means within the same row. 
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Abstract	

The	 objective	 of	 this	 study	 was	 to	 evaluate	 the	 influence	 of	 Lactobacillus	

rhamnosus	GG	and	Bifidobacterium	animalis	subsp.	 lactis	BB12	in	co‐fermentation	with	

traditional	starters	on	metabolite	formation	in	set‐yoghurt.	The	microbial	activity	during	

fermentation	 and	 refrigerated	 storage	 was	 investigated	 by	 monitoring	 bacterial	

population	 dynamics,	 milk	 acidification	 and	 overall	 changes	 in	 yoghurt	 metabolite	

profiles.	 A	 complementary	 metabolomics	 approach	 using	 SPME‐GC/MS	 and	 1H‐NMR	

resulted	in	the	identification	of	37	volatile	and	43	non‐volatile	metabolites,	respectively.	

The	results	demonstrated	that	the	two	probiotic	strains	did	not	influence	acidity	and	the	

key‐aroma	volatile	metabolites	of	set‐yoghurt.	However,	a	contribution	by	the	presence	

of	L.	rhamnosus	GG	on	non‐volatile	metabolite	profile	of	yoghurt	was	specifically	noticed	

during	 storage.	 Furthermore,	 multivariate	 analysis	 allowed	 yoghurts	 fermented	 by	

different	 starter	 combinations	 and	 different	 durations	 of	 storage	 to	 be	 differentiated	

according	to	their	metabolite	profiles.	This	finding	provides	new	insights	regarding	the	

impact	of	probiotics	on	the	metabolome	of	yoghurt.	
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3.1	 Introduction	

Yoghurt	is	a	product	obtained	by	lactic	acid	fermentation	of	milk.	Its	production	

can	be	 regarded	as	one	of	 the	oldest	methods	 to	preserve	milk	 [41].	According	 to	 the	

Codex	 standard	 for	 fermented	 milks	 [8],	 yoghurt	 is	 specifically	 characterized	 by	 the	

presence	 of	 symbiotic	 cultures	 of	 two	 lactic	 acid	 bacteria	 (LAB),	 i.e.	 Streptococcus	

thermophilus	 and	 Lactobacillus	 delbrueckii	 subsp.	 bulgaricus.	 A	 successful	 yoghurt	

manufacture	 relies	 on	 the	mutual	 interaction,	 also	 called	 proto‐cooperation,	 between	

these	two	species.	Proto‐cooperation	 is	not	only	 linked	with	 lactic	acid	production	but	

also	with	 the	 formation	of	distinctive	 flavor	and	 texture	 characteristics	of	 the	product	

[11].	 Nowadays,	 societal	 interest	 in	 healthy	 food	 products	 has	 contributed	 to	 the	

development	 of	 functional	 dairy	 products	 that	 potentially	 provide	 health	 benefits	 in	

addition	 to	 the	 nutrients	 they	 contain	 [39].	 An	 example	 of	 a	 functional	 type	 of	 dairy	

products	 is	 yoghurt	 with	 probiotic	 incorporation.	 These	 bacteria	 (i.e.	 probiotics)	 are	

defined	as	live	microorganisms	which	when	administered	in	adequate	amounts	confer	a	

health	 benefit	 on	 the	 host	 [15].	 In	 order	 to	 ensure	 their	 health‐promoting	 effects,	 a	

probiotic	product	should	contain	at	least	106	cfu/g	to	107	‐	108	cfu/g	of	viable	probiotic	

cells	 throughout	 the	 entire	 shelf‐life	 [44].	Most	 commercial	probiotics	 incorporated	 in	

dairy	 products	 are	 strains	 belonging	 to	 the	 genera	 Lactobacillus	 and	 Bifidobacterium	

[23].	Members	of	these	two	genera	have	a	long	history	of	safe	use	in	the	manufacture	of	

fermented	food	products	and	can	be	found	as	a	part	of	normal	microbiota	in	the	human	

gastrointestinal	 tract	 [38].	 Despite	 high	 numbers	 of	 studies	 on	 strain	 selection,	 safety	

concerns,	 health‐promoting	 properties	 and	 technological	 approaches	 to	 improve	 the	

survival	of	probiotics	in	fermented	dairy	products	[26,	39],	the	actual	metabolic	activity	

of	probiotics	grown	or	suspended	in	milk	is	not	fully	understood	[32].	This	information	

is	important,	since	the	organic	acids	and	volatiles	formed	by	these	non‐starter	bacteria	

may	directly	contribute	to	the	organoleptic	quality	of	product	[30].	

Metabolomics	is	recognized	as	an	effective	tool	to	investigate	the	overall	chemical	

composition	in	complex	biological	systems	including	food	matrices	[17].	The	application	

of	 mass	 spectrometry	 (MS)‐based	 and	 nuclear	 magnetic	 resonance	 (NMR)‐based	

techniques	have	shown	to	be	very	effective	for	determining	a	wide	range	of	metabolites	
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in	liquid	milk	[6,	20,	24]	and	fermented	dairy	products	[10,	31,	33].	However,	until	now,	

the	number	of	publication	revealed	metabolomics	as	a	tool	for	better	understanding	the	

activity	of	probiotics	in	fermented	dairy	products	is	rather	limited	[4,	27,	33].	

The	 study	 described	 in	 Chapter	 2	 has	 demonstrated	 the	 influence	 of	 different	

proteolytic	 activity	 of	 starter	 bacteria,	 i.e.	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	

bulgaricus,	 on	 biochemical	 characteristics	 of	 set‐yoghurt	 from	 a	 metabolomics	

perspective.		As	a	consequence,	the	objective	of	this	study	was	to	evaluate	the	impact	of	

two	commercial	probiotic	strains,	L.	rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12,	in	

co‐fermentation	 with	 traditional	 starters	 on	 metabolite	 formation	 in	 set‐yoghurt.	

Changes	 in	bacterial	population,	decrease	of	pH	and	 increase	 in	titratable	acidity	were	

monitored	 during	 set‐yoghurt	 fermentation	 and	 storage.	 Biochemical	 changes	

associated	with	bacterial	metabolism	were	characterized	 in	 terms	of	volatile	and	non‐

volatile	polar	metabolite	profiles	using	headspace	SPME‐GC/MS	and	1H‐NMR	technique.	

Finally,	 metabolite	 profiles	 of	 different	 yoghurt	 samples	 were	 statistically	 compared	

using	multivariate	analysis.	

	

3.2	 Materials	and	methods	

3.2.1	 Yoghurt	Starters	and	probiotic	strains	

Frozen	 direct‐vat‐inoculation	 (DVI)	 pellets	 of	 Streptococcus	 thermophilus	 C44,	

Lactobacillus	 delbrueckii	 subsp.	 bulgaricus	 C49	 (CSK	 Food	 Enrichment,	 Ede,	 The	

Netherlands)	and	Bifidobacterium	animalis	 subsp.	 lactis	BB12	(Chr.	Hansen,	Hørsholm,	

Denmark)	were	stored	at	‐45	°C	and	were	defrosted	at	ambient	temperature	(20	±	3	°C)	

for	 15	 min	 before	 use.	 A	 freeze‐dried	 culture	 of	 Lactobacillus	 rhamnosus	 GG	 (ATCC	

53103)	 was	 propagated	 in	 our	 laboratory	 and	 stored	 as	 a	 20%	 (v/v)	 glycerol	 stock‐

culture	 at	 ‐80	 °C.	 The	 cultures	 were	 re‐propagated	 in	MRS	 broth	 (Merck,	 Darmstadt,	

Germany)	 at	 37	 °C	 for	 24	 h	 under	 anaerobic	 incubation	 (Anoxomat™	 Mart®	

Microbiology,	 Drachten,	 the	 Netherlands).	 Then,	 the	 cells	 were	 collected	 by	

centrifugation	at	4,000g	 for	15	min	at	4	°C,	washed	twice	using	peptone‐physiological‐
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salt	 solution	 (Tritium	 microbiology,	 Eindhoven,	 the	 Netherlands)	 and	 finally	

resuspended	in	milk	before	use.	Set‐yoghurts	were	fermented	with	three	different	types	

of	starter	combinations:	(i)	traditional	yoghurt	starters	(Y)	consisting	equal	numbers	of	

S.	 thermophilus	C44	and	L.	delbrueckii	subsp.	bulgaricus	C49,	 (ii)	 co‐culture	of	yoghurt	

starters	with	L.	 rhamnosus	 GG	 (Y‐LGG)	 and	 (iii)	 co‐culture	 of	 yoghurt	 starters	with	B.	

animalis	subsp.	lactis	BB12	(Y‐BB12).	The	combination	of	the	two	yoghurt	starters	and	

probiotic	strain	were	inoculated	each	at	106	cfu/g	at	the	starting	point	of	fermentation	

(ratio	1:1:1).						

3.2.2	 Set‐yoghurt	fermentation	

Pasteurized	 Nilac	 milk	 was	 prepared	 according	 to	 the	 method	 described	 in	

Chapter	2.	After	inoculation,	set‐yoghurt	fermentation	was	carried	out	in	a	water	bath	at	

42	 °C	 for	4	h.	 Yoghurts	were	 then	placed	 in	 a	 cold	 chamber	 (4	±	2	 °C)	 for	28	days	of	

storage.	Samples	were	taken	hourly	during	fermentation	and	weekly	during	storage.	The	

enumeration	 of	 viable	 bacteria	 and	 determination	 of	 pH	 and	 titratable	 acidity	 were	

carried	out	immediately	after	sampling.	For	1H‐NMR,	the	samples	were	stored	at	‐20	°C	

until	the	analysis.	The	fermentation	was	performed	in	three	replicates	for	each	type	of	

starter	combination.			

3.2.3	 Enumeration	of	viable	bacteria	

Viable	 counts	of	S.	 thermophilus	were	determined	on	S.	 thermophilus	 agar	after	

aerobic	incubation	at	37	°C	for	24	h	[2].	Viable	counts	of	L.	delbrueckii	subsp.	bulgaricus	

in	yoghurt	fermented	with	(i)	Y,	(ii)	Y‐BB12	and	(iii)	Y‐LGG	were	determined	on:	(i)	MRS	

agar	 pH	 5.70	 (Merck,	 Darmstadt,	 Germany)	 after	 anaerobic	 and	 (ii)	 modified	

atmosphere	(6%	O2,	7%	CO2)	incubation	(Anoxomat™	Mart®	Microbiology,	Drachten,	the	

Netherlands)	at	37	°C	for	48	h	(modified	from	Ashraf	&	Shah	[2]),	and	(iii)	MRS	agar	pH	

5.7	 supplemented	 with	 20	 mg/L	 ciprofloxacin	 (Sigma‐Aldrich,	 Steinheim,	 Germany)	

after	 anaerobic	 incubation	 at	 37	 °C	 for	 48	h	 (tested	 in	 this	 study).	 Viable	 counts	 of	L.	

rhamnosus	GG	were	determined	on	MRS	agar	supplemented	with	50	mg/L	vancomycin	

(Merck,	Darmstadt,	Germany)	after	anaerobic	 incubation	at	37	°C	 for	48	h	 [42].	Viable	

counts	 of	B.	animalis	 subsp.	 lactis	BB12	were	determined	on	MRS	 agar	 supplemented	
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with	0.5	g/L	 cysteine‐HCl	 (Merck,	Darmstadt,	Germany)	and	50	mg/L	mupirocin	 (LGC	

Standards,	Middlesex,	UK)	after	anaerobic	incubation	at	37	°C	for	48	h	[2].		

3.2.4	 Determination	of	acidification	profile	

Production	of	acid	during	set‐yoghurt	fermentation	and	refrigerated	storage	was	

expressed	by	changes	in	pH	and	increases	in	titratable	acidity.	The	pH	measurement	and	

determination	of	titratable	acidity	were	performed	according	to	the	methods	described	

in	Chapter	2.			

3.2.5	 Analysis	of	volatile	metabolites	by	headspace	SPME‐GC/MS	

For	headspace	SPME‐GC/MS	analysis,	set‐yoghurt	fermentation	was	also	carried	

out	directly	in	glass	GC	vials	as	previously	described	in	Chapter	2.	The	fermentation	was	

performed	 in	 three	 replicates	 for	 each	 type	 of	 starter	 combination.	 Extraction	 and	

determination	 of	 volatile	 compounds	 by	 headspace	 SPME‐GC/MS	 were	 performed	

according	to	the	method	described	in	Chapter	2.	This	method	was	based	on	the	method	

developed	by	Hettinga	et	al.	[18].	

Volatile	metabolites	were	 identified	using	AMDIS	 software	 (NIST,	Gaithersburg,	

MD,	USA)	 referred	 to	NIST/EPA/NIH	database	 and	 library	provided	by	Hettinga	 et	 al.	

[19].	Specific	retention	time	and	m/z	model	were	used	for	automated	peak	integration	in	

the	XCalibur	software	package	(Thermo	Scientific,	Austin,	TX,	USA)	[37].	

3.2.6	 Analysis	of	non‐volatile	polar	metabolites	by	1H‐NMR	spectroscopy	

For	1H‐NMR	analysis,	 the	samples	 from	two	replicates	were	analyzed	according	

to	 the	method	 described	 in	 Chapter	 2.	 Frozen	 yoghurt	 samples	were	 thawed	 at	 room	

temperature	and	pH	was	adjusted	to	6.0	using	1.0	N	NaOH	to	achieve	low	variation,	i.e.	

location	 and	 shape	 of	 peaks,	 in	 the	 spectra	 obtained	 [25].	 NOESY	 1D‐1H‐NMR	

measurements	 were	 performed	 at	 300	 K	 in	 a	 600	 MHz	 NMR	 spectrometer	 (Bruker,	

Rheinstetten,	 Germany)	 operated	 under	 full	 automation,	 with	 similar	 parameters	 as	

described	by	Lu	et	al.	[24].	
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The	 1H‐NMR	 spectra	 were	 baseline‐corrected,	 phase‐corrected,	 aligned	 and	

calibrated	based	on	the	internal	standard	(TSP)	peak.	For	each	spectrum,	chemical	shift	

(δ)	across	 the	 range	of	0.00	 ‐	10.00	ppm	was	segmented	 (binning)	with	an	 interval	of	

0.02	 ppm	 [37].	 The	 signal	 intensity	 in	 each	 bin	 was	 integrated	 and	 expressed	 in	

arbitrary	units	using	AMIX	software	(Bruker,	Rheinstetten,	Germany).	Metabolite	labels	

were	assigned	 to	 the	bins	by	means	of	Chenomx	NMR	suite	7.5	 library	 (Chenomx	 Inc.,	

Alberta,	 Canada)	 and	 from	 the	 list	 of	 metabolites	 identified	 in	 Chapter	 2	 [37].	 For	

unlabeled	 bins,	 significant	 variables	were	 selected	 based	 on	 one‐way	 ANOVA	 at	 95%	

confidence	level.		

3.2.7	 Statistical	analysis	

One‐way	 ANOVA	 with	 multiple	 comparisons	 by	 Tukey’s	 test	 were	 performed	

using	IBM	SPSS	statistics	package	version	19	(SPSS	Inc.,	Chicago,	IL,	USA).	A	probability	

at	p	<	0.05	was	considered	statistically	significant.	Metabolomics	data	from	GC/MS	and	

1H‐NMR	 were	 normalized	 by	 median‐centering	 and	 log2‐scaling	 before	 multivariate	

statistical	 analysis.	 Principal	 component	 analysis	 (PCA)	 and	 heat‐map	 visualization	

combined	 with	 Pearson’s	 correlation‐based	 hierarchical	 cluster	 analysis	 (HCA)	 were	

performed	using	Multi‐Experiment	Viewer	(MeV)	version	4.8	as	previously	described	in	

Chapter	2.	

	

3.3	 Results	and	discussion		

3.3.1	 Bacterial	growth	and	survival	profiles			

The	Viable	cell	counts	of	yoghurt	starters	and	probiotics	were	enumerated	during	

set‐yoghurt	fermentation	(0,	1,	2,	3,	4	h)	and	refrigerated	storage	(7,	14,	21,	28	d)	(Fig.	

3.1).	 In	 the	 samples	 fermented	 with	 standard	 yoghurt	 starters	 (Y)	 (Fig.	 3.1A),	 S.	

thermophilus	developed	rapidly	during	the	early	stage	of	fermentation,	especially	during	

0	–	3	h,	while	L.	delbrueckii	subsp.	bulgaricus	remained	in	lag‐phase	for	at	least	one	hour.	

The	growth	of	L.	delbrueckii	subsp.	bulgaricus	can	be	observed	after	1	h	towards	the	end	
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of	 fermentation.	 Similar	 growth	 patterns	 of	 the	 two	 species	 of	 traditional	 yoghurt	

starters	have	been	well	documented	[11,	41].		

	

Fig.	3.1.	 Changes	 in	 viable	 bacteria	 counts	 during	 set‐yoghurt	 fermentation	 (4	 hours)	 and	 refrigerated	
storage	 (28	 days).	 Samples	were	 fermented	with	 traditional	 yoghurt	 starters	 (panel	 A)	 consisting	 of	 S.	
thermophilus	(▲)	and	L.	delbrueckii	subsp.	bulgaricus	( )	compared	with	co‐cultures	of	yoghurt	starters	
with	L.	rhamnosus	GG	( ,	panel	B)	and	B.	animalis	subsp.	lactis	BB12	( ,	panel	C).	Error	bars	represent	
standard	deviations	based	on	three	independent	replicates.	
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At	the	end	of	fermentation,	the	viable	counts	of	S.	thermophilus	and	L.	delbrueckii	

subsp.	bulgaricus	increased	by	2.3	and	2.0	log	units	to	reach	an	average	value	of	8.7	±	0.2	

and	 8.3	 ±	 0.3	 log	 cfu/g,	 respectively.	 The	 viable	 counts	 of	 the	 two	 species	 remained	

nearly	 stable	 (above	 8.0	 log	 cfu/g)	 throughout	 the	 28‐day	 storage	 period.	 The	 high	

survival	of	S.	thermophilus	has	been	well	recognized.	However,	many	authors	found	that	

the	survival	of	L.	delbrueckii	subsp.	bulgaricus	was	strain‐dependent	and	a	loss	of	viable	

count	down	to	1.5	log	units	during	refrigerated	storage	has	been	reported	[12,	28,	35].		

In	co‐culture	with	L.	rhamnosus	GG	(Y‐LGG)	(Fig.	3.1B)	or	B.	animalis	subsp.	lactis	

BB12	(Y‐BB12)	(Fig.	3.1C),	yoghurt	starters	showed	similar	growth	and	survival	pattern	

as	 found	 in	 the	 samples	 fermented	 without	 probiotics.	 The	 viable	 counts	 of	 S.	

thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	at	the	end	of	fermentation	(4	h)	and	at	

the	 end	of	 storage	 (28	d)	 in	 the	 samples	 fermented	with	Y‐LGG	and	Y‐BB12	were	not	

significantly	 different	 (p	 >	 0.05)	 from	 those	 observed	 in	 the	 samples	 fermented	with	

only	Y.	These	results	suggest	no	obvious	interference	from	the	addition	of	L.	rhamnosus	

GG	or	B.	animalis	subsp.	lactis	BB12	on	growth	and	survival	of	yoghurt	starters.	It	can	be	

noticed	that	S.	thermophilus	predominates	the	microbial	population	in	all	tested	culture	

combinations.	This	observation	confirms	 reports	of	other	 researchers	 [28,	35].	On	 the	

other	hand,	the	two	probiotic	strains	exhibited	different	growth	patterns	and	varied	in	

their	 survival	 during	 storage.	 The	 viable	 counts	 of	 L.	 rhamnosus	 GG	 and	 B.	 animalis	

subsp.	 lactis	BB12	inoculated	individually	in	milk	remained	stable	during	incubation	at	

42	 °C	 for	4	h	 (data	not	shown).	The	 limited	capacity	of	L.	rhamnosus	GG	 to	develop	 in	

milk	is	explained	by	the	lack	of	ability	to	ferment	lactose.	The	weak	proteolytic	activity	

along	with	 a	 low	 redox	 potential	 requirement	 explain	 the	 poor	 growth	 of	B.	animalis	

subsp.	 lactis	BB12	 in	milk	 [29].	 In	 association	with	 yoghurt	 starters,	 the	 growth	 of	L.	

rhamnosus	GG	was	slightly	enhanced	while	the	growth	of	B.	animalis	subsp.	lactis	BB12	

was	 evidently	 stimulated.	 In	 comparison,	 the	 viable	 counts	 of	L.	 rhamnosus	 GG	 and	B.	

animalis	subsp.	lactis	BB12	at	the	end	of	fermentation	increased	by	0.6	and	0.9	log	units	

to	 reach	 an	 average	 value	 of	 6.7	 ±	 0.1	 and	 7.2	 ±	 0.1	 log	 cfu/g,	 respectively.	 This	 is	 in	

accordance	with	observations	reported	by	El‐Dieb	et	al.	[13]	and	Saccaro	et	al.	[35]	who	

also	found	an	evident	stimulating	effect	on	the	growth	of	bifidobacteria	in	milk	when	co‐
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fermented	 with	 yoghurt	 starters.	 The	 viable	 counts	 of	 L.	 rhamnosus	 GG	 slightly	

decreased	 (0.5	 log	 reduction)	 throughout	 the	 entire	 storage	 period	 while	 those	 of	B.	

animalis	 subsp.	 lactis	BB12	drastically	decreased	 (1.2	 log	 reduction)	 especially	during	

the	 first	 two	 weeks	 and	 then	 remained	 nearly	 stable	 until	 the	 end	 of	 storage.	 These	

results	 correspond	with	 data	 from	 literature	 indicating	 a	 higher	 stability	 of	 probiotic	

lactobacilli	 compared	 to	 bifidobacteria	 in	 fermented	 milk	 [16,	 23].	 The	 final	 viable	

counts	 of	 L.	 rhamnosus	 GG	 and	 B.	 animalis	 subsp.	 lactis	 BB12	 at	 the	 end	 of	 storage	

reached	an	average	value	of	6.2	±	0.2	and	6.1	±	0.2	log	cfu/g,	respectively,	which	still	met	

the	minimum	recommended	level	(not	less	than	6.0	log	cfu/g)	to	ensure	their	potential	

health‐promoting	effects	[39].				

3.3.2	 Acidification	profiles	

Changes	 in	 pH	 were	 monitored	 during	 fermentation	 and	 refrigerated	 storage	

(Fig.	 3.2A).	 Similar	 acidification	 patterns	 were	 observed	 in	 all	 samples	 whether	 they	

were	fermented	with	or	without	probiotics.	At	the	end	of	fermentation,	the	pH	values	of	

all	samples	were	not	significantly	different	(p	>	0.05)	with	an	average	value	of	4.4	±	0.1.	

The	 pH	 values	 showed	 an	 evident	 decrease	 especially	 during	 the	 first	 two	 weeks	 of	

storage	(ca.	0.3	pH	units);	later,	only	a	slight	decline	in	pH	was	observed.	At	the	end	of	

storage,	the	pH	values	were	reduced	to	an	average	value	of	4.1	±	0.1	without	significant	

difference	(p	>	0.05)	regarding	the	presence	of	probiotics.	

To	 determine	 acid	 production,	 titratable	 acidity	 was	 measured	 during	

fermentation	 and	 storage	 expressed	 as	 %	 equivalent	 lactic	 acid	 (w/w)	 (%	 LA)	 (Fig.	

3.2B).	 For	 better	 comparison,	 the	 titratable	 acidity	was	 subtracted	 by	 its	 initial	 value	

measured	 in	 the	 sample	 at	 0	 h.	 A	 higher	 acid	 production	 was	 found	 in	 the	 samples	

fermented	with	Y‐LGG	and	Y‐BB12	compared	to	those	fermented	with	Y.	At	the	end	of	

fermentation,	the	amount	of	titratable	acidity	produced	by	Y‐LGG	(0.71%)	was	slightly	

higher	than	that	produced	by	Y‐BB12	(0.68%)	and	Y	(0.64%),	respectively.	However,	the	

differences	were	not	statistically	significant	(p	>	0.05).	A	low	capacity	to	acidify	milk	by	

different	 probiotics	 strains	was	 previously	 reported	 [26,	 36].	 This	 finding	 contradicts	

with	the	study	of	Saccaro	et	al.	[35]	who	found	a	significant	contribution	of	L.	rhamnosus	
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and	 B.	 animalis	 subsp.	 lactis	 to	 milk	 acidification	 when	 co‐fermented	 with	 yoghurt	

starters.		

	

Fig.	 3.2.	 Changes	 in	 pH	 (panel	 A)	 and	 increase	 in	 titratable	 acidity	 (panel	 B)	 during	 set‐yoghurt	
fermentation	 (4	 hours)	 and	 refrigerated	 storage	 (28	 days)	 by	 traditional	 yoghurt	 starters	 ( ,	 )	
consisting	of	S.	 thermophilus	 and	L.	delbrueckii	 subsp.	bulgaricus	 compared	with	 co‐cultures	of	 yoghurt	
starters	with	L.	 rhamnosus	GG	 ( ,	 )	 and	B.	animalis	 subsp.	 lactis	 BB12	 ( ,	 ).	 Error	bars	 represent	
standard	deviations	based	on	three	independent	replicates.	

 

During	 storage,	 it	 appeared	 that	 acid	 was	 produced	 to	 the	 same	 extent	 in	 all	
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defined	 as	 “post‐acidification”	 which	 is	 predominantly	 attributed	 to	 the	 metabolic	

activity	of	L.	delbrueckii	subsp.	bulgaricus	[38].	This	phenomenon	has	been	identified	as	

one	of	the	most	detrimental	factors	for	the	stability	of	probiotics	during	yoghurt	shelf‐

life	 [12].	 The	 results	 confirm	 a	 significant	 negative	 effect	 of	 post‐acidification	 on	 the	

survival	 of	 L.	 rhamnosus	 GG	 and	B.	 animalis	 subsp.	 lactis	 BB12	 in	 set‐yoghurt	 during	

refrigerated	 storage.	 Generally,	 lactobacilli	 are	 reported	 to	 be	more	 tolerant	 to	 acidic	

condition	of	fermented	milk	than	bifidobacteria	[12,	13].	

3.3.3	 Volatile	metabolite	profiles	determined	by	headspace	SPME‐GC/MS		

Volatile	metabolite	profiles	of	set‐yoghurts	fermented	with	Y,	Y‐LGG	and	Y‐BB12	

were	evaluated	at	the	end	of	fermentation	(4	h)	and	every	two	weeks	during	storage	(14	

d	 and	 28	 d).	 In	 this	 study,	 yoghurt	 samples	were	 directly	 fermented	 in	 GC	 vials.	 The	

advantages	 of	 this	 approach	 are	 the	 small	 amount	 of	 sample	 required	 (3	 mL)	 and	

minimal	 loss	 of	 volatiles	 during	 sample	 preparation.	 To	 ensure	 that	 the	 results	 were	

comparable	 with	 the	 samples	 fermented	 in	 section	 3.2.2,	 the	 pH	 from	 in‐vial	

fermentation	 was	 regularly	 verified	 (data	 not	 shown).	 A	 total	 of	 37	 compounds	

comprising	 of	 alcohols,	 carbonyl	 compounds,	 organic	 acids,	 sulfur	 and	 heterocyclic	

compounds	 were	 identified	 in	 this	 study	 (Table	 S3.1).	 This	 list	 is	 comparable	 to	 the	

volatiles	identified	in	various	types	of	yoghurt	using	SPME‐GC/MS	technique	by	others	

[9,	14,	22].		

PCA	was	performed	to	distinguish	the	profiles	of	volatile	metabolites	among	set‐

yoghurts	fermented	with	Y,	Y‐LGG	and	Y‐BB12.	Samples	at	the	end	of	fermentation	(4	h)	

and	during	 storage	 (14	d	 and	28	d)	with	 three	 replicates	were	 statistically	 treated	 as	

individual	objects	(n	=	27)	 in	a	multivariate	analysis.	A	total	of	37	volatile	metabolites	

were	introduced	as	variables.	If	necessary,	missing	values	were	replaced	by	the	median	

of	respective	metabolites.		

Fig.	3.3.	PCA	score	plots	and	PC	loadings,	for	overall	comparison	(panel	A),	comparison	among	samples	at	
4	 h	 (panel	 B),	 comparison	 among	 storage	 samples	 (panel	 C)	 and	 comparison	 between	 two	 probiotic	
yoghurts	 (panel	D)	derived	 from	volatile	metabolite	profiles	of	 set‐yoghurts	 fermented	with	 traditional	
yoghurt	starters	(Y;	 ),	co‐cultures	of	yoghurt	starters	with	L.	rhamnosus	GG	(Y‐LGG;	 )	and	B.	animalis	
subsp.	lactis	BB12	(Y‐BB12;	 ).	White,	grey	and	black	filled	blocks	correspond	to	the	samples	at	4	hours,	
14	days	and	28	days,	respectively.	
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An	overall	 PCA	 score	plot	was	 constructed	with	 a	 total	 variance	 of	 59.9%	 (Fig.	

3.3A).	Within	the	group	of	4	h	samples,	a	good	separation	between	Y	and	Y‐BB12	was	

observed	whereas	the	samples	of	Y‐LGG	were	overlapped	between	the	two	groups.	The	

stored	samples	of	Y	showed	an	identical	volatile	profile	which	was	clearly	isolated	from	

other	 groups.	 On	 the	 other	 hand,	 the	 stored	 samples	 of	 Y‐LGG	 and	 Y‐BB12	were	 not	

clearly	separated.	Volatile	metabolite	profiles	of	the	4	h	samples	could	be	distinguished	

from	those	of	stored	samples	along	PC1	(39.4%	variance).	The	metabolites	accountable	

for	 separation	 are	 indicated	 in	PC1‐loading.	1‐Methoxy‐2‐propanol	was	 a	determinant	

for	the	4	h	samples	whereas	the	majority	of	volatiles,	particularly	dimethyl	disulfide	and	

2,3‐pentanedione,	were	accountable	 for	 the	 separation	of	 stored	 samples.	To	 focus	on	

the	 incorporation	of	probiotics,	 two	PCA	score	plots	were	 constructed	 for	 comparison	

among	 yoghurt	 samples	 at	 4	 h	 (n	 =	 9)	with	 a	 total	 variance	 of	 72.3%	 (Fig.	 3.3B)	 and	

among	stored	samples	(n	=	18)	with	a	total	variance	of	58.2%	(Fig.	3.3C).	In	both	cases,	

volatile	 profiles	 of	 the	 samples	 fermented	 with	 Y	 were	 clearly	 separated	 from	 those	

fermented	with	Y‐LGG	and	Y‐BB12	along	PC1	accounting	for	55.2%	and	44.1%	variance,	

respectively.	 PC1‐loading	 in	 Fig.	 3.3B	 suggests	 that	 the	 presence	 of	 probiotics	 during	

fermentation	facilitates	the	higher	production	of	volatile	metabolites	in	yoghurt.		

As	 storage	 time	 progressed,	 the	 numbers	 of	 metabolites	 contributing	 to	

separation	decreased	(PC1‐loading	in	Fig.	3.3C).	 In	other	words,	the	overall	metabolite	

composition	of	all	samples	became	more	similar	to	each	other.	Despite	low	numbers	of	

indicative	metabolites	 in	 the	 loading	plot,	 the	 stored	 samples	of	 Y,	 Y‐LGG	and	Y‐BB12	

were	still	completely	separated.	The	final	PCA	score	plot	was	constructed	to	evaluate	the	

distinction	between	two	probiotic	strains	(Fig.	3.3D)	with	a	total	variance	of	71.6%.	The	

samples	 of	 Y‐LGG	 and	 Y‐BB12	 were	 clearly	 separated	 along	 PC2	 with	 metabolites	

accountable	 for	 separation	 indicated	 in	 the	 loading	plot.	 The	 results	 demonstrate	 that	

volatile	 profiles	 of	 set‐yoghurts	 can	 successfully	 be	 distinguished	 according	 to	 the	

differences	 in	 types	 of	 starter	 cultures	 and	 also	 durations	 of	 storage.	 Besides	 this,	

indicative	metabolites	in	the	loading	plots	can	be	considered	as	potential	biomarkers	for	

detection	of	specific	combinations	of	starter	cultures	and	probiotics.	
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Fig.	3.4.	Heat‐map	and	hierarchical	clustering	of	volatile	metabolite	profiles	from	set‐yoghurts	fermented	
with	traditional	yoghurt	starters	(Y),	co‐cultures	of	yoghurt	starters	with	L.	rhamnosus	GG	(Y‐LGG)	and	B.	
animalis	 subsp.	 lactis	 BB12	 (Y‐BB12).	 Dendrogram	 represents	 sample	 clusters	 based	 on	 Pearson’s	
correlation	coefficient	with	average	 linkage.	Each	square	 in	 the	heat‐map	expresses	normalized	volatile	
content	 respected	 to	 the	 color	 range.	 The	 red	 color	 indicates	 higher	 content	 of	 the	 corresponding	
compound.	

	

Heat‐map	visualization	combined	with	hierarchical	cluster	analysis	was	used	to	

analyze	the	quantitative	relationships	of	volatile	profiles	from	different	yoghurt	samples	
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grouped	into	different	clusters,	i.e.	samples	at	4	h	of	Y	(A1),	samples	at	4	h	of	Y‐LGG	and	

Y‐BB12	(A2),	stored	samples	of	Y	(B)	with	an	outlier	from	Y‐BB12,	stored	samples	of	Y‐

LGG	 (C1)	 and	 stored	 samples	 of	 Y‐BB12	 (C2),	 according	 to	 their	 volatile	 metabolite	

profiles.	This	observation	is	in	accordance	with	the	PCA	results	in	Fig.	3.3A	showing	that	

volatile	 profiles	 of	 the	 samples	 fermented	with	 Y‐LGG	 and	 Y‐BB12	 are	 rather	 similar.	

However,	unlike	PCA,	the	overlap	between	two	groups	is	not	observed.	

Acetaldehyde,	diacetyl,	acetoin,	2,3‐pentanedione,	acetone,	2‐butanone	and	acetic	

acid	were	present	 in	high	relative	abundances	 in	 the	samples	 (Fig.	3.5).	These	volatile	

metabolites	are	known	as	major	aroma	compounds	of	yoghurt	[7].	Acetaldehyde	(fresh,	

green,	pungent)	is	the	most	important	compound	contributing	to	typical	yoghurt	aroma	

which	is	mainly	generated	by	threonine	metabolism	of	yoghurt	starters.	Despite	the	high	

capacity	 of	 acetaldehyde	 production	 by	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	

bulgaricus	 [5],	 also	 bifidobacteria	 have	 been	 reported	 to	 contribute	 to	 acetaldehyde	

formation	 in	 fermented	 milk	 [3,	 34].	 This	 study	 confirmed	 that	 Y‐BB12	 resulted	 in	

significant	higher	acetaldehyde	concentration	(p	<	0.05)	in	the	samples	at	4	h	compared	

to	Y	and	Y‐LGG.	Although,	this	metabolite	increased	substantially	during	storage,	there	

was	no	significant	difference	 in	acetaldehyde	concentration	among	yoghurt	samples	at	

the	end	of	 storage.	Diacetyl	 (buttery,	 creamy),	 acetoin	 (buttery)	and	2,3‐pentanedione	

(buttery,	 vanilla‐like)	 are	 primarily	 generated	 by	 S.	 thermophilus	 through	 pyruvate	

metabolism	 [7].	 The	 results	 showed	 no	 significant	 difference	 in	 diacetyl	 and	 2,3‐

pentanedione	among	all	yoghurt	samples	at	4h	while	acetoin	was	significantly	higher	(p	

<	0.05)	in	the	samples	fermented	with	Y‐BB12.	It	has	been	reported	that	bifidobacteria	

may	convert	pyruvate	to	acetoin	 instead	of	organic	acids	to	maintain	their	 internal	pH	

[30].	 Acetone	 and	 2‐butanone	 are	 naturally	 present	 in	 cow’s	 milk	 [18]	 but	 a	 certain	

amount	can	be	additionally	produced	by	yoghurt	starters	 [7].	The	results	showed	that	

these	two	metabolites	remained	steady	without	any	significant	difference	in	either	type	

of	starter	culture	or	storage	duration.	

Despite	the	similar	abundance	in	major	aroma	volatiles	among	yoghurt	samples,	

most	of	the	minor	carbonyl	compounds,	volatile	organic	acids	and	alcohols	were	present	

in	significant	higher	abundance	especially	 in	the	samples	co‐fermented	with	probiotics	
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(Table	 S3.1).	These	metabolites	 also	 showed	a	 significant	 increase	during	 refrigerated	

storage.	They	may	be	generated	from	catabolism	of	pyruvate	as	well	as	amino	acids	or	

derived	 from	 other	 biochemical	 conversions	 by	 the	 activity	 of	 native	 milk	 enzymes	

remained	after	pasteurization,	bacterial	metabolism	and	lipid	oxidation	[1,	5,	43].		

	

Fig.	 3.5.	 Quantity	 of	 major	 volatile	 metabolites	 in	 set‐yoghurt	 samples	 determined	 at	 the	 end	 of	
fermentation	(4	hours;	panel	A)	and	the	end	of	storage	(28	days;	panel	B).	Samples	were	 fermented	by	
traditional	 yoghurt	 starters	 ( )	 consisting	 of	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	
compared	with	co‐culture	of	yoghurt	starters	with	L.	rhamnosus	GG	( )	and	B.	animalis	subsp.	lactis	BB12	
( ).	Error	bars	represent	standard	deviations	based	on	three	independent	replicates.	

	

The	 impact	 of	 L.	 rhamnosus	 GG	 and	 B.	 animalis	 subsp.	 lactis	 BB12	 on	

benzaldehyde,	 organic	 acids	 and	 ethanol	 production	 in	 fermented	 milk	 has	 been	

previously	reported	[29,	34,	46].	Particularly,	the	capacity	to	convert	lactose	into	acetic	

acid	and	lactic	acid	in	the	proportion	of	3	:	2	(known	as	Bifidus	pathway)	is	a	remarkable	

heterofermentative	attribute	of	bifidobacteria	[41].	However,	the	results	did	not	show	a	
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significant	increase	in	acetic	acid	concentration	in	the	samples	fermented	with	Y‐BB12.	

The	 effects	 of	 high	 temperature	 incubation	 on	 the	 formation	 of	 acetic	 acid	 as	well	 as	

other	 volatiles	 by	 bifidobacteria	 have	 been	 previously	 reported	 [30].	 An	 incubation	

temperature	near	the	optimum	level	 for	growth	of	bifidobacteria	(35‐37	°C)	combined	

with	a	long	incubation	time	(10	‐	18	h)	was	found	to	link	with	their	capacity	of	volatile	

formation	[29,	46].	Thus,	a	relatively	high	incubation	temperature	combined	with	rapid	

acidification	 rate	 by	 yoghurt	 starters	 in	 this	 study	 might	 explain	 the	 low	 acetic	 acid	

production	 by	 B.	 animalis	 subsp.	 lactis	 BB12,	 although	 it	 was	 able	 to	 develop	 by	

approximately	one	log	cfu/g	during	fermentation.	Indeed,	an	excessive	concentration	of	

acetic	acid	(vinegar,	pungent)	in	yoghurt	may	be	considered	as	undesirable.		

In	summary,	contributions	by	L.	rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12	

are	 likely	 pronounced	 in	 the	 formation	 of	 minor	 volatile	 metabolites	 present	 at	 low	

concentration,	 especially	 volatile	 organic	 acids	 and	 alcohols,	 in	 yoghurt.	 Therefore,	

results	 demonstrate	 that	 the	 incorporation	 of	L.	 rhamnosus	 GG	 and	B.	animalis	 subsp.	

lactis	BB12	did	not	significantly	influence	the	major	aroma	volatile	metabolites	desirable	

for	 a	 good	 organoleptic	 quality	 of	 yoghurt.	 However,	 the	 overall	 volatile	 metabolite	

profiles	of	set‐yoghurts	could	be	statistically	distinguished	by	multivariate	analysis.		

