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Abstract 
 

Plagues of desert locust are a common threat to agricultural production. In order to prevent 

plagues, continuous information about desert locust habitats is needed.  Ground surveying 

approach was found to be expensive to cover the vast breeding habitats. This thesis explores 

possibilities of using satellite images for detecting habitats of desert locust as observed in 

ground surveys and to check if prediction of such habitats can be made to non-surveyed 

areas. A typical breeding site (Sudan Red Sea Coast) was selected for the research. On this 

coast, four plant communities, one of which is a desert locust risk habitat, were identified 

using ground surveying. Locust habitats were detected using supervised classification 

methods. The results revealed that MODIS sensor was the best sensor in providing suitable 

images of the study area for the winter season. With this sensor, it was possible to detect the 

risk habitats with 77.78% of users accuracy. But this result was dependent on the availability 

of cloud free images coupled with high cover percentage of the risk habitats. Maximum 

Likelihood classifier performed better than the three other tested classifiers. A mono temporal 

classification approach was better than a multi-temporal one. Based on expert knowledge, the 

predicted result of non-surveyed area (Eritrea) seems to be reasonable. It was concluded that 

MODIS sensor could detect the habitats of the desert locust on the study area with acceptable 

accuracy during the winter season. It is recommended that using additional information like 

soil type of the area increases the accuracy of the result. 

 

Key words: habitats, desert locust, image classifications, satellite images, Red Sea Coast 
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1.  Introduction 

1.1. Background  

 

Plagues of desert locust, Schistocerca gregaria Forsk., have been recognized as a threat to 

agricultural production in Africa and western Asia for thousands of years (Showler, 1995). Locust 

scourges are referred to in the different parts of the Christian Bible. For example, Exodus10: 11-

14, Deuteronomy 28:38, 2 Chronicles 6:28.  

 

A single swarm of locust can be small, for example a few hundreds of square meters, or huge, 

composed of billions of locusts with up to 80 million per square kilometer over an area of more 

than 1000 square kilometers (Krall, 1995).  Plagues often involve hundreds of swarms (Krall, 

1995). Desert locusts consume per day approximately an equivalent of their body mass (2 g per 

day) of green vegetation: leaves, flowers, bark, stems, fruit, and seeds. That is, nearly all crops as 

well as non-crop plants, are at risk (Showler, 1995). Desert locust damage can be substantial. For 

instance, in 1954-1955, Morocco lost more than $50 million (in 1994 dollars) due to desert 

locusts in six weeks in the Souses Massac Valley alone. In 1958, Ethiopia lost 167,000 tons of 

grain, which is enough to feed a million people for a year (Steedman, 1988). The Desert locust is 

thus a common threat to agriculture, subsistence farming and vulnerable pastures, which are 

indispensable for life to the people withstanding hardship in desert and semi-desert areas of 

Northern Africa, Middle East and Southwest Asia (Cherlet et al., 2000).   

 

A great number of studies have focused on locust outbreak control (Skaf et al., 1990). Preventive 

control of localized desert locust outbreaks, defined as sudden increases in populations exhibiting 

or full fledged gregarious behavior, is the corner stone of the current strategy in containing desert 

locust (FAO, report on the DLCC, 1999). Efficient early detection and control of these outbreaks 

ensures not only overall success, but also reduces costs, scale and environmental hazards of 

chemical control (Cherlet et al., 2000).  Early detection and identification of the habitats that 

serve as a major breeding site of desert locust is crucial.  To this end, ground surveying of major 

breeding sites is recurrently conducted. However, it is difficult to cover the whole locust breeding 

area using ground surveying (Hielkema, 1977). 
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At present, it is the concern of many national, regional, and international organizations to ensure 

continuous monitoring of desert locust in the most effective and efficient manner (Tappan et al., 

1991). There is a growing interest in the use of remote sensing technology as source of 

information regarding to the desert locusts (Voss, 1997). Space systems have unambiguous 

capability in providing essential information and services used for identification of various 

habitats. Cherlet et al (2000) suggest that satellite based information provides an opportunity for 

providing real time based, and the necessary synoptic knowledge on the status of habitats 

potentially favorable for desert locusts. 

 

1.2. Problem definition 

 
Due to the ability of desert locusts to form huge, mobile swarms in their gregarious phase and 

their feeding on all varieties and parts of plants, their sudden appearance in farmers’ fields is a 

fear-instilling event (Hardweg et al., 2000). Most often locusts do not start at high densities in 

swarms, but in small low-density populations in suitable pocket habitats (Cherlet et al., 2000). 

Knowledge of these habitats is useful for early locust detection and control. According to 

Maxwell-Darling (1936), the Sudanese Red Sea Coast is often an important part of subsequent 

successful breeding area leading to plagues.  Based on detailed ground surveying, the suitable 

habitats and the density of the desert locusts on the southern part of Sudan Red Sea Coast have 

been identified during the winter season (Woldewahid, 2003). However, continuous ground 

surveying is needed to do a basic prevention, control and monitoring of desert locust habitats. 

Such survey is difficult because extensive breeding occurs mostly in the remote, vast, and rugged 

Sahara, which precluded timely development of resources to go to critical breeding areas 

(Showler, 1995a). In addition, inadequate infrastructure and logistics hamper the routine 

collection of field information in those areas (Cherlet et al., 2000). Therefore, required field 

surveys are expensive, cover small areas and cannot be frequent. 

 

In view of the various problems in obtaining relevant field information from recession area of the 

desert locust, at adequate time intervals, forecasters and decision makers recognize remote 

sensing as a potentially valuable source of information (Hielkema, 1980). To this end, remote 

sensing images obtained by various sensors have been used to identify the habitats of the desert 

locust (Hielkema, 1980). The satellite sensor that has primarily been used for habitat studies is the 

National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High-Resolution 
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Radiometer (AVHRR) (Wallin et al, 1992). NOAA (AVHRR) data were used in the FAO 

ARTEMIS system to obtain in frequent synoptic overviews of the vegetation situation over the 

recession area (Cherlet et al., 2000). However, very sparse vegetation cannot be detected due to 

low spatial resolution (1km by 1km) of NOAA (AVHRR) images. Others such as Landsat, 

Satellite Probatoire d’Observation de la Terre (SPOT), Advanced Space borne Thermal Emission 

and Reflection Radiometer (ASTER), and Moderate-resolution Imaging Spectroradiometer 

(MODIS) have become new ideal sensors. Compared to NOAA (AVHRR), these sensors have 

better spatial resolution. They have not been yet tried in the study area for detecting habitats of 

the desert locust during the winter season.  

 

Habitat mapping using remote sensing images is based on the classification of individual pixels or 

groups of pixels with similar spectral signatures (Lillesand and Kiefer, 2000). There are four 

commonly used classification algorithms (classifiers), which are developed to group those pixels 

into similar classes (habitats). These are Maximum Likelihood Classifier, Minimum distance to 

Mean Classifier, Mahalanobis Distance Classifier, and Parallelepiped Classifier. These classifiers 

provide a good classification results based on the nature of the remote sensing data (spectral 

signature of the habitats) used for the analysis. In addition, the classifiers depend on the type of 

approaches used, mono-temporal using only one image or multi-temporal using more than one 

image, during classifications. These classification algorithms together with approaches have not 

been tried yet in the Sudan Red Sea Coast (SRSC) for detecting habitats of the desert locust using 

satellite images. Therefore, this study focuses on addressing the mentioned problems to fill the 

present gaps by linking the ground survey findings of habitats of the desert locust in the SRSC to 

satellite image of the study area. 

 

1.3. Research objectives 

 

The general objective of this research is to link ground surveying findings of desert locust 

habitats to its satellite image on the Sudan Red Sea Coast, and to check if prediction of such 

habitats can be made to non-surveyed areas. 
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1.4. Research Questions 

 

 Which remote sensing sensor can be used to detect habitats of the desert locust in the 

Sudan Red Sea Coast during the winter season? 

 Can images of the best sensor be used to identify the desert locust habitat with above 

70% accuracy? 

 Which classification algorithms give the best result of identifying the desert locust 

habitat? 

 Does a multi temporal approach give better accuracy than mono temporal one? 

 Is it possible to make predictions of habitats for desert locust in a non-surveyed area? 

 

1.5. Thesis outline 

 

This thesis report is organized as follows: 

Chapter 1 Introduces background information, statement of the problem, research objectives, 

research questions, and the structure of the thesis.    

