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Abstract
Bouwman, A.C. (2014). Unraveling the genetic background of bovine milk fat
composition. PhD thesis, Wageningen University, the Netherlands

Identification of genomic regions, and preferably individual genes, responsible for
genetic variation in bovine milk fat composition enhances the understanding of
biological pathways involved in fatty acid synthesis and is expected to increase
opportunities for changing bovine milk fat composition by means of selective
breeding. This thesis aimed to unravel the genetic background of bovine milk fat
composition by detection, confirmation and fine-mapping of quantitative trait loci
(QTL) for milk fatty acids in Dutch Holstein Friesian cattle. In addition, causal
relations between fatty acids were explored. For this study roughly 2,000 dairy
cows were genotyped with 50,000 DNA markers and phenotyped for individual
fatty acids in both winter and summer milk samples using gas chromatography.
Genome-wide association studies (GWAS) showed that milk fat composition has a
complex genetic background with three major QTL that explain a relatively large
fraction of the genetic variation of several milk fatty acids, and many QTL that
explain a relatively small fraction of the genetic variation. Results from the GWAS
for summer milk fatty acids confirmed most associations that were detected in the
winter milk samples. Moving from linkage analysis toward GWAS confirmed and
refined the size of previously detected QTL regions and resulted in new QTL
regions. Performing GWAS based on individual fatty acids resulted in additional QTL
as compared to GWAS based on fat percentage or yield. This shows that
refinement of complex phenotypes into underlying components results in better
links between genes and phenotypes. By increasing the marker density, the QTL on
BTA19 was refined to a linkage disequilibrium block that contained 2 genes: coiled-
coil domain containing 57 and fatty acid synthase. A search for causal relations
between fatty acids resulted in a pathway from C4:0 to C12:0, which resembled the
de novo synthesis pathway. Causal relation between the QTL on BTA19 and de
novo fatty acids showed that the QTL affects C4:0, C6:0, C8:0, C10:0 and C14:0
directly, while C12:0 was indirectly affected by the QTL through its effect on C10:0.
The potential of GWAS based on MIR predicted fatty acids was explored but failed
to detect some QTL and resulted in additional QTL that were not detected based on
GC measurements. Therefore, MIR predicted phenotypes add complexity to the
genotype-phenotype relationship, and renders MIR predicted phenotypes less
appropriate to identify candidate genes and to infer the biological background of
traits.
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1 General Introduction

1.1 Bovine milk fat composition

Milk is produced by mammals in their mammary glands as the primary source of
nutrition for their neonates. Milk contains many components such as fat, protein,
lactose, minerals and vitamins. This thesis focuses on the fat portion of bovine milk.
Milk fat is a nutritious source of energy, fat-soluble vitamins, and bioactive lipids.
The fatty acid composition of milk fat determines the flavor and texture of dairy
products, such as spreadability of butter. Also, certain fatty acids are claimed to
have unfavorable effects on human health, while others are claimed to be
beneficial for human health (German and Dillard, 2006). Studying fatty acids in
bovine milk can provide valuable information about the synthesis of fatty acids,
which could be useful for approaches aimed at changing the fatty acid composition
of dairy products and ultimately at improving human health.

Bovine milk fat consists mainly (~98%) of triglycerides, and each triglyceride is
composed of three fatty acids attached to a glycerol backbone (Figure 1.1).
Generally, a fatty acid consists of a straight chain of a number of carbon atoms that
is surrounded with hydrogen atoms and a carboxyl group (-COOH) at one end. If
the carbon-to-carbon bonds are all single, the fatty acid is saturated; if any of the
bonds is double, the fatty acid is unsaturated. The numerous fatty acids present in
bovine milk differ from each other by carbon length, level (e.g. mono) and position
(e.g. cis9) of unsaturation, and branching. Differences in these characteristics result
in different physiological properties related to for instance the texture and flavor of
dairy products. (MacGibbon and Taylor, 2006)
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Figure 1.1 Triglyceride with on the left the glycerol backbone and at each of the three
positions a fatty acid. At the first position a saturated fatty acid (i.e. palmitic acid (C16:0)) is
depicted, at the second position a mono unsaturated fatty acid (i.e. oleic acid (C18:1cis9)
with one double bond) and at the third position a poly unsaturated fatty acid (i.e. alpha-
linolenic acid (C18:3n-3; ALA) with three double bonds).
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1 General Introduction

In total 416 different fatty acids have been discovered in bovine milk (Jensen,
2002), of which a few are abundant and many are minor milk fatty acids. This thesis
focuses on the saturated fatty acids C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0,
C18:0, the mono-unsaturated fatty acids C10:1cis9, C12:1cis9, C14:1cis9, C16:1cis9,
C18:1cis9, and poly-unsaturated C18:2cis9,trans11 (Conjugated linoleic acid; CLA).
Short- and medium-chain saturated fatty acids, i.e. C4:0, C6:0, C8:0, C10:0, C12:0,
C14:0 and about half the C16:0 present in bovine milk, are produced de novo in the
mammary gland by the multi-enzyme complex fatty acid synthase (FASN) (e.g.,
Neville and Picciano, 1997; Palmquist, 2006). In this metabolic pathway, the carbon
chain is elongated in a sequential cyclic reaction from acetate and -
hydroxybutyrate until a C16:0 fatty acid is formed (e.g., Neville and Picciano, 1997;
Palmquist, 2006). All the intermediate fatty acids can leave this elongation cycle by
a chain termination mechanism (Smith, 1994) and, thus, end up in bovine milk. This
termination mechanism differs between mammals resulting in different milk fat
composition; for instance, human milk does not contain C4:0 (e.g., Zou et al., 2013).
A small fraction of the saturated fatty acids C10:0, C12:0, C14:0 and C16:0 is
desaturated in the mammary gland into their cis9 mono unsaturated equivalent
(C10:1-C16:1) by the enzyme stearoyl-CoA desaturase 1 (SCD1) (Palmquist, 2006).
Long-chain fatty acids, i.e. about half the C16:0 present in milk and all fatty acids
with 18 or more carbons, are taken up by cows through the diet, but can also be
released from adipose tissues. The dietary long-chain fatty acids are
biohydrogenated into C18:0 and all kinds of intermediate products by micro-flora in
the rumen before they are absorbed from the rumen into the bloodstream, and
from the bloodstream into the mammary gland (Jenkins, 1993; Palmquist, 2006).
From the diet, large quantities of C16:0, C18:0, and C18:1cis9, small quantities of
C18:2, and limited amounts of other monoenoic and dienoic fatty acids end up in
milk (MacGibbon and Taylor, 2006).

In the mammary gland fatty acids are attached to the glycerol backbone and
excreted in milk. The glycerol backbone has three positions for the fatty acids and
three enzymes are responsible for the attachment of the fatty acids onto these
positions: glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate
acyltransferase (AGPAT) and diacylglycerol acyltransferase (DGAT1) (Agarwal and
Garg, 2003; Takeuchi and Reue, 2009). In theory numerous different triglycerides
can be formed with all the different fatty acids present in milk (64 x 106); however,
these enzymes appear to be somewhat specific for the type of fatty acid they
attach onto the glycerol backbone, resulting in a limited number of specific
triglycerides (Jensen, 2002).
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1 General Introduction

1.2 Factors influencing bovine milk fat composition

Milk fat composition of cows differs from milk fat composition of other mammals;
in fact, there is a lot of variation in milk fat composition between mammals.
Ruminant milk contains for instance short-chain saturated fatty acids and trans
fatty acids, which are almost absent in human milk (Zou et al., 2013). There is not
only variation between mammals but also between cattle breeds. For example,
Jersey, Brown Swiss and Guernsey have higher levels of saturated milk fatty acids
compared to Holstein (Beaulieu and Palmquist, 1995; DePeters et al., 1995; Kelsey
et al., 2003; Stull and Brown, 1964), and Jersey and Guernsey have lower levels of
unsaturated milk fatty acids compared to Holstein (Beaulieu and Palmquist, 1995;
DePeters et al., 1995; Stull and Brown, 1964). There is also variability in milk fat
composition among local Dutch dairy breeds (Maurice-Van Eijndhoven et al., 2011)
and among French dairy breeds (Lawless et al., 1999).

Variation in milk fat composition can even be found between individuals within a
population or herd. The main sources of variation are feeding (e.g., Jensen, 2002;
Palmquist, 2006; Palmquist et al., 1993) and genetics (Soyeurt et al., 2007; Stoop et
al., 2008), but also factors like health status of the cow and lactation stage
introduce variation (e.g., Bastin et al., 2011; German and Dillard, 2006; Karijord et
al., 1982; Palmquist, 2006; Stoop et al., 2009a). Feeding directly influences the milk
fat composition. For instance, pasture based cows have lower proportions of short-
and medium-chain fatty acids, and higher proportions of long-chain fatty acids
compared to indoor housed cows fed silage (reviewed in Jensen, 2002), and also fat
supplements modify the milk fat composition (reviewed in Ashes et al., 1997).
Genetics can be applied to change milk fat composition through breeding. Genetic
variation in milk fat composition has been demonstrated, with heritabilities that
range between 0.42 and 0.71 for de novo synthesized milk fatty acids and between
0.22 and 0.42 for long-chain milk fatty acids (Stoop et al., 2008).

1.3 Regions on the bovine genome associated with milk
fatty acids

Given the substantial genetic variation in milk fat composition in dairy cattle, it is of
interest to find the regions on the bovine genome responsible for this variation.
This will increase our understanding of the biological processes involved in milk fat
synthesis and provide possibilities for animal selection in breeding. To find such
regions, also known as quantitative trait loci (QTL), the genome is screened using
DNA markers, single nucleotide polymorphisms (SNP), with known location. The
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1 General Introduction

aim of genome-wide association studies (GWAS) is to detect association between
phenotypes and SNP.

Previously, 1,500 SNP have been used in family-based linkage studies resulting in
large QTL regions for milk fatty acids (Schennink et al., 2009b; Stoop et al., 2009b).
Linkage studies look within a family for significant differences in phenotypes
between offspring-groups that inherited the opposite allele from the parent at a
specific genomic region. Large chunks of DNA are transmitted from the parent to
the offspring due to limited recombination within a family. This results in large
regions that co-segregate within families and, therefore, linkage studies generally
detect large QTL regions. Genome-wide association studies look for significant
associations between phenotypes and genotypes of individuals within a population.
The advantage of GWAS is that co-segregation within populations is smaller than
co-segregation within families and, therefore, GWAS generally detect smaller QTL
regions. However, more DNA markers are required. The development of SNP-chips
with 50,000 SNP markers provided opportunities to perform GWAS for milk fatty
acids.

A screen along the genome with 50,000 SNP markers provides insight into the
genetic architecture of a trait: how many and which regions explain variation in the
trait, and the distribution of effect sizes of these regions on the trait. It shows also
whether there are QTL with major influence on the trait, like for instance
diacylglycerol O-acyltransferase 1 (DGAT1) K232A has on milk production (Grisart
et al., 2002), or whether the trait is mainly defined by many QTL with small effects
or a combination of both. The power of GWAS to detect QTL with major effects on
the phenotype is large; therefore, major QTL can be pursued for fine-mapping. The
power to detect QTL with relatively small effects on the phenotype is lower and
false positives may reside among the QTL with small effects, but at the same time
many QTL with small effects may remain undetected due to false negatives. It is,
thus, wise to confirm such QTL with relatively small effects in a second study before
fine-mapping.

The ultimate goal is to find the actual causative DNA variant. With GWAS and a
large number of SNP the QTL region can be reduced from hundreds of candidate
genes in the region to a few and, if lucky, only one gene that is known to be
functionally related to the trait. A candidate gene approach can then be applied to
see which DNA variant in or directly around the gene causes the most variation.
The advantage of GWAS is that it provides an unbiased search for candidate genes
across the whole genome, rather than identifying candidate genes based on known
biological function as done in traditional candidate gene studies. In any case, the
discovery of causal variants remains rather challenging. One can end up with
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1 General Introduction

multiple DNA variants in strong LD with each other as candidates (Mackay, 2001),
and functional studies are required to validate the effect of the DNA variant on the
phenotype.

1.4 Causal relationships among bovine milk fatty acids

In quantitative genetics, relationships among traits are often explored by
correlations. Analyses involving phenotypic and genetic correlations between milk
fatty acids (Karijord et al., 1982; Soyeurt et al., 2007; Stoop et al., 2008), clustering
techniques (Heck et al., 2012; Massart-Leén and Massart, 1981), or principal
component analysis (Fievez et al., 2003) reflect the biological pathways of de novo
synthesis, biohydrogenation and desaturation of fatty acids. These studies suggest
that certain fatty acids have a common origin, but are not able to distinguish direct
from indirect relationships and, thus, do not imply causality. Causality is the
relation between events, where one event is the direct consequence of the other
event (the cause). Statistical causal inference aims to reason to the conclusion that
something is, or is likely to be, the cause of something else. Visualizing these causal
relationships among variables in a graph increases our understanding and
interpretation of complex biological systems, while quantifying causal relations
allows predicting outcomes of external interventions applied to such a causal
network.

A search for causality can differentiate between direct and indirect relationships
among variables. However, true causality is difficult to declare. A controlled
experiment that isolates the effect of one variable on a system by holding constant
all variables but the one under observation can declare true causality between two
variables. Also a completely randomized experiment can declare true causality
between two variables, where random assignment of each subject to different
treatment groups coupled with random assignment of treatment level to each
group results in averaging out potential sources of confounding effects. In
traditional animal production data, variables that act as confounders are not
averaged out but, once they are measured, they can be included in the model to
correct for this confounding effect. Valente et al. (2010) developed an approach to
deal with animal production data in a mixed model setting to search for causal
relations between phenotypes. With this method partial correlations between milk
fatty acids can be explored to determine causality between them. The resulting
causal structure can then be used as condition for a structural equation model to
estimate the magnitude of causal relationships among the fatty acids. Visualizing
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1 General Introduction

causal relations between milk fatty acids may enhance our understanding of
synthesis of milk fatty acids.

1.5 Aim and outline of this thesis

The research described in this thesis studied the genetic background of bovine milk
fat composition and aimed to detect, confirm and fine-map QTL for individual milk
fatty acids in Dutch Holstein Friesian cattle. In chapter 2 a GWAS for the most
abundant fatty acids in winter milk samples was performed and detected 54
regions on 29 chromosomes that were significantly associated with one or more
milk fatty acids. In chapter 3 a GWAS was performed on fatty acids from summer
milk samples and detected 51 regions on 24 chromosomes that were significantly
associated with one or more milk fatty acids. Associations detected in the GWAS of
fatty acids based on summer milk samples was in agreement with most of the
associations detected in the GWAS of fatty acids based on winter milk samples and,
thus, confirmed these associations. Chapter 4 aimed to refine the location of the
major QTL on BTA19 for bovine milk fat composition that was detected in chapter 2
and confirmed in chapter 3. The QTL region was narrowed down to a linkage
disequilibrium block from 51,303,322 to 51,388,329 bp on BTA19 that contained 2
genes: coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN).
Since many QTL regions were associated with multiple fatty acids chapter 5 aimed
to provide more insight into the causal relations among the individual milk fatty
acids. The general discussion (chapter 6) focused on what insights can be gained
from this thesis and what more can be done to better understand the genetic
background of milk fat composition. First, the methods used and results obtained
in this thesis were discussed, followed by the importance of intermediate
phenotypes to close the gap between QTL and complex phenotypes. Next, the
inference of causal relations between QTL and phenotypes was explored. And
finally, the potential of mid-infrared (MIR) predicted milk fatty acids instead of milk
fatty acids measured by gas chromatography (GC) as phenotypes for GWAS was
discussed.
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Abstract

Background

Identifying genomic regions, and preferably individual genes, responsible for
genetic variation in milk fat composition of bovine milk will enhance the
understanding of biological pathways involved in fatty acid synthesis and may point
to opportunities for changing milk fat composition via selective breeding. An
association study of 50,000 single nucleotide polymorphisms (SNPs) was performed
for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated
fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to
identify genomic regions associated with individual fatty acids in bovine milk.

Results

The two-step single SNP association analysis found a total of 54 regions on 29
chromosomes that were significantly associated with one or more fatty acids. Bos
taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with
seven to ten traits, explaining a relatively large percentage of the total additive
genetic variation. Many additional regions were significantly associated with the
fatty acids. Some of the regions harbor genes that are known to be involved in fat
synthesis or were previously identified as underlying quantitative trait loci for fat
yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1
on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and
AGPAT6 on BTA 27.

Conclusions

Medium chain and unsaturated fatty acids are strongly influenced by poly-
morphisms in DGAT1 and SCD1. Other regions also showed significant associations
with the fatty acids studied. These additional regions explain a relatively small
percentage of the total additive genetic variance, but they are relevant to the total
genetic merit of an individual and in unraveling the genetic background of milk fat
composition. Regions identified in this study can be fine mapped to find causal
mutations. The results also create opportunities for changing milk fat composition
through breeding by selecting individuals based on their genetic merit for milk fat
composition.

Key words: milk fatty acids, dairy, genome-wide association



2 GWAS for milk fatty acids

2.1 Background

The biosynthesis of bovine milk fat is a complicated process regulated by many
genes belonging to several pathways (Bionaz and Loor, 2008). Genetic analyses of
bovine milk fatty acids have shown heritable variation. Short and medium chain
fatty acids (C4:0 up to and including C16:0), which are synthesized de novo in the
mammary gland, have moderate to high heritability (Soyeurt et al., 2007; Stoop et
al., 2008). Long chain fatty acids (i.e. C16:0 and higher) are derived from blood
lipids that originate mainly from the diet and endogenous lipids, nevertheless, they
have low to moderate heritability (Mele et al., 2009; Soyeurt et al., 2007; Stoop et
al., 2008). Identification of genomic regions, and preferably individual genes,
responsible for genetic variation in milk fat composition will enhance the
understanding of biological pathways involved in fatty acid synthesis and may point
towards opportunities for changing milk fat composition via selective breeding.
Candidate gene studies have shown that polymorphisms in diacylglycerol
O-acyltransferase 1 (DGAT1 K232A) (Grisart et al.,, 2002) and stearoyl-CoA
desaturase 1 (SCD1 A293V) (Taniguchi et al., 2004) have important effects on milk
fat composition (Conte et al., 2010; Kgwatalala et al., 2009; Mele et al., 2007;
Moioli et al., 2007; Schennink et al., 2007, 2008). Many genes are involved in the
biosynthesis of milk fat, and analyzing these candidate genes one by one in a
candidate gene approach is not an option; therefore, quantitative trait loci (QTL)
studies try to identify regions associated with milk fat composition to identify
candidate genes that are worth considering.

In order to identify genomic regions involved in the biosynthesis of milk fat,
Schennink et al. (2009b) and Stoop et al. (2009b) performed genome-wide linkage
analyses of milk fatty acids and detected genome-wise significant QTL and several
suggestive QTL. Other linkage studies have been performed for single
chromosomes (Morris et al., 2007) or the fat composition of adipose tissue in beef
cattle (Abe et al., 2008; Alexander et al., 2007; Morris et al., 2007; Morris et al.,
2010).

Recent developments in molecular genetics have made it possible to perform
genome-wide association studies using thousands of single nucleotide poly-
morphism (SNP) markers to detect QTL. A genome-wide association study has
higher power to detect QTL and provides more precise estimates of QTL locations
compared to a linkage study. Some genome-wide associations for routinely
evaluated traits in dairy cattle, such as milk production and fertility, have been
published (Daetwyler et al., 2008; Lillehammer et al., 2009; Mai et al., 2010; Pryce
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2 GWAS for milk fatty acids

et al., 2010). To the best of our knowledge, no genome-wide association study of
milk fatty acids has been reported.

The aim of this study was to perform a genome-wide association analysis using
50,000 SNP markers to identify QTL for individual fatty acids in bovine milk.
Associations were studied for even-chain saturated fatty acids (C4:0-C18:0), even-
chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated fatty
acid C18:2cis9,trans11 (CLA).

2.2 Methods

Phenotypes

The fat composition of winter milk samples from 1,905 first-lactation Dutch
Holstein Friesian cows was available for this study. The cows were housed on 398
commercial farms throughout the Netherlands. At least three cows were sampled
per farm. The cows were between 63 and 282 days in milk. The period of negative
energy balance in early lactation was avoided by choosing cows over 63 days in
lactation. The population consisted of five large paternal half-sib families from
proven sires (200, 199, 195, 176, 101 daughters per sire) and 50 small paternal half-
sib families from test-sires (10-24 daughters per sire), as well as 190 cows
descending from 45 other proven sires (1-30 daughters per sire). The pedigree of
the cows was supplied by CRV (Cooperative cattle improvement organization,
Arnhem, the Netherlands) and consisted of 26,300 animals. Milk fat composition
was measured by gas chromatography. Many fatty acids were measured, but only
the major fatty acids are reported here: even-chain saturated fatty acids C4:0 to
C18:0, even-chain (cis9) monounsaturated fatty acids C10:1 to C18:1, and the
polyunsaturated fatty acid CLA. The fatty acids were expressed in terms of weight-
proportion of total fat weight (w/w%). In total, these fatty acids made up 89% of
the total fat. Table 2.1 presents the mean, phenotypic standard deviation, and
intra-herd heritability for the fatty acids included in this study. More detailed
information about the population and phenotypes can be found in Stoop et al.
(2008).

Genotypes

Blood samples were collected from the cows for DNA isolation. The cows were
genotyped using a custom Infinium Array (lllumina, San Diego, CA, USA) designed
by CRV. In total, 1,810 cows were successfully (call rate > 90%) genotyped. The
cows were genotyped for 50,855 technically successful SNPs. The assumed map
positions of the SNPs were based on the bovine genome assembly BTAU 4.0 (Liu et
al., 2009). From these 50,855 SNPs, a total of 776 SNPs could not be mapped to any
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2 GWAS for milk fatty acids

of the Bos taurus (BTA) chromosomes and were assigned to BTA 0. In addition, 591
of the SNPs were located on the X chromosome. The SNPs on BTA 0 and the X
chromosome were included in the study. The average distance between SNPs was
52,452 bp. Monomorphic SNPs (n = 245), SNPs with a genotyping rate < 80% (n =
383), and SNPs with a genotype frequency < 0.006 (1-9 observations for one of the
genotype classes, SNPs with two genotype classes instead of three were included in
the final marker set; n = 5,494) were discarded from the original SNP set of 50,855
SNPs, resulting in the final marker set of 44,733 SNPs used for the association
analysis. Table 2.2 provides an overview of the number of SNPs available for the
association study per chromosome.

Table 2.1 Descriptive statistics of milk fatty acids. Mean (w/w%), phenotypic standard
deviation ( Op), and intra-herd heritability ( h|2H ) for the fatty acids of winter milk samples

Trait Mean op' hil

C4:0 3.50 0.24 0.44
C6:0 2.22 0.14 0.47
Cc8:0 1.37 0.12 0.61
C10:0 3.03 0.35 0.72
C12:0 4.11 0.46 0.64
C14:.0 11.61 0.78 0.62
C16:0 32.59 2.15 0.43
C18:0 8.72 1.18 0.24
C10:1 0.37 0.06 0.34
C12:1 0.12 0.02 0.38
Cl4:1 1.36 0.23 0.34
Cl6:1 1.44 0.30 0.44
Cc18:1 18.18 1.57 0.26
CLA 0.39 0.07 0.42

! Phenotypic standard deviation after adjusting for systematic environmental effects: days in
milk, age at first calving, season of calving, and herd.
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2 GWAS for milk fatty acids

Table 2.2 SNP information per Bos Taurus chromosome. Total number of SNPs, map length,

average SNP interval, number of monomorphic SNPs, number of SNPs with a genotyping rate

(genorate) < 80% and number of SNPs with a genotype frequency (freq) < 0.006 for all Bos
Taurus (BTA) chromosomes.

BTA SNP Length (Mbp) SNP interval (bp) Monomorph Genorate Freq
o' 776 - - 1 6 84
1 3,011 160.91 53,371 4 25 355
2 2,451 140.64 57,333 20 19 269
3 2,342 127.13 54,212 12 11 260
4 2,300 124.09 53,930 11 20 239
5 2,215 125.78 56,788 5 18 214
6 2,844 122.39 43,050 12 25 334
7 2,017 111.67 55,392 8 14 209
8 2,131 116.93 54,818 15 15 243
9 1,860 108.05 58,090 14 20 206
10 1,911 106.10 55,406 14 11 202
11 2,193 110.01 50,187 18 12 239
12 1,512 85.22 56,324 6 14 147
13 1,689 84.00 49,732 11 12 155
14 2,122 81.29 38,272 9 17 222
15 1,446 84.23 58,130 5 7 169
16 1,455 77.83 53,454 8 12 183
17 1,561 76.40 48,942 5 14 159
18 1,282 66.04 51,429 3 131
19 1,452 65.13 44,826 5 147
20 1,479 75.41 50,985 3 156
21 1,246 69.08 55,440 5 15 130
22 1,256 61.75 49,161 4 10 139
23 1,169 53.27 45,570 7 10 107
24 1,296 64.93 50,141 10 13 159
25 1,256 43.44 34,617 6 109
26 1,131 51.00 45,097 7 152
27 933 48.73 52,280 3 13 117
28 899 46.01 51,184 6 94
29 1,029 51.78 50,371 6 109
X 591 88.46 149,940 2 55
Total 50,855 2,628 245 383 5,494

! unmapped SNP
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2 GWAS for milk fatty acids

Statistical analysis

For the association study, both phenotype and genotype information was available
for 1,706 individuals. A two-step single SNP association analysis was performed. In
the first step, the genome was screened for interesting regions using a general
linear model. In the second step, the interesting regions were verified using an
animal model.

In the first step, a genome-wide association study was performed with a general
linear model using the R package ‘SNPassoc’ (Gonzalez et al., 2007). In this step, the
analyzed phenotypes were pre-adjusted for systematic environmental effects, and
the general linear model accounted for the SNP effect and the effect of sire. The
general linear model used in the first step was:

y;=u+sirei+SNPj+eij, (2)

where y* was the phenotype adjusted for the systematic environmental effects;
sire was the fixed effect of sire; SNP was the fixed effect of SNP genotype; and e
was the random residual. Sire effect was included in the SNPassoc model to
account for paternal half-sib relations. Phenotypes were adjusted for days in milk,
age at first calving, calving season, and herd. Adjusted phenotypes were obtained
from the phenotypes of 1,905 cows using an animal model in ASReml (Gilmour et
al., 2006):

Yikmn =H +by xdim; +b, x e 005xdmi L p. xafc; +b, xafc? +

(2)

season  +scode | + herd ;| +animal | + €;m, ,
where y was the (unadjusted) phenotype; u was the overall mean; dim was the
covariate describing the effect of days in milk; afc was the covariate describing the
effect of age at first calving; season was the fixed effect of the class of calving
season (June-Aug 2004, Sept-Nov 2004, or Dec 2004-Jan 2005); scode was the fixed
effect accounting for differences in genetic level between groups of proven bull
daughters, young bull daughters, and other bull daughters; herd was the random
effect of herd, distributed as N(0, 162,,4 ), with identity matrix | and herd variance
Oferq ; @animal was the random additive genetic effect of the individual, distributed
as N(O, Acg ), with the additive genetic relationship matrix A and the additive
genetic variance og ; and e was the random residual, distributed as N(O, Ioﬁ ), with
identity matrix | and residual variance oz .
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The genome-wide false discovery rate (FDR) was controlled according to the
method described by Storey and Tibshirani (Storey and Tibshirani, 2003), by
separately calculating the genome-wide FDR based on the P-values from the
general linear model for each trait using the R package ‘qvalue’. Associations with a
genome-wide FDR < 0.05 for the general linear model were considered significant.
The first step was performed to identify interesting regions, which were then
further analyzed with an animal model to account for all relationships among
individuals. Including a polygenic effect and accounting for genetic relationships
would be more appropriate (Kennedy et al., 1992). The model including a polygenic
effect is computationally demanding when analyzing many traits, SNPs, and
animals; therefore, in the second step we only analyzed the regions that contained
multiple SNPs that were significant in the first step.