3.3.4	 Non‐volatile	polar	metabolite	profiles	determined	by	1H‐NMR	

For	 multivariate	 analysis,	 it	 should	 be	 mentioned	 that	 the	 43	 identified	

metabolites	 accounted	 for	 labeling	 of	 149	 bins.	 A	 complementary	 data	 filtering	 by	

ANOVA	was	performed	for	selection	of	the	remaining	unknowns	[21].	Finally,	a	total	of	

214	bins	were	 introduced	 as	 variables	 for	 further	 analyses.	An	overall	 PCA	 score	plot	

was	constructed	with	a	total	variance	of	65.5%	(Fig.	3.6A).	The	distinction	among	all	the	

4	h	samples	was	rather	small	but	they	could	still	be	separated.	It	was	evident	that	non‐

volatile	 profiles	 of	 the	 samples	 at	 4	 h	 could	 be	 distinguished	 from	 those	 of	 stored	

samples	 along	 PC1	 (36.1%	 variance).	 The	 loading	 plot	 indicates	 that	 the	 majority	 of	

metabolites	 in	 the	sugar	 region	are	determinant	 for	 the	samples	at	4	h	whereas	 those	

from	amino	acids	and	lactate	contribute	to	the	separation	of	stored	samples.		
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Fig.	3.6.	PCA	score	plots	and	PC	loadings,	for	overall	comparison	(panel	A),	comparison	among	samples	at	
4	h	(panel	B)	and	among	storage	samples	(panel	C),	derived	from	non‐volatile	polar	metabolite	profiles	of	
set‐yoghurts	 fermented	with	 traditional	 yoghurt	 starters	 (Y;	 ),	 co‐cultures	 of	 yoghurt	 starters	with	L.	
rhamnosus	GG	 (Y‐LGG;	 )	 and	B.	animalis	 subsp.	 lactis	BB12	 (Y‐BB12;	 ).	White,	 grey	and	black	 filled	
blocks	correspond	to	the	samples	at	4	hours,	14	days	and	28	days,	respectively.	

	

To	 focus	on	 the	 incorporation	of	probiotics,	 two	separate	PCA	score	plots	were	

constructed	for	comparison	among	yoghurt	samples	at	4	h	(n	=	6)	with	a	total	variance	

Determinant for Y-LGG / Y-BB12 samples

Determinant for Y samplesPC2  Loading

Acetone 2.23

Amino
acids
regionGlucose / 

Galactose

ppm 4.15

Acetylcarnitine

Amino acids
region

Formate

ppm 4.27

ppm 1.31

Determinant for Y / Y-BB12 samples

Determinant for Y-LGG samplesPC1  Loading

Oxoglutarate

CitrateLactose

ppm 4.39

Uridine
Fumarate

Formate

ppm 9.67

Pyruvate

Lactose

Determinant for storage samples

Determinant for 4h samplesPC1  Loading

Citrate

Amino
acids
region

Glucose / Galactose
region

Phosphocholine

Glucose / Lactose 
region

Amino
acids
region

Unknown

LactateY (4h) 

Y (storage) 

Y-LGG (4h) 

Y-BB12 (4h)

Y-LGG 
(storage) 

Y-BB12 
(storage) 

Y (4h) 

Y-LGG (4h)

Y-BB12 (4h) 

Y (storage) Y-LGG (storage)

Y-BB12 (storage) 

A 

 

 

 

B 

 

 

 

C 



Chapter	3	

86	
 

of	73.8%	(Fig.	3.6B)	and	among	stored	samples	(n	=	6)	with	a	 total	variance	of	83.4%	

(Fig.	3.6C).	In	both	cases,	the	samples	fermented	with	Y,	Y‐LGG	and	Y‐BB12	were	clearly	

separated	from	each	other.	It	was	remarkable	that	the	distinction	is	larger	among	stored	

samples.	For	instance,	a	complete	separation	was	found	between	the	samples	of	Y‐LGG	

and	those	of	Y	and	Y‐BB12	as	determined	by	formate,	pyruvate,	oxoglutarate,	fumarate	

and	uridine	along	PC1.	These	metabolites	provide	a	good	indication	for	the	presence	of	

L.	 rhamnosus	 GG	 contributing	 to	 the	 changes	 in	 non‐volatile	metabolite	 profile	 of	 set‐

yoghurt	 during	 refrigerated	 storage.	 The	 results	 demonstrate	 that	 non‐volatile	 polar	

metabolite	 profiles	 of	 set‐yoghurts	 can	 successfully	 be	 distinguished	 according	 to	 the	

differences	in	types	of	starter	cultures	and	also	duration	of	storage.			

Heat‐map	visualization	combined	with	hierarchical	cluster	analysis	was	used	to	

analyze	 the	 quantitative	 relationships	 of	 non‐volatile	 polar	 metabolite	 profiles	 of	

different	 samples	 (Fig.	 3.7).	 The	 majority	 of	 metabolites,	 especially	 amino	 acids	 and	

organic	acids,	are	present	in	high	abundance	(shown	in	red)	in	stored	samples.	On	the	

other	hand,	metabolites	in	the	sugar	group	notably	decreased	during	storage	(shown	in	

green).	This	illustrates	ongoing	metabolic	activity	of	starter	cultures	under	refrigerated	

conditions.	The	dendrogram	grouped	the	samples	into	two	main	clusters,	i.e.	all	samples	

at	 4	 h	 (A)	 and	 stored	 samples	 (B),	 according	 to	 their	 non‐volatile	 polar	 metabolite	

profiles.	Pearson’s	correlation‐based	linkages	showed	that	non‐volatile	polar	metabolite	

profiles	of	the	samples	fermented	with	Y‐LGG	and	Y‐BB12	at	4	h	were	relatively	close	to	

each	other.	However,	as	storage	time	progressed,	non‐volatile	metabolite	profiles	of	the	

samples	 fermented	 with	 Y‐LGG	 became	 well	 isolated.	 This	 observation	 demonstrates	

that	 L.	 rhamnosus	 GG	 contributes	 to	 a	 remarkable	 change	 in	 the	 formation	 of	 non‐

volatile	polar	metabolites	in	set‐yoghurt	during	refrigerated	storage.	
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Lactose/Glucose/Galactose 3.95
Glucose/Galactose 3.93 
Glucose/Galactose 3.91 
Lactose/Glucose/Galactose 3.89 
Lactose/Glucose/Galactose 3.87
Lactose/Glucose/Galactose 3.85
Lactose/Glucose/Galactose 3.83
Lactose/Glucose/Galactose 3.81
Lactose/Glucose/Galactose 3.79
Glucose/Galactose 3.77 
Glucose/Galactose 3.75 
Lactose/Glucose/Galactose 3.73
Glucose/Galactose 3.71 
Lactose/Glucose/Galactose 3.69
Lactose/Glucose/Galactose 3.67
Lactose/Glucose/Galactose 3.65
Lactose/Glucose/Galactose 3.63
Lactose 3.61 
Lactose 3.59 
Lactose 3.57 
Lactose/Glucose 3.55 
Glucose/Galactose 3.53 
Glucose/Galactose 3.51 
Glucose/Galactose 3.49 
Glucose/Galactose 3.47 
Glucose 3.45 
Glucose 3.43 
Glucose 3.41 
Glucose 3.39 
ppm 3.33 
Lactose 3.31 
Lactose 3.29 
Glucose 3.27 
Glucose/Betaine 3.25 
Glucose 3.23 
ppm 3.22 
Choline derivatives 3.19 
Acetylcarnithine 3.17 
Dimethyl sulfone 3.15 
ppm 3.13 
ppm 3.07 
ppm 3.05 
Creatinine/Creatine PO4 3.03 
Creatine 3.01 
Oxoglutarate 2.99 
ppm 2.83 
ppm 2.81 
Citrate 2.73 
Citrate 2.71 
Citrate 2.69 
Citrate 2.59 
Citrate 2.57 
Citrate 2.55 
Citrate 2.53 
ppm 2.51 
Oxoglutarate 2.47 
Oxoglutarate 2.45 
Succinate 2.43 
Pyruvate 2.37 
Proline 2.35 
Proline 2.33 
Acetoacetate 2.27 
Valine 2.25 
Acetone 2.23 
Butyrate 2.15 
Butyrate 2.11 
N-acetylamino acid 2.07 
N-acetylamino acid 2.05 
N-acetylglucosamine 2.03 
N-acetylamino acid 2.01 
Valerate derivative 1.99 
Acetate 1.93 
ppm 1.91 
ppm 1.75 
Leucine 1.73 
Leucine 1.71 
ppm 1.53 
ppm 1.51 
ppm 1.49 
Alanine 1.47 
ppm 1.45 
Amino acid residue 1.43 
Amino acid residue 1.39 
ppm 1.37 
ppm 1.35 
Lactate 1.33 
ppm 1.31 
ppm 1.29 
ppm 1.27 
Amino acid residue 1.25 
Amino acid residue 1.23 
ppm 1.21 
ppm 1.19 
ppm 1.17 
ppm 1.15 
ppm 1.13 
ppm 1.11 
ppm 1.09 
ppm 1.07 
Valine/Isobutyrate 1.05 
Isobutyrate 1.03 
ppm 1.01 
Isoleucine 0.99 
Valine 0.97 
Leucine/Valerate derivative 0.95 
Isoleucine 0.93 
(Hydroxy)Butyrate 0.89 
Valerate 0.87 
Valerate derivative 0.83
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Fig.	3.7.	Heat‐map	and	hierarchical	clustering	of	non‐volatile	polar	metabolite	profiles	from	set‐yoghurts	
fermented	with	traditional	yoghurt	starters	(Y),	co‐cultures	of	yoghurt	starters	with	L.	rhamnosus	GG	(Y‐
LGG)	 and	 B.	 animalis	 subsp.	 lactis	 BB12	 (Y‐BB12).	 Dendrogram	 represents	 sample	 clusters	 based	 on	
Pearson’s	correlation	coefficient	with	average	linkage.	Each	square	in	the	heat‐map	expresses	normalized	
metabolite	 content	 respected	 to	 the	 color	 range.	 The	 red	 color	 indicates	 higher	 content	 of	 the	
corresponding	compound.	
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During	 fermentation,	 the	 role	 of	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	

bulgaricus	 in	the	biochemical	conversion	of	milk	components	is	well	documented	[41].	

The	 proto‐cooperation	 between	 these	 two	 species,	 based	 on	 the	 exchange	 of	 several	

metabolic	derived	compounds	which	provide	mutual	growth	stimulating	effects	to	each	

other	 [40],	 leads	 to	 the	 production	 of	 various	metabolites	 resulting	 in	 a	 formation	 of	

semi‐solid	 texture	 and	 typical	 yoghurt	 flavor	 [11].	 The	 primary	 role	 of	 dairy	 starter	

cultures	 is	 acidification	 of	 milk	 by	 conversion	 of	 lactose	 into	 lactic	 acid.	 Although,	

individual	 cultures	 of	L.	 rhamnosus	 GG	 and	B.	animalis	 subsp.	 lactis	 BB12	 exhibit	 low	

acidifying	capacity	in	milk,	their	contribution	to	acidification	may	increase	from	slight	to	

a	 significant	 level	 in	 co‐culture	 with	 yoghurt	 starters	 [34,	 36].	 According	 to	 the	

quantification	of	non‐volatile	metabolites	presented	in	Table	S3.2,	the	results	confirmed	

that	lactate	concentration	was	slightly	higher	in	the	samples	fermented	with	Y‐LGG	and	

Y‐BB12	 compared	 to	 those	 fermented	without	 probiotics.	Due	 to	 the	 lack	 of	 ability	 to	

ferment	 lactose	 of	 L.	 rhamnosus	 GG,	 this	 result	 suggests	 that	 this	 strain	 might	 take	

advantage	 from	 the	 free	 galactose	 generated	 by	 β‐galactosidase	 activity	 of	 yoghurt	

starters.	 In	contrast	to	the	homofermentative	yoghurt	starters,	L.	rhamnosus	GG	and	B.	

animalis	 subsp.	 lactis	 BB12	 are	 classified	 as	 heterofermentative	 by	 which	 certain	

amounts	of	lactate,	acetate,	ethanol	and	CO2	can	be	simultaneously	generated	from	their	

carbohydrate	 metabolism	 [41].	 Therefore,	 an	 increase	 in	 these	 compounds	 during	

fermentation	 could	 directly	 indicate	 the	 activity	 of	 probiotics.	 This	was	 confirmed	 by	

higher	amounts	of	acetate	and	ethanol	(previously	mentioned)	detected	in	the	samples	

fermented	 with	 Y‐LGG	 and	 Y‐BB12.	 Nevertheless,	 the	 difference	 in	 acetic	 acid	

concentration	was	negligible	in	their	volatile	metabolite	profiles.	Ascorbate,	isobutyrate	

and	 succinate	 were	 present	 at	 higher	 concentrations	 especially	 in	 the	 samples	

fermented	 with	 Y‐BB12.	 However,	 contributions	 by	 these	 organic	 acids	 were	 rather	

small	 and	did	not	 contribute	 to	 a	 significant	difference	 in	 acidification	profiles	 among	

yoghurt	 samples.	Pyruvate	 is	 a	key‐metabolite	derived	 from	carbohydrate	metabolism	

and	 can	be	 further	 converted	 into	 various	organic	 acids	 and	volatile	 compounds	 [45].	

This	metabolite	was	evidently	more	abundant	in	the	samples	fermented	with	Y‐LGG	and	

Y‐BB12.	The	influence	of	proteolytic	activity	was	characterized	by	an	overall	increase	in	

free	 amino	 acid	 concentrations.	 Growth	 of	 bifidobacteria	 in	 milk	 is	 restricted	 due	 to	
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their	 low	 proteolytic	 activity	 [34].	 However,	 active	 growth	 of	B.	animalis	 subsp.	 lactis	

BB12	in	co‐culture	with	yoghurt	starters	found	in	this	study	suggests	that	bifidobacteria	

might	take	advantage	from	free	nitrogen	sources	supplied	by	the	proteolytic	activity	of	

L.	delbrueckii	subsp.	bulgaricus.	A	small	increase	in	free	amino	acid	concentrations	was	

observed	in	the	samples	of	Y‐BB12,	particularly	for	alanine,	phenylalanine,	tyrosine	and	

valine.	

During	 refrigerated	 storage,	 post	 acidification	 is	 mainly	 caused	 by	 ongoing	

metabolic	 activity	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	 [38].	 Decreases	 in	 lactose	 and	

glucose	 were	 observed	 in	 all	 samples	 and	 corresponded	 with	 an	 increase	 in	 lactate	

concentration.	 An	 excessive	 acidification	 is	 detrimental	 for	 the	 stability	 of	 probiotics	

during	 yoghurt	 shelf‐life	 as	 discussed	 previously.	 Moreover,	 H2O2	 (analysis	 not	

performed	in	this	study)	generated	by	L.	delbrueckii	subsp.	bulgaricus	can	be	harmful	to	

probiotic	cells	due	to	their	 lack	in	catalase	activity	[44].	 Increases	in	organic	acids	and	

free	 amino	 acids	 were	 clearly	 observed	 in	 the	 samples	 fermented	 with	 Y‐LGG.	 It	 is	

possible	 that	 proteolysis‐derived	 compounds	 increased	 the	 buffering	 capacity	 of	milk.	

This	 could	 explain	 the	 significant	 difference	 in	 titratable	 acidy	 observed	 between	 the	

samples	of	Y	and	Y‐LGG	without	significant	difference	in	pH	value.	The	results	indicate	a	

substantial	metabolic	 activity	of	Y‐LGG	during	 refrigerated	 storage	which	 corresponds	

with	 a	 distinctive	 non‐volatile	 polar	 metabolite	 profile	 demonstrated	 by	 multivariate	

analysis.	
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3.4	 Conclusions	

A	complementary	metabolomics	approach	using	headspace	SPME‐GC/MS	and	1H‐

NMR	was	used	for	characterization	of	volatile	and	non‐volatile	polar	metabolite	profiles	

of	set‐yoghurt	during	fermentation	and	storage.	L.	rhamnosus	GG	and	B.	animalis	subsp.	

lactis	BB12	did	not	influence	acidity	and	major	aroma	volatile	metabolites	desirable	for	

a	good	organoleptic	quality	of	yoghurt.	On	the	other	hand,	a	contribution	of	L.	rhamnosus	

GG	 to	 non‐volatile	 polar	 metabolite	 profile	 of	 yoghurt	 was	 seen	 during	 refrigerated	

storage.	The	combination	of	metabolomic‐derived	data	with	multivariate	analysis	allows	

discrimination	 of	 yoghurt	 samples	 statistically	 according	 to	 the	 difference	 in	 types	 of	

starter	 combinations,	 together	 with	 durations	 of	 storage.	 This	 finding	 provides	 new	

insights	regarding	the	impact	of	probiotics	on	the	metabolome	of	yoghurt.	
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Table	S3.1.	Volatile	metabolites	identified	in	set‐yoghurts	(samples	at	4	hours,	14	days	and	28	days)	fermented	by	different	combinations	of	yoghurt	
starters	and	probiotics	using	headspace	SPME‐GC/MS	

Chemical Compound Starter cultures   
group Traditional yoghurt starters (Y)   Y + L. rhamnosus GG (ATCC.53103)   Y + B. animalis subsp. lactis BB12 

  4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 

Alcohol 1-Butanol 5.45a ±0.18ab 5.46 ± 0.42a 5.33 ± 0.04a 5.67 ± 0.31a 5.34 ± 0.20a 5.51 ± 0.17a 5.60 ± 0.15a 5.51 ± 0.20a 5.40 ± 0.29a 

Ethanol 6.48 ± 0.06a 6.91 ± 0.09cd 6.93 ± 0.03d 6.73 ± 0.05b 6.72 ± 0.03b 6.77 ± 0.04b 6.83 ± 0.02bc 6.85 ± 0.01c 6.84 ± 0.04bc 

 2-Ethyl-hexanol 5.64 ± 0.10c 5.69 ± 0.07c 5.65 ± 0.06c 5.39 ± 0.03b 5.27 ± 0.01a 5.31 ± 0.08ab 5.84 ± 0.01d 5.72 ± 0.04c 5.76 ± 0.04c 

 1-Hexanol 5.57 ± 0.04a 5.80±0.17abc 5.83 ± 0.07bc 5.69 ± 0.07b 5.83 ± 0.07bc 5.80 ± 0.03c 5.82 ± 0.05c 5.83 ± 0.08c 5.80 ± 0.06bc 

 1-Methoxy-2-propanol 6.02 ± 0.57b 4.94 ± 0.33ab NDc 5.45 ± 0.40ab 4.88 ± 0.26ab 4.97 ± 0.30ab 5.52 ± 0.17b 5.00 ± 0.38ab 4.48 ± 0.51a 

 2-Methyl-1-butanol 5.20±0.53a-d 4.60 ± 0.38a 4.95 ± 0.23ab 5.72 ± 0.05d 5.53 ± 0.05c 5.61 ± 0.08cd 5.20 ± 0.18b 4.92 ± 0.30ab 4.95 ± 0.04a 

 3-Methyl-2-butanol 5.51 ± 0.05a 5.96±0.22bcd 6.03 ± 0.04d 5.73 ± 0.09b 5.86 ± 0.04c 5.87 ± 0.02c 5.85 ± 0.03c 5.98 ± 0.02d 5.97 ± 0.03d 

 3-Methyl-3-butanol 5.71 ± 0.05a 5.96±0.21a-d 6.05 ± 0.06d 5.77 ± 0.90ab 5.81 ± 0.00b 5.83 ± 0.03b 5.93 ± 0.03c 5.94 ± 0.02c 5.97 ± 0.06cd 

 1-Octanol 4.45 ± 0.15a 5.16 ± 0.07b 5.09 ± 0.09b 5.03 ± 0.09b 5.04 ± 0.05b 5.03 ± 0.06b 5.12 ± 0.03b 5.06 ± 0.01b 5.14 ± 0.02b 

 1-Pentanol 5.18 ± 0.02a 5.40±0.21a-d 5.45 ± 0.07bc 5.39 ± 0.09b 5.55±0.09bcd 5.52 ± 0.02cd 5.50 ± 0.02bc 5.56 ± 0.02d 5.59 ± 0.04d 

 3-Pentanol 6.62 ± 0.08a 6.83±0.15a-d 6.95 ± 0.05d 6.67 ± 0.11ab 6.74 ± 0.04b 6.78 ± 0.02b 6.78 ± 0.06bc 6.78 ± 0.07bc 6.84 ± 0.03c 

      

Carbonyl  Acetaldehyde 7.39 ± 0.05a 7.49 ± 0.07ab 7.58 ± 0.02c 7.37 ± 0.10ab 7.49 ± 0.09ab 7.45±0.11abc 7.49 ± 0.03b 7.48±0.10abc 7.55 ± 0.03bc 

compound Acetoin 8.40 ± 0.07a 8.50 ± 0.12ab 8.55 ± 0.04b 8.50 ± 0.07ab 8.44 ± 0.02a 8.46 ± 0.02a 8.60 ± 0.04b 8.55 ± 0.03b 8.56 ± 0.01b 

 Acetone 7.42 ± 0.01a 7.46 ± 0.07a 7.56 ± 0.02a 7.47 ± 0.06a 7.49 ± 0.06a 7.52 ± 0.06a 7.50 ± 0.05a 7.48 ± 0.12a 7.56 ± 0.04a 

 Benzaldehyde 5.86 ± 0.04a 6.21 ± 0.02b 6.23 ± 0.07b 6.20 ± 0.13bc 6.33 ± 0.06bc 6.40 ± 0.06cd 6.19 ± 0.04b 6.26 ± 0.11bc 6.43 ± 0.01d 

 2-Butanone 7.53 ± 0.15a 7.35 ± 0.07a 7.43 ± 0.14a 7.38 ± 0.21a 7.44 ± 0.13a 7.38 ± 0.17a 7.61 ± 0.06a 7.45 ± 0.12a 7.58 ± 0.06a 

 Diacetyl 7.38 ± 0.03a 7.44 ± 0.20a 7.50 ± 0.06a 7.47 ± 0.07a 7.48 ± 0.04a 7.54 ± 0.06a 7.51 ± 0.10a 7.58 ± 0.05a 7.59 ± 0.02a 

 2-Heptanone 5.99 ± 0.12a 6.35±0.19bcd 6.50 ± 0.06d 6.11 ± 0.08b 6.38 ± 0.04c 6.42 ± 0.06cd 6.20 ± 0.09b 6.42 ± 0.07cd 6.45 ± 0.03d 

 2-Hydroxy-3-pentanone 6.25 ± 0.04a 6.61 ± 0.17bc 6.74 ± 0.06c 6.45 ± 0.13b 6.51 ± 0.02b 6.53 ± 0.03b 6.57 ± 0.05b 6.55 ± 0.07b 6.62 ± 0.03b 
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 3-Methyl-2-butenal 5.08 ± 0.15a 5.64±0.23bcd 5.78 ± 0.03d 5.41 ± 0.22b 5.58 ± 0.04b 5.52 ± 0.12b 5.46 ± 0.22bc 5.62 ± 0.14bc 5.68 ± 0.03c 

 2-Nonanone 5.77 ± 0.09a 6.29 ± 0.17bc 6.35 ± 0.06c 6.17 ± 0.04b 6.37 ± 0.04c 6.34 ± 0.05c 6.18 ± 0.02b 6.33 ± 0.05c 6.32 ± 0.01c 

 3-Octanone 5.87 ± 0.07d 5.25 ± 0.37ab 5.43 ± 0.08bc 5.35 ± 0.07b 5.29 ± 0.06ab 5.26 ± 0.02a 5.52 ± 0.05c 5.41 ± 0.00b 5.41 ± 0.02b 

 2,3-Pentanedione 6.85 ± 0.10a 7.26 ± 0.13b 7.46 ± 0.04c 6.92 ± 0.12a 7.48 ± 0.04c 7.53 ± 0.08bc 6.92 ± 0.05a 7.40 ± 0.06bc 7.55 ± 0.05c 

 2-Undecanal ND 5.64 ± 0.20b 5.53 ± 0.06b 5.14 ± 0.08a 5.22 ± 0.03a 5.23 ± 0.06a 5.49 ± 0.10b 5.49 ± 0.03b 5.62 ± 0.21b 

 2-Undecanone 4.88 ± 0.08a 5.31 ± 0.16bc 5.33 ± 0.04b 5.46 ± 0.06c 5.45 ± 0.03c 5.43 ± 0.04c 5.35 ± 0.02b 5.28 ± 0.10b 5.30 ± 0.04b 

          

Heterocyclic  3-Acetyl-2,5-dimethylfuran 5.55 ± 0.64ab 5.12 ± 0.27a 5.21 ± 0.12a 6.35 ± 0.04c 6.24 ± 0.02b 6.26 ± 0.02b ND ND ND 
compound          

Sulfur  Dimethyl disulfide 5.26 ± 0.05a 5.64 ± 0.29b 6.19 ± 0.17c 5.19 ± 0.30ab 6.51 ± 0.14c 6.48 ± 0.35c 5.22 ± 0.20ab 6.37 ± 0.20c 6.61 ± 0.42c 

compound Dimethyl sulfide 6.69 ± 0.20a 6.17 ± 0.57a 6.56 ± 0.10a 6.22 ± 0.13a 6.51 ± 0.20a 6.08 ± 0.83a 6.44 ± 0.26a 6.43 ± 0.48a 6.13 ± 0.94a 

Dimethyl sulfone 6.51 ± 0.24a 6.66 ± 0.37a 6.48 ± 0.28a 6.27 ± 0.18a 6.66 ± 0.05a 6.66 ± 0.04a 6.41 ± 0.21a 6.77 ± 0.10a 6.77 ± 0.04a 

         

Volatile   Acetic acid 7.90 ± 0.10b 8.05 ± 0.05c 8.18 ± 0.05de 7.66 ± 0.08a 7.95 ± 0.02b 8.05 ± 0.08cd 7.88 ± 0.16bc 8.19 ± 0.05de 8.21 ± 0.03e 

organic acid Butyric acid 7.62 ± 0.10a 7.75 ± 0.07ab 7.84 ± 0.00c 7.61 ± 0.10ab 7.70 ± 0.01ab 7.75 ± 0.07b 7.70±0.13abc 7.84 ± 0.04bc 7.83 ± 0.00c 

 Hexanoic acid 7.07 ± 0.08a 7.68 ± 0.04b 7.71 ± 0.05b 7.61 ± 0.10b 7.63 ± 0.01b 7.63 ± 0.05b 7.62 ± 0.07b 7.68 ± 0.06b 7.71 ± 0.02b 

 3-Methyl-butanoic acid 5.18 ± 0.10a 5.66 ± 0.09bc 5.76 ± 0.03c 5.60 ± 0.05b 5.64 ± 0.03b 5.66 ± 0.04bc 5.56 ± 0.10b 5.70 ± 0.04bc 5.73 ± 0.01c 

2-Methyl-propanoic acid 5.10 ± 0.09a 5.56 ± 0.07bc 5.58 ± 0.01c 5.43 ± 0.05b 5.49 ± 0.02b 5.55 ± 0.03bc 5.47 ± 0.07b 5.57 ± 0.04bc 5.64 ± 0.06c 

 Nonanoic acid 5.26 ± 0.05c 5.22 ± 0.06c 5.20 ± 0.12bc 5.06 ± 0.03b 5.06 ± 0.02b 4.79 ± 0.14a 5.06 ± 0.18ab 5.07 ± 0.15ab 5.05 ± 0.04b 

Pentanoic acid 5.57 ± 0.07a 6.06 ± 0.04b 6.07 ± 0.03b 5.95 ± 0.09b 5.98 ± 0.02b 6.01 ± 0.03b 5.97 ± 0.05b 6.04 ± 0.04b 6.06 ± 0.04b 

 Propionic acid 5.51 ± 0.06a 6.01 ± 0.05cd 6.07 ± 0.05cd 5.85 ± 0.02b 5.98 ± 0.08c 6.06 ± 0.01d 5.86 ± 0.09bc 6.03 ± 0.04cd 6.07 ± 0.04cd 

a Metabolite contents are expressed as log10 [peak area of respective compound in arbitrary unit]. Values are means ± standard deviation from three independent replicates.  
b Letters (a-e) indicate significant difference (p  < 0.05) among sample means within the same row.  
c ND indicates compound not detected. 
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Table	S3.2.	Presumptive	polar	metabolites	identified	in	set‐yoghurts	(samples	at	4	hours,	14	days	and	28	days)	fermented	by	different	combinations	of	
yoghurt	starters	and	probiotics	using	NOESY	1D‐1H‐NMR			

Chemical Compound Starter cultures   
group Traditional yoghurt starters (Y) Y + L. rhamnosus GG (ATCC.53103) Y + B. animalis subsp. lactis BB12 

  4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 
Amino acid and Alanine 6.89a 7.01 6.90 6.86 6.91 7.06 6.93 6.94 7.01 
derivatives Creatine and Creatinine 7.52 7.53 7.38 7.43 7.42 7.60 7.50 7.44 7.49 
 Isoleucine 7.62 7.76 7.63 7.54 7.61 7.81 7.63 7.66 7.72 
 Leucine 7.64 7.79 7.66 7.53 7.56 7.81 7.65 7.67 7.74 
 N-Acetyl-amino acids 8.01 8.01 7.92 7.92 7.92 8.04 8.01 7.96 7.99 
 Phenylalanine 6.56 6.73 6.64 6.47 6.49 6.69 6.61 6.64 6.67 
 Proline  7.30 7.39 7.26 7.29 7.31 7.46 7.33 7.32 7.38 
 Tyrosine 6.82 7.00 6.91 6.86 6.89 7.03 6.95 6.95 6.99 
 Valine 7.43 7.65 7.52 7.40 7.44 7.64 7.53 7.55 7.60 
 Amino acid residues 8.00 8.09 8.00 7.95 8.01 8.15 8.01 8.04 8.08 
           
Carbohydrate and  Galactose 8.95 8.90 8.87 9.04 8.95 9.01 9.09 8.94 8.97 
derivatives Glucose 8.87 8.77 8.68 9.10 8.64 8.70 9.18 8.80 8.82 
 Lactose 9.38 9.19 9.07 9.27 8.91 8.95 9.23 8.99 9.03 
 N-Acetylglucosamine 7.48 7.49 7.36 7.36 7.36 7.54 7.44 7.41 7.47 
 Sugar residues 7.39 7.25 7.21 7.32 7.27 7.32 7.35 7.26 7.25 
           
Organic acid Acetate  7.42 7.64 7.63 7.58 7.71 7.77 7.61 7.66 7.69 
 Acetoacetate 6.99 7.06 6.90 6.91 6.88 7.09 6.98 6.95 7.01 
 Ascorbate 8.12 8.13 8.10 8.25 8.13 8.18 8.31 8.15 8.17 
 Benzoate 6.91 6.90 6.82 6.79 6.80 6.93 6.86 6.85 6.86 
 Butyrate 7.23 7.33 7.23 7.18 7.21 7.34 7.27 7.26 7.29 
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 Hydroxybutyrate 7.41 7.44 7.28 7.22 7.22 7.48 7.32 7.30 7.40 
 Citrate 7.52 7.54 7.50 7.50 7.51 7.55 7.57 7.52 7.49 
 Formate 6.85 6.77 6.71 6.74 6.72 6.80 6.82 6.74 6.76 
 Fumarate 5.70 5.67 5.57 5.50 5.48 5.62 5.60 5.56 5.60 
 Hippurate 7.18 7.18 7.02 7.03 7.01 7.24 7.11 7.07 7.13 
 Isobutyrate  6.56 6.80 6.67 6.57 6.60 6.77 6.72 6.72 6.77 
 Lactate 9.38 9.55 9.56 9.45 9.62 9.64 9.45 9.63 9.63 
 Orotate 6.63 6.49 6.48 6.47 6.43 6.44 6.55 6.48 6.45 
 Oxoglutarate 7.38 7.24 7.09 7.36 7.32 7.38 7.31 7.20 7.23 
 Pyruvate 7.26 7.20 7.14 7.50 7.53 7.57 7.65 7.25 7.29 
 Succinate 7.50 7.63 7.62 7.45 7.56 7.60 7.63 7.62 7.62 
 Valerate and derivatives 7.68 7.71 7.55 7.55 7.54 7.77 7.63 7.62 7.69 
           
Lipid derivatives Acetylcarnitine 6.99 6.75 6.65 6.63 6.66 6.79 6.68 6.69 6.69 
 Choline and derivatives 7.79 7.81 7.73 7.73 7.73 7.82 7.83 7.78 7.80 
 Glycerophosphocholine 7.37 7.29 7.27 7.39 7.32 7.34 7.45 7.32 7.32 
 Phosphocholine 7.89 7.89 7.83 8.08 7.80 7.89 8.18 7.89 7.91 
           
Carbonyl  Acetone 7.24 7.26 7.22 7.22 7.21 7.28 7.25 7.25 7.26 
compound Dihydroxyacetone 7.37 7.26 7.22 7.25 7.25 7.29 7.32 7.27 7.27 
           
Miscellaneous  Dimethyl sulfone 6.92 6.89 6.85 6.96 6.75 6.84 7.08 6.87 6.88 
 Uridine 6.02 5.83 5.77 5.91 5.90 5.95 5.94 5.84 5.85 

a Metabolite contents are expressed as log10 [sum of signal intensity of respective metabolite in arbitrary unit]. Values at 4 hours are the average from two independent replicates. Values at 14 days 
and 28 days are represented from one replicate. 
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Abstract	

The	 objective	 of	 this	 study	 was	 to	 investigate	 the	 effect	 of	 preculturing	 of	

Lactobacillus	 rhamnosus	 GG	 and	 Bifidobacterium	 animalis	 subsp.	 lactis	 BB12	 under	

sublethal	 stress	 conditions	 on	 their	 survival	 and	metabolite	 formation	 in	 set‐yoghurt.	

Prior	 to	 co‐cultivation	 with	 yoghurt	 starters	 in	 milk,	 the	 two	 probiotic	 strains	 were	

precultured	under	sublethal	 stress	conditions	 (combinations	of	 elevated	NaCl	and	 low	

pH)	 in	 a	 batch	 fermentor.	 The	 activity	 of	 sublethally	 precultured	 probiotics	 was	

evaluated	 during	 fermentation	 and	 refrigerated	 storage	 by	 monitoring	 bacterial	

population	 dynamics,	 milk	 acidification	 and	 changes	 in	 volatile	 and	 non‐volatile	

metabolite	profiles	of	set‐yoghurt.	The	results	demonstrated	adaptive	stress	responses	

of	 the	 two	 probiotic	 strains	 resulting	 in	 their	 viability	 improvement	 without	 adverse	

influence	 on	milk	 acidification.	 A	 complementary	metabolomic	 approach	 using	 SPME‐

GC/MS	 and	 1H‐NMR	 resulted	 in	 the	 identification	 of	 35	 volatiles	 and	 43	 non‐volatile	

polar	 metabolites,	 respectively.	 Principal	 component	 analysis	 revealed	 substantial	

impact	 of	 the	 activity	 of	 sublethally	 precultured	 probiotics	 on	 metabolite	 formation	

demonstrated	by	distinctive	volatile	and	non‐volatile	metabolite	profiles	of	set‐yoghurt.	

Changes	in	relative	abundance	of	various	aroma	compounds	suggest	that	incorporation	

of	stress‐adapted	probiotics	considerably	influences	the	organoleptic	quality	of	yoghurt.	

This	study	provides	new	information	on	the	application	of	stress‐adapted	probiotics	in	

an	actual	food‐carrier	environment.	
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4.1	 Introduction	

During	the	past	decades,	societal	interest	in	healthy	foods	has	contributed	to	the	

development	 of	 functional	 dairy	 products	 that	 potentially	 provide	 health	 benefits	 in	

addition	to	the	fundamental	nutrients	they	contain	[31].	An	example	of	a	functional	type	

of	 yoghurt	 is	 one	 that	 carries	 “probiotics”	 which	 are	 defined	 as	 live	 microorganisms	

which	when	administered	in	adequate	amounts	confer	a	health	benefit	on	the	host	[4].	

The	definition	underlines	that	probiotics	need	to	be	alive	and	present	in	sufficiently	high	

number	 at	 the	 time	 of	 consumption	 to	 ensure	 their	 health‐promoting	 effects.	 With	

respect	to	this,	a	probiotic	product	should	contain	at	least	106	cfu/g	of	viable	probiotic	

cells	 throughout	 the	 entire	 shelf‐life	 [38].	Most	 commercial	probiotics	 incorporated	 in	

dairy	 products	 are	 strains	 belonging	 to	 the	 genera	 Lactobacillus	 and	 Bifidobacterium	

[12].	 However,	 many	 of	 these	 strains	 exhibit	 a	 low	 capacity	 to	 grow	 in	 milk	 during	

fermentation	 and	 are	 not	 able	 to	 survive	 well	 in	 fermented	 milk	 during	 refrigerated	

storage	[6],	mainly	due	to	the	reduction	of	pH	and	accumulation	of	organic	acids	[30].		

Stress	adaptation	is	one	of	the	strategies	to	improve	the	survival	of	probiotics	by	

pre‐treating	 (preculturing)	 them	 in	a	 sublethal	 stress	 condition	prior	 to	exposure	 to	a	

more	 harsh	 or	 lethal	 environment	 [35].	 This	 approach	 allows	 probiotic	 bacteria	 to	

develop	adaptive	stress	responses	leading	to	an	increase	in	their	survival	compared	to	

those	 that	 are	 directly	 shifted	 into	 the	 same	 lethal	 stress	 condition	 [26].	 Adaptive	

responses	towards	various	types	of	stress,	i.e.	heat,	cold,	acid,	bile	salts,	osmotic,	oxygen,	

high	pressure	and	nutrient	 starvation,	have	been	well	documented	 for	 lactobacilli	 and	

bifidobacteria	[3,	25,	34,	37].	These	stress	features	usually	resemble	the	environmental	

niches	 typically	encountered	by	probiotics	during	human	gastrointestinal	 tract	 transit,	

industrial‐scale	 production	 and	 in	 the	 food	 matrix	 [25].	 Acid	 and	 osmotic	 stress,	 as	

consequences	of	 lactic	acid	production	and	application	of	 food	additives,	 are	 the	most	

predominant	 stress	 factors	during	yoghurt	manufacture	and	 refrigerated	 storage	 [17].	

Recent	 advances	 in	 post‐genomics	 technologies,	 i.e.	 transcriptomics	 and	 proteomics,	

have	 provided	 novel	 insights	 into	 how	 probiotics	 counteract	 environmental	 stresses	

[27].	 Despite	 high	 numbers	 of	 publications	 focusing	 on	 the	 molecular	 basis	 of	 stress	

responses	in	probiotics,	there	is	only	a	limited	number	of	studies	investigating	the	fate	



Chapter	4	

104	
 

of	 stress‐adapted	 bacteria	when	 administered	 in	 a	 real	 food	 system	 such	 as	milk	 and	

yoghurt	[5,	14,	16,	30].	Particularly,	the	influence	of	metabolic	activity	of	stress‐adapted	

probiotics	 on	 the	 biochemical	 characteristics	 of	 the	 food‐carrier	 has	 received	 little	

attention.		

Metabolomics	is	recognized	as	an	effective	tool	to	investigate	the	overall	chemical	

composition	of	complex	biological	systems	including	food	matrices	[7].	The	application	

of	 mass	 spectrometry	 (MS)	 and	 nuclear	magnetic	 resonance	 (NMR)	 has	 shown	 to	 be	

successful	in	determining	a	wide	range	of	metabolites	in	fermented	dairy	products	[19,	

22,	23,	29].	This	approach	can	be	 implemented	for	monitoring	the	overall	biochemical	

changes	associated	with	the	metabolic	activity	of	starter	cultures	and	probiotics	during	

yoghurt	manufacture	[19,	27].	The	outcomes	are	expected	to	provide	new	information	

concerning	 the	 impact	 of	 stress‐adapted	 probiotics	 applied	 in	 yoghurt,	 since	 their	

metabolic	 responses	 may	 substantially	 affect	 the	 biochemical	 and	 organoleptic	

characteristics	of	this	product	[28].			

The	objective	of	 this	study	was	 to	 investigate	 the	 impact	of	preculturing	of	 two	

probiotic	strains,	Lactobacillus	rhamnosus	GG	and	Bifidobacterium	animalis	subsp.	lactis	

BB12,	under	sublethal	stress	conditions	(combinations	of	elevated	NaCl	and	low	pH)	on	

their	 survival	 and	 metabolite	 formation	 in	 set‐yoghurt.	 Changes	 in	 viable	 counts	 of	

yoghurt	 starters	as	well	 as	probiotics	and	extent	of	milk	acidification	were	monitored	

during	 fermentation	 and	 refrigerated	 storage.	 Furthermore,	 biochemical	 changes	

associated	with	bacterial	metabolism	were	characterized	by	a	metabolomics	approach	

using	headspace	SPME‐GC/MS	and	1H‐NMR	technique.	Finally,	multivariate	analysis	was	

applied	to	analyze	volatile	and	non‐volatile	polar	metabolite	profiles	of	set‐yoghurts.	