 

Chapter 2 contains the literature review that focus on describing the general characteristics of the 

desert locust and their habitat. This chapter also gives the concept of remote sensing and its 

application for mapping of desert locust habitats. 

 

Chapter 3 describes the study area; the data used and detailed procedure of the developed 

methodology for this study. This chapter starts with the situation of the study area, and explains 

characteristics of the data used. Then, the techniques used for the image analysis to drive the 

habitats of the locust are described.  

 

Chapter 4 presents the outcome of this study. The results are shown and discussed in the order of 

the methodology to achieve each objective. Tables, figures and maps are used according to the 

nature of the information. 

 

Chapter 5 presents conclusion of the key findings. Recommendations are also provided in this 

chapter. 
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2. Literature review 

2.1. Desert locust 
 

2.1.1. General characteristics of locust 
 
The desert locust (Schistocerca gregaria Forsk.) is one of a dozen species of short-horned 

grasshoppers (Acridoidea) that are known to change their behavior and form swarms of adults or 

bands of hoppers (wingless nymphs) (FAO, 1994).  It exists in its solitary phase when conditions 

are not suitable for breeding. A period during which locusts predominantly occurs as solitary 

phase is called recession (Skaf et al, 1990). When conditions become favorable for breeding, 

desert locust densities increase which can lead to formation of hopper bands and swarms (Skaf et 

al., 1990). 

2.1.2. Desert locust habitats and distributions 
 

A habitat is a spatial unit that can be occupied by any groups or individual animals or plants 

independent of the size (Liu, 2001). A habitat provides the necessary combination of ecological 

components required to support a specific species. That is all habitats include at least a source of 

food, protective cover and space; and determine the possibility of existence of an individual 

species (Voss, 1997). Thus, desert locust has specific habitats for breeding (Showler, 1995a). It 

occurs in desert and scrub regions of northern Africa, the Sahel (region including the countries of 

Burkina Faso, Chad, Mali, Mauritania, and Niger), the Arabian Peninsula (e.g., Saudi Arabia, 

Yemen, Oman), and parts of Asia to western India (Steedman, 1988). These regions are 

characterized by seasonal rainfall averaging between 80 and 400 mm annually, which can vary 

dramatically from year to year with annual rainfall up to 70% above or below the average 

(Magor, 1997). Johanson (1926) firstly identified the Red Sea Coastal plains as important 

breeding areas for desert locust.  

 

The practice of shifting cultivation created many habitats with the Wadies area of the Sudan Red 

Sea Coast (Steedman, 1988). On this Coast, four important plant communities are found, namely 

Suaeda monoica, Heliotropium species, Panicum turgidum and Acacia tortilis. Only the 

Heliotropium plant community was identified as breeding habitat of the desert locust 
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(Woldewahid, 2003). The S. monoica plant community is dominated by S. monoica and mainly 

found at the coastal sites (fig 1a). The Heliotropium plant community occurs at the transition 

between the P. turgidum grasslands and S. monoica shrub, at places where spreading wadies 

provide for supplemental water. As far as the soils are non salty, the area of the Heliotropium 

plant community is extensively used for cropping millet (Pennisetum typhoideum Rich.). This 

plant community covers only about 5% of the study area but it supported 93-100% of the desert 

locust (Woldewahid, 2003) (fig. 1b). The P. turgidum community is characterised by the 

preferential species Panicum turgidum.  P. turgidum is a perennial tussock grass that is yellow 

during summer but produces green sprouts in the rainy season (fig.1c).  The Acacia tortilis plant 

community is dominated the widely spread perennial desert shrub A. tortilis (fig. 1d).   

 

         
a. Suaeda monoica   plant community             b. Heliotropium plant community 

   
c.  P. turgidum plant community                  d.  A. tortilis plant community 

Figure 1. The four plant communities of the Sudan Red Sea Coast (Woldewahid, 2003). (a) Suaeda 
monoica   plant community, (b) Heliotropium plant community, (c) P. turgidum plant community, (d) A. 
tortilis plant community 
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The greenness of each plant community was shown in Woldwahid (2003). In November 2000, all 

sites had green vegetation. At the end of January 2001, there were marked differences among 

plant communities in the greenness of the vegetation, and the greenness of Heliotrpium plant 

community much higher than the other plant communities (fig 2). 

  

 

Figure: 2. Percentage of sample sites with green vegetation in the four plant community Woldewahid 
(2003) 
 

2.1.3. Problems with locust 
 
During the solitary phase, locust populations are low and pose no economic threat. After periods 

of drought, when vegetation flushes occur in major desert locust breeding areas, rapid 

population buildups and competition for food occasionally result in a transformation from solitary 

behavior to gregarious behavior (Showler 1995). Following this transformation, locusts often 

form dense bands of flightless nymphs and swarms of winged adults that can devastate 

agricultural areas (Shawler, 1995). An important factor that contributes to the plague status of 

desert locust is its ability to migrate up to 500 km overnight. Such migrations can only occur if 

green vegetation has been available during its breeding activity (Skaf et al, 1990) 
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2.1.4. Approaches to control locust 
 
According to Cressman (1996), farmers were responsible to monitor and protect their crop from 

desert locust invasion. However, they could not manage to protect, and the responsibility shifted 

to governments and regional organizations. Practically, survey of desert locust consists of three 

steps: 1) green habitats identification following rainfall; (2) assessments to ensure whether the 

area is infested; and (3) search for locust infestations to control (FAO, 1994).  Nowadays, 

attention is given to the use of remote sensing technology as a source of information that can 

make monitoring more effective and efficient. 

 

 2.2. Remote Sensing 
 

2.2.1. Main concept 
 

Remote sensing is the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation (Lillesand and Kiefer, 2000). 

 

The energy, which illuminates the target or is emitted by the target itself, is in the form of 

electromagnetic radiation. A set of electromagnetic radiations of all possible wavelengths is 

called the electromagnetic spectrum (Lillesand and Kiefer, 2000). It is divided into the following 

regions: gamma ray, X-ray, ultraviolet, visible, infrared, and radio (Fig.3). 
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Figure.3. Electromagnetic Spectrum (URL 1) 
 

Remote sensing sensors systems can record information of earth objects from the portions of 

electromagnetic spectrum. Many earth surface features manifest very distinctive spectral 

reflectance characteristics that will vary with wavelength. This important property of object 

allows to separate distinct cover types based on their response values for a given wavelength. 

When we plot the response characteristics of a certain cover type against wavelength, we define 

what is termed the spectral signature or spectral curve of that cover. Figure 4 illustrates the 

spectral signatures for some common cover types. 

 

λ

reflectance (%)

wavelength (µm)

dry soil

water

wet soil

vegetation

40

20

0

0.8

60

0.4 1.2 1.6 2.0 2.4

 

Figure 4 Typical spectral reflectance curves for vegetation, soil and water (Lillesand and Kiefer, 2000).  
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The satellite sensor that has primarily been used for habitat studies is the NOAA (AVHRR) 

(Wallin et al, 1992). This sensor has nearly a daily repeat cycle and a 1-km spatial resolution. 

Both the temporal density of the data and the moderate spatial resolution make this sensor well 

suited for studying large area habitat. Other moderate resolution satellite sensors include SPOT 

vegetation (1 km data, launched in 1998), ASTER (15 m data, launched in 1999), Landsat (30 m 

data, launched in 1972) and MODIS (250 m, 500 m, and 1 km data, launched in 1999. These 

sensors have the proper instrumentation for habitat studies. Each of these sensors has improved 

geometry, radiometry, and calibration compared to the AVHRR (Davis et al., 2002).  

 

2.2.2. Classifications 
 

Classification is producing meaningful information via identification of individual pixels or 

groups of pixels with similar spectral responses (spectral signatures) to incoming radiation (Zhan, 

2003). Ideally, pixels are expected to be more or less grouped in the multispectral space in 

clusters corresponding to different land cover types (Keuchel et al., 2003). If classes do not have 

distinct clusters in the feature space, image classification can only give results to a certain level of 

reliability (Janssen, 2001). There are two general types of classifications: unsupervised and 

supervised. In both cases, previous knowledge of the imaged scene is highly desirable (Jensen, 

1996). Unsupervised classification compares pixel spectral signatures to the signatures of 

computer determined clusters and assigns each pixel to one of these clusters. In supervised 

classification, the image analyst supervises the pixel categorization process by specifying, to the 

computer algorithm, numerical descriptors of the various land cover types that exist in an image. 

Training samples that describe the typical spectral pattern of the land-cover classes are defined. 

