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 ABSTRACT

Comparison in the RGB domain is not suitable for precise color matching, due to the strong dependency of this domain on
factors like spectral power distribution of the light source and object geometry. We have studied the use of multispectral or
hyperspectral images for color matching, since it can be proven that hyperspectral images can be made independent of the
light source (color constancy) and object geometry (normalized color constancy).
Hyperspectral images have the disadvantage that they are large compared to regular RGB-images, which makes it infeasible
to use them for image matching across the Internet. For red roses, it is possible to reduce the large number of bands (>100)
of the spectral images to only three bands, the same number as of an RGB-image, using Principal Component Analysis,
while maintaining 99% of the original variation. The obtained PCA-images of the roses can be matched using for example
histogram cross correlation. From the principal coordinates plot, obtained from the histogram similarity matrices of twenty
images of red roses, the discriminating power seems to be better for normalized spectral images than for color constant
spectral images and RGB-images, the latter being recorded under highly optimized standard conditions.
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1. INTRODUCTION

Several state-of-the-art image databases allow the comparison of a color image across the Internet with images in a
database. Usually, color matching is computed in the RGB-domain. However, RGB-based comparison is not suitable for
precise color matching due to the strong dependency of the RGB domain to recording conditions. Next to surface and
reflection/absorption characteristics of the object, the light source (illumination intensity, direction and spectral power
distribution), the sensitivity of the filters, the settings of the camera (like aperture), and the viewing position, all influence
the final RGB-image. Color-(sub)domains exist which are more or less invariant to the various causes of color variation.
Independence for the illumination intensity of the light source can be obtained by the use of color models with the intensity
component eliminated, like normalized rgb or hue/saturation. Funt & Finlayson1 describe a method to obtain color
constancy independent of the color of the illumination. By taking ratios of colors of neighboring pixels, a color constant
feature can be obtained, which is not only independent of the illumination color but also discounts shadows and shading
cues2. Color invariance, however, comes at the price of reduced information, and in many cases, these color invariant
systems do not offer enough discriminating power. It would be desirable to have a system which is invariant for variations
due to light source and camera and has at least the discriminating power of RGB images taken under constant lighting
conditions.

With multispectral or hyperspectral imaging3, a large part of the electromagnetic spectrum e.g. between 380 and 700 nm, is
recorded in more than hundred small bands (e.g. every 5 nm) for every pixel. Hyperspectral imaging offers the potential to
combine color constancy with a high discriminating power. The disadvantage is that it increases the amount of data
enormously and hyperspectral images of tens of megabytes are simply too large to be sent over the Internet for image
matching. Computational methods are required to reduce the data before sending.

The application in this paper for which the possibilities of hyperspectral imaging are investigated is the granting of Plant
Breeders’ Rights (PBR) for ornamental (flowering) rose-varieties. Before a new candidate variety can be granted PBR (kind
of patent), it has to be declared distinct from all other existing varieties worldwide. Therefore, in every country which
examines a new variety application, the candidate variety has to be compared with existing varieties, not only in the same
country but also in all other countries. For roses, international guidelines exists which makes it possible to describe a variety
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in a standardized way using a large number of well-agreed features4. These descriptions are used for the comparison, but are
often not sufficient: the differences in color and color patterns can be small and are difficult to describe. Therefore real
flowers or high quality color images are also required for comparison. There is a considerable need for a system which
allows image comparison of new variety applications with an up to date digital reference collection.
Therefore a distributed  image database system, FLORES™, has been developed in the Netherlands5. It runs from the web-
browser and uses Java applets to allow RGB-color image matching across the Internet. Hence the user can compare his own
images with a central database. In the applet, tools are available for semi-interactive segmentation (like thresholding and
region-growing) of an image in an object (flower) and background. When the user is satisfied with the segmentation, the
image and segmentation mask are sent to a central database, where feature extraction and matching takes place. The central
database returns a list of thumbnail pictures of the most resembling images in decreasing order of similarity. The thumbnails
contain links to larger-size images and other variety information.
Color differences between varieties can be rather subtle (∆E ≈ 1 can be sufficient for variety distinction) and variation
caused by recording conditions (camera, light source) can seriously disturb the comparison. Therefore we are studying the
use of hyperspectral images for plant variety testing with respect to the following four criteria:
1. color independent of the spectral power distribution (SPD) of the light source
2. color independent of the object geometry
3. compact set of features for transmission over the Internet
4. high discriminating power for the color matching

The paper is outlined as follows. In section 2, the material and recording conditions are discussed. Section 3 describes the
theory to obtain spectral images independent of the SPD of the light source and object geometry. In section 4, a compact
and discriminative set of features are presented for reducing the transmission load over the Internet. In section 5, a measure
of similarity is presented to compare the images. Results of the roses experiment will be presented in section 6 and finally
the discussion will be given in section 7.