	

4.2	 Materials	and	methods	

4.2.1	 Yoghurt	Starters	and	probiotic	strains	

Frozen	 direct‐vat‐inoculation	 (DVI)	 pellets	 of	 Streptococcus	 thermophilus	 C44,	

Lactobacillus	 delbrueckii	 subsp.	 bulgaricus	 C49	 (CSK	 Food	 Enrichment,	 Ede,	 the	
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Netherlands)	 and	 B.	 animalis	 subsp.	 lactis	 BB12	 (BB12)	 (Chr.	 Hansen,	 Hørsholm,	

Denmark)	were	stored	at	‐45	oC.	A	culture	of	L.	rhamnosus	GG	(LGG)	(ATCC	53103)	was	

propagated	in	our	laboratory	and	stored	as	a	20%	(v/v)	glycerol	stock‐culture	at	‐80	°C.	

Frozen	cultures	were	transferred	to	ambient	temperature	(20	±	3	°C)	for	15	min	before	

use.	 Probiotic	 strains	 were	 re‐propagated	 in	 MRS	 broth	 (0.5	 g/L	 cysteine‐HCl	

supplemented	 for	 BB12)	 (Merck,	 Darmstadt,	 Germany)	 at	 37	 °C	 for	 24	 h	 under	

anaerobic	 incubation	 (Anoxomat™‐Mart®,	 Drachten,	 the	 Netherlands).	 Then,	 the	 cells	

were	 collected	 by	 centrifugation	 at	 4,000g	 for	 15	 min	 at	 4	 °C,	 washed	 twice	 using	

peptone‐physiological‐salt	solution	(Tritium	microbiology,	Eindhoven,	the	Netherlands)	

and	 finally	 resuspended	 in	 milk	 before	 inoculation.	 These	 cultures	 were	 defined	 as	

control	groups,	i.e.	standard	precultured	LGG	and	BB12.						

4.2.2		 Preculturing	of	probiotics	under	sublethal	stress	conditions	

a)	Screening	for	sublethal	stress	conditions		

Suitable	 sublethal	 stress	 conditions,	 combinations	 of	 elevated	 NaCl	

concentrations	and	low	pH	values,	for	LGG	and	BB12	were	preliminary	determined.	For	

screening	 of	 sublethal	 salt	 levels,	 probiotic	 cells	 were	 cultured	 in	 NaCl‐adjusted	MRS	

broth	(0.5	g/L	cysteine‐HCl	supplemented	for	BB12).	NaCl	(Merck,	Darmstadt,	Germany)	

was	 added	 to	MRS	 broth	 at	 concentrations	 ranging	 from	 0.5%	 to	 5.0%	 (w/v)	 with	 a	

0.5%	interval	level.	The	concentrations	which	caused	0.5	and	1.0	log	reduction	of	viable	

probiotic	 cells	 compared	 to	 those	 enumerated	 in	 unsalted	MRS	 broth	 after	 anaerobic	

incubation	(Anoxomat™‐Mart®,	Drachten,	 the	Netherlands)	at	37	 °C	 for	24	h	 (data	not	

shown)	were	considered	as	low	and	high	sublethal	NaCl	levels,	i.e.	2.0%/4.0%	(w/v)	for	

LGG	 and	 0.5%/1.5%	 (w/v)	 for	 BB12.	 Sublethal	 pH	 values	 for	 LGG	 and	 BB12	 were	

assigned	 at	 1.0	 pH	 unit	 above	 and	 below	 the	 optimum	 pH	 for	 their	 growth,	 i.e.	 pH	

4.5/6.5	 (LGG)	 and	 pH	 5.0/7.0	 (BB12).	 The	 combinations	 of	 sublethal	 NaCl‐pH	

treatments	were	 finally	 organized	 as	 a	 2	X	 2	 between	 subjects	 factorial	 design	 (Table	

4.1).	
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Table	4.1.	Sublethal	stress	conditions	(combinations	of	elevated	salt	and	low	pH)	in	modified	MRS	broth	
for	preculturing	of	L.	rhamnosus	GG	(LGG)	and	B.	animalis	subsp.	lactis	BB12	(BB12)	in	a	batch	fermentor			

 

b)	Preculturing	of	probiotics	in	a	batch	fermentor	

Preculturing	 of	 probiotics	 was	 conducted	 in	 a	 750	 mL	 Multifors‐2	 Bacterial	

System	Bioreactor	fully	operated	by	IRIS‐V.5.3	control	software	(Infors	HT,	Bottmingen,	

Switzerland).	The	fermentor	was	filled	with	350	mL	NaCl‐adjusted	MRS	broth	and	then	

was	equipped	with	auxiliary	devices	(tubes,	gas‐pipes,	pumps,	reagent	bottles,	sampling	

system,	pH,	optical	density	and	temperature	sensors)	before	sterilization	(121	°C	for	30	

min).	 For	 BB12,	 the	 medium	 was	 supplemented	 with	 0.5	 g/L	 cysteine‐HCl	 after	

sterilization.	 The	 pH	 of	 the	 medium	 was	 adjusted	 and	 automatically	 maintained	 at	 a	

desired	pre‐set	value	(pH‐stat)	by	adding	1	N	NaOH	or	1	N	HCl.	A	fresh	overnight	culture	

of	the	probiotics	was	inoculated	at	1%	(v/v)	into	the	NaCl‐pH	adjusted	medium.	Batch	

scale	preculturing	was	carried	out	at	37	°C	for	24	h	under	anaerobic	condition	created	

by	a	continuous	N2‐flushing	system	with	a	flow	rate	of	1	L/min	through	a	0.22	μm	filter.	

The	 medium	 was	 continuously	 stirred	 at	 a	 constant	 speed	 of	 100	 rpm.	 After	 24	 h	

(stationary	 phase	 monitored	 by	 optical	 density;	 data	 not	 shown),	 sublethally	

precultured	probiotic	cells	were	collected	by	centrifugation	at	4,000g	for	15	min	at	4	°C,	

washed	twice	using	peptone‐physiological‐salt	solution	and	the	cell	pellets	were	finally	

resuspended	in	milk	before	use.	These	steps	were	performed	to	avoid	carryover	effect	of	

nutrients	from	MRS	broth	which	is	a	nonfood‐grade	laboratory	medium	[26].	Sublethally	

precultured	 probiotics	 were	 subsequently	 inoculated	 in	 co‐cultures	 with	 traditional	

Probiotics	 Salt	stress	 Acid	stress	 	

	 	 Low	pH	 High	pH	

LGG	 Low			%NaCl	 2.0%	NaCl	–	pH	4.5	 2.0%	NaCl	–	pH	6.5	

	 High		%NaCl	 4.0%	NaCl	–	pH	4.5	 4.0%	NaCl	–	pH	6.5	

	 	 	 	

BB12	 Low			%NaCl	 0.5%	NaCl	–	pH	5.0	 0.5%	NaCl	–	pH	7.0	

	 High		%NaCl	 1.5%	NaCl	–	pH	5.0	 1.5%	NaCl	–	pH	7.0	
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yoghurt	starters	as	described	previously	in	Chapter	3.	The	preculturing	was	performed	

in	three	batches	for	each	stress	combination.		

	
4.2.3	 Set‐yoghurt	fermentation	

Pasteurized	Nilac	milk	was	 prepared	 and	 inoculated	 according	 to	 the	methods	

described	 in	Chapter	 2	 and	3.	After	 inoculation,	 set‐yoghurt	 fermentation	was	 carried	

out	in	a	water	bath	at	42	°C	for	4	h.	Yoghurts	were	then	placed	in	a	cold	chamber	(4	±	2	

°C)	for	28	days	of	storage.	Samples	were	taken	hourly	during	fermentation	and	weekly	

during	 storage.	 The	 enumeration	 of	 viable	 bacteria	 and	 determination	 of	 pH	 and	

titratable	acidity	were	carried	out	immediately	after	sampling.	For	1H‐NMR,	the	samples	

were	stored	at	‐20	°C	until	analysis.	The	fermentation	was	performed	in	three	replicates	

for	each	type	of	starter	combination.			

4.2.4	 Enumeration	of	viable	bacteria	

Viable	counts	of	S.	thermophilus,	L.	delbrueckii	subsp.	bulgaricus,	L.	rhamnosus	GG	

and	B.	animalis	subsp.	lactis	BB12	were	determined	according	to	the	methods	described	

in	Chapter	3.		

4.2.5	 Determination	of	acidification	profile	

Production	of	acid	during	set‐yoghurt	fermentation	and	refrigerated	storage	was	

expressed	by	changes	in	pH	and	increases	in	titratable	acidity.	The	pH	measurement	and	

determination	of	titratable	acidity	were	performed	according	to	the	methods	described	

in	Chapter	2.			

4.2.6	 Analysis	of	volatile	metabolites	by	headspace	SPME‐GC/MS	

For	headspace	SPME‐GC/MS	analysis,	set‐yoghurt	fermentation	was	also	carried	

out	directly	in	glass	GC	vials	as	described	in	Chapter	2.	The	fermentation	was	performed	

in	three	replicates	for	each	type	of	starter	combination.	Extraction	and	determination	of	

volatile	 compounds	 by	 headspace	 SPME‐GC/MS	 were	 performed	 according	 to	 the	

method	described	 in	 Chapter	 2.	 This	method	was	 based	 on	 the	method	developed	 by	

Hettinga	et	al.	[8].	
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Volatile	metabolites	were	 identified	using	AMDIS	 software	 (NIST,	Gaithersburg,	

MD,	USA)	 referred	 to	NIST/EPA/NIH	database	 and	 library	provided	by	Hettinga	 et	 al.	

[9].	Specific	retention	time	and	m/z	model	were	used	for	automated	peak	integration	in	

the	XCalibur	software	package	(Thermo	Scientific,	Austin,	TX,	USA)	[29].	

4.2.7	 Analysis	of	non‐volatile	polar	metabolites	by	1H‐NMR	spectroscopy	

For	1H‐NMR	analysis,	 the	samples	 from	two	replicates	were	analyzed	according	

to	 the	method	 described	 in	 Chapter	 2.	 Frozen	 yoghurt	 samples	were	 thawed	 at	 room	

temperature	and	pH	was	adjusted	to	6.0	using	1.0	N	NaOH	to	achieve	low	variation,	i.e.	

location	 and	 shape	 of	 peaks,	 in	 the	 spectra	 obtained	 [15].	 NOESY	 1D‐1H‐NMR	

measurements	 were	 performed	 at	 300	 K	 in	 a	 600	 MHz	 NMR	 spectrometer	 (Bruker,	

Rheinstetten,	 Germany)	 operated	 under	 full	 automation,	 with	 similar	 parameters	 as	

described	by	Lu	et	al.	[13].	

The	 1H‐NMR	 spectra	 were	 baseline‐corrected,	 phase‐corrected,	 aligned	 and	

calibrated	based	on	the	internal	standard	(TSP)	peak.	For	each	spectrum,	chemical	shift	

(δ)	across	 the	 range	of	0.00	 ‐	10.00	ppm	was	segmented	 (binning)	with	an	 interval	of	

0.02	 ppm	 [29].	 The	 signal	 intensity	 in	 each	 bin	 was	 integrated	 and	 expressed	 in	

arbitrary	units	using	AMIX	software	(Bruker,	Rheinstetten,	Germany).	Metabolite	labels	

were	assigned	 to	 the	bins	by	means	of	Chenomx	NMR	suite	7.5	 library	 (Chenomx	 Inc.,	

Alberta,	Canada)	and	from	the	list	of	metabolites	identified	in	Chapter	2	and	3	[29].	For	

unlabeled	 bins,	 significant	 variables	were	 selected	 based	 on	 one‐way	 ANOVA	 at	 95%	

confidence	level.		

4.2.8	 Statistical	analysis	

One‐way	 ANOVA	 with	 multiple	 comparisons	 by	 Tukey’s	 test	 were	 performed	

using	IBM	SPSS	statistics	package	version	19	(SPSS	Inc.,	Chicago,	IL,	USA).	A	probability	

at	p	<	0.05	was	considered	statistically	significant.	Metabolomics	data	from	GC/MS	and	

1H‐NMR	 were	 normalized	 by	 median‐centering	 and	 log2‐scaling	 before	 multivariate	

statistical	 analysis.	 Principal	 component	 analysis	 (PCA)	 was	 performed	 using	 Multi‐

Experiment	Viewer	(MeV)	version	4.8	as	previously	described	in	Chapter	2.	
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4.3	 Results	

4.3.1	 Bacterial	growth	and	survival	profiles	

Viable	 counts	 of	 yoghurt	 starters	 and	 probiotics	 were	 enumerated	 during	 set‐

yoghurt	 fermentation	 and	 refrigerated	 storage	 (Fig.	 4.1).	 Bacterial	 populations	 in	 the	

samples	 co‐fermented	 with	 sublethally	 precultured	 L.	 rhamnosus	 GG	 (LGG)	 and	 B.		

animalis	 subsp.	 lactis	 BB12	 (BB12)	 were	 compared	 with	 those	 in	 the	 samples	 co‐

fermented	 with	 standard	 precultured	 probiotics	 (control	 group)	 of	 each	 strain.	 For	

comparison,	 the	 effect	 on	 growth	 (increase	 in	 biomass)	 and	 survival	 (retention	 of	

viability)	 of	 probiotics	 were	 discussed	 in	 terms	 of	 increase	 or	 decrease	 in	 log10	

transformed	units	of	viable	counts.	The	main	effects	of	the	individual	preculturing	stress	

factors,	 i.e.	NaCl	and	pH,	and	their	 interaction	were	statistically	determined	using	two‐

way	ANOVA	with	2	X	2	between	subjects	factorial	design	(Table	4.2).				

In	 co‐cultures	 with	 LGG	 (Fig.	 4.1;	 left	 panels),	 growth	 and	 survival	 of	 yoghurt	

starters	were	not	significantly	affected	by	 the	 incorporation	of	 sublethally	precultured	

probiotics.	At	the	end	of	fermentation,	the	viable	counts	of	S.	thermophilus	(Fig	4.1A)	and	

L.	delbrueckii	subsp.	bulgaricus	(Fig.	4.1C)	increased	by	2.2	and	2.1	log	units	to	reach	an	

average	value	of	8.5	±	0.1	and	8.1	±	0.1	log	cfu/g,	respectively.	The	viable	counts	of	two	

yoghurt	 starters	 remained	virtually	 stable	 (above	8.0	 log	 cfu/g)	 throughout	 the	 entire	

duration	of	storage.	Variations	in	growth	and	survival	of	LGG	were	observed	among	the	

control	 group	 and	 their	 sublethally	 precultured	 cells	 (Fig.	 4.1E	 &	 Table	 4.2).	 During	

fermentation,	 LGG	 precultured	 at	 2.0%	 NaCl‐pH	 6.5	 exhibited	 the	 highest	 increase	 in	

viable	counts	(0.8	log	increase)	while	those	precultured	at	4.0%	NaCl‐pH	6.5	showed	the	

lowest	 increase	(0.5	 log	 increase).	However,	none	of	 the	preculturing	conditions	could	

significantly	 enhance	 (p	 >	 0.05)	 the	 growth	 of	 LGG	 in	 milk	 compared	 to	 the	 control	

group	(0.6	log	increase).	Among	the	groups	of	sublethally	precultured	LGG,	the	effects	of	

NaCl	and	interaction	between	NaCl*pH	during	preculturing	contributed	significantly	(p	

=	0.01	and	0.02,	respectively)	to	their	growth	in	milk	during	set‐yoghurt	fermentation.		
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The	effect	of	preculturing	on	the	survival	of	LGG	and	their	sublethally	precultured	

cells	during	storage	was	evidently	observed.	At	 the	end	of	storage,	LGG	precultured	at	

pH	4.5	(with	either	2.0%	or	4.0%	NaCl)	showed	a	significant	improvement	(p	=	0.03)	on	

their	 survival	 (0.2	 and	0.3	 log	 reduction,	 respectively)	 compared	 to	 the	 control	 group	

(0.5	log	reduction).	On	the	other	hand,	the	survival	of	LGG	precultured	at	4.0%	NaCl‐pH	

6.5	 was	 significantly	 impaired	 (p	 <	 0.01)	 (1.2	 log	 reduction).	 Statistical	 tests	

demonstrated	 that	 only	 the	 main	 effect	 of	 pH	 during	 preculturing	 significantly	

contributed	(p	<	0.01)	on	the	survival	of	LGG	during	storage.						

In	 co‐cultures	 with	 BB12	 (Fig.	 4.1;	 right	 panels),	 growth	 and	 survival	 of	 S.	

thermophilus	 (Fig	 4.1B)	 were	 not	 significantly	 affected	 by	 the	 incorporation	 of	

sublethally	 precultured	 probiotics.	 Their	 viable	 counts	 increased	 by	 2.3	 log	 units	 to	

reach	and	average	value	of	8.5	±	0.1	log	cfu/g	at	the	end	of	fermentation	and	remained	

stable	 (above	 8.0	 log	 cfu/g)	 throughout	 the	 entire	 duration	 of	 storage.	 On	 the	 other	

hand,	 the	 growth	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	 (Fig.	 4.1D)	 was	 impaired	 by	 co‐

cultivation	with	BB12	precultured	at	1.5%	NaCl	(with	either	pH	5.0	or	7.0)	resulting	in	

significantly	 lower	 (p	 <	 0.01)	 viable	 counts	 at	 the	 end	 of	 fermentation	 (8.1	 ±	 0.1	 log	

cfu/g)	compared	 to	 the	control	group	(8.4	±	0.1	 log	cfu/g).	Although	 the	survival	of	L.	

delbrueckii	 subsp.	 bulgaricus	 during	 storage	 was	 not	 affected	 by	 co‐cultivation	 with	

BB12	 precultured	 at	 1.5%	NaCl	 (with	 either	 pH	 5.0	 or	 7.0),	 the	 initially	 lower	 viable	

counts	at	4	h	subsequently	resulted	in	significantly	lower	(p	=	0.02)	viable	counts	at	the	

end	of	storage	(7.8	±	0.2	log	cfu/g)	compared	to	the	control	group	(8.3	±	0.2	log	cfu/g).	

Variations	in	growth	and	survival	of	BB12	were	observed	among	the	control	group	and	

their	 sublethally	 precultured	 cells	 (Fig.	 4.1F	&	Table	 4.2).	During	 fermentation,	 it	was	

evident	 that	 the	growth	of	BB12	precultured	at	1.5%	NaCl	 (with	either	pH	5.0	or	7.0)	

(0.4	 log	 increase)	 was	 significantly	 impaired	 (p	 <	 0.01)	 while	 the	 growth	 of	 BB12	

precultured	 at	 0.5%	 NaCl	 (with	 either	 pH	 5.0	 or	 7.0)	 (1.1	 log	 increase)	 was	 not	

significantly	affected	(p	>	0.05)	compared	to	the	control	group	(0.9	log	increase).	Among	

the	groups	of	sublethally	precultured	BB12,	statistical	tests	demonstrated	that	only	the	

main	 effect	 of	 NaCl	 contributed	 significantly	 (p	 <	 0.01)	 on	 their	 growth	 impairment	

during	set‐yoghurt	fermentation.		
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Fig.	4.1.	Changes	in	viable	counts	of	S.	thermophilus	(ST,	 ;	panel	A	and	B),	L.	delbrueckii	subsp.	bulgaricus	
(LB,	 ;	panel	C	and	D),	L.	rhamnosus	GG	(LGG,	 ;	panel	E)	and	B.	animalis	subsp.	lactis	BB12	(BB12,	 ;	
panel	F)	during	set‐yoghurt	fermentation	(4	hours)	and	refrigerated	storage	(28	days).	Data	are	 labeled	
according	to	the	sublethal	stress	conditions	of	probiotics	of	which	the	bacteria	are	in	co‐culture	with;	i.e.	
standard	precultured	(control)	group	( ;	black	markers),	low‐salt‐low‐pH	( ;	white	markers),	low‐

salt‐high‐pH	( ;	black	markers),	high‐salt‐low‐pH	( ;	white	markers)	and	high‐salt‐high‐pH	( ;	
black	markers).	For	information	on	the	sublethal	stress	conditions	of	probiotics,	the	reader	is	referred	to	
Table	1.	Error	bars	represent	standard	deviations	based	on	three	replicates.	
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Table	 4.2.	 ANOVA	 of	 the	 main	 effects	 of	 individual	 stress	 factors,	 i.e.	 NaCl	 and	 pH,	 and	 their	 interaction	 on	 growth	 and	 viability	 of	 Lactobacillus	
rhamnosus	GG	(LGG)	and	Bifidobacterium	animalis	subsp.	lactis	BB12	(BB12)	in	set‐yoghurt	

Changes in bacterial population Standard LGG Sublethally precultured LGG Test of significance between effects 

 (control) 2.0% NaCl 4.0% NaCl Main effect Interaction 

  pH 4.5 pH 6.5 pH 4.5 pH 6.5 NaCl pH NaCl*pH 
 
Increase in viable counts during 
fermentation (log cfu/g 4h – 0h) 

 0.6 ± 0.1aba 0.7 ± 0.0ab 0.8 ± 0.1b 0.7 ± 0.1ab 0.5 ± 0.1a p = 0.01 p > 0.05 p = 0.02 

 
Decrease in viable counts during storage 
(log cfu/g 28d – 4h) 

-0.5 ± 0.0b -0.2 ± 0.1a -0.8 ± 0.3bc -0.3 ± 0.1a -1.2 ± 0.3c p > 0.05 p < 0.01 p > 0.05 

 
 Standard BB12 Sublethally precultured BB12 Test of significance between effects 

 (control) 0.5% NaCl 1.5% NaCl Main effect Interaction 

  pH 5.0 pH 7.0 pH 5.0 pH 7.0 NaCl pH NaCl*pH 
 
Increase in viable counts during 
fermentation (log cfu/g 4h – 0h) 

 0.9 ± 0.2b 1.1 ± 0.1b 1.0 ± 0.0b 0.3 ± 0.1a 0.4 ± 0.2a p < 0.01 p > 0.05 p > 0.05 

 
Decrease in viable counts during storage 
(log cfu/g 28d – 4h) 

-1.2 ± 0.2d -0.5 ± 0.0b -0.8 ± 0.1c -0.3 ± 0.0a -0.6 ± 0.0b p < 0.01 p < 0.01 p > 0.05 

a Letters (a-d) indicate significant difference (p < 0.05) among means within the same row. 
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An	 effect	 of	 preculturing	 on	 the	 survival	 of	 BB12	 and	 their	 sublethally	

precultured	cells	during	refrigerated	storage	was	also	observed.	At	 the	end	of	storage,	

all	sublethally	precultured	BB12	showed	a	significant	improvement	(p	<	0.05)	(max.	0.8	

log	 reduction)	 on	 their	 survival	 compared	 to	 the	 control	 group	 (1.2	 log	 reduction).	

Interestingly,	the	viable	counts	of	BB12	precultured	at	1.5%	NaCl	(with	either	pH	5.0	or	

7.0)	which	were	 significantly	 impaired	 during	 fermentation	 decreased	 relatively	 slow	

during	 storage	 (0.3	 and	 0.6	 log	 reduction,	 respectively).	 The	 two	main	 effects	 of	NaCl	

and	pH	(without	interaction)	during	preculturing	contributed	significantly	(p	<	0.01)	to	

the	survival	of	BB12	during	storage.				

4.3.2	 Acidification	profiles	

Changes	in	pH	were	monitored	during	set‐yoghurt	fermentation	and	refrigerated	

storage	 (Fig.	 4.2).	 In	 the	 samples	 co‐fermented	 with	 LGG	 and	 their	 sublethally	

precultured	 cells	 (Fig.	 4.2A),	 similar	 pH	 decrease	 patterns	 were	 observed	 during	

fermentation	 throughout	 the	 entire	 duration	 of	 storage.	 The	 average	 pH	 values	 of	 all	

samples	were	not	significantly	different	(p	>	0.05)	either	at	the	end	of	fermentation	(4.4	

±	0.1)	or	the	end	of	storage	(4.0	±	0.1).	In	the	samples	co‐fermented	with	BB12	and	their	

sublethally	 precultured	 cells	 (Fig.	 4.2C),	 similar	 pH	 decrease	 patterns	 were	 observed	

during	fermentation	resulting	in	an	average	value	of	4.4	±	0.1	at	4	h.	During	storage,	co‐

fermentation	with	standard	precultured	BB12	and	BB12	precultured	at	0.5%	NaCl	(with	

either	pH	5.0	or	7.0)	showed	similar	pH	decrease	patterns	with	an	average	value	of	4.1	±	

0.1	while	a	small	deviation	in	pH	reduction	was	observed	in	the	samples	co‐fermented	

with	BB12	precultured	at	1.5%	NaCl	(with	either	pH	5.0	or	7.0)	resulting	in	an	average	

pH	value	of	4.3	±	0.1	at	the	end	of	storage.	However,	the	difference	was	not	statistically	

significant	(p	>	0.05).			

Titratable	 acidity,	 expressed	 as	 %	 equivalent	 lactic	 acid	 (w/w)	 (%	 LA),	 was	

measured	 during	 set‐yoghurt	 fermentation	 and	 refrigerated	 storage.	 For	 better	

comparison,	the	titratable	acidity	was	subtracted	by	its	initial	value	in	the	sample	at	0	h	

(unfermented	milk)	and	presented	as	titratable	acidity	produced	by	bacterial	activity.	In	

the	samples	co‐fermented	with	LGG	and	 their	 sublethally	precultured	cells	 (Fig.	4.2B),	
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there	was	no	 significant	 difference	 (p	 >	 0.05)	 in	 titratable	 acidity	 either	 at	 the	 end	of	

fermentation	(0.70	±	0.02%)	or	the	end	of	storage	(1.07	±	0.05%).		

	

Fig.	4.2.	Changes	in	pH	(left)	and	increase	in	titratable	acidity	(right)	during	fermentation	(4	hours)	and	
refrigerated	 storage	 (28	 days)	 in	 set‐yoghurts	 co‐fermented	with	 L.	 rhamnosus	GG	 (panel	 A–B)	 and	B.	
animalis	subsp.	lactis	BB12	(panel	C–D).		Data	are	labeled	according	to	the	sublethal	stress	conditions	of	
probiotics;	 i.e.	 standard	 precultured	 (control)	 group	 ( ;	 black	markers,	 ),	 low‐salt‐low‐pH	 ( ;	

white	markers,	 ),	low‐salt‐high‐pH	( ;	black	markers,	 ),	high‐salt‐low‐pH	( ;	white	markers,	 )	

and	 high‐salt‐high‐pH	 ( ;	 black	markers,	 ).	 For	 information	 on	 the	 sublethal	 stress	 conditions	 of	
probiotics,	 the	 reader	 is	 referred	 to	 Table	 1.	 Error	 bars	 represent	 standard	 deviations	 based	 on	 three	
replicates.	

	

In	 the	 samples	 co‐fermented	with	 BB12	 and	 their	 sublethally	 precultured	 cells	

(Fig.	 4.2D),	 there	 was	 also	 no	 significant	 difference	 in	 titratable	 acidity	 during	

fermentation	 (0.67	 ±	 0.03%).	 However,	 a	 lower	 acid	 production	 during	 storage	 was	

observed	in	the	samples	co‐fermented	with	BB12	precultured	at	1.5%	NaCl	(with	either	

pH	5.0	or	7.0).	These	two	cultures	resulted	in	a	lower	titratable	acidity	(0.93	±	0.02%)	
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compared	to	the	control	group	(1.02	±	0.06%).	This	finding	is	in	accordance	with	the	pH	

decrease	patterns	 found	 in	 these	 two	sublethally	precultured	BB12	cultures.	Although	

the	 difference	 seemed	 to	 be	 negligible,	 the	 final	 titratable	 acidity	 of	 the	 samples	 co‐

fermented	with	BB12	precultured	at	1.5%	NaCl‐pH	7.0	was	significantly	different	 (p	=	

0.02)	from	the	control	group.	

4.3.3	 Volatile	metabolite	profiles	determined	by	headspace	SPME‐GC/MS		

Volatile	 metabolite	 profiles	 of	 set‐yoghurts	 co‐fermented	 with	 probiotics	 and	

their	sublethally	precultured	cells	were	evaluated	at	the	end	of	fermentation	(4	h)	and	

every	two	weeks	during	storage	(14	d	and	28	d).	According	to	the	method	described	in	

Chapter	 2,	 set‐yoghurt	 was	 directly	 fermented	 in	 GC	 vials.	 The	 advantages	 of	 this	

approach	are	the	small	amount	of	sample	required	(3	mL)	together	with	prevention	of	

volatile	 loss	during	sample	preparation.	A	total	of	35	volatile	metabolites	consisting	of	

alcohols,	 carbonyl	 compounds,	 organic	 acids,	 sulfur	 compounds	 and	 heterocyclic	

compound	were	identified	(Table	S4.1).	These	compounds	were	introduced	as	variables	

for	multivariate	 analysis.	 If	 necessary,	missing	 values	were	 replaced	by	 the	median	of	

respective	 metabolites.	 Samples	 from	 three	 replicates	 of	 each	 type	 of	 starter	

combination	 were	 statistically	 treated	 as	 individual	 objects.	 Principal	 component	

analysis	 (PCA)	 was	 performed	 to	 distinguish	 the	 volatile	 metabolite	 profiles	 of	 set‐

yoghurts	 co‐fermented	 with	 standard	 precultured	 probiotics	 and	 their	 sublethally	

precultured	cells	within	the	same	species.		

For	 the	 samples	 co‐fermented	with	 LGG	 and	 their	 sublethally	 precultured	 cells	

(Fig.	4.3),	an	overall	PCA	score	plot	was	constructed	with	a	total	variance	of	45.5%	(n	=	

45)	 (Fig.	 4.3A).	 Volatile	 metabolite	 profiles	 of	 the	 samples	 at	 4	 h	 could	 be	 well	

distinguished	from	those	of	stored	samples	along	PC1	(27.1%	variance).	The	PC‐loading	

indicated	which	metabolites	were	accountable	for	discrimination.	It	can	be	seen	that	1‐

methoxy‐2‐propanol	 is	 determinant	 for	 the	 4	 h	 samples	 while	 2,3‐pentanedione,	

dimethyl	 disulfide,	 2‐heptanone,	 acetic	 acid	 and	 dimethyl	 sulfone	 are	 accountable	 for	

discrimination	of	stored	samples.	For	better	comparison,	two	separated	PCA	score	plots	

were	constructed	for	distinguishing	among	samples	at	4	h	(n	=	15)	with	a	total	variance	
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of	58.7%	(Fig.	4.3B)	and	among	stored	samples	(n	=	30)	with	a	total	variance	of	47.1%	

(Fig.	4.3C).		

	

Fig.	4.3.	PCA	score	plots	and	PC	loadings,	for	overall	comparison	(panel	A),	comparison	among	samples	at	
4	 h	 (panel	 B)	 and	 among	 storage	 samples	 (panel	 C),	 derived	 from	 volatile	 metabolite	 profiles	 of	 set‐
yoghurts	co‐fermented	with	standard	precultured	(control)	L.	rhamnosus	GG	(LGG)	( ),	LGG	precultured	
at	2.0%	NaCl‐pH	4.5	( ),	LGG	precultured	at	2.0%	NaCl‐pH	6.5	( ),	LGG	precultured	at	4.0%	NaCl‐pH	4.5	
( )	and	LGG	precultured	at	4.0%	NaCl‐pH	6.5	( ).	
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At	 the	 end	 of	 fermentation,	 volatile	 metabolite	 profiles	 of	 the	 samples	 co‐

fermented	with	sublethally	precultured	LGG	were	clearly	distinguished	from	each	other	

as	well	as	from	the	control	group	with	an	exception	for	those	of	4.0%	NaCl‐pH	4.5	which	

showed	 an	 overlap	 with	 the	 control	 group.	 The	 samples	 co‐fermented	 with	 LGG	

precultured	 at	 pH	 4.5	 (with	 either	 2.0%	 or	 4.0%	 NaCl)	 were	 distinguished	 from	 the	

other	groups	along	PC2	(24.5%	variance).	The	PC2‐loading	indicated	that	the	majority	of	

volatile	metabolites	especially	2‐heptanone,	3‐pentanone,	acetic	acid	and	hexanoic	acid	

were	accountable	 for	 the	separation	of	samples	co‐fermented	with	LGG	precultured	at	

pH	 4.5	 (with	 either	 2.0%	 or	 4.0%	 NaCl)	 while	 2‐butanone,	 1‐methoxy‐2‐propanol,	 2‐

methyl‐1‐butanol	 and	 2‐ethylhexanol	 were	 accountable	 for	 the	 separation	 of	 samples	

co‐fermented	with	standard	precultured	LGG	and	LGG	precultured	at	4.0%	NaCl‐pH	6.5.	

During	 storage,	 it	was	 remarkable	 that	 the	 volatile	metabolite	 profiles	 of	 samples	 co‐

fermented	 with	 different	 types	 of	 sublethally	 precultured	 LGG	 became	 less	 isolated.	

Nevertheless,	 the	samples	co‐fermented	with	LGG	precultured	at	2%	NaCl	(with	either	

pH	4.5	or	6.5)	were	still	clearly	distinguished	from	the	other	groups	along	PC2	(22.9%	

variance).	 The	 PC2‐loading	 indicated	 that	 ethanol,	 1‐butanol,	 2‐methyl‐1‐butanol,	 3‐

methyl‐2‐butenal	 and	 acetoin	 contributed	 to	 the	 separation	 of	 samples	 co‐fermented	

with	LGG	precultured	at	2%	NaCl	 (with	either	pH	4.5	or	6.5)	while	dimethyl	disulfide	

and	1‐methoxy‐2‐propanol	accounted	for	the	separation	of	the	other	groups.		

For	the	samples	co‐fermented	with	BB12	and	their	sublethally	precultured	cells	

(Fig.	4.4),	an	overall	PCA	score	plot	was	constructed	with	a	total	variance	of	64.5%	(n	=	

45)	 (Fig.	 4.4A).	 Volatile	 metabolite	 profiles	 of	 the	 samples	 at	 4	 h	 could	 be	 well	

distinguished	 from	 those	 of	 stored	 samples	 along	 PC1	 (41.8%	 variance).	 The	 PC1‐

loading	indicated	that	dimethyl	sulfide	and	1‐methoxy‐2‐propanol	were	determinant	of	

the	 samples	 at	 4	 h	while	 2,3‐pentanedione,	 dimethyl	 disulfide	 and	 2‐heptanone	were	

determinant	for	discrimination	of	stored	samples.	For	better	comparison,	two	separated	

PCA	score	plots	were	constructed	for	distinguishing	among	samples	at	4	h	(n	=	15)	with	

a	 total	 variance	 of	 62.1%	 (Fig.	 4.4B)	 and	 among	 stored	 samples	 (n	 =	 30)	with	 a	 total	

variance	of	67.9%	(Fig.	4.4C).		
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Fig.	4.4.	PCA	score	plots	and	PC	loadings,	for	overall	comparison	(panel	A),	comparison	among	samples	at	
4	 h	 (panel	 B)	 and	 among	 storage	 samples	 (panel	 C),	 derived	 from	 volatile	 metabolite	 profiles	 of	 set‐
yoghurts	 co‐fermented	with	 standard	 precultured	 (control)	B.	animalis	 subsp.	 lactis	 BB12	 (BB12)	 ( ),	
BB12	 precultured	 at	 0.5%	 NaCl‐pH	 5.0	 ( ),	 BB12	 precultured	 at	 0.5%	 NaCl‐pH	 7.0	 ( ),	 BB12	
precultured	at	1.5%	NaCl‐pH	5.0	( )	and	BB12	precultured	at	1.5%	NaCl‐pH	7.0	( ).	
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other	as	well	as	from	the	control	group.	However,	the	samples	co‐fermented	with	BB12	

precultured	 at	 0.5%	 NaCl‐pH	 7.0	 were	 not	 clearly	 separated	 from	 the	 control	 group.	

According	to	the	adverse	effect	on	the	growth	of	BB12	in	milk,	the	samples	co‐fermented	

with	BB12	precultured	at	1.5%	NaCl	(with	either	pH	5.0	or	7.0)	were	distinguished	from	

the	other	groups	along	PC1	(42.3%	variance).	The	PC1‐loading	indicated	that	acetic	acid,	

2‐methyl‐propanoic	 acid,	 butyric	 acid,	 3‐methyl	 butanoic	 acid	 and	 dimethyl	 sulfone	

were	the	major	volatile	metabolites	accountable	for	discrimination.	During	storage,	the	

distinction	between	sublethally	precultured	BB12	precultured	under	the	same	pH	level	

(with	either	0.5%	or	1.5%	NaCl)	moved	close	to	each	other.	A	clear	distinction	between	

the	samples	co‐fermented	with	BB12	precultured	at	pH	5.0	(with	either	0.5%	or	1.5%	

NaCl)	 and	 the	 control	 group	 was	 observed	 along	 PC2	 while	 those	 co‐fermented	 with	

BB12	 precultured	 at	 pH	 7.0	 (with	 either	 0.5%	 or	 1.5%	 NaCl)	 were	 situated	 between	

these	 two	 groups.	 The	 PC2‐loading	 indicated	 that	 ethanol	 and	 1‐methoxy‐2‐propanol	

accounted	for	the	separation	of	the	samples	co‐fermented	with	BB12	precultured	at	pH	

5.0	(with	either	0.5%	or	1.5%	NaCl)	while	2‐butanone,	2‐ethylhexabnol	and	2‐undecanal	

contributed	to	those	co‐fermented	with	standard	precultured	BB12.		

4.3.4	 Non‐volatile	polar	metabolite	profiles	determined	by	1H‐NMR	

For	 non‐volatile	 polar	 metabolite	 profiling,	 NOESY‐1D‐1H‐NMR	 spectra	 of	 set‐

yoghurt	were	processed	according	to	the	method	described	 in	Chapter	2.	A	total	of	43	

metabolites	 including	 amino	 acids,	 carbohydrates,	 organic	 acids,	 lipid	 derivatives,	

carbonyl	 compounds,	 a	 sulfur	 compound	 and	 a	 nucleoside	 were	 presumptively	

identified.	The	quantification	was	achieved	by	summation	of	signal	intensities	in	all	bins	

corresponding	 to	 the	 respective	 metabolite	 [21]	 and	 expressed	 in	 log10	 transformed	

values	 (arbitrary	 unit)	 (Table	 S4.2).	 For	multivariate	 analysis,	 it	 should	 be	mentioned	

that	the	43	identified	metabolites	accounted	for	labeling	of	149	bins.	A	complementary	

data	filtering	by	ANOVA	was	performed	for	selection	of	the	remaining	unknowns	[11].	A	

total	 of	 218	 (LGG)	 and	 164	 (BB12)	 bins	 were	 finally	 introduced	 as	 variables	 for	

comparison	within	the	same	species	of	probiotics.		
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For	 the	 samples	 co‐fermented	with	LGG	and	 their	 sublethally	precultured	 cells,	

an	overall	PCA	score	plot	was	constructed	with	a	total	variance	of	67.7%	(n	=	20)	(Fig.	

4.5).	 Non‐volatile	 polar	metabolite	 profiles	 of	 the	 samples	 at	 4	 h	 could	 be	 completely	

distinguished	 from	those	of	 stored	samples	along	PC1	(43.7%	variance).	At	 the	end	of	

fermentation,	the	samples	co‐fermented	with	LGG	precultured	at	2.0%	NaCl	(with	either	

pH	4.5	or	6.5)	and	LGG	precultured	at	4.0%	NaCl‐pH	4.5	were	clearly	distinguished	from	

those	of	standard	precultured	LGG	and	LGG	precultured	at	4.0%	NaCl‐pH	6.5	along	PC2	

(24.1%	variance).	Among	stored	samples,	the	same	distinction	pattern	remained,	except	

for	the	samples	co‐fermented	with	LGG	precultured	at	4.0%	NaCl‐pH	6.5	which	showed	

an	 overlap	 between	 the	 two	 major	 groups.	 The	 PC2‐loading	 indicated	 that	 most	

metabolites	in	amino	acid	regions,	lactate,	citrate,	oxoglutarate	and	pyruvate	accounted	

for	 the	 separation	 of	 samples	 co‐fermented	 with	 standard	 precultured	 LGG	 and	 LGG	

precultured	 at	 4.0%	NaCl‐pH	 6.5	while	 succinate	 and	metabolites	 in	 the	 sugar	 region	

contributed	 to	 the	 separation	of	LGG	precultured	at	2.0%	NaCl	 (with	 either	pH	4.5	or	

6.5)	and	4.0%	NaCl‐pH	4.5.	