Pixels in the image are compared numerically to the training samples and are labeled to the land-

cover class that has similar characteristics. Supervised classifications require up-front knowledge 

of the scene area in order to provide the computer with unique material groups or what are called 

"training classes". The resulting classification maps should be checked using ground truth 

information and field validation surveys if possible. In general, supervised classifications are 

more accurate than unsupervised (Jensen, 1996). There are four commonly applied classification 

algorisms to group the objects/classes in to similar classes. These include Maximum Likelihood 

Classifier, Minimum distance to Mean Classifier, Mahalanobis Distance Classifier, and 

Parallelepiped Classifier. These algorithms are described in details. 
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Maximum Likelihood (MLH) Classifier.  This Classifier quantitatively evaluates both the 

variance and the covariance of the trained spectral response patterns when deciding the fate of 

unknown pixel. It is based on a normalized (Gaussian) estimate of the probability density 

function of each class (Pedroni, 2003). It assumes that the distributions of the points for each 

cover-type are normally distributed and under this assumption, the distribution of a category 

response can be completely described by the mean vector and the covariance matrix. Given these 

values, the classifier computes the probability that unknown pixels will belong to a particular 

category. The principal drawback of MLH classifier is large number of computations required to 

classify each pixel (Lillesand and Kiefer, 2000). This is particularly true when either a large 

number of spectral channels are involved or a large number of spectral classes must be 

differentiated. In such cases, maximum likelihood classifier is much slower computationally than 

the other techniques (Lillesand and Kiefer, 2000). 

  

Minimum Distance to Mean (MDM) Classifier. Calculates the mean spectral value in each 

band and for each category, relates each mean value by a vector function, and after computing the 

distance; the unknown pixel is assigned to closest class. A pixel of unknown identity is calculated 

by computing the distance between the values of unknown pixel and each of the category means. 

It is mathematically simple and computationally efficient, but it has certain limitations. Most 

importantly, it is insensitive to different variance in the spectral response data. Because of such 

problems, this classifier is not widely used in applications where spectral classes are close to one 

another in the measurement space and have high variance (Lillesand and Kiefer, 2000).  

 

Mahalanobis Distance (MHD) Classifier. It is similar to minimum distance, except that the 

covariance matrix is used in the equation. Variance and covariance are figured in so that the 

clusters that are highly varied lead to similarly varied classes, and vice versa. From all clusters, k 

points per cluster are selected nearest to the point to be assigned. This new point is assigned to the 

cluster for which the average distance of k points to this new point is minimum.  

 

Parallelepiped (PPL) Classifier. It is sensitive to variance by considering the range of spectral 

values in each categories training sets (Lillesand and Kiefer, 2000). This range is defined by the 

highest and lowest digital number value in each band and appears as a rectangular area. An 

unknown pixel is classified according to the category range, or decision region, in which it lies or 

as “unknown” if it lies outside all regions. Parallelepiped classifier is very fast and efficient 
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computationally (Lillesand and Kiefer, 2000). PPL classifier encounters difficulties when 

decision regions overlap (Lillesand and Kiefer, 2000). Pixels lie in the overlapping areas are 

classified as “not sure” or just arbitrarily as one or both of the overlapping classes.  

2.2.3. Multi temporal image classifications 
 

A mono-temporal image analysis, which relies on one image obtained at a single point in time, is 

usually used for classification of different vegetation types (Wagner et al., 1993). However, 

sometimes its does not work well for classification of vegetation species types which have similar 

spectral signatures (PaxLenney e t al., 1997).  To solve such problem, different studies are going 

on to explore the possibility of using a multi-temporal classification approach so that to identify 

the differences of the vegetation types exhibiting on the various temporal stages (Wagner et al., 

1993).  Rogan et al. (2001) found that multi-temporal images provide significant improvements 

in accuracy of vegetation classifications. 

 

2.2.4. Accuracy assessment 
 

Accuracy assessments determine the quality of the information derived from remotely sensed data 

(Padroni, 2003). No classification is complete until its accuracy has been assessed (Lillesand and 

Kiefer, 2000). In this context, “accuracy” means the level of agreement between labels assigned 

by the classifier and the class allocations on the ground collected by the user as test data. When 

performing accuracy assessment for the whole classified image, the known reference data should 

be another set of data, different from the set that is used for training the classifier.  One means of 

expressing classification accuracy is the preparation of an error matrix (Appendix A). The Error 

matrix compares the relationships between known reference data (ground truth) and the 

corresponding result of classifications. With the error matrix, several accuracy indices such as 

overall accuracy, user’s accuracy and producer’s accuracy can be assessed. The detailed 

descriptions of these three accuracy indexes are explained below according to Lillesand and 

Kiefer (2000). The formulas are obtained from the matrix showed in Appendix A.  

 

Overall accuracy is the proportion of all reference pixels that are classified correctly (in the 

sense that the class assignment of the classification and of the reference classification agree). It is 

computed by dividing the total number of correctly classified pixels (the sum of the elements 
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along the main diagonal) by the total number of reference pixels (formula 1). It gives no 

information about what classes are classified with good accuracy. 

 

 

-------------------------- 1 

 

 

 

 

Where: 
                                N 

                             ∑akk    = total number of correctly classified pixels (the sum of the    
                      k= 1                        elements along the main diagonal) (Appendix A) 
                     N 

                              ∑aik   = total number of reference pixels 
                   i, k= 1 

   
           N = number of classes 
  

Producer’s accuracy is computed by dividing the number of correctly classified pixels in each 

category (on major diagonal) by the number of training set pixel used for that category (the 

column total) (formula 2). This figure indicates us how well the training pixel of the given cover 

type are classified 

 

 

-----------------------------2 

 

 

 

Where: 
                                   aii   = number of correctly classified pixels in each category (on major diagonal) 
                     N 

                              ∑aki   = the number of training set pixel used for that category (the column total) 
                   i = 1 

                          N               N 

Overall accuracy = ∑akk  =    1/n ∑akk 
                                K= 1                       K= 1 
                                N 

                                              ∑aik 

                                       i, k= 1 

  
Producers accuracy (class I) = aii           N 

     ∑aki 

                                                                      i,= 1 
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User’s accuracy is computed by dividing the number of correctly classified pixels in each 

category by the total number of pixels that is classified in that category (the row total) (formula 

3). This figure indicates the probability that a pixel classified in to a given category actually 

represents that category on the ground.  

 

 

-------------------------------3 

 

 

Where:  
 
                                   aii   = number of correctly classified pixels in each category (on major diagonal) 
                     N 

                              ∑aik   = the total number of pixels that is classified in that category (the row total)  
                   i = 1 

 

2.2.5. Applications for mapping of desert locust habitats 
 

Spurred on by the desert locust plague of 1988, there have been urgent and repeated request of 

international bodies such us Food and Agriculture Organization of the United nations (FAO), the 

European Community and the African Development Bank for remote sensing techniques to be 

applied and installed (Tucker et al., 1995).  Recent improvements in satellite image availability 

have made it possible to perform image analysis at much larger scale than in the past. This leads a 

much wider use of satellite images as a source of timely available spatial data (Pax-Lenney, et al 

2001). Remote sensing technologies have also greatly increased the capabilities of mapping 

various habitats. The FAO groups pointed out that Satellite data provides information for 

detection areas where vegetation conditions are suitable for desert locust breeding and 

development (FAO, 1994). Especially, improved remote sensing information can assist in timely 

pinpointing those areas where the potential for significant breeding and the danger of desert 

locust upsurges exist.  

 

A result obtained during the study on the use of remote sensing techniques for desert locust 

survey and control (march-June 1976) in Africa, justified a more detailed investigation on the 

  
Users accuracy (class I) = aii         N 

          ∑aik 

                                                           i,= 1 
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potential use of remote sensing data derived from Landsat.  The result showed that Landsat 

satellites are promising for the detection of small area of both ephemeral and perennial 

vegetations under desert conditions.  However, due to lack of sufficient field data and materials, 

the result was not conclusive to define the potentials of Landsat system for cost effective 

monitoring in operational context (Hielkema, 1980).  

 

In 1990 GTZ (Gesellschaft fur Techisch Zesammenarbeit, Germany) started the pilot project 

“Integrated Biological Control of Grasshopper and Locust”. One part of the project has 

concentrated on the mapping of the potential desert locust breeding habitats using remote sensing 

techniques. GTZ project was started with the Tokar Delta, a recession area on the Sudan Red Sea 

coast and images from Landsat Thematic Mapper(TM) were used for mapping the desert locust 

habitats. They found the possibility of mapping the desert locust habitat using these images (Voss 

et al., 1997). 