2. MATERIALS AND METHODS

Twenty images of flowers of close resembling varieties of dark red roses are used for this experiment. The roses were
grown in a greenhouse under standard Dutch conditions and flowers were picked in August 1999. It should be stressed that
color differences between the flowers are very small. If the method is capable of correctly distinguishing the varieties under
these very demanding conditions, it has a large potential.
The flowers were recorded in two ways:
• with an RGB-color camera (Sony DX-950P 3-CCD). The light source consists of high frequency fluorescent daylight

tubes (6500 K). The framegrabber used is a Matrox Meteor.
• with a hyperspectral recording system which consists of an ImSpector V9 spectrograph (Specim, Finland), connected to

a B/W CCD-camera (Hitachi, KP-M1, IR-cutoff filter removed) and equipped with a NIKON 55mm-lens. The light
source is Tungsten halogen. The framegrabber is a Matrox Meteor II.

The ImSpector is a straight axis imaging spectrograph using a prism-grating-prism (PGP) dispersive element and
transmissive optics6,7. Most other imaging spectrographs have a folded optical path, which makes coupling to a camera
system more complicated than it would be with a straight axis component, like a lens. Off axis configuration also causes
astigmatism and other aberations. With the PGP dispersive element, these problems are largely overcome, due to the axial
transmissive spectrograph optics, made possible by a holographically recorded transmission grating. The ImSpector V9 has
a spectral range of 430-900 nm. The slit size is 50 �m.
The ImSpector uses one axis of the CCD-chip as the spatial axis and the other as the spectral axis. To record a spatial two-
dimensional image, the object has to be moved with respect to the camera. Therefore we have built a system consisting of a
linear translation table (Lineartechniek), driven by a programmable microstepping step motor driver (Ever Elettronica,
Italy).
The hyperspectral images are binned to reduce the size of image. The binning in the spatial axis is a factor 2. The step size
of the stepper table was chosen to match the spatial resolution. The resulting images have a spatial dimension of 256x256
square pixels (resolution 0.5mm/pixel). In the spectral axis a binning factor is chosen, such that a spectral resolution of 170
bands (from 430-900 nm) remains.
The software to control the stepper table and framegrabber, to construct the hyperspectral images and to save and display
them has all been locally developed in the Java-language. Further image processing is done in Scil-Image (TNO-TPD, Delft,
NL) and data analysis in Genstat (IACR, Rothamsted, UK).
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3. COLOR INVARIANCE

The spectra obtained by the spectrograph depend on the light source and object characteristics. Therefore, these spectra may
vary with a change in the intensity and energy distribution of the light source, material characteristics and viewing mode.
The aim of this section is to propose spectra which are invariant to illumination (color constancy) and the object geometry
and shadows (normalization). We will follow the method proposed by Stokman & Gevers8.
The section is outlined as follows. In section 3.1, the reflection is given modeling interaction between light and matter.
Color constant spectra are presented in Section 3.2. Then, the color constant spectra are made independent of object
geometry and shading (normalization) in Section 3.3.

3.1 The Reflection Model
Let ),( λxE be the spectral power distribution of the incident (ambient) light at the object surface at x  and let ),( λxL be the

spectral reflectance function of the object at x . The spectral sensitivity of the kth sensor is given by )(λkF . Then �k, the

sensor response of the kth channel, is given by:

λλλλρ
λ

dFxLxEx kk )(),(),()( ∫= (1)

where � denotes the wavelength, and ),( λxL  is a complex function based on the geometric and spectral properties of the

object surface. The integral is taken from the visible spectrum (e.g. 380-700 nm).
Further, consider an opaque inhomogeneous dielectric object, then the geometric and surface reflection component of
function ),( λxL  can be decomposed in a body and surface reflection component as described by Shafer9:
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giving the kth sensor response. Further, ),( λxB and ),( λxS  are the surface albedo and Fresnel reflectance at

x respectively. n  is the surface patch normal, s is the direction of the illumination source, and v  is the direction of the
viewer. Geometric terms GB and GS denote the geometric dependencies on the body and surface reflection component
respectively.