A region started at the first significant SNP on a chromosome that was followed by
an additional significant SNP within 10 Mbp; the region was extended as long as
another significant SNP occurred within 10 Mbp from the previous one and ended
at the last significant SNP that was not followed by another significant SNP within
the next 10 Mbp. Thus, a region contained at least two significant SNPs. More than
one region could be present on the same chromosome when there were groups of
significant SNPs located within 10 Mbp from each other but further than 10 Mbp
from the other region(s) on the chromosome. The 10 Mbp distance between
significant SNPs is rather large, but it was chosen to prevent having many small
regions on one chromosome, each containing a small number of significant SNPs.

In the second step, all SNPs in regions with significant effects were analyzed using
animal model (2) extended with an SNP effect in ASReml (Gilmour et al., 2006). In
this model the phenotypes were simultaneously adjusted for systematic
environmental effects, for all genetic relationships among individuals, and for the
SNP genotype. Associations with a -log,o(P-value) = 3 were considered significant.
The genetic variance explained by an SNP was calculated from the estimated
genotype effects from animal model (2) extended with an SNP effect and the
observed genotype frequencies. The result was expressed as a percentage of the
total additive genetic variance. These percentages can be overestimated, especially
when the effect of an SNP is small, this is due to the so called Beavis effect (Beavis,
1998). The percentage of the total additive genetic variance explained by the most
significant SNP per trait per region is reported. The most significant SNP can differ
per trait for a region associated with multiple traits.

24



2 GWAS for milk fatty acids

2.3 Results

In the first step of the single SNP association study, all SNPs were analyzed using a
general linear model. The analysis resulted in many significant (FDR < 0.05)
associations between SNPs and the studied fatty acids. Figure 2.1 shows the
genome-wide plots of -logyo(P-values) for all of the studied fatty acids. All analyzed
fatty acids showed significant associations with at least one genomic region.

From the results of the general linear model, a total of 64 significant regions were
defined, affecting one or more (up to 10) traits. Significant associations with SNPs
were detected on all chromosomes; however, on BTA 29 we identified only a single
SNP associated with a trait instead of multiple SNPs in a region. Therefore, no
regions were defined on BTA 29. These 64 regions were analyzed with an animal
model and 54 remained significant at -log,q(P-values) = 3. Thus, most of the regions
identified with the general linear model were confirmed with the animal model.
The correlation between P-values in both analyses was 0.90. All results mentioned
hereafter originate from the animal model and concern the 54 regions that
remained significant at -logo(P-values) = 3 with the animal model.

Significant associations were detected with several regions for most of the fatty
acids, especially C14:0 (19 regions) and C16:1 (18 regions), whereas C18:0 and
C12:0 were associated with only one region (Table 2.3). The X chromosome showed
significant association with C14:0. Table 2.3 shows that several regions affect more
than one trait. In particular, the medium chain unsaturated fatty acids were often
associated with the same region.

Sixteen of the unmapped SNPs showed significant associations with one or more of
the studied fatty acids. Comparing the sequence of these significant unmapped
SNPs against genome assembly UMD 3.0 (Zimin et al., 2009) identified 14 of them
as mapping to regions 14a, 19b, and 26, which were already identified as being
associated with the traits. The other two unmapped SNPs (ULGR_BTA-38166 and
ULGR_BTA-38169) were significantly associated with C10:0 and located at 24.2
Mbp on BTA 16 according to the UMD 3.0 genome assembly (Zimin et al., 2009).
For each region, we estimated the variance explained by the most significant SNP
for each trait. Within a region, this most significant SNP can be a different SNP per
trait. The percentage of total additive genetic variance explained by the most
significant SNP per region ranged from 0.9 for C10:0 on BTA 1 to 61.9 for C18:1 on
BTA 14 (Table 2.3). These percentages can be overestimated, especially when the
effect of an SNP is small, this is due to the so called Beavis effect (Beavis, 1998).
The QTL with large effects, such as region 14a and 26, are less likely overestimated.

25



2 GWAS for milk fatty acids

awosowoliy)
X 8¢ 9¢ V¢ @¢ 0c 8l 9l 14" cl 0L 8 9 4 4

4

¥

9

8

z

¥

9

g

z

m_

g O
©
—

X

¥~

9

&

z <

i3

e
@

N(

¥

9

8

z

v

9

8

4

v

9

8

26



2 GWAS for milk fatty acids

'6 40 (san|ea-4)°3o|- 1e
140 1n2 3Je sixe-A 3y ‘spjoysalyl 91ed AISA0ISIP S|} GO'0 Y3 JUSSAIdDU SDUl| [BIUOZIIOY PAYSEP BY] "SIXB-X BY] UO UDAIS dJE SI3qUINU dWOSOWOIYD
pue sixe-x ayl uoje pajuasaidal si uoiisod djwouald ay| ‘|apow Jeaul| |esauad e yum pazAjeue (g) spioe Aney palesniesun pue (y) spioe Aney
paleJnies Yim 190| JO uolledosse 4oy (sixe-A) (sanjen-4)0t80l- Jo s10|d apim-awouan "spioe Alie} 3jiw 4o} s10|d UOIIBID0SSE IPIM-dWOUID) T°¢ d4nSi4

aWwosowoly)
X 8¢ 9¢ ¢vZ ¢¢ 0e 8l 9l vl cl 0L 8 9 14 4
Z
3 ¥
O 9
8
- z
e} J4 |
o 9
O ")
Q@
= [
w Vo~
13} 2
g
= z S
i r
3 9=
g o
A
- z
& e
o 9
= 8
- I
o 14
= 9
= 8

27



2 GWAS for milk fatty acids

14 174 €€ 6'¢ v 90¢ 144 T e/
T (4 18 911 TTT q9
€ T'€ €T 15874 0€9 174 1€ e9
[4 LT 81T 70T V1T 80T 29
4 8V LT VA4 (0[0) 8 qs
T ST € 99 99 eg
T (a4 [0}3 174" (44" 14
4 €9 6°¢C 6€ LCT Yas qe
T v ) 14 (44 eg
4 €€ ov LSC ort 9¢T ¢
T LT TSE 0L 14% qc
T 8’1 € 8¢ 8¢ ec
T T'¢ 0€ 191 vt PT
T 0'¢ 0cT 0O€T (44 o7
[4 0'¢ 60 5140 €9 14 qt
T €€ 4 Y4 Y4 et
S 8 & £ § 8 &% & & 5 B B & Z
uoigay/ =" - 7 2 ° e e ° 8a1ur  (dqw)  (daw)
sHed | # Med] dNS#  pu3 uels  uoisay

‘|]apow |ewjue ue

yum pazAjeue ‘uoi8ad 4ad 1eql syl yum palerdosse dNS uediiusdis 1sow ayl Aq paule|dxs aouelieA 2139uad sAilIppe |e101 JO 98e31uddu9d "paule|dxs

douelIeA 2139Ua8 SAIMpPE |e30} Byl jo aSejusdiad Byl pue spide Ane} Yyum pajeposse (g€

(sonjen-4)0t30)-) Ajpuealiudis suoiday €'z dlqel

28



2 GWAS for milk fatty acids

1 g€ 01 8w 26T
1 e €9 s9 19 ast
z 8T T oz 12 esT
1 L€ L W op avT
o1 TIT 619 8YE ST 8Y 9 96E  LLT 7z 6 T 9z 0 ey
S £e vy 61 Tz of g w oS €1
z 87 rar: oIt 09 ¢S ras
1 €2 81z 8y st T
1 87 ve 00T 66 qot
T T £ 8 8 e0T
T gy v 9 19 P6
T 6¢€ s 0s  ev %
1 6¢ £ T a6
1 TT z w1 e
z 'z €T 9oy  TOT L 28
z Ty St Y0l 85 €5 ag
1 L' 8¢ w1t eg
1 T 99T  TIT 00T 5
¥ ot e L 0 o vy 19 az
S § §8 % § 8 8 &  § 8 8 2 &
uoigay/ - ST 2 e e e e Sasur (dq)  (dam)
suelL# WeiL dNS# pul  uels  uoiSey

29



2 GWAS for milk fatty acids

1 0c oT 98 <8 X
1 67 z oz oz a8z
1 87 oIT €T L egz
9 e vvr TV 9L re Lt 8se 8y 6C Lz
L € 8.9 S0T bsE 8y S g€ vee € ot
1 ST z & b st
1 s [t 65 95 are
1 €T Wl 6v  op eyz
1 67 Wl oz ot 34
z € 6¢€ €65 w6 a4
1 o€ b 9 9 12
1 9T 8T v €L ot
8 6 TL Of g€l €5 vv  Of s9 65 79 €€ a6T
1 £ £ 9 9 e61
1 6T ST Ss ¥ a8t
£ se T 8T soe  o0f 1 eg1
z o€ s'€ £ 69 69 aLT
z 6T  6¢ & ve 1€ e/T
1 €7 6 bs €5 o1
S & & & § B &5 &8 % § 8 2 g &
uoigay/ - - s 2 e 2 e e e Sarur  (da)  (daw)
suelL# WeiL dNS# pul  uels  uoiSey

30



2 GWAS for milk fatty acids

‘[Spow 3y3 ul snoaueynwis uoidas 4ad sdNS Juediudis 3sow dy1 [|e pue [spow |ewiue

9yl yum pazAjeue sem siy] ‘49yiadol uoidaa 4ad SdNS uediudis 1sow ayl |je Aq paulejdxa ouelieA 2139ua3 SAIMppPE |B10) 3yl JO mmmu:muhmaN
V19 B ulyum suoidaJ juaJaylp Suniedipul p 4o 2 ‘q ‘e ue snid Jaquinu 1 g 9yl J0j spuels uoiSaJ ay3 Jo Jaquinu ay] ‘uoidad

e ul 1eJ) Jad dNS 1uedyiudis ¢ Jo wnwiuiw e yum ‘quawalinbau siyy Suiydalew dNs uednyiusis 1se| ayl o uonisod ayl 1e Suipus ‘awosowolyd
awes ayl uo dq\ QT IXau ayr uiyum pauoiisod sI NS Juedyiudis 1xau ayl JI spasdosd pue dNS Juediiudis 1Sy ayl 1e suels uoidad v,

L0T S S 8T 14" 8 TT T S 6T T 0T 14 € € MeJ3/suoi3ay #
Tve 98L UT6L 7'L6 ¢Sy 09 ¥L 6'ts 81y €S9 €9T 601 ¢0T 671 ,|2POoW Ul snosuenwWis sdNs ||V
§9C 978 €°0T OVIT /L8y T/LL VL LV¥S L8 €S 68T €0T CIT 6¥%T G098 wns
(@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@) (@) 0
— = = = = = = = = = = [os] [e)] B
> o A 2 N Q ® Q ey g Q =} =} =)
uoi8ay/ - -0 7 e 2 e e e Saiul  (daw) (daw)

S uell dNS# Ppui  uels  uoigey

31



2 GWAS for milk fatty acids

Three chromosomes showed highly significant regions, which were associated with
multiple fatty acids: region 14a showed significant associations with 10 traits,
region 19b with 8 traits, and region 26 with 7 traits. The region 14a harbors DGAT1
and region 26 harbors SCD1; these genes are known to affect fat composition
(Conte et al., 2010; Kgwatalala et al., 2009; Mele et al., 2007; Moioli et al., 2007;
Schennink et al., 2007, 2008). These regions explained a large portion of the total
additive genetic variation. The results also showed that additional regions had an
effect on single fatty acids or a certain group of fatty acids.

In this section the SNP showing the strongest association of the whole genome for
each trait is reported. Strongest associations for C14:0 (-logyo(P-values) = 36.6),
C16:0 (-logo(P-values) = 51.3), and C16:1 (-logyo(P-values) = 54.1) were found with
two SNPs (ULGR_SNP_AJ318490_1b and ULGR_SNP_AJ318490_1c), located at 0.4
Mbp on BTA 14, that are responsible for the DGAT1 K232A polymorphism. For C6:0
(-log1o(P-values) = 8.4), C18:1 (-logyo(P-values) = 48.6), and CLA (-logyo(P-values) =
15.8) the DGAT1 K232A SNPs were the most significant SNPs immediately after an
unmapped SNP (ULGN_SNP_AJ318490 2). After comparing this unmapped SNP
sequence against the sequence of DGATI, we identified it as an SNP located in
DGATI1 that is in high LD (r’=0.99) with the DGAT1 K232A SNPs. The strongest
associations for C10:1 (-logio(P-values) = 41.1), C12:1 (-logyg(P-values) = 22.8),
and C14:1 (-logyo(P-values) = 80.0) were found with an unmapped SNP
(ULGR_SNP_SCD). Also, C16:1 showed strong association (-log,o(P-values) = 34.8)
with this unmapped SNP on BTA 26, but C16:1 showed the strongest association
with the DGAT1 K232A SNPs on BTA 14 as mentioned above. After comparing this
unmapped SNP sequence against the sequence of SCD1, we identified it as the SNP
underlying the SCD1 A293V polymorphism. Although SCD1 was not mapped on
genome assembly BTAU 4.0, it was mapped on genome assembly UMD 3.0 at 21.1
Mbp on BTA 26 (Zimin et al., 2009). The strongest associations for C10:0 (-logo(P-
values) = 11.0) and C12:0 (-logio(P-values) = 9.7) were found with an SNP
(ULGR_MARC_10099_486) located at 52.5 Mbp on BTA 19. The strongest
association for C4:0 (-logyo(P-values) = 6.6) was found with an SNP (ULGR_BTA-
45866) located at 54.6 Mbp on BTA 19, and the strongest association for C8:0
(-log1o(P-values) = 6.2) was found with an SNP (ULGR_BTA-45847) located at 55.1
Mbp on BTA 19. Also, C14:0 showed strong association (-log,o(P-values) = 22.0)
with an SNP (ULGR_BTA-45758) on BTA 19 located at 52.1 Mbp, but C14:0 showed
the strongest association with the DGAT1 K232A SNPs on BTA 14 as mentioned
above. The strongest association for C18:0 (-log,o(P-values) = 5.8) was found with
an SNP (ULGR_BTA-28678) located at 64.2 Mbp on BTA 7.
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2.4 Discussion

This study is the first to report a genome-wide association study of bovine milk
fatty acids. A two-step single SNP association analysis was performed. In the first
step, the genome was screened for interesting regions using a general linear
model. In the second step, the interesting regions were verified using an animal
model. The animal model accounted for all relationships between individuals in the
pedigree, whereas the general linear model accounted only for the paternal half-
sib structure of the phenotyped cows. Ignoring relationships between individuals
can cause false positive associations (Goddard and Hayes, 2009); therefore, the
animal model was applied to verify the results from the general linear model.

The results showed that DGAT1 and SCD1 are highly associated with several of the
fatty acids. The results also showed that, for some traits, other regions were more
significantly associated, such as BTA 19 for some short and medium chain saturated
fatty acids. In addition, many other regions were associated with fatty acids, but
with smaller effects.

Schennink et al. (2009b) and Stoop et al. (2009b) reported a linkage study of milk
fat composition using some of the same data used in the present study. In the
linkage study, 1,341 SNPs were genotyped in 849 cows and their seven sires.
Schennink et al. (2009b) and Stoop et al. (2009b) detected genome-wide significant
QTL on BTA 6, 14, 19, and 26 for fatty acids included in the present study. The QTL
on BTA 14, 19, and 26 were confirmed in our study. Our results suggest a QTL on
BTA 6 for C6:0 and C8:0 (Figure 2.1A), but for C6:0 only one SNP exceeded the FDR
threshold, and for C8:0 none of the SNPs exceeded the FDR threshold. Therefore,
this region was not included in the animal model analysis in our second step. Given
the quite stringent threshold, this region is still likely to harbor a QTL for C6:0 and
C8:0.

The suggestive QTL found by Schennink et al. (2009b) and Stoop et al. (2009b) on
BTA 2,13, 14, 17, 19, and 26 was also confirmed in our study. Other suggestive QTL
reported in the studies could not be confirmed, though in some cases a QTL was
indicated, but this did not pass the threshold. In addition, several novel regions
significantly associated with fatty acids were detected in our study but not
reported by Schennink et al. (2009b) and Stoop et al. (2009b).

Some studies of the fat composition of adipose tissue in beef cattle were confirmed
by our findings regarding milk fat composition. This result indicates that these
regions are not unique for milk fat composition. Our findings confirmed the QTL
detected by Morris et al. (2010) in subcutaneous fat from beef cattle: C16:1 on BTA
1; C14:0, C16:1, and C18:1 on BTA 19; C14:0 and C14:1 on BTA 26; and C14:0 on
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BTA 27. Our findings confirmed the QTL detected by Abe et al. (2008) in back fat,
intermuscular fat, or intramuscular fat from beef cattle: C14:0 and C18:1 on BTA
19. Our findings confirmed the QTL detected by Alexander et al. (2007) in the
longissimus dorsi of beef cattle: CLA on BTA 7. Our findings confirmed the QTL
detected by Uemoto et al. (2011) in intramuscular adipose tissue from beef cattle:
C18:10on BTA 19.

Major regions

Three major regions were detected in this genome-wide association study (regions
14a, 19b, and 26), with significant effects on milk fat composition. These regions
showed highly significant associations with several fatty acids. The regions on BTA
14 and 26 are regions that have been studied previously, and our results confirm
the earlier findings (Conte et al., 2010; Grisart et al., 2002; Kgwatalala et al., 2009;
Mele et al., 2007; Moioli et al., 2007; Schennink et al., 2007, 2008; Taniguchi et al.,
2004). The region on BTA 19 has not been studied extensively in relation to milk fat
composition, but it harbors a number of candidate genes involved in fatty acid
synthesis.

The region on BTA 14 showing an association with C6:0, C8:0, C14:0, C16:0, C10:1,
C12:1, C14:1, C16:1, C18:1, and CLA is the region harboring DGAT1, which is known
to influence milk production traits (Grisart et al., 2002) and milk fat composition
(Conte et al., 2010; Schennink et al., 2007, 2008). For all of these traits, except
C10:1, C12:1, and C14:1, the two most significant SNPs on BTA 14 (located at 0.4
Mbp) were the two SNPs corresponding to the dinucleotide substitution of DGAT1
resulting in a K to A amino acid substitution (DGAT1 K232A). The K allele is
associated with larger fractions of C6:0, C8:0, C16:0, and C16:1, and with smaller
fractions of C14:0, C18:1, and CLA.

For C10:1 and C14:1, the most significant SNP (ULGR_BTC-068225) was located at
3.0 Mbp, and for C12:1 the most significant SNP (ULGR_BTC-067423) was located at
3.7 Mbp. However, for C10:1 and C12:1, the DGAT1 K232A SNPs were also
significant. After correcting the phenotypes for the effect of the DGAT1 K232A
polymorphism, the -logo(P-values) of these most significant SNPs decreased from
6.50 to 2.30 for C10:1, from 5.44 to 2.52 for C12:1, and from 4.63 to 2.40 for C14:1.
The LD between these most significant SNPs and the DGAT1 K232A SNPs was
moderate (r’ = 0.26 and 0.31). Although the associations of C10:1, C12:1, and C14:1
were just below the significance threshold after correcting for the DGAT1 K232A
genotype, the findings still suggest that an additional QTL may be present for the
medium chain unsaturated fatty acids on BTA 14.
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The region on BTA 26 that showed an association with C10:0, C14:0, C16:0, C10:1,
C12:1, C14:1, and C16:1 is the region harboring SCD1, which is known to be
associated with the desaturation of fatty acids (Kgwatalala et al., 2009; Mele et al.,
2007; Moioli et al., 2007; Schennink et al., 2008). For all of these traits, except
C16:0, the most significant SNP on BTA 26 corresponded to the nucleotide
substitution in SCD1 that causes an A to V amino acid substitution (SCD1 A293V) at
21.1 Mbp. The A allele was associated with larger fractions of C10:1, C12:1, and
C14:1, and with smaller fractions of C10:0, C14:0, and C16:1. Thus, the A allele
resulted in more C10:1 and C14:1 at the cost of C10:0 and C14:0. A similar effect
was found for C12:0 and C12:1, though C12:0 was not significantly associated with
the SNP. The opposite effect was found for C16:0 and C16:1; the A allele resulted in
less C16:1 and more C16:0, though C16:0 was not significantly associated with the
SNP. The SCD1 gene codes for the SCD enzyme, which desaturates saturated fatty
acids to A9 unsaturated fatty acids in the mammary gland (Pereira et al., 2003). The
association of this SNP with, and its effects on, the medium chain unsaturated fatty
acids and their equivalent saturated fatty acids is, therefore, in agreement with the
function of the enzyme. The associations we identified for the medium chain
unsaturated fatty acids confirm previous studies on the effect of the SCD1 A293V
polymorphism on milk fatty acids (Kgwatalala et al., 2009; Moioli et al., 2007;
Schennink et al., 2008). The associations we identified for the medium chain
saturated fatty acids confirm only the results of Schennink et al. (2008), who used
the same population as the present study.

The SCD1 A293V SNP was not significant for C16:0 (-log,o(P-value) = 1.09), which
also confirms previous studies (Kgwatalala et al., 2009; Mele et al., 2007; Schennink
et al., 2008). The most significant SNP for C16:0 on BTA 26 was located at 28.8
Mbp. This SNP was not in LD with the SCD1 A293V SNP (r’ = 0.08), and correcting
for SCD1 A293V had little effect on the significance of the SNP associated with
C16:0 (-logio(P-value) decreased from 5.52 to 4.46). Also, one allele of this SNP is
associated with larger fractions of C10:1, C12:1, C14:1, and C16:0, and with smaller
fractions of C10:0, C12:0, C14:0, and C16:1, suggesting that it has something to do
with desaturation, but it was only significantly associated with C16:0. We did not
identify obvious candidate genes in this region.

The region on BTA 19, at 32.7-61.8 Mbp, showed associations with C4:0, C8:0,
C10:0, C12:0, C14:0, C16:1, C18:1, and CLA, i.e. mainly with the short and medium
chain saturated fatty acids and with the long chain unsaturated fatty acids. No
significant effects were found for C6:0, but a QTL was indicated below the
threshold in the region on BTA 19 (Figure 2.1A). Morris et al. (2007) performed a
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linkage analysis of milk fatty acids on BTA 19, detecting QTL for C8:0, C10:0, C12:0,
C14:0, C18:1, and C18:2, which was confirmed by our findings and suggested fatty
acid synthase (FASN, at 52.2 Mbp) as a candidate gene responsible for the
observed effect. In addition to FASN, several other genes located within the region
on BTA 19 are involved in the biosynthesis of milk fat, including sterol regulatory
element binding transcription factor 1 (SREBF1, at 35.7 Mbp), ATP citrate lyase
(ACLY, at 43.4 Mbp), signal transducer and activator of transcription 5A (STAT5A, at
43.7 Mbp), and growth hormone (GH, at 49.7 Mbp). These genes are all candidate
genes because SNPs in the whole region showed an association with the traits,
perhaps in LD with mutations in genes not captured by our marker set. The
strongest association was found near FASN, but also near some other candidate
genes as discussed below.

The region on BTA 19 was strongly associated with C14:0 and explained a large
portion of the total additive genetic variation of C14:0. The SNP most significant for
C14:0 (-logyo(P-value) = 22.04) was also the most significant SNP for C18:1 (-logyo(P-
value) = 4.52) and located at 52.1 Mbp on BTA 19 (ULGR_BTA-45758 in
LOC518878), which is 71,862 bp from FASN. This SNP also showed significant
effects on C4:0 (-logy(P-value) = 3.57), C10:0 (-logio(P-value) = 7.01), C12:0
(-logyo(P-value) = 5.96), and CLA (-logyo(P-value) = 3.67), whereas the association
with C8:0 (-logyo(P-value) = 2.96) was just below the threshold. The effects of SNPs
on C8:0, C10:0, C12:0, and C14:0 were in opposite direction of the effects on C4:0,
C16:1, C18:1, and CLA. Fatty acid synthase (encoded by FASN) is a multi-enzyme
system involved in de novo fatty acid synthesis. The SNP effects suggest that less
C4:0 and more C8:0, C10:0, C12:0, and C14:0 are produced by fatty acid synthesis,
or vice versa, which is in line with the function of FASN. Three SNPs in FASN were
included in the marker set used in our study; however, two of them (FASN1g009 and
FASN-s3) were monomorphic for our population. The third SNP, FASN1;4,4, showed
association with C14:0 (-logyo(P-value) = 3.05). Schennink et al. (2009a) also studied
FASN 60,4, finding a significant association with C14:0 for the same population as in
our study. Morris et al. (2007) did not find significant associations between
FASN1794 and C14:0, but did find a significant association between C14:0 and
FASN1553; and FASNs603.

A haplotype of five FASN SNPs has been shown to be significantly associated with
C6:0, C8:0, C10:0, C12:0, C14:0, and C18:1 in Friesian-sired cows (Morris et al.,
2007), which are almost the same traits for which we found an association in the
region, though not specifically with SNPs in FASN. This finding suggests a QTL in this
region with an effect on short and medium chain fatty acids and long chain
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unsaturated fatty acids, but whether it is actually FASN that causes the association
remains unclear. Our genome-wide scan showed that an SNP outside of FASN is the
most significant SNP for C14:0 and was also associated with some of the other
traits. This SNP showed very strong association with C14:0, whereas the association
of C14:0 with the SNP in FASN was just barely significant. Candidate gene studies
have shown that FASN is mainly associated with C14:0, but we found associations
with additional traits, similar to the haplotype findings of Morris et al. (2007).
Perhaps the causal mutation is located outside of FASN and is mainly the effect on
C14:0 strong enough to be detected by SNPs in LD with this mutation.

This region on BTA 19 also harbors GH, and SNPs in this gene have been associated
with milk production traits, including fat yield (Yao et al., 1996). One SNP in our
marker set was located in exon 5 of GH (GH-D30713-299) and showed significant
association with C18:1 (-logio(P-value) = 3.81). The neighboring SNP showed even
more associations: with C8:0 (-logo(P-value) = 3.48), C10:0 (-logyo(P-value) = 5.13),
C12:0 (-logo(P-value) = 3.86), and C14:0 (-log,o(P-value) = 7.41).

No SNPs were located in the other candidate genes on BTA 19. The SNP showing
the strongest association with C16:1 was located at 43.8 Mbp on BTA 19 (BFGL-
NGS-111365), which is 13,873 bp from STAT5A. The SNPs neighboring ACLY and
STAT5A showed significant associations with several of these traits, especially
C14:0. All SNPs in the regions seem to be detecting the same effect, which is
strongest with C14:0. Although previous studies suggested FASN as the candidate
gene for association, which of the candidate genes causes the effect remains
debatable. The causal mutation might even be in a gene not considered here.