 

In general, the currently available satellites cannot directly detect individual locusts or locust 

swarms. Some highly sophisticated satellites used by the military and forthcoming civilian 

satellites could potentially locust swarms but these images are not yet available (URL 2). 
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3. Materials and Methods 

 

3.1. Study Area 
 
The study area was the Red Sea Coastal plain of Eastern Sudan between Port Sudan and Tokar. 

The geographical boundaries are 19035’N, 37013’ E in the North, and 18026’N, 37044’E in the 

South, the Red Sea in the East and the Red Sea hill in the West (fig 5). This coastal plain is 20 to 

40 km wide. The warmest month of the year in the coastal plain is August and the coldest month 

is January. Precipitation occurs in the winter months from October to January, which is the most 

favorable period for breeding of desert locust (Woldwahid, 2003).   

 

The soil in the study area mainly consists of coarse and fine sand. The coastal plain has four plant 

communities, which are mentioned in detail in the literature review under section 2.1.2.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure5. Location of the study area 
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3.2. Data  

3.2.1. Ground truth data 

 

The field data used for this study was collected by a collaborative team of Wageningen 

University, the FAO and the Plant Protection Directorate of Sudan. During the winters of 1999-

2000, 2000-2001 and 2001-2002, the team carried out intensive sampling (>100 sampling points) 

to map plant communities and associated locust populations in the above-delineated area of 

approximately 20 × 120 km using a 5 × 5 km grid (Woldewahid, 2003).  

 

Based on the availability of the remote sensing images and the situation of the study area, the 

field data of 2000/2001 was chosen for this study. During the year 2000/2001, the cover 

abundance of all plant species was determined at 64 sample sites. Co-ordinates were determined 

using a Garmin 12XL GPS at the beginning of each transect and directions taken by compass.  

Cover abundance was estimated in three 10 × 10 m plots, located at 50, 200 and 350 m along a 

400 m transect. At each sample site, transects and plots were selected to represent relatively 

homogeneous vegetation. Cover abundance scores in the three plots per transect were averaged to 

use it for data analysis. The detail of the field data collection can be obtained in the report of 

Woldwahid (2003). 

 

3.2.2. Remote sensing data 

 

To acquire the remote sensing data for this study; Landsat, ASTER, SPOT, and MODIS sensors 

were checked. Landsat 7 was launched on April 15, 1999. It has a new Enhanced Thematic 

mapper plus (ETM+) with 7 spectral bands and with 15 m spatial resolutions. It has a capability 

of viewing every 16 days (URL, 3). ASTER was launched on December 18, 1999. It has also a 

capability of taking image every 16 days with spatial resolution of 15 m to 90 m.  The SPOT 5 

satellite senor was launched on May 3, 2002, which has capability of taking images every 10 days 

with spatial resolution of 20 m (URL, 4). MODIS was launched on December 18, 1999 and began 

collecting data on February 24, 2000. It has capability of viewing the entire Earth's surface every 

1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths between 0.4 and 14.5 

µm, with spatial resolutions of 250 m (bands 1-2), 500 m (bands 3-7), 1000 m (bands 8-36) (see 
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Appendix B for MODIS Technical Specifications). MODIS has different available products, 

which are free and easy to download from Internet. MODIS has better spatial and spectral 

resolution than the NOAA sensor, which can allow for more accurate and large-scale change 

detection of vegetation conditions. Moreover, it has more temporal availability of data than the 

Landsat sensor.  

 

In this study, a 250-meter (band 1 and 2 or Red and Near infrared) surface reflectance with 

Sinusoidal projection of MODIS surface reflectance product (MOD09GQK) was used. The 

product is an estimate of the surface spectral reflectance for each band to produce a measurement 

equivalent to a ground-level measurement with no atmospheric scattering or absorption (URL 5).  

 

MODIS images that cover the study area were taken in same year and season of ground data to 

extract satellite information of the plant community.  

3.3. Research methodology 
 
The appropriate sensor for this study was selected. Three suitable images were acquired. Both the 

ground data and the remote sensing data (images) were prepared. For the mono temporal 

approach, supervised classifications were performed using each of the prepared images. After 

classifying, the accuracies of the results were assessed by means of error matrix. For the multi-

temporal, images were stacked with different combinations and classified following the same 

procedure as mono temporal approach.  The classified results from the mono temporal and multi-

temporal approaches were compared. This resulted in final desert locust risk habitat of surveyed 

area. Predictions of risk desert locust habitat were done by extrapolating spectral signature of the 

surveyed area to non-surveyed area.  Expert knowledge based approaches were used for 

validation of the prediction result. The overall procedure is illustrated in figure 6. 
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Figure 6.  Methodology flowchart 
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3.3.1. Preprocessing 
 

a. Training and Test Sets preparation 

 

Sixty-four vegetation samples that were collected in the winter season of 2000/2001 were used 

for this study. The sample sites were divided into two sets. The first set, which has 23 of the total 

samples, was used for the training sites during classification of the locust risk habitat for both 

mono and multi-temporal image of the study area. The remaining 41 sample sites were not 

enough to use as testing sites. Testing sites should be enough to be representative for accuracy 

assessments (Lillesand and Kiefer, 2000).  Therefore, one additional sample site to each of the 

testing sample sites was collected from the image by using the coordinates and the directions 

taken during field data collection. As a result, a total of 82 testing sites were used and labeled as 

second set.  

 

b. Selecting Remote Sensing Sensors 

 

The availabilities of suitable images were checked from different remote sensing sensors during 

the winter season of 1999/2000, 2000/2001 and 2001/2002 (URL 3, 4 & 5). The visited sensors 

for the purposes of this study were Landsat, ASTER, SPOT, and MODIS sensors. Based on the 

availability and image quality (cloud cover), the best sensor was selected for this study.    

 

c. MODIS image Acquisition and Importing 

 

The free MODIS products were collected from the website of the EOS data gateway (URL 2).  

After checking the overall quality, more than 100 images of the MOD09GQK product from 

November 2000 to March 2001 were selected and downloaded. These products are provided by 

the EOS gateway in HDF format, and they are not readable to the software ERDAS Imagine 8.5 

which is used for this study. Therefore, all of the downloaded data were converted into IMG 

format using import function of the ERDAS Imagine 8.5.  
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d. Quality Control and Sub Setting to Study Area 

 

MODIS provides quality control information that allows to screen each pixel and to determine 

whether it is appropriate for scientific analysis (URL 5). Quality Control Data of the 

MOD09GQK products is given by band 3 with cell value of 4096. Using Modeler function of 

ERDAS Imagine 8.5, cells in band 1&2 were filtered and remained only if their values in band 3 

were equal to 4096. 

 

 The study area covered only small part of the MODIS image. Therefore, after quality control, the 

image is subsetted to the study area. These operations were carried out on each of the three 

downloaded MOD09GQK products.  

 

3.3.2. Processing 
 

a. Training Computer and Signature Evaluation 

 

The prepared training samples were used for training the computer and signatures of these 

samples were collected. Before performing classifications, the signatures of these training sites 

were studied in order to get an accurate idea about the position and the size of the classes in the 

feature space. In addition, signature evaluation was used to see if signatures of different objects 

were well separated, or if were overlapping in the feature space plot, which help to decide to 

merge the signatures or not. 

 

b.  Image Classifications 

 

Supervised classifications were performed using image signature collected by training site 

(section 2.2.3). The classifications were done per plant community level. Then, the classified 

plant communities were merged to generate a total of two classes, which are a risk and non- risk 

desert locust habitats. Desert locust risk habitats in the context of this research are those plant 

communities, which can support 93-100% of desert locust (Table 1).  This habitat covers 5% of 

the study area (Woldwahid, 2003).  
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Table 1. Risk and non risk habitats of the desert locust on the Sudan Red Sea Coast. 
 
Classes Plant communities Area 

(%) 
Desert locust density 

(%) 
Risk Heliotropium 5 93-100 

No risk S. monica, P. turgidum, A. tortilis 95 - 
 

 

Four classification algorithms; MLH Classifier, MDM Classifier, MHD Classifier, and PPL 

Classifier were tested over the three images to select the best one.    