3.2 Color Constancy
Consider the reflectance of a perfect reflecting white diffuser. A sample is called a perfect white when the sample diffusely
reflects all wavelengths of the light source and does not absorb any of them. Diffuse reflectance implies that the reflected
light is symmetrical in all directions. The white diffuser used in this paper is a white tile of PTFE-plastic with a spectral
reflectance of over 0.98 from 400 till 1500 nm. Hence, we may assume that the white diffuser has constant spectral albedo
reflectance 1),( =λxB . Further, having diffuse reflectance and assuming that the surface normal n  is equal to the viewing

direction s , then 1),,( =snxGB . Then the sensor response of the kth channel of the white reference sample (without

specularities) is given by:

∫=
λ
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In this way, the relative spectral power distribution of the white reference is measured.
Further, an image is captured of an arbitrary sample under the same illumination conditions, and is divided by the
previously  obtained recording of the illuminant. We thus have:
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giving the kth sensor response of a sample with respect to a white reference. As mentioned before, the filters )(λkF  are

narrow-band filters, through the use of the spectrograph. In fact, filter )(λkF  can be modeled as a unit impulse that is

shifted over N wavelengths: the transmission at �k=� and zero elsewhere. This allows us to rewrite equation (4) as:
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obtaining:

),(),,,(),(),,()( kSkBk xSvsnxGxBsnxGx λλφ += (6)

Equation (6) implies that, under the assumption of a unit impulse band filter, the spectral images obtained by the
spectrograph can be made independent of the illuminant by dividing the original spectral image by the spectral
transmittance of the illuminant. Note that the spectral power distribution of the light source is unimportant as long as it
contains all wavelengths of the visible light in a sufficient amount.
However, in practice, the color filters are never unit impulse band filters. Further, the perfect white diffuser can only be
approximated by a real material. Under the assumption that natural objects and light sources, due to physics restrictions,
have relatively smooth spectral power distributions, we might still be able to approximate equation (6).

As said before, the white reference image used in this paper has been taken from a white tile of PTFE-plastic with a spectral
reflectance of over 0.98 from 400 till 1500 nm. Before dividing the spectra by the white reference the dark current has been
subtracted. The dark current was obtained by taking an image with a closed lens cap and lights turned off.

3.3 Normalization
In this section, the color constant spectra are normalized yielding spectra which are independent of the object geometry.
Consider the body reflection term of equation (6) :

),(),,()( kBk xBsnxGxD λ= (7)

giving the kth sensor response of the spectral reflectance curve of a matte surface.
According to equation (7), the color depends only on surface albedo and the brightness on factor ),,( snxGB . As a

consequence, a uniformly painted surface may give rise to a broad variance of sensor values due to the varying
circumstances induced by the image-forming process such as a change in object geometry.
In contrast, normalized sensor space is insensitive to surface orientation, illumination direction and intensity by dividing
each channel by the sum of channels as follows from:
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taken over N wavelengths and only dependent on the surface albedo and independent of the illumination spectral power
distribution, illumination direction s , and object geometry n .

4. CONSTRUCTION OF PCA-IMAGE

To satisfy criterion 3, we try to reduce the number of bands to an acceptable number. For this, we use principal component
analysis (PCA). PCA finds orthogonal linear combinations of a set of features (spectral bands) that maximize the variation
contained within them, thereby displaying most of the original variability in a smaller number of dimensions. It operates on
the sums of squares and products matrix, formed from the original features.
In order not to include the variation due to differences between flower and background, only the pixels of the flowers were
considered. The object (flower) in each of the spectral images was located by applying a threshold on a spectral band in the
red region. Since there was hardly any variation in the background, fixed thresholding worked fine for all images recorded,
but in principle any segmentation method can be applied, including interactive methods. The hence obtained binary mask
was used for selecting only the pixels belonging to the flower.
A sum of squares and products matrix (∑(xip-mean(xi)(xjp-mean(xj) ) is formed by combining all pixels p belonging to a
flower over all images considered, treating each spectral band i as a separate feature xi. This results in a 170x170 symmetric
matrix, with the sum of squares of the features on the main diagonal and the cross products on the off-diagonals.

After construction of the matrix, the eigenvalues and eigenroots of this sum of squares and product matrix were extracted.
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The feature vector x=(x1, x2, …, x170) at every pixel can now be replaced by a reduced feature vector y=(y1, y2, …yN) with
N<<170, where yi can be calculated as the product of the original feature set x with eigenvector j.
This can be done for each every pixel in each image, resulting in a 256x256xN image.