Additional regions

In addition to the three major regions mentioned above, many additional regions
showed associations with fatty acids (see Figure 2.1). We will not discuss all of the
regions in this paper, but what follows are some select regions that showed
association with three or more traits.

On BTA 6, region 6a was associated with C12:1, C14:1, and C16:1 (Table 2.3). The
SNP effects were in the same direction for all three fatty acids. This region harbors
the genes ATP binding cassette, subfamily G, member 2 (ABCG2, 37.4 Mbp)
and peroxysome proliferator-activated receptor-gamma coactivator-lalpha
(PPARGC1A, 44.8 Mbp). The SNPs most significantly associated with C12:1 (-logo(P-
value) = 5.03, at 44.3 Mbp), C14:1 (-log,o(P-value) = 4.39, at 41.2 Mbp), and C16:1
(-logig(P-value) = 4.63, at 40.2 Mbp) were located between these candidate genes.
ABCG2 has been associated with milk fat yield and percentage (Cohen-Zinder et al.,
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2005; Olsen et al., 2007). One SNP in our marker set was located in ABCG2 and
showed no significant associations with the studied fatty acids. PPARGCIA has
been associated with milk fat yield in German Holsteins (Weikard et al., 2005), but
this was not confirmed by Khatib et al. (2007) in two larger American Holstein
populations. Up to 10 SNPs in our marker set were located in PPARGCIA, but none
of these were significantly associated with C12:1, C14:1, or C16:1. However, one of
the 10 SNPs in PPARGCI1A showed an association with C16:1, which was just below
the significance threshold (-logio(P-value) = 2.86). In a candidate gene study,
Schennink et al. (2009a) found a significant association in the same population as in
the present study for two SNPs in PPARGCI1A that were not included in our marker
set: PPARGC1A;1790:514 With C16:1 and PPARGC1Aggy,19 With C14:1. Our genome-
wide scan indicates that not PPARGC1A, but another region has the strongest effect
on the unsaturated medium chain fatty acids.

On BTA 7, two regions showed an association with several fatty acids: region 7a
associated with C10:1, C12:1, C14:1, and C18:1; and region 7b associated with
C14:0, C12:1, C14:1, and C18:0 (Table 2.3).

Region 7a showed an association with almost all unsaturated fatty acids. In general,
the SNP effects on C18:1 were in the opposite direction of the SNP effects on
C10:1, C12:1, and C14:1. SNPs in this region were either associated with C10:1,
C12:1, and C14:1, or with C18:1, suggesting one QTL for the medium chain
unsaturated fatty acids and another for C18:1. The SNP effects on C10:0, C12:0, and
C14:0 were in the same direction as the effects on C10:1, C12:1, and C14:1, but
they were not significant. The SNP effects on C18:0 were in the same direction as
the effects on C18:1, but they were not significant. Although only unsaturated fatty
acids were significantly associated with this region, the SNP effects suggested that
this QTL has nothing to do with desaturation because the SNP effects on
unsaturated fatty acids were in the same direction as the effects on their saturated
equivalents.

Region 7b showed associations with C14:0, C18:0, C12:1, and C14:1. The most
significant SNP for each trait was different, but they were located in the same
neighborhood, around 64.0-64.1 Mbp, and were in high LD with one another (" =
0.53-0.97). This finding indicates the likelihood of one QTL in this region with an
effect on these four traits. The effects of these most significant SNPs were in the
opposite direction for C18:0 compared to C14:0, C12:1, and C14:1. The SNP effects
on C10:0 and C12:0 were in the same direction as the effects on C14:0, C12:1, and
C14:1, but they were not significant. The SNP effects on C16:0, C18:1, and CLA were
in the same direction as the effects on C18:0, but they were not significant. These
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SNP effects suggest that this QTL has something to do with a trade-off between
long chain fatty acids and de novo synthesis of medium chain fatty acids. No
candidate genes were located in this region.

On BTA 13, region 13 was associated with C6:0, C8:0, C10:0, C14:1, and C16:1
(Table 2.3). This region confirms the QTL for C6:0, C14:1, and C16:1 detected by
Stoop et al. (2009b), who also found that C8:0 and C10:0 showed a QTL around the
same position as C6:0, but these QTL were just below the threshold and, therefore,
not reported. For C6:0, C8:0, and C10:0, the same SNP, located at 64.8 Mbp
(ULGR_SNP_BES11_Contig346_1209), was the most significant SNP in the region,
and the SNP effect was in the same direction for all three traits. These traits have a
high genetic correlation (Stoop et al., 2008), which supports one QTL affecting
these three short chain fatty acids. This SNP is located in acyl-CoA synthetase short-
chain family member 2 (ACSS2), which activates acetate for de novo fatty acid
synthesis (Bionaz and Loor, 2008); thus, ACSS2 is a good candidate gene for a QTL
with an effect on C6:0, C8:0, and C10:0. Given that this particular significant SNP is
located in an intron (between exon 16 and 17) of ACSS2, this SNP is not likely the
causal mutation, but it can be in high LD with the causal mutation. In addition, the
region also had an effect on C14:1 and C16:1. The SNP effects for C14:1 and C16:1
were in the same direction, but these effects were in opposite direction of SNP
effects on C6:0-C10:0. The SNP in ACSS2 had no significant association with C14:1
or C16:1, which indicates an additional QTL with an effect on these unsaturated
fatty acids.

On BTA 27, region 27 was associated with C14:0, C16:0, C10:1, C12:1, C14:1, and
C16:1 (Table 2.3). The region on BTA 27 includes 1-acylglycerol-3-phosphate
O-acyltransferase 6 (AGPAT6), which is the most abundant isoform of all AGPAT
MRNA (~60%) in the mammary gland and involved in positioning fatty acids on the
second position of the triglyceride backbone (Bionaz and Loor, 2008). Given that
62.2% of C14:0 and 43.1% of C16:0 is located at the second position of the
triglyceride backbone (Jensen, 2002), this gene might be a candidate for this
association. The SNP effects on C14:0 and C16:0 were in opposite directions, which
suggests competition between C14:0 and C16:0 for the second position of the
triglyceride backbone as an explanation for this association. In AGPAT6 knock-out
mice, the composition of the triacylglycerol is altered and contains proportionally
more polyunsaturated fatty acids at the expense of monounsaturated fatty acids
(Vergnes et al., 2006), which might explain the effect of this region on the mono-
unsaturated fatty acids. In general, the SNP effects on C10:1, C12:1, C14:1, and
C16:1 were in the same direction.
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Variance explained

Table 2.3 shows that regions 14a and 26 explained a large portion of the total
additive genetic variation of C10:1, C12:1, C14:0, C14:1, C16:0, C16:1, C18:1, and
CLA. This variation is caused by DGAT1 and SCD1. For other traits, however, no
regions had such large effects. The sum of the total additive genetic variance
explained by the most significant SNP per region for C4:0-C12:0 and C18:0 was less
than 20% of the total additive genetic variance. This finding suggests that these
traits are influenced by many genes with small effects. Regions explaining roughly
1% of the total additive genetic variation or more were detected by the studied
design (e.g., C10:0 on BTA1), but additional regions with either undetectable small
effects or that were not dense enough in our marker set to detect the effect is
likely.

Even though short chain fatty acids are produced by de novo synthesis, less than
20% of the total additive genetic variance was explained by the analyzed regions.
FASN plays an important role in de novo synthesis, but less than 6.5% of the total
additive genetic variance of short chain fatty acids is explained by the region
harboring FASN. De novo synthesis of fatty acids requires several compounds in
addition to FASN enzymes to elongate fatty acids. One of the compounds is
acetate, which is activated by ACSS2 for de novo synthesis, ACSS2 was indicated as
a candidate gene associated with C6:0-C10:0 in this study. More genes like this that
assist FASN in de novo synthesis and, therefore, explain a portion of the total
additive genetic variation is likely. Also, genes involved in transport and triacyl-
glyceride production might explain some of the total additive genetic variation.

2.5 Conclusions

A genome-wide association study of 50,000 SNPs was performed for milk fatty
acids, resulting in many QTL. All over the genome regions were associated with milk
fatty acids, some regions with just one fatty acid and other regions with multiple
fatty acids. Milk fat composition is strongly influenced by polymorphisms in DGAT1
and SCD1, genes that have large effects on medium chain fatty acids and
unsaturated fatty acids. Several regions showed associations with these milk fatty
acids, but with smaller effects. The short chain fatty acids, C12:0 and C18:0, are not
strongly affected by genes with large effects, but are influenced by regions with
small effects. Some regions included candidate genes involved in milk fat synthesis
pathways. On BTA 19, there were several genes involved in fat synthesis underlying
the region associated with multiple fatty acids. Only in a few cases was an SNP
associated with fatty acids actually located in a candidate gene. Regions identified
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in this study can be fine mapped to find causal mutations. The results also create
opportunities for changing milk fat composition through breeding by selecting
individuals based on their genetic merit for milk fat composition, which can be
retrieved from the estimated SNP effects and the individual’s genotype.
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Abstract

Background

In this study we perform a genome-wide association study (GWAS) for bovine milk
fatty acids from summer milk samples. This study replicates a previous study where
we performed a GWAS for bovine milk fatty acids based on winter milk samples
from the same population. Fatty acids from summer and winter milk are genetically
similar traits and we therefore compare the regions detected in summer milk to
the regions previously detected in winter milk GWAS to discover regions that
explain genetic variation in both summer and winter milk.

Results

The GWAS of summer milk samples resulted in 51 regions associated with one or
more milk fatty acids. Results are in agreement with most associations that were
previously detected in a GWAS of fatty acids from winter milk samples, including
eight ‘new’ regions that were not considered in the individual studies. The high
correlation between the -log,o(P-values) and effects of SNPs that were found
significant in both GWAS imply that the effects of the SNPs were similar on winter
and summer milk fatty acids.

Conclusions

The GWAS of fatty acids based on summer milk samples was in agreement with
most of the associations detected in the GWAS of fatty acids based on winter milk
samples. Associations that were in agreement between both GWAS are more likely
to be involved in fatty acid synthesis compared to regions detected in only one
GWAS and are therefore worthwhile to pursue in fine-mapping studies.

Key words: milk fatty acids, dairy, genome-wide association
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3.1 Background

Dairy producers are looking for ways to optimize bovine milk fat composition for
human health, and to improve physical and functional properties of milk. Increasing
the knowledge about the synthesis of milk fatty acids, by unraveling the genetic
background of milk fatty acids, can aid in modifying bovine milk fat composition.
Polymorphisms in diacylglycerol-O-acyltransferase 1 (DGAT1) and stearoyl-CoA
desaturase 1 (SCD1) are known to have an effect on milk fatty acids, e.g. the DGAT1
K232A polymorphism explains 40% of the genetic variation of C16:0 (Schennink et
al., 2007) and the SCD1 A293V polymorphism explains 23% of the genetic variation
of C16:1 (Bouwman et al., 2011). However, there is still a considerable amount
of genetic variation in milk fat composition that has not been assigned to
polymorphisms.

Chromosomal regions associated with milk fatty acids can be detected by screening
the whole genome in a genome-wide association study (GWAS). In GWAS studies
many thousands of single nucleotide polymorphisms (SNPs) are being tested for
associations. In general it is expected that only a small proportion of the SNPs will
have a true association and only those that have an effect that is large enough will
be significant. Setting a significance threshold is finding the balance between
limiting the number of false positives and maintaining sufficient power. Replication
of results in independent samples is a strategy to separate false positives from true
associations (Chanock et al., 2007; van den Oord, 2008).

In a previous GWAS we identified interesting regions of the bovine genome
associated with milk fatty acids from winter milk samples (Bouwman et al., 2011).
To our knowledge, at present that is the only GWAS on bovine milk fatty acids. Not
many populations that are large enough for GWAS have been phenotyped for
milk fatty acids, because accurate measurement of milk fatty acids using gas
chromatography is expensive and time consuming. In addition, genotyping a large
number of individuals for a large numbers of SNPs is costly. The population that
was used for our previous GWAS, based on milk samples taken in winter, has been
phenotyped for milk fatty acids in a second milk sample which was taken in
summer. Repeating the GWAS for milk fatty acids based on winter samples using
the summer samples can confirm the previously detected associations and result in
new associations.

In this study we performed a GWAS for fatty acids based on summer milk samples.
This study repeats our previous GWAS for fatty acids based on winter milk samples
from the same population and largely the same animals. Fatty acids from summer
and winter milk are genetically similar traits and we therefore compared the
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regions detected in summer milk to the regions previously detected in winter milk
to confirm associations.

3.2 Methods

Phenotypes

The phenotypes of the winter milk samples were described earlier in Bouwman et
al. (2011), the phenotypes of the summer milk samples will be described in detail,
as well as the differences between winter and summer samples.

The fat composition of summer milk samples from 1,795 first-lactation Dutch
Holstein Friesian cows was available for this study. The cows were housed on 383
commercial farms throughout the Netherlands. At least three cows were sampled
per farm. The cows were between 97 and 335 days in lactation when the summer
samples were taken. The pedigree of the cows was provided by CRV (Cooperative
cattle improvement organization, Arnhem, the Netherlands) and consisted of
26,300 animals.

Milk fat composition was measured by gas chromatography as described in Stoop
et al. (2008). Many fatty acids were measured, but only the major fatty acids are
reported here: even-chain saturated fatty acids C4:0 to C18:0, even-chain (cis9)
monounsaturated fatty acids C10:1 to C18:1, and the polyunsaturated fatty acid
C18:2cis9,trans11 (CLA). These fatty acids made up 88% of the total milk fat. The
fatty acids are expressed in terms of weight-proportion of total fat weight (w/w%).
The winter and summer milk samples were taken from the same cows during the
same lactation. The moment of sampling resulted in some differences between the
two samples. Winter milk samples were taken from February to March 2005, when
Dutch cows are mainly kept indoors and fed silage. Summer milk samples were
taken from May to June 2005, when Dutch cows are often grazing for at least some
part of the day. Some cows sampled in winter were not in lactation anymore during
summer, therefore additional cows were sampled in summer to assure at least 3
cows per herd. The cows were on average 167 days (63-282) in lactation when the
winter samples were taken, and 247 days (97-335) in lactation when the summer
samples were taken.
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Statistical analysis of phenotypes
Variance components, heritabilities, and correlations between the fatty acids from
summer and winter milk samples were estimated using a bivariate animal model in
ASReml (Gilmour et al., 2006):

Yimn = H +byxdim +b,xe ®® M 4 b xafc, +b, xafc? +

, (1)

season | + scode |+ herd  + animal , + €jymn
where y was the phenotype; 1 was the overall mean; dim was the covariate
describing the effect of days in milk; afc was the covariate describing the effect of
age at first calving; season was the fixed effect of the class of calving season (June-
Aug 2004, Sept-Nov 2004, or Dec 2004-Jan 2005); scode was the fixed effect
accounting for differences in genetic level between proven sire daughters and test-
sire daughters, proven sires are selected and therefore their daughters might have
a different genetic level than daughters of test sires; herd was the random effect of
herd, distributed as N(O, Icﬁerd ), with identity matrix I and herd variance cﬁerd;
animal was the random additive genetic effect, distributed as N(O, Acg ), with the
additive genetic relationship matrix A and the additive genetic variance 0§ ;and e
was the random residual, distributed as N(O, Ici ), with identity matrix | and
residual variance oi .

Genotypes

Blood samples were collected from the cows for DNA isolation. Of the 1,795 cows
phenotyped for the summer milk sample 1,656 were successfully genotyped for
50,855 single nucleotide polymorphisms (SNPs) using a custom Infinium Array
(Hllumina, San Diego, CA, USA) designed by CRV. The assumed map positions of the
SNPs were based on the bovine genome assembly BTAU 4.0 (Liu et al., 2009). The
average distance between SNPs was 52,452 bp. Of the 50,855 SNPs, 591 SNPs were
located on the X chromosome, and 776 SNPs could not be mapped to any of the
Bos taurus (BTA) chromosomes and were assigned to BTA 0. The SNPs on BTA 0 and
the X chromosome were included in the study. Single nucleotide polymorphisms
with a genotyping rate < 80% (n=392), monomorphic SNPs (n=236), and SNPs with
1-9 observations for one of the genotype classes (SNPs with such low number of
observations in one of the genotype classes were excluded from further analyses to
reduce the number of spurious associations) (n=5,646) were discarded from the
original SNP set, resulting in the final marker set of 44,581 SNPs used for the
summer GWAS.
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Ethical approval

Genomic DNA of the cows was isolated from whole blood samples of the cows.
Blood samples were collected in accordance with the guidelines for the care and
use of animals as approved by the ethical committee on animal experiments of
Wageningen University (protocol: 200523.b).

Genome-wide association based on summer milk samples

For the GWAS based on the summer milk samples, both phenotype and genotype
data were available for 1,656 individuals. A single SNP GWAS was performed using
an univariate animal model in ASReml that was the same as model 1 but extended
with a fixed effect for the SNP genotype.

The genome-wide FDR was based on the P-values from the animal model using
the R package ‘gvalue’ (Storey and Tibshirani, 2003). A genome-wide FDR was
calculated for each trait individually. Associations with a genome-wide FDR < 0.05
were considered significant.

SNPs significant for one trait located close to each other were termed a “region”.
All significant SNPs in a region might be associated with the same causal mutation.
A region was defined as follows: it started at the first significant SNP on a
chromosome that was followed by an additional significant SNP within 10 Mbp; the
region was extended as long as another significant SNP occurred within 10 Mbp
from the previous one and ended at the last significant SNP that was not followed
by another significant SNP within the next 10 Mbp. Thus, each region contained at
least two SNPs significant for the trait. More than one region could be present on
the same chromosome when there were groups of significant SNPs located within
10 Mbp from each other but further than 10 Mbp from the other region(s) on that
chromosome.

The genetic variance explained by a SNP was calculated from the estimated
genotype effects from the statistical model and the observed genotype
frequencies. The result was expressed as a percentage of the total additive genetic
variance obtained from model 1. These percentages can be overestimated due to
the so called Beavis effect, especially when the effect of a SNP is small (Beavis,
1998). For each trait, the proportion of genetic variance explained by the most
significant SNP in a region was reported. Note that the most significant SNP in a
region can differ between traits.
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Comparison of summer and winter GWAS results

The GWAS results from the winter milk samples from Bouwman et al. (2011) and
from the summer milk samples were compared to each other. A total of 1,564 cows
were studied in both the summer and the winter GWAS, 92 cows were only studied
in the summer GWAS, and 142 only in the winter GWAS.

In Bouwman et al. (2011) a two-step single SNP approach was used for the GWAS
of fatty acids from winter milk samples. Due to computation time, in the study by
Bouwman et al. (2011) only regions which showed significant associations in
analyses using a general linear model were re-analysed using an animal model to
account for all relations between the animals. Here we used a one-step approach
using the animal model only. To make results from the previous study and the
present study comparable, the GWAS based on winter milk samples was redone
using an animal model for all SNPs. The Pearson correlation between the -logo(P-
values) of the general linear model for winter milk samples and the animal model
for winter milk samples was 0.95, which indicates that the general linear model
used correctly identified the regions of interest and that the results for winter milk
samples of Bouwman et al. (2011) are comparable with the results presented in the
current study.

For the individual GWAS studies for winter and summer milk samples a FDR < 0.05
was used. A FDR < 0.05 is stringent, especially when looking for agreement of
results. Therefore, a SNP was qualified as associated with both summer and winter
milk fatty acids when the FDR threshold was smaller than 0.20 in both GWAS
studies. We choose a FDR threshold of 20%, because the FDR of agreement
between the two GWAS studies would then be 4% (20%*20%) if the studies were
independent (Liu et al., 2008b). SNPs in agreement were reported when at least
more than one SNP was in agreement between the summer and winter GWAS in a
region (were region was defined as above) or when the SNP was in agreement
between the summer and winter GWAS for more than one trait.

3.3 Results

Table 3.1 shows that the phenotypic variation of milk fatty acids was larger in
summer than in winter. Summer milk samples contained more long chain fatty
acids (C18:0, C18:1, and CLA) and less C16:0 than winter milk samples (Table 3.1).
Phenotypic correlations between fatty acids of summer and winter milk samples
ranged between 0.36 and 0.67 (Table 3.2). Genetic correlations between fatty acids
of summer and winter milk samples ranged between 0.77 and 1.00 (Table 3.2).
Genetic correlations between summer and winter samples of C4:0, C6:0, C12:0,
C18:0, C10:1, C12:1, C14:1, C16:1, and C18:1 (ranging between 0.90-1) were not
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significantly different from one (Table 3.2). The genetic correlations for C8:0, C10:0,
C14:0, C16:0, and CLA were significantly different from one but showed strong
positive correlations (0.77-0.94, Table 3.2). Herd correlations between fatty acids of
summer and winter milk samples ranged between 0.16 and 0.54 (Table 3.2).

Table 3.1 Mean (in w/w%), phenotypic variance (03=02+07.4+02), intra-herd heritability

2 2

2 2
(hﬁﬁ%), and proportion of variance due to herd (Herd=0“—e“’) for the fatty acids of
03t0¢ 0§+Uherd+ce

summer and winter milk samples, with their standard errors in subscript.

Sample Trait Mean o} hit Herd

Summer n=1,795
C4:0 3.5235 0.1267¢.01 0.370.09 0.244
C6:0 2.179 1 0.0435; 9 0.414 99 0.18,0,
c8:0 1.32447 0.0288,,00 0.410,05 0.19.0,
C10:0 2.87046 0.2240, ¢, 0.560.10 0.19%.0;
C12:0 3.784.73 0.5550 03 0.52419 0.40¢03
C14:0 11.15; o6 1.15604 5 0.515 10 0.34¢.03
Cl16:0 29.17;35 12.4400 69 0.360.19 0.500 03
C18:0 9.88, 77 3.15400 13 0.18407 0.300.03
c10:1 0.350,07 0.00514 4o 0.48010 0.250 03
C12:1 0.11403 0.0010 g9 0.474.10 0.30g,03
C14:1 1.38555 0.0754( 9 0.46 g9 0.15¢ 0,
c16:1 1.400 30 0.09380 00 0.39,09 0.09.0,
c18:1 20.56, 59 7.8000 34 0.370.10 0.340 03
CLA 0.56¢ 58 0.0796¢ g9 0.284,09 0.58¢.02

Winter n=1,905
c4:0 3.500.,7 0.0775¢.00 0.43005 0.1600;
C6:0 2.22447 0.02780.00 0.484 10 0.1600;
c8:0 13714 0.02024 o 0.629 11 0.200.0;
C10:0 3.030.43 0.2009¢ 01 0.744.11 0.23002
C12:0 4.11460 0.5041¢,0, 0.64¢ 11 043003
C14:0 11.615; 0.8953 44 0.585.10 0.1700,
C16:0 32.59; 43 8.2030, 35 0.370.10 0.30p.03
C18:0 8.721 4, 1.97704,7 0.244; 0.19,
C10:1 0.370.07 0.0044 4o 0.33008 0.100 0,
c12:1 0.12403 0.00084 40 0.370.08 0.2140,
c14:1 1.360 5 0.06144 40 0.330.08 0.070.02
C16:1 1.444 3, 0.10474 00 0.420 09 0.070.0;
C18:1 18.18, 44 4.17904 17 0.284,09 0.2903
CLA 0.3911 0.0130p g0 0.444 19 0.51p0,
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Table 3.2 Phenotypic (r,), additive genetic (r,), herd (rnerq), and residual correlation (r.)
between winter and summer milk samples, with their standard errors (se).

Trait rp1 se ra2 se Iherd se le se
C4:0 0.48 0.02 0.94™ 0.06 0.31 0.08 0.25 0.09
C6:0 0.55 0.02 0.95™ 0.05 0.42 0.08 0.29 0.09
C8:0 0.52 0.02 0.93" 0.05 0.39 0.08 0.17 0.14
€10:0 0.56 0.02 0.94" 0.04 0.41 0.07 -0.03 0.26
C12:0 0.54 0.02 0.98™ 0.03 0.54 0.05 -0.06 0.21
C14:0 0.52 0.02 0.94" 0.04 0.37 0.07 0.14 0.15
C16:0 0.42 0.03 0.77" 0.11 0.20 0.06 0.47 0.07
C18:0 0.45 0.02 0.90™ 0.10 0.26 0.08 0.41 0.05
c10:1 0.44 0.02 1.00™ 0.03 0.31 0.10 0.15 0.10
C12:1 0.49 0.02 1.00™ 0.03 0.37 0.07 0.21 0.10
C14:1 0.61 0.02 1.00™ 0.02 0.16 0.14 0.46 0.06
Ci16:1 0.67 0.02 0.97"™ 0.03 0.19 0.17 0.53 0.06
ci18:1 0.41 0.03 0.92™ 0.08 0.19 0.07 0.33 0.07
CLA 0.36 0.03 081" 0.11 0.30 0.06 0.24 0.08

' r, is based on 02=02+07 ¢,q+02.
2 Superscripts indicate whether the genetic correlation differs significantly from 0.995 (~1),
where **P-value < 0.01, * P-value < 0.05 and ns = non-significant, i.e., P > 0.05.

Genome-wide association based on summer milk samples

Figure 3.1 shows the genome-wide plots of -log;o(P-values) of the GWAS of the
fatty acids based on the summer milk samples. In total, 51 regions were associated
with one or more fatty acids. Table 3.3 gives all detected regions and the
percentage of the total additive genetic variation explained by the most significant
SNP in that region for each of the fatty acids (for more detailed information about
those most significant SNPs see Additional table 3.1). The most significant SNPs
per region explained 2.2% up to 50.1% of the total additive genetic variation (Table
3.3). When all these most significant SNPs per region per fatty acid were analysed
simultaneously they explained between 5.5% for C4:0 and 92.5% for C16:1 (Table
3.3). Three regions with major effects were associated with multiple fatty acids:
BTA 14, BTA 19, and BTA 26. First we will describe the results for these three
regions with major effects and then for the other regions associated with more
than one fatty acid. Regions associated with only one fatty acid are given in Table
3.3 but will not be described here.
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The association detected on BTA 14, between 0 and 18.9 Mbp (region 14a), with
C6:0, C8:0, C14:0, C16:0, C16:1, C18:1, and CLA was most significant for three SNPs
located in the DGATI gene at 0.4 Mbp (including the two SNPs underlying the
DGAT1 K232A dinucleotide polymorphism). The DGAT1 SNPs explained 8.1-50.1%
of the total additive genetic variation of these fatty acids (Table 3.3). The
association detected on BTA 14 with C10:0 and C10:1 was also significant for the
SNPs in the DGAT1 gene. However, for these fatty acids the SNPs in the DGAT1
gene were not the most significant ones in this region on BTA 14. The most
significant SNPs were located at 3.6 Mbp for C10:0 and 3.0 Mbp for C10:1. The
association detected on BTA 14 with C12:1 was not significant for the SNPs in the
DGAT1 gene (-logio(P-value) = 1.89). The association detected on BTA 14 with C12:1
was most significant for a SNP located at 3.2 Mbp. After correcting C10:0, C10:1,
and C12:1 for the effect of the DGAT1 K232A polymorphism these most significant
SNPs remained significant. The linkage disequilibrium (LD) between these SNPs and
the DGAT1 K232A SNPs was moderate (r* = 0.14-0.34).

The association detected on BTA 19, between 37.3-62.3 Mbp (region 19b), with
C8:0, C10:0, C12:0, C14:0, and C16:0 was most significant around 46 Mbp for C10:0,
C12:0, and C16:0; around 52 Mbp for C14:0; and around 58 Mbp for C8:0. The most
significant SNPs explained 4.3-12.3% of the total additive genetic variation of these
fatty acids (Table 3.3).