	

Fig.	4.5.	Overall	PCA	score	plot	and	PC	loading	derived	from	non‐volatile	polar	metabolite	profiles	of	set‐
yoghurts	co‐fermented	with	standard	precultured	(control)	L.	rhamnosus	GG	(LGG)	( ),	LGG	precultured	
at	2.0%	NaCl‐pH	4.5	( ),	LGG	precultured	at	2.0%	NaCl‐pH	6.5	( ),	LGG	precultured	at	4.0%	NaCl‐pH	4.5	
( )	and	LGG	precultured	at	4.0%	NaCl‐pH	6.5	( ).	
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Fig.	4.6.	PCA	score	plots	and	PC	loadings,	for	overall	comparison	(panel	A),	comparison	among	samples	at	
4	h	(panel	B)	and	among	storage	samples	(panel	C),	derived	from	non‐volatile	polar	metabolite	profiles	of	
set‐yoghurts	co‐fermented	with	standard	precultured	(control)	B.	animalis	subsp.	lactis	BB12	(BB12)	( ),	
BB12	 precultured	 at	 0.5%	 NaCl‐pH	 5.0	 ( ),	 BB12	 precultured	 at	 0.5%	 NaCl‐pH	 7.0	 ( ),	 BB12	
precultured	at	1.5%	NaCl‐pH	5.0	( )	and	BB12	precultured	at	1.5%	NaCl‐pH	7.0	( ).	
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4.6A).	 Complete	 separation	 between	 non‐volatile	 polar	 metabolite	 profiles	 of	 the	

samples	at	4	h	and	stored	samples	was	not	observed,	although	the	two	groups	could	be	

distinguished	along	PC2	(17.0%	variance).	For	further	comparison,	two	separated	PCA	

score	plots	were	constructed	 for	distinguishing	among	samples	at	4	h	 (n	=	10)	with	a	

total	 variance	 of	 77.5%	 (Fig.	 4.6B)	 and	 among	 stored	 samples	 (n	 =	 10)	 with	 a	 total	

variance	of	83.8%	(Fig.	4.6C).	At	the	end	of	fermentation,	the	samples	co‐fermented	with	

BB12	precultured	at	0.5%	NaCl‐pH	5.0	and	1.5%	NaCl	(with	either	pH	5.0	or	7.0)	were	

clearly	distinguished	from	those	of	standard	precultured	BB12	and	BB12	precultured	at	

0.5%	NaCl‐pH	7.0	along	PC1	(60.6%	variance).	The	PC1‐loading	 indicated	that	most	of	

metabolites	in	amino	acid	and	sugar	regions	were	accountable	for	discrimination	of	the	

latter	two	groups.	As	storage	time	progressed,	it	was	evident	that	the	distinction	among	

samples	co‐fermented	with	different	types	of	sublethally	precultured	BB12	became	less	

apparent.		

	

4.4	 Discussion	

The	vigorous	growth	and	good	retention	of	survival	of	S.	thermophilus	C44	and	L.	

delbrueckii	subsp.	bulgaricus	C49	during	yoghurt	fermentation	and	refrigerated	storage,	

respectively,	have	been	discussed	previously	in	Chapter	2	and	3.	In	case	of	probiotics,	it	

has	 been	 documented	 that	 stress	 responses	 vary	 depending	 on	 the	 growth	 phase,	 i.e.	

cells	 in	 stationary	 phase	 develop	more	 general	 resistance	 to	 various	 types	 of	 stresses	

[26,	 39].	 Therefore,	 the	 preculturing	 in	 this	 study	 was	 prolonged	 for	 24	 h	 to	 allow	

attaining	stress‐adapted	probiotic	cells	from	stationary	phase.	The	results	demonstrated	

that	preculturing	under	sublethal	stress	conditions	could	not	significantly	 improve	the	

growth	of	LGG	and	BB12	in	milk	during	set‐yoghurt	fermentation.	Adversely,	the	growth	

of	 BB12	was	 significantly	 impaired	 by	 preculturing	 at	 high	 NaCl	 level	 (1.5%).	 On	 the	

other	hand,	it	was	evident	that	the	viable	counts	of	LGG	and	BB12	during	storage	could	

be	 successfully	 improved	 by	 preculturing	 at	 relatively	 low	 pH	 values.	 The	 results	

showed	 that	 the	 combination	 of	 sublethally	 low‐NaCl/low‐pH,	 i.e.	 2.0%	 NaCl‐pH	 4.5	

(LGG)	and	0.5%	NaCl‐pH	5.0	(BB12),	delivered	the	most	significant	effect	on	the	viability	
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improvement	of	LGG	and	BB12.	These	conditions	resulted	in	the	highest	viable	counts	of	

the	two	probiotics	at	the	end	of	storage	without	significant	impairment	on	their	growth	

during	 fermentation.	 The	 statistical	 tests	 suggested	 that	 only	 the	 main	 effect	 of	 pH	

significantly	 influenced	 the	 survival	 of	 LGG	 whereas	 the	 effects	 of	 both	 NaCl	 and	 pH	

(without	 interaction)	 significantly	 influenced	 the	 survival	 of	 BB12	 during	 storage.	 It	

should	be	mentioned	that	adaptive	responses	in	probiotics	are	highly	strain‐dependent	

and	vary	largely	according	to	the	type	of	stresses	exposed	[14,	18,	26].	Interestingly,	the	

viable	 cells	 of	 BB12	 precultured	 at	 1.5%	 NaCl	 showed	 a	 significant	 improvement	 in	

survival	 during	 storage,	 although	 their	 growth	 was	 significantly	 impaired	 during	

fermentation.	 It	 has	 been	 reported	 that	 alteration	 in	 certain	 cellular	 protective	

mechanisms	 including	 changes	 in	 membrane	 surface	 properties,	 permeability	 and	

structural	 components	 induced	 by	 adaptive	 stress	 responses	may	 provide	 an	 adverse	

effect	on	bacterial	growth	[37].	This	study	therefore	demonstrated	adaptive	responses	

of	LGG	and	BB12	to	sublethal	NaCl‐pH	conditions	in	terms	of	the	viability	improvement	

in	 yoghurt	 during	 refrigerated	 storage.	 It	 should	 be	 mentioned	 that	 the	 final	 viable	

counts	 of	 probiotics	 in	 this	 study,	 except	 for	 those	 precultured	 at	 high‐NaCl‐high‐pH	

condition,	remain	well	above	the	minimum	recommended	level	(6.0	log	cfu/g)	to	ensure	

their	potential	health‐promoting	effects	[31].	

Acidification	 profiles	 of	 set‐yoghurts	 during	 fermentation	 and	 refrigerated	

storage	were	not	significantly	affected	by	either	the	different	strains	of	probiotics	or	the	

preculturing	conditions.	However,	a	small	deviation	in	pH	decrease	pattern	resulting	in	

slightly	 lower	 titratable	 acidity	at	 the	 end	of	 storage	was	observed	 in	 the	 samples	 co‐

fermented	with	BB12	precultured	 at	 high	NaCl	 level	 (1.5%).	 The	 reduction	 of	 pH	 and	

accumulation	of	organic	acids	during	refrigerated	storage	of	fermented	milk	are	defined	

as	“post‐acidification”	which	is	mainly	attributed	to	the	ongoing	metabolic	activity	of	L.	

delbrueckii	 subsp.	 bulgaricus	 (Shah,	 2000).	 Accordingly,	 the	 slightly	 lower	 post‐

acidification	found	in	yoghurts	co‐fermented	with	BB12	precultured	at	1.5%	NaCl	could	

be	 associated	 with	 the	 significant	 impairment	 on	 the	 viable	 counts	 of	 L.	 delbrueckii	

subsp.	bulgaricus	affected	by	these	two	BB12	cultures.	
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The	distinction	between	volatile	metabolite	profiles	of	 set‐yoghurts	determined	

at	the	end	of	fermentation	and	during	refrigerated	storage	was	clearly	demonstrated	by	

PCA.	At	the	end	of	fermentation,	co‐cultures	with	sublethally	precultured	probiotics	lead	

to	distinctive	yoghurt	volatile	profiles	that	could	be	well	distinguished	from	the	control	

group.	This	result	confirms	the	impact	of	stress‐adapted	probiotics	on	the	biochemical	

characteristics	 of	 product.	 Incorporation	 of	 sublethally	 precultured	 probiotics	

particularly	from	the	conditions	adjusted	to	a	low	pH	level,	i.e.	4.5	(LGG)	and	5.0	(BB12),	

resulted	in	distinctive	volatile	metabolite	profiles	of	set‐yoghurt	compared	to	the	other	

groups.	Volatile	metabolite	profiles	of	the	samples	co‐fermented	with	BB12	precultured	

at	high	NaCl	level	(1.5%)	might	be	associated	with	the	lower	viable	counts	of	BB12	and	

L.	 delbrueckii	 subsp.	 bulgaricus	 at	 the	 end	 of	 fermentation.	 Acetic	 acid	 is	 a	 primary	

metabolite	 generated	 from	 heterofermentative	 carbohydrate	 utilization	 by	

bifidobacteria	(Bifidus	pathway)	[33].	However,	acetic	acid	in	the	samples	co‐fermented	

with	BB12	precultured	at	1.5%	NaCl	was	detected	in	higher	abundance	(PC1‐loading	in	

Fig.	 4B	 &	 Table	 S1B)	 without	 significant	 influence	 on	 pH	 and	 titratable	 acidity.	 This	

result	 suggests	 metabolic	 activity	 of	 BB12	 precultured	 at	 1.5%	 NaCl,	 although	 their	

growth	is	significantly	impaired	by	this	sublethal	condition.	As	storage	time	progressed,	

loading	plots	showed	that	ongoing	metabolic	activities	of	yoghurt	starters	and	probiotics	

resulted	 in	 higher	 abundance	 of	 many	 volatile	 metabolites.	 Furthermore,	 it	 was	

remarkable	 that	 previously	 distinct	 volatile	 metabolite	 profiles	 of	 the	 samples	 co‐

fermented	with	different	 types	of	 sublethally	precultured	probiotics	gradually	merged	

during	 refrigerated	 storage.	 Nevertheless,	 volatile	 metabolite	 profiles	 of	 the	 different	

LGG	groups	could	still	be	distinguished	according	to	the	concentration	of	NaCl	present	

during	 preculturing	 (Fig.	 4.3C)	 while	 those	 among	 the	 BB12	 groups	 were	 clearly	

distinguished	 according	 to	 the	 pH	 value	 during	 preculturing	 (Fig.	 4.4C).	 This	 finding	

demonstrates	 that	 the	 effect	 of	 sublethal	 stress	 responses	 during	 preculturing	 on	 the	

volatile	metabolite	profiles	of	set‐yoghurt	is	species‐specific.			

In	 terms	 of	 technological	 relevance,	 all	 major	 aroma	 volatiles	 of	 yoghurt,	 i.e.	

acetaldehyde	(fresh,	green,	pungent),	diacetyl	(buttery,	creamy),	acetoin	(buttery),	2,3‐

pentanedione	(buttery,	vanilla‐like),	acetone	(sweet,	 fruity),	2‐butanone	(sweet,	 fruity)	
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and	acetic	acid	(vinegar,	pungent)	[1],	were	detected	in	high	relative	abundances	in	the	

samples	(Table	S4.1).	The	contributions	of	LGG	and	BB12	to	aroma	volatile	production	

in	 fermented	milk	have	been	extensively	reported	[20,	24,	36,	40].	During	storage,	 the	

concentration	 of	 most	 aroma	 compounds	 remained	 rather	 stable	 while	 2,3‐

pentanedione	 and	 acetic	 acid	 significantly	 increased.	 The	 contribution	 of	 these	 two	

compounds	 for	 discriminating	 stored	 samples	 was	 confirmed	 in	 loading	 plots.	

Furthermore,	 various	 carbonyl	 compounds,	 volatile	 organic	 acids	 and	 alcohols	 also	

contributed	 to	 the	 discrimination	 of	 samples	 co‐fermented	 with	 different	 types	 of	

probiotics	either	at	the	end	of	fermentation	or	during	storage.	This	observation	suggests	

that	 the	 incorporation	 of	 stress‐adapted	 probiotics	 may	 considerably	 influence	 the	

organoleptic	 quality	 of	 product.	 Therefore,	 in	 short‐term	 perspective,	 additional	

research	 focusing	 on	 sensory	 evaluation	 of	 yoghurt	 with	 trained	 panelists	 is	

recommended.																

The	 list	 of	 non‐volatile	 polar	 metabolites	 identified	 in	 this	 study	 was	 derived	

from	 the	 previous	work	 [29].	 This	 list	 is	 comparable	 to	what	was	 found	 in	 other	 1H‐

NMR‐based	 studies	 of	 liquid	 milk	 and	 cheese	 [2,	 10,	 32].	 The	 numbers	 of	 significant	

variables	(bin)	filtered	by	ANOVA	suggested	that	non‐volatile	metabolite	profiles	among	

the	LGG	groups	(218	bins)	were	rather	dissimilar	compared	to	those	of	BB12	(164	bins).	

This	was	confirmed	by	the	patterns	of	non‐volatile	metabolite	profiles	demonstrated	by	

PCA.	Non‐volatile	metabolite	profiles	among	the	LGG	groups	were	clearly	distinguished	

according	 to	 the	 differences	 in	 types	 of	 sublethally	 precultured	 probiotics	 as	 well	 as	

duration	of	storage	(Fig.	4.5).	Moreover,	the	separating	patterns	were	quite	comparable	

with	 those	observed	 for	 the	 volatile	metabolite	profiles,	 i.e.	 standard	precultured	LGG	

was	 grouped	 nearby	 LGG	 precultured	 at	 4.0%	 NaCl‐pH6.5	 while	 the	 other	 three	

sublethally	 precultured	 LGG	 were	 rather	 separated.	 A	 consistent	 discrimination	 was	

observed	 between	 the	 LGG	 precultured	 at	 2.0%	 NaCl	 and	 the	 control	 group.	 This	

observation	 suggests	 that	 preculturing	 at	 2%	 NaCl	 induces	 changes	 in	 the	 metabolic	

activity	 of	 LGG	 resulting	 in	 distinctive	 non‐volatile	metabolite	 profiles	 of	 set‐yoghurt.	

Unlike	LGG,	a	complete	distinction	of	non‐volatile	metabolite	profiles	among	the	groups	

of	BB12,	either	in	different	types	of	sublethally	precultured	cells	or	duration	of	storage,	
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was	not	achieved	by	the	first	PCA	score	plot	(Fig.	4.6A).	The	distinction	among	the	4	h	

samples	 could	 still	 be	 observed	 while	 the	 stored	 samples	 were	 poorly	 distinguished	

from	each	other.	 Interestingly,	 non‐volatile	metabolite	profiles	of	BB12	precultured	at	

1.5%	NaCl	were	placed	nearby	(4	h)	or	grouped	together	(storage)	with	those	of	BB12	

precultured	 at	 0.5%	NaCl‐pH	5.0,	 although	 the	 capacity	 to	 grow	 in	milk	 of	 the	 former	

group	was	definitely	impaired.	This	result	indicates	that	distinctive	patterns	of	yoghurt	

metabolite	 profiles	 found	 by	 PCA	 do	 not	 directly	 correlate	 with	 the	 viable	 counts	 of	

stress‐adapted	probiotics.	

	

4.5	 Conclusions	

The	 present	 study	 demonstrated	 that	 preculturing	 of	 LGG	 and	 BB12	 under	

sublethal	salt	(NaCl)	and	pH	stress	conditions	did	not	significantly	enhance	their	growth	

during	 set‐yoghurt	 fermentation.	On	 the	 other	 hand,	 the	 survival	 of	 probiotics	 during	

refrigerated	 storage	 could	 be	 successfully	 improved	 specifically	 by	 preculturing	 at	

relatively	 low	 pH	 value.	 Preculturing	 at	 2.0%	 NaCl‐pH	 4.5	 and	 0.5%	 NaCl‐pH	 5.0	

provided	 the	 most	 significant	 improvement	 on	 the	 survival	 of	 LGG	 and	 BB12,	

respectively.	A	complementary	metabolomics	approach	using	SPME‐GC/MS	and	1H‐NMR	

combined	 with	 multivariate	 analysis	 revealed	 substantial	 impact	 of	 preculturing	 of	

probiotics	on	the	formation	of	volatile	and	non‐volatile	polar	metabolites	in	set‐yoghurt.	

Moreover,	various	volatile	aroma	compounds	 indicated	in	 loading	plots	suggested	that	

incorporation	 of	 stress‐adapted	 probiotics	 might	 considerably	 influence	 the	

organoleptic	quality	of	yoghurt.	The	results	demonstrate	that	adaptive	responses	of	LGG	

and	BB12	 to	 sublethal	 salt	 and	 low	pH	 stress	 conditions	not	 only	 affect	 their	 survival	

during	yoghurt	production	but	also	lead	to	substantial	changes	in	the	metabolome	of	the	

fermented	product.	 This	 study	provides	 new	 information	on	 the	 application	of	 stress‐

adapted	probiotics	in	an	actual	food‐carrier	environment.	
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Table	S4.1‐A.	Volatile	metabolites	 identified	 in	set‐yoghurts	at	 the	end	of	 fermentation	(4	hours)	and	the	end	of	storage	(28	days)	 fermented	by	co‐
culture	of	yoghurt	starters	with	standard	L.	rhamnosus	GG	(LGG)	and	their	sublethally	precultured	cells	using	headspace	SPME‐GC/MS	

Chemical Compound Standard LGG   Sublethally precultured LGG 
group (Control)  2% NaCl + pH 4.5 2% NaCl + pH 6.5 4% NaCl + pH 4.5 4% NaCl + pH 6.5 

  4 h 28 d 4 h 28 d 4 h 28 d 4 h 28 d 4 h 28 d 

Alcohol 1-Butanol 5.67a±0.31ab 5.51 ± 0.17a 5.81 ± 0.16b 5.89 ± 0.10b 6.26 ± 0.08c 6.06 ± 0.15b 5.61 ± 0.26ab 5.65 ± 0.16ab 5.82 ± 0.10b 5.77 ± 0.16ab 

Ethanol 6.73 ± 0.05a 6.77 ± 0.04ab 6.86 ± 0.00b 6.84 ± 0.04b 7.23 ± 0.01c 7.20 ± 0.01c 6.87 ± 0.05b 6.83 ± 0.04b 6.78 ± 0.04ab 6.80 ± 0.04ab 

 2-Ethyl-hexanol 5.39 ± 0.03c 5.31 ± 0.08c 5.05 ± 0.09ab 5.07 ± 0.04ab 6.08 ± 0.02e 5.92 ± 0.02d 5.13 ± 0.03b 4.98 ± 0.05a 5.39 ± 0.03c 5.34 ± 0.05c 

 1-Hexanol 5.69 ± 0.07b 5.80 ± 0.03c 5.70 ± 0.07b 5.72 ± 0.06b 5.59 ± 0.02a 5.55 ± 0.05a 5.85 ± 0.03c 5.72 ± 0.04b 5.81 ± 0.04c 5.76 ± 0.10bc 

 1-Methoxy-2-propanol 5.45 ± 0.40c 4.97 ± 0.30bc 4.86 ± 0.27bc NDc 5.15 ± 0.13c ND 4.90 ± 0.14bc 4.68 ± 0.32ab 5.24 ± 0.40b 4.36 ± 0.20a 

 2-Methyl-1-butanol 5.72 ± 0.05bc 5.61 ± 0.08b 5.24 ± 0.19a 5.91 ± 0.08d 5.66 ± 0.08bc 5.75±0.17bcd 5.77 ± 0.08cd 5.49±0.30abc 5.62±0.14abc 5.38 ± 0.16ab 

 3-Methyl-2-butanol 5.73 ± 0.09ab 5.87 ± 0.02c 5.82±0.10abc 5.91 ± 0.03cd 5.81 ± 0.01ab 5.81 ± 0.02ab 5.83 ± 0.02b 5.97 ± 0.03d 5.69 ± 0.12a 5.96 ± 0.12cd 

 3-Methyl-3-butanol 5.77 ± 0.90a 5.83 ± 0.03ab 5.87±0.09abc 5.92 ± 0.05bc 5.87 ± 0.02b 5.94 ± 0.02c 5.91 ± 0.04bc 5.87±0.06abc 5.73 ± 0.11a 5.82±0.11abc 

 1-Octanol 5.03±0.09bcd 5.03±0.06bcd 5.03±0.07bcd 5.11 ± 0.02d 4.94 ± 0.06b 5.04 ± 0.04c 4.88 ± 0.10ab 5.09 ± 0.04cd 4.83 ± 0.02a 4.99 ± 0.07bc 

 1-Pentanol 5.39 ± 0.09a 5.52 ± 0.12a 5.45 ± 0.08a 5.36 ± 0.07a 5.38 ± 0.09a 5.38 ± 0.09a 5.48 ± 0.04a 5.34 ± 0.07a 5.52 ± 0.10a 5.34 ± 0.15a 

 3-Pentanol 6.67 ± 0.11ab 6.78 ± 0.02bc 6.79 ± 0.04bc 6.93 ± 0.03d 6.72 ± 0.02b 6.87 ± 0.03cd 6.73 ± 0.07b 6.83 ± 0.02c 6.50 ± 0.09a 6.76 ± 0.07bc 

       

Carbonyl  Acetaldehyde 7.37±0.10abc 7.45 ± 0.11bc 7.49 ± 0.02c 7.47 ± 0.03c 7.37 ± 0.00b 7.48 ± 0.05c 7.29 ± 0.08a 7.39 ± 0.07ab 7.25 ± 0.02a 7.28 ± 0.01a 

compound Acetoin 8.50 ± 0.07b 8.46 ± 0.02b 8.48 ± 0.03b 8.47 ± 0.01b 8.48 ± 0.02b 8.43 ± 0.04ab 8.47 ± 0.02b 8.44 ± 0.05ab 8.37 ± 0.03a 8.37 ± 0.02a 

 Acetone 7.47 ± 0.06bc 7.52 ± 0.06c 7.43 ± 0.04bc 7.50 ± 0.05c 7.34 ± 0.03a 7.46 ± 0.02c 7.43±0.07abc 7.43 ± 0.04bc 7.41 ± 0.01b 7.47 ± 0.02bc 

 Benzaldehyde 6.20±0.13abc 6.40 ± 0.06c 6.17 ± 0.04a 6.25 ± 0.01b 6.20 ± 0.04ab 6.28±0.07abc 6.13 ± 0.07a 6.18 ± 0.09ab 6.33 ± 0.08ab 6.30 ± 0.08bc 

 2-Butanone 7.38 ± 0.21a 7.38 ± 0.17a 7.28 ± 0.12a 7.27 ± 0.12a 7.12 ± 0.05a 7.18 ± 0.13a 7.26 ± 0.10a 7.21 ± 0.12a 7.41 ± 0.07a 7.40 ± 0.11a 

 Diacetyl 7.47 ± 0.07bc 7.54 ± 0.06bc 7.45 ± 0.06b 7.67 ± 0.11c 7.64 ± 0.04c 7.51 ± 0.07bc 7.55 ± 0.04bc 7.69 ± 0.13c 7.37 ± 0.02a 7.47±0.10abc 

 2-Heptanone 6.11 ± 0.08ab 6.42 ± 0.06c 6.30 ± 0.06c 6.56 ± 0.06d 6.31 ± 0.01c 6.59 ± 0.05d 6.18 ± 0.01b 6.34 ± 0.06c 6.07 ± 0.05a 6.36 ± 0.14c 

 2-Hydroxy-3-pentanone 6.45±0.13abc 6.53 ± 0.03b 6.58 ± 0.04bc 6.69 ± 0.02d 6.53 ± 0.02b 6.65 ± 0.03cd 6.52 ± 0.07b 6.61 ± 0.02c 6.29 ± 0.10a 6.54 ± 0.08bc 

 3-Methyl-2-butenal 5.41±0.22abc 5.52 ± 0.12ab 5.57 ± 0.03b 5.77 ± 0.03d 5.67 ± 0.03c 5.94 ± 0.06e 5.46 ± 0.06ab 5.51 ± 0.15ab 5.28 ± 0.15a 5.42 ± 0.11ab 

 2-Nonanone 6.17 ± 0.04ab 6.34 ± 0.05b 6.39 ± 0.06b 6.53 ± 0.01d 6.51 ± 0.02c 6.62 ± 0.02e 6.27 ± 0.05b 6.33 ± 0.02b 6.13 ± 0.06a 6.33 ± 0.08b 

 3-Octanone 5.35 ± 0.07c 5.26 ± 0.02b 5.35 ± 0.07c 5.14 ± 0.12ab 5.26 ± 0.07bc 5.08 ± 0.15ab 5.26 ± 0.08bc 5.16 ± 0.18ab 5.14 ± 0.05ab 5.07 ± 0.08a 
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 2,3-Pentanedione 6.92 ± 0.12ab 7.53 ± 0.08e 7.02 ± 0.09b 7.33 ± 0.06d 7.15 ± 0.11bc 7.22 ± 0.04c 7.03 ± 0.10b 7.27 ± 0.05cd 6.88 ± 0.09a 7.36 ± 0.08de 

 2-Undecanal 5.14 ± 0.08bc 5.23 ± 0.06c 4.90 ± 0.14ab 5.22 ± 0.06c 5.01 ± 0.15b 5.14 ± 0.14bc 5.04 ± 0.11b 4.99±0.30abc 4.59 ± 0.17a 5.18 ± 0.05bc 

 2-Undecanone 5.46 ± 0.06ab 5.43 ± 0.04a 5.44 ± 0.06ab 5.59 ± 0.07bc 5.62 ± 0.06bc 5.61 ± 0.02c 5.58 ± 0.03bc 5.57 ± 0.01bc 5.46 ± 0.14ab 5.53 ± 0.04b 

           

Sulfur  Dimethyl disulfide 5.19 ± 0.30a 6.48 ± 0.35c 5.21 ± 0.13a 5.90 ± 0.12b 5.13 ± 0.08a 6.22 ± 0.13c 5.22 ± 0.34a 5.57 ± 0.52ab 5.19 ± 0.13a 5.97 ± 0.15bc 

compound Dimethyl sulfide 6.22 ± 0.13a 6.08 ± 0.83a 6.13 ± 0.02a 5.92 ± 0.31a 5.73 ± 0.06a 6.11 ± 0.04a 6.04 ± 0.20a 5.46 ± 1.11a 6.13 ± 0.10a 6.04 ± 0.33a 

Dimethyl sulfone 6.27 ± 0.18ab 6.66 ± 0.04c 6.30 ± 0.15ab 6.53 ± 0.07b 6.10 ± 0.24a 6.56 ± 0.12bc 6.17 ± 0.12a 6.50 ± 0.08b 6.32 ± 0.21ab 6.53±0.22abc 

          

Volatile   Acetic acid 7.66 ± 0.08a 8.05 ± 0.08cd 7.93 ± 0.06bc 8.11 ± 0.01d 7.88 ± 0.05b 8.17 ± 0.07d 7.67 ± 0.04a 7.95 ± 0.01b 7.54 ± 0.18a 8.96 ± 0.02bc 

organic acid Butyric acid 7.61 ± 0.10ab 7.75 ± 0.07cd 7.82 ± 0.04d 7.78 ± 0.03cd 7.71 ± 0.02b 7.76 ±0.08a-d 7.66 ± 0.02a 7.72 ± 0.03bc 7.57 ± 0.11ab 7.71 ± 0.04bc 

Hexanoic acid 7.61 ± 0.10ab 7.63 ± 0.05ab 7.76 ± 0.03c 7.74 ± 0.02c 7.71 ± 0.02bc 7.72 ± 0.07bc 7.69 ± 0.01b 7.70 ± 0.03bc 7.58 ± 0.03a 7.70 ± 0.06bc 

 3-Methyl-butanoic acid 5.60 ± 0.05ab 5.66 ± 0.04bc 5.72 ± 0.03c 5.75 ± 0.03c 5.66 ± 0.04b 5.73 ± 0.10bc 5.64 ± 0.03b 5.66 ± 0.02b 5.51 ± 0.08a 5.69 ± 0.07bc 

 2-Methyl-propanoic acid 5.43 ± 0.05a 5.55 ± 0.03bc 5.60 ± 0.03c 5.61 ± 0.01c 5.54 ± 0.06bc 5.62 ± 0.08bc 5.44 ± 0.05a 5.56 ± 0.00b 5.38 ± 0.09a 5.51 ± 0.06bc 

 Pentanoic acid 5.95 ± 0.09ab 6.01 ± 0.03b 6.07 ± 0.01c 6.10 ± 0.02c 5.99 ± 0.03b 6.05 ± 0.05bc 5.94 ± 0.02a 6.03±0.07abc 5.91 ± 0.07ab 5.98 ± 0.01b 

 Propionic acid 5.85 ± 0.02a 6.06 ± 0.01d 5.97 ± 0.05bc 6.05 ± 0.03cd 5.92 ± 0.06ab 5.97±0.07bcd 5.89 ± 0.05ab 6.01±0.08bcd 5.81 ± 0.17ab 5.96 ± 0.01b 

a Metabolite contents are expressed as log10 [peak area of respective compound in arbitrary unit]. Values are means ± standard deviation from three independent replicates.  
b Letters (a-e) indicate significant difference (p  < 0.05) among sample means within the same row.  
c ND indicates compound not detected. 
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Table	S4.1‐B.	Volatile	metabolites	 identified	 in	set‐yoghurts	at	 the	end	of	 fermentation	(4	hours)	and	the	end	of	storage	(28	days)	 fermented	by	co‐
culture	of	yoghurt	starters	with	standard	B.	animalis	subsp.	lactis	BB12	(BB12)	and	their	sublethally	precultured	cells	using	headspace	SPME‐GC/MS	

Chemical Compound Standard BB12   Sublethally precultured BB12 
group (Control)  0.5% NaCl + pH 5.0 0.5% NaCl + pH 7.0 1.5% NaCl + pH 5.0 1.5% NaCl + pH 7.0 

  4 h 28 d 4 h 28 d 4 h 28 d 4 h 28 d 4 h 28 d 

Alcohol 1-Butanol 5.60a ±0.15ab 5.40 ± 0.29a 5.52 ± 0.16a 5.50 ± 0.26a 5.67 ± 0.32a 5.48 ± 0.18a 5.33 ± 0.16a 5.53 ± 0.25a 5.29 ± 0.21a 5.42 ± 0.16a 

Ethanol 6.83 ± 0.02a 6.84 ± 0.04a 6.97 ± 0.06bc 7.08 ± 0.03c 6.84 ± 0.05a 6.96 ± 0.01b 7.01 ± 0.06bc 7.05 ± 0.01c 6.84 ± 0.05a 6.97 ± 0.05bc 

 2-Ethyl-hexanol 5.84 ± 0.01d 5.76 ± 0.04c 5.54 ± 0.06b 5.43 ± 0.02a 5.53 ± 0.07ab 5.40 ± 0.00a 5.50 ± 0.11ab 5.48 ± 0.02b 5.37 ± 0.08a 5.40 ± 0.05a 

 1-Hexanol 5.82 ± 0.05a 5.80 ± 0.06a 5.79 ± 0.01a 5.71 ± 0.02a 5.80 ± 0.05a 5.79 ± 0.03a 5.76 ± 0.09a 5.71 ± 0.02a 5.75 ± 0.05a 5.77 ± 0.04a 

 1-Methoxy-2-propanol 5.70±0.42bcd 4.48 ± 0.51a 5.97 ± 0.09d 5.47 ± 0.10c NDc  5.25 ± 0.12b 5.42 ± 0.10bc 5.43 ± 0.26bc 5.15±0.25abc 4.70 ± 0.37a 

 2-Methyl-1-butanol 5.33 ± 0.07d 4.95 ± 0.04ab 5.11±0.15a-d 5.06 ± 0.06bc 5.26 ± 0.08cd 5.12 ± 0.08c 5.01 ± 0.01b 4.88 ± 0.08a 4.94 ± 0.04a 5.08±0.11abc 

 3-Methyl-2-butanol 5.85 ± 0.03b 5.97 ± 0.03c 5.88 ± 0.03b 6.20 ± 0.02e 5.81 ± 0.09ab 6.09 ± 0.02d 5.80 ± 0.06ab 6.10 ± 0.08de 5.69 ± 0.08a 6.10 ± 0.05d 

 3-Methyl-3-butanol 5.93 ± 0.03b 5.97 ± 0.06bc 6.04 ± 0.04cd 6.13 ± 0.06e 5.91 ± 0.04ab 6.02 ± 0.03c 5.92±0.10abc 6.06 ± 0.01d 5.79 ± 0.08a 5.97 ± 0.04bc 

 1-Octanol 5.12 ± 0.03a 5.14 ± 0.02a 5.11 ± 0.04a 5.03 ± 0.04a 5.08 ± 0.03a 5.03 ± 0.03a 5.07 ± 0.13a 5.02 ± 0.01a 5.07 ± 0.08a 5.14 ± 0.02a 

 1-Pentanol 5.50 ± 0.02c 5.59 ± 0.04d 5.52 ± 0.03cd 5.39 ± 0.04ab 5.50 ± 0.02bc 5.46 ± 0.04b 5.44 ± 0.05ab 5.40 ± 0.06ab 5.42 ± 0.04ab 5.39 ± 0.02a 

 3-Pentanol 6.78 ± 0.06bc 6.84 ± 0.03c 6.62 ± 0.02a 6.78 ± 0.02b 6.76 ± 0.03b 6.89 ± 0.02d 6.69±0.13abc 6.81±0.08bcd 6.62 ± 0.02a 6.84±0.07bcd 

       

Carbonyl  Acetaldehyde 7.49 ± 0.03a 7.55 ± 0.03a 7.45 ± 0.06a 7.46 ± 0.08a 7.42 ± 0.05a 7.49 ± 0.06a 7.51 ± 0.00a 7.52 ± 0.04a 7.43 ± 0.09a 7.50 ± 0.03a 

compound Acetoin 8.60 ± 0.04bc 8.56 ± 0.01b 8.55 ± 0.03ab 8.59 ± 0.06bc 8.63 ± 0.04c 8.57 ± 0.03bc 8.70 ± 0.14c 8.53 ± 0.01a 8.53 ± 0.01a 8.54 ± 0.05ab 

 Acetone 7.53 ± 0.06a 7.56 ± 0.04a 7.49 ± 0.01a 7.50 ± 0.04a 7.53 ± 0.08a 7.55 ± 0.02a 7.50 ± 0.02a 7.51 ± 0.06a 7.46 ± 0.05a 7.56 ± 0.02a 

 Benzaldehyde 6.19 ± 0.04b 6.43 ± 0.01d 6.16 ± 0.04b 6.23 ± 0.08bc 6.18 ± 0.03b 6.32 ± 0.04c 6.09 ± 0.06ab 6.20 ± 0.02b 6.10 ± 0.03a 6.23±0.13abc 

 2-Butanone 7.61 ± 0.06d 7.58 ± 0.06d 7.04 ± 0.14ab 6.85 ± 0.09a 7.60 ± 0.15d 7.55 ± 0.05d 7.12 ± 0.11b 6.93 ± 0.07a 7.45 ± 0.06cd 7.42 ± 0.03c 

 Diacetyl 7.51 ± 0.01bc 7.59 ± 0.02d 7.41 ± 0.04a 7.60 ± 0.07cd 7.53 ± 0.02c 7.58±0.08bcd 7.47±0.07abc 7.58 ± 0.05cd 7.45 ± 0.04a 7.56±0.06bcd 

 2-Heptanone 6.20 ± 0.09a 6.45 ± 0.03b 6.17 ± 0.06a 6.41 ± 0.04b 6.10 ± 0.02a 6.43 ± 0.03b 6.13 ± 0.07a 6.43 ± 0.02b 6.09 ± 0.06a 6.45 ± 0.02b 

 2-Hydroxy-3-pentanone 6.57 ± 0.05bc 6.62 ± 0.03c 6.41 ± 0.04a 6.53 ± 0.04b 6.55 ± 0.03b 6.65 ± 0.02c 6.48±0.15abc 6.56 ± 0.06bc 6.39 ± 0.02a 6.60 ± 0.07bc 

 3-Methyl-2-butenal 5.46±0.22abc 5.68 ± 0.03c 5.54 ± 0.03b 5.58 ± 0.06b 5.43 ± 0.05a 5.63 ± 0.08bc 5.40 ± 0.08a 5.62 ± 0.08bc 5.40 ± 0.02a 5.57 ± 0.10bc 

 2-Nonanone 6.18 ± 0.02b 6.32 ± 0.01d 6.17±0.05abc 6.27 ± 0.05c 6.15 ± 0.03ab 6.32 ± 0.04cd 6.19±0.11abc 6.33 ± 0.03cd 6.13 ± 0.02a 6.33 ± 0.06cd 

 3-Octanone 5.52 ± 0.05cd 5.41 ± 0.02b 5.46 ± 0.03bc 5.45 ± 0.08bc 5.59 ± 0.05d 5.40 ± 0.07ab 5.58±0.16bcd 5.33 ± 0.05a 5.38 ± 0.06ab 5.28±0.11abc 
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 2,3-Pentanedione 6.92 ± 0.05a 7.55 ± 0.05c 6.83± 0.07a 7.29 ± 0.02b 6.89 ± 0.05a 7.33 ± 0.04b 6.77 ± 0.08a 7.34 ± 0.02b 6.87 ± 0.08a 7.28 ± 0.08b 

 2-Undecanal 5.49 ± 0.10bc 5.62 ± 0.21c 5.52 ± 0.14c 5.43 ± 0.07bc 5.37 ± 0.16bc 5.44 ± 0.06bc 5.36 ± 0.14bc 5.38 ± 0.03b 5.16 ± 0.05a 5.35±0.19abc 

 2-Undecanone 5.39 ± 0.07a 5.30 ± 0.04a 5.47 ± 0.07a 5.36 ± 0.01a 5.44 ± 0.05a 5.40 ± 0.01a 5.44 ± 0.25a 5.40 ± 0.02a 5.35 ± 0.04a 5.40 ± 0.02a 

           

Sulfur  Dimethyl disulfide 5.22 ± 0.20a 6.61 ± 0.42c 5.29 ± 0.11a 5.79 ± 0.28b 5.24 ± 0.12a 6.09 ± 0.17bc 5.13 ± 0.09a 5.81 ± 0.28b 5.22 ± 0.12a 6.14 ± 0.12bc 

compound Dimethyl sulfide 6.44 ± 0.26a 6.12 ± 0.95a 6.55 ± 0.19a 5.97 ± 1.30a 6.49 ± 0.26a 6.14 ± 1.10a 6.68 ± 0.12a 6.24 ± 1.07a 6.59 ± 0.26a 6.95 ± 0.04a 

Dimethyl sulfone 6.41 ± 0.21a 6.77 ± 0.04b 6.23 ± 0.36a 6.79 ± 0.13b 6.48 ± 0.25ab 6.68 ± 0.05b 6.76 ± 0.22b 6.76 ± 0.13b 6.54 ± 0.26ab 6.71 ± 0.14b 

          

Volatile   Acetic acid 7.88 ± 0.16a 8.21 ± 0.03b 7.90 ± 0.07a 8.44 ± 0.11d 7.87 ± 0.09a 8.18 ± 0.05b 8.30 ± 0.01c 8.29 ± 0.05c 7.94 ± 0.21a 8.22 ± 0.08bc 

organic acid Butyric acid 7.70 ± 0.13ab 7.83 ± 0.00b 7.58 ± 0.10a 7.89 ± 0.08bc 7.71 ± 0.06a 7.83 ± 0.04bc 7.98 ± 0.12c 7.81 ± 0.04ab 7.75±0.14abc 7.80±0.08abc 