5. IMAGE MATCHING

To calculate a measure of color similarity between flowers, an N-dimensional histogram H was constructed for each flower.
The number of bins and bin size in each dimension depends on the observed range of values in each principal component,
over all images. Therefore the maximum and minimum value were calculated over all images for each of the three
components. The bin size of the histogram in each dimension was taken as the ratio of the observed range over all flowers
divided by the number of bins per component.
We have used a similarity measure S between histograms HA and HB as defined on the basis of symmetric cross correlation:
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where H(i,j) is the number of pixels in bin j in dimension i, divided by the total number of pixels summed over all bins and
dimensions, i.e. the relative frequency of bin(i, j).
For the RGB images, the same histogram binning (64x64x64 bins) and similarity measures were applied.

To obtain insight in the structure and relationship in the similarity matrix, a Principal Coordinates Analysis (PCO) is
performed. The Principal Coordinates of a symmetric distance or similarity matrix are orthogonal features, which try to
capture the original distances in the matrix in as few features as possible. In a PCO-plot of the first and second Principal
Coordinate, the multi-dimensional distances (or similarities) between the objects are optimally represented in a two-
dimensional plane.

6. RESULTS

The spectral images are analyzed in two ways. One is based on color constant spectral images as described in section 3.2,
the other on normalized color constant spectral images as described in section 3.3
For the color constant spectra, the first three eigenvectors of the sum and squares and cross products matrix contained more
than 99% of the total variation as can be seen by the cumulative contribution of the eigenvalues (Table 1). Therefore the 170
bands of every pixel can be reduced to 3 bands (principal components), while maintaining over 99% of the original
variation. This means a size reduction of 167/170 = 98.2% compared to the original image size.
For the normalized spectral images, the first three components maintained over 98.5% of the total variation.

Table 1. The value of the first five eigenvalues, their relative contribution and their cumulative contribution to the total variation (sum of
all eigenvalues) of the color constant spectra and of normalized color constant spectra.

color constant spectra normalized spectra
eigenvector eigenvalue

*106
%

variation
cum. % eigenvalue

*106
%

variation
cum. %

1 123467 95.14 95.14 664982 87.94 87.94
2 4564 3.52 98.66 48492 6.41 94.35
3 965 0.74 99.40 31997 4.23 98.58
4 206 0.16 99.56 2623 0.35 98.93
5 85 0.07 99.63 1226 0.16 99.09

Images of the first, second and third principal component are shown in Figure 1 and 2. In Figure 1, the principal components
are based on color constant spectra. The images were scaled between 0 and 255 for each component, using the same scaling
per component over all the images. All the flowers exhibited almost the full range for the first component, being bright at
the border and dark in the middle. This indicates that this component is more suitable of capturing differences within a
flower than between flowers. These differences are probably due to object geometry. For the second component more
differences between flowers can be observed.
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Figure 1. The first three principal components (columns) of  four different rose-flowers (rows) using color constant spectra. The left
column represents the first principal component, the middle column the second, and the right column the third component. For

comparison with Figure 3-5: the labels of the images from top to bottom are 657_1, 564_1, 549_1, 258_1.
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Figure 2. The first three principal components (columns) of  four different rose-flowers (rows), using normalized spectra. The left column
represents the first principal component, the middle column the second, and the right column the third component. For comparison with

Fig 3-5: the labels of the images from top to bottom are 657_1, 564_1, 549_1, 258_1.
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For the normalized spectra (Figure 2), the first component is clearly less influenced of the object’s geometry.

From the PCA-images of both color constant spectra and normalized color constant spectra, 3-D histograms were formed,
using the same binary mask for the flower as was used for the construction of the sum of squares and cross products matrix.
The number of bins for all three components was set at 64, yielding a histogram of size 64x64x64. This same histogram was
used for the RGB-images.

In Figures 3-5, PCO-plots are shown for the histograms calculated from the PCA-images and the RGB-images. The
Minimum Spanning Tree is overlaid on the plot. The Minimum Spanning Tree connects the nearest neighbors in the multi-
dimensional space. It serves as an indicator of the goodness of fit of the two-dimensional representation of the multi-
dimensional space. If many lines are crossing the 2D-representation is not good. The Minimum Spanning Tree has the same
structure as the hierarchical nearest neighbor tree.
The percentage of variance contained within the similarity matrix formed from the histograms of the PCA-images from
color constant spectra was explained for 22% by the first coordinate and for 15% by the second coordinate, giving a
combined explanation of 37% of the total variation in the matrix.