The association detected on BTA 26, between 1.4 and 39.0 Mbp, with C10:0, C10:1,
C12:1, C14:1, and C16:1 was most significant near the SCD1 gene. The SCD1 gene is
not mapped on the BTAU 4.0 (Liu et al., 2009), but is mapped at 21 Mbp on BTA 26
according to the UMD 3.0 map (Zimin et al., 2009). Two SNPs located in the SCD1
gene (including the SCD1 A293V polymorphism) were the most significant SNPs for
the traits associated with the region on BTA 26. The SCD1 SNPs explained 4.5% of
the genetic variation of C10:0 and 15-46.4% of the total additive genetic variation
of the medium chain unsaturated fatty acids (Table 3.3).

Beside these three regions with major effects, nine additional regions were
associated with more than one fatty acid (Table 3.3). Region 5c was associated with
C6:0, C8:0, C10:0, C14:0, C10:1, C14:1, C16:1, and C18:1. Region 10b was associated
with C10:0, and C12:0. Region 11b was associated with C4:0, and C6:0. The region
on BTA 13 was associated with C6:0, C8:0, and C10:0. On BTA 17 there were three
regions associated with multiple traits: region 17a between 15.0 and 23.9 Mbp was
associated with C6:0, C8:0, and C16:1; region 17c between 28.6 and 34.3 Mbp was
associated with C6:0, C8:0, and C10:0; region 17d between 49.6 and 68.7 Mbp was
associated with C14:1, and C16:1. The region on BTA 20 was associated with C6:0,
C18:0, and C16:1. The region on BTA 28 was associated with C8:0, and C10:0.
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Some SNPs located on BTA 0 were also significant. Blasting these SNPs against the
UMD 3.0 map showed that they were mainly located in regions that already
showed significant effects, such as region 14a, 19b and 26.

Comparison of summer and winter GWAS results

Figure 3.2 shows two -logyo(P-values) for each SNP, one for the summer (significant
SNPs are orange squares in Figure 3.2) and one for the winter (significant SNPs are
blue triangles in Figure 3.2) GWAS. The -log,q(P-values) of SNPs that had a FDR <
0.20 in both the winter and summer GWAS are indicated with green addition signs
and show the regions that were found for both samples. Table 3.4 gives an
overview of the regions associated with the summer milk fatty acids that were in
agreement with the previous study of winter milk fatty acids. Only the regions that
showed agreement between the summer and winter GWAS for more than one SNP
or more than one trait are reported in table 3.4, resulting in 34 regions.

Three regions with major effects, BTA 14, 19, and 26, were found for both summer
and winter milk fatty acids. These regions were highly significant in the GWAS
based on winter milk samples and were therefore expected to be found for the
summer milk samples too. More interesting are the additional regions that were
found in both GWAS studies and especially the eight regions (1, 2a, 3, 5a, 10, 14b,
17c, and 24 (Table 3.4)) that were not reported for the individual studies based on
winter or on summer milk samples because their FDR was between 0.05 and 0.20.
In some regions agreement between the summer and winter GWAS was based on a
single SNP but in other regions agreement was based on multiple SNPs. Also, some
regions were associated with multiple fatty acids. We will report here the regions
found to be associated with more than two fatty acids in both GWAS studies:
regions 5c, 6, 13, 17b, and 27 (Table 3.4).

On BTA 5 the associations in region 5¢c with C6:0, C8:0, C10:0, C10:1, and C18:1
were in agreement with the winter GWAS (Bouwman et al., 2011). There are no
obvious candidate genes located in this region. In both GWAS studies this region
was also associated with C14:0, but different SNPs were significant in the two
studies (see Figure 3.2). The agreement between summer and winter GWAS for
C14:1 seems to be in a separate region, region 5d at 108.8 Mbp.

On BTA 6 the associations with C6:0, C8:0, and C16:1 (Table 3.4) were in agreement
with the winter GWAS (Bouwman et al., 2011). This region contains the candidate
gene peroxisome proliferator-activated receptor gamma, coactivator 1 alpha
(PPARGC1A). Our SNP set contained 10 SNPs located in PPARGCI1A, however, none
of these SNPs were significant in winter nor in summer, but SNPs around (73,865
bp before and 797,923 bp after) the gene showed association in both the summer
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and winter GWAS. In the winter GWAS the region was also associated with C12:1
and C14:1, but this was not the case in the summer GWAS.

On BTA 13 the associations with C6:0, C8:0, C10:0, and C10:1 (Table 3.4) were in
agreement with the winter GWAS (Bouwman et al., 2011). The region on BTA 13
was associated with short chain fatty acids. A possible candidate gene in this region
is acyl-CoA synthetase short-chain family member 2, which activates acetate for de
novo fatty acid synthesis (Bionaz and Loor, 2008). In the winter GWAS the region
was also associated with C14:1 and C16:1, but this was not the case in the summer
GWAS.

On BTA 17 the associations in region 17b with C6:0, C8:0, C10:0, and C16:1 (Table
3.4) were in agreement with the winter GWAS (Bouwman et al., 2011). There are
no obvious candidate genes located in this region.

On BTA 27 the associations with C12:0, C14:1, and C16:1 (Table 3.4) were in
agreement with the winter GWAS (Bouwman et al., 2011). This region contains the
candidate gene 1-acylglycerol-3-phosphate O-acyltransferase 6, which is involved in
attaching fatty acids on the second position of the triglyceride backbone. In the
winter GWAS this region was also associated with C14:0, C16:0, C10:1, and C12:1,
but this was not the case in the summer GWAS.

Besides agreement of association for both summer and winter milk fatty acids it is
also interesting to see how well the significance levels and effects of SNPs from the
summer and winter GWAS correlate. High correlation implies that the effect of the
QTL is similar in winter as in summer and, thus, that there is no genotype by season
interaction for the regions that were found in both GWAS studies. Winter and
summer -log;o(P-values) of SNPs that had a FDR < 0.20 in both GWAS studies are
plotted in Figure 3.3A and showed a correlation of 0.89. Winter and summer
additive SNP effects of SNPs that had a FDR < 0.20 in both GWAS studies, expressed
in phenotypic standard deviation, are plotted in Figure 3.3B and show a correlation
of 0.97.
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Figure 3.3 Significance level (A) and additive SNP effects expressed in phenotypic standard

deviation (0p=1/o§+o§) (B) of the SNPs that were found significant in both the summer and
winter GWAS (FDR < 0.20).

3.4 Discussion

The aim of this study was to perform a GWAS of bovine fatty acids based on
summer milk samples and to compare them to previous results of a GWAS of fatty
acids based on winter milk samples (Bouwman et al., 2011). For this GWAS we used
different milk samples from largely the same set of cows with the same genotypes
at a different stage of the same lactation. The main difference between the two
seasons was the herd management, including feeding. In winter, all herds were
kept indoors and fed silage, while in summer about half of the herds were grazing
outside for at least part of the day and a few other herds were fed fresh grass.
Diets of cows including fresh grass are known to alter milk fat composition (e.g.
Fievez et al., 2003; Smith et al., 2003). This was reflected in our results: summer
milk contained more long chain fatty acids and less C16:0 compared to winter milk.
The phenotypic correlations for the different fatty acids between summer and
winter samples ranged between 0.36-0.67 (Table 3.2), indicating that the summer
samples provide additional information compared to the winter samples. Genetic
correlations between summer and winter samples of C4:0, C6:0, C12:0, C18:0,
C10:1, C12:1, C14:1, C16:1, and C18:1 (ranging between 0.90-1, Table 3.2) showed
that these fatty acids are genetically the same trait in summer and winter
(Duchemin et al., 2013). The genetic correlations for C8:0, C10:0, C14:0, C16:0, and
CLA were significantly different from one (Duchemin et al., 2013) but showed
strong positive correlations (0.77-0.94, Table 3.2), suggesting that also for these
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fatty acids summer and winter samples have most genetic variation in common. It
is important here to consider that strong positive genetic correlations are required
to ensure that the traits have the same genetic background. However, for the
summer milk sample to provide additional information to our previous GWAS
phenotypic correlations should be weak.

This GWAS of fatty acids based on summer milk samples shows agreement with
most associations detected in our previous GWAS of fatty acids based on winter
milk samples (Bouwman et al., 2011). Three regions with major effects detected in
the winter GWAS (Bouwman et al., 2011) were also found in the summer GWAS.
On BTA 14 a dinucleotide polymorphism in DGAT1 is causing the major effect. The
DGAT1 K232A polymorphism is known to be associated with fat content and
composition, so our results are in line with other studies (Conte et al., 2010; Grisart
et al., 2002; Schennink et al., 2007). The rather large region associated with the
short and medium chain saturated milk fatty acids on BTA 19 confirm previous
linkage studies (Morris et al., 2007; Schennink et al., 2009b; Stoop et al., 2009b).
Several candidate genes related to fat synthesis are located in this region, e.g. ATP
citrate lyase, sterol regulatory element-binding transcription factor 1, signal
transducer and activator of transcription 5A, growth hormone, and fatty acid
synthase. There might be more than one QTL in this region given the size of this
region and the many candidate genes, but the actual polymorphism(s) causing the
effect(s) has not yet been identified. On BTA 26 a polymorphism in SCD1 is causing
the major effect. The gene SCD1 is known to be associated with medium-chain
unsaturated fatty acids, so our results are in line with other studies (Conte et al.,
2010; Kgwatalala et al., 2009; Mele et al., 2007; Moioli et al., 2007; Schennink et al.,
2008).

Our results from both GWAS studies also suggest that there are additional QTL on
BTA 14 besides DGAT1 that were associated with fatty acids. These additional QTL
on BTA 14 were located at 3.0-3.8 Mbp, 32.7 Mbp, 40.8-50.9 Mbp, and 73.0-76.5
Mbp, and confirm detected QTL for milk production traits in linkage analyses
(reviewed in Wibowo et al., 2008). Candidate genes for these regions might be
corticotropin releasing hormone at 30.5 Mbp, fatty acid binding protein 5 at 41.9
Mbp, and fatty acid binding protein 4 at 42.0 Mbp.

The three highly significant regions with major effects mentioned above were
expected to be found in both GWAS studies. More interesting are the additional
regions that were found in both GWAS studies such as the regions associated with
more than two fatty acids: region 5c, 6, 13, 17b, and 27. Also worthwhile to
mention are the ‘new’ regions that had a suggestive FDR between 5-20% and were
not considered in the individual studies based on winter or on summer milk
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samples only, but became of interest because they were found in both studies.
There are eight ‘new’ regions like this: region 1, 2a, 3, 5a, 10, 14b, 17c, and 24
(Table 3.4).

There are two different confirmation strategies regarding GWAS: replication and
validation. Replication studies are meant to confirm that the actual association is a
true association and should therefore be based on samples from the same
population with minimal systematic differences (lgl et al., 2009; Koénig, 2011).
Validation studies are meant to see if the association can be generalized over
different populations and should therefore be based on samples from a different
population, where this population can be different concerning genetic background,
phenotype definition, sampling strategy, and time point of investigation (Igl et al.,
2009; Konig, 2011). A correctly performed replication is more likely to be successful
in finding the same association again than validation, however, when an
association is validated the associated SNP is probably closer to the actual
polymorphism. In literature, replication and validation are often used
interchangeably which complicates the interpretation of the results, especially
when a study is called replication study but population, phenotype or study design
are too different from the original study to be a replication study. Our GWAS has
elements of a replication as well as of a validation study; it met criteria for a
replication such as sufficient sample size, phenotypes were measured using the
same method, same set of markers and a very similar population was used. It also
met criteria for validation because the phenotypes were measured at different
time points. The difference in season of measuring the phenotype provides
additional information. Ideally an independent population of cows should have
been sampled, but this was practically not feasible.

Replication of the study with largely the same set of animals and the same
genotypes led to minor differences in LD and allele frequencies between studies,
therefore it is more likely to confirm previously detected results (Liu et al., 2008b).
However, spurious associations due to population structure or genotyping errors
are more likely to be detected twice using the same set of animals and genotypes.
Agreement between the two GWAS studies was based on a FDR threshold of 20%
in each study. If the winter and summer GWAS would be independent, the FDR of a
region found in both studies would be 4% (20%*20%) (Liu et al., 2008b). A FDR of
4% gives enough reason to investigate such a region further. Lowering the
threshold from 5% to 20% FDR resulted in the eight ‘new’ regions mentioned
above, besides the regions that were already discovered in one of the individual
studies and were in agreement with the other.
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Even though we used largely the same set of animals, same genotypes, same
phenotype measurement and a lower threshold for agreement between summer
and winter GWAS not all regions were found in both summer and winter GWAS.
This can be due to genotype by season interaction, due to lack of power (false
negative QTL) or because these QTL were false positive QTL. It is not possible to
determine which of these three reasons apply. However, the genetic correlations
indicated that fatty acids are genetically similar traits in summer and winter, which
suggests that genotype by season interaction may have only a small effect on the
results. So lack of agreement between summer and winter GWAS is either due to
lack of power or false positives.

3.5 Conclusions

This GWAS of fatty acids based on summer milk samples is in agreement with most
associations that were previously detected in a GWAS of fatty acids based on
winter milk samples. Lowering the FDR threshold from 5% in individual studies to
20% for agreement between both the summer and winter GWAS led to eight ‘new’
regions that were not considered in the individual studies, but had a suggestive
FDR between 5-20% in both studies. It is more likely that genomic regions are
involved in fatty acid synthesis when associations are found in both summer and
winter GWAS compared to regions detected in only one GWAS. Detected
associations that were in agreement between summer and winter GWAS are
therefore worthwhile to pursue in fine-mapping studies.
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Additional files

Additional Table 3.1 Most significant SNP per trait for each region significantly associated
with fatty acids of the summer milk sample (corresponding to table 3.3), SNP position,
significance level and the percentage of total additive genetic variance explained by the SNP.

Position -Logyo % of 2

Reg Trait SNP Chr BTAU4  (P-value) explained
by SNP

la  C16:1 ULGR_BTA-39422 1 106298619 3.84 3.31
1b  Cl4:1 ULGR_BTA-58250 1 154751350 3.63 2.52
2a  Cl16:1 ARS-BFGL-NGS-101408 2 65960161 5.03 4.03
2b  C18:1 ULGR_rs29018764 2 113931092 4.54 5.02
2c C16:1 ULGR_BTA-93268 2 118914271 3.84 2.98
3 C16:1 ULGR_rs29027883 3 72584745 4.25 3.49
4a  (C16:1 ULGR_rs29015971 4 59974296 3.22 2.81
4b  C16:1 ULGR_rs29024031 4 121815498 3.53 3.18
5a  (C12:1 ULGR_BTA-74162 5 9144954 4.69 4.02
5b  C16:1 ULGR_rs29024155 5 35966378 3.88 3.37
5¢  C6:0  ULGR_AAFC03122217_7089 5 99946095 6.43 5.28
5¢ (8.0  ULGR_AAFC03122217_7089 5 99946095 5.36 491
5C  C10:0 ULGR_BTA-61859 5 96448996 5.56 3.77
5¢  (C14:0 ULGR_BTA-61859 5 96448996 4.16 2.78
5C  (C10:1  ULGR_rs29016908 5 101090417 4.24 3.22
5¢  (C14:1 ULGR_BTA-74571 5 101084555 2.85 1.95
5¢  (C16:1 ULGR_BTA-93285 5 96297427 3.15 2.65
5¢  (C18:1 ULGR_AAFC03122217_7089 5 99946095 5.60 6.47
6a  C16:1 ULGR_BTC-050897 6 40617870 3.57 2.89
6b  C6:0  ULGR_BTC-038642 6 44772742 5.04 4.03
6c  C16:1 BTA-76959-no-rs 6 84955939 3.39 2.80
6d  C6:0  ULGR_rs29012416 6 85288859 3.78 2.96
6e  (C14:1 ULGR_BTA-77644 6 106088917 3.66 2.86
7a C16:1 BTB-02031452 7 21946038 4.58 3.72
7b  C16:1 ULGR_BTA-28678 7 64163271 3.69 2.96
10a  C10:0 ULGR_BTA-105496 10 9818142 4.21 2.86
10b  €10:0 ARS-BFGL-NGS-28483 10 22024690 5.16 2.99
10b  C12:0 ARS-BFGL-NGS-28483 10 22024690 5.73 3.86
10c  C10:1 ULGR_BTA-15583 10 89892045 3.85 3.13
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Position -Logio % of o2

Reg Trait SNP Chr BTAU4  (P-value) explained
by SNP

11a  C16:1 ULGR_AAFC03072692_59348 11 74307761 4.58 3.61
11b  c4:0  ULGR_SNP_X14710_1740 11 107166278 6.00 5.46
11b  ¢6:0  ULGR_SNP_X14710_1740 11 107166278 6.50 5.20
13 C6:0  ULGR_rs29027599 13 57042707 6.13 5.49
13 (8:0  ULGR_BTA-33016 13 57022323 4.96 4.64
13 C10:0 ULGR_BTA-33016 13 57022323 5.11 3.21
142 c6:0  ULGN_SNP_AJ318490 2 0 0 17.66 14.05
l4a  8:0  ULGN_SNP_AJ318490 2 0 12.32 10.98
l4a  C10:0 ULGR_BTC-067569 14 3618555 6.84 4.24
142 C14:0 ULGR_SNP_AJ318490_1c 14 445086 13.96 8.09
142 C16:0 ULGN_SNP_AJ318490 2 0 0 47.81 47.41
l4a  C10:1 ULGR_BTC-068221 14 3011407 8.17 7.05
142 C12:1 ULGR_BTC-067762 14 3190704 5.21 4.55
l4a  Cc16:1 ULGR_SNP_AJ318490_1b 14 445087 38.18 31.09
142 (18:1 ULGN_SNP_AJ318490 2 0 0 45.82 50.13
l4a  CcLA  ULGR_SNP_AJ318490_1b 14 445087 8.35 10.54
14b  c16:1 ULGR_AAFC03000860_ 10938 14 45169820 3.90 3.57
l4c  c16:1 ULGR_AAFC03063557_87858 14 74282593 4.59 4.10
158 c18:1 ULGR_BTA-121008 15 20854340 3.91 3.61
15b  c16:1 ULGR_BTA-37283 15 64123483 3.61 3.00
16a  (C14:0 ULGR_rs29019632 16 3732521 421 2.16
16b  C16:1 ULGR_BTA-40002 16 68010217 3.63 3.03
17a c6:0  ULGR_BTA-19253 17 15030516 4.25 3.34
17a 8:0  ULGR_BTA-19275 17 15039540 436 3.90
17a c16:1 ULGR_BTA-40634 17 21040244 4.40 3.65
17b  C14:1 ULGR_BTA-88832 17 24727021 3.76 3.00
17¢  c6:0  ULGR_BTA-40805 17 31496257 5.47 5.32
17¢c  c8:0  ULGR_BTA-40805 17 31496257 7.61 8.18
17¢  c10:0 ULGR_BTA-40805 17 31496257 5.67 4.12
17d  c14:1  ULGR_BTA-41023 17 50852615 3.84 3.26
17d  c16:1 ULGR_BTA-41264 17 58681668 5.26 4.35
17e  C10:0 ULGR_rs41255340 17 73990637 3.81 2.21
19a  C16:1 ULGR_BTA-44680 19 6087775 3.43 2.86
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Position -Logio % of o2

Reg Trait SNP Chr BTAU4  (P-value) explained
by SNP

19b 8.0 ULGR_rs41257373 19 58223746 6.40 6.03
19b  C10:0 ARS-BFGL-NGS-24479 19 45901284 8.68 5.65
19b  €12:0 ARS-BFGL-NGS-24479 19 45901284 8.23 6.29
19b  C14:0 ULGR_BTA-45758 19 52099860 16.69 12.30
19b  €16:0 ARS-BFGL-NGS-31468 19 46499482 4.19 4.28
20 c6:0  ULGR_BTA-50053 20 24052804 3.72 2.81
20 c18:0 BTB-00771394 20 9181457 6.13 15.59
20 c16:1 ULGR_AAFC03097520_1842 20 19545988 4.65 4.03
21 C10:1 ULGR_BTA-53024 21 65176950 5.19 4.24
22a  C14:1 ULGR_BTA-55267 22 11843506 3.84 2.94
22b  C16:0 ULGR_BTA-114990 22 16202758 4.10 3.68
232 C16:1 ULGR_BTA-55534 23 16383738 3.27 2.73
23b  c6:0 ULGR_BTA-56106 23 27096170 5.16 4.34
23c  C16:1 ULGR_AAFC03029112_9488 23 42701448 5.00 4.13
26 C10:0 ULGR_rs41255702 0 0 7.62 4.53
26  C10:1 ULGR_rs41255702 0 0 27.58 20.65
26 C12:1 ULGR_rs41255702 0 0 18.63 14.98
26  Cl14:1 ULGR_rs41255702 0 0 63.99 46.35
26  C16:1 ULGR_SNP_SCD 0 0 38.66 30.74
27 Cc16:1 BTB-00968596 27 47560218 3.28 2.63
28 (8.0 ULGR_BTA-107346 28 3124529 5.09 4.95
28 C10:0 ULGR_BTA-107346 28 3124529 4.72 3.09
292 C10:0 ULGR_BTA-22806 29 32659799 4.02 2.63
29b  C16:1 ULGR_BTA-65824 29 44267475 5.42 3.55
X Cl14:1 ULGR_BTA-30449 30 63061338 4.40 3.89
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Abstract

A major quantitative trait locus (QTL) for milk fat content and fatty acids in both
milk and adipose tissue has been detected on Bos taurus autosome 19 (BTA19) in
several cattle breeds. The objective of this study was to refine the location of the
QTL on BTA19 for bovine milk fat composition using a denser set of markers.
Opportunities for fine mapping were provided by imputation from 50,000
genotyped single nucleotide polymorphisms (SNP) toward a high-density SNP panel
with up to 777,000 SNP. The QTL region was narrowed down to a linkage
disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 bp to
51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes:
coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). The gene
CCDC57 is minimally characterized and has not been associated with bovine milk
fat previously, but is expressed in the mammary gland. The gene FASN has been
associated with bovine milk fat and fat in adipose tissue before. This gene is a likely
candidate for the QTL on BTA19 because of its involvement in de novo fat
synthesis. Future studies using sequence data of both CCDC57 and FASN, and
eventually functional studies, will have to be pursued to assign the causal
variant(s).

Key words: Bos taurus autosome 19, fine mapping, milk fatty acid, quantitative trait
loci



4 Fine-mapping QTL for milk fatty acids on BTA19

4.1 Introduction

Many linkage and genome-wide association studies (GWAS) have been performed
to identify QTL in cattle. These studies have detected numerous chromosomal
regions affecting traits of interest (e.g., http://www.animalgenome.org/cgi-
bin/QTLdb/index, Hu et al., 2010; Khatkar et al., 2004). Typically, the location of the
QTL is estimated inaccurately and the confidence interval contains several
candidate genes. To fine-map QTL, researchers have genotyped additional markers
on the same animals, genotyped additional animals, and sometimes sequenced
candidate genes (e.g., Blott et al., 2003; Cohen-Zinder et al., 2005; Druet et al.,
2008; Gautier et al., 2006; Grisart et al., 2002; Karim et al., 2011; Kim et al., 2009;
Meuwissen et al., 2002). Currently, opportunities for fine-mapping QTL in cattle are
provided by the availability of high density SNP panels with up to 777,000 SNP.
Genotyping at higher density, or imputation of genotypes to higher densities,
increases the power of GWAS, gives a more detailed view of associated regions,
and increases the chance of one of the SNP being in strong linkage disequilibrium
(LD) with the causal variant of the QTL (Marchini and Howie, 2010; Marchini et al.,
2007; Spencer et al., 2009).

For milk fatty acids, a few genome-wide linkage studies and GWAS have been
performed. Those studies showed that 3 regions exist with major effects on milk
fatty acids, located on BTA14, BTA19 and BTA26 (Bouwman et al., 2011, 2012;
Schennink et al., 2009b; Stoop et al., 2009b). The region on BTA14 has been studied
extensively and a dinucleotide polymorphism in diacylglycerol-O-acyltransferase 1
(DGAT1) has been suggested as the causal variant (Grisart et al., 2002; Schennink et
al., 2007). For the region on BTA26, a polymorphism in stearoyl-CoA desaturase 1
(5CD1) has been suggested as causal variant (Schennink et al., 2008; Taniguchi et
al., 2004). For the region on BTA19, the causal variant has not been identified.

The QTL on BTA19 shows association with several fatty acids in both milk and
adipose tissue (Bouwman et al., 2011, 2012; Ishii et al., 2013; Morris et al., 2007).
Fatty Acid Synthase (FASN) has been suggested as a candidate gene and several
SNP in FASN are significantly associated with fatty acids in both beef and dairy
cattle (Abe et al., 2009; Morris et al., 2007; Oh et al., 2012; Ordovas et al., 2008;
Roy et al., 2006; Schennink et al., 2009a; Zhang et al., 2008), but the QTL region is
rather large and shows much higher significance levels than those observed in the
candidate gene studies (Bouwman et al., 2011). Therefore, the objective of this
study was to refine the location of the QTL on BTA19 for bovine milk fat
composition previously reported by Bouwman et al. (2011), using a denser set of
markers.
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4.2 Materials and methods

Population

Detailed fat composition was measured in milk samples from 1,905 first lactation
Dutch Holstein Friesian cows, which were housed on 398 commercial farms
throughout the Netherlands. At least 3 cows were sampled per herd. Milk samples
were taken in winter (February to March 2005), when Dutch cows are mainly kept
indoors and fed silage. The cows were between 63 and 282 DIM at the day of
sampling. About half of the sampled cows were descendants from 5 proven sires
(101-200 daughters per sire); the other half of the sampled cows descended from
50 test sires or 45 other sires (1-30 daughters per sire). The pedigree of the cows
was provided by the Cooperative Cattle Improvement Organization (CRV, Arnhem,
the Netherlands) and consisted of 26,300 animals.

Phenotypes

Milk fatty acids were measured by gas chromatography and were expressed in
terms of weight-proportion of total milk fat weight (w/w%). More details about the
phenotypes can be found in Stoop et al. (2008).

This study focuses on C14:0, because in previous studies, this milk fatty acid
showed the strongest association with the region on BTA19 (Bouwman et al., 2011;
Morris et al., 2007; Stoop et al., 2009b). Milk fat of the 1,905 cows contained, on
average, 11.61% C14:0, the phenotypic standard deviation of C14:0 was 0.78, the
heritability of C14:0 was 0.62, and the QTL on BTA19 explained approximately
13.8% of the genetic variation in C14:0 (Bouwman et al., 2011).

Genotypes

Initially, 1,810 cows and 55 of their sires (all proven and test sires) were genotyped
with a custom 50,000 (50K)-SNP array (lllumina Inc., San Diego, CA) designed by
CRV. The 55 sires were regenotyped using the BovineHD BeadChip (Illumina Inc.)
with 777,000 (777K) SNP. The high-density (HD) genotypes of these 55 sires were
combined with HD genotypes of other Dutch Holstein Friesians available at CRV to
form a reference population for imputation of, in total, 1,333 HD genotyped Dutch
Holstein Friesian animals.