Hexanoic acid 7.62 ± 0.07ab 7.71 ± 0.02b 7.53 ± 0.09a 7.74 ± 0.06b 7.63 ± 0.03a 7.73 ± 0.02b 7.78 ± 0.10b 7.69 ± 0.03b 7.63 ± 0.08ab 7.70 ± 0.07ab 

 3-Methyl-butanoic acid 5.56±0.10abc 5.73 ± 0.01d 5.46 ± 0.06a 5.70 ± 0.07cd 5.57 ± 0.04b 5.71 ± 0.02cd 5.77 ± 0.11cd 5.66 ± 0.04c 5.60±0.10abc 5.71±0.12bcd 

 2-Methyl-propanoic acid 5.47 ± 0.07ab 5.64 ± 0.06c 5.37 ± 0.09a 5.57 ± 0.05bc 5.40 ± 0.04a 5.63 ± 0.12bc 5.64 ± 0.14bc 5.55 ± 0.02b 5.50±0.12abc 5.58 ± 0.06bc 

 Pentanoic acid 5.97 ± 0.05a 6.06 ± 0.04bc 5.95 ± 0.04a 6.10 ± 0.06bc 6.01 ± 0.03ab 6.10 ± 0.02c 6.13 ± 0.07bc 6.04 ± 0.01b 5.97 ± 0.09ab 6.04±0.10abc 
Propionic acid 5.86 ± 0.09a 6.07 ± 0.04b 5.79 ± 0.10a 6.02 ± 0.05b 5.84 ± 0.08a 6.01 ± 0.07b 6.00 ± 0.10ab 6.02 ± 0.06b 5.88 ± 0.08a 6.01 ± 0.11ab 

a Metabolite contents are expressed as log10 [peak area of respective compound in arbitrary unit]. Values are means ± standard deviation from three independent replicates.  
b Letters (a-e) indicate significant difference (p  < 0.05) among sample means within the same row.  
c ND indicates compound not detected. 
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Table	S4.2‐A.	Presumptive	polar	metabolites	identified	in	set‐yoghurts	(samples	at	4	hours,	14	days	and	28	days)	fermented	by	co‐culture	of	yoghurt	
starters	with	standard	L.	rhamnosus	GG	(LGG)	and	their	sublethally	precultured	cells	using	NOESY	1D‐1H‐NMR			

Chemical Compound Standard LGG Sublethally precultured LGG 
group (Control)  2% NaCl + pH 4.5 2% NaCl + pH 6.5 4% NaCl + pH 4.5 4% NaCl + pH 6.5 

  4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 

Amino acid and Alanine 6.86a 6.91 7.06 6.90 6.98 7.07 6.94 6.92 7.02 6.99 7.05 7.12 7.03 7.12 7.12 
derivatives Creatine and Creatinine 7.43 7.42 7.60 7.48 7.49 7.53 7.50 7.50 7.50 7.52 7.52 7.56 7.53 7.56 7.55 
 Isoleucine 7.54 7.61 7.81 7.61 7.73 7.83 7.65 7.64 7.79 7.72 7.79 7.88 7.74 7.87 7.86 
 Leucine 7.53 7.56 7.81 7.60 7.72 7.84 7.64 7.65 7.79 7.72 7.80 7.90 7.76 7.89 7.88 
 N-Acetyl-amino acids 7.92 7.92 8.04 7.95 7.99 8.05 8.00 7.99 8.02 8.04 8.04 8.08 8.06 8.10 8.09 
 Phenylalanine 6.47 6.49 6.69 6.53 6.64 6.73 6.56 6.53 6.68 6.63 6.70 6.95 6.71 6.83 6.82 
 Proline  7.29 7.31 7.46 7.32 7.39 7.48 7.35 7.32 7.43 7.41 7.45 7.51 7.44 7.51 7.50 
 Tyrosine 6.86 6.89 7.03 6.93 6.99 7.06 6.94 6.87 7.01 6.99 7.03 7.10 7.01 7.10 7.08 
 Valine 7.40 7.44 7.64 7.50 7.60 7.70 7.50 7.49 7.64 7.58 7.65 7.74 7.61 7.73 7.72 
 Amino acid residues 7.95 8.01 8.15 8.01 8.09 8.18 8.04 8.03 8.14 8.08 8.13 8.20 8.12 8.19 8.20 
                 
Carbohydrate and  Galactose 9.04 8.95 9.01 9.08 9.03 9.05 9.09 8.93 9.00 9.14 9.02 9.04 9.15 9.07 9.05 
derivatives Glucose 9.10 8.64 8.70 9.09 8.84 8.78 9.13 8.84 8.65 9.22 8.81 8.87 9.23 8.93 8.85 
 Lactose 9.27 8.91 8.95 9.23 9.21 9.18 9.31 9.32 9.22 9.22 9.19 9.12 9.15 9.10 9.09 
 N-Acetylglucosamine 7.36 7.36 7.54 7.41 7.46 7.55 7.47 7.49 7.52 7.51 7.54 7.60 7.54 7.60 7.61 
 Sugar residues 7.32 7.27 7.32 7.34 7.31 7.33 7.38 7.34 7.30 7.37 7.33 7.33 7.40 7.34 7.31 
                 
Organic acid Acetate  7.58 7.71 7.77 7.61 7.76 7.81 7.70 7.64 7.81 7.67 7.75 7.79 7.61 7.74 7.75 
 Acetoacetate 6.91 6.88 7.09 6.96 7.01 7.11 7.02 7.00 7.06 7.07 7.08 7.16 7.09 7.15 7.15 
 Ascorbate 8.25 8.13 8.18 8.24 8.19 8.21 8.26 8.14 8.15 8.31 8.19 8.21 8.31 8.23 8.21 
 Benzoate 6.79 6.80 6.93 6.84 6.89 6.94 6.91 6.89 6.93 6.93 6.94 7.06 6.94 6.98 6.98 
 Butyrate 7.18 7.21 7.34 7.27 7.36 7.44 7.30 7.27 7.38 7.36 7.41 7.49 7.39 7.49 7.46 
 Hydroxybutyrate 7.22 7.22 7.48 7.26 7.38 7.50 7.37 7.38 7.48 7.44 7.48 7.56 7.46 7.55 7.56 
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 Citrate 7.50 7.51 7.55 7.62 7.52 7.58 7.53 7.53 7.53 7.55 7.54 7.62 7.68 7.61 7.60 
 Formate 6.74 6.72 6.80 6.87 6.86 6.92 6.83 6.75 6.84 6.93 6.94 7.00 6.96 7.00 6.95 
 Fumarate 5.50 5.48 5.62 5.44 5.42 5.43 5.57 5.97 5.45 5.54 5.53 5.51 5.64 5.52 5.50 
 Hippurate 7.03 7.01 7.24 7.07 7.14 7.25 7.16 7.16 7.22 7.22 7.23 7.33 7.25 7.31 7.31 
 Isobutyrate  6.57 6.60 6.77 6.67 6.73 6.81 6.64 6.66 6.74 6.72 6.79 6.88 6.78 6.89 6.86 
 Lactate 9.45 9.62 9.64 9.49 9.58 9.63 9.41 9.47 9.60 9.46 9.55 9.62 9.50 9.59 9.61 
 Orotate 6.47 6.43 6.44 6.54 6.50 6.46 6.54 6.59 6.45 6.57 6.50 6.51 6.58 6.51 6.46 
 Oxoglutarate 7.36 7.32 7.38 7.49 7.22 7.34 7.34 7.29 7.28 7.34 7.27 7.54 7.64 7.57 7.58 
 Pyruvate 7.50 7.53 7.57 7.29 7.17 7.25 7.33 7.23 7.21 7.36 7.23 7.29 7.37 7.32 7.39 
 Succinate 7.45 7.56 7.60 7.46 7.68 7.66 7.61 7.49 7.65 7.61 7.65 7.50 7.21 7.48 7.43 
 Valerate and derivatives 7.55 7.54 7.77 7.59 7.67 7.78 7.68 7.68 7.75 7.74 7.76 7.84 7.77 7.83 7.84 
                 
Lipid derivatives Acetylcarnitine 6.63 6.66 6.79 6.74 6.75 6.83 6.81 6.89 6.81 6.76 6.82 6.88 6.82 6.85 6.84 
 Choline and derivatives 7.73 7.73 7.82 7.88 7.82 7.84 7.88 7.79 7.78 7.93 7.81 7.85 7.95 7.87 7.86 
 Glycerophosphocholine 7.39 7.32 7.34 7.51 7.39 7.41 7.62 7.46 7.40 7.72 7.49 7.44 7.62 7.47 7.45 
 Phosphocholine 8.08 7.80 7.89 8.11 7.95 7.95 8.11 7.90 7.85 8.19 7.93 7.98 8.17 8.01 7.97 
                 
Carbonyl  Acetone 7.22 7.21 7.28 7.35 7.30 7.32 7.32 7.30 7.32 7.32 7.29 7.32 7.40 7.33 7.32 
compound Dihydroxyacetone 7.25 7.25 7.29 7.45 7.28 7.30 7.44 7.43 7.23 7.49 7.29 7.34 7.49 7.36 7.32 
                 
Miscellaneous  Dimethyl sulfone 6.96 6.75 6.84 6.88 6.86 6.89 6.90 6.92 6.86 6.93 6.89 6.94 6.94 6.92 6.91 
 Uridine 5.91 5.90 5.95 5.93 5.89 5.97 5.99 5.95 5.96 5.97 5.96 5.98 6.01 5.94 5.96 

a Metabolite contents are expressed as log10 [sum of signal intensity of respective metabolite in arbitrary unit]. Values at 4 hours are the average from two independent replicates. Values at 14 days 
and 28 days are represented from one replicate. 
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Table	S4.2‐B.	Presumptive	polar	metabolites	identified	in	set‐yoghurts	(samples	at	4	hours,	14	days	and	28	days)	fermented	by	co‐culture	of	yoghurt	
starters	with	standard	B.	animalis	subsp.	lactis	BB12	(BB12)	and	their	sublethally	precultured	cells	using	NOESY	1D‐1H‐NMR			

Chemical Compound Standard BB12 Sublethally precultured BB12   
group (Control ) 0.5% NaCl + pH 5.0 0.5% NaCl + pH 7.0 1.5% NaCl + pH 5.0 1.5% NaCl + pH 7.0 

  4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 

Amino acid and Alanine 6.93a 6.94 7.01 6.67 7.03 7.10 6.90 6.78 6.82 6.87 7.09 6.31 6.71 7.06 7.06 
derivatives Creatine and Creatinine 7.50 7.44 7.49 7.40 7.53 7.56 7.47 7.38 7.37 7.47 7.54 7.34 7.41 7.53 7.54 
 Isoleucine 7.63 7.66 7.72 7.35 7.75 7.83 7.60 7.42 7.54 7.58 7.79 6.93 7.43 7.79 7.81 
 Leucine 7.65 7.67 7.74 7.34 7.76 7.87 7.60 7.36 7.53 7.58 7.82 6.98 7.39 7.83 7.85 
 N-Acetyl-amino acids 8.01 7.96 7.99 7.85 8.05 8.09 7.98 7.85 7.88 7.97 8.06 7.82 7.90 8.04 8.06 
 Phenylalanine 6.61 6.64 6.67 6.33 6.68 6.80 6.56 6.38 6.48 6.53 6.75 5.89 6.27 6.77 6.79 
 Proline  7.33 7.32 7.38 7.09 7.42 7.47 7.31 7.14 7.21 7.30 7.43 6.83 7.17 7.42 7.44 
 Tyrosine 6.95 6.95 6.99 6.75 7.00 7.08 6.93 6.80 6.84 6.90 7.05 6.05 6.75 7.03 7.05 
 Valine 7.53 7.55 7.60 7.27 7.61 7.71 7.49 7.30 7.40 7.47 7.67 6.71 7.26 7.67 7.69 
 Amino acid residues 8.01 8.04 8.08 7.83 8.12 8.17 8.00 7.89 7.96 7.98 8.12 7.28 7.91 8.12 8.14 
                 
Carbohydrate and  Galactose 9.09 8.94 8.97 9.01 9.03 9.09 9.11 8.97 8.94 9.13 9.06 8.34 8.88 9.04 9.04 
derivatives Glucose 9.18 8.80 8.82 9.02 8.81 8.94 9.13 8.66 8.61 9.18 9.03 8.32 8.65 8.91 8.87 
 Lactose 9.23 8.99 9.03 9.23 9.26 9.17 9.17 9.23 9.05 9.29 9.13 9.38 9.38 9.23 9.23 
 N-Acetylglucosamine 7.44 7.41 7.47 7.24 7.53 7.58 7.42 7.24 7.31 7.40 7.54 7.14 7.32 7.53 7.54 
 Sugar residues 7.35 7.26 7.25 7.25 7.33 7.34 7.33 7.22 7.19 7.35 7.36 7.21 7.25 7.31 7.29 
                 
Organic acid Acetate  7.61 7.66 7.69 7.45 7.67 7.72 7.58 7.61 7.63 7.58 7.64 6.80 7.48 7.67 7.71 
 Acetoacetate 6.98 6.95 7.01 6.73 7.05 7.13 6.94 6.68 6.82 6.93 7.10 6.50 6.82 7.09 7.11 
 Ascorbate 8.31 8.15 8.17 8.17 8.19 8.24 8.26 8.09 8.08 8.27 8.22 7.70 8.04 8.20 8.20 
 Benzoate 6.86 6.85 6.86 6.75 6.90 6.94 6.86 6.75 6.77 6.83 6.90 6.23 6.78 6.91 6.92 
 Butyrate 7.27 7.26 7.29 7.04 7.38 7.45 7.27 7.09 7.16 7.24 7.43 6.85 7.05 7.40 7.42 
 Hydroxybutyrate 7.32 7.30 7.40 7.02 7.42 7.51 7.27 7.00 7.20 7.24 7.44 6.86 7.17 7.46 7.49 
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 Citrate 7.57 7.52 7.49 7.41 7.55 7.58 7.51 7.38 7.41 7.49 7.52 7.77 7.51 7.50 7.48 
 Formate 6.82 6.74 6.76 6.62 6.95 6.99 6.86 6.70 6.72 6.86 6.96 6.05 6.73 6.92 6.94 
 Fumarate 5.60 5.56 5.60 5.40 5.43 5.45 5.42 5.25 5.22 5.43 5.44 5.46 5.38 5.44 5.40 
 Hippurate 7.11 7.07 7.13 6.80 7.20 7.28 7.07 6.75 6.92 7.05 7.25 6.78 6.95 7.23 7.25 
 Isobutyrate  6.72 6.72 6.77 6.48 6.77 6.89 6.67 6.52 6.57 6.65 6.90 5.68 6.35 6.87 6.87 
 Lactate 9.45 9.63 9.63 9.39 9.58 9.60 9.47 9.57 9.56 9.17 9.44 9.48 9.40 9.55 9.57 
 Orotate 6.55 6.48 6.45 6.50 6.49 6.50 6.48 6.45 6.40 6.50 6.51 6.63 6.48 6.51 6.50 
 Oxoglutarate 7.31 7.20 7.23 7.15 7.49 7.59 7.50 7.17 7.12 7.51 7.56 6.92 7.19 7.50 7.41 
 Pyruvate 7.65 7.25 7.29 7.27 7.32 7.36 7.37 7.26 7.30 7.36 7.34 6.67 7.36 7.40 7.44 
 Succinate 7.63 7.62 7.62 7.55 7.53 7.47 7.46 7.59 7.57 7.39 7.45 6.69 7.55 7.51 7.58 
 Valerate and derivatives 7.63 7.62 7.69 7.35 7.72 7.79 7.60 7.33 7.48 7.57 7.76 7.08 7.48 7.74 7.76 
                 
Lipid derivatives Acetylcarnitine 6.68 6.69 6.69 6.59 6.79 6.79 6.68 6.58 6.57 6.67 6.80 6.81 6.72 6.79 6.77 
 Choline and derivatives 7.83 7.78 7.80 7.81 7.85 7.90 7.91 7.75 7.73 7.91 7.87 7.48 7.70 7.86 7.87 
 Glycerophosphocholine 7.45 7.32 7.32 7.21 7.36 7.38 7.29 7.21 7.23 7.29 7.34 7.17 7.25 7.34 7.36 
 Phosphocholine 8.18 7.89 7.91 8.00 7.93 8.03 8.08 7.77 7.77 8.11 8.06 7.25 7.73 7.98 7.98 
                 
Carbonyl  Acetone 7.25 7.25 7.26 7.14 7.29 7.32 7.27 7.19 7.17 7.28 7.29 6.26 7.19 7.27 7.28 
compound Dihydroxyacetone 7.32 7.27 7.27 7.33 7.34 7.38 7.40 7.17 7.15 7.41 7.41 7.13 7.20 7.38 7.35 
                 
Miscellaneous  Dimethyl sulfone 7.08 6.87 6.88 6.78 6.88 6.90 6.87 6.75 6.73 6.85 6.88 6.82 6.78 6.89 6.89 
 Uridine 5.94 5.84 5.85 5.84 5.95 5.95 5.94 5.86 5.82 5.96 5.98 6.11 5.89 5.94 5.96 

a Metabolite contents are expressed as log10 [sum of signal intensity of respective metabolite in arbitrary unit]. Values at 4 hours are the average from two independent replicates. Values at 14 days 
and 28 days are represented from one replicate. 
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Abstract	

The	 objectives	 of	 this	 study	 were	 to	 evaluate	 the	 growth	 of	 Lactobacillus	

plantarum	WCFS1	 (LP‐WCFS1)	 in	 co‐culture	with	yoghurt	 starters	 and	 investigate	 the	

impact	of	preculturing	on	its	survival	and	metabolite	formation	in	set‐yoghurt.	The	LP‐

WCFS1	 was	 precultured	 under	 sublethal	 stress	 conditions	 (combinations	 of	 elevated	

NaCl	 and	 low	 pH)	 before	 inoculation	 in	 milk.	 Adaptive	 responses	 of	 LP‐WCFS1	 were	

evaluated	by	monitoring	changes	in	bacterial	populations,	acidification,	volatile	and	non‐

volatile	 metabolite	 profiles	 of	 set‐yoghurts.	 The	 results	 demonstrated	 that	 sublethal	

preculturing	 did	 not	 significantly	 affect	 the	 growth	 and	 survival	 of	 LP‐WCFS1.	

Alternatively,	incorporation	of	sublethally	precultured	LP‐WCFS1	significantly	impaired	

the	 survival	of	Lactobacillus	delbrueckii	subsp.	bulgaricus	which	 consequently	 reduced	

the	 post	 acidification	 of	 yoghurt	 during	 refrigerated.	 A	 complementary	metabolomics	

approach	using	SPME‐GC/MS	and	1H‐NMR	combined	with	multivariate	analysis	revealed	

substantial	 impact	 of	 LP‐WCFS1	 on	 metabolite	 profiles	 of	 set‐yoghurts.	 This	 study	

provides	insight	in	the	technological	implications	of	potential	probiotic	LP‐WCFS1,	such	

as	 its	 good	 stability	 in	 fermented	 milk	 together	 with	 the	 inhibitory	 effect	 on	 post‐

acidification.	
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5.1	 Introduction	

Functional	 yoghurt	 variants	 have	 been	made	 by	 incorporating	 bacterial	 strains	

called	“probiotics”	which	are	defined	as	live	microorganisms	which	when	administered	

in	adequate	amounts	confer	a	health	benefit	on	the	host	[8].	Probiotics	have	been	widely	

employed	as	adjunct	cultures	in	the	production	of	fermented	dairy	products	[42].	Most	

commercial	 probiotics	 incorporated	 in	 yoghurt	 are	 strains	 belonging	 to	 the	 genera	

Lactobacillus	and	Bifidobacterium	 [19]	of	which	functional	and	technological	attributes	

have	been	extensively	documented	[42].		

It	 is	recommended	that	a	probiotic	product	should	contain	at	 least	106	cfu/g	of	

viable	probiotic	cells	throughout	the	entire	shelf‐life	for	ensuring	their	health‐promoting	

effects	 [42].	However,	many	of	probiotic	strains	do	not	survive	well	 in	 fermented	milk	

[10,	34].	One	of	the	strategies	to	improve	the	viability	of	probiotics	is	stress	adaptation	

which	 can	 be	 performed	 by	 pretreating	 (preculturing)	 probiotic	 cells	 sublethal	 stress	

conditions	prior	to	exposure	to	a	more	harsh	environment	[41].	The	study	described	in	

Chapter	4	 focusing	on	two	dairy	probiotic	strains,	 i.e.	L.	rhamnosus	GG	and	B.	animalis	

subsp.	 lactis	 BB12,	 demonstrated	 that	 this	 approach	 allows	 probiotic	 cells	 to	 develop	

adaptive	 stress	 responses	 leading	 to	 an	 increase	 in	 their	 survival	 in	 set‐yoghurt.	

Furthermore,	a	complementary	metabolomics	approach	using	headspace	SPME‐GC/MS	

and	 1H‐NMR	 successfully	 revealed	 substantial	 impacts	 from	 the	 metabolic	 activity	 of	

yoghurt	starters	and	probiotics	corresponding	with	distinctive	volatile	and	non‐volatile	

polar	metabolite	profile	of	 the	 fermented	product	 (Chapter	2	–	4).	This	 information	 is	

technologically	 relevant	 since	 metabolic	 responses	 of	 stress‐adapted	 probiotics	 may	

substantially	affect	the	biochemical	and	organoleptic	characteristics	of	product	[32].		

L.	 plantarum	 is	 a	 versatile	 facultative	 heterofermentative	 lactic	 acid	 bacterium	

(LAB)	present	in	plant‐based	fermented	foods	as	well	as	meat,	 fish	and	dairy	products	

[7,	 37].	 L.	 plantarum	 is	 also	 encountered	 as	 a	 natural	 inhabitant	 of	 the	 human	

gastrointestinal	 tract	 with	 identified	 candidate	 probiotic	 genes	 and	 potential	 health‐

associating	properties	[7,	14,	39].	A	variety	of	L.	plantarum	strains,	e.g.	299v	and	Lp01,	

have	been	commercialized	 in	 the	probiotic	marketplace	 [7,	35].	Advances	 in	 “~omics”	



Chapter	5	

142	
 

technologies	 were	 instrumental	 in	 making	 L.	 plantarum	 one	 of	 the	 primary	 model	

organisms	in	LAB	research	[38].	The	complete	genome	sequence	of	L.	plantarum	WCFS1,	

a	 single	 colony	 isolate	 of	 L.	 plantarum	 NCIMB	 8826	 from	 human	 saliva,	 has	 been	

published	 [14,	39].	 In	addition,	 functional‐genomics	 studies	have	extensively	provided	

new	information	on	how	L.	plantarum	responds	to	various	environmental	stresses	from	

a	molecular	perspective	 [2,	 29].	Nevertheless,	 the	 information	 regarding	 technological	

aspects	of	applying	L.	plantarum	strains	in	fermented	milk	is	rather	limited	[6,	9,	22,	26].			

The	 objectives	 of	 this	 study	were	 (i)	 to	 evaluate	 the	 growth	 and	 survival	 of	L.	

plantarum	 WCFS1	 in	 co‐fermentation	 with	 traditional	 yoghurt	 starters	 and	 (ii)	 to	

investigate	the	 impact	of	preculturing	under	sublethal	stress	conditions	(combinations	

of	 elevated	NaCl	 and	 low	pH)	on	 its	 survival	 and	metabolite	 formation	 in	 set‐yoghurt.	

Changes	 in	 bacterial	 population	 dynamics	 and	 extent	 of	 milk	 acidification	 were	

monitored	 during	 fermentation	 and	 refrigerated	 storage.	 Biochemical	 changes	

associated	with	bacterial	activity	were	characterized	using	headspace	SPME‐GC/MS	and	

1H‐NMR	technique.	Finally,	volatile	and	non‐volatile	polar	metabolite	profiles	of	yoghurt	

samples	were	statistically	compared	using	multivariate	analysis.	

	

5.2	 Materials	and	methods	

5.2.1	 Yoghurt	Starters	and	probiotic	strains	

Frozen	 direct‐vat‐inoculation	 pellets	 of	 Streptococcus	 thermophilus	 C44,	

Lactobacillus	 delbrueckii	 subsp.	 bulgaricus	 C49	 (CSK	 Food	 Enrichment,	 Ede,	 the	

Netherlands)	were	placed	at	ambient	temperature	(20	±	3	°C)	for	15	min	before	use.	A	

culture	of	L.	plantarum	WCFS1	(LP‐WCFS1)	obtained	from	NIZO	Food	Research	(Ede,	the	

Netherlands)	 was	 propagated	 in	 our	 laboratory	 and	 stored	 as	 a	 20%	 (v/v)	 glycerol	

stock‐culture	 at	 ‐80	 °C.	 Frozen	 LP‐WCFS1	 culture	 was	 re‐propagated	 in	 MRS	 broth	

(Merck,	 Darmstadt,	 Germany)	 at	 37	 °C	 for	 24	 h	 under	 anaerobic	 incubation	

(Anoxomat™‐Mart®,	 Drachten,	 the	 Netherlands).	 Then,	 the	 cells	 were	 collected	 by	

centrifugation	at	4,000g	 for	15	min	at	4	°C,	washed	twice	using	peptone‐physiological‐



Incorporation	of	L.	plantarum	WCFS1	in	yoghurt	

143	
 

5

salt	 solution	 (Tritium	microbiology,	 Eindhoven,	 the	 Netherlands)	 and	 resuspended	 in	

milk	before	use.	This	culture	was	defined	as	control	group,	i.e.	standard	precultured	LP‐

WCFS1.						

5.2.2		 Preculturing	of	L.	plantarum	WCFS1	under	sublethal	stress	conditions	

a)	Screening	for	sublethal	stress	conditions		

Suitable	 sublethal	 stress	 conditions,	 combinations	 of	 elevated	 NaCl	

concentrations	 and	 low	 pH	 values,	 for	 LP‐WCFS1	 were	 preliminary	 determined	

according	 to	 the	method	described	 in	Chapter	4.	The	concentrations	which	caused	0.5	

and	 1.0	 log	 reduction	 of	 viable	 cells	 compared	 to	 those	 enumerated	 in	 unsalted	MRS	

broth	after	anaerobic	incubation	at	37	°C	for	24	h	(data	not	shown)	were	determined	as	

low	and	high	sublethal	NaCl	levels,	i.e.	1.5%	and	4.5%	(w/v),	respectively.	On	the	other	

hand,	sublethal	pH	levels	were	assigned	at	1.0	pH	unit	above	and	below	the	optimum	pH	

for	the	growth	of	LP‐WCFS1,	i.e.	pH	4.5	and	6.5.	The	combinations	of	sublethal	NaCl‐pH	

treatments	were	 finally	 organized	 as	 a	 2	X	 2	 between	 subjects	 factorial	 design	 (Table	

5.1).	

Table	5.1.	Sublethal	stress	conditions	(combinations	of	elevated	salt	and	low	pH)	in	modified	MRS	broth	
for	preculturing	of	L.	plantarum	WCFS1	in	a	batch	fermentor			

 

b) Preculturing of L. plantarum WCFS1 probiotics in a batch fermentor 

Preculturing	 of	 LP‐WCFS1	 was	 conducted	 in	 a	 750	 mL	 Multifors‐2	 Bacterial	

System	Bioreactor	fully	operated	by	IRIS‐V.5.3	control	software	(Infors	HT,	Bottmingen,	

Switzerland)	 as	 previously	 described	 in	 Chapter	 4.	 The	 preculturing	 medium	 (MRS	

broth)	 was	 adjusted	 and	 automatically	 maintained	 at	 a	 desired	 pre‐set	 value	

Salt	stress	 Acid	stress	 	

	 Low	pH	 High	pH	

Low			%NaCl	 1.5%	NaCl	–	pH	4.5	 1.5%	NaCl	–	pH	6.5	

High		%NaCl	 4.5%	NaCl	–	pH	4.5	 4.5%	NaCl	–	pH	6.5	
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(combination	 of	 elevated	 NaCl	 and	 low	 pH).	 After	 24	 h	 (cells	 in	 stationary	 phase	

monitored	by	optical	density;	data	not	shown),	sublethally	precultured	LP‐WCFS1	cells	

were	 collected	 by	 centrifugation	 at	 4,000g	 for	 15	 min	 at	 4	 °C,	 washed	 twice	 using	

peptone‐physiological‐salt	solution	and	the	cell	pellets	were	finally	resuspended	in	milk	

before	 use.	 These	 steps	 were	 performed	 to	 avoid	 carryover	 effect	 of	 chemicals	 and	

nutrients	from	preculturing	medium	(MRS	broth)	which	is	considered	as	nonfood‐grade	

[31]	 and	 may	 significantly	 influence	 the	 metabolomics	 data	 derived	 from	 1H‐NMR	

analysis.	The	preculturing	was	performed	in	three	batches	for	each	stress	combination.		

5.2.3	 Set‐yoghurt	fermentation	

Pasteurized	 Nilac	 milk	 was	 prepared	 according	 to	 the	 method	 described	 in	

Chapter	 2.	 The	milk	was	 inoculated	with	 co‐cultures	 of	 yoghurt	 starters	 and	different	

types	 of	 LP‐WCFS1,	 i.e.	 standard	 precultured	 (control)	 and	 four	 types	 of	 sublethally	

precultured	cells.	The	initial	inoculum	of	the	two	yoghurt	starter	bacteria	and	LP‐WCFS1	

were	adjusted	at	106	cfu/g	(ratio	1:1:1).	After	inoculation,	set‐yoghurt	fermentation	was	

carried	out	in	a	water	bath	at	42	°C	for	4	h;	then	yoghurts	were	placed	in	a	cold	chamber	

(4	±	2	°C)	 for	28	days	of	storage.	Samples	were	taken	hourly	during	 fermentation	and	

weekly	during	storage.	The	enumeration	of	viable	bacteria	and	determination	of	acidity	

were	carried	out	immediately	after	sampling.	For	1H‐NMR,	the	samples	were	stored	at	‐

20	 °C	 until	 the	 analysis.	 The	 fermentation	was	 performed	 in	 three	 replicates	 for	 each	

type	of	starter	combination.			

5.2.4	 Enumeration	of	viable	bacteria	

Viable	 counts	 of	 S.	 thermophilus	 were	 determined	 according	 to	 the	 methods	

described	 in	 Chapter	 2.	 Viable	 counts	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	 were	

determined	 on	 MRS	 agar	 pH	 5.7	 (Merck,	 Darmstadt,	 Germany)	 after	 anaerobic	

incubation	(Anoxomat™‐Mart®,	Drachten,	the	Netherlands)	at	45	°C	for	72	h	(selectivity	

tested	in	this	study).	Viable	counts	of	LP‐WCFS1	were	determined	on	MRS	agar	pH	5.7	

supplemented	with	50	mg/L	vancomycin	(Merck,	Darmstadt,	Germany)	after	anaerobic	

incubation	at	37	°C	for	24	h.	
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5.2.5	 Determination	of	acidification	profile	

Production	of	acid	during	set‐yoghurt	fermentation	and	refrigerated	storage	was	

expressed	by	changes	in	pH	and	increases	in	titratable	acidity.	The	pH	measurement	and	

determination	of	titratable	acidity	were	performed	according	to	the	methods	described	

in	Chapter	2.			

5.2.6	 Analysis	of	volatile	metabolites	by	headspace	SPME‐GC/MS	

For	headspace	SPME‐GC/MS	analysis,	set‐yoghurt	fermentation	was	also	carried	

out	directly	in	glass	GC	vials	as	described	in	Chapter	2.	The	fermentation	was	performed	

in	three	replicates	for	each	type	of	starter	combination.	Extraction	and	determination	of	

volatile	 compounds	 by	 headspace	 SPME‐GC/MS	 were	 performed	 according	 to	 the	

method	described	 in	 Chapter	 2.	 This	method	was	 based	 on	 the	method	developed	 by	

Hettinga	et	al.	[8].	

Volatile	metabolites	were	 identified	using	AMDIS	 software	 (NIST,	Gaithersburg,	

MD,	USA)	 referred	 to	NIST/EPA/NIH	database	 and	 library	provided	by	Hettinga	 et	 al.	

[9].	Specific	retention	time	and	m/z	model	were	used	for	automated	peak	integration	in	

the	XCalibur	software	package	(Thermo	Scientific,	Austin,	TX,	USA)	[29].	

5.2.7	 Analysis	of	non‐volatile	polar	metabolites	by	1H‐NMR	spectroscopy	

For	1H‐NMR	analysis,	 the	samples	 from	two	replicates	were	analyzed	according	

to	 the	method	 described	 in	 Chapter	 2.	 Frozen	 yoghurt	 samples	were	 thawed	 at	 room	

temperature	and	pH	was	adjusted	to	6.0	using	1.0	N	NaOH	to	achieve	low	variation,	i.e.	

location	 and	 shape	 of	 peaks,	 in	 the	 spectra	 obtained	 [15].	 NOESY	 1D‐1H‐NMR	

measurements	 were	 performed	 at	 300	 K	 in	 a	 600	 MHz	 NMR	 spectrometer	 (Bruker,	

Rheinstetten,	 Germany)	 operated	 under	 full	 automation,	 with	 similar	 parameters	 as	

described	by	Lu	et	al.	[13].	

The	 1H‐NMR	 spectra	 were	 baseline‐corrected,	 phase‐corrected,	 aligned	 and	

calibrated	based	on	the	internal	standard	(TSP)	peak.	For	each	spectrum,	chemical	shift	

(δ)	across	 the	 range	of	0.00	 ‐	10.00	ppm	was	segmented	 (binning)	with	an	 interval	of	

0.02	 ppm	 [29].	 The	 signal	 intensity	 in	 each	 bin	 was	 integrated	 and	 expressed	 in	
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arbitrary	units	using	AMIX	software	(Bruker,	Rheinstetten,	Germany).	Metabolite	labels	

were	assigned	 to	 the	bins	by	means	of	Chenomx	NMR	suite	7.5	 library	 (Chenomx	 Inc.,	

Alberta,	Canada)	and	from	the	list	of	metabolites	identified	in	Chapter	2	and	3	[29].	For	

unlabeled	 bins,	 significant	 variables	were	 selected	 based	 on	 one‐way	 ANOVA	 at	 95%	

confidence	level.		

5.2.8	 Statistical	analysis	

One‐way	 ANOVA	 with	 multiple	 comparisons	 by	 Tukey’s	 test	 were	 performed	

using	IBM	SPSS	statistics	package	version	19	(SPSS	Inc.,	Chicago,	IL,	USA).	A	probability	

at	p	<	0.05	was	considered	statistically	significant.	Metabolomics	data	from	GC/MS	and	

1H‐NMR	 were	 normalized	 by	 median‐centering	 and	 log2‐scaling	 before	 multivariate	

statistical	 analysis.	 Principal	 component	 analysis	 (PCA)	 was	 performed	 using	 Multi‐

Experiment	Viewer	(MeV)	version	4.8	as	previously	described	in	Chapter	2.	

	

5.3	 Results	

5.3.1	 Bacterial	growth	and	survival	profiles	

Viable	 counts	 of	 yoghurt	 starters	 and	 probiotics	 were	 enumerated	 during	 set‐

yoghurt	 fermentation	 and	 refrigerated	 storage	 (Fig.	 5.1).	 Bacterial	 populations	 in	 the	

samples	 co‐fermented	with	 L.	 plantarum	WCFS1	 (LP‐WCFS1),	 which	 was	 precultured	

under	sublethal	 stress	conditions,	were	compared	with	 those	observed	 in	 the	samples	

co‐fermented	 with	 the	 standard	 precultured	 LP‐WCFS1	 (control	 group).	 The	 main	

effects	of	 individual	 stress	 factors,	 i.e.	 elevated	NaCl	and	 low	pH,	and	 their	 interaction	

were	determined	using	 two‐way	ANOVA	with	2	X	 2	 between	 subjects	 factorial	 design	

(Table	5.2).		

	Growth	(increase	in	viable	count	during	fermentation)	and	survival	(retention	in	

viable	 count	 during	 refrigerated	 storage)	 of	 S.	 thermophilus	 were	 not	 significantly	

affected	by	the	incorporation	of	all	cultures	of	LP‐WCFS1	(Fig	5.1A).	Their	viable	counts	

increased	by	2.2	log	units	to	reach	and	average	value	of	8.5	±	0.1	log	cfu/g‐	at	the	end	of	

fermentation	and	remained	stable	(above	8.0	log	cfu/g)	towards	the	end	of	storage.		
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Fig.	5.1.	Changes	in	viable	counts	of	S.	thermophilus	(ST,	 ;	panel	A),	L.	delbrueckii	subsp.	bulgaricus	(LB,	
;	 panel	 B)	 and	L.	plantarum	WCFS1	 (LP,	 ;	 panel	 C)	 during	 set‐yoghurt	 fermentation	 (4	 hours)	 and	

refrigerated	storage	(28	days).	Data	are	labeled	according	to	the	preculturing	conditions	of	LP:	standard	
precultured	 (control)	 group	 ( ;	 black	 markers),	 LP	 precultured	 at	 1.5%	 NaCl‐pH	 4.5	 ( ;	 white	

markers),	 1.5%	NaCl‐pH	6.5	 ( ;	 black	markers),	 4.5%	NaCl‐pH	4.5	 ( ;	white	markers)	 and	4.5%	

NaCl‐pH	6.5	( ;	black	markers).	Error	bars	represent	standard	deviations	based	on	three	replicates.	
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Table	5.2.	ANOVA	of	the	main	effects	of	individual	stress	factors,	i.e.	NaCl	and	pH,	and	the	interaction	on	the	viability	of	L.	delbrueckii	subsp.	bulgaricus	
C49,	pH	and	titratable	acidity	in	set‐yoghurts	co‐fermented	with	L.	plantarum	WCFS1	

Significant parameter  Standard LPa Sublethally precultured LP Test of significant effects 

at the end of storage (28 days) (control) 1.5% NaCl  4.5% NaCl Main effect  Interaction 

  pH 4.5 pH 6.5 pH 4.5 pH 6.5 NaCl pH NaCl*pH 

 
Viable counts of L. delbrueckii subsp. 
bulgaricus (log cfu/g) 

 8.1 ± 0.1bb 7.3 ± 0.2a 8.1 ± 0.1b 7.2 ± 0.2a 7.4 ± 0.2a p < 0.01 p < 0.01 p = 0.01 

pH value  4.1 ± 0.1a 4.3 ± 0.1ab 4.1 ± 0.1a 4.3 ± 0.0b 4.3 ± 0.0b p < 0.05 p < 0.05 p > 0.05 

Titratable acidity (% lactic acid)  0.98 ± 0.02b 0.83 ± 0.03a 0.94 ± 0.01b 0.77 ± 0.02a 0.84 ± 0.04a p < 0.05 p < 0.05 p > 0.05 

a Lactobacillus plantarum WCFS1 
b Letters indicate significant difference (p < 0.05) among mean values within the same row. 
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The	 growth	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	 during	 fermentation	 was	 not	

affected	 by	 co‐cultivation	 with	 sublethally	 precultured	 LP‐WCFS1	 resulting	 in	 an	

average	 value	 of	 8.1	 ±	 0.1	 log	 cfu/g	 at	 the	 end	 of	 fermentation.	 On	 the	 other	 hand,	

deviations	in	the	survival	of	L.	delbrueckii	subsp.	bulgaricus	during	refrigerated	storage	

were	 clearly	 observed	 (Fig.	 5.1B).	 The	 survival	 of	L.	delbrueckii	 subsp.	bulgaricus	was	

significantly	 impaired	(p	<	0.01)	by	co‐cultivation	with	LP‐WCFS1	precultured	at	1.5%	

NaCl‐pH	4.5	and	4.5%	NaCl	(with	either	pH	4.5	or	6.5)	resulting	in	a	significantly	lower	

average	viable	counts	(7.2	±	0.2	log	cfu/g)	compared	to	the	non‐precultured	group	(8.1	±	

0.1	 log	 cfu/g)	 at	 the	 end	 of	 storage.	 The	main	 effects	 of	NaCl	 and	 pH	 as	well	 as	 their	

interaction	accounted	on	stress‐adapted	LP‐WCFS1	cells	provided	an	indirectly	adverse	

effect	 on	 the	 stability	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	 during	 storage	 (Table	 5.2).	