Figure 3. The Minimum Spanning Tree (the straight lines) is overlaid on first two principal scores of twenty rose
flowers, extracted from the matrix formed from the histograms of the PCA-images of color constant spectra.

The flowers are labeled by their plant number, followed by an underscore and a flower number.



204

Figure 4. The Minimum Spanning Tree (the straight lines) is overlaid on first two principal scores of twenty rose
flowers, extracted from the matrix formed from the histograms of the PCA-images of normalized spectra.

The flowers are labeled by their plant number, followed by an underscore and a flower number.

For the PCA-images of the normalized color constant spectra, the first coordinate explained 36% and the second 19% of all
variation in the similarity matrix (55% combined).
For the RGB-images, these numbers were 49% and 24% respectively (73% combined).

From these figures, it can be seen that the two flowers of the same plant all lie close together, illustrating that the same plant
gives the same color. Plant 258 and 259 belong to the same variety and the four points of this variety all lie together at the
utmost right side in the plot for all three methods. It can be concluded that differences between plant of the same variety are
similar to differences between flowers of the same plant. This is to be expected, since the growing conditions are highly
controlled and uniform and all plants of the same variety are genetically identical. Therefore it is possible to use small color
differences for discriminating varieties.
Furthermore all three figures clearly show several distinct groups of flowers. These groups are however not identical for the
three methods. With color constant spectra (Figure 3), flowers of plant 253 were not distinguishable from plant 554. With
RGB images (Figure 5) they could easily be distinguished. With normalized spectra (Figure 4), plant 253 is close to 554, but
flowers of the same plant are still nearest neighbors and there is some distinction.
With RGB images, plant 554 could not be distinguished from plants 556 and 564, but for both spectral method this was not
a problem.
Therefore RGB and PCA images do not contain the same information. Some information in the RGB images is not present
in the PCA-images, and vice versa.
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Figure 5. The Minimum Spanning Tree (the straight lines) is overlaid on first two principal scores
of twenty rose flowers, extracted from the matrix formed from the histograms of the RGB-images.

The flowers are labeled by their plant number, followed by an underscore and a flower number.

7. DISCUSSION

The goal of this research was to develop a method to compare color images, where (1) the color of the flower was
independent of the light source, (2) the color was preferably independent of object geometry, (3) the image was compact
enough for comparison across the internet and (4) the discriminating power was at least similar to that of RGB-images
recorded under highly optimized standard conditions.
The use of hyperspectral images allowed us to obtain color independence with respect to the light source and, after
normalization, also to object geometry. Therefore we could fulfill the first tow criteria.
The PCA method allowed a 98% size-reduction of the hyperspectral image from 170 bands to only three bands, no more
than an RGB-image. Hence it also fulfilled the third criterion.
Furthermore, the PCA method can simply be incorporated in a Java applet and current Java Just In Time compilers opposes
no problem with regard to speed of calculation. The remaining obstacle for the use of hyperspectral images is the required
scanning of the flower.

We have only studied Principal Component Analysis as a way to reduce the number of bands. This approach tries to
preserve the overall variation, but makes no attempt to optimize the variation between different rose varieties. It might be
that the use of other computational method like canonical variate analysis or partial least squares may give better results.
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We did not compare white or pink roses with the red roses in this experiment, as this comparison will cause no problems.
Matching problems will only occur in the same color groups. Nevertheless, the method should also work for other colors.
The eigenvectors extracted from the set of dark red roses, will not be optimal for other colors. We can solve this by trying to
calculate the PCA over the whole color set of roses and take more bands, or alternatively calculate an optimal PCA-set for
every color group and do a preliminary calculation of the color of the flower. Based on this first rough grouping, the applet
can ask the server for the optimal set of eigenvectors for this color group. If the main color of the rose is not clear-cut, e.g.
containing red and pink spots, several sets of eigenvectors may need to be sent across the network to allow matching with
different color groups.

We have used the spectral imaging for a very demanding problem, comparing dark red rose varieties with very limited color
differences. Nevertheless, the spectral images seem to have at least the same discriminating power as optimally recorded
RGB images. Since the hyperspectral images are independent of the illumination source, hyperspectral images are to be
preferred. In the normalized spectral image, the color difference due to object geometry has also been eliminated. The
results indicate that the normalized spectral images give at least the same, if not better, results than the color constant
spectral images and RGB-images. The test set is too small to draw firm conclusions, but it seems that normalized spectral
images are to be preferred above other images. A more extensive experiment including other color groups and more flowers
would be necessary to confirm these preliminary promising results.
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