Animals with pedigree inconsistencies (71 cows) were removed before imputation.
Pedigree inconsistencies were assumed when more than 0.5% of the 50K SNP for
which both sire and daughter were homozygous, were homozygous for the
opposite allele. The software BEAGLE 3.3 (Browning and Browning, 2009) was used
to phase and impute missing genotypes for the HD reference animals. These
phased genotypes were then used to impute the 50K genotypes of the cows to HD
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genotypes. The assumed map positions of the SNP were based on the bovine
genome assembly UMD 3.1 (Zimin et al., 2009).

In the 50K data, 1,454 SNP were located on BTA19, with an average distance of
44,888 bp. The number of SNP on BTA19 increased to 18,893, using the HD
imputed data, with an average distance between SNP of 3,386 bp. We found 998
SNP overlapping between the 50K SNP panel and the HD SNP panel. A total of
1,572 monomorphic SNP in the HD-imputed data were excluded, and in addition
2,659 SNP were excluded because they had a low genotype frequency (i.e., 1-9
individuals within 1 of the 3 genotype classes), resulting in 14,662 SNP used in this
study.

Single SNP association analysis
For 1,640 cows with both C14:0 phenotypes and HD-imputed genotypes, a single
SNP analysis was performed for BTA19 using the following mixed model in ASReml
software (VSN International Ltd., Hemel Hempstead, UK):

Yikmno =M +byxdim;+b, xe %% 4™+ b xafc,+b, xafc] +

(1)

season , +scode | +herd ., + genotype , +animal , + €m0
where Vi mno Was the phenotype; p was the overall mean; b; to b, were
regression coefficients of corresponding covariates; dim; was the covariate
describing the effect of DIM; afc; was the covariate describing the effect of age at
first calving; season, was the class variable accounting for calving season (June-
August 2004, September-November 2004, or December 2004-January 2005); scode,
was the class variable accounting for differences in genetic level between proven-
sire daughters and test-sire daughters; herd,, was the random effect of herd,
distributed as N(O, Icrﬁerd ), with identity matrix | and herd variance cﬁerd;
genotype, was the class variable accounting for the genotype of the SNP; animal,
was the random additive genetic effect, distributed as N(O, Aog ), with additive
genetic relationship matrix A based on the full pedigree and additive genetic
variance og; and ejumno Was the random residual, distributed as N(O, Ioﬁ ), with
identity matrix | and residual variance oﬁ . To speed up the single SNP association
analysis of all 14,662 SNP on BTA19, the genetic and herd variances were fixed to

the variances estimated using model 1 without the genotype effect.
A significance threshold was calculated using a Bonferroni-like correction for

multiple testing according to the method of Sidak (1967): 1-(1-0L)1/", where n is the
number of SNP (here, 14,662) and a is the significance level (here, 0.1%). This
rather conservative threshold was chosen because the main interest of this study
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was reducing false positives, whereas missing false-negative associations was of
less concern because we have previously shown highly significant evidence for the
presence of a QTL on BTA19 (Bouwman et al., 2011, 2012), which has also been
confirmed in other cattle populations (Ishii et al., 2013; Morris et al., 2007).

The genetic variance explained by a SNP was calculated from the estimated
genotype effects and the observed genotype frequencies. The result was expressed
as a percentage of the total additive genetic variance obtained from model 1
without the genotype effect.

The R package biomaRt (Durinck and Huber, 2012) was used on all 14,662 SNP to
determine if SNP were located in genes and, if so, in which genes they were
located. For the SNP mentioned in the tables, the Basic Local Alignment Search Tool
(BLAST; http://blast.ncbi.nIm.nih.gov/Blast.cgi) was used to compare the SNP
sequences with the bovine genome sequence to confirm the location of the SNP in
the genes and to infer the functional consequences of the SNP.

Haplotype analysis

The imputation in BEAGLE resulted in phased genotypes for all individuals, which
provided the opportunity to study haplotypes. Haplotypes better characterize a
chromosomal segment than any single SNP. This is relevant when the causal variant
is not one of the typed SNP or in full LD with any of the typed SNP. In such a case, a
haplotype might capture more LD with the causal variant and, consequently,
provide a better estimate of the effect of the causal variant than any of the typed
SNP. When the haplotype characterizes the chromosomal segment that contains
the causal variant and the causal variant is not one of the typed SNP or in full LD
with any of the typed SNP, the effect of the haplotype should be larger than the
effect of any of the typed SNP. Two different types of haplotype analysis were
performed and are described in more detail in the following section: (1) sliding
window of 2 consecutive SNP and (2) LD block analysis.

Sliding window

For the 1,640 cows (with both genotypes and phenotypes), phased genotypes of 2
neighboring SNP were used to create 2-SNP haplotypes, and the 2 haplotypes per
cow were combined into a genotype. The genotypes of the 2-SNP haplotypes were
included as a class variable in model 1 instead of the single SNP genotype. This
association analysis was used to screen the whole chromosome 19 with a sliding
window of 2 consecutive SNP, shifting 1 SNP at a time.
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LD block

Haploview 4.2 software (Barrett et al., 2005) was used to define LD blocks for the
region between 51.2 and 51.5 Mbp on BTA19 that contained the most significant
SNP from both the single SNP and the sliding-window analyses. The LD blocks were
defined using all 84 SNP in the region and all 1,640 cows (with both phenotypes
and genotypes). The LD blocks were based on the D’ measure of LD (default
Haploview options).

Six LD blocks were defined in the region, of which LD block 3 contained the most
significantly associated SNP in both the single SNP and the sliding-window analyses.
Therefore, LD block 3 was studied in more detail. Nine haplotypes within LD block 3
had reasonable frequencies (>1%) and were tested for association with C14:0. For 1
of the 9 haplotypes at a time, the SNP genotype in model 1 was replaced by the
number of copies of the haplotype tested (0, 1 or 2) as a covariable. This
association analysis was repeated for each of the 9 haplotypes.

Correction for most significant SNP and 2-SNP window

To test whether multiple QTL were located on BTA19, the single SNP association
analysis was repeated for C14:0 phenotypes (y) corrected for the genotype effects
of (a) the most significant SNP of the single SNP analysis and (b) the most
significant 2-SNP window of the sliding-window analysis. In both cases, BTA19 was
screened using a single SNP analysis as described above, using model 1 on the
precorrected phenotypes (y*), where y* =y — Xgepob, With Xgeno representing an
incidence matrix for the genotype of (a) the most significant SNP of the single SNP
analysis or (b) the most significant 2-SNP window of the sliding-window analysis
and b representing a vector with the estimated effect of each genotype.

4.3 Results

Single SNP in CCDC57 most significantly associated with C14:0
Figure 4.1 shows the significance of association between C14:0 and 14,662 SNP on
BTA19, resulting from a chromosome-wide single SNP association analysis. Imputed
SNP showed a stronger signal than empirically genotyped SNP, but the most
significant empirically genotyped SNP was located in the same region as the most
significant imputed SNP (Figure 4.1). Based on the Bonferroni threshold with a =
0.1% (-logyg(P-value) = 7.17), there were 284 significant SNP, which were located
between 40,228,233 and 58,072,578 bp. Within this part of the chromosome, 3
regions were most pronounced: around 42.4 Mbp, around 51.3 Mbp, and around
54.1 Mbp. Focus for the next section will be on the region around 51.3 Mbp
because this region contained the most significant SNP.
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Table 4.1 Details of the 10 most significant SNP from a single SNP association analysis of
C14:0 on BTA19

SNP Name' Position MAF -Logo Allele Gene’ Functional

(bp) (P-value) 3 substitution consequence

effect”

14348 51,307,827 0.45 32.8 0.47 CCDC57 Intron
14349 51,312,107 0.45 32.8 0.47 CCDC57 Intron
14354 51,319,695 0.45 32.8 0.47 CCDC57 Intron
14355 51,320,976 0.45 32.8 0.47 CCDC57 Intron
14356 51,322,876 0.45 32.8 0.47 CCDC57 Intron
14357 51,323,849 0.45 32.8 0.47 CCDC57 Intron
14358 51,325,153 0.45 32.8 0.47 CCDC57 Intron
39328° 51,326,752 0.45 32.8 0.47 CCDC57 Intron
14350 51,312,889 0.44 31.4 0.47 CCDC57 Intron
14372 51,386,738 0.34 31.2 -0.42 FASN Intron

! The SNP names begin with BovineHD19000 before the 5-digit number given, unless
otherwise indicated.

2 Minor allele frequency.

*The -logyp of the P-value from the association of the SNP with C14:0.

* The allele substitution effect calculated using model 1 with a regression on the number of
copies (0, 1, or 2) of the minor allele. Standard errors ranged between 0.03 and 0.04.

® CCDC57 = coiled-coil domain containing 57; FASN = fatty acid synthase.

®The SNP name begins with ARS-BFGL-NGS-.

Focusing on the most significant region around 51.3 Mbp shows that 8 intronic SNP
were located in the coiled-coil domain containing 57 (CCDC57) gene that were in
perfect LD (r’* = 1) with each other and were the most significant SNP (-logyo(P -
value) = 32.8; Figure 4.1 and Table 4.1). These SNP showed an allele substitution
effect of 0.47 wt/wt% (Table 4.1) and explained 21.6% of the total additive genetic
variation in C14:0. The next most significant SNP (BovineHD1900014350; -logo(P-
value) = 31.4; Table 4.1) was also located in CCDC57, and the r* between this SNP
and the 8 most significant SNP was 0.98. This SNP was actually empirically
genotyped and was the most significant SNP in previous GWAS (Bouwman et al.,
2011, 2012). The next most significant SNP (BovineHD1900014372; -logyo(P-value) =
31.2; Table 4.1) was located in the FASN gene, which is adjacent to CCDC57, and
the r* between this SNP and the 8 most significant SNP was 0.40.
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Table 4.2 Details of the 10 most significant 2-SNP windows associated with C14:0 on BTA19

SNP 1 SNP 2
Position Position -Logio
SNP Name' (bp) SNP Name® (bp) (P-value)2 Gene®
14372 51,386,738 14373 51,388,329 33.9 FASN
14348 51,307,827 14349 51,312,107 31.8 CCDC57
14354 51,319,695 14355 51,320,976 31.8 CccDC57
14355 51,320,976 14356 51,322,876 31.8 CcCDC57
14356 51,322,876 14357 51,323,849 31.8 CccDC57
14357 51,323,849 14358 51,325,153 31.8 ccDC57
14358 51,325,153 39328* 51,326,752 31.8 CCDC57
14371 51,380,688 14372 51,386,738 30.8 CCDC57/FASN
14349 51,312,107 14350 51,312,889 30.1 CccDC57
14346 51,303,322 14348 51,307,827 29.0 CcCcDC57

! The SNP names begin with BovineHD19000 before the 5-digit number given, unless
otherwise indicated.

2The -log,, of the P-value from the association of the 2-SNP window with C14:0.

3 FASN = fatty acid synthase; CCDC57 = coiled-coil domain containing 57.

*The SNP name begins with ARS-BFGL-NGS-.

2-SNP window in FASN most significantly associated with C14:0
Screening BTA19 with a sliding window of 2 consecutive phased SNP, shifting 1 SNP
at a time, resulted in the same chromosomal region showing the strongest signal as
in the single SNP analysis (Figure 4.2), but focusing on the region around 51.3 Mbp
showed some small differences. The most significant window consisted of 2 SNP
located in FASN (Table 4.2) instead of SNP in CCDC57. The other highly significant
windows given in Table 4.2 consisted of 2 SNP located in CCDC57, except 1 window
that consisted of the last SNP in CCDC57 and the first SNP in FASN.

For the most significant window with both SNP located in FASN
(BovineHD1900014372-BovineHD1900014373), a regression on the number of
copies of each haplotype was performed. Haplotype G-G had a frequency of 0.48
and an allele substitution effect of 0.45 (+0.04); haplotype A-G had a frequency of
0.34 and an effect of -0.42 (+0.03); haplotype G-A had a frequency of 0.18 and an
effect of 0.05 (+0.04; haplotype A-A was not present in the population studied).
The allele substitution effects of the A-G and G-G haplotypes were of similar size
compared with the allele substitution effect of BovineHD1900014372 from the
single SNP analysis (Table 4.1).
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LD block contains both CCDC57 and FASN

Haploview analysis of the 84 SNP in the region between 51.2 and 51.5 Mbp on
BTA19 revealed 6 LD blocks. Linkage disequilibrium block 3 (51,303,322-51,388,329
bp) contained 22 SNP, including the CCDC57 SNP that were most significant in the
single SNP analysis and the 2 FASN SNP that were most significant in the sliding-
window analysis. Therefore, LD block 3 was investigated in more detail. Within LD
block 3, 9 different haplotypes had a frequency >1% in the population (Table 4.3);
HAPLO3 was the most frequent haplotype (0.368), followed by HAPLO2 (0.287;
Table 4.4).

Association between C14:0 and the number of copies of the haplotype present per
individual were analyzed for each of the 9 haplotypes. The haplotype HAPLO2 was
most significantly associated with C14:0 (-log,o(P-value) = 23.84), followed by
HAPLO3 (-logio(P-value) = 18.67; Table 4.4). The effects of HAPLO2 and HAPLO3 on
C14:0 were similar but in opposite directions: the regression coefficient of HAPLO2
was -0.37 (+0.03), whereas the regression coefficient of HAPLO3 was 0.35 (+0.04;
Table 4.4). This agreed with the fact that HAPLO2 and HAPLO3 differed from each
other at the SNP in LD block 3 that were significant in the single SNP analysis (Table
4.3). These haplotype allele substitution effects were a little smaller compared with
the allele substitution effect of the most significant SNP in the single SNP analysis
and the allele substitution effect of the most significant 2-SNP window in the
sliding-window analysis. Therefore, the LD block haplotypes did not seem to
capture more LD with the causal variant of the QTL compared with the single SNP
and sliding-window analyses.

2-SNP window captures most of the QTL variance

Figure 4.3A shows the Manhattan plot of BTA19 after correction for the most
significant SNP of the single-SNP association analysis (Bovine1900014354). The
original single SNP analysis showed 3 significant regions: around 42.4, 51.3, and
54.1 Mbp. After correction for the most significant SNP located in CCDC57 (51.3
Mbp), the region around 42.2 Mbp dropped below the significance threshold,
whereas the regions around 51.3 and 54.1 Mbp remained significant. The most
significant SNP after correction (BovineHD1900018628) was located at 51,612,335
bp in the gene Aly/REF THO complex 4 (ALYREF). The LD between this SNP in
ALYREF and the most significant SNP from the original single SNP analysis was 0.17.
The next 5 most significant SNP after correction were located between 54,144,924
and 54,166,828 bp in the gene ubiquitin specific peptidase 36 (USP36), of which
one (BovineHD1900015164) was a missense mutation, causing an alanine to
aspartic acid amino acid change. The LD between the most significant SNP in USP36
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Table 4.4 Frequencies, significance levels, and allele substitution effects of haplotypes for
linkage disequilibrium block 3 (51,303,322-51,388,329 bp on BTA19) associated with C14:0

-Logyp Allele substitution
Haplotypes Frequency (P-value) effect SE
HAPLO1 0.073 5.27 0.28 0.06
HAPLO2 0.287 23.84 -0.37 0.03
HAPLO3 0.368 18.67 0.35 0.04
HAPLO4 0.083 1.18 -0.11 0.06
HAPLOS5 0.051 2.14 0.21 0.08
HAPLO6 0.049 1.01 0.12 0.07
HAPLO7 0.035 0.29 -0.06 0.08
HAPLO8 0.023 4.96 -0.45 0.10
HAPLOS 0.019 0.48 -0.11 0.11

and the most significant SNP from the original single SNP analysis was 0.19,
whereas the LD between this USP36 SNP and the SNP in ALYREF was 0.43. The
significance level of all other SNP significant in the original single SNP analysis
dropped below the Bonferroni 0.1% threshold after correction for the most
significant SNP.

Figure 4.3B shows the Manhattan plot of BTA19 after correction for the most
significant 2-SNP window (Bovine1900014372-Bovine1900014373) of the sliding-
window analysis. After correction for the most significant 2-SNP window located in
FASN (51.3 Mbp), all SNP significant in the original single SNP analysis dropped
below the Bonferroni 0.1% threshold. This indicates that the 2-SNP window in FASN
captured most of the QTL variance.

4.4 Discussion

This study aimed to fine map a QTL for C14:0 content in bovine milk fat on BTA19.
The previously identified QTL spanned a rather large region of almost half the
chromosome (Bouwman et al.,, 2011). Using 10 times more SNP in the present
study gave a more detailed view of the associated region and showed that the
most significant SNP were located in an LD block that contained 2 genes: CCDC57
and FASN.
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Fine mapping using imputed SNP data

The QTL on BTA19 was fine mapped using genotypes imputed from a 50K SNP
panel to a 777K SNP panel. Fine mapping the QTL on BTA19 using genotypes
imputed from the 50K SNP panel to the 777K SNP panel recovered the same region
as being most significant compared with a previous 50K genome-wide analysis
(Bouwman et al., 2011). However, in the previous study, it could be suggested that
SNP in CCDC57 picked up the effect of FASN, but now due to the higher density of
SNP, we see that SNP in both genes are significantly associated with C14:0 and LD
between SNP in the 2 genes is not high.

High-density SNP panels and sequence data will enhance QTL fine mapping and
detection of causal variants. The 50K SNP panel has a useful density to screen the
genome for such QTL, whereas the higher-density SNP panels are very useful to
fine map the regions detected using the 50K SNP panels. Fine mapping using
sequence data could even lead to detection of candidate causal variants because
the causal variant should be present as a SNP in the sequence data of a population
that is segregating for the QTL. However, functional studies are required to declare
a candidate SNP as causal variant.

The numbers of animals with HD genotypes and especially with sequence data are
still limited. Imputation of genotypes can, therefore, be a useful tool to increase
the density of genotypes. Also, imputation is useful to facilitate combining
genotype data generated with different genotyping arrays. In human studies, it has
been shown that the power of GWAS increases when imputation is used to
increase the number of genotypes (Guan and Stephens, 2008; Marchini and Howie,
2010; Marchini et al.,, 2007; Spencer et al., 2009). Small changes in imputation
accuracy lead to small changes in power of GWAS; also, poor imputation accuracy
can still improve power compared with no imputation (Guan and Stephens, 2008).
On the other hand Almeida et al. (2011) showed that the type-I error of association
is higher for imputed SNP compared with empirically genotyped SNP; especially
SNP with minor allele frequency close to 0.5 were false-positively associated. In the
current study, one of the highly significant SNP in the studied LD block was
genotyped (BovineHD1900014350), and that SNP was also the most significant SNP
for C14:0 on BTA19 in Bouwman et al. (2011, 2012). In addition, a GWAS (50K) in
beef cattle showed that 1 of the 8 most significant SNP (ARS-BFGL-NGS-39328) was
most significantly associated with C14:0 in adipose tissue (Ishii et al., 2013),
indicating that it is unlikely that the detected associations with SNP in the
haplotype block were false-positive associations.

Imputation accuracy depends on many factors, such as LD between SNP, allele
frequency, number of animals genotyped with high density, and relationships
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between reference population and target population. Schrooten et al. (2012)
showed that only 0.55 to 0.76% imputation errors were made using BEAGLE to
impute individuals genotyped with 50K SNP panels to HD panels using 488 HD
genotyped individuals. Because the HD genotyped reference population was much
larger in the current study (1,333 individuals) and included the 55 sires of the
imputed cows, it can be assumed that imputation errors were even lower.
Imputation accuracy also depends on the quality of the genome build. Erbe et al.
(2012) and Pausch et al. (2013) showed that certain regions on the genome have
poor imputation accuracy. Erbe et al. (2012) suggested that this poor imputation
accuracy could be due to mapping errors. Imputation accuracy improved after
remapping problem regions based on LD (Erbe et al.,, 2012). According to the
studies of Erbe et al. (2012) and Pausch et al. (2013) no indication existed of low
imputation accuracy or mapping errors on BTA19 in Holstein and Fleckvieh,
respectively.

CCDC57

Fine-mapping the QTL for C14:0 content in bovine milk fat on BTA19 gave a more
detailed view of the associated region and showed that the most significant SNP
were located in an LD block that contained 2 genes: CCDC57 and FASN. The gene
CCDC57 is minimally characterized and has not been associated with bovine milk
fat previously; it is transcribed into a coiled-coil domain containing protein. Coiled-
coil domains are structural motifs in proteins, with many involved in important
biological functions such as DNA binding and regulation of gene expression. The
gene CCDC57 is located next to FASN, which is a more pronounced candidate gene
because of its known biological relation to fat synthesis. However, the candidacy of
CCDC57 is supported by Medrano et al. (2010), who showed that CCDC57 was
expressed in mammary tissue of a second-lactation cow and that the expression
level of CCDC57 was higher than that of FASN.

FASN

In addition to CCDC57, the current study also suggested FASN as a candidate gene,
because, besides SNP in CCDC57, a 2-SNP window located in FASN also was highly
significantly associated with C14:0 content. The gene FASN encodes a multi-enzyme
system that catalyzes de novo fatty acid synthesis. Even though FASN has been
studied extensively in candidate gene studies for fat content, milk fatty acids and
fatty acids in adipose tissue (Abe et al., 2009; Li et al., 2012; Oh et al., 2012; Roy et
al., 2006; Schennink et al., 2009a; Zhang et al., 2008), this has not yet resulted in
identification of the causal variant for the QTL on BTA19.
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Three SNP on the HD SNP panel located in FASN have been associated with milk
fatty acids in dairy cattle and with fatty acids in adipose tissue in beef cattle:
BovineHD1900014375 (g.13126C>T; position relative to the sequence of
FASN with accession AF285607), BovineHD1900014377 (g.16907T>C), and
BovineHD1900014275 (g.17924A>G; Li et al., 2012; Morris et al., 2007; Oh et al.,
2012; Schennink et al., 2009a; Zhang et al., 2008). A fourth SNP on the HD SNP
panel located in FASN, BovineHD1900014376 (g.13965C>T), was detected by Abe
et al., (2009) but not studied in detail. The current study showed that associations
with these 4 SNP were relatively weak (-logio(P-values) were 0.4, 3.4, 21.3, 3.4,
respectively) compared with the considerably stronger association that was found
with another FASN SNP BovineHD1900014372 (-log;o(P-value) = 31.2).

Other fat synthesis-related genes

In addition to CCDC57 and FASN, additional candidate genes known to be involved
in milk fat synthesis underlie the QTL on BTA19, such as ATP citrate lyase (ACLY),
sterol regulatory element-binding transcription factor 1 (SREBF1), signal transducer
and activator of transcription 5A (STAT5A), and growth hormone 1 (GH1). Of the 8
SNP in ACLY, 1 SNP (-logio(P-value) = 7.18) just exceeded the Bonferroni threshold
and 3 SNP (-logyo(P-value) = 7.13) were just below that threshold, but they reduced
considerably in significance when corrected for the effect of the most significant
SNP or 2-SNP window (Figure 4.3). The 2 SNP in our HD SNP panel located in
SREBF1 and 4 SNP located in STAT5A did not show any association with C14:0. The
only SNP located in GH1 was below the Bonferroni threshold (-log;o(P-value) =
6.82), and also reduced considerably in significance when corrected for the effect
of the most significant SNP or 2-SNP window (Figure 4.3).

4.5 Conclusions

We reduced the QTL for C14:0 on BTA19 to an LD block formed by 22 SNP covering
85,007 bp (51,303,322-51,388,329 bp). This LD block contained 2 genes: CCDC57
and FASN. The gene CCDC57 is minimally characterized and has not been
associated with bovine milk fat previously, but is expressed in the mammary gland.
In addition to SNP located in CCDC57, a 2-SNP window located in FASN also was
highly significantly associated with C14:0 content. The gene FASN is involved in de
novo fat synthesis and has been studied in candidate gene studies. Future studies
using sequence data of both CCDC57 and FASN and, eventually, functional studies
will have to be pursued to assign the causal variant(s).
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Abstract

Background

Knowledge regarding causal relationships among traits is important to understand
complex biological systems. Structural equation models (SEM) can be used to
quantify the causal relations between traits, which allow prediction of outcomes to
interventions applied to such a network. Such models are fitted conditionally on a
causal structure among traits, represented by a directed acyclic graph and an
Inductive Causation (IC) algorithm can be used to search for causal structures. The
aim of this study was to explore the space of causal structures involving bovine milk
fatty acids and to select a network supported by data as the structure of a SEM.

Results

The IC algorithm adapted to mixed models settings was applied to study 14
correlated bovine milk fatty acids, resulting in an undirected network. The
undirected pathway from C4:0 to C12:0 resembled the de novo synthesis pathway
of short and medium chain saturated fatty acids. By using prior knowledge,
directions were assigned to that part of the network and the resulting structure
was used to fit a SEM that led to structural coefficients ranging from 0.85 to 1.05.
The deviance information criterion indicated that the SEM was more plausible than
the multi-trait model.

Conclusions

The IC algorithm output pointed towards causal relations between the studied
traits. This changed the focus from marginal associations between traits to direct
relationships, thus towards relationships that may result in changes when external
interventions are applied. The causal structure can give more insight into
underlying mechanisms and the SEM can predict conditional changes due to such
interventions.

Key words: dairy, inductive causation, milk fatty acids, structural equation model



5 Causal relations between milk fatty acids

5.1 Background

In animal breeding and genetics, relationships between traits are traditionally
studied using multi-trait mixed models (Henderson and Quaas, 1976). Such models
do not allow for recursive relationships between traits that are generally present in
biological systems. Structural equation modelling (SEM) is a statistical technique for
testing and estimating such recursive relationships (Haavelmo, 1943; Pearl, 2009;
Wright, 1921). Gianola and Sorensen (2004) described SEM in a quantitative
genetics context in order to account for possible feedback or recursive relations
among traits in multi-trait mixed models settings. In most applications of SEM in
animal breeding and genetics, only few hypothesized networks are typically tested
and compared, and those that best fit the data are declared as most plausible (de
los Campos et al., 2006; de Maturana et al., 2009; Jamrozik et al., 2010; Konig et al.,
2008; Wu et al., 2007). Although such an approach avoids the computational
challenges involved in testing every possible network, it does not explore the full
space of possible networks. However, data driven exploration of the space is
possible using the Inductive Causation (IC) algorithm (Verma and Pearl, 1990).

The IC algorithm is based on conditional independencies tests, such that under
multivariate normality, it can be implemented by using partial correlations tests.
When all partial correlations between a pair of traits are non-null for each
conditioning subset of traits (i.e., they are dependent conditionally on all possible
sets of other traits), then a direct causal relation between this pair of traits is
declared. When a partial correlation between two traits is null (i.e., they are
independent conditionally on at least one set of other traits), then there is no
direct causal relation between this pair of traits. Therefore, partial correlations can
be explored to study how a set of traits is causally related and this can be
qualitatively represented by a graph or network (Pearl, 2009). If the resulting
network is completely directed, it can be used as a causal structure of a SEM, and
the magnitude of causal relationships among traits (represented by structural
coefficients) can be estimated by fitting such a model. Furthermore, visualization of
the causal relationships among variables on a graph could help understand and
interpret complex biological systems, while their quantification allows prediction of
outcomes of external interventions applied to such a causal network.