 

For the multi-temporal analysis, combination of images where stacked using ERDAS imagine 

function. Firstly, image of November 14, 2000 with January 20, 2001 was stacked. Secondly, 

Image of November 14, 2000 with January 24, 2001; and thirdly, January 20, with that of January 

24, 2001 was stacked. Finally, the combinations of the three mono temporal images were stacked. 

Each of the stacked images was classified using the above-mentioned classifiers.  

 

c. Accuracy Assessment 

 

Accuracies of both mono-temporal and multi-temporal classification results of the risk and no 

risk habitats were assessed using separate testing sites and presented in the form of error matrix. 

Error matrix compares the relationships between known reference data (ground truth) and the 

corresponding classification results (Lillesand and Kiefer, 2000). It is shown in the form of 

overall accuracy, users accuracy (the probability that a classified “risk” habitats is a true “risk” 

habitat), and producer’s accuracy (the probability that a “risk” habitat will be classified as risk 

habitats). 

 

d. Predictions of Habitat to Non surveyed Area 

 

MODIS image was used for predicting the habitats of the desert locust on non-surveyed area. It 

was checked in Eritrea between Shirumkelib (17042’N/38023’E) and Akbanazouf Plains 

(15057N/39012’E). This area is a focal point of FAO for forecasting desert locust (URL 6). 

 

The spectral signatures of surveyed area tested by the best classifier were chosen for predicting 

the habitats on non-surveyed area. These signatures were extrapolated to the non-surveyed area 
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using ERDAS imagine. The best classifier obtained on non-surveyed area was used and 

supervised classifications were performed. The predicted results were validated using expert 

knowledge. 
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4. Results and discussion 

4.1. Selecting Remote Sensing Sensors 
 
Out of the four visited sensors (Landsat, ASTER, SPOT, and MODIS), MODIS sensor is the only 

one that provides images during the winter season on the Sudan Red Sea Coast (Table 2). Winter 

season of the SRC is a period favorable for the growth of plant community, which creates suitable 

conditions for the breeding of desert locust. The field data was taken during such season, which is 

often cloudy. Using the other three sensors, the maximum amount of images available is limited 

to about 1 or 2 per month because of the low revisiting time (URL 3). Therefore, the probability 

to get only cloudy images is very high. 

 

When image are ordered or assessed the image producer indicate the cloud percentage per scene 

(the whole image viewed at a time). The study area only covered small part of the scene.  Even if 

100 images which are considered cloud free, were obtained from the image producer, only three 

images were suitable to use for the study area (Table 2). The clouds cover in the study area, 

which are very near to the Red Sea Coast, made other images useless for this analysis.  
 
Table2. Evaluated sensors for obtaining remote sensing data during the winter season of 2000/2001 on the 
Sudanese Red Sea Coast. 
 

 
 
 
 
 
 
 

 

 4.2. Mono-temporal image 

4.2.1. Classification result of desert locust risk habitats 
 

Two classes, risk and no risk habitat were obtained. Different classifiers were tested using three 

images acquired in the winter season of year 2000/2001. These three images were classified 

individually with four classifiers. Each of these classifiers resulted in the possibility of 

Image without clouds 
 

 
 
 
Sensors 

 
 

Return images per 
month 

Indicated by producer 
(scene) 

Actual case 
(in the study area) 

Landsat 1 to 2 - - 
ASTER 1 to 2 - - 
SPOT 2 to 3 - - 

MODIS Every day 100 3 
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discriminating the risk locust habitat from no risk habitats (Appendix C). To check the 

performance of each classifier accuracy assessments were done. 

4.2.2. Accuracy assessment of mono-temporal image classifications 
 

The accuracy of mono-temporally classified images of 14 November 2000, 20 January 2001, and 

24 January 2001 were assessed.  

 

Figure 7 shows the summarized accuracies of each classifier using the three-classified mono 

temporal images. In this figure, it was found that the performance of each classifier in each of 

these three mono-temporal images in detecting both risk and non-risk desert locust habitats by 

using the three accuracy indexes (producers, users and overall accuracies). These figures are 

obtained based on the error matrix shown in Appendix D.  

 

In the image of November 14, 2000, Maximum likelihood classifier resulted better accuracy than 

other classifiers. (Fig 7a). Minimum distance to Mean Classifier showed best classification 

accuracies than other classifiers using January 20, 2001 image (fig 7b). In addition, this image has 

better accuracy than that of the November 14, 2000. The classifications accuracy result obtained 

by January 24, 2000 image was the best of the three images (fig 7c).  
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Figure 7 Summary of accuracies of each classifier for risk and no risk habitats in each of the three images. 
(a) November 14, 2001; (b) January 20, 2001; and (c) January 24, 2001 images.  (MLH: Maximum 
Likelihood Classifier, MDM: Minimum distance to Mean Classifier, MHD: Mahalanobis Distance 
Classifier, and PPL: Parallelepiped Classifier) 

 

Careful inspection was given for the risk habitats since it is the major focus of this study to 

pinpoint these risk habitats of the desert locust. Overall accuracies of the classified risk habitats 

were much higher than the other two accuracy indexes (users and producers) in each of the three 

images.  For instance, Mahalanobis Distance Classifier resulted in 70.73 % overall classification 

accuracy using November 14, 200011 images and null for the producers and users accuracies of 

the risk habitats. The reason for such big overall accuracy is result of the approach used for 

grouping the four plant community into two classes (risk and no risk habitats) (section 3.3.2). 

Calculation of the accuracies using error matrix, were based on the two classified risk and no risk 

habitats. Grouping of the three plant communities as no risk habitats for the calculation may over 

or underestimate the accuracies. Overall accuracy is measured by using the total correctly 

classified habitats divided by reference (testing habitats) (section 2.2.4). Therefore, these 
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problems resulted in high overall accuracies of the classified risk habitats and a decision was 

made to skip it, as it did not achieve the main goal of this particular study.   

 

Careful inspection was given for the risk class since it is the major focus of this study to pinpoint 

these risk habitats of the desert locust. Special attention was also given to the user’s accuracy. 

Using the user’s accuracy, it is possible to know the probability that a classified “risk” habitat is a 

true “risk” habitat. With this, the summarized user accuracies of the risk habitat for the mono 

temporal images are shown in figure 8. The result showed that risk habitats were discriminated 

with user’s accuracy of 77.78% by using MLH classifier.   
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Figure 8 Summary of the accuracies of risk and no risk habitat for three images obtained by the four 
classifiers.  
 

The accuracy assessment results of the mono temporal classification showed that Maximum 

likelihood classifier performed better than the other three classifiers in each of the three images 

except the January 20, 2001. To identify the cause of such problem in January 20, 2001 image, it 

was checked whether the image fulfilled the required assumption of MLH classifiers or not.  It 

was found that the data were normally (Gaussian) distributed (Appendix G -fig1).  The problem 

was due to overlap of the classes (the plant communities) in the feature space plot (Appendix G-

fig 2). The pixel values of the two bands were plotted in a two-dimensional diagram as vectors, 

this forms the feature space plots of the image. In the feature space, it was expected that each 

plant community would accumulate to distinct clusters by having distinct spectral pattern.  The 

southern parts of this image were too cloudy and were not used for the analysis. Pixels with risk 
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habitat information might be lost and showed too much overlap of the four plant communities 

toward the soil line. MLH classifier computes the probability that unknown pixels will belong to 

a particular category and in case of much overlapping results in poor separable classes (habitats 

(URL, 7). In such cases, the Minimum distance to mean show better as it considers computing the 

distance between the values of unknown pixel and each of the categories means during deciding 

the fate of unknown pixels.  

 

The MHD and PPL classifiers showed low accuracy result (no users accuracy of risk habitats) in 

the November14, 2000 image. The MHD and PPL classifiers have problems if the clusters of 

pixels are not highly varied (similar) and when pixels are quite far from the mean respectively 

(section 2.2.2).   It could be such reason resulted in low accuracy.  

 

The user accuracy of the classified risk habitats using 24 January 2001 image was by far better 

than the two others (fig 8). Woldewahid (2003) showed that in November 2000, all the sites had 

green vegetation. At the end of January 2001, there were marked differences among the plant 

comminutes, and the greenness of Heliotropium plant community (risk habitat) was much higher 

than the other plant community. This could be one of the reasons of variations in accuracies 

between these images. However, major differences of accuracies were observed between 

classification made based on the 20 and 24 January 2001, which in reality do not have been 

expected that much. This big leap of accuracy may be loss of information due to the presence of 

clouds in the southern part of the study area (Appendix C-fig 2). 