Although	 all	 cultures	 of	 LP‐WCFS1	 used	 in	 this	 study	 could	 not	 grow	 in	 milk	 during	

fermentation,	 these	 bacteria	 demonstrated	 very	 good	 stability	 in	 set‐yoghurt	 during	

refrigerated	 storage	 (Fig.	 5.1C).	 The	 viable	 counts	 of	 standard	 precultured	 LP‐WCFS1	

and	 all	 sublethally	 precultured	 cells	 remained	 virtually	 stable	 from	 the	 beginning	 of	

fermentation	throughout	the	entire	duration	of	storage	(ca.	6.2	±	0.1	log	cfu/g).				

5.3.2	 Acidification	profiles	

Changes	in	pH	were	monitored	during	set‐yoghurt	fermentation	and	refrigerated	

storage	(Fig.	5.2A).	Similar	pH	decrease	patterns	were	observed	during	fermentation	in	

all	 yoghurt	 samples	 regardless	 of	 the	 types	 of	 preculturing	 of	 the	 LP‐WCFS1	 culture,	

resulting	 in	 an	 average	 pH	 value	 of	 4.5	 ±	 0.1	 at	 the	 end	 of	 fermentation.	 During	

refrigerated	 storage,	 co‐fermentation	 with	 standard	 precultured	 LP‐WCFS1	 and	 LP‐

WCFS1	 precultured	 at	 1.5%	 NaCl‐pH	 6.5	 demonstrated	 similar	 pH	 decrease	 pattern	

resulting	in	a	final	pH	value	of	4.1	±	0.0.	On	the	other	hand,	deviations	in	the	reduction	of	

pH	 were	 observed	 in	 the	 samples	 co‐fermented	 with	 LP‐WCFS1	 precultured	 at	 1.5%	

NaCl‐pH	4.5	and	4.5%	NaCl	(with	either	pH	4.5	or	6.5)	resulting	in	an	average	pH	value	

of	 4.3	 ±	 0.1	 at	 the	 end	 of	 storage.	 Although	 this	 variation	 appeared	 to	 be	 negligible,	

statistical	tests	demonstrated	a	significant	difference	(p	=	0.02)	compared	to	the	control	

group.	The	main	effects	of	NaCl	and	pH	(without	interaction)	contributed	significantly	(p	

<	0.05)	on	the	final	pH	of	yoghurt	samples	(Table	5.2).			
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Fig.5.2.	 Changes	 in	 pH	 (panel	 A)	 and	 titratable	 acidity	 (panel	 B)	 during	 fermentation	 (4	 hours)	 and	
refrigerated	 storage	 (28	 days)	 in	 set‐yoghurts	 co‐fermented	 with	 L.	 plantarum	WCFS1	 (LP)	 and	 their	
stress‐adapted	 cells.	 Data	 are	 labeled	 according	 to	 the	 preculturing	 conditions	 of	 LP;	 i.e.	 standard	

precultured	(control)	group	( ,	 ),	LP	precultured	at	1.5%	NaCl‐pH	4.5	( ,	 ),	1.5%	NaCl‐

pH	 6.5	 ( ,	 ),	 4.5%	NaCl‐pH	4.5	 ( ,	 )	 and	 4.5%	NaCl‐pH	6.5	 ( ,	 ).	 Error	 bars	
represent	standard	deviations	based	on	three	replicates.	

	

Titratable	 acidity	 measured	 during	 set‐yoghurt	 fermentation	 and	 refrigerated	

storage	was	expressed	as	%	acid	(w/w)	equivalent	to	lactic	acid	(%	LA)	(Fig.	5.2B).	The	

titratable	acidity	was	subtracted	by	 its	 initial	value	 in	 the	sample	at	0	h	(unfermented	

milk)	 and	discussed	 as	 titratable	 acidity	produced	by	bacterial	 activity.	The	 result	 did	

not	show	significant	difference	in	titratable	acidity	among	yoghurt	samples	at	the	end	of	

fermentation	 (0.64	 ±	 0.04%).	 However,	 a	 lower	 acid	 production	 during	 storage	 was	

observed	in	the	samples	co‐fermented	with	LP‐WCFS1	precultured	at	1.5%	NaCl‐pH	4.5	

and	4.5%	NaCl	(with	either	pH	4.5	or	6.5).	These	stress‐adapted	cultures	resulted	 in	a	
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significant	 lower	 titratable	 acidity	 (0.81	 ±	 0.04%)	 (p	 =	 0.01)	 compared	 to	 the	 control	

group	 (0.96	 ±	 0.03%).	 The	 two	 main	 effects	 of	 NaCl	 and	 pH	 (without	 interaction)	

accounted	on	stress‐adapted	LP‐WCFS1	cells	contributed	significantly	(p	<	0.05)	on	the	

difference	in	titratable	acidity	among	yoghurt	samples	at	the	end	of	storage	(Table	5.2).	

This	result	is	in	agreement	with	the	reduction	of	pH	previously	observed.	

5.3.3	 Volatile	metabolite	profiles	determined	by	headspace	SPME‐GC/MS		

Volatile	metabolite	profiles	of	set‐yoghurts	co‐fermented	with	different	 types	of	

LP‐WCFS1	 were	 evaluated	 at	 the	 end	 of	 fermentation	 and	 every	 two	 weeks	 during	

storage.	A	 total	 of	 35	volatile	metabolites	 consisting	of	 alcohols,	 carbonyl	 compounds,	

organic	 acids,	 sulfur	 compounds	 and	 heterocyclic	 compound	 were	 identified	 (Table	

S5.2).	 These	 compounds	 were	 introduced	 as	 variables	 for	 multivariate	 analysis.	

Principal	 component	 analysis	 (PCA)	 was	 performed	 to	 distinguish	 the	 volatile	

metabolite	profiles	among	set‐yoghurts	co‐fermented	with	different	types	of	LP‐WCFS1.	

Samples	from	three	replicates	were	statistically	treated	as	individual	objects.		

An	overall	PCA	score	plot	was	constructed	with	a	total	variance	of	60.8%	(n	=	45)	

(Fig.	 5.3).	 The	 result	 demonstrated	 that	 volatile	 profiles	 of	 the	 samples	 co‐fermented	

with	 non‐precultured	 LP‐WCFS1	 were	 completely	 distinguished	 from	 those	 co‐

fermented	with	(i)	LP‐WCFS1	precultured	at	1.5%	NaCl	(with	either	pH	4.5	or	6.5)	along	

PC1	(33.1%	variance)	and	(ii)	LP‐WCFS1	precultured	at	4.5%	NaCl	(with	either	pH	4.5	

or	 6.5)	 along	 PC2	 (27.7%	 variance).	 Loading	 plots	 indicated	 which	 metabolites	 were	

accountable	 for	 discrimination.	 The	 PC1‐loading	 indicated	 that	 dimethyl	 sulfide,	 3‐

methyl‐2‐butenal,	 acetic	 acid	and	2‐ethylhexanol	were	 the	key	determinant	 for	 stress‐

adapted	 LP‐WCFS1	 at	 1.5%	NaCl	while	 the	 PC2‐loading	 indicated	 that	 2‐butanone,	 1‐

butanol,	3‐methyl‐3‐butanol,	3‐pentanol,	 acetic	acid,	2‐ethylhexanol	and	nonanoic	acid	

were	the	key	determinant	for	LP‐WCFS1	precultured	at	4.5%	NaCl.	Among	the	indicative	

metabolites	 mentioned,	 acetic	 acid	 (vinegar,	 pungent)	 and	 2‐butanone	 (sweet,	 fruity)	

are	 two	 of	 the	major	 volatile	 compounds	 responsible	 for	 distinctive	 aroma	 profile	 of	

yoghurt	 [3].	These	two	compounds	were	detected	 in	significantly	higher	abundance	 in	
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the	 samples	 co‐fermented	with	 sublethally	 precultured	 LP‐WCFS1,	 especially	 at	 4.5%	

NaCl	level	(Fig.	5.4).		

	

Fig.	5.3.	Overall	PCA	score	plot	and	PC	loadings	derived	from	volatile	metabolite	profiles	of	set‐yoghurts	
co‐fermented	with	standard	precultured	L.	plantarum	WCFS1	(LP)	( ),	LP	precultured	at	1.5%	NaCl‐pH	
4.5	( ),	1.5%	NaCl‐pH	6.5	( ),	4.5%	NaCl‐pH	4.5	( )	and	4.5%	NaCl‐pH	6.5	( ).	
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Fig.	 5.4.	 Quantity	 of	 acetic	 acid	 and	 2‐butanone	 present	 in	 set‐yoghurts	 co‐fermented	 with	 standard	
precultured	L.	plantarum	WCFS1	(LP)	( ),	LP	precultured	at	1.5%	NaCl‐pH	4.5	( ),	1.5%	NaCl‐pH	6.5	(
),	4.5%	NaCl‐pH	4.5	( )	and	4.5%	NaCl‐pH	6.5	( )	at	the	end	of	fermentation	(4	hours)	and	the	end	of	
storage	(28	days).	Error	bars	represent	standard	deviations	based	on	three	independent	replicates.	

		

5.3.4	 Non‐volatile	polar	metabolite	profiles	determined	by	1H‐NMR	

For	 non‐volatile	 polar	 metabolite	 profiling,	 NOESY‐1D‐1H‐NMR	 spectra	 of	 set‐

yoghurts	were	processed	according	to	the	method	described	in	Chapter	2.	A	total	of	43	

metabolites	 including	 amino	 acids,	 carbohydrates,	 organic	 acids,	 lipid	 derivatives,	

carbonyl	 compounds,	 a	 sulfur	 compound	 and	 a	 nucleoside	 were	 identified.	 The	

quantification	was	achieved	by	summation	of	signal	intensities	in	all	bins	corresponding	

to	 the	 respective	metabolite	 [27]	 and	 expressed	 in	 log10	 transformed	 (arbitrary	 unit)	

(Table	 S5.3).	 For	 multivariate	 analysis,	 it	 should	 be	 noted	 that	 the	 43	 identified	

metabolites	 accounted	 for	 labeling	 of	 149	 bins.	 A	 complementary	 data	 filtering	 by	

ANOVA	was	performed	for	selection	of	the	remaining	unknowns	[16].	Finally,	a	total	of	

266	bins	were	introduced	as	variables	in	the	analysis.		

An	overall	PCA	score	plot	was	constructed	with	a	total	variance	of	43.0%	(n	=	20)	

(Fig.	 5.5A).	 The	 result	 demonstrated	 that	 non‐volatile	 polar	metabolite	 profiles	 of	 the	

samples	co‐fermented	with	LP‐WCFS1	precultured	at	1.5%	NaCl	(with	either	pH	4.5	or	

6.5)	 could	 be	 well	 distinguished	 from	 those	 of	 non‐precultured	 LP‐WCFS1	 and	 LP‐
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WCFS1	precultured	at	4.5%	NaCl	(with	either	pH	4.5	or	6.5)	along	PC1	(30.3%	variance).	

The	PC1‐loading	indicated	that	the	majority	of	metabolites	contributed	to	the	separation	

of	the	two	latter	groups.	However,	a	good	distinction	between	the	standard	precultured	

LP‐WCFS1	 and	 LP‐WCFS1	 precultured	 at	 4.5%	 NaCl	 was	 not	 observed.	 Thus,	 an	

additional	PCA	score	plot	was	constructed	with	a	total	variance	of	36.2%	(n	=	12)	(Fig.	

5.5B).	The	result	revealed	that	the	samples	co‐fermented	with	standard	precultured	LP‐

WCFS1	could	be	distinguished	from	those	of	LP‐WCFS1	precultured	at	4.5%	NaCl	(with	

either	pH	4.5	or	6.5)	along	PC3	(9.5%	variance).		

	

Fig.	5.5.	Overall	PCA	score	plot	and	PC	loading	derived	from	non‐volatile	polar	metabolite	profiles	of	set‐
yoghurts	co‐fermented	with	standard	precultured	(control)	L.	plantarum	WCFS1	(LP)	( ),	LP	precultured	
at	 1.5%	 NaCl‐pH	 4.5	 ( ),	 1.5%	 NaCl‐pH	 6.5	 ( ),	 4.5%	 NaCl‐pH	 4.5	 ( )	 and	 4.5%	 NaCl‐pH	 6.5	 ( ).	
Overall	comparison	among	the	groups	of	LP	(panel	A)	and	comparison	between	standard	precultured	LP	
and	LP	precultured	at	4.5%	NaCl	(panel	B)	are	respectively	presented.	

	

Determinant for standard LP / LP precultured at 4.5% NaCl

Determinant for LP precultured at 1.5% NaClPC1  Loading

Amino acids
region

Sugar: Lactose, Glucose, Galactose

Amino acids
region

Sugar: Lactose, Glucose, Galactose

Determinant for standard LP 

Determinant for LP precultured at 4.5% NaCl
PC3  Loading

Amino acids
region

Amino acids
region

Sugar: Lactose, Glucose, Galactose

Amino acids region

Standard LP and  

Standard LP 

LP 1.5% NaCl (pH 4.5 & 6.5) 

LP 4.5% NaCl (pH 4.5 & 6.5) 

LP 4.5% NaCl         
(pH 4.5 & 6.5) 

A 

 

B 



Incorporation	of	L.	plantarum	WCFS1	in	yoghurt	

155	
 

5

5.4	 Discussion	

The	 present	 study	 was	 aimed	 to	 (i)	 evaluate	 the	 growth	 and	 survival	 of	 L.	

plantarum	 WCFS1	 in	 co‐fermentation	 with	 traditional	 yoghurt	 starters	 and	 (ii)	

investigate	the	 impact	of	preculturing	under	sublethal	stress	conditions	(combinations	

of	 elevated	NaCl	 and	 low	pH)	on	 its	 survival	 and	metabolite	 formation	 in	 set‐yoghurt.	

Besides,	it	has	been	reported	that	stress	responses	vary	depending	on	the	growth	phase	

of	LAB,	i.e.	cells	in	stationary	phase	develop	more	general	resistance	to	various	types	of	

stresses	[31].	Therefore,	the	preculturing	in	this	study	was	prolonged	for	24	h	to	allow	

attaining	 stress‐adapted	 LP‐WCFS1	 cells	 from	 the	 stationary	 phase	 (monitored	 by	

optical	density;	data	not	shown).								

	The	population	dynamics	 and	 acidifying	 capacity	 of	S.	 thermophilus	 C44	 and	L.	

delbrueckii	subsp.	bulgaricus	C49	in	set‐yoghurt	fermented	without	probiotics	have	been	

discussed	 previously	 in	 Chapter	 2	 and	 3.	 In	 this	 study,	 incorporation	 of	 standard	

precultured	 LP‐WCFS1	 did	 not	 significantly	 affect	 the	 growth	 and	 survival	 of	 yoghurt	

starters	 as	 well	 as	 acidification	 profile	 of	 product	 (Table	 S5.1).	 In	 co‐cultures	 with	

sublethally	precultured	LP‐WCFS1,	 it	was	 interesting	 that	 the	survival	of	L.	delbrueckii	

subsp.	bulgaricus	during	refrigerated	storage	was	significantly	impaired	by	co‐culturing	

with	LP‐WCFS1	precultured	at	1.5%	NaCl‐pH	4.5	and	4.5%	NaCl	(with	either	pH	4.5	or	

6.5).	 On	 the	 other	 hand,	 there	 was	 no	 adverse	 effect	 observed	 on	 the	 survival	 of	 S.	

thermophilus.	A	proposed	explanation	for	this	could	be	that	sublethal	preculturing	may	

trigger	the	synthesis	of	certain	compounds	in	stress‐adapted	LP‐WCFS1	which	provide	

inhibitory	effect	on	L.	delbrueckii	subsp.	bulgaricus.	Many	members	of	LAB	are	known	to	

produce	peptides	or	proteins	with	antimicrobial	activity	(bacteriocins)	to	improve	their	

competitiveness	against	related	species	[13].	Bacteriocins	produced	by	different	strains	

of	L.	plantarum	 (plantaricins)	have	been	 identified	and	characterized	 [25].	 It	has	been	

documented	 that	 environmental	 factors,	 e.g.	 sugar,	NaCl,	 pH	and	 temperature,	play	 an	

important	 role	 in	 regulation	 of	 bacteriocin	 production	 in	 L.	 plantarum	 [17,	 25].	

Moreover,	induction	of	bacteriocin	production	by	co‐culturing	with	a	range	of	bacterial	

strains	appeared	to	be	a	common	feature	 in	L.	plantarum	 [21].	The	LP‐WCFS1	genome	

provided	 indications	 to	 a	 region,	 containing	pln	 genes,	 encoding	 plantaricin	 synthesis	
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[14,	38].	Although	the	native	state	of	LP‐WCFS1	was	bacteriocin	negative	strain,	Sturme	

et	 al.	 [40]	 reported	 that	 its	 bacteriocin	 production	 could	 be	 induced.	 Plantaricins	

produced	 by	 LP‐WCFS1	 showed	 activity	 against	 closely	 related	 species	 which	 can	 be	

found	in	the	same	ecological	niches	[40].	Therefore,	the	adverse	effect	of	stress‐adapted	

LP‐WCFS1	 on	 the	 survival	 of	L.	delbrueckii	 subsp.	bulgaricus	 found	 in	 this	 study	 is	 an	

interesting	issue	that	needs	to	be	further	investigated.	

Regarding	the	preculturing	effect	on	growth	and	survival	of	LP‐WCFS1,	there	was	

no	significant	difference	observed	among	 the	standard	precultured	LP‐WCFS1	and	 the	

sublethally	precultured	cells.	None	of	preculturing	conditions	applied	in	this	study	could	

enhance	 the	 growth	 of	 LP‐WCFS1	 during	 set‐yoghurt	 fermentation.	 This	 observation	

corresponds	with	 the	previous	 study	on	L.	rhamnosus	GG	and	B.	animalis	subsp.	 lactic	

BB12	 (Chapter	 4)	 in	 which	 we	 also	 did	 not	 manage	 to	 find	 a	 suitable	 preculturing	

condition	 for	 successful	 growth	 improvement	 of	 probiotics	 in	 milk.	 In	 this	 study,	

however,	 all	 cultures	 of	 LP‐WCFS1	 exhibited	 good	 survival	 in	 set‐yoghurt.	 Their	

populations	 remained	 virtually	 stable	 from	 the	 starting	 point	 of	 fermentation	

throughout	the	entire	duration	of	storage.	Indeed,	it	should	be	mentioned	that	the	final	

viable	counts	of	LP‐WCFS1	and	the	sublethally	precultured	cells	still	remain	above	the	

minimum	recommended	level	(6.0	log	cfu/g)	to	ensure	their	potential	health‐promoting	

effects	[36].	This	finding	makes	LP‐WCFS1	a	good	candidate	probiotic	strain	for	yoghurt	

production.	High	survival	of	various	strains	of	L.	plantarum	in	fermented	milk	has	been	

reported	 [9,	 22].	 Furthermore,	 the	genome	of	LP‐WCFS1	has	provided	 information	on	

how	this	LAB	strain	may	have	adapted	to	growth	in	diverse	environmental	niches	such	

as	fermented	foods,	plants,	and	the	human	gastrointestinal	tract	[18,	24].		

Acidification	profiles	 of	 set‐yoghurts	 co‐fermented	with	 sublethally	 precultured	

LP‐WCFS1	during	 fermentation	were	not	significantly	different	 from	the	control	group	

(Table	 S5.1).	On	 the	other	hand,	 a	 substantial	decline	 in	acid	production	 resulted	 in	 a	

significant	higher	pH	and	lower	titratable	acidity	at	the	end	of	storage	in	the	samples	co‐

fermented	 with	 LP‐WCFS1	 precultured	 at	 1.5%	 NaCl‐pH	 4.5	 and	 at	 4.5%	 NaCl	 (with	

either	 pH	 4.5	 or	 6.5).	 Although	 the	 variation	 in	 final	 pH	 appeared	 to	 be	 negligible,	

samples	could	be	categorized	into	different	product	segments:	(i)	mild	(pH28d	>	4.30)	for	



Incorporation	of	L.	plantarum	WCFS1	in	yoghurt	

157	
 

5

those	 co‐fermented	 with	 LP‐WCFS1	 precultured	 at	 1.5%	 NaCl‐pH	 4.5	 and	 4.5%	 NaCl	

(with	 either	 pH	 4.5	 or	 6.5)	 and	 (ii)	 semi‐mild	 (4.00	 <	 pH28d	 <	 4.25)	 for	 those	 co‐

fermented	 with	 standard	 precultured	 LP‐WCFS1	 and	 LP‐WCFS1	 precultured	 at	 1.5%	

NaCl‐pH	6.5	according	to	the	information	provided	by	yoghurt	starters	supplier	[5].	The	

reduction	 of	 pH	 and	 accumulation	 of	 organic	 acids	 during	 refrigerated	 storage	 of	

fermented	 milk	 are	 defined	 as	 “post‐acidification”	 which	 is	 mainly	 attributed	 to	 the	

ongoing	metabolic	activity	of	L.	delbrueckii	subsp.	bulgaricus	(Shah,	2000).	With	respect	

to	this,	the	significantly	lower	post‐acidification	observed	in	set‐yoghurts	co‐fermented	

with	 stress‐adapted	 LP‐WCFS1	 could	 be	 potentially	 associated	 with	 the	 decrease	 in	

viable	 counts	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	 affected	 by	 these	 stress‐adapted	 LP‐

WCFS1	cultures.	

The	primary	PCA	result	 showed	 that	 incorporation	of	 standard	precultured	LP‐

WCFS1	contributed	to	distinctive	volatile	metabolite	profiles	of	set‐yoghurts	compared	

to	 those	 fermented	without	 probiotics	 (Fig.	 S5.1A).	 In	 the	 samples	 co‐fermented	with	

various	types	of	LP‐WCFS1,	 the	distinction	among	volatile	profiles	of	set‐yoghurts	was	

clearly	 observed.	 Co‐cultivation	 with	 sublethally	 precultured	 LP‐WCFS1	 resulted	 in	

distinctive	 yoghurt	 volatile	 profiles	 compared	 to	 the	 control	 group	 (Fig.	 5.3).	

Particularly,	 the	 distinction	was	 recognized	 according	 to	 the	 concentration	 of	 NaCl	 at	

which	the	LP‐WCFS1	was	precultured.	Relating	to	the	adverse	effect	on	the	survival	of	L.	

delbrueckii	 subsp.	 bulgaricus	 and	 significant	 decrease	 in	 post‐acidification	 observed	

previously,	a	distinction	between	volatile	profiles	of	the	samples	co‐fermented	with	LP‐

WCFS1	precultured	 at	 1.5%	NaCl‐pH	4.5	 and	pH	6.5	was	 expected.	However,	 the	PCA	

result	 revealed	 that	 volatile	 profiles	 of	 the	 samples	 co‐fermented	 with	 these	 two	

cultures	 were	 relatively	 close	 to	 each	 other.	 This	 observation	 suggests	 that	 only	 the	

main	 effect	 of	 NaCl	 accounted	 on	 stress‐adapted	 LP‐WCFS1	 cells	 predominantly	

contributes	 to	 the	 distinctive	 volatile	 profiles	 of	 set‐yoghurts.	 In	 conjunction	with	 the	

study	 in	 Chapter	 4,	 it	 can	 be	 concluded	 that	 the	 volatile	 profiles	 of	 set‐yoghurts	 co‐

fermented	 with	 stress‐adapted	 lactobacilli,	 i.e.	 L.	 rhamnosus	 GG	 and	 L.	 plantarum	

WCFS1,	are	distinguished	according	to	sublethal	concentrations	of	NaCl	present	during	
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the	preculturing	while	those	co‐fermented	with	stress‐adapted	B.	animalis	subsp.	 lactis	

BB12	are	distinguished	according	to	levels	of	pH	adjusted	during	preculturing.		

From	 a	 technological	 standpoint,	 the	 key	 yoghurt	 aroma	 volatiles,	 i.e.	

acetaldehyde	(fresh,	green,	pungent),	diacetyl	(buttery,	creamy),	acetoin	(buttery),	2,3‐

pentanedione	(buttery,	vanilla‐like),	acetone	(sweet,	 fruity),	2‐butanone	(sweet,	 fruity)	

and	 acetic	 acid	 (vinegar,	 pungent)	 [3],	 were	 all	 detected	 at	 high	 relative	 abundances	

(Table	S5.2).	The	contribution	of	 traditional	yoghurt	starters	and	various	L.	plantarum	

strains	on	aroma	volatile	production	in	fermented	milk	has	been	documented	[3,	6,	28,	

30].	Loading	plots	derived	from	PCA	indicated	that	acetic	acid	and	2‐butanone	were	two	

of	the	major	aroma	volatiles	contributing	to	discriminate	volatile	profiles	of	the	samples	

co‐fermented	with	stress‐adapted	LP‐WCFS1.	Nevertheless,	it	should	be	mentioned	that	

a	number	of	 carbonyl	 compounds	and	alcohols	also	 contributed	 to	 the	discrimination.	

Indeed,	 it	would	be	possible	 that	 the	metabolic	 activity	of	LP‐WCFS1	may	 result	 in	an	

undesirable	aroma	profile	of	yoghurt,	since	this	potential	probiotic	strain	was	originally	

isolated	from	a	non‐dairy	environment	[14].	Taking	into	account	the	observed	beneficial	

effect	on	post‐acidification,	our	finding	suggests	that	incorporation	of	stress‐adapted	LP‐

WCFS1	 in	 set‐yoghurt	may	 considerably	 influence	 the	organoleptic	quality	 of	 product.	

Therefore,	a	research	focusing	on	sensory	evaluation	of	yoghurt	with	trained	panelists	is	

additionally	required.					

The	list	of	non‐volatile	polar	metabolites	identified	in	this	study	(43	compounds)	

was	derived	from	our	previous	study	[33]	and	1H‐NMR‐based	studies	in	liquid	milk	and	

cheese	 [1,	 4,	 15].	 The	 primary	 PCA	 result	 showed	 that	 incorporation	 of	 standard	

precultured	LP‐WCFS1	contributed	to	distinctive	non‐volatile	metabolite	profiles	of	set‐

yoghurts	compared	 to	 those	 fermented	without	probiotics	 (Fig.	S5.1B).	 In	 the	samples	

co‐fermented	with	 sublethally	 precultured	 LP‐WCFS1,	 non‐volatile	metabolite	 profiles	

of	set‐yoghurts	could	be	distinguished	according	to	the	concentration	of	NaCl	at	which	

the	 LP‐WCFS1	 was	 precultured	 (Fig.	 5.5).	 This	 result	 was	 in	 accordance	 with	 the	

distinction	pattern	previously	observed	in	their	volatile	profiles.	
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5.5	 Conclusions	

This	study	provides	relevant	information	on	technological	implication	of	the	use	

of	stress‐adapted	LP‐WCFS1.	Although	LP‐WCFS1	showed	poor	capacity	to	grow	in	milk,	

its	viable	counts	remained	virtually	stable	in	set‐yoghurt	throughout	the	entire	duration	

of	 refrigerated	 storage.	 The	 presence	 of	 LP‐WCFS1	 did	 not	 influence	 the	 growth	 and	

survival	of	yoghurt	starters	as	well	as	acidification	profile	of	product.	This	finding	makes	

LP‐WCFS1	 a	 good	 candidate	 probiotics	 for	 yoghurt	 manufacture.	 Interestingly,	

application	of	LP‐WCFS1	precultured	at	1.5%	NaCl‐pH	4.5	and	4.5%	NaCl	 (with	either	

pH	 4.5	 or	 6.5)	 significantly	 impaired	 the	 survival	 of	 L.	 delbrueckii	 subsp.	 bulgaricus	

during	refrigerated	storage.	This	consequently	provided	a	significant	reduction	of	post‐

acidification.	
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Supplementary	Data	

 

Fig.	 S5.1.	 PCA	 score	 plots	 and	 PC	 loadings	 derived	 from	 volatile	 (panel	 A)	 and	 non‐volatile	 polar	
metabolite	 profiles	 (panel	 B)	 of	 set‐yoghurts	 fermented	 with	 only	 yoghurt	 starters	 ( )	 and	 yoghurt	
starters	with	an	addition	of	standard	precultured	L.	plantarum	WCFS1	(LP)	( ).	
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Table	S5.1.	Fermentation	parameters	in	set‐yoghurts	(samples	at	4	hours	and	28	days)	fermented	by	
yoghurt	starters	and	co‐culture	of	yoghurt	starters	with	standard	L.	plantarum	WCFS1	

	

	

	

	 	

Time	 Fermentation	parameter	 Starter	cultures	

	 	 Ya	 Y‐LPb	

4	hours	 Viable	counts	of	S.	thermophilus	(log	cfu/g)	 8.7	±	0.3	 8.5	±	0.1	

	
Viable	counts	of	L.	delbrueckii	subsp.	bulgaricus (log	
cfu/g)	

8.3	±	0.3	 8.1	±	0.1	

	 pH	 4.5	±	0.1	 4.5	±	0.1	

	 Titratable	acidity	(%	equivalent	lactic	acid)	 0.64	±	0.02	 0.70	±	0.03	

	 	 	 	

28	days	 Viable	counts	of	S.	thermophilus	(log	cfu/g)	 8.5	±	0.1	 8.6	±	0.1	

	 Viable	counts	of	L.	delbrueckii	subsp.	bulgaricus (log	
cfu/g)	

8.2	±	0.3	 8.1	±	0.1	

	 pH	 4.1	±	0.0	 4.1	±	0.1	

	 Titratable	acidity	(%	equivalent	lactic	acid)	 0.94	±	0.03	 0.98	±	0.02	

a	Y			=	yoghurt	starters	consist	of	S.	thermophilus	C44	and	L.	delbrueckii	subsp.	bulgaricus	C49	
b	LP	=	Standard	(non‐sublethally	precultured)	L.	plantarum	WCFS1	
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Table	S5.2.	Volatile	metabolites	identified	in	set‐yoghurts	(samples	at	4	hours	and	28	days)	fermented	by	co‐cultures	of	yoghurt	starters	with	L.	
plantarum	WCFS1	(LP)	and	their	sublethally	precultured	cells	using	headspace	SPME‐GC/MS		

Chemical Compound Standard LP Sublethally precultured LP   
group (Control)  1.5% NaCl - pH 4.5 1.5% NaCl - pH 6.5 4.5% NaCl - pH 4.5 4.5% NaCl - pH 6.5 

  4 h 28 d 4 h 28 d 4 h 28 d 4 h 28 d 4 h 28 d 

Alcohol 1-Butanol 5.60a±0.34abb 5.56±0.18ab 5.25 ± 0.11a 5.41±0.31ab 5.50±0.30ab 5.35 ± 0.15a 5.54±0.23ab 5.96 ± 0.13b 5.76 ± 0.12b 5.86 ± 0.11b 

Ethanol 6.77 ± 0.06b 6.79 ± 0.02b 6.58 ± 0.02a 6.65 ± 0.02a 6.63 ± 0.06a 6.70±0.04ab 6.62 ± 0.06a 6.72±0.01ab 6.59 ± 0.09a 6.84 ± 0.07a 

 2-Ethyl-hexanol 5.30 ± 0.06a 5.30 ± 0.06a 5.67 ± 0.09b 5.61 ± 0.01b 5.68 ± 0.11b 5.66 ± 0.10b 5.61 ± 0.08b 5.63 ± 0.03b 5.62 ± 0.03b 5.59 ± 0.02b 

 1-Hexanol 5.69 ± 0.06a 5.84 ± 0.01b 5.72 ± 0.11ab 5.71 ± 0.02a 5.80 ± 0.05b 5.61 ± 0.13aa 5.71 ± 0.02ab 5.69 ± 0.02a 5.82 ± 0.03b 5.74 ± 0.02ab 

 1-Methoxy-2-propanol 5.51 ± 0.54b 4.91 ± 0.31ab 4.71 ± 0.31ab NDc 5.37 ± 0.32b 4.17 ± 0.08a 5.32 ± 0.21b 5.15 ± 0.19b 5.55 ± 0.16b ND 

 2-Methyl-1-butanol 5.75 ± 0.08c 5.66 ± 0.07c 4.86 ± 0.13a 4.94 ± 0.48ab 5.08 ± 0.19ab 5.04 ± 0.22ab 5.21 ± 0.08b 5.16 ± 0.11b 5.24 ± 0.07b 5.09 ± 0.15ab 

 3-Methyl-2-butanol 5.78 ± 0.10a 5.84 ± 0.03ab 5.76 ± 0.08a 5.94 ± 0.05b 5.85 ± 0.09ab 5.97 ± 0.08b 5.83 ± 0.03ab 6.10 ± 0.06b 5.81 ± 0.05ab 6.10 ± 0.03b 

 3-Methyl-3-butanol 5.78 ± 0.10a 5.84 ± 0.02a 5.88 ± 0.08ab 6.00 ± 0.02b 5.96 ± 0.15ab 6.01 ± 0.06b 6.00 ± 0.04b 6.14 ± 0.04b 5.96 ± 0.07ab 6.06 ± 0.01b 

 1-Octanol 5.05 ± 0.07b 5.09 ± 0.07b 5.01 ± 0.08b 5.01 ± 0.02b 5.00 ± 0.14b ND 4.71 ± 0.09a 4.68 ± 0.06a 4.78 ± 0.13ab 4.74 ± 0.08a 

 1-Pentanol 5.38 ± 0.05ab 5.51 ± 0.03b 5.29 ± 0.16ab 5.30 ± 0.01a 5.46 ± 0.13ab 5.30 ± 0.07ab 5.44 ± 0.01b 5.36 ± 0.03ab 5.48 ± 0.05b 5.41 ± 0.04b 

 3-Pentanol 6.61 ± 0.12a 6.77 ± 0.03a 6.85 ± 0.02b 7.02 ± 0.01c 6.91 ±0.10abc 7.03 ± 0.05c 6.86 ± 0.02b 7.11 ± 0.05c 6.84 ± 0.07ab 7.02 ± 0.02c 

       

Carbonyl  Acetaldehyde 7.32± 0.08a 7.43 ± 0.09ab 7.48 ± 0.04ab 7.50 ± 0.08ab 7.48 ± 0.05ab 7.58 ± 0.05b 7.47 ± 0.10ab 7.54 ± 0.05b 7.42 ± 0.06a 7.41 ± 0.05a 

compound Acetoin 8.54 ± 0.10ab 8.42 ± 0.03a 8.43 ± 0.07a 8.43 ± 0.03a 8.54 ± 0.16ab 8.51 ± 0.07ab 8.58 ± 0.01b 8.61 ± 0.02b 8.66 ± 0.05b 8.61 ± 0.03b 

 Acetone 7.47 ± 0.06a 7.58 ± 0.04a 7.49 ± 0.05a 7.53 ± 0.03a 7.53 ± 0.05a 7.60 ± 0.04a 7.51 ±0.07a 7.58 ± 0.05a 7.56 ± 0.08a 7.58 ± 0.01a 

 Benzaldehyde 6.15 ±0.14abc 6.36 ± 0.07c 6.11 ± 0.02a 6.18 ± 0.03b 6.29 ±0.14abc 6.23 ± 0.08b 6.10 ± 0.04a 6.19 ± 0.03ab 6.16 ± 0.04ab 6.21 ± 0.07bc 

 2-Butanone 7.31 ± 0.19a 7.32 ± 0.18a 7.50 ± 0.06ab 7.33 ± 0.10a 7.59 ± 0.11ab 7.56 ± 0.14ab 7.68 ± 0.05b 7.57 ± 0.09ab 7.77 ± 0.08b 7.67 ± 0.08b 

 Diacetyl 7.40 ± 0.07ab 7.57 ± 0.04b 7.33 ± 0.06a 7.39 ± 0.05a 7.43 ± 0.17ab 7.39 ± 0.11ab 7.47 ± 0.06ab 7.51 ± 0.01b 7.52 ± 0.03b 7.64 ± 0.06b 

 2-Heptanone 6.13 ± 0.07ab 6.45 ± 0.04bc 6.29 ± 0.05b 6.62 ± 0.05c 6.26 ± 0.03b 6.48 ± 0.12c 6.12 ± 0.06ab 6.45 ± 0.03c 6.03 ± 0.03a 6.34 ± 0.07c 

 2-Hydroxy-3-pentanone 6.44 ± 0.10a 6.51 ± 0.04a 6.65 ± 0.03b 6.78 ± 0.01c 6.69 ±0.13abc 6.83 ± 0.05c 6.66 ± 0.03b 6.87 ± 0.05c 6.61 ± 0.06ab 6.74 ± 0.02c 

 3-Methyl-2-butenal 5.42 ± 0.22a 5.58 ± 0.13a 5.68 ± 0.04ab 5.91 ± 0.13b 5.71 ± 0.08ab 5.87 ± 0.08b 5.53 ± 0.13a 5.88 ± 0.10b 5.39 ± 0.15a 5.61 ± 0.10ab 

 2-Nonanone 6.11 ± 0.05b 6.30 ± 0.03c 6.37 ± 0.04c 6.53 ± 0.06d 6.25 ±0.20abc 6.26 ±0.22abc 5.99 ± 0.03a 6.18 ± 0.04b 5.92 ± 0.05a 6.08 ± 0.05ab 

 3-Octanone 5.37 ± 0.08ab 5.27 ± 0.01a 5.33 ± 0.13ab 5.24 ± 0.05ab 5.41 ±0.19abc 5.27 ± 0.13ab 5.46 ± 0.05bc 5.39 ± 0.02b 5.61 ± 0.10c 5.44 ± 0.04bc 
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 2,3-Pentanedione 6.96 ± 0.12a 7.54 ± 0.09b 7.12 ± 0.04a 7.50 ± 0.03b 7.12 ± 0.05a 7.48 ± 0.08b 7.01 ± 0.05a 7.52 ± 0.04b 6.91 ± 0.07a 7.50 ± 0.03b 

 2-Undecanal 5.14 ± 0.09cd 5.26 ± 0.05d 5.00 ± 0.12c 5.14 ± 0.02cd 4.85 ± 0.29bc 4.80 ± 0.29bc 4.22 ± 0.34ab 4.35 ± 0.18ab 4.59 ± 0.06b 4.36 ± 0.08a 

 2-Undecanone 5.42 ± 0.04b 5.42 ± 0.03b 5.47 ± 0.07b 5.48 ± 0.04b 5.32 ± 0.30ab 5.13 ± 0.27ab 5.07 ± 0.09a 5.02 ± 0.03a 5.05 ± 0.04a 5.03 ± 0.06a 

            

Heterocyclic 3-Acetyl-2,5-dimethylfuran 6.37 ± 0.06e 6.27 ± 0.03e 4.57 ± 0.11b 4.42 ± 0.07b 4.40 ± 0.12b 3.98 ± 0.15a 5.84 ± 0.08d 5.80 ± 0.05d 5.31 ± 0.04c 5.17 ± 0.07c 

compound           

Sulfur  Dimethyl disulfide 5.13 ± 0.32a 6.40 ± 0.45b 5.38 ± 0.10a 5.90 ± 0.44ab 5.61 ± 0.20a 6.47 ± 0.19b 5.54 ± 0.26a 6.03 ± 0.14b 5.54 ± 0.06a 6.08 ± 0.11b 

compound Dimethyl sulfide 6.24 ± 0.14ab 6.08 ± 0.91ab 6.68 ± 0.17b 6.13 ± 0.73ab 6.61 ± 0.31ab 6.75 ± 0.12b 6.60 ± 0.32b 5.91 ± 0.25a 6.51 ± 0.09b 5.72 ± 0.64ab 

Dimethyl sulfone 6.27 ± 0.19a 6.61 ± 0.03b 6.35 ± 0.25ab 6.67 ± 0.09b 6.41 ± 0.19ab 6.82 ± 0.14b 6.54 ± 0.32ab 6.79 ± 0.03b 6.27 ± 0.18a 6.67 ± 0.22ab 

          

Volatile   Acetic acid 7.62 ± 0.09a 8.06 ± 0.09c 7.85 ± 0.25ab 8.18 ± 0.09c 7.85 ± 0.20ab 8.30 ± 0.11cd 8.01 ± 0.15bc 8.32 ± 0.03d 7.83 ± 0.04b 8.26 ± 0.05cd 

organic acid Butyric acid 7.65 ± 0.08a 7.75 ± 0.08ab 7.71 ± 0.17ab 7.78 ± 0.03b 7.73 ± 0.16ab 7.79 ±0.02b 7.80 ± 0.08b 7.84 ± 0.02b 7.69 ± 0.05a 7.87 ± 0.03b 