The inferred structural coefficients associated with connections between traits in a
network only carry a causal interpretation under specific causal assumptions. For
example, structural coefficients inferred from a SEM with an acyclic causal
structure and independent residuals only keep their causal meaning under the
assumption that there are no hidden causal effects that have a direct influence on
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two or more traits in the network. In livestock, removing such confounding effects
can be achieved by performing randomized experiments. However, most livestock
data come from non-randomized field studies and are prone to the influence of
several sources of systematic variation. When measured, the confounding
generated by these systematic sources of variation can be controlled by correcting
for them in a model. One example of hidden factors that may affect two or more
traits in the network is correlated genetic effects. Thus, the genetic covariances are
background sources of phenotypic covariances among traits that confound not only
the inference of causal effects between pairs of traits, but also the search for causal
structures, because algorithms may interpret such covariances as due to causal
relations among phenotypes. Therefore, Valente et al. (2010) proposed to use the
inferred residual (co)variance matrix of a standard multi-trait mixed model (which
represents the covariance matrix among traits conditionally on the genetic
confounders) as input for the IC algorithm, instead of the observed data, when
searching for causal structures in mixed effects settings. Valente et al. (2010, 2011)
used simulated data to show that applying the IC algorithm to the posterior
distribution of the residual (co)variance matrix of a multi-trait mixed model
recovered the correct network, and Valente et al. (2011) used the methodology on
real data from quails to study causal networks involving five traits.

Here, we applied the same approach to a set of 14 highly correlated milk fatty acids
to analyze their causal relations. Fatty acids are important components in human
diets with either beneficial or unfavorable effects on human health, depending on
the fatty acid. Studying causal relations between bovine fatty acids in milk can
provide valuable information about the synthesis of fatty acids, which could be
useful for approaches aimed at changing the fatty acid composition of dairy
products and ultimately at improving human health. Since a considerable amount
of knowledge about the synthesis of fatty acids is available, the network obtained
from the adapted IC algorithm can be compared to known biological pathways.
However, the network may also reveal new relations that could confirm existing
hypotheses or create new ones. The known biological pathways include de novo
synthesis, biohydrogenation and desaturation of milk fatty acids. Most of these
pathways are reflected in the results of analyses that involve phenotypic and
genetic correlations between milk fatty acids (Karijord et al., 1982; Soyeurt et al.,
2007; Stoop et al., 2008), clustering techniques (Heck et al., 2012; Massart-Leén
and Massart, 1981), or principal component analysis (Fievez et al., 2003). These
studies suggest that certain fatty acids have a common origin, but they cannot
distinguish between direct and indirect relationships.
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Our aim was to explore causal networks between milk fatty acids by applying for
the first time the adapted IC algorithm as presented by Valente et al. (2010) to 14
highly correlated traits. In addition, the selected network was used as the causal
structure of a SEM to quantify the relationships between the milk fatty acids.

5.2 Methods

Data

Data on the fat composition of winter milk samples from 1,902 first-lactation Dutch
Holstein Friesian cows were used. The cows were housed on 397 commercial farms
throughout the Netherlands. At least three cows between 63 and 282 days in milk
were sampled per farm. The pedigree of the cows was supplied by CRV
(Cooperative cattle improvement organization, Arnhem, the Netherlands) and
included information from the last four generations (4,676 animals).

Table 5.1 Mean and phenotypic standard deviation for bovine milk fatty acids (in g/kg milk)

1

Trait Mean Op
C4:.0 1.53 0.26
C6:0 0.97 0.17
C8:0 0.60 0.11
C10:0 1.32 0.28
C12:0 1.79 0.37
C14:0 5.05 0.77
C16:0 14.27 2.84
C18:0 3.80 0.84
C10:1 0.16 0.04
C12:1 0.05 0.01
C14:1 0.59 0.13
Ci6:1 0.63 0.19
C18:1 7.87 1.20
CLA 0.17 0.04

1o = [52452
op—,/oa+oe.

Milk fat composition was measured by gas chromatography (details about the
phenotyping are in Stoop et al. (2008)). Fourteen fatty acids with the highest
concentration in milk fat were considered: even-chain saturated fatty acids C4:0,
C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, even-chain (cis9) monounsaturated
fatty acids C10:1, C12:1, C14:1, C16:1, C18:1, and the polyunsaturated fatty acid
CLA (conjugated linoleic acid, C18:2cis9,trans11). Gas chromatography was
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performed on fat samples and provided relative amounts of fatty acids expressed
on a fat basis in g/100g fat. However, these relative amounts do not properly
represent the biological relationships among fatty acids; therefore the fatty acids
were expressed on a milk basis in g/kg milk. Table 5.1 presents the mean and
adjusted phenotypic standard deviation for the fatty acids included in this study.

Multi-trait analysis

Genetic and residual (co)variances among traits were estimated by fitting a
Bayesian multi-trait mixed model that uses latent variables to fit (co)variance
structures and a random walk Metropolis-Hastings algorithm to obtain Markov
chain Monte Carlo (MCMC) samples for variance components, similar to the latent
variable models to estimate genomic (co)variances in Sgrensen et al. (2012). Latent
variables were used to fit (co)variance structures because most of the milk fatty
acids were strongly correlated, both genetically and residually. Fitting a standard
multi-trait model for 14 milk fatty acids resulted in convergence issues, but using
latent variables to reduce the dimensionality of the data improved convergence of
the Bayesian multi-trait mixed model.

Phenotypes were standardised to traits with a mean of 0 and a standard deviation
of 1 to reduce scale differences between the milk fatty acids in the multi-trait
mixed model. The following multi-trait model was fitted:

y=XB+Zu+e,

with the joint distribution of vectors u and e as:

AR |

where y is a vector of phenotypes; B is a vector for systematic effects, for each trait
the same systematic effects were included: a covariate for days in milk modelled
with a Wilmink curve (Wilmink, 1987), a covariate for age at first calving, a
covariate for age at first calving squared, a fixed effect for calving season (June-Aug
2004, Sept-Nov 2004, or Dec 2004-Jan 2005), a fixed effect for sire code
(accounting for differences in the genetic level between proven sire daughters and
test-sire daughters), and a fixed effect for herd; X is a known incidence matrix of B
ony; uis a vector of random additive genetic effects; Z is a known incidence matrix
of u on y; and e is a vector of random residuals. Gy is the additive genetic
(co)variance matrix; A is the additive genetic relationship matrix; Ry is the residual
(co)variance matrix; | is an identity matrix. The (co)variances between genetic
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effects and between residuals were modelled employing k latent vectors v, to
model residual (co)variances, and k latent vectors w, to model genetic
(co)variances, such that e;~N (X7, Vi, 75,) and u;~N(Tj si;Wy, T3, A), with
vg~N(0,I) and w,~N(0,A) as standard Normal latent vectors, 7, ; and s;; as
regressions or “loadings” on the latent vectors with uniform priors [-o0, oo], and rgi
and Tﬁi as the independent remaining variances for residuals and genetic effects
per trait i. From the latent variable model, the residual variance for trait i is
Dk rkz‘i + TZi, and the residual covariance between traits i and j is X 7y ;7% ;- In a
similar manner, the variances (st,ii +Tﬁi) and covariances (X Sk, Sk,j) were
obtained for the additive genetic effects.

In order to maintain mixing in the MCMC sampling algorithm, the remaining
independent variances Tgi and Tﬁi must remain well above 0. Initially, this large set
of highly correlated traits resulted in residual and polygenic variances rgi and rﬁi
that were close to 0, thus it was necessary to set a minimum value for them and
uniform priors [0.02, co] were used on these parameters to achieve this. Because
standardised traits were used, these bounds imply that at least 2% of the residual
variance for each trait was not explained by residual covariances with other traits,
and likewise at least 2% of the genetic variance for each trait was not explained by
genetic covariances with other traits. All fixed and random effects (including latent
variables) and the regression loadings were conditionally normal, and conditional
distributions for variance parameters were scaled inverse Chi square in the MCMC
implementation.

The dimension of latent variables k is to be pre-set but good indications for this
dimension can be obtained by a principal component analysis on the traits
analysed, which gives information on the number of latent variables suitable to
model the joint (co)variance structure. In order to limit the constraints on the
covariance structure, the number of principal components was chosen such that
together they explained 90% of the variance. Principal component analysis of the
14 fatty acids showed that the first four principal components explained ~90% of
the variance; therefore four latent factors were chosen.

The MCMC software Bayz 2.1 (Janss, 2010) was used for parameter inference. Eight
chains of 1 million iterations each were run, with a burn-in of 100,000 for each
chain, and a thinning of 1,000 iterations. Convergence was checked by visual
inspection of the sample trace plots, of posterior density plots and by determining
effective sample size using the Coda package in R (Plummer et al., 2006).
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Inductive causation (IC) algorithm

By fitting the multi-trait mixed model described above, the data can be corrected
for systematic effects and for genetic (co)variances and thus, inferences regarding
the joint distribution of the traits conditionally on genetic and systematic effects
can be made. This is important to search for the causal structure using the IC
algorithm, because correlated genetic effects are confounding factors, since they
are sources of phenotypic correlation due to the genetic background but not due to
recursive relations among traits (Valente et al., 2010). The relevant information to
be used in a causal structure search is in the residual (co)variance matrix that
results from a multi-trait mixed model. Therefore Valente et al. (2010) proposed to
use this matrix as input for the IC algorithm to search for causal networks, instead
of using the observed data.

The IC algorithm performs a series of statistical decisions based on partial
correlations between traits. The posterior distributions of partial correlations were
obtained using the posterior samples of residual (co)variance matrices from the
multi-trait analysis and these were then used to test for non-null partial
correlations. A partial correlation was declared non-null whenever the highest
posterior density (HPD) interval did not include zero. The expected output for the
IC algorithm is a partially oriented graph that represents a set of statistically
equivalent causal structures.

The IC algorithm consisted of three steps (Pearl, 2009):

Step 1

Partial correlations were used to search for edges that connect adjacent variables
(two vertices that are endpoints of an edge) to obtain an undirected graph (e.g.,
Y; = Y5). If all partial correlations of two traits conditional on each possible set of
other traits were different from zero, an edge was placed between the traits.

Step 2

Partial correlations were also used to search for unshielded colliders (three
connected variables in a path directed as ¥; = Y, « Y3) to orient some edges of
the undirected graph provided by step 1. If partial correlations of two non-adjacent
traits (e.g., Y; and Y;) that have a common adjacent trait (Y,) in such an undirected
graph are dependent conditional on any possible set that includes the adjacent
trait (Y,), the edges should be oriented towards the common adjacent trait (Y,),
suchasinY; =Y, « Y,.
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Step 3

When possible, remaining undirected edges were oriented in a way that introduced
no new unshielded colliders or cycles. This step could only be performed when the
graph obtained in step 2 contained unshielded colliders and the orientation
followed unambiguously from the graph.

Structural equation model

Relationships represented by the causal network obtained from the IC algorithm
were quantified using a SEM, as in Gianola and Sorensen (2004). The SEM was
fitted using Bayesian methods that fit a multi-trait mixed model in software Bayz
2.1 (Janss, 2010), where causal parents (e.g., Y; is causal parent of ¥, in Y; = Y;) of
a given trait were considered as covariates in the equations assigned to this trait,
and a diagonal residual (co)variance matrix was imposed. Therefore, the following
model was fitted:

y=AQDy+XB*+Zu" + e,

with the joint distribution of vectors u and e as:

[u*] N {[0] [Gf) XA 0 ]}

e’ ol’ 0 Y, 1)

where the model was similar to the multi-trait model as described above but with
the addition of (A ® I)y, where Ais a t X t (with t equal to the number of traits)
matrix with 0’s on the diagonal and with structural coefficients or 0’s on the off-
diagonals. The causal structure defines which of the off-diagonal entries of A must
be estimated and which ones are set to 0. Gy is the SEM additive genetic
(co)variance matrix and W, is a diagonal matrix with the SEM residual variances.
The residual covariances between the traits in the SEM were assumed to be O,
which confers identifiability to the structural coefficients in the likelihood function.
The priors used for the SEM were the same as those used for the multi-trait model.
The SEM was compared with the multi-trait model using the deviance information
criterion (DIC) (Spiegelhalter et al., 2002). The DIC takes the trade-off between
model goodness-of-fit and corresponding complexity of model into account.
Models with smaller DIC are better supported by the data.
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5.2 Results

Multi-trait analysis

Eight independent MCMC chains of the Bayesian multi-trait animal model for the
14 bovine milk fatty acids converged to similar estimates of the variance
components, which was confirmed by trace and density plots. The effective sample
size for heritabilities, correlations and (co)variance components ranged from 391 to
2,431 samples. Posterior means of the heritabilities, genetic correlations and
residual correlations between milk fatty acids are shown in Table 5.2. Fatty acids
that are consecutively synthesized de novo (e.g., C4:0 and C6:0, C6:0 and C8:0, etc.)
generally showed strong positive correlations, both genetically and residually.
Residual correlations between medium chain unsaturated fatty acids (C10:1, C12:1,
C14:1) and long chain fatty acids (C18:0, C18:1, CLA), and between CLA and C8:0,
C10:0, and C12:0 were weak and showed large standard deviations. There were no
strong negative correlations between fatty acids.

Table 5.2 Multi-trait genetic parameters1 for bovine milk fatty acids®?

C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C10:1 C12:1 C14:1 C16:1 C18:1 CLA

C4:0 0.530910.83 0.77 0.71 0.87 0.89 0.66 0.50 0.39 0.48 0.50 0.54 0.28
C6:0 091049094 090 0.86 0.93 0.87 0.63 0.63 0.54 0.54 0.49 0.43 O0.16
C8:0 0.780.910.48 095 0.92 0.93 0.81 0.59 0.67 0.61 0.53 0.45 0.35 0.08
C10:0 0.56 0.76 0.89 0.43 0.94 0.92 0.76 0.58 0.64 0.62 0.50 0.40 0.30 0.02
C12:0 0.47 0.66 0.81 0.88 0.42 0.89 0.71 0.54 0.62 0.63 0.48 0.37 0.26 -0.01
C14:0 0.56 0.74 0.87 0.91 0.90 0.39 0.88 0.65 0.60 0.57 0.56 0.53 0.46 0.16
C16:0 0.87 0.82 0.69 0.49 0.47 0.53 0.33 0.55 0.61 0.55 0.69 0.73 0.53 0.31
C18:0 0.80 0.75 0.63 0.44 0.30 0.41 0.69 0.37 -0.01 -0.06 0.02 0.13 0.70 0.23
C10:1 0.63 0.70 0.74 0.65 0.70 0.73 0.62 0.41 0.61 0.88 0.81 0.62 0.00 0.04
C12:1 0.39 0.48 0.57 0.57 0.71 0.68 0.47 0.16 0.88 0.63 0.82 0.63 -0.03 0.00
C14:1 0.45 0.49 0.53 0.47 0.60 0.60 0.50 0.26 0.90 0.93 0.67 0.83 0.22 0.23
C16:1 0.61 0.61 0.57 0.48 0.54 0.52 0.71 0.31 0.54 0.53 0.46 0.49 0.43 0.37
C18:1 0.82 0.86 0.84 0.72 0.71 0.76 0.79 0.60 0.79 0.66 0.66 0.72 0.52 0.48
CLA 0.390.490.58 061 069 0.66 0.42 0.09 0.57 0.62 0.50 0.66 0.66 0.56

! Heritabilities are shown in bold on the diagonal, genetic correlations below the diagonal
and residual correlations above diagonal.
% In g/kg milk.

Time-series standard errors for the variance components and correlations ranged from
0.0007 to 0.0091 and posterior standard deviations for the variance components and
correlations ranged between 0.018 and 0.211.
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Inductive causation (IC)

The IC algorithm based on the 95% HPD interval retrieved the undirected network
presented in Figure 5.1 (solid edges). Consecutive fatty acids C4:0, C6:0, C8:0, C10:0
and C12:0 formed a path of connected nodes. The fatty acids C10:1 and C12:1, as
well as C14:1 and C16:1, were also connected to each other. The HPD interval
content was reduced to see if there were additional less strong connections
between the fatty acids, which may give better results if posterior distributions are
not very sharp (Shipley, 2002; Valente et al., 2011). Reducing the HPD to a
probability of 90% resulted in the same network as the HPD interval of 95% (solid
edges in Figure 5.1). Reducing the HPD interval to 85% resulted in four additional
edges: between C4:0 and C16:0, between C6:0 and C14:0, between C8:0 and C12:0,
and between C18:0 and C18:1 (dashed edges in Figure 5.1). Reducing the interval
further to 80% resulted in two additional edges: between C8:0 and C14:0 and
between C18:1 and CLA (dotted edges in Figure 5.1).

No unshielded colliders were recovered from the data in step 2 of the IC algorithm.
Therefore, step 3 of the IC algorithm did not result in any additional edge orienting
and the resulting network remained undirected.

. |
g ’
| e
A
e

i

Figure 5.1 Network obtained from the inductive causation (IC) algorithm with different
highest posterior density (HPD) intervals. The connections obtained with a HPD interval of
95% and 90% are given in solid lines, with a HPD interval of 85% in dashed lines, and with a
HPD interval of 80% in dotted lines.
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Figure 5.2 The fitted causal structure of the structural equation model. The edges in the
fitted structure represent the causal relations for the observed variables (C4:0-C12:0), with
independent residuals (ecs.0-€c12.0) and correlated additive genetic effects (Uca.o-Uc12:0)-

Structural equation model (SEM)

A SEM was used to quantify the causal relationships between the milk fatty acids
based on a causal structure that was chosen based on the outputs of the IC
algorithm. Since a fully oriented structure is required to specify a SEM, the
undirected network obtained with the 95% HPD interval (Figure 5.1, solid edges)
was oriented according to prior biological knowledge about the sequence in which
the fatty acids are synthesized in the mammary gland. In this sense, the path
C4:0—C6:0—C8:0—C10:0—C12:0 agreed with the de novo synthesis of milk fatty
acids. According to the de novo synthesis, C4:0 should precede C6:0, C6:0 should
precede C8:0, and so on. On this basis, the path C4:0—C6:0—C8:0—C10:0—C12:0
could be directed from C4:0 to C12:0, that is C4:0 — C6:0 —» C8:0 —» C10:0 —» C12:0.
The five traits involved in this path were analyzed with both a multi-trait model and
a SEM. Both models were compared in terms of fit and parameter inferences.

The causal network chosen for the SEM shown in Figure 5.2 resulted in the
following structure for the A-matrix:

0 0 0 0 0
[’166:0,0}:0 0 0 0 0]
A= 0 Acs:0,c6:0 0 0 0.
0 0 /1C10:0,C8:0 0 0
0 0 0 Ac1z:0c100 0

102



5 Causal relations between milk fatty acids

1.05 Q1 0.96
o _|
~— o
Al
= > w_|
B 24 B T
c c
o) o)
[m] [m] 9_
m_
m_
o — o
[ I [ I [ [
1.00 1.05 1.10 1.15 0.90 0.95 1.00
lG4:0,CG:0 lGG:O,CS:O
Q- 0.91 S 0.85
o w0 _|
Q- al
o_|
2 0 2
2 * 2 |
i o
o o4 [m]
= o]
o — o
o o
[ I I [ [ I I [ I [ I [ [ I [
0.84 0.88 0.92 0.96 0.78 0.82 0.86 0.90
Ace:0,c10:0 Ac10:0,c12:0

Figure 5.3 Posterior densities of structural coefficients for the fitted causal structure of the
structural equation model

The posterior densities of the structural coefficients that resulted from the SEM are
in Figure 5.3. The posterior means of these parameters ranged from 0.85 to 1.05.

Table 5.3 shows the posterior means for the parameters from both the multi-trait
model and the SEM for C4:0, C6:0, C8:0, C10:0 and C12:0. As pointed out by
Valente et al. (2013), genetic effects from multi-trait models and SEM have
different meanings: the latter represent direct genetic effects (i.e., genetic effects
that are not mediated by other traits in the causal network), while the former
represent overall genetic effects (i.e., a combination of all direct and indirect
genetic effects on each trait). Model specific genetic (co)variances refer to the
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Table 5.3 Posterior means of the variance components for the multi-trait and the structural
equation model of C4:0 to C12:0

Variance Multi-Trait SEM

componentl Mean SD’ Time-series SE> Mean SD*  Time-series SE°
02 C4:0 0.549 0.108 0.003 0.455 0.091 0.002
02 C6:0 0.606 0.102 0.004 0.003 0.002 0.000
02 C8:0 0.599 0.100 0.004 0.000 0.000 0.000
02 C10:0 0.560 0.102 0.004 0.006 0.002 0.000
02 C12:0 0.459 0.087 0.003 0.059 0.004 0.000
re C4:0,C6:0 0.938 0.019 0.001

re C4:0,C8:0 0.885 0.046 0.001

re C4:0,C10:0 0.808 0.084 0.002

re C4:0,C12:0 0.754 0.101 0.003

re C6:0,C8:0 0.950 0.014 0.000

re C6:0,C10:0 0.906 0.036 0.001

re C6:0,C12:0 0.859 0.053 0.002

re C8:0,C10:0 0.950 0.014 0.000

re C8:0,C12:0 0.911 0.028 0.001

re C10:0,C12:0 0.934 0.017 0.001 . . .
oé C4:0 0.360 0.151 0.005 0.460 0.122 0.002
oé C6:0 0.325 0.143 0.005 0.114 0.023 0.001
oé C8:0 0.310 0.140 0.005 0.073 0.009 0.000
oé C10:0 0.319 0.141 0.005 0.066 0.008 0.000
oé C12:0 0.276 0.121 0.004 0.026 0.005 0.000
rg C4:0,C6:0 0.855 0.074 0.002 -0.440 0.123 0.004
rg C4:0,C8:0 0.675 0.157 0.005 -0.417 0.116 0.004
rg C4:0,C10:0 0.424 0.237 0.007 -0.400 0.109 0.003
rg C4:0,C12:0 0.331 0.255 0.008 -0.084 0.089 0.002
rg C6:0,C8:0 0.863 0.069 0.002 0.761 0.033 0.001
rg C6:0,C10:0 0.697 0.148 0.004 0.730 0.036 0.001
re C6:0,C12:0 0.617 0.179 0.006 0.160 0.154 0.004
re C8:0,C10:0 0.862 0.071 0.002 0.692 0.036 0.001
re C8:0,C12:0 0.805 0.102 0.003 0.152 0.147 0.004
re C10:0,C12:0 0.899 0.052 0.002 0.148 0.142 0.004

1 . . .
02 is residual variance, o

correlation.
2sD is the posterior standard deviations of the component.
3 Time-series SE is the time-series standard error of the component.

2

g Is genetic variance, r. is residual correlation, ry is genetic
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(co)dispersion of the genetic effects of each model, and therefore have distinct
meanings as well. The posterior means of the genetic variances of the multi-trait
model for C4:0, C6:0, C8:0, C10:0 and C12:0 were fairly similar to each other (i.e.,
between 0.360 for C4:0 and 0.276 for C12:0), while the posterior means of the SEM
genetic variances for C4:0, C6:0, C8:0, C10:0 and C12:0 showed a gradual decrease
(i.e., 0.460 for C4:0, 0.114 for C6:0, 0.073 for C8:0, 0.066 for C10:0 and 0.004 for
C12:0), indicating that indirect genetic effects from upstream traits were gradually
explaining a larger portion of genetic variability. Such reduction was even stronger
for the SEM residual variance. Statistically, this result was expected because
conditioning on the strongly correlated traits in the SEM removed a large
proportion of the observed variance. On the basis of the given causal structure, this
indicates that the variability of each of these fatty acids can be almost fully
explained by the conditioning (parent) fatty acid. The posterior means of the
genetic and residual variances of C4:0 for the SEM were similar to those for the
multi-trait model, because C4:0 was not conditioned on any of the other traits. The
posterior means of the genetic correlations from the SEM refer to the genetic
covariance that is left after conditioning on the appropriate fatty acids, i.e., it
expresses the correlation between direct genetic effects for each trait. For that
reason, the SEM genetic correlations were different from the correlations
estimated with the multi-trait model.

The DIC for the multi-trait model for C4:0, C6:0, C8:0, C10:0 and C12:0 was -21,083,
while the DIC for the SEM using the structure depicted in Figure 5.2 was -32,406,
indicating that the studied structure is plausible (Spiegelhalter et al., 2002). This
lower DIC for the SEM is partly due to a lower penalty for model complexity in the
DIC for the SEM. Although the SEM introduces sources of covariance from the
causal associations, the residuals of the SEM were assumed to be uncorrelated,
which resulted in a model that was more parsimonious than the multi-trait model.
This lower penalty for model complexity was reflected by a lower effective number
of parameters (5,152 for the SEM and 6,829 for the multi-trait model).

5.4 Discussion

The aim of this study was to explore causal networks of milk fatty acids by applying
the IC algorithm in a mixed model context. Undirected acyclic graphs were
obtained for several HPD intervals. A subset of five fatty acids formed a structure
that could be directed based on prior knowledge and this structure was then used
in a SEM to quantify the relationships between them.
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Direction of network based on prior knowledge

The networks obtained for the 14 fatty acids were undirected. Based on the known
sequence of the synthesis of fatty acids, edges could be directed without creating
cycles or unshielded colliders that were not supported by the data. Fatty acid C4:0
precedes C6:0, which in turn precedes C8:0 and so on in the de novo synthesis,
which led us to suggest that the path containing C4:0, C6:0, C8:0, C10:0 and C12:0
is directed from C4:0 to C12:0. This means that the final network is not completely
data-driven. However, the structure for this subset of fatty acids that is plausible
based on biological knowledge does not have colliders, so the fact that the
algorithm could not detect directions was expected. Therefore, not finding any
unshielded colliders among these fatty acids supports the hypothesis of a path
directed from C4:0 to C12:0.

Linearity

The search space does not contain cyclic structures and non-linear relations are
also not considered in the specific application presented here. Instead, as in most
studies, it was assumed that relationships between traits were linear but in reality
they could be non-linear. In contrast to the assumptions of the adapted IC
algorithm applied here, SEM can be extended to include, for instance, interactions,
feedback mechanisms (cyclic relations), quadratic terms or polynomials to
determine which model fits the data best (Schumacker and Marcoulides, 1998;
Spirtes, 1993). In addition, the search algorithm could make decisions based on
alternative tests for conditional independence instead of on partial correlations
(Pearl, 2009).

Causal sufficiency assumption

Connections between variables are often referred to as causal relations, but the
only widely accepted method for declaring causation between two variables is a
randomised experiment. This involves random assignment of each subject to
different treatment groups, coupled with random assignment of treatment level to
each group, and results in averaging out potential sources of confounding effects.
In the analysed data, variables that act as confounders are not averaged out, but
when they are measured, they can be included in the model to correct for this
confounding effect. Based on model assumptions, causation can be inferred, but
because of the impossibility of declaring with absolute certainty that there are no
additional unmeasured causal variables, these assumptions cannot be guaranteed.
The IC algorithm is based on the assumption that there are no hidden variables that
affect more that one of the variables considered in the model, which is called the
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causal sufficiency assumption (Spirtes et al., 2000). If this assumption does not
hold, there may be direct connections between variables that are not causal
relations but that are due to other sources, such as common hidden causes.
Although a SEM does not require this assumption, it is commonly applied for the
sake of model identifiability.