 

4.3. Multi-temporal images 
 

4.3.1. Classification result of desert locust risk habitats 
 

The images were combined and resulted in four different combined images. Each image was 

classified using the four classifiers. The results showed that risk habitats are distributed through 

out the study area (Appendix E). The accuracies of the classified results were calculated. 
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4.3.2. Accuracy assessment of multi-temporal image classifications 
 
The accuracies of multi-temporal classified images, which were combined 14 November 2000 

with 20 January 2001; 14 November2000 with and 24 January 2001; 20 January2001 with 24 

January 2001 and the combination of the three images were assessed in order to find the best 

classifier. Attention was given to user’s accuracy of the risk habits.  Figure 9 shows that user’s 

accuracy of each classifier using the multi-temporal images with different combinations. The 

largest users accuracy obtained was 50 % and the lowest was 15 %.  These figures are obtained 

based on the error matrix shown in Appendix F. The combined multi-temporal image of 14 

November 2000 with 24 January 2001 showed better accuracy than 14 November 2000 with 20 

January 2001. MLH classifier showed better users accuracy than the rest.  
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Figure 9 User accuracies of the risk habitats for the multi-temporal classifications 
 

 4.4. Comparative analysis of mono temporal with multi temporal results 
 

Comparative analyses of mono temporal with multi-temporal classified result of each classifier 

were done, by using ranking method.  The performances of each classifier in each mono temporal 

and multi-temporal classified image were ranked based on the user accuracies of the risk habitat. 
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Value 1 was given for the best classifier and 4 the least. MLH classifiers scored value 1 in all 

conditions except in image of January 20, 2001(table 3).    
Table 3. Ranks of classifiers using the classified mono and multi temporal images  

 

 

The user’s accuracies of the classified risk habitat obtained by mono-temporal approach showed 

better result than the multi-temporal approach (fig 10).  These results are contrary to Rogan et al. 

(2001) findings that multi-temporal images provide significant improvements in accuracy of 

vegetation classifications. The reason of low accuracy could be the data set used for the analysis. 

Only one of the three images showed good classification result. The reasons why the two images 

taken in November 14, 2000 and January 20, 2001, resulted lower classification accuracies are 

explained in section 4.2.2. There was no other option to get a suitable additional MODIS images 

during the winter season of the study area for the multi-temporal analysis. Therefore, different 

combinations of these available images were used for the analysis. Combing good data with poor 

data reduced the classification accuracy. This has been observed in the multi-temporal classified 

images using combined image of November 14, 2000 and January 24, 2001 images and their 

individual classification result.  
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Figure 10. Users accuracy summary of classified risk habitats by mono-temporal with multi-temporal 

images 

Mono temporal images Multi temporal images 

Classifiers 14-Nov 20-Jan 24-Jan
Nov 14 
&Jan20 Nov 14 &Jan24 Jan 20 &24 Nov14, Jan 20 &24

MLH 1 2 1 1 1 1 1 
MDM 2 1 4 2 4 4 4 
MHD 3 3 2 3 3 3 2 
PPL 3 4 3 4 2 2 3 
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4.5. The final risk desert locust habitat map 
 

The Maximum likelihood classifier, which is the best classifier found in this study and image of 

January 24, 2001 were used to develop the final map of the risk habitats. The result showed that 

the risk habitats are following the Red Sea Coastal Plain at the Wadies out flows (fig. 11).   

 Figure 11. Final map of the risk habits of the desert locust on the Sudanese Red Sea Coast derived by 
MODIS image (January 24, 2001) using maximum likelihood classifier. Risk habitat indicates 
Heliotropium plant community. No Risk habitat includes Panicum turgidum, Suaeda monoica, and Acacia 
tortilis plant communities. Roads, Wadies and towns were included for better interpretation of the map 
from other source.  
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The cover percentages of the result obtained by the best classifier using the January 24, 2001 

image were compared with the result found by Woldwahid (2003) using ground surveying. It was 

found that the risk habitats were larger than the one obtained by ground surveying (Table 4). The 

sources of the problem for such gap of the two results could be the way of the data collection 

coupled with the spatial resolution of the sensor. The data used for the present study was 

collected for the purposes of identifying the desert locust habitats based on ground surveying 

(section 2.1). MODIS has a spatial resolution of 250 m *250 m, which might overestimate the 

area.  

 
Table 4. Comparative cover percentage of the risk and non-risk habitats of desert locust by the maximum 
likelihood classifier using January 24, 2001 image with the cover % obtained by ground surveying 
(Woldiwahid, 2003).  

 
  

4.6. Prediction of non-surveyed desert locust risk habitats 
 
The spectral signatures of the habitats within the surveyed area were used to check whether 

prediction could be made for non-surveyed area.  Due to cloud cover of the non-surveyed area 

(Eritrea), it was not possible to get other suitable image during the winter season for the analysis.  

In addition, there was time limitation to order images of other years and other non-surveyed area.  

Therefore, MODIS image of November 14, 2000 was used.  It was tested in Eritrea between 

Shirumkelib (17042’N/38023’E) and Akbanazouf Plains (15057N/39012’E). These sites are the 

focal points of FAO for forecasting desert locust situation (URL 6). 

 

The following map shows the risk habitats of the desert locust (fig 12). As the result shows, risk 

habits of the desert locust are found near to those sites targeted by FAO and some other parts of 

the area. 

MODIS 
 Image 

Ground  
Surveying 

Class Area (%) Area (%) 
Risk 14.75 5 

No risk 85.25 95 
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Figure 12. Desert locust habitat of non surveyed areas (Eritrea) 
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Validation of the result for non surveyed area 
 
The prediction result of non-surveyed area (Eritrea) was sent for validation to experts working at 

FAO. Dr Keith Cressman, one of the experts, responds  

 

“I would be extremely caution about extrapolating results from Woldewahid's work for several 

reasons. MODIS imagery evaluated during dry years may under classify or in wet years, it could 

tend to over classify important DL habitats on the northern Red Sea coast in Eritrea. Even if 

analysis using a 14.11.2000 MODIS image is a good start, but surely not indicative of potential 

DL habitat. This year may or may not have been an average year in terms of rainfall. 

Furthermore, November is at the beginning of the rainy season on the coast. In reality, the 

majority of the coastal plains from the Akbanazouf Plains to the Sudanese border are very 

important DL habitat, given sufficient rainfall. Subsequent months should be evaluated and, I 

would suggest, subsequent years.”  

 

The suggested reason about the date on which the image was taken is right. That is why it was 

possible to get such image for the analysis.  Although the plant community was not there during 

the analysis period, it is possible to get an overview of the soil type that can support the plant 

community. 

 

In addition, literature has been searched to check if the risk habitats (Heliotopium plant 

community) can be found in the coastal plain of Eritrea. It was confirmed that this plant 

community is common near to Wadies of the Eritrea coastal plan (URL 8).   

 

4.8. Critical reflection 
 
The present study was conducted to explore the possibility of using remote sensing images to 

give information on the habitats of desert locust, as observed in ground surveys on the Sudanese 

Red Sea Coast.  Such application of linking ground surveying findings to its winter season of 

satellite image for this area was the first time. Accuracy based classification of habitats and 

extrapolating the result to non-surveyed habitat to check the possibility of using prediction of the 

desert locust habitats was the other test of the study. Selecting the best operational sensors for 
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capturing image in the winter season of the study area was the first task. The next question was 

looking the possibility of detecting the habitats using image acquired by the best sensor with 

above 70 % accuracy. This accuracy was selected since it is an acceptable value in remote 

sensing application depending on the sensors used.  

 

MODIS sensor was found to capture the images with spatial resolution of 250*250 m but high 

temporal value among the four visited sensors during the winter seasons. A classification 

accuracy assessment result of the risk habitats of the desert locust using images taken by this 

sensor with low resolution showed erratic result. For instance, 77.78% user accuracy was 

obtained using image taken on January 24, 2001. The remaining used images for the analysis did 

not support such accuracy and resulted in below 70 % user’s accuracy. One of the critical reasons 

for such gap of accuracy could be that the plant cover percentage at this particular season was 

highest. The ground truth data was also collected near to the image taken (15 the January). This is 

explained in detail under section 4.2.2.  The cover percentage of risk habitat (14 %) obtained by 

this research is promising provided that there is a gap obtained by ground surveying (5%). Such 

results were obtained by a sensor, which is freely available, and have a low spatial resolution. In 

addition, only the spectral information of the plant communities was used for the analysis. 

