Feed4Foodure; Literature study 'neonatal'

Acknowledgements

Ministerie van Economische Zaken Productschap Diervoeder (PDV) Productschap Pluimvee en Eieren (PPE)

Productschap Vee en Vlees (PVV)

Agrifirm Group

ForFarmers Hendrix

De Heus

Nutreco

VION Food Group

MSD - Animal Health

VanDrie Group

Denkavit

Background

Neonatal period, defined as:

Day 0-14

Day 0-25(weaning)

- Hallmarked by the development and differentiation of the intestine
 - Morphological
 - Functional
 - Immunological
- Life long effect (programming of immune system)

Nutritional factors

- Macronutrients
 - Carbohydrates (sugars / saccharides)
 - Fats (vegetable, animal)
 - Proteins (polymeric chains of amino acids, peptides)
- Micronutrients
 - Vitamins (e.g. A, B, C, and E)
 - Minerals (e.g. zinc, copper, selenium, and iodine)
- Functional ingredients
 - Examples are flavonoids and calcium

Objective

Generate an overview of published studies that investigated the effect of nutritional factors during the neonatal period in chicken and pigs, focusing on immune competence

Immune competence

 The ability of the immune system to react to a stimulus by means of an efficient, well-balanced immune response

Strategy

- 1) general or specific nutritional factor
- 2) immune competence related words, i.e. intestinal/gut health, immune system, or immunity
- 3) species (e.g. pig, Sus scrofa OR chicken, broiler, Gallus gallus)

3 case studies

Nutrient – β-glucan

Prebiotic - Polydextrose

Spray-dried animal plasma

Nutrient - β-glucan [Design]

β-glucan feed no SE

β-glucan feed SE

Control feed SE

- 30 ♂ one-day old White Leghorn chicks per group
- Feed intervention 2 days
- Purified β-glucan
- Challenge at 3 days post-hatch
 - S. enterica serovar Enteritidis

Nutrient - β-glucan [Results]

Effects of feeding β-glucan on chicken heterophil phagocytosis

Treatments	Percent heterophils+SE	Mean #SE/heterophil	Phagocytic index (PI)
Control feed	38.54±0.05	4.38±1.08	175.54±44.92
β-glucan feed	78.84±0.03 ^a	8.20±0.76 ^a	644.10±57.07 ^a

Nutrient - β-glucan

Putative mechanism

- Surface receptors on innate immune cells are responsible for binding to β-glucans
- Allowing the immune cells to recognize them as "non-self"

Prebiotic - polydextrose (PDX) [Design]

PDX 1.7

PDX 4.3 PDX 8.5 PDX 17.0 Control 0 g/L

- 1-day-old piglets
- 18 days intervention
- Housed in individual pens

Prebiotic - polydextrose [Results]

	PDX, g/L									Orth	Orthogonal <i>P</i>		
	0 1.7		1.7	4.3		8.5	17	SEM	Р	Linear	Quadratic		
	μmol/g of wet digesta												
Lactic	0.6	3 ^b	1.12 ^b	0.60	b	3.52 ^a	3.83 ^a	0.81	0.02	< 0.01	0.26		
log ₁₀ CFU/g wet digesta													
Lactobacilli 10		10	4.3	16	13	34	50	10	0.12	0.01	0.53		
Bifidobacteria		72	37	48	28	47	33	20	0.78	0.93	0.69		

↑ Short Chain Fatty Acids

- ↓ pH digesta
- \downarrow IL-1 β , and IL-8

Herfel et al., 2011

Animal Breeding & Genomics Centre

Prebiotic - polydextrose

Putative mechanism

 Oligosaccharides act as receptor analogs, as prebiotics, and support innate immunity

Spray-dried animal plasma [Design]

SDAP 10%

autoclaved SDAP 10%

Control, fish-meal 10%

- Duroc × Landrace × Large White
- Day 3 start experiment (n=12)
- Markers measured (day 21)
 - Growth performance
 - Morphology
 - Antioxidant capacity
 - Cytokines serum and intestinal mucosa

Spray-dried animal plasma [Results]

Results

Item	Control		1 SDAP		auSDAP		Pooled SEM		P-value	
ADG, g	209	209.43ª		33 ^b	3 ^b 246.98		10.72		0.012	
ADFI, g	240	.79 ^a	293.	293.63 ^b		284.1 ^b			0.002	
Item	(Control	l S	SDAP		auSDAP		oled SEM	P-value	
Duodenum										nt to
Villus height, µm		27.35 ^a	443	.78 ^b	397.98 ^b		19.17		0.002	
Crypt depth, µm 1		16.46	126.71		122.63		5.00		0.369	
Villus:crypt	Villus:crypt 2.8		3.53 ^b		3.27 ^{ab}		0.17		0.026	
Item		Con	ntrol		DAP au		SDAP Pooled SEM		P-value	
IL-1β, pg/mg of prot		247	247.68ª		203.98 ^b		27 ^a	4.38	<0.001	
TNF-α, pg/mg of prot		63.2	22ª	56.74 ^b		53.99 ^b		1.54	0.002	
IL-2, pg/mg of prot		226	.90 ^a 224		.05ª	198.	33 ^b	5.81	0.006	
sIL-2R, pg/mg of prot		41.5	58ª	a 25.4		25.19	9 ^b	3.21	0.003	

Spray-dried animal plasma

Putative mechanism

reduced activation of helper T cells (via IL2)

Conclusion literature study

- Although complex interplay between host-microbiotaenvironment (feed), it is possible to modulate the (immune competence of the) host by a multitude of nutritional factors
- This literature study gives new possible routes to intervene via feed (additives) on the immune development
- Putative working mechanisms proposed

Thanks for your attention

dirkjan.schokker@wur.nl

+31 (0)320 23 84 01

Animal Breeding & Genomics Centre