Comparison between the network obtained and known biological
networks

Metabolic pathways involved in the synthesis of milk fatty acids, such as de novo
synthesis, desaturation and biohydrogenation, could be reflected in the structure
provided by the IC algorithm. In the following, the network obtained with the IC
algorithm will be compared with known metabolic pathways of milk fat synthesis.
For this comparison, two aspects should be noted. First, the variables studied here
are fatty acids excreted in the milk, which are not necessarily the same variables as
the corresponding fatty acids involved in the milk fat synthesis pathways, e.g., C6:0
measured in milk is not the same as a C6:0 in the elongation cycle of the de novo
synthesis being transformed into C8:0. This is especially important considering that
the SEM expresses the causal effect between fatty acids excreted in the milk, which
are the recorded phenotypes. These causal effects reflect expected results of
(ideal) external interventions. However, the expected consequences of modifying a
fatty acid that is excreted in the milk on other fatty acids may not be the same as
the consequences of manipulating the amount of a specific fatty acid during
synthesis in the mammary gland.

The second aspect is that the proposition that an object B originates from an object
A does not necessarily imply that causal effects between measurements a and b
made respectively on A and B must be directed as a = b. Therefore, if fatty acid B
originates from fatty acid A in the synthesis process in the mammary gland,
measurements of the concentration of these fatty acids in the milk (a and b) are
not necessarily directed as a — b if they are causally connected. So it is possible
that edges may actually have alternative directions, and that is not a strict
contradiction of known biochemical paths. For example, inoculating C8:0 in the
mammary gland could affect the amount of C6:0 released in the milk, which would
be an effect that is opposite to the description of how C8:0 originates from C6:0,
but does not deny that C8:0 originates from C6:0. Although one could defend such
an alternative structure (and other statistically equivalent ones), the structure
chosen to fit the model is credible given its expected intervention outcome. For
instance, the chosen structure expresses that if C8:0 is inoculated in the mammary
gland, then C4:0 and C6:0 would remain the same, but such intervention would
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affect C10:0 and also, indirectly, C12:0. This is compatible with a scenario in which
C8:0 is inoculated: C4:0, and C6:0 would be normally produced since their synthesis
occurs earlier in the cycle, and less C8:0 would be released in the milk, since its
concentration is already high due to the inoculation (in case there is some
regulation of fatty acids production by the concentration of free fatty acids). This
would leave more "substrate" remaining within the cycle for the subsequent fatty
acids and would result in increasing C10:0, and so forth. This is compatible with the
causal meaning of the chosen structure (and the inferred structural coefficients, if
they are positive). It should be noted that in this case, the meaning of the graph
C4:0 —» C6:0 —» C8:0 — C10:0 — C12:0 depends on whether it is interpreted as a
biochemical pathway that shows how fatty acids are originated or as a SEM that
involves the concentrations of such fatty acids, although both interpretations could
be represented with the same nodes and directed connections. For the structure of
the SEM fitted (C4:0 —» C6:0 — C8:0 — C10:0 — C12:0), directions were chosen that
mirror the de novo pathway, because it is plausible (although not necessary) based
on how the fatty acids are generated and on that basis, if the underlying causal
structure indeed reflected the metabolic pathway, the expected output of the
search algorithm would be exactly C4:0—C6:0—C8:0—C10:0—C12:0.

De novo synthesis

Short and medium chain saturated fatty acids (C4:0-C14:0 and about half of the
C16:0 present in milk) are produced in the de novo synthesis pathway. In this
metabolic pathway, the carbon chain is elongated in a sequential cyclic reaction
from acetate and B-hydroxybutyrate until a C16:0 fatty acid is formed by fatty acid
synthase in the mammary gland (e.g., Neville and Picciano, 1997; Palmquist, 2006).
In the bovine, all intermediate fatty acids can leave the elongation cycle by a chain
termination mechanism (Smith, 1994) and thus end up in bovine milk. The path
from C4:0 to C12:0 that was obtained from the IC algorithm with a HPD interval of
95% (solid edges in Figure 5.1) mirrored this de novo synthesis. One could argue
that the path obtained from the IC algorithm should also include C14:0 and C16:0
but part of C14:0 and C16:0 originate from the cows’ diet, which might have
reduced the degree of association with the remaining pathway, thus leading the
search algorithm to declare them disconnected from the remaining variables, i.e.
excluding them from the pathway. The structural coefficients that were estimated
using the SEM with the causal structure C4:0 —» C6:0 —» C8:0 — C10:0 — C12:0
indicate that if C4:0 increases 1 g/kg milk, then C6:0 would respond by increasing
1.05 g/kg milk (Figure 5.3). However, the molar mass of C6:0 is 1.32 times the
molar mass of C4:0, so although the relationship is nearly one to one unit-wise, is

108



5 Causal relations between milk fatty acids

less than one based on molar mass. The structural coefficients A¢qg.0,c8.0 and
Ac12:0c10.0 Were slightly lower than Agg.0.c4.0 and Acg.oce:0, POSSibly because a
small part of C10:0 and C12:0 is desaturated into C10:1 and C12:1 in the mammary
gland. These structural coefficients suggest that an intervention that increases the
amount of C4:0 secreted in milk would result in an increase in C6:0 secreted in milk
and that would in turn result in an increase in C8:0, C10:0 and C12:0 secreted in
milk.

Desaturation

Medium chain saturated fatty acids (C10:0-C16:0) are desaturated by coenzyme A
desaturase 1 (SCD1) into their equivalent mono-unsaturated fatty acids (C10:1-
C16:1) in the mammary gland (Palmquist, 2006; Taniguchi et al., 2004). Structures
that mirror this desaturation pathway (e.g., C10:0 — C10:1) were not recovered by
the IC algorithm (Figure 5.1). The obtained structures (C10:1—C12:1 and C14:1—
C16:1) showed that the amount of mono-unsaturated medium chain fatty acids
measured in milk are not causally associated with the amount of their equivalent
saturated fatty acid, but suggest that the mono-unsaturated medium chain fatty
acids may have a common hidden causal variable among them.

Biohydrogenation

Long chain fatty acids (half of the C16:0 present in milk and all fatty acids with 18 or
more carbons) originate from the diet fed to cows and are biohydrogenated by
micro-flora in the rumen into C18:0 and multiple intermediate products (Palmquist,
2006). Some edges were recovered between the long chain fatty acids, e.g.
between C18:0 and C18:1, and between C18:1 and CLA, which likely represent this
biohydrogenation process. These edges were recovered when the HPD interval was
relaxed to 80-85%, which indicates weak evidence for these edges (Figure 5.1).
Reducing the HPD interval resulted in additional edges. The edges that involve long
chain fatty acids might be plausible associations but the edges between C4:0 and
C16:0, C6:0 and C14:0, C8:0 and C12:0, C8:0 and C14:0 appear to be false positive
associations due to the lowered threshold.

To conclude, although the fatty acids were measured when secreted in milk and
not during their synthesis in the mammary gland, concentrations of fatty acids in
milk mirror some of the metabolic pathways, and resemblance with the de novo
synthesis pathway obtained most evidence.
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Convergence issues of the multi-trait model

The search for causal structures among a set of variables makes sense if
associations exist between them. However, if many traits have strong correlations
with each other, fitting multi-trait mixed models may encounter convergence
issues, which was the case in the current study. Most milk fatty acids were strongly
correlated with each other, both genetically and residually. Fitting a standard multi-
trait model for 14 milk fatty acids resulted in slow MCMC convergence, strong auto
lag correlations in the chain and thus in a small number of effective samples.
Running the MCMC Bayz 2.1 (Janss, 2010) program using latent variables to reduce
the dimensionality of the data improved convergence of the Bayesian multi-trait
mixed model. A principal component analysis showed that using four latent
variables was reasonable for the multi-trait model with 14 fatty acids. Using latent
variables has some effect on the modelled (co)variance structures; because the
latent variable model uses less parameters than the full (co)variance matrix, the
(co)variance structure is somewhat restricted, similar to using only the main
principal components in a principal component analysis or frequentist factor
analytic model (e.g., Meyer and Kirkpatrick, 2008). In this case, the latent variable
model used 70 parameters [(4 latent variables + 1) X 14 traits] for each of the
environmental and genetic (co)variance structures, whereas the full (co)variance
matrix has 105 parameters. For the multi-trait model for C4:0, C6:0, C8:0, C10:0
and C12:0, two latent variables were used, resulting in 15 parameters and thus no
restrictions on the (co)variance matrix. The multi-trait model for C4:0 to C12:0
resulted in the same pathway as the model with 14 traits, suggesting that the
restriction in parameters due to latent variables did not influence this particular
pathway.

A final measure to improve convergence was to set minimum bounds on the
remaining independent variances 74, and T, for residuals and genetic effects
through the prior distributions. These minimum bounds were set at 0.02 (on
standardized phenotypes), which implies that heritabilities were constrained to be
between 2 and 98%, and that all correlations were forced to remain slightly below
1. These adaptations were required for the model to converge such that this
dataset could be explored for causal networks.
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Computation time of the adapted Inductive Causation (IC) algorithm
The approach suggested by Valente et al. (2010) is more complex and
computationally demanding than the standard use of the IC algorithm and other
similar methods that simply work with unconditional point estimates of covariance
matrices, not requiring prior model fitting. Although this is appealing in the context
of mixed effects SEM, there is a compelling reason to follow the approach of
Valente et al. (2010) because mixed effects SEM allow direct genetic covariances,
which are extra genetic sources of associations among traits, aside from causal
effects. Assuming these genetic associations to be absent would be more difficult
to accept, since genetics most likely affects multiple traits of a set in a way that is
not mediated by other traits in the set. Using the IC algorithm on raw data assumes
that these correlated direct genetic effects do not exist and, therefore, requires
assumptions that are more difficult to accept. Furthermore, using the output from
such an IC analysis in a mixed effects SEM with unstructured genetic covariances
implies inconsistency of assumptions in the different analysis steps.

The computation time of the IC algorithm increases rapidly with an increasing
number of analyzed traits, because of the increasing number of partial correlations
to be tested. The IC algorithm required testing the partial correlations between
each pair of fatty acids conditional on all possible subsets of the remaining fatty
acids. With 14 traits there are 91 distinct pairs of traits [n X (n — 1)/2] and 4,096
possible conditioning sets (2", leading to 372,736 partial correlations to be
calculated for each posterior sample of the residual (co)variance matrix (i.e.,
2"t xn x (n—1)/2). In addition, the size of the posterior sample also affects
computation time. Additional thinning of the MCMC speeds up computation time
for the adapted IC algorithm. Parallel computing would be a promising strategy to
reduce the computation time of the algorithm. However, other refinements to the
method used here will be needed when the number of variables increases strongly,
for instance with high-throughput gene expression data, such as microarray or
RNA-seq.

Possibilities

Correlations between traits play a role in livestock management practices. These
correlations can result from different causal relationships, such as direct or indirect
causal effects between traits, or from a common causal parent, or even from a
combination of these. The concentrations of fatty acids in milk are clearly
correlated, but the partial correlations indicate that only a few are directly
connected in the network. Even an undirected structure is informative and reveals
direct and indirect associations between variables. Nonetheless, prior knowledge
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may be used to orient additional edges, and resulting causal inferences can then be
confirmed with additional data and studies. Representing the associations between
traits with networks may provide better insights into the underlying biological
mechanisms and offer opportunities for management tools to focus on pathways
instead of correlations. Response to interventions applied to a biological system
can be predicted using SEM. Shifting the focus from correlation matrices to causal
diagrams might result in faster and better understanding of responses to
interventions. The principles of the IC algorithm and SEM can also be used to
investigate gene regulatory networks in gene expression studies (de la Fuente et
al., 2004; Liu et al., 2008a; Schadt et al., 2005). Understanding the relationships
between genes can, for instance, identify targets for intervention that could
contribute to the development of therapies for certain diseases.

5.5 Conclusions

Application of the adapted IC algorithm proposed by Valente et al. (2010) resulted
in an undirected network for the 14 milk fatty acids studied. The pathway from
C4:0 to C12:0 reflected the de novo synthesis pathway of short and medium chain
saturated fatty acids. By using prior biological knowledge, directions were assigned
to that part of the network and the resulting structure was used to fit an SEM. The
edges between C10:1 and C12:1 and between C14:1 and C16:1 did not correspond
to associations reported in the literature, which might be due to a common hidden
causal variable. Other expected relations based on biological knowledge were not
found or were detected only when the HPD interval was relaxed.

The output of the IC algorithm suggested causal relations between the studied
traits. This changes the focus from marginal associations between traits to direct
relationships that may result in changes when external interventions are applied.
The causal structure can give more insight into underlying mechanisms and the
SEM can predict conditional changes due to such interventions.
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6 General Discussion

The aim of this thesis was to unravel the genetic background of bovine milk fat
composition. Genome-wide association studies (GWAS) using 50,000 single
nucleotide polymorphisms (SNP) detected quantitative trait loci (QTL) for bovine
milk fatty acids and show that milk fat composition has a complex genetic
background with three major QTL that explain a relatively large fraction of the
genetic variation of several milk fatty acids, and many QTL that explain a relatively
small fraction of the genetic variation (chapters 2 and 3). In chapter 4 the major
QTL on BTA19 was fine-mapped. The QTL region was reduced to a linkage
disequilibrium (LD) block of 22 SNP that covers 85,007 bp and contains two genes:
coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). In
chapter 5 causal relations between milk fatty acids were inferred to gain insight in
the biological mechanisms involved in milk fat synthesis.

In this general discussion, | will first discuss the insights that were gained from
GWAS for milk fatty acids. Subsequently, | will discuss the importance of
intermediate phenotypes to close the gap between QTL and complex phenotypes.
Next, | will discuss how combining causal relations with QTL can help to better
understand biological mechanisms. And finally, | will explore the potential of GWAS
using milk fatty acids based on mid-infrared instead of gas chromatography.

6.1 Scanning the whole genome

The field of QTL detection has gained a lot of attention over the years and many
QTL have been discovered since (Goddard and Hayes, 2009). Linkage studies
performed on part of the Dutch milk genomics data (with 1,500 SNP for 5 large sire-
families) showed that several QTL for milk fatty acids were segregating in the
population (Schennink et al., 2009b; Stoop et al., 2009b). However, the regions
detected were rather large and some detected regions needed confirmation.
Technological development of high throughput 50k SNP panels enabled GWAS.
Proceeding from linkage analysis to GWAS confirmed and refined QTL locations and
resulted in new candidate QTL regions (chapters 2 and 3).

The success of GWAS depends strongly on the study design (e.g., Spencer et al.,
2009). Power calculations provide clear expectations in terms of QTL detection and
limits of the study. The Dutch milk genomics dataset used in this thesis was
designed before large SNP panels were available, and intended for two main
purposes: estimation of genetic parameters and linkage analysis. Linkage analysis
requires large half-sib families; therefore, data was recorded on five sire-families of
about 100 to 200 daughters each. Estimation of genetic parameters, such as
heritabilities and genetic correlations, is preferably done in a population of
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unrelated individuals. Therefore, data was recorded also on 50 small sire-families.
These small families made the Dutch milk genomics population better suited for
GWAS. Moreover, the pedigree was taken into account in the statistical analyses to
deal with population stratification resulting from the family structure. With
phenotypes and genotypes on approximately 1,700 cows, the power of the GWAS
applied in this thesis was suited to detect variants that explain 2% or more of the
genetic variation on milk fatty acids, which is in agreement with the QTL effect sizes
detected in chapters 2 and 3. In chapter 2, GWAS for winter milk samples resulted
in 64 significant regions, each of which explained between 0.9 and 67.8% of the
additive genetic variance of a fatty acid. In chapter 3, GWAS for summer milk
samples resulted in 51 significant regions, each of which explained between 2.2
and 50.1% of the additive genetic variance of a fatty acid. Of these regions, 34 were
overlapping between winter and summer samples. All detected QTL together
explain between 5.3% of the total additive genetic variation for C12:0 and 97.4% of
the total additive genetic variation for C14:1 in winter milk and between 5.5% of
the total additive genetic variation for C4:0 and 92.5% of the total additive genetic
variation of C16:1 in summer milk (chapters 2 and 3). These percentages of
explained additive genetic variation are probably overestimated due to the Beavis
effect (Beavis, 1998) and may include some false positive QTL because of the false
discovery rate (FDR) of 5%. Nonetheless, a considerable fraction of the total genetic
variation of several milk fatty acids can be attributed to QTL detected in the GWAS
presented in this thesis. The remaining, unexplained genetic variation might be
caused by QTL with effects that are too small to be detected in the current study
(below 2% of genetic variation), or for instance by epistasis or structural variants,
among other possibilities (e.g., Manolio et al., 2009; van der Sluis et al., 2010).

The efforts to detect QTL using GWAS have often been questioned because
inferring precise location is difficult and GWAS have rarely resulted in detection of
the actual causal variants (Ron and Weller, 2007; Weller and Ron, 2011). It should
be noted that GWAS is only the first step in the process of identifying causal
variants. Genome-wide association studies provide a search for regions associated
with the trait across the whole genome without requiring prior knowledge on
location or gene function (Hirschhorn and Daly, 2005). Follow-up studies with
appropriate designs have to be conducted to confirm QTL, fine-map QTL, and
eventually, identify causal variants. In livestock, confirmation of QTL in an
independent sample prior to publication is not a requirement as is the case in
human studies. For major QTL like the ones detected in this thesis on BTA14, 19
and 26 confirmation might not be necessary, however, for QTL with less evidence a
follow-up study to confirm the QTL in a different population is needed. In livestock
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a limited number of detected QTL (mainly major QTL) have been followed up by
fine-mapping and even fewer by functional studies. For animal breeding it is not
essential to know the causal variants, while in human genetics causal variants are
essential for treatment of genetic defects. Human QTL studies show a substantial
number of validated QTL with strong candidates in over half of them (Visscher
2008; Weedon and Frayling 2008), but also in human studies identification of
causal variants is lacking in most cases. The identification of causal variants for
complex traits has been a difficult task, but technological development and
reduced cost of next generation sequencing will enhance some of the problems
associated with the detection of causal variants.

A complicating factor in livestock is that several traits have been under long term
artificial selection and, as a consequence, polymorphisms with large effects on
traits under selection have been fixed on the favorable allele (Weller and Ron,
2011). However, based on QTL mapping and GWAS we now know that some traits
in Holstein cattle are influenced by major QTL, such as fat content and coat color
(Hayes et al., 2010), as well as milk fat composition (this thesis). The most evident
example of a major QTL in livestock is the QTL on BTA14 for milk yield and
composition. Milk yield and composition have been under long term artificial
selection, yet this QTL with major effects on these traits is still segregating in the
current dairy cattle population. This major QTL is not fixed due to its opposing
effects on milk yield and on fat and protein content, and, consequently, small
effects on fat and protein yield. Simultaneous selection on milk yield and
composition has, thus, retained this major QTL. Several linkage studies that
detected the major QTL on BTA14 (Coppieters et al., 1998; Heyen et al., 1999) have
been followed up by fine-mapping (Farnir et al., 2002; Riquet et al., 1999), and
eventually Grisart et al. (2002, 2004) proposed diacylglycerol O-acyltransferase 1
(DGAT1) K232A as causal variant. The di-nucleotide polymorphism DGAT1 K232A is
one of the few causal variants in dairy cattle that were successfully detected based
on QTL mapping, followed by fine-mapping and functional studies. The proposed
causal variant for this QTL on BTA14 has been shown to be associated with milk
fatty acids (Schennink et al., 2007, 2008), and was one of the three major QTL
detected in this thesis (chapters 2 and 3).

A different strategy to find causal variants is through a traditional candidate gene
approach, where genes are selected based on prior knowledge regarding their
biological function in relation to the phenotype, and then sequenced to find
associated polymorphisms. Taniguchi et al. (2004) proposed stearoyl-CoA
desaturase 1 (SCD1) A293V as a possible causal variant for unsaturation of fatty
acids in beef cattle using such a candidate gene approach. This polymorphism was
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also associated with milk fatty acid unsaturation in dairy cattle (Schennink et al.,
2007, 2008), and is one of the three major QTL detected in this thesis.

The third major QTL detected in this thesis encompassed a rather large area on
BTA19, which harbors quite a number of genes known to be related to fat
synthesis. In chapter 4 the position of this QTL was refined by increasing the
number of markers. The refined region contains two candidate genes: CCDC57 and
FASN. Fatty acid synthase has often been studied in traditional candidate gene
studies, but significance levels reported in these studies (Abe et al., 2009; Li et al.,
2012; Oh et al., 2012; Roy et al., 2006; Schennink et al., 2009a; Zhang et al., 2008)
did not reach the significance reported in GWAS for the same chromosomal region
described in this thesis. Although FASN is a good candidate gene for associations
detected in this region, results from fine mapping suggest that not only FASN, but
also its adjacent gene CCDC57, as well as the region in between these genes should
be considered in the search for the causal mutation(s). Other genes located on
BTA19 and related to fat synthesis, such as ATP citrate lyase (ACLY), sterol
regulatory element-binding transcription factor 1 (SREBF1), signal transducer and
activator of transcription 5A (STAT5A), and growth hormone 1 (GH1), had no
significant effects on C14:0 after accounting for the most significant SNP on BTA19
located in CCDC57 (chapter 4). Thus, these genes are not likely to contain the
causal variant for the QTL on BTA19. Some of these fat synthesis related genes
have been studied as candidate genes by others (Nafikov et al., 2013; Schennink et
al., 2009a). Results from our fine-mapping study suggest that these candidate gene
studies have picked up the effect of the QTL at 51Mbp through LD, rather than the
effect of an actual causal variant in one of these genes. This confirms that
candidate gene studies reveal only part of the picture and therefore might lead to
wrong conclusions with respect to causal variants, whereas GWAS show a more
complete, unbiased picture by scanning the whole genome.

Several other candidate genes related to fat synthesis have been proposed based
on the GWAS in chapters 2 and 3, e.g. acyl-CoA synthetase short-chain family
member 2 (ACSS2) on BTA13 and 1-acylglycerol-3-phosphate O-acyltransferase
6 (AGPAT6) on BTA27. The latter is supported by a recent study of Wang et al.
(2012) who found a QTL for milk fat percentage on BTA27 and used sequence data
to fine-map the QTL to the promoter region of AGPAT6. Chapters 2 and 3 revealed
additional regions associated with milk fatty acids, for which no genes with known
functional relation to milk fat could be assigned. Identifying candidate genes in
such regions is rather challenging, first, because milk fat synthesis is a complex
process that can be influenced by many gene regulated factors, some of them
might influence milk fat synthesis indirectly, and second, because not all genes and
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regulatory regions have been (well) characterized in the bovine genome. The
bovine genome consortium has done a great job to provide researchers with a
reference genome for cattle, however, it is incomplete and improvements are
needed. Furthermore, efforts to improve the annotation of genes and regulatory
regions will increase the potential for identification of candidate genes.

6.2 Intermediate phenotypes

Complex phenotypes can often be decomposed into underlying components. These
components, or intermediate phenotypes, may arise from the same biological
mechanism and show overlap in genetic associations. They may also arise from
different biological mechanisms that interact and, to some extent, show different
genetic associations. In this thesis, milk fat was decomposed into individual fatty
acids. Several QTL have been detected previously for fat percentage and fat yield
(Ashwell et al., 2004; Heyen et al., 1999; Wang et al., 2012). Some of these were
also detected for individual fatty acids (e.g., on BTA5, 14 and 27), but many
additional QTL were detected based on GWAS of individual fatty acids, such as the
major QTL on BTA19 for de novo synthesized fatty acids and BTA26 for unsaturated
fatty acids. These QTL do not significantly contribute to genetic variability in fat
percentage or yield, but they do provide valuable information about milk fat
synthesis.

Another example of information obtained from decomposed phenotypes relates to
the QTL on BTA26 caused by SCD1. The enzyme produced by SCD1 desaturates
several saturated fatty acids into their unsaturated equivalents (e.g. C10:0 into
C10:1). Desaturation indices of individual fatty acids C10, C12, C14, C16, C18 and
CLA are associated with the QTL on BTA26. However, this QTL is not detected when
studying the desaturation index of these fatty acids when combined into one group
(Schennink et al., 2008). Apparently, opposite allelic effects of SCD1 on the
desaturation indices of C10, C12 and C14 compared to the indices of C16, C18 and
CLA cancel each other out (Schennink et al., 2008). Consequently, the QTL on
BTA26 may not be relevant for changing the overall amount of unsaturated fatty
acids by genetic selection; however, it is of crucial importance to understand the
mechanism of milk fat synthesis, in this specific example the unsaturation of milk
fat.

Decomposing complex phenotypes can be part of system genetics. System genetics
aims to fill the so called genotype-phenotype gap by unraveling how information
flows from DNA to phenotype (Civelek and Lusis, 2014; Houle et al., 2010). More
detailed characterization of complex phenotypes is a way to fill a piece of this gap,
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as shown in this thesis. This can be further enhanced by studying transcripts,
proteins, metabolites, and interactions among and between them (Civelek and
Lusis, 2014; Houle et al., 2010). In system genetics, hypotheses are generated by
phenotyping traits, assess their correlations, search for (expression)QTL associated
with these phenotypes, group traits that appear to share characteristics and
combine all information obtained in a network (Civelek and Lusis, 2014). One way
to obtain such a network is to look at causal relationships. Ultimately, causal
networks are built over all layers of information; however, less complex starting
points can be causal networks among measured phenotypes as studied in chapter
5, or between phenotypes and QTL, which will be explored in the next section of
this discussion.

6.3 Causal relations between milk fatty acids and QTL
Linking phenotypic data and QTL to build causal networks can increase our
understanding of complex biological systems. Such a network can show the impact
of specific QTL on the whole system. Schadt et al. (2005) tested causality between
gene-expressions associated with a phenotype by including QTL information. A QTL
associated with both the trait and the gene-expression can help to infer causality,
i.e. to define whether the relationship between gene-expression (GExp) and
phenotype (P) is causal (QTL—GExp—P), reactive (QTL—P—GExp) or independent
(GExp«—QTL—P). Similar causal relationships can be inferred for a QTL associated
with two traits (i.e. QTL—y;—Y,, QTL—y,—Yy,, Y1« QTL—oY;).

The results of this thesis were used to test whether linking phenotypic data and
QTL in a causal network can further improve our knowledge on milk fatty acids. The
GWAS in this thesis (chapters 2 and 3) have shown that milk fatty acids are
influenced by more than one locus, and that several milk fatty acids have one or
more loci in common. This is in agreement with known genetic correlations
between fatty acids and current knowledge on fatty acid metabolism. This thesis
has also shown that some non-genetic associations are indirectly mediated through
other milk fatty acids, while only a few are direct associations between fatty acids
(chapter 5). The same can be true for the associations found in GWAS: a QTL can
have a direct effect on multiple milk fatty acids or have a direct effect on one fatty
acid that influences other milk fatty acids indirectly through a pathway.

True causality can only be inferred in fully controlled experiments in the laboratory
or by completely randomized experiments. Li et al. (2006) indicated that there is an
analogy between QTL mapping and randomized experiments, as the genotype of
the QTL can be seen as treatment groups and meiosis randomly allocates QTL

120



6 General Discussion

genotypes to individuals. The causal relationship between a QTL and phenotype is
always directed from QTL towards phenotype (genes come before phenotypes):
therefore, QTL added to the phenotype network can help to direct the network
(Chaibub Neto et al., 2010).

QTL on BTA19

In chapter 5 of this thesis, causal relationships between winter milk fatty acids
were inferred. Figure 6.1A shows the pathway recovered between C4:0, C6:0, C8:0,
C10:0 and C12:0 that resembles the de novo synthesis of short and medium-chain
saturated fatty acids. The de novo synthesized fatty acids C14:0 and C16:0 were not
part of this pathway. Often the same QTL regions were detected for the de novo
milk fatty acids. This was also the case for the major QTL on BTA19, which showed
associations with C4:0, C8:0, C10:0, C12:0 and C14:0 in the winter milk samples
(figure 6.1B). At first sight it seems that the QTL affects almost all traits in the
pathway from C4:0 to C12:0, as well as C14:0. However, these QTL associations
could also be indirectly mediated through this very pathway.