Therefore, fieldwork that could agree with the existing resolution of MODIS image as well as 

including additional information (soil type of the area) for analysis is necessary.  

 

The numbers of the available testing site for the study were not enough to make a valuable 

accuracy assessment of the classified result (Lillsand and kiefer, 2000). With this, one additional 

testing site was generated in each of the testing sample sites (section 2.1). This may have an 

impact on having a best measure of accuracy.  
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5. Conclusions and Recommendations 
 

5.1. Conclusions 
 

This study investigated the possibility of using remote sensing images for detecting the desert 

locust on the Sudan Red Sea Coast during the winter season. 

 

Research Question: Which remote sensing sensor can be used to detect habitats of the desert 

locust in the Sudan Red Sea Coast during the winter season? 

 

The results of this study showed that MODIS sensor is the most suitable among the four checked 

sensors in providing images during the winter season. The most important factor that limited 

other sensors not to take suitable images was found to be associated with cloudiness of the area as 

it was rainy season.  

 

Research Question: Can image of the best sensor be used to identify the desert locust habitat 

with above 70 % accuracy? 

 

The detection of desert locust risk habitats was possible with 77.78 % of users accuracy by only 

using the spectral information of 250 m MODIS images. The result revealed the importance of 

image acquisition at the right moment or during high cover percentage of the risk habitats.   

 

Research Question: Which classification algorithms give the best result of identifying the 

desert locust habitat? 

 

Maximum likelihood classifier showed the best regardless of the erratic accuracy result. This has 

been observed depending on the input remote sensing data used for the analysis. Cloud cover of 

the area reduces the classification accuracy of the desert risk locust habitats.  This was observed 

on the image taken on January 20 and 24, 2001.  
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Research Question: Does a multi temporal approach give better accuracy than mono temporal 

one? 

 

In this study, mono-temporal approach showed better accuracy than multi-temporal approach in 

detecting the habitats of the desert locust. But this depends on the probability of getting a cloud 

free image coupled with high cover percentages of the risk habitats.  

 

Research Question: Is it possible to make predictions of habitats for desert locust in a non-

surveyed area? 

 

It was possible to predict by extrapolating signatures of the surveyed risk habitat to non-surveyed 

area (Eritrea). It showed a good start on locating the risk habitats to non-surveyed area. 

 

The methods developed in this study can contribute for mapping the risk habitats of the desert 

locusts on the basis of MODIS satellite images. 

  

5.2. Recommendations 
 

Only the spectral information of the plant communities from MODIS image was used for the 

analysis. Using additional information like soil type of the study area can maximize the 

classification accuracy of detecting habitats of the desert locust on the SRSC.  

 

As this study was the beginning on exploring the potential of using satellite images on the study 

area, attentions were given to the winter season, which are the growing season of the habitats of 

the desert locust. As far as the multi temporal analysis is concerned, the probability of getting 

many suitable images taken during high greenness percentage was very low.  MODIS image 

taken during the summer season was not covered in this study due to time limitation. Therefore, it 

is advisable to check during summer season in order to have more suitable images (information) 

and explore the potentials of multi-temporal analysis in improving the classification accuracy. In 

such way information about the soil condition of the study area as indicator of the possible 

vegetation type that we will come later can be collected  
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The success of a classification depends not only on the land cover and remotely sensed data type, 

but also on reference (testing) data. Therefore, it is recommended to have reference data that can 

agree with the spatial resolution of the MODIS image used for this study.  

 

Due to time limitation predication ability of the developed methods has not been checked with 

many remote sensing data of the non-surveyed area. Therefore it is recommended to check the 

developed method using more suitable images of a non-surveyed area and if possible with ground 

truth.  
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Appendixes 

Appendix A.  The Error Matrix  
 

 
 
 
Appendix B.  MODIS Technical Specifications 
DIS Technical Specifications 
Orbit: 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua), sun-synchronous, near-polar, circular

Scan Rate: 20.3 rpm, cross track 

Swath Dimensions: 2330 km (cross track) by 10 km (along track at nadir) 

Telescope: 17.78 cm diam. off-axis, afocal (collimated), with intermediate field stop 

Size: 1.0 x 1.6 x 1.0 m 

Weight: 228.7 kg 

Power: 162.5 W (single orbit average) 

Data Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 

Quantization: 12 bits 

Spatial Resolution: 250 m (bands 1-2) 
500 m (bands 3-7) 
1000 m (bands 8-36) 

Design Life: 6 years 
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Primary Use Band Bandwidth1 Spectral 

Radiance2 
Required 
SNR3 

1 620 - 670 21.8 128 Land/Cloud/Aerosols 
Boundaries 2 841 - 876 24.7 201 

3 459 - 479 35.3 243 

4 545 - 565 29.0 228 

5 1230 - 1250 5.4 74 

6 1628 - 1652 7.3 275 

Land/Cloud/Aerosols 
Properties 

7 2105 - 2155 1.0 110 

8 405 - 420 44.9 880 

9 438 - 448 41.9 838 

10 483 - 493 32.1 802 

11 526 - 536 27.9 754 

12 546 - 556 21.0 750 

13 662 - 672 9.5 910 

14 673 - 683 8.7 1087 

15 743 - 753 10.2 586 

Ocean Color/ 
Phytoplankton/ 
Biogeochemistry 

16 862 - 877 6.2 516 

17 890 - 920 10.0 167 

18 931 - 941 3.6 57 

Atmospheric 
Water Vapor 

19 915 - 965 15.0 250 

Primary Use Band Bandwidth1 Spectral 
Radiance2 

Required 
NE[delta]T(K)4 

20 3.660 - 3.840 0.45(300K) 0.05 

21 3.929 - 3.989 2.38(335K) 2.00 

22 3.929 - 3.989 0.67(300K) 0.07 

Surface/Cloud 
Temperature 

23 4.020 - 4.080 0.79(300K) 0.07 

24 4.433 - 4.498 0.17(250K) 0.25 Atmospheric 
Temperature 25 4.482 - 4.549 0.59(275K) 0.25 

26 1.360 - 1.390 6.00 150(SNR) 

27 6.535 - 6.895 1.16(240K) 0.25 

Cirrus Clouds 
Water Vapor 

28 7.175 - 7.475 2.18(250K) 0.25 

Cloud Properties 29 8.400 - 8.700 9.58(300K) 0.05 

Ozone 30 9.580 - 9.880 3.69(250K) 0.25 

31 10.780 - 11.280 9.55(300K) 0.05 Surface/Cloud 
Temperature 32 11.770 - 12.270 8.94(300K) 0.05 

33 13.185 - 13.485 4.52(260K) 0.25 

34 13.485 - 13.785 3.76(250K) 0.25 

35 13.785 - 14.085 3.11(240K) 0.25 

Cloud Top 
Altitude 

36 14.085 - 14.385 2.08(220K) 0.35 

1 Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 
2 Spectral Radiance values are (W/m2 -µm-sr) 
3 SNR = Signal-to-noise ratio 
4 NE(delta)T = Noise-equivalent temperature difference  
Note: Performance goal is 30-40% better than required  
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Appendix C: Classification result of mono-temporal image 
 
Figure1. Desert locust habitats using the four classifiers: November 14, 2000 image.  
 
a. Maximum likelihood classifier                              b.   Minimum distance to means classifier 

     
 
c. Mahalanobis classifier     d. Parallelepiped classifier 
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Figure2. Desert locust habitats using the four classifier: Januar20, 2001 image.  
 
a. Maximum likelihood classifier                           b.   Minimum distance to means classifier 

         
 
c. Mahalanobis classifier     Parallelepiped classifier 

         



Appendixes 

 

M.Sc Thesis 
Center for Geo-Information WUR 

Mengistie Kindu 
 

46

 
Figure3. Desert locust habitats using the four classifiers: Januar24, 2000 image.  
 
a. Maximum likelihood classifier                           b.   Minimum distance to means classifier  

         
 

c. Mahalanobis classifier    d. Parallelepiped classifier 
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Appendix D.  Accuracy assessments of mono-temporal images 
 

Table 1. Accuracy assessment results of the four classifiers using November 14, 2000 image 
 

 
a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 5 5 10 22.73 50.00 73.17 
No risk 0 17 55 72 91.67 76.39  
Column Total 0 22 60 82    

 
 

b. Minimum distance to means classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 2 12 14 9.09 14.29 60.98 
No risk 0 20 48 68 80.00 70.59  
Column Total 0 22 60 82    