Hexanoic acid 7.62 ± 0.08a 7.64 ± 0.04a 7.62 ± 0.09a 7.69 ± 0.02a 7.63 ± 0.13a 7.58 ± 0.08a 7.63 ± 0.03a 7.66 ± 0.03a 7.55 ± 0.04a 7.68 ± 0.02a 

 3-Methyl-butanoic acid 5.59 ± 0.03ab 5.62 ± 0.05b 5.61 ±0.10abc 5.70 ± 0.03b 5.63 ±0.14abc 5.73 ± 0.02bc 5.63 ± 0.07ab 5.78 ± 0.03c 5.54 ± 0.04a 5.72 ± 0.02b 

 2-Methyl-propanoic acid 5.64 ± 0.04a 5.64 ± 0.06a 5.41 ± 0.13a 5.55 ± 0.02a 5.46 ± 0.20a 5.57 ± 0.06a 5.57 ± 0.17a 5.63 ± 0.10a 5.46 ± 0.21a 5.62 ± 0.07a 

 Nonanoic acid 5.04 ± 0.03b 4.79 ± 0.15a ND 4.44 ± 0.37a 4.97±0.99abc 5.59±0.88abc 5.69 ± 0.23c 5.65 ± 0.19c 5.40 ± 0.11c 5.36 ± 0.09c 

 Pentanoic acid 5.91 ± 0.07a 6.01 ± 0.02a 5.94 ± 0.11a 6.02 ± 0.02a 5.99 ± 0.14a 5.98 ± 0.04a 5.97 ± 0.04a 6.01 ± 0.01a 5.95 ± 0.05a 6.02 ± 0.01a 

 Propionic acid 5.82 ± 0.02a 5.92 ±0.06bc 5.91±0.18abc 6.01 ± 0.03b 5.93 ± 0.09ab 6.03 ± 0.06bc 5.96 ± 0.05b 6.09 ± 0.05c 5.87±0.03ab 6.02 ±0.04bc 

a Metabolite contents are expressed as log10 [peak area of respective compound in arbitrary unit]. Values are mean ± standard deviation from three independent replicates.  
b Letters (a-e) indicate significant difference (p  < 0.05) among sample means within the same row.  
c ND indicates compound not detected. 
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Table	S5.3.	Presumptive	polar	metabolites	 identified	 in	 set‐yoghurts	 (samples	 at	 4	 hours,	 14	 days	 and	28	days)	 fermented	by	 coculture	 of	 yoghurt	
starters	with	L.	plantarum	WCFS1	(LP)	and	their	sublethally	precultured	cells	using	NOESY‐1D‐1H‐NMR					

Chemical Compound Standard LP Sublethally precultured LP   
group (Control)  1.5% NaCl - pH 4.5 1.5% NaCl - pH 6.5 4.5% NaCl - pH 4.5 4.5% NaCl - pH 6.5 

  4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 4 h 14 d 28 d 
Amino acid and Alanine 6.99a 7.04 7.09 6.87 7.00 7.16 6.93 7.02 6.99 6.91 7.24 7.11 7.02 7.23 7.17 

derivatives Creatine and Creatinine 7.50 7.50 7.54 7.49 7.54 7.61 7.50 7.49 7.47 7.51 7.70 7.55 7.55 7.63 7.58 

 Isoleucine 7.70 7.79 7.84 7.60 7.73 7.93 7.64 7.74 7.73 7.63 7.93 7.86 7.72 7.94 7.91 

 Leucine 7.71 7.81 7.87 7.59 7.79 8.00 7.63 7.77 7.77 7.63 8.00 7.94 7.74 8.01 7.98 

 N-Acetyl-amino acids 8.02 8.02 8.07 7.99 8.02 8.12 8.01 8.01 7.98 8.00 8.17 8.07 8.07 8.14 8.10 

 Phenylalanine 6.65 6.73 6.78 6.49 6.75 6.94 6.53 6.68 6.68 6.52 6.97 6.91 6.64 6.97 6.95 

 Proline  7.41 7.44 7.48 7.31 7.37 7.53 7.35 7.38 7.35 7.33 7.56 7.47 7.43 7.56 7.52 

 Tyrosine 6.97 7.01 7.06 6.89 7.01 7.15 6.93 6.97 6.96 6.89 7.21 7.11 6.97 7.19 7.15 

 Valine 7.57 7.65 7.70 7.43 7.65 7.84 7.48 7.61 7.60 7.46 7.85 7.79 7.58 7.87 7.83 

 Amino acid residues 8.04 8.11 8.17 8.01 8.09 8.21 8.04 8.08 8.08 8.01 8.15 8.25 8.10 8.16 8.21 

                 
Carbohydrate and  Galactose 9.15 9.00 9.05 9.07 9.04 8.92 9.12 8.99 8.98 9.17 9.07 9.07 9.19 9.16 9.09 

derivatives Glucose 9.20 8.91 8.88 9.01 8.93 8.73 9.17 8.85 8.80 9.14 9.09 9.03 9.27 9.20 9.08 

 Lactose 9.15 9.12 8.75 9.41 9.29 9.20 9.24 9.19 9.07 9.34 9.20 9.15 9.05 8.96 8.91 

 N-Acetylglucosamine 7.47 7.52 7.57 7.48 7.49 7.65 7.47 7.49 7.47 7.46 7.71 7.58 7.55 7.65 7.61 

 Sugar residues 7.32 7.30 7.31 7.45 7.32 7.35 7.35 7.28 7.24 7.36 7.51 7.32 7.42 7.40 7.34 

                 
Organic acid Acetate  7.55 7.64 7.69 7.51 7.64 7.72 7.56 7.62 7.63 7.52 7.74 7.68 7.55 7.70 7.68 

 Acetoacetate 7.03 7.09 7.14 6.99 7.05 7.23 7.01 7.04 7.02 7.01 7.24 7.17 7.09 7.25 7.21 

 Ascorbate 8.29 8.16 8.21 8.11 8.19 8.23 8.30 8.16 8.14 8.24 8.34 8.26 8.34 8.32 8.24 

 Benzoate 6.86 6.89 6.93 6.89 6.91 7.00 6.86 6.87 6.86 6.87 7.07 6.95 6.91 6.98 6.95 

 Butyrate 7.32 7.37 7.42 7.21 7.37 7.53 7.27 7.37 7.35 7.24 7.56 7.48 7.36 7.58 7.52 

 Hydroxybutyrate 7.36 7.46 7.53 7.35 7.39 7.60 7.35 7.41 7.41 7.36 7.57 7.53 7.46 7.59 7.55 
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 Citrate 7.47 7.52 7.48 7.50 7.50 7.56 7.56 7.47 7.48 7.56 8.06 7.56 7.68 7.57 7.51 

 Formate 6.83 6.83 6.91 6.81 6.88 6.98 6.85 6.81 6.78 6.85 7.01 6.92 6.88 7.03 6.93 

 Fumarate 5.42 5.35 5.40 5.79 5.40 5.45 5.43 5.36 5.27 5.60 5.58 5.40 5.63 5.49 5.40 

 Hippurate 7.15 7.23 7.28 7.15 7.19 7.39 7.14 7.18 7.16 7.16 7.41 7.31 7.24 7.40 7.35 

 Isobutyrate  6.77 6.84 6.88 6.51 6.87 7.03 6.63 6.76 6.75 6.61 7.10 7.01 6.75 7.10 7.06 

 Lactate 9.44 9.51 9.58 9.40 9.51 9.52 9.46 9.50 9.60 9.43 9.50 9.53 9.45 9.51 9.50 

 Orotate 6.47 6.44 6.45 6.57 6.54 6.55 6.51 6.48 6.46 6.54 6.66 6.50 6.56 6.55 6.51 

 Oxoglutarate 7.43 7.29 7.40 7.27 7.41 7.53 7.46 7.28 7.29 7.48 7.90 7.43 7.62 7.62 7.47 

 Pyruvate 7.62 7.43 7.55 7.32 7.26 7.32 7.41 7.30 7.30 7.40 7.52 7.40 7.51 7.45 7.43 

 Succinate 7.46 7.58 7.56 7.59 7.61 7.59 7.50 7.58 7.55 7.39 7.01 7.58 7.23 7.51 7.56 

 Valerate and derivatives 7.68 7.75 7.80 7.66 7.68 7.87 7.66 7.69 7.67 7.67 7.87 7.80 7.77 7.89 7.84 

                 
Lipid derivatives Acetylcarnitine 6.63 6.81 6.76 6.88 6.75 6.88 6.73 6.74 6.72 6.78 7.00 6.80 6.79 6.82 6.82 

 Choline and derivatives 7.98 7.82 7.88 7.75 7.84 7.88 7.94 7.82 7.80 7.88 8.08 7.89 8.00 7.96 7.89 

 Glycerophosphocholine 7.31 7.31 7.37 7.34 7.34 7.40 7.34 7.32 7.29 7.33 7.46 7.37 7.37 7.41 7.37 

 Phosphocholine 8.07 7.94 7.99 7.83 8.00 8.08 8.17 7.96 7.93 8.09 8.21 8.08 8.18 8.19 8.10 

                 
Carbonyl  Acetone 7.23 7.24 7.30 7.26 7.26 7.33 7.25 7.25 7.23 7.27 7.38 7.29 7.36 7.35 7.30 

compound Dihydroxyacetone 7.33 7.30 7.31 7.32 7.40 7.47 7.48 7.34 7.32 7.44 7.69 7.45 7.49 7.51 7.44 

                 
Miscellaneous  Dimethyl sulfone 6.87 6.87 6.88 6.85 6.88 6.97 6.89 6.85 6.83 6.87 7.06 6.92 6.93 6.97 6.93 

 Uridine 5.96 5.93 5.96 6.35 5.96 5.99 5.95 5.90 5.87 6.00 6.09 5.93 5.98 5.96 5.95 

a Metabolite contents are expressed as log10 [sum of signal intensity of respective metabolite in arbitrary unit]. Values at 4 hours are the average from two independent replicates. Values at 14 days 
and 28 days are represented from one replicate. 
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6.1	 Introduction	

The	 first	 objective	 of	 this	 research	was	 to	 investigate	 the	 simultaneous	 growth	

and	 metabolite	 production	 by	 yoghurt	 starters	 (Chapter	 2),	 and	 different	 probiotic	

strains	during	set‐yoghurt	fermentation	and	refrigerated	storage.	L.	rhamnosus	GG	and	

B.	 animalis	 subsp.	 lactis	 BB12	 represent	 members	 of	 the	 two	 LAB	 genera	 commonly	

incorporated	in	fermented	dairy	products	(Chapter	3	and	4)	[48].	L.	plantarum	WCFS1	

is	 a	 potential	 probiotic	 strain	 originating	 from	 human	 saliva	 [24]	 (Chapter	 5).	 Since	

many	 probiotic	 strains	 do	 not	 survive	 well	 in	 fermented	 milk	 [20,	 51],	 the	 second	

objective	was	 to	 investigate	 the	 effect	 of	 sublethal	 preculturing	 of	 these	 three	 strains	

under	elevated	salt	and	low	pH	stress	conditions	on	their	survival	in	yoghurt	(Chapter	4	

and	 5).	 In	 this	 context,	 the	 microbial	 activity	 was	 evaluated	 in	 terms	 of	 bacterial	

population	 dynamics,	 milk	 acidification	 and	 formation	 of	 volatiles	 and	 non‐volatile	

metabolites	 in	set‐yoghurt.	A	complementary	metabolomics	approach	using	headspace	

SPME‐GC/MS	 and	 1H‐NMR	 was	 applied	 for	 characterization	 of	 biochemical	 changes	

associated	 with	 the	 microbial	 metabolism	 during	 fermentation	 and	 storage.	 Finally,	

metabolite	profiles	of	different	yoghurt	samples	were	statistically	compared	by	means	of	

multivariate	analysis.			

This	 chapter	 provides	 an	 overview	 of	 the	 studies	 described	 in	 this	 thesis.	

Different	 sections	 focusing	 on:	 (i)	 metabolomics‐based	 analytical	 approach,	 (ii)	

interaction	 between	 the	 two	 yoghurt	 starter	 bacteria,	 (iii)	 incorporation	 of	 different	

probiotic	 strains	 and	 (iv)	 impact	 of	 sublethal	 preculturing	 on	 the	 performance	 of	

probiotics	in	yoghurt	are	respectively	discussed.	The	main	conclusions	and	implications	

of	these	studies	are	addressed,	and	recommendations	for	future	research	are	proposed.	
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6.2	 Metabolomic‐based	analytical	approach	

6.2.1	 Analysis	of	volatile	metabolites	by	headspace	SPME‐GC/MS	

In	 this	 research,	 a	mimic‐scenario	 of	 set‐yoghurt	 fermentation	was	 carried	 out	

directly	in	a	series	of	glass	GC	vials	subjected	to	the	same	conditions	as	employed	in	the	

normal	 scale	 experiments.	 The	difference	was	only	 the	volume	of	milk	used,	 i.e.	 3	mL	

instead	 of	 100	 mL.	 The	 concept	 of	 in‐vial	 fermentation	 was	 developed	 based	 on	 the	

method	 used	 for	 detection	 of	 volatiles	 produced	 by	 mastitis	 pathogens	 [22].	 After	

inoculation,	milk	was	aseptically	 transferred	into	a	vial,	 the	headspace	was	completely	

flushed	with	N2	through	a	0.22	μm	filter.	Then,	the	vial	was	immediately	sealed	with	a	

silicone‐septa	magnetic	cap.	This	step	allows	adjusting	a	standard	atmosphere	in	the	vial	

headspace	 prior	 to	 fermentation.	 The	 pH	 of	 set‐yoghurt	 fermented	 in	 the	 vials	 was	

verified	at	the	end	of	fermentation	(4	h)	and	the	end	of	storage	(28	d)	to	ensure	that	the	

results	were	comparable	with	those	obtained	in	the	normal	scale	experiment.	Extraction	

and	determination	of	volatile	metabolites	by	headspace	SPME‐GC/MS	were	based	on	the	

method	developed	by	Hettinga	et	al.	 [21].	Volatile	metabolites	were	identified	referred	

to	 the	NIST	database	and	the	 library	of	Hettinga	et	al.	 [22].	Trial	samples	were	spiked	

with	 acetaldehyde	 and	 ethanol	 in	 order	 to	 validate	 the	 identification	 process.	

Preliminary	 results	 revealed	 that	 the	 number	 of	 volatile	metabolites	 identified	 in	 set‐

yoghurts	 fermented	 in	 vial	 (37	 compounds)	 was	 higher	 than	 those	 detected	 in	 the	

samples	 prepared	 from	 a	 normal	 scale	 experiment	 (27	 compounds).	 The	 list	 is	

comparable	 to	 the	 volatiles	 identified	 in	 yoghurt	 using	 headspace	 SPME‐GC/MS	

technique	 in	 other	 studies	 [8,	 15].	 This	 observation	 indicates	 the	 advantage	 of	 in‐vial	

fermentation,	combining	 low	volume	milk	samples	with	 the	prevention	of	volatile	 loss	

during	sample	preparation.		

From	 a	 practical	 viewpoint,	 it	 should	 be	 mentioned	 that	 set‐yoghurt	 was	

fermented	and	stored	in	a	tightly‐sealed	glass	vial.	This	type	of	material	is	impermeable	

and	 provides	 different	 protective	 properties	 compared	 to	 other	 packaging	 materials	

commonly	 used	 in	 yoghurt	 manufacture,	 e.g.	 laminated	 carton,	 polypropylene,	

polystyrene	and	polyethylene	[57].	The	tightly	sealed	glass	vial	completely	prevents	the	
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loss	 of	 volatile	 components.	 The	 impact	 of	 packaging	 materials	 on	 aroma	 volatile	

compositions	and	sensory	characteristics	of	yoghurt	has	been	documented	[40,	45].	This	

consideration	 needs	 to	 be	 taken	 into	 account	 when	 comparing	 the	 results	 in	 this	

research	with	those	in	a	practical	situation.						

6.2.2		 Analysis	of	non‐volatile	polar	metabolites	by	1H‐	NMR	

From	a	 technical	 standpoint,	 it	 should	be	mentioned	 that	 the	pH	of	 the	 sample	

strongly	 influences	data	 acquisition	during	 1H‐NMR	measurements	due	 to	variation	 in	

peak	intensities	and	location	across	samples	[35].	This	fact	is	acknowledged	by	several	

authors	 and	 careful	 pH	 adjustment	 is	 generally	 required	 to	 complex	 samples,	 such	 as	

wine,	blood	serum	or	urine	[27,	49].	A	slight	variation	in	pH	might	induce	changes	in	the	

position	and	the	overall	shape	of	the	peaks.	Deviations	in	the	exact	peak	positions	in	the	

spectra	 result	 in	 a	 significantly	 lower	 reproducibility	 of	 metabolite	 identification	 and	

quantification,	 especially	 when	 an	 automatic	 integration	 of	 the	 signal	 intensities	 is	

applied	 [35].	 Therefore,	 pH	 adjustment	 and	 buffering	 of	 yoghurt	 samples	 were	

performed	to	achieve	a	low	variation	in	the	final	1H‐NMR	samples	(defined	at	pH	6.0)	in	

this	 research.	 Furthermore,	 the	 presence	 of	 biomacromolecules,	 especially	 lipids	 and	

proteins,	produces	 interference	of	 the	 1H‐NMR	spectra	with	broad	background	signals	

due	 to	 their	 limited	 rotational	 diffusion	 and	 short	 relaxation	 times	 [23,	 56].	 This	

consequently	results	in	a	lower	sensitivity	for	peaks	identification	and	quantification	[4].	

To	 obtain	 high	 quality	 1H‐NMR	 spectra,	 therefore,	 pre‐treatments	 of	 yoghurt	 samples	

are	 required.	 Residual	 lipid	 fractions	 need	 to	 be	 removed	 by	 dichloromethane	

extraction,	despite	the	use	of	reconstituted	Nilac	skimmed	milk	was	this	research.	Large	

(caseins)	 and	 small	 protein	 (whey	 proteins)	 fractions	 were	 removed	 using	 ultra‐

centrifugation	and	ultra‐filtration,	respectively.	Finally,	a	clear	liquid	fraction	of	yoghurt	

serum	was	introduced	to	the	1H‐NMR	analysis.					

For	accurate	metabolite	profiling,	several	manipulations	regarding	different	1H‐

NMR	 spectral	 elucidations	 (NOESY,	 JRES,	 Skyline)	 and	 quantification	 techniques	

(manual,	 semi‐manual	 and	 automatic	 peaks	 integration)	 were	 evaluated.	 Finally,	 an	

automatic	 calculation	 of	 the	 signal	 intensities	 within	 specified	 segments	 of	 spectrum	
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(binning)	 was	 selected	 for	 quantification	 of	 1H‐NMR	 spectra	 in	 this	 research.	 The	

binning	 technique	not	only	 attempts	 to	minimize	variations	 and	 the	 time‐required	 for	

manual	peak	integration	but	also	to	produce	suitable	datasets	for	pattern	recognition	by	

multivariate	statistical	analysis	 [1].	The	chemical	shift	across	the	range	of	0.00	‐	10.00	

ppm	 of	 a	 spectrum	 was	 segmented	 with	 an	 interval	 of	 0.02	 ppm	 (bin).	 The	 signal	

intensity	 in	 each	 bin	was	 calculated	 by	 applying	 automatic	 integration	 software.	 This	

step	 allows	 extracting	 the	 1H‐NMR	 spectral	 profiles	 of	 yoghurt	 samples	 from	 a	 non‐

targeted	approach.	A	series	of	40	pure	reference	compound	solutions	were	analyzed	for	

validation	 of	 the	 accuracy	 of	 the	 identification	 process.	 Since	 interactions	 between	

various	metabolites	may	occur	in	the	milk	serum,	15	reference	compounds	were	spiked	

in	 the	 trial	 samples	 for	 final	 validation	 of	 the	 1H‐NMR	 method.	 Although	 the	 overall	

spectrum	was	dominated	by	broad	signals	from	sugars,	especially	lactose,	a	total	of	43	

non‐volatile	polar	metabolites	were	identified	in	this	research.	Relative	quantification	of	

a	given	metabolite	was	achieved	by	summation	of	signal	 intensities	 in	all	bins	 [38].	At	

this	stage,	non‐volatile	polar	metabolite	profiles	of	yoghurt	samples	were	obtained	from	

a	targeted	approach.		

6.2.3	 Data	processing	and	statistical	analysis	

Metabolomic	data	derived	from	GC/MS	and	1H‐NMR	were	normalized	by	median‐

centering	and	log2‐scaling	before	subjecting	to	multivariate	analysis.	The	pre‐processing	

of	data	was	aimed	to	modify	 the	relative	 influences	(variances)	of	 the	scaled	variables	

and	 to	 align	 the	 entire	 dataset	 into	 a	 normal	 distribution	 [5].	 Multivariate	 analysis	

reduced	the	dimension	of	the	dataset	[32].	In	this	research,	two	algorithms:	(i)	principal	

component	 analysis	 (PCA)	 and	 (ii)	 hierarchical	 cluster	 analysis	 (HCA)	 were	 used	 to	

extract	 significant	patterns	 from	 the	metabolite	profiles	of	 yoghurts.	The	 classification	

potential	of	PCA	and	HCA	were	compared	from	their	corresponding	distinction	patterns.		

The	 results	 obtained	 in	 this	 research	 demonstrated	 the	 effectiveness	 of	

quantitative	 metabolite	 profiling	 combined	 with	 multivariate	 analysis	 as	 a	 tool	 to	

distinguish	the	molecular	profiles	of	yoghurts.	The	two	algorithms	were	equally	effective	

in	distinguishing	metabolite	profiles	 among	yoghurt	 samples	 fermented	with	different	
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types	 of	 starter	 combinations	 especially	 when	 different	 probiotic	 strains	 were	

incorporated.	 Indicative	metabolites	 as	 obtained	 by	 loading	 plots	 allow	 recognition	 of	

specific	 combinations	 of	 yoghurt	 starters	 and	 probiotics.	 PCA	 appeared	 to	 be	 more	

effective	 than	 HCA	 in	 the	 comparison	 of	 yoghurts	 co‐fermented	 with	 precultured	

probiotics	of	the	same	strain	(Chapter	4	and	5).	Since	HCA	classifies	samples	according	

to	 the	overall	 similarity,	 this	algorithm	 is	 less	suitable	when	 the	metabolite	profiles	of	

yoghurts	become	more	alike.	

	

6.3	 Interaction	 between	 different	 proteolytic	 strains	 of	 S.	
thermophilus	in	co‐culture	with	L.	delbrueckii	subsp.	bulgaricus			

	
S.	thermophilus	and	L.	delbrueckii	subsp.	bulgaricus	are	recognized	as	auxotrophs,	

i.e.	 lacking	 the	ability	 to	synthesize	one	or	more	essential	nutrients,	 in	particular	 for	a	

number	of	amino	acids	[26].	Since	the	concentration	of	free	nitrogen	sources	in	milk	is	

very	limited	[63],	optimal	growth	of	yoghurt	starters	must	depend	on	their	proteolytic	

capacity.	 It	 is	 well	 documented	 that	 bacterial	 cell‐envelope	 associated	 (extracellular)	

proteases	are	responsible	for	the	initial	step	of	casein	hydrolysis	yielding	a	large	number	

of	free	amino	acids	and	oligopeptides	[26].	Most	commonly,	yoghurt	starters	consist	of	

non‐proteolytic	S.	thermophilus	and	proteolytic	L.	delbrueckii	subsp.	bulgaricus	[62].	The	

proper	 growth	 of	 streptococci	 thus	 relies	 on	 the	 proteolytic	 activity	 of	 lactobacilli	 to	

produce	 sufficient	amino	acids	 [10].	However,	 the	expression	of	proteolytic	 activity	 in	

several	 S.	 thermophilus	 strains	 allows	 them	 to	 grow	 independently	 in	milk	 leading	 to	

substantial	 acid	 production	 [9,	 11,	 16,	 29,	 52].	 In	 Chapter	 2,	 the	 interaction	 between	

proteolytic	(Prt+)	and	non‐proteolytic	(Prt‐)	strains	of	S.	thermophilus	in	co‐culture	with	

L.	delbrueckii	subsp.	bulgaricus	during	set‐yoghurt	fermentation	is	described.	

The	 influence	 of	 bacterial	 proteolytic	 activity	 is	 characterized	 by	 an	 overall	

increase	 in	 concentration	 of	 free	 amino	 acids	 in	 the	 growth	 medium.	 The	 1H‐NMR	

measurement	 reflects	 the	 balance	 between	 the	 consumption	 and	 production	 of	 these	

compounds	 in	 mixed	 cultures	 of	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	

(Table	 S2.2).	 The	 result	 revealed	 that	 proto‐cooperation	 between	 S.	 thermophilus	 Prt‐	
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and	L.	delbrueckii	subsp.	bulgaricus	provided	not	only	growth	stimulatory	effect	on	the	

two	species	but	also	activated	the	proteolytic	activity	of	L.	delbrueckii	subsp.	bulgaricus	

resulting	in	significantly	higher	abundance	in	the	concentration	of	free	amino	acids.	This	

statement	is	supported	by	the	work	of	Sieuwerts	et	al.	[55]	who	reported	a	considerably	

higher	expression	of	 the	proteolytic	 gene	 (prtB‐LBUL‐1105)	 encoding	 the	extracellular	

protease	activity	of	L.	delbrueckii	subsp.	bulgaricus	in	a	mixed	culture.		

Furthermore,	 catabolism	 of	 amino	 acids	 generates	 volatile	 metabolites	

responsible	for	the	aroma	profile	of	fermented	dairy	products	[2,	34,	59].	For	example,	

acetaldehyde	 is	 the	most	 important	 compound	 contributing	 to	 typical	 yoghurt	 aroma	

[6].	 This	 compound	 is	 derived	 from	 threonine	 catabolism	 by	 the	 activity	 of	 threonine	

aldolase	 in	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	 [57].	 The	 results	

demonstrated	 that	 proto‐cooperation	 between	 S.	 thermophilus	 Prt‐	 and	 L.	 delbrueckii	

subsp.	bulgaricus	generated	a	favorable	volatile	profile	with	significant	abundance	of	all	

key	aroma	compounds	of	yoghurt	compared	to	the	mixed	culture	of	S.	thermophilus	Prt+	

and	L.	delbrueckii	subsp.	bulgaricus	(Fig.	2.4).		

	The	main	 finding	 of	 the	 study	 described	 in	 Chapter	 2	 reveals	 that	 proteolytic	

activity	is	essential	for	the	optimal	growth	of	S.	thermophilus	when	present	individually	

in	 milk.	 On	 the	 other	 hand,	 proto‐cooperation	 is	 exclusively	 observed	 between	 S.	

thermophilus	 Prt‐	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	 resulting	 in	 significant	 higher	

populations	 of	 the	 two	 species,	 more	 efficient	 milk	 acidification	 and	 significant	

abundance	 of	 aroma	 volatiles	 and	 non‐volatile	 metabolites	 desirable	 for	 a	 good	

organoleptic	 quality	 of	 yoghurt.	 These	 observations	 indicate	 that	 selection	 of	 suitable	

strain	 combinations	 between	 S.	 thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	 in	

yoghurt	starters	is	important	for	achieving	the	best	quality	of	the	product.  
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6.4	 Incorporation	of	selected	probiotic	strains	in	set‐yoghurt		

6.4.1	 Selective	 enumeration	 of	 probiotic	 bacteria	 in	 combination	with	 yoghurt	

starters	

Yoghurt	is	one	of	the	most	widely	marketed	dairy	products	that	is	used	to	carry	

probiotic	 bacteria	 [30].	 In	 order	 to	 ensure	 the	 delivery	 of	 potential	 health‐benefits,	 a	

probiotic	product	 should	 contain	 at	 least	106	 cfu/g	of	 viable	probiotic	bacteria	during	

the	 shelf	 life	 [61].	 Important	 for	 assessing	 the	 functionality	 of	 probiotic	 yoghurt	 is	

therefore	the	enumeration	of	viable	probiotic	cells.	In	practice,	selective	enumeration	of	

individual	 probiotic	 strain	 in	 yoghurt	 is	 rather	 complicated	 due	 to	 the	 presence	 of	

multiple	 and	 closely	 related	 LAB	 species	 including	 yoghurt	 starters	 as	 well	 as	 other	

probiotic	strains	[44].	The	difficulties	are	mainly	caused	by	the	similarity	in	their	growth	

requirements,	 biochemical	 characteristics	 and	 antibiotic	 susceptibilities	 [3].	 Selective	

media	 and	 differential	 enumeration	 methods	 for	 each	 individual	 strain	 of	 yoghurt	

starters	and	probiotics	were	adapted	from	literature	[3]	and	validated	with	the	strains	

co‐cultivated	together	in	this	research	(Table	6.1).	

6.4.2	 Effect	of	inoculation	moment	on	the	survival	of	probiotics	in	set‐yoghurt	

A	 preliminary	 research	 was	 performed	 to	 investigate	 the	 effect	 of	 inoculation	

moment	 on	 the	 survival	 of	B.	animalis	 subsp.	 lactis	BB12	 and	L.	plantarum	WCFS1	 in	

yoghurt	during	refrigerated	storage.	Reductions	in	viable	counts	of	probiotics	inoculated	

at	different	moments	were	evaluated:	(i)	inoculation	together	with	yoghurt	starters	into	

milk	 at	 the	 beginning	 of	 fermentation	 and	 (ii)	 inoculation	 into	 yoghurt	 at	 the	 end	 of	

fermentation.	 Inoculation	 together	 with	 yoghurt	 starters	 at	 the	 beginning	 of	

fermentation	resulted	in	a	higher	survival	of	probiotics	during	refrigerated	storage	(data	

not	 shown).	 It	 has	 been	 documented	 that	 dynamic	 changes	 during	 the	 fermentation	

generate	a	number	of	harsh	conditions	such	as	 low	pH,	substrate	breakdown	products	

and	cell	population	density	in	the	environment	[50].	These	stress	conditions	may	induce	

broad	 metabolic	 adaptations	 facilitating	 better	 survival	 and	 different	 performance	 of	

microorganisms	 involved	 as	 was	 concluded	 by	 Van	 de	 Guchte	 et	 al.	 [60].	 This	 could	

indeed	also	be	the	case	for	probiotic	strains	present	in	yoghurt	during	fermentation.			
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Table	6.1.	Media	 used	 for	 selective	 enumeration	 of	 S.	 thermophilus,	 L.	delbrueckii	 subsp.	 bulgaricus,	 L.	
rhamnosus	GG,	B.	animalis	subsp.	lactis	BB12	and	L.	plantarum	WCFS1	in	set‐yoghurt			

	

6.4.3	 Growth	and	survival	of	selected	probiotic	strains	in	set‐yoghurt	

Production	 of	 fermented	 dairy	 products	 containing	 probiotics	 is	 a	 major	

challenge	 for	 the	 dairy	 industry,	 since	 milk	 is	 not	 considered	 as	 a	 suitable	 growth	

medium	 for	 these	 microorganisms	 [36].	 The	 limited	 capacity	 of	 L.	 rhamnosus	 GG	 to	

develop	 in	milk	 is	 explained	 by	 the	 lack	 of	 ability	 to	 ferment	 lactose	 [13].	 The	 weak	

proteolytic	 activity	 explains	 the	 poor	 growth	 of	B.	 animalis	 subsp.	 lactis	BB12	 and	 L.	

plantarum	WCFS1	in	milk	[19,	36].		

The	study	described	in	Chapter	3	revealed	a	stimulatory	effect	of	co‐cultivation	of	

L.	 rhamnosus	 GG	 and	 B.	 animalis	 subsp.	 lactis	 BB12	 with	 yoghurt	 starters	 on	 their	

growth.	The	growth	of	L.	rhamnosus	GG	was	slightly	enhanced	while	that	of	B.	animalis	

subsp.	 lactis	 BB12	 was	 evidently	 stimulated	 (Fig.	 3.1).	 Based	 on	 the	 1H‐NMR	 results	

described	in	Chapter	2,	the	growth	of	bifidobacteria	might	be	stimulated	by	free	amino	

Bacterial	strain	 Mediuma	 Selectivity	mediator	 Incubation	

S.	thermophilus	 STA	 sucrose	and	aerobic	incubation	 37	°C	for	24	h.	

L.	delbrueckii	subsp.	
bulgaricus	

MRS	pH	5.7	 (i)b			pH	and	anaerobic	incubation		 37	°C	for	48	h.	

	 MRSCi	 (ii)			ciprofloxacin	 37	°C	for	48	h.	

	 MRS	pH	5.7	 (iii)		modified	atmospherec	incubation	 37	°C	for	48	h.	

	 MRS	pH	5.7	 (iv)		incubation	temperature	at	45	°C	 45	°C	for	72	h.	

L.	rhamnosus	GG	 MRSV	 vancomycin		 37	°C	for	48	h.	

B.	animalis	subsp.	lactis	BB12	 BSM	 cysteine‐HCl	and	mupirocin	 37	°C	for	48	h.	

L.	plantarum	WCFS1	 MRSV	 vancomycin		 37	°C	for	24	h.	

a				MRS:	deMan	Rogosa	Sharpe,	STA:	Streptococcus	thermophilus	agar,	MRSCi:	MRS	supplemented	with					
				ciprofloxacin,	MRSV:	MRS	supplemented	with	vancomycin,	BSM:	Bifidobacteria	selective	medium		
b		(i):	in	co‐culture	with	S.	thermophilus,	(ii):	in	co‐culture	with	S.	thermophilus	and	L.	rhamnosus	GG,		
				(iii):	in	co‐culture	with		S.	thermophilus	and	B.	animalis	subsp.	lactis	BB12,	
				(iv):	in	co‐culture	with		S.	thermophilus	and	L.	plantarum	WCFS1	
c		low	oxygen	(6%	O2,	7%	CO2)	condition	(Anoxomat™	Mart®	Microbiology,	Drachten,	the	Netherlands)	
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acids	generated	from	the	active	proteolytic	activity	of	L.	delbrueckii	subsp.	bulgaricus	in	

the	mixed	culture.	This	observation	 is	 in	accordance	with	 literature	 [54].	On	the	other	

hand,	co‐cultivation	with	yoghurt	starters	also	resulted	in	an	impairment	of	the	survival	

of	L.	rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12.	The	viable	count	of	L.	rhamnosus	

GG	decreased	slightly	while	that	of	B.	animalis	subsp.	 lactis	BB12	decreased	drastically	

towards	 the	end	of	storage	(Fig.	3.1).	The	decrease	 in	pH	and	accumulation	of	organic	

acids	in	fermented	milk	during	refrigerated	storage,	also	called	post‐acidification,	have	

been	 recognized	 as	 one	 of	 the	most	 detrimental	 factors	 for	 the	 survival	 of	 probiotics	

[12].		

Based	 on	 the	 results	 described	 in	 Chapter	 5,	 it	 is	 interesting	 to	 see	 that	 the	

population	of	L.	plantarum	WCFS1	in	set‐yoghurt	remains	stable	from	the	starting	point	

of	 fermentation	 until	 the	 end	 of	 storage	 (Fig.	 5.1C).	 The	 good	 survival	 of	 various	 L.	

plantarum	 strains	 in	 fermented	 milk	 has	 been	 previously	 documented	 [19,	 33].	 This	

observation	makes	L.	plantarum	WCFS1	a	 good	 candidate	probiotic	 strain	 for	 yoghurt	

manufacture.	The	studies	described	 in	Chapter	3	and	5	 indicate	 that	 the	two	probiotic	

lactobacilli	 are	 more	 tolerant	 to	 acidic	 condition	 of	 yoghurt	 than	 bifidobacteria.	 This	

finding	 is	 in	accordance	with	 literature	[12,	14].	However,	 it	should	be	mentioned	that	

the	 final	viable	counts	of	all	probiotic	strains	 in	 this	 research	still	 remained	above	 the	

minimum	 recommended	 level	 (106	 cfu/g)	 to	 ensure	 their	 beneficial	 effects	 on	

consumers	health	[53].																																					

6.4.4	 Impact	 of	 probiotic	 incorporation	 on	 the	 metabolite	 formation	 in	 set‐

yoghurt	

Compared	 to	 yoghurt	 starters,	 there	 is	 still	 limited	 information	 regarding	 the	

metabolic	 activity	 of	 probiotics	 in	milk	 [39].	 This	 information	 is	 important,	 since	 the	

organic	acids	and	volatile	compounds	formed	by	these	functional	bacteria	may	directly	

influence	 the	 organoleptic	 quality	 of	 product	 [37].	 In	 this	 research,	 a	 complementary	

metabolomics	 approach,	 using	 headspace	 SPME‐GC/MS	 and	 1H‐NMR,	 was	 applied	 for	

characterization	 of	 the	 volatile	 and	 non‐volatile	 polar	 metabolite	 profiles	 of	 set‐

yoghurts.	 The	 studies	 described	 in	 Chapter	 3	 and	 5	 revealed	 that	 incorporation	 of	 L.	

rhamnosus	 GG,	 B.	 animalis	 subsp.	 lactis	 BB12	 and	 L.	 plantarum	 WCFS1	 did	 not	
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significantly	influence	the	acidity	and	concentrations	of	key‐aroma	volatile	compounds	

of	set‐yoghurt.	Still,	all	probiotic	strains	had	a	significant	impact	on	the	overall	yoghurt	

metabolite	 profiles.	 The	 presence	 of	 probiotics	 substantially	 contributed	 to	 the	

formation	 of	 a	 large	 number	 of	 volatile	 and	 non‐volatile	 metabolites	 detected	 at	 low	

concentration.		

	

Fig.	6.1.	PCA	score	plots	derived	from	volatile	(panel	A)	and	non‐volatile	polar	metabolite	profiles	(panel	
B)	of	set‐yoghurts	fermented	with	traditional	yoghurt	starters	(Y;	 )	co‐cultures	of	yoghurt	starters	with	
L.	rhamnosus	GG	(Y‐LGG;	 ),	B.	animalis	subsp.	lactis	BB12	(Y‐BB12;	 )	and	L.	plantarum	WCFS1	(Y‐LP‐
WCFS1;	 ).	White,	grey	and	black	filled	blocks	correspond	to	the	samples	at	4	hours,	14	days	and	28	days,	
respectively.	

	

Variation	 in	 the	 overall	 metabolite	 profiles	 of	 set‐yoghurts	 co‐fermented	 with	

different	probiotic	strains	could	be	statistically	determined	using	multivariate	analysis.	

PCA	 and	 HCA	 provided	 pattern	 recognition	 and	 classification	 of	 yoghurt	 metabolite	

Y-LP-WCFS1 

Y-LP-WCFS1 (storage)

Y and Y-BB12

Y-LGG

Y-LP-WCFS1 (4h)

Y-LGG (4h) 

Y-BB12
(4h)

Y (4h) 
Y (storage)

Y-LGG (storage)

Y-BB12 (storage)

A

B 



Chapter	6	

182	
 

profiles.	Moreover,	 loading	plots	indicated	which	metabolites	were	accountable	for	the	

separation. The	 classification	 potentials	 of	 GC/MS	 and	 1H‐NMR	 techniques	 were	

compared	 from	 their	 corresponding	 PCA	 score	 plots	 (Fig.	 6.1).	 A	 good	 comparable	

pattern	 of	 the	 two	metabolite	 profiling	 platforms	was	 observed.	 The	 two	 approaches	

successfully	 enabled	 to	 distinguish	 yoghurts	 fermented	 by	 different	 starter	

combinations	and	different	durations	of	 storage	according	 to	 their	metabolite	profiles.	

The	result	demonstrates	that	metabolomic	datasets	acquired	by	two	different	analytical	

approaches	support	each	other	in	the	discrimination	of	the	metabolome	of	yoghurt.	The	

metabolite	profiles	of	the	samples	co‐fermented	with	B.	animalis	subsp.	lactis	BB12	are	

comparatively	 close	 to	 the	 samples	 fermented	without	 probiotics.	 On	 the	 other	 hand,	

distinct	metabolite	profiles	were	clearly	observed	for	the	samples	co‐fermented	with	L.	

rhamnosus	 GG	and	L.	plantarum	WCFS1.	This	 finding	 suggests	 a	 substantial	 impact	on	

biochemical	composition	of	yoghurt	due	to	the	presence	of	the	two	lactobacilli,	although	

their	capacity	to	grow	in	association	with	yoghurt	starters	is	rather	limited.	