 
 

c. Mahalanobis classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified  0 0 0    
Risk  0 2 2 0.00 0.00 70.73 
No risk  22 58 80 96.67 72.50  
Column Total  22 60 82    
 
d. Parallelepiped classifier 

 
Reference data Classified 

data  Unclassified Risk No risk Row 
total 

Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 3 16 19 0.00 0.00 70.73 
No risk 0 18 43 61 96.67 72.50  
Column Total 0 22 60 82    
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Table2.  Accuracy assessment results of the four classifiers using January 20, 2001 image 

 
 

a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 5 5 10 29.00 50.00 79.00 
No risk 0 12 48 60 91.00 80.00  
Column Total 0 17 53 70    
 

 
b. Minimum distance to means classifier 

 
Reference data Classified 

data  Unclassified Risk No risk Row 
total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 9 5 14 52.94 64.29 81.43 
No risk 0 8 48 56 90.57 85.71  
Column Total 0 17 53 70    

 
 
 

c. Mahalanobis classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 7 34 41 41 17 37 
No risk 0 10 19 29 36 66  
Column Total 0 17 53 70    

 
 

d. Parallelepiped classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0     
Risk 0 5 9 14 29 36 77 
No risk 0 12 44 56 98 93  
Column Total 0 17 53 70    
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Table3.  Accuracy assessment results of the four classifiers using January 24, 2001 image: 
 
 
 a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 1 1    
Risk 0 14 4 18 70.00 77.78 86.25 
No risk 0 6 55 61 91.67 90.16  
Column Total 0 20 60 80    
 
 
b. Minimum distance to means classifier 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 1 1    
Risk 0 2 4 6 10.00 33.33 72.50 
No risk 0 18 55 73 91.67 75.34  
Column Total 0 20 60 80    
 
 
c. Mahalanobis classifier 

Reference data Classified 
data  

Unclassified 
Risk No 

risk 
Row 
total 

Producer 
accuracy 
(%) 

Users 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 1 1    
Risk 0 11 8 19 55.00 57.89 77.50 
No risk 0 9 51 60 85.00 85.00  
Column Total 0 20 60 80    
 
 
d. Parallelepiped classifier 
 

Reference data Classified 
data  

Unclassifie
d Risk No 

risk 
Row 
total 

Producer’s 
accuracy  
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified  0 1 1    
Risk  10 8 18 50.00 55.56 76.25 
No risk  10 51 61 85.00 83.61  
Column Total  20 60 80    
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Appendix E: Classification result of multi-temporal images 
 
Figure1. Desert locust habitats using the four classifiers: November 14, 2000, and 
January 20, 2001 images.  
 
a. Maximum likelihood classifier                              b.   Minimum distance to means classifier 

     
c. Mahalanobis classifier     d. Parallelepiped classifier 

         



Appendixes 

 

M.Sc Thesis 
Center for Geo-Information WUR 

Mengistie Kindu 
 

51

Figure2. Desert locust habitats using the four classifier: Nov.14, 00 and Jan. 24, 01 
image.  
 
a. Maximum likelihood classifier                           b.   Minimum distance to means classifier 

         
 
c. Mahalanobis classifier     Parallelepiped classifier 
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Figure3. Desert locust habitats using the four classifiers: January 20 and 24, 2000 image.  
 
a. Maximum likelihood classifier                           b.   Minimum distance to means classifier  

         
 

c. Mahalanobis classifier    d. Parallelepiped classifier 
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Figure3. Desert locust habitats using the four classifiers: Nov14, 00, Jan20 and 24, 2001 
image.  
 
a. Maximum likelihood classifier                           b.   Minimum distance to means classifier  

         
 

c. Mahalanobis classifier    d. Parallelepiped classifier 
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Appendix F.  Accuracy assessments of multi-temporal images 
 

Table 4. Accuracy assessment results of the four classifiers using combined image of 
November 14, 2000 and January 20, 2001 

 
 

a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 10 17 27 45.45 37.04 64.63 
No risk 0 12 43 55 71.67 78.18  
Column Total 0 22 60 82    

 
 

b. Minimum distance to means classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

Users 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0     
Risk 0 11 42 53 50.00 20.75 35.37 
No risk 0 11 18 29 30.00 62.07  
Column Total 0 22 60 82    

 
 

c. Mahalanobis classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer’s 
accuracy 
(%) 

Users 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 5 28 33 22.73 15.15 57.32 
No risk 0 17 42 59 70.00 85.71  
Column Total 0 22 60 82    
 
d. Parallelepiped classifier 

 
Reference data Classified 

data  Unclassified Risk No risk Row 
total 

Producer’s 
accuracy 
(%) 

Users 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0     
Risk 0 6 34 40 27.27 15.00 39.02 
No risk 0 16 26 42 43.33 61.90  
Column Total 0 22 60 82    
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Table 5.  Accuracy assessment results of the four classifiers using the combined images of 

November 14, 2001January 24, 2001 image 
 
 

a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producers’ 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 8 8 16 36.36 50.00 73.17 
No risk 0 14 52 66 86.67 78.79  
Column Total 0 22 60 82    
 

 
b. Minimum distance to means classifier 

 
Reference data Classified 

data  Unclassified Risk No risk Row 
total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 4 7 11 18.18 36.36 69.51 
No risk 0 18 53 71 88.33 74.65  
Column Total 0 22 60 82    

 
 

c. Mahalanobis classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 3 5 8 13.64 37.50 70.73 
No risk 0 19 55 74 91.67 74.32  
Column Total 0 22 60 82    
 

 
d. Parallelepiped classifier 

 
Reference data Classified 

data  Unclassified Risk No risk Row 
total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 7 8 15 31.82 46.67 71.95 
No risk 0 15 52 67 86.67 77.61  
Column Total 0 17 53 70    
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Table6.  Accuracy assessment results of the four classifiers using the combine image 
of January 20, and 24, 2001 images 
 
 
 a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 14 15 29 63.64 48.28 71.95 
No risk 0 8 45 53 75.00 84.91  
Column Total 0 22 60 82    
 
 
b. Minimum distance to means classifier 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 13 42 55 59.09 23.64 37.80 
No risk 0 9 18 27 30.00 66.67  
Column Total 0 22 60 82    
 
 
c. Mahalanobis classifier 

Reference data Classified 
data  

Unclassified 
Risk No 

risk 
Row 
total 

Producer 
accuracy 
(%) 

Users 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 12 35 47 54.55 25.53 45.12 
No risk 0 10 25 35 41.67 71.43  
Column Total 0 22 60 82    
 
 
d. Parallelepiped classifier 
 

Reference data Classified 
data  

Unclassified 
Risk No 

risk 
Row 
total 

Producer’s 
accuracy  
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 15 25 40 68.18 37.50 60.98 
No risk 0 7 35 42 58.33 83.33  
Column Total 0 22 60 82    
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Table 7.  Accuracy assessment results of the four classifiers using the combine image 
of November 14, 2000; 20, and 24, 2001 images 
 
 a. Maximum likelihood classifier 
 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 10 15 25 45.45 40.00 67.07 
No risk 0 12 45 57 75.00 78.95  
Column Total 0 22 60 82    
 
 
b. Minimum distance to means classifier 

Reference data Classified 
data  Unclassified Risk No risk Row 

total 

Producer 
accuracy 
(%) 

Users’ 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 9 32 41 40.91 21.95 45.12 
No risk 0 13 28 41 46.67 68.29  
Column Total 0 22 60 82    
 
 
c. Mahalanobis classifier 

Reference data Classified 
data  

Unclassified 
Risk No 

risk 
Row 
total 

Producer 
accuracy 
(%) 

Users 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 8 17 25 36.36 32.00 62.20 
No risk 0 14 43 57 71.67 75.44  
Column Total 0 22 60 82    
 
 
d. Parallelepiped classifier 
 

Reference data Classified 
data  

Unclassified 
Risk No 

risk 
Row 
total 

Producer’s 
accuracy  
(%) 

User’s 
accuracy 
(%) 

Overall 
accuracy 
(%) 

Unclassified 0 0 0 0    
Risk 0 10 24 34 45.45 29.41 56.10 
No risk 0 12 36 48 60.00 75.00  
Column Total 0 22 60 82    
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Appendix G.  Histogram and feature space plot of Jan 20, 2001 MODIS image 
 

Figure 1. The histogram of pixel values (shows normal distribution) 
 
 
 

 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
Figure 2. Distributions of the four plant communities in the feature space plot. 
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