 

6.5	 Preculturing	of	probiotics	under	sublethal	stress	conditions	

6.5.1	 Growth	and	survival	of	sublethally	precultured	probiotics	in	set‐yoghurt	

One	of	the	key	criteria	in	the	development	of	yoghurt	containing	probiotics	is	that	

these	 functional	 bacteria	 must	 survive	 the	 harsh	 conditions	 encountered	 during	

fermentation	and	 refrigerated	 storage	 [47].	Although	L.	 rhamnosus	 GG	and	B.	animalis	

subsp.	 lactis	BB12	are	commercially	 selected	based	on	 their	appropriate	 technological	

performance	[42],	the	study	described	in	Chapter	3	reveals	that	significant	decrease	in	

viable	 counts	 of	 the	 two	 probiotic	 strains	 still	 occurs	 in	 practice.	 Regarding	 to	 this,	 a	

strategy	 to	 induce	 cell‐protective	 mechanisms	 by	 preculturing	 of	 probiotics	 under	

sublethal	 stress	 conditions	 (combinations	 of	 elevated	 NaCl	 and	 low	 pH)	 prior	 to	

inoculation	 in	 milk	 was	 investigated	 in	 Chapter	 4	 and	 5.	 Such	 an	 approach	 allows	

probiotics	to	develop	adaptive	stress	responses	leading	to	an	increase	in	their	survival	

compared	to	those	that	are	directly	subjected	under	the	same	stress	condition	[43].			
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The	study	described	in	Chapter	4	demonstrated	that	preculturing	of	L.	rhamnosus	

GG	and	B.	animalis	subsp.	lactis	BB12	under	sublethal	salt	and	low	pH	stress	conditions	

did	not	significantly	enhance	their	growth	during	set‐yoghurt	fermentation.	On	the	other	

hand,	their	survival	during	refrigerated	storage	was	successfully	 improved,	specifically	

by	preculturing	at	relatively	low	pH	(Fig.	4.1).	Furthermore,	the	growth	and	survival	of	

the	yoghurt	starters	were	not	affected	by	the	incorporation	of	sublethally	precultured	L.	

rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12.	

The	study	described	in	Chapter	5	showed	that	preculturing	under	sublethal	salt	

and	low	pH	stress	conditions	could	not	significantly	enhance	the	growth	of	L.	plantarum	

WCFS1	 in	milk	 but	 also	 did	 not	 impair	 its	 excellent	 survival	 in	 set‐yoghurt	 (Fig.	 5.1).	

Interestingly,	the	survival	of	L.	delbrueckii	subsp.	bulgaricus	during	refrigerated	storage	

was	 significantly	 impaired	 by	 co‐cultivation	 with	 certain	 types	 of	 sublethally	

precultured	L.	plantarum	WCFS1.	 Indeed,	 this	 adverse	 effect	was	not	 observed	on	 the	

survival	 of	 S.	 thermophilus.	 A	 proposed	 explanation	 for	 this	 could	 be	 that	 sublethal	

preculturing	 may	 trigger	 the	 synthesis	 of	 certain	 antimicrobial	 compounds,	 e.g.	

bacteriocins,	in	stress‐adapted	L.	plantarum	WCFS1	which	provide	inhibitory	effect	on	L.	

delbrueckii	subsp.	bulgaricus.	It	has	been	recognized	that	environmental	factors	as	well	

as	 co‐cultivation	 with	 a	 variety	 of	 bacterial	 strains	 play	 an	 important	 role	 in	 the	

regulation	 of	 bacteriocin	 production	 in	 L.	 plantarum	 [28,	 31].	 However,	 additional	

experiments	are	needed	to	confirm	the	evidence	of	bacteriocin	production	in	sublethally	

precultured	L.	plantarum	WCFS1.	

6.5.2	 Impact	of	sublethally	precultured	probiotics	on	the	metabolite	formation	in	

set‐yoghurt		

Adaptive	 stress	 responses	 in	probiotics	 are	 associated	with	 the	 expression	of	 a	

large	number	of	 genes,	 synthesis	of	 stress‐response	proteins	and	alteration	of	various	

physiological	 features	 [25,	 41,	 46,	 60].	 This	 complex	 network	 of	 reactions	 induces	

variations	in	the	metabolic	activities	of	probiotics	which	may	have	a	substantial	impact	

on	the	biochemical	characteristics	of	the	product	[50].	The	studies	described	in	Chapter	

4	and	5	revealed	adaptive	responses	of	L.	rhamnosus	GG,	B.	animalis	subsp.	 lactis	BB12	

and	L.	plantarum	WCFS1	to	sublethal	salt	and	low	pH	stress	conditions	exposed	during	
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preculturing.	 The	 sublethal	 preculturing	 not	 only	 affects	 their	 growth	 and	 survival	

during	 yoghurt	 production	 but	 also	 leads	 to	 substantial	 changes	 in	 the	 biochemical	

characteristics	 of	 the	 final	 product.	 Besides	 the	 direct	 impact	 on	 the	 activity	 of	

probiotics,	 the	 significantly	 lower	 post‐acidification	 observed	 in	 the	 samples	 co‐

fermented	 with	 sublethally	 precultured	 L.	 plantarum	 WCFS1	 could	 probably	 be	

associated	with	the	decrease	in	viable	counts	of	L.	delbrueckii	subsp.	bulgaricus.	

The	impact	of	stress‐adapted	probiotics	on	the	volatile	metabolite	profiles	of	set‐

yoghurts	was	clearly	revealed	by	PCA.	The	volatile	profiles	of	the	samples	co‐fermented	

with	sublethally	precultured	lactobacilli,	 i.e.	L.	rhamnosus	GG	and	L.	plantarum	WCFS1,	

could	be	distinguished	based	on	the	salt	concentration	(Fig.	4.3C	and	5.3)	whilst	 those	

co‐fermented	 with	 sublethally	 precultured	 B.	 animalis	 subsp.	 lactis	 BB12	 could	 be	

distinguished	 based	 on	 pH	 levels	 during	 preculturing	 (Fig.	 4.4C).	 This	 finding	

demonstrates	 that	 the	 impact	 of	 sublethal	 stress	 responses	 on	 the	 volatile	metabolite	

profiles	 of	 set‐yoghurts	 is	 species‐specific.	 Furthermore,	 loading	 plots	 indicated	 that	

several	major	 aroma	 compounds,	 i.e.	 acetic	 acid	 (vinegar,	 pungent),	 2,3‐pentanedione	

(buttery,	vanilla‐like)	 	and	2‐butanone	(sweet,	 fruity),	as	well	as	other	minor	carbonyl	

compounds,	volatile	organic	acids	and	alcohols	contributed	to	the	separation	of	samples	

co‐fermented	 with	 different	 types	 of	 sublethally	 precultured	 probiotics.	 From	 a	

technological	 standpoint,	 variations	 in	 the	 concentration	 of	 these	 compounds	 suggest	

that	incorporation	of	sublethally	precultured	probiotics	may	influence	the	organoleptic	

quality	of	yoghurt	[6,	7].	

The	 impact	 of	 stress‐adapted	 probiotics	 on	 the	 non‐volatile	 polar	 metabolite	

profiles	of	set‐yoghurts	was	not	evident	for	all	strains.	Non‐volatile	metabolite	profiles	

of	 the	 samples	 co‐fermented	 with	 different	 types	 of	 sublethally	 precultured	 L.	

rhamnosus	GG	and	L.	plantarum	WCFS1	were	clearly	distinguished	by	PCA	according	to	

the	concentrations	of	salt	and	levels	of	pH	manipulated	during	preculturing	(Fig.	4.5	and	

5.5).	Indeed,	it	should	be	noted	that	the	distinct	patterns	were	in	accordance	with	those	

previously	observed	with	the	volatile	metabolite	profiles.	Unlike	for	the	two	lactobacilli,	

non‐volatile	 metabolite	 profiles	 of	 the	 samples	 co‐fermented	 with	 different	 types	 of	

sublethally	precultured	B.	animalis	subsp.	lactis	BB12	were	rather	similar	(Fig.	4.6).	This	
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result	 suggests	 less	 change	 in	 the	 metabolic	 activity	 of	 bifidobacteria	 induced	 by	

sublethal	preculturing	compared	to	those	observed	in	lactobacilli.	

	

6.6	 Main	Conclusions	

The	 studies	 described	 in	 this	 thesis	 provide	 new	 information	 regarding	 the	

impact	 of	 interaction	 between	 the	 two	 yoghurt	 starter	 bacteria	 and	 incorporation	 of	

different	probiotic	strains	on	the	metabolite	formation	in	set‐yoghurt.	A	complementary	

metabolomics	 approach	 using	 headspace	 SPME‐GC/MS	 and	 1H‐NMR	 has	 shown	 to	 be	

very	useful	 for	 characterization	of	 volatile	 and	non‐volatile	polar	metabolites	 changed	

during	 fermentation	and	 refrigerated	storage.	This	 information	 is	 important,	 since	 the	

biochemical	 conversions	 of	 milk	 components	 related	 to	 microbial	 metabolism	 are	

responsible	for	the	sensory	characteristics	of	yoghurt.	Based	on	the	main	observations	

described	in	the	previous	chapters,	the	overall	conclusions	of	this	research	are:	

 A	complementary	metabolomics	approach	using	headspace	SPME‐GC/MS	and	

1H‐NMR	resulted	in	the	identification	of	37	volatiles	and	43	non‐volatile	polar	

metabolites,	 respectively.	 The	 advantages	 of	 in‐vial	 fermentation	 combined	

with	 headspace	 SPME‐GC/MS	 technique	 are	 that	 only	 a	 small	 amount	 of	

sample	is	required;	and	there	is	no	loss	of	volatiles	during	sample	preparation.	

The	advantages	of	1H‐NMR	technique	are	the	minimal	pre‐treatment	required	

and	 the	 simultaneous	 measurement	 of	 all	 non‐volatile	 polar	 metabolites	

present	in	the	sample.	

	

 Multivariate	 analysis	 enables	 to	 recognize	 yoghurt	 metabolite	 profiles	

according	 to	 different	 types	 of	 starter	 combinations	 as	 well	 as	 durations	 of	

storage.	

	

 Proto‐cooperation	 is	 exclusively	 observed	 between	 non‐proteolytic	 S.	

thermophilus	 and	 L.	 delbrueckii	 subsp.	 bulgaricus	 resulting	 in	 a	 significant	

higher	 population	 size	 of	 the	 two	 species,	 a	more	 efficient	milk	 acidification	
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and	 a	 significant	 abundance	 of	 aroma	 volatiles	 and	 non‐volatile	metabolites	

desirable	for	a	good	organoleptic	quality	of	yoghurt.	

	

 Co‐fermentation	of	yoghurt	starters	with	probiotics	stimulates	the	growth	of	L.	

rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12	in	milk	whilst	the	growth	of	L.	

plantarum	 WCFS1	 was	 not	 affected.	 During	 refrigerated	 storage,	 the	 two	

probiotic	 lactobacilli	 exhibit	more	 tolerance	 to	 the	 acid	 condition	 of	 yoghurt	

than	the	bifidobacteria.	

	

 An	improved	survival	of	L.	rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12	in	

yoghurt	 can	 be	 obtained	 by	 preculturing	 under	 sublethal	 salt	 and	 low	 pH	

stress	conditions.	Specifically,	preculturing	at	relatively	low	pH	condition	was	

effective	for	a	better	survival.	

			

 Application	 of	 stress‐adapted	 L.	 plantarum	 WCFS1	 significantly	 impairs	 the	

survival	 of	 L.	 delbrueckii	 subsp.	 bulgaricus,	which	 consequently	 reduces	 the	

post‐acidification	of	yoghurt.	

	

 The	 presence	 of	 probiotics	 and	 their	 stress‐adapted	 cultures	 induces	

significant	 changes	 in	 the	 global	metabolite	 profile	 of	 yoghurt.	 Variations	 in	

relative	abundances	of	key‐aroma	compounds	may	considerably	influence	the	

organoleptic	quality	of	product.			
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6.7	 Implications	and	recommendations	

The	metabolomics	approach	applied	in	this	research	provides	datasets	which	are	

particularly	useful	 for	unravelling	 the	 impact	of	probiotic	 incorporation	on	 the	overall	

biochemical	 composition	 and	 organoleptic	 quality	 of	 yoghurt.	 The	 application	 of	

headspace	 SPME‐GC/MS	 and	 1H‐NMR	 combined	with	multivariate	 analysis	 enables	 to	

monitor	 the	 overall	 biochemical	 changes	 related	 to	 microbial	 metabolism	 during	

yoghurt	 fermentation	 and	 refrigerated	 storage.	 Besides	 this,	 indicative	 metabolites	

suggested	by	PCA	can	be	considered	as	potential	biomarkers	for	detection	of	particular	

probiotic	 strains.	 The	 unique	 features	 of	 the	 molecular	 profiles	 may	 also	 facilitate	

authentication	 of	 yoghurt	 in	 the	 future.	 The	 overall	 findings	 contribute	 to	 a	 better	

understanding	of	the	metabolic	activity	of	probiotics	 in	an	actual	food	environment.	 In	

terms	of	technical	implication,	similar	approaches	of	sample	preparation,	measurement	

and	data	processing	 can	 certainly	be	 extended	 to	 investigate	 the	molecular	profiles	of	

other	fermented	dairy	products.				

Development	of	sublethal	preculturing	for	improving	the	survival	of	L.	rhamnosus	

GG	 and	B.	 animalis	 subsp.	 lactis	 BB12	 has	 shown	 to	 be	 very	 successful	 at	 laboratory	

scale.	 Accordingly,	 it	would	 be	 interesting	 to	 investigate	whether	 these	 results	 can	be	

extended	in	the	pilot‐scale	preparation	of	probiotic	cultures.	Another	important	finding	

is	 that	 application	of	 sublethally	 precultured	L.	plantarum	WCFS1	provides	 significant	

impairment	on	the	survival	of	L.	delbrueckii	subsp.	bulgaricus	and	adverse	effect	on	post‐

acidification.	 This	 observation	 is	 technologically	 relevant	 since	 post‐acidification	 is	

recognized	 as	 the	main	 detrimental	 factor	 for	 the	 survival	 of	 probiotics	 in	 fermented	

milk	[51].	Reducing	post‐acidification	might	be	an	interest	for	future	development	in	the	

mild‐flavor	 yoghurt.	 Thus,	 the	 mechanism	 explaining	 the	 inhibitory	 effect	 of	 stress‐

adapted	L.	plantarum	WCFS1	on	the	survival	of	L.	delbrueckii	subsp.	bulgaricus	requires	

further	investigation.	From	a	sensory	perspective,	it	should	be	noted	that	stress‐adapted	

probiotics	 induce	substantial	changes	in	the	yoghurt	metabolome	which	may	influence	

the	 organoleptic	 quality	 of	 product.	 An	 additional	 research	 focusing	 on	 sensory	

evaluation	 of	 yoghurt	 with	 trained	 panelists	 is	 therefore	 recommended.	 Last	 but	 not	

least,	 it	 needs	 to	be	mentioned	 that	 adaptive	 stress	 responses	 of	 probiotics	 are	 strain	
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specific;	 therefore,	 optimization	 of	 preculturing	 conditions	 is	 necessary	 for	 each	

probiotic	strain	to	achieve	a	notable	performance	improvement.	

Based	 on	 the	 studies	 described	 in	 this	 thesis,	 it	 appears	 very	 interesting	 to	

broaden	the	knowledge	with	follow‐up	research	on	a	range	of	probiotic	strains.	Another	

relevant	extension	is	the	investigation	of	the	metabolite	profiles	of	stirred	yoghurts.	The	

lower	fermentation	temperature	combined	with	longer	incubation	period	is	expected	to	

affect	the	performance	of	yoghurt	starters	and	probiotics	which	could	have	a	significant	

impact	 on	 the	 properties	 of	 product.	 From	 a	 technical	 viewpoint,	 improving	 the	

acquisition	and	 interpretation	of	metabolomics	data	 from	the	 two	analytical	platforms	

should	be	considered.	First,	the	absolute	concentration	of	key	aroma	volatiles	and	non‐

volatile	 metabolites	 responsible	 for	 sensory	 characteristics	 of	 yoghurt	 should	 be	

quantified.	This	will	 provide	more	 insight	whether	 the	 amount	of	 these	 compounds	 is	

detected	within	the	same	ranges	as	normally	found	in	literature	or	commercial	products.	

Based	on	this	information,	potential	impact	on	the	organoleptic	quality	of	yoghurt	could	

be	 appropriately	 predicted.	 Second,	 it	 should	 be	 noted	 that	 the	 identification	 of	 non‐

volatile	polar	metabolites	by	1H‐NMR	is	still	hampered	by	the	dominating	broad	signal	of	

lactose.	Eliminating	either	lactose	from	the	sample	or	lactose	peaks	from	the	spectrum	

would	 enable	 to	 extend	 the	 list	 of	 identified	 metabolites.	 Also	 the	 application	 of	 a	

correlation	 network	 to	 elucidate	 the	 time‐dependent	 relationships	 between	 volatiles	

and	 non‐volatile	metabolites	 developed	 during	 yoghurt	 fermentation	 and	 refrigerated	

will	provide	extra	useful	information.			

Furthermore,	 future	 research	 in	 this	 field	 must	 take	 advantage	 of	 the	

development	 of	 LAB	 genome	 projects	 and	 functional	 genomics	 technologies.	 A	 large	

number	 of	 publications	 and	 accessible	 databases	 generated	 from	 transcriptomic	 and	

proteomic	 profiling	 will	 facilitate	 to	 better	 understand	 the	 molecular	 mechanisms	

involved	 in	 the	 interaction	 between	 different	 microorganisms	 in	 fermented	 food	

environments.	Application	of	genome‐scale	metabolic	models	to	predict	the	formation	of	

flavor	 compounds	 is	 one	of	 the	most	 relevant	examples	 [17,	18,	58].	This	 information	

may	finally	contribute	to	establish	an	appropriate	route	toward	improving	technological	

and	functional	properties	of	fermented	dairy	products.			
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Summary	

The	 activity	 of	 starter	 cultures	 during	 yoghurt	 fermentation	 is	 one	 of	 the	most	

important	 factors	 that	determine	the	 fermentation	process	and	sensory	characteristics	

of	product.	During	the	past	decades,	societal	interest	in	healthy	foods	has	contributed	to	

the	development	of	functional	yoghurt	variants	that	have	been	made	by	incorporation	of	

health‐promoting	 bacterial	 strains	 called	 “probiotics”.	 Compared	 to	 yoghurt	 starters,	

there	 is	 still	 limited	 information	 regarding	 the	 actual	 metabolic	 activity	 of	 probiotics	

grown	 or	 suspended	 in	 milk.	 Therefore,	 the	 main	 objective	 of	 this	 research	 was	 to	

investigate	the	simultaneous	growth	and	metabolite	production	by	yoghurt	starters	and	

different	probiotic	strains	during	set‐yoghurt	 fermentation	and	refrigerated	storage.	L.	

rhamnosus	 GG	 and	B.	animalis	 subsp.	 lactis	BB12	 represent	members	 of	 the	 two	 LAB	

genera	 commonly	 incorporated	 in	 fermented	dairy	products.	L.	plantarum	WCFS1	 is	 a	

potential	probiotic	strain	used	as	a	model,	in	this	research,	to	study	the	activity	of	non‐

dairy	LAB	in	a	dairy‐based	environment.	The	microbial	activity	during	fermentation	and	

refrigerated	storage	was	investigated	by	monitoring	bacterial	population	dynamics,	milk	

acidification	and	changes	in	volatile	and	non‐volatile	metabolite	profiles	of	yoghurt.		

In	 Chapter	 2,	 the	 interaction	 between	 different	 proteolytic	 strains	 of	 S.	

thermophilus	 and	L.	delbrueckii	 subsp.	bulgaricus	during	set‐yoghurt	 fermentation	was	

investigated.	A	complementary	metabolomics	approach	was	applied	for	characterization	

of	 volatile	 and	 non‐volatile	 polar	 metabolite	 profiles	 of	 yoghurt	 associated	 with	

proteolytic	 activity	 of	 the	 individual	 strains	 in	 the	 starter	 cultures.	 Headspace	 SPME‐

GC/MS	 and	 1H‐NMR	 resulted	 in	 the	 identification	 of	 35	 volatiles	 and	 43	 non‐volatile	

polar	metabolites,	 respectively.	 The	 results	 demonstrated	 that	 only	 non‐proteolytic	 S.	

thermophilus	 strain	performed	proto‐cooperation	with	L.	delbrueckii	 subsp.	bulgaricus.	

The	 proto‐cooperation	 resulted	 in	 significant	 higher	 populations	 of	 the	 two	 species,	

faster	 milk	 acidification,	 significant	 abundance	 of	 aroma	 volatiles	 and	 non‐volatile	

metabolites	desirable	for	a	good	organoleptic	quality	of	yoghurt.	This	finding	underlines	

that	 selection	 of	 suitable	 strain	 combinations	 in	 yoghurt	 starters	 is	 important	 for	

achieving	the	best	technological	performance	regarding	the	quality	of	product.	
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	The	 study	 described	 in	 Chapter	 3	 was	 aimed	 to	 evaluate	 the	 impact	 of	 two	

commercial	probiotic	strains,	L.	rhamnosus	GG	and	B.	animalis	subsp.	lactis	BB12,	in	co‐

fermentation	 with	 traditional	 yoghurt	 starters	 on	 the	 metabolite	 formation	 in	 set‐

yoghurt.	The	results	revealed	that	the	two	probiotic	strains	did	not	influence	acidity	and	

the	major	aroma	volatile	compounds	of	yoghurt.	However,	the	presence	of	L.	rhamnosus	

GG	 contributed	 to	 a	 remarkable	 change	 in	 non‐volatile	 metabolite	 profile	 of	 yoghurt	

during	 refrigerated	 storage.	 Multivariate	 analysis	 allowed	 distinguishing	 yoghurts	

fermented	 by	 different	 starter	 combinations	 and	 different	 durations	 of	 storage	

according	to	their	metabolite	profiles.	

Since	many	 probiotic	 strains	 are	 not	 able	 to	 survive	well	 in	 fermented	milk,	 a	

strategy	 to	 enhance	 their	 survival	 was	 additionally	 applied	 by	 preculturing	 the	 three	

probiotic	strains	under	sublethal	stress	conditions	(combination	of	elevated	salt	and	low	

pH)	 in	 a	 batch	 fermentor	 prior	 to	 inoculation	 in	 milk.	 In	 Chapter	 4,	 the	 effect	 of	

sublethal	preculturing	on	 the	survival	of	L.	rhamnosus	GG	and	B.	animalis	 subsp.	 lactis	

BB12	and	metabolite	formation	in	set‐yoghurt	was	discussed.	The	results	demonstrated	

adaptive	 stress	 responses	 of	 the	 two	 probiotic	 strains	 resulting	 in	 their	 viability	

improvement	without	adverse	influence	on	milk	acidification.	PCA	revealed	substantial	

impact	of	sublethally	precultured	probiotics	on	metabolite	 formation	demonstrated	by	

distinctive	 volatile	 and	 non‐volatile	 metabolite	 profiles	 of	 yoghurt.	 This	 study	

demonstrates	 a	 potential	 application	 of	 stress‐adapted	 probiotics	 in	 an	 actual	 food‐

carrier	environment.			

The	study	described	 in	Chapter	5	 continued	on	 the	 framework	of	 the	previous	

studies	 to	 evaluate	 the	 performance	 of	 potential	 probiotic	L.	plantarum	WCFS1	 in	 co‐

fermentation	with	yoghurt	starters	and	investigate	the	impact	of	sublethal	preculturing	

on	its	survival	and	metabolite	formation	in	set‐yoghurt.	The	results	demonstrated	that	

sublethal	 preculturing	 did	 not	 significantly	 affect	 the	 growth	 and	 survival	 of	 L.	

plantarum	WCFS1.	Alternatively,	 incorporation	of	sublethally	precultured	L.	plantarum	

WCFS1	significantly	impaired	the	survival	of	L.	bulgaricus	which	consequently	reduced	

the	post	 acidification	of	 yoghurt	during	 refrigerated	 storage.	 PCA	 revealed	 substantial	

impact	of	L.	plantarum	WCFS1	on	the	metabolite	profiles	of	yoghurt.	This	study	provides	
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insight	in	the	technological	implications	of	L.	plantarum	WCFS1,	such	as	its	good	stability	

in	fermented	milk	together	with	the	inhibitory	effect	on	post‐acidification.	

		In	conclusion,	the	studies	described	in	this	thesis	revealed	that	incorporation	of	

L.	 rhamnosus	 GG,	 B.	 animalis	 subsp.	 lactis	 BB12	 and	 L.	 plantarum	 WCFS1	 did	 not	

significantly	 influence	 the	 acidity	 and	 concentrations	 of	 major	 aroma	 volatile	

compounds	 of	 set‐yoghurt.	 Still,	 all	 probiotic	 strains	 had	 a	 significant	 impact	 on	 the	

overall	yoghurt	metabolite	profiles.	The	presence	of	probiotics	considerably	contributed	

to	the	formation	of	a	 large	number	of	volatile	and	non‐volatile	metabolites	detected	at	

low	concentration.	Variation	in	the	overall	metabolite	profiles	of	yoghurts	co‐fermented	

with	 different	 probiotic	 strains	 could	 be	 statistically	 determined	 using	 multivariate	

analysis.	 The	 outcomes	 provided	 pattern	 recognition	 and	 classification	 of	 yoghurt	

metabolite	 profiles.	 Moreover,	 indicative	 metabolites	 suggested	 by	 PCA	 can	 be	

considered	 as	 potential	 biomarkers	 for	 detection	 of	 particular	 probiotic	 strains.	 The	

unique	features	of	the	molecular	profiles	may	also	facilitate	authentication	of	yoghurt	in	

the	 future.	 Development	 of	 sublethal	 preculturing	 for	 improving	 the	 survival	 of	 L.	

rhamnosus	 GG	 and	B.	 animalis	 subsp.	 lactis	 BB12	 has	 shown	 to	 be	 very	 successful	 at	

laboratory	scale.	Another	important	finding	is	that	application	of	sublethally	precultured	

L.	 plantarum	 WCFS1	 provides	 significant	 impairment	 on	 post‐acidification.	 This	

observation	is	technologically	relevant	since	post‐acidification	is	recognized	as	the	main	

detrimental	 factor	 for	 the	 survival	 of	 probiotics	 in	 fermented	 milk.	 Furthermore,	

reducing	 post‐acidification	 might	 be	 an	 interest	 for	 future	 development	 in	 the	 mild‐

flavor	 yoghurt.	 From	 a	 sensory	 perspective,	 it	 should	 be	 noted	 that	 stress‐adapted	

probiotics	 induce	 substantial	 changes	 in	 the	 metabolome	 of	 yoghurt.	 This	 finding	 is	

important,	 since	 variations	 in	 the	 relative	 abundance	 of	 various	 organic	 acids,	 aroma	

volatiles	 and	 proteolytic‐derived	 compounds	 may	 directly	 influence	 the	 organoleptic	

quality	 of	 product.	 Thus,	 an	 additional	 research	 focusing	 on	 sensory	 evaluation	 of	

yoghurt	 with	 trained	 panelists	 is	 recommended.	 Finally,	 similar	 metabolomic‐based	

analytical	approaches	can	certainly	be	extended	to	investigate	the	molecular	profiles	of	

other	fermented	dairy	products.	
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Samenvatting	

De	 activiteit	 van	 starter	 culturen	 tijdens	 yoghurt	 fermentatie	 is	 een	 van	 de	

belangrijkste	factoren	die	het	fermentatie	proces	en	sensorische	eigenschappen	van	het	

product	bepaald.	De	afgelopen	decennia	heeft	de	maatschappelijke	interesse	in	gezonde	

voeding	bijgedragen	aan	de	ontwikkeling	van	functionele	yoghurt	varianten	die	gebruik	

maken	 van	 gezondheid	 bevorderende	 bacterie	 streng;	 de	 zogenaamde	 ‘probiotica’.	 In	

vergelijking	tot	yoghurt	starter	culturen,	is	er	maar	weinig	informatie	beschikbaar	over	

de	werkelijke	metabolische	activiteit	van	probiotica	die	groeien	of	gesuspendeerd	zijn	in	

melk.	Daarom	was	het	hoofddoel	van	dit	onderzoek	om	de	simultane	groei	en	metaboliet	

productie	 te	 onderzoeken	 van	 yoghurt	 starters	 en	 verschillende	 probiotica	 strengen	

tijdens	 standyoghurt	 fermentatie	 en	 gekoelde	 opslag.	 L.	 rhamnosus	 GG	 en	B.	 animalis	

subsoort	 lactis	BB12	zijn	 twee	 leden	van	de	LAB	genera	die	veel	 toegepast	worden	 in	

gefermenteerde	 zuivel	 producten.	 L.	 plantarum	 WCFS1	 is	 een	 potentiële	 probiotica	

streng,	die	als	model	gebruikt	wordt	in	dit	onderzoek,	voor	de	studie	naar	activiteit	van	

niet‐zuivel	LAB	 in	een	zuivel	omgeving.	De	microbiële	activiteit	 tijdens	 fermentatie	en	

gekoelde	 opslag	 was	 onderzocht	 door	 het	monitoren	 van	 drie	 factoren;	 de	 bacteriële	

populatie	 dynamiek,	 het	 verzuren	 van	melk	 en	 het	 veranderen	 van	 vluchtige	 en	 niet‐

vluchtige	metabolische	profielen	van	yoghurt.		

In	Hoofdstuk	 2	 werd	 de	 interactie	 tussen	 verschillende	 proteolytische	 streng	

van	 S.	 thermophilus	 en	 L.	 delbrueckii	 subsoort	 bulgaricus	 tijdens	 standyoghurt	

fermentatie	onderzocht.	Een	aanvullende	metabolische	aanpak	werd	toegepast	voor	de	

karakterisering	 van	 vluchtige	 en	 niet‐vluchtige	 polaire	 metabolische	 profielen	 van	

yoghurt	 geassocieerd	 met	 proteolytische	 activiteit	 van	 de	 individuele	 strengen	 in	 de	

starter	culturen.	Het	gebruik	van	headspace	SPME‐GC/MS	en	1H‐NMR	resulteerde	in	de	

identificatie	van	respectievelijk,	35	vluchtige	en	43	niet‐vluchtige	polaire	metabolieten.	

Uit	 de	 resultaten	 bleek	 dat	 alleen	 niet‐proteolytische	 S.	 thermophilus	 streng	 proto‐

cooperatie	 aanging	 met	 L.	 delbrueckii	 subsoort	 bulgaricus.	 De	 proto‐cooperatie	

resulteerde	in	significant	hogere	populaties	van	de	twee	soorten,	snellere	verzuring	van	

de	 melk	 en	 significante	 aanwezigheid	 van	 vluchtige	 en	 niet‐vluchtige	 aroma	
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metabolieten	 die	 gewenst	 zijn	 voor	 een	 goede	 organoleptische	 kwaliteit	 van	 yoghurt.	

Deze	 resultaten	 onderstrepen	 het	 belang	 van	 selectie	 van	 geschikte	 bacterie	 streng	

combinaties	 in	 yoghurt	 starters	 om	de	beste	 technologische	prestatie	 te	 behalen	 voor	

product	kwaliteit.		

De	studie	die	in	Hoofstuk	3	 is	beschreven,	was	gericht	op	het	evalueren	van	de	

invloed	 van	 twee	 commerciële	 probiotica	 strengen,	 L.	 rhamnosus	 GG	 en	 B.	 animalis	

subsoort	lactis	BB12,	op	metaboliet	vorming	in	standyoghurt	tijdens	co‐fermentatie	met	

traditionele	yoghurt	starters.	De	resultaten	onthulden	dat	de	 twee	probiotica	strengen	

geen	 invloed	 hadden	 op	 de	 zuurgraad	 en	 de	 meest‐voorkomende	 vluchtige	 aroma	

componenten	 in	 yoghurt.	 Echter,	 de	 aanwezigheid	 van	L.	 rhamnosus	GG	droeg	 bij	 aan	

een	 aanzienlijke	 verandering	 in	 het	 niet‐vluchtige	 metabolische	 profiel	 van	 yoghurt	

tijdens	 gekoelde	 opslag.	 Met	 behulp	 van	 een	 multivariabele	 analyse	 kon	 yoghurt	 die	

gefermenteerd	was	met	verschillende	starter	combinaties	en	verschillende	opslag	tijden	

gescheiden	worden,	gebaseerd	op	hun	metabolische	profiel.		

Sinds	 veel	 probiotica	 strengen	 niet	 kunnen	 overleven	 in	 gefermenteerde	melk,	

werd	 een	 strategie	 toegepast	 om	 hun	 levensduur	 te	 verlengen	 door	 te	 pre‐cultiveren	

onder	sub‐letale	stress	condities	(combinatie	van	verhoogde	zout	concentraties	en	lage	

pH)	in	een	batch	fermentor	voor	inoculatie	in	de	melk.	In	Hoofdstuk	4,	werd	het	effect	

van	 sub‐letaal	 pre‐cultiveren	 op	 de	 overleving	 van	 L.	 rhamnosus	 GG	 en	 B.	 animalis	

subsoort	 lactis	 BB12	 en	 metaboliet	 formatie	 in	 standyoghurt	 bediscussieerd.	 De	

resultaten	 lieten	 zien	 dat	 adaptieve	 stress	 reacties	 van	 de	 twee	 probiotica	 strengen	

resulteerden	in	een	verbetering	van	hun	levensvatbaarheid	zonder	de	verzuring	van	de	

melk	te	beïnvloeden.	Het	gebruik	van	PCA	liet	zien	dat	er	een	substantiële	invloed	van	

sub‐letale	 gepre‐cultiveerde	 probiotica	 was	 op	 metaboliet	 formatie,	 gedemonstreerd	

door	 verschillende	 vluchtige	 en	 niet‐vluchtige	metabolische	 profielen	 van	 yoghurt.	 De	

studie	 liet	 een	 potentiële	 toepassing	 van	 stress‐geadapteerde	 probiotica	 zien	 in	 een	

echte	voedsel	matrix.	

De	 studie	 in	Hoofdstuk	5	 vervolgde	het	 raamwerk	van	de	eerdere	 studies	met	

het	evalueren	van	de	prestatie	van	potentiële	probiotica	L.	plantarum	WCFS1	streng	in	
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co‐fermentatie	met	yoghurt	starters	en	om	de	invloed	van	sub‐letale	pre‐cultivering	te	

onderzoeken	op	hun	overleving	en	metaboliet	 formatie	 in	standyoghurt.	De	resultaten	

lieten	 zien	 dat	 sub‐letale	 pre‐cultivering	 geen	 significante	 invloed	 had	 op	 de	 groei	 en	

overleving	van	L.	plantarum	WCFS1.	Maar	incorporatie	van	sub‐letaal	gepre‐cultiveerde	

L.	 plantarum	 WCFS1	 verhinderde	 de	 overleving	 van	 L.	 bulgaricus	 significant,	 wat	

vervolgens	ook	leidde	tot	reductie	van	naverzuring	van	yoghurt	tijdens	gekoelde	opslag.	

Deze	studie	geeft	inzicht	in	de	technologische	implicaties	van		L.	plantarum	WCFS1,	zoals	

de	 goede	 stabiliteit	 in	 gefermenteerde	 melk	 in	 samenhang	 met	 het	 beletten	 van	

naverzuring.			

Tot	 conclusie,	 de	 studies	 die	 zijn	 geschreven	 in	 dit	 proefschrift	 lieten	 zien	 dat	

incorporatie	 van	 L.	 rhamnosus	 GG,	 B.	 animalis	 subsoort	 lactis	 BB12	 en	 L.	 plantarum	

WCFS1	 geen	 significante	 invloed	 hadden	 op	 de	 zuurgraad	 en	 concentraties	 van	

veelvoorkomende	 vluchtige	 aroma	 componenten	 van	 standyoghurt.	 Echter,	 alle	

probiotica	strengen	hadden	een	significante	invloed	op	het	gehele	metabolische	profiel	

van	yoghurt.	De	aanwezigheid	van	probiotica	droeg	aanzienlijk	bij	aan	de	vorming	van	

een	groot	aantal	vluchtige	en	niet‐vluchtige	metabolieten,	die	bij	een	 lage	concentratie	

gedetecteerd	 konden	 worden.	 Variatie	 in	 de	 algehele	 metabolische	 profielen	 van	

yoghurt	die	geco‐fermenteerd	was	met	verschillende	probiotica	strengen,	kon	statistisch	

worden	 vastgesteld	 met	 multivariabele	 analyses.	 Bovendien	 konden	 sommige	

metabolieten	 die	 waren	 voorgesteld	 door	 PCA	 worden	 beschouwd	 als	 potentiële	

biomarkers	voor	detectie	van	specifieke	probiotica	strengen.	De	unieke	eigenschappen	

van	de	moleculaire	profielen	kan	ook	bijdragen	aan	het	authentiseren	van	yoghurt	in	de	

toekomst.	 De	 ontwikkeling	 van	 sub‐letale	 precultivering	 for	 het	 verbeteren	 van	 de	

overleving	 van	L.	 rhamnosus	 GG	 en	B.	animalis	 subsoort	 lactis	 BB12	was	 op	 labschaal	

zeer	succesvol.	Een	andere	belangrijke	vinding	is	dat	de	toepassing	van	sub‐letaal	gepre‐

cultiveerde	L.	plantarum	WCFS1	het	naverzuring	significant	belemmert.	Deze	observatie	

is	technologisch	relevant	omdat	naverzuring	wordt	gezien	als	een	van	de	meest	nadelige	

factoren	 voor	 de	 overleving	 van	 probiotica	 in	 gefermenteerde	 melk.	 Daarbij	 kan	 het	

reduceren	van	naverzuring	interessant	zijn	voor	de	toekomstige	ontwikkeling	van	milde	

yoghurt.	 Vanuit	 sensorisch	 perspectief	 moet	 worden	 vastgesteld	 dat	 stress	
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geadapteerde	 probiotica	 een	 substantiële	 verandering	 in	 het	 yoghurt	 metaboloom	

introduceren.	Deze	vinding	is	van	beland	omdat	variatie	in	de	relatieve	concentratie	van	

organische	zuren,	vluchtige	aroma’s	en	proteolytische	componenten	direct	van	invloed	

kunnen	 zijn	 op	 de	 organoleptische	 kwaliteit	 van	 het	 product.	 Daarom	 is	 het	

adviseerbaar	 om	 in	 vervolgonderzoek	 te	 focussen	 op	 de	 sensorische	 evaluatie	 van	 de	

yoghurt	met	een	getraind	panel.	Tot	slot	kan	een	vergelijkbare	metaboliet‐gebasseerde	

analytische	 aanpak	 zeker	 worden	 uitgebreid	 voor	 de	 analyses	 van	 de	 moleculaire	

profielen	van	andere	gefermenteerde	zuivelproducten.	
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Inspiration	

	

It	is	impossible	to	live	without	failing	at	something,	unless	you	live	so	cautiously	that		

you	might	as	well	not	have	lived	at	all	‐	in	which	case,	you	fail	by	default.		

(J.K.	Rowling,	British	novelist)	

 

มนัคงเป็นไปได้ยากท่ีคนเราจะมีชีวิตอยู่โดยไม่เคยพบเจอกับความล้มเหลว   

นอกเสียจากว่าคนคนน้ันจะใช้ชีวิตด้วยความระมดัระวังอย่างถึงท่ีสุด…   

…ซ่ึงน้ันกแ็ทบไม่ต่างจากการไม่ได้มีชีวิตอยู่เลย                           

ถ้าเป็นเช่นน้ันกเ็ท่ากับว่าคนคนน้ันล้มเหลวในการใช้ชีวิตไปแล้วโดยปริยาย 

(เจ.เค. โรว์ลิง, นักเขียนชาวอังกฤษ) 

 

 

Study	abroad	is	a	perfect	opportunity	for	Thai	students		

to	develop	their	adaptive	stress	responses.	

	

	

Self‐enduring	happiness	is	a	combination	of		

living	simply,	forgiving	more	and	expecting	less.	
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