Figure 6.1 Graphical representation of A) the causal relations between de novo synthesized
milk fatty acids (modified from chapter 5) and B) the associations between de novo
synthesized fatty acids and the QTL on BTA19 at 51 Mbp (Q19@51) detected in chapter 2.
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QTL on BTA19 conditioned for de novo synthesis

A graph for the QTL on BTA19 conditioned for the de novo synthesis pathway can
be obtained by testing the models given in table 6.1 for two consecutive fatty acids
(y1 and y,) associated with the same QTL. Models A and B in table 6.1 indicate
whether the traits are associated with the QTL. These models have already been
performed in the GWAS described in chapter 2. They were repeated here with the
SNP (BovineHD1900014354) at 51.3 Mbp on BTA19 that showed the strongest
association with C14:0 in the fine-mapping study of the QTL on BTA19 in chapter 4.
Model C in table 6.1 will indicate whether the QTL has a direct effect on trait vy,
(B4#20) or whether the effect is indirectly mediated through trait y; via the pathway
QTL—y;—Y; (B4 = 0). In model C for y,, the trait y; (the preceding fatty acid in the
pathway) is added to the model as a covariable to condition on while testing for
association with the SNP. These models were analyzed for each de novo
synthesized fatty acid and the QTL on BTA19. The fatty acids C14:0 and C16:0 were
treated as if they were also part of the pathway, even though they were not
associated with other fatty acids in chapter 5. In the statistical analysis other
systematic effects were accounted for as well as the polygenic background by using
a mixed model similar to the models used throughout this thesis.

Table 6.1 Tests for direct QTL effects on two correlated traits (y; and y,).

Model Test Result
A y1=H1+B1QTL B120 QTL detected for y;
B Yo=H+B,QTL B,#0 QTL detected for y,
C Y= +Bsy.+ B.QTL B4#0 Direct effect of QTLon y,

Table 6.2 Significance levels (-logyo(P-value)) of SNP BovineHD1900014354 in both the
standard model and the conditional model in which the preceding fatty acid is included as a

covariate.

C4:0 C6:0 C8:.0 C10:0 C12:0 C14:0 C16:0
Standard model 4.42 1.43 8.19 16.39 12.42 33.68 2.20
Conditional model - 9.64 11.79 11.50 0.12 24.18 0.28

Table 6.2 (standard model) shows that the SNP on BTA19 was significantly (-logio(P-
value) > 3) associated with all the de novo synthesized fatty acids except C6:0 and
C16:0. The effect of the alleles on the de novo milk fatty acids was in the same
direction for these de novo fatty acids except for C4:0 and C16:0. After conditioning
on the preceding fatty acid (e.g. C6:0 conditioned on C4:0), all de novo synthesized
fatty acids were significantly associated with the SNP except C12:0 and C16:0 (Table
6.2). Apparently the high genetic correlations between consecutive fatty acids do
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not account for the associations of the SNP on BTA19 with multiple de novo
synthesized fatty acids. In fact, the fatty acid included as a covariable in the model
was highly significant, but the SNP still explained a significant part of the remaining
phenotypic variation. Remarkably, C6:0 became significantly associated with the
SNP after conditioning on C4:0. This is probably because the allele substitution
effects of the SNP were opposite for C4:0 and C6:0. Milk fatty acid C12:0 was no
longer associated with the SNP after conditioning on C10:0. The reduction in
significance of C12:0 indicates that the variance in C12:0 explained by the SNP is
part of the covariance between C10:0 and C12:0. This would mean that the SNP
indirectly affects C12:0 through the path via C10:0. For C4:0, C6:0, C8:0, C10:0 and
C14:0 there is evidence for a direct effect of the SNP on each phenotype.
Furthermore, the SNP has no effect on C16:0, which is probably because
approximately only 50% of C16:0 is produced de novo, while the other 50% is
derived from the diet. These results lead to the updated causal graph depicted in
figure 6.2.

Ql9@51

Figure 6.2 Graphical representation of the QTL on BTA 19 at 51 Mbp (Q19@51) and the
causal relations between milk fatty acids after conditioning on the de novo synthesis
pathway.

Figure 6.2 gives a slightly different view of the possible causal relations between
the QTL and the fatty acids than figure 6.1. One of the candidate genes underlying
the QTL at 51 Mbp on BTA19 is FASN. This gene is transcribed into a multi-enzyme
complex that synthesizes de novo milk fatty acids by carbon chain elongation
(Smith, 1994). Before studying the casual relations between the QTL and these
fatty acids it could be hypothesized that the QTL has direct effects on multiple fatty
acids, or that it influences only one fatty acid which influences the other fatty acids
through the pathway. The latter would indicate that the QTL influences only a
specific part (e.g. initiation) of the complex chain elongation by the FASN enzymes.
However, here | showed that the QTL influences C4:0, C6:0, C8:0, C10:0, as well as
C14:0, directly. This suggests that the QTL is involved in the chain elongation
mechanism. How this exactly works and why C12:0 is not influenced directly by the
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QTL remains unclear. However, Heck et al. (2012) showed that not all C12:0 is de
novo synthesized; a part of the C12:0 in milk is derived from feed ingredients rich in
C12:0. This suggests that the QTL has no significant effect on that part, but only on
the amount of C12:0 that is produced by elongating its precursor C10:0.

Causal inference is a statistical way to generate hypotheses that has been used on
the results of this thesis to demonstrate that the QTL on BTA19 influences several
fatty acids directly. The statistical models applied here are very simple and not all
possible causal networks have been explored; therefore, it is difficult to draw final
conclusions on true causality. A model comparison test like Vuong et al. (1989) is
preferred over the method applied here. However, model comparison tests require
testing all possible models, which is computationally unfeasible when many
variables are involved. Currently available and computationally efficient software
to compare causal structures on the basis of model fitting are developed for
experimental crosses and not suitable for outbred populations (Chaibub Neto et al.,
2010). Application of these kinds of approaches on large scale livestock data would
require development of efficient methods for outbred populations. Although the
method applied here was rather straightforward, it has demonstrated that genetic
information can aid in directing relationships between variables and in determining
whether relationships are causal, reactive or independent. The genotype-
phenotype gap can be reduced further by including different levels of intermediate
phenotypes in such causal searches for information flows from DNA to phenotypes.

6.4 GWAS based on mid-infrared predicted milk fatty acids
The phenotypes used in this thesis were milk fatty acids measured by gas
chromatography (GC). Gas chromatography is the so called ‘gold standard’ method
that provides highly accurate measurements of milk fatty acids. But, GC is also
expensive and time consuming. Therefore, routine measurement of fatty acids with
GC is not feasible and populations phenotyped for milk fatty acids with this
technique are limited in number and usually of small size. Prediction of fatty acids
in milk based on mid-infrared spectra (MIR) (Rutten et al., 2009; Soyeurt et al.,
2006) has made routine measurement of milk fatty acids possible. The MIR spectra
are already used in routine milk recording to quantify fat, protein, lactose, and urea
content. The recently developed prediction equations for milk fatty acids enable
routine phenotyping of large populations at low cost. This facilitates breeding for
desired fat composition, but also GWAS can benefit from large resource
populations. This raises the question whether MIR predicted milk fatty acids would
be suitable for unraveling the genetic background of milk fat composition with
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GWAS. Both Bastin et al. (2012) and Govignon-Gion et al. (2012) performed GWAS
based on MIR predicted milk fatty acids and detected many associated regions,
which included regions known to be associated with fat composition. However,
there were also discrepancies between regions found in our study based on GC
data and those studies using MIR data. It is not clear whether these discrepancies
are caused by differences between populations or differences between MIR
predicted and GC measured milk fatty acids. The data used in this thesis is suited to
address the implications of using MIR predicted milk fatty acids in GWAS studies,
because both GC and MIR spectra were available on the same milk samples, and
Rutten et al. (2009) developed prediction equations for milk fatty acids using this
data.

GWAS results

Here | will compare GWAS results for both GC measured and MIR predicted milk
fatty acids on the same milk samples to address the implications of using predicted
milk fatty acids in GWAS studies. Four fatty acids were chosen for comparison:
C14:0, C16:0, C18:1cis9 (C18:1), and C18:2cis9,trans11 (Conjugated Linoleic Acid,
CLA). The equations used to predict milk fatty acids from the MIR spectra were
built as described by Rutten et al. (2009) and based on weight percentages, i.e.
g/100g fat. According to Rutten et al. (2009), the squared correlation of GC
measured records with MIR predicted records (here referred to as prediction
accuracy) was 0.73 for C14:0, 0.71 for C16:0, 0.84 for C18:1, and 0.58 for CLA (Table
6.3). The fatty acid C14:0 was chosen because it is a de novo synthesized fatty acid
for which many QTL were detected (chapters 2 and 3); C16:0 because it is the most
abundant fatty acid in milk; and C18:1 and CLA because they have a relatively high
and low prediction accuracy, respectively. Both GC measurements and MIR
predictions were available on the same milk samples of 1,614 cows with 50K
genotype data. The genetic correlations between the GC measured records and the
MIR predicted records for the four fatty acids ranged from 0.83 to 0.97 (Table 6.3).

Table 6.3 Prediction accuracy (rz) of MIR predicted records’, genetic correlation (rg) between
GC measured and MIR predicted records, and the correlation between allele substitution
effects of all SNP from GWAS with GC data and GWAS with MIR predicted data (ras).

2

Trait r re (s.e.) lase
C14:0 0.73 0.97 (0.02) 0.74
C16:0 0.71 0.92 (0.05) 0.74
C18:1 0.84 0.97 (0.04) 0.80
CLA 0.58 0.83 (0.10) 0.53

L as reported in Rutten et al. 2009.
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The GC measured records were already checked for outliers in previous GWAS,
while the MIR predicted records were not edited. Bivariate analysis shows that
there was good concordance between GC measured C14:0 (GC-C14:0) and MIR
predicted C14:0 (MIR-C14:0) phenotypes, while the MIR predictions for C16:0,
C18:0 and CLA contained outliers with large prediction errors (Figure 6.3). One
individual with GC measurements within the normal range of values appeared to
have extreme values for MIR predicted C16:0 (MIR-C16:0; ~7 sd from mean) and
C18:1 (MIR-C18:1; ~12 sd from mean). The MIR predicted records of this individual
for C16:0 and C18:1 were set to missing in the GWAS. Single SNP GWAS were
performed using the same univariate animal model in ASReml as described earlier
in chapters 2, 3 and 4.
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Figure 6.3 Fatty acid records measured with gas chromatography (GC) plotted against mid-
infrared predicted records (MIR). Outliers due to high prediction errors are indicated as solid
triangles.
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Table 6.4 shows that GWAS for MIR-C14:0 and MIR-C16:0 resulted in smaller
numbers of significant SNP compared to GC data, but almost all SNP declared
significant using MIR predicted data were also significant using GC data. Single SNP
GWAS for MIR-C18:1 resulted in a larger number of significant SNP compared to GC
measured C18:1 (GC-C18:1), but almost all SNP declared significant using GC-C18:1
were also significant using the MIR predicted data. Single SNP GWAS for CLA using
GC data (GC-CLA) resulted in only 8 SNP with a FDR of 5% and only 4 with a FDR of
0.1%. In contrast, GWAS for MIR predicted CLA (MIR-CLA) resulted in many more
significant SNP, i.e. 100 at a FDR of 5% and 32 at a FDR of 0.1%, but included most
SNP significant in the GWAS for GC-CLA.

Table 6.4 Number of SNP significant at false discovery rates (FDR) of 5% and 0.1% for
genome-wide association based on gas chromatography measured (GC) fatty acids, mid-
infrared predicted (MIR) fatty acids, and the overlap between both (both).

FDR<0.05 FDR<0.001
Trait GC MIR both GC MIR both
C14:0 372 157 136 167 46 46
C16:0 217 202 186 160 122 119
Cc18:1 207 232 183 118 136 114
CLA 8 100 7 4 32 4

The allele substitution effects of all (50k) SNP from GWAS with GC measured and
MIR predicted C14:0, C16:0, C18:1, and CLA had a correlation of 0.74, 0.73, 0.78,
and 0.53, respectively. These correlations are in good agreement with the
prediction accuracies of the MIR spectra for GC measurement (Table 6.3). Similar
relationship between the correlation of allele substitution effects of GWAS based
on two measurements of the same population was shown by Barendse et al.
(2011). As suggested by Barendse et al. (2011) a prediction accuracy of at least 0.95
would be required to obtain similar allele substitution effects for GWAS for both
fatty acid phenotypes. Improvement of the prediction of fatty acids from MIR
spectra might, thus, result in better concordance of GWAS results.
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Figure 6.4 Manhattan plots for C14:0, C16:0, C18:1, and CLA comparing GWAS results based
on gas chromatography (above x-axis) and mid-infrared (below x-axis). The dotted lines
represent the false discovery rate threshold of 5%.

Figure 6.4 shows the results from GWAS for GC measured and MIR predicted milk
fatty acids from the exact same milk samples. The major QTL (FDR of 0.1%) for GC-
C14:0 on BTA14 and 19 were confirmed by MIR-C14:0; however, the major QTL on
BTA26 for GC-C14:0 was not significant with MIR-C14:0. The QTL for GC-C14:0 on
BTA1 (122 Mbp) and on BTA5 (82 Mbp) were confirmed by MIR-C14:0 with clear
signals; in addition, some single SNP significant at a FDR of 5% were confirmed on
BTA2 and 3. The QTL for GC-C14:0 on BTA27 (40 Mbp) was not detected with MIR-
C14:0. The GWAS for MIR-C14:0 detected an additional QTL on BTA28 that was not
significant with GC-C14:0.
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The major QTL (FDR of 0.1%) for GC measured C16:0 (GC-C16:0) on BTA14 was
confirmed by MIR-C16:0. In addition, the QTL for GC-C16:0 on BTA2 (64 Mbp) was
confirmed by MIR-C16:0. The QTL for GC-C16:0 on BTA6 (4 Mbp) and BTA24 (8
Mbp) were not detected with MIR-C16:0. The GWAS based on MIR-C16:0 detected
an additional QTL on BTA27 and a few SNP significant at a FDR of 5% on BTA2, 9,
12,18, 23, and X.

The major QTL (FDR of 0.1%) for GC-C18:1 on BTA14 was confirmed by MIR-C18:1.
In addition, the QTL for GC-C18:1 on BTA19 at 52 Mbp was confirmed by MIR-
C18:1. The QTL for GC-C18:1 on BTA10 (126 Mbp) and BTA19 (37 Mbp) were not
detected with MIR-C18:1. The GWAS for MIR-C18:1 detected a few SNP significant
at a FDR of 5% on BTA1, 3, 5, 12, 15, 23, 26, and 28.

The major QTL (FDR of 0.1%) for GC-CLA on BTA14 was confirmed by MIR-CLA.
Other than that QTL and a single significant SNP on BTA20 there were no significant
regions for GC-CLA. The GWAS for MIR-CLA detected QTL on BTA4 (88 Mbp) and
BTA6 (111 Mbp), GWAS for GC-CLA showed suggestive QTL for these regions just
below the FDR threshold of 5% for GC-CLA. The GWAS for MIR-CLA detected
additional QTL on BTA8 (67 Mbp), BTA19 (43-46 Mbp) and some single SNP
significant at a FDR of 5% on BTAS5, 9, 15, 20, 23, and 25.

In some cases the MIR predicted fatty acids resulted in QTL not observed with the
GC measured fatty acids, e.g. the QTL on BTA19 for CLA. In other cases the QTL
detected with GC measured fatty acids were not confirmed by MIR predicted fatty
acids, e.g. the QTL on BTA26 for C14:0. The latter might be the result of reduced
power of GWAS based on MIR data compared to GWAS based on GC data, because
the predictions accuracies are lower than one. In the next section, | will discuss if
reduced power of MIR predicted C14:0 can explain the failure to detect the major
QTL for C14:0 on BTA26.

Power of GWAS

For QTL with major effect size it was expected they would be detected by GWAS
with both GC and MIR data and, thus, would be robust against the prediction error
of MIR predicted milk fatty acids. This expectation did not hold for C14:0, as three
major QTL were detected based on GC data, while the GWAS for MIR predicted
C14:0 detected only two of those major QTL (Figure 6.4). The major QTL on BTA26
was not detected using MIR predicted C14:0, but there was a suggestive QTL at
approximately the same location. This suggests that the lack of confirmation of this
QTL for C14:0 on BTA26 could be a power issue.

In practice many additional MIR predicted records are available which would
resolve a power issue. However, in the current study no additional records were
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available. Therefore, the GC dataset was reduced to mimic a situation where there
are two or even four times as many MIR predicted records available as compared
to GC records. At random 50% and 25% of the GC data was selected to perform a
GWAS for C14:0 on BTA26. This was replicated 5 times for both 50% and 25% of the
GC data. The average significance levels over the 5 replicates were used to
compare with GWAS results of the full MIR predicted dataset.
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Figure 6.5 Manhattan plots for BTA26 comparing GWAS results for (100% of) the gas
chromatography (GC) data, 50% of the GC data (average of 5 replicates) , 25% of the GC data
(average of 5 replicates) and all the mid-infrared (MIR) data for C14:0. Region of QTL is
indicated by the grey dashed lines.
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The average significance over the 5 replicates with 50% of the GC data for C14:0
showed similar significance levels compared to the GWAS using the full MIR
predicted dataset (Figure 6.5). However, the most significant SNP of the GWAS for
the full GC dataset is not the same SNP. This SNP had only a -logyo(P-value) of 1.81
in the GWAS for the full MIR predicted dataset, which is more similar to the
significance level of the 5 replicates with 25% of the GC data (average -log;(P-
value) = 1.56). These results suggest that using MIR predicted C14:0 severely
reduces the power to detect this specific QTL. The loss in power is reflected in the
prediction accuracy of 0.73 for C14:0, but shows to be more specific for this region
instead of proportional over the whole genome. GWAS based on MIR predicted
C14:0 did show a suggestive QTL on BTA26, indicating that MIR prediction captures
at least part of the genetic variance of this major QTL. This indicates that for the
GWAS design applied here two or even four times as many MIR predicted records
are needed to obtain similar power as obtained with GC data for this particular
QTL. Obtaining that many records would be feasible with routine measurement of
the whole dairy cattle population. However, a more promising design can be
applied too, by using daughter vyield deviations or de-regressed proofs as
phenotypes for sires in GWAS. Such phenotypes have a higher accuracy than own
performance records used here, because they are based on observations on
multiple daughters.

Such a design may average out extreme individual prediction errors over multiple
daughters, but is probably not able to prevent the additional QTL observed here. In
the next section, | will discuss a possible reason for the detection of additional QTL.

Additional QTL detect with MIR predicted fatty acids

The prediction accuracy of the milk fatty acids studied ranged from 0.58 to 0.84.
Therefore, it was expected that some QTL would not be detected using MIR
predicted data, but additional QTL were not expected. The additional QTL detected
cannot be true QTL for the milk fatty acids studied, because the prediction
equation is developed using GC data as ‘true’ phenotype for the same samples. For
example, the QTL on BTA19 for MIR predicted CLA was very convincing, but not
detected with GC measured CLA. Conjugated linoleic acid had relatively low
prediction accuracy, relatively low genetic correlation between GC measured and
MIR predicted records, and many individuals with large prediction errors (Table 6.3
and Figure 6.3). Regression of the MIR predicted records on GC measured records
showed that the residual part (i.e. the prediction error) was associated with the
significant SNP and not the part of the MIR prediction that actually explains the GC
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measurement. So, MIR predicted fatty acids are probably associated with
something else than the fatty acids it is supposed to represent.

Mid-infrared spectra represent resonance of all kinds of molecules, not only of
fatty acids. Only certain wavelengths, selected e.g. by partial least squares, are
used to predict a certain milk fatty acid. The predictions based on MIR spectra of
milk samples could contain also information of other fatty acids and even of other
milk components. Although speculative, this could imply that additional QTL
detected using MIR data are QTL for other fatty acids or other milk components
than the one studied. It is difficult to pinpoint where the associations exactly come
from, but this complicates the search for candidate genes of the actual trait.

Phenotype definition for GWAS

Results presented here show that GC measurements and MIR predicted milk fatty
acids are not the same trait but are correlated traits. Often different phenotypes
are assumed to reflect the same trait. However, they are correlated traits. In
human genetics, inconsistencies between phenotypes has been identified as one of
the reasons why confirmation of initial results was unsuccessful (Chanock et al.,
2007; Konig, 2011). Especially the misclassification of unaffected individuals as
cases leads to extreme power reduction, while the misclassification of affected
individuals as controls has little effect on the power (Edwards et al., 2005). For
quantitative traits measurement errors have less extreme effects on power. In
general, it is recognized that phenotypes are liable to measurement errors, but
those errors are assumed to be random and, therefore, assumed to have no impact
on GWAS results. Barendse (2011) showed that 2 independent measurements of
back-fat thickness on the same carcasses, with the same equipment, within 24
hours, but by a different team, had a phenotypic correlation of 0.72 and gave
different GWAS results. In their study, only 10% of the significant SNP were
confirmed and a major QTL was shifted by 1 Mbp, which led to different candidate
genes. An unambiguous phenotype description with a high repeatability is,
therefore, very important for confirmation of QTL (Barendse, 2011; Edwards et al.,
2005; Samuels et al., 2009).

In general, it has been recognized that GWAS need to be well-designed and for
confirmation of QTL it is recognized that phenotypes need to be defined in the
exact same way, because different definitions of phenotypes lead to different
GWAS results, as is also the case with GC measured and MIR predicted milk fatty
acids. It should be noted that this is only a requirement for confirmation and does
not specify which phenotype should be studied in the original study. For example,
GWAS results using MIR predicted fatty acid can be confirmed in a second GWAS
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using the same Fourier-transform spectroscopy scanner and prediction equation,
but might not lead to the same QTL using GC measurements, which are more likely
to represent true associations due to more accurate phenotypes. The fact that
different phenotype descriptions lead to different GWAS results is, however,
troublesome and suggests that phenotype descriptions of initial GWAS should be
chosen carefully when the aim is to search for causal variants that explain
underlying biological mechanisms.

In dairy cattle we can see a trend towards predicted phenotypes, like the MIR
predicted fatty acids, but also other milk components, cheese properties, methane
emission and energy balance of cows can be predicted from MIR spectra (De
Marchi et al., 2009; Dehareng et al., 2012; McParland et al., 2011; Rutten et al.,
2009, 2011a, b; Soyeurt et al., 2006, 2007, 2009). This is an exciting development
because the actual phenotypes are too difficult, expensive or invasive to record,
and MIR spectra provide an opportunity for routine recording and breeding for
predicted traits which are correlated to the actual phenotype of interest. Given
that MIR profiles are already routinely recorded, MIR predicted milk fatty acids can
be measured in large populations at low cost. The reduced power of using
predicted phenotypes to detect QTL by GWAS can thus be overcome by using many
more records for GWAS. Moreover, the routine MIR measurements on milk
samples of cows can be used to produce de-regressed proofs or daughter yield
deviations for genotyped sires. However, MIR predicted phenotypes add
complexity to the genotype-phenotype relationship and, thus, enlarge the
genotype-phenotype gap. Therefore, MIR predicted phenotypes are less
appropriate to identify candidate genes and to infer the biological background of
traits.

6.5 Conclusions

The genotype-phenotype gap can be narrowed by decomposing complex
phenotypes into intermediate phenotypes and by inferring causal relationships
among variables, whereas predicted phenotypes extend the genotype-phenotype
gap further by adding more complexity.
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This thesis describes the research on the genetic background of bovine milk fat
composition that aimed to detect, confirm and fine-map quantitative trait loci
(QTL) for milk fatty acids in Dutch Holstein Friesian cattle. Identification of genomic
regions, and preferably individual genes, responsible for genetic variation in bovine
milk fat composition enhances the understanding of biological pathways involved
in fatty acid synthesis and is expected to increase opportunities for changing bovine
milk fat composition by means of selective breeding.

Chapter 2 describes a genome-wide association study (GWAS) using 50,000 single
nucleotide polymorphisms (SNP) for even-chain saturated fatty acids (C4:0-C18:0),
even-chain ¢is9 monounsaturated fatty acids (C10:1-C18:1), and the
polyunsaturated C18:2cis9,trans11 (Conjugated linoleic acid; CLA). Fatty acids were
measured by gas chromatography on approximately 2,000 dairy cows in winter
milk samples. A total of 54 regions on 29 chromosomes were significantly
associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26
showed highly significant associations with seven to ten fatty acids each, explaining
a relatively large percentage of the total additive genetic variation. Many additional
regions were significantly associated with fatty acids. Some of the associated
regions harbor genes that are known to be involved in fat synthesis or have
previously been identified as underlying QTL for fat yield or content.

The GWAS for fatty acids from winter milk was followed up by a GWAS for fatty
acids from summer milk samples from the same cows and is described in chapter 3.
The GWAS for summer milk samples resulted in 51 regions on 24 chromosomes
that were significantly associated with one or more milk fatty acids. Results from
the GWAS for summer milk fatty acids were in agreement with most associations
that were previously detected in the GWAS for fatty acids from winter milk
samples. For SNP that were found significant in both GWAS high correlations were
found between the levels of significance (-log;o(P-values)) in winter and summer as
well as between SNP effects in both seasons. This implies that the effects of the
SNP were similar on winter and summer milk fatty acids. Associations that were in
agreement between both GWAS are more likely to be true compared to regions
detected in only one GWAS and are, therefore, worthwhile to pursue in fine-
mapping studies.

Chapter 4 describes how the location of the QTL detected in chapters 2 and 3 on
BTA19 was refined using a denser set of markers. Opportunities for fine mapping
were provided by imputation from 50,000 genotyped SNP to a high density SNP
panel with 777,000 SNP. The QTL region was narrowed down to a linkage

153



Summary

disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 bp to
51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes:
coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). There is
not much known about the function of CCDC57 and this gene has not been
associated with bovine milk fat previously, but is expressed in the mammary gland.
The gene FASN has been associated with bovine milk fat and fat in adipose tissue in
other studies. This gene is a likely candidate for the QTL on BTA19 because of its
involvement in de novo fat synthesis.

Chapter 5 describes the use of causal inference to provide more insight into the
relationships between individual fatty acids. The aim of this study was to find the
causal network best supported by the milk fatty acid data and to use this in a
structural equation model (SEM). An inductive causation (IC) algorithm can be used
to search for causal structures. The IC algorithm adapted to mixed models settings
was applied to study 14 correlated bovine milk fatty acids, resulting in an
undirected network. The undirected pathway from C4:0 to C12:0 resembled the de
novo synthesis pathway of short and medium-chain saturated fatty acids. By using
prior knowledge, directions were assigned to that part of the network. The
resulting causal structure was used as condition for fitting a SEM. Structural
equation models can be used to quantify causal relations between traits and allows
prediction of outcomes of interventions applied to such a network. Structural
coefficients ranged from 0.85 to 1.05. The deviance information criterion indicated
that the SEM was more plausible than a standard multi-trait model for these milk
fatty acids. This changed the focus from marginal associations between traits to
direct relationships, thus, towards relationships that may result in changes when
external interventions are applied.

Chapter 6 is the general discussion. The first part addresses the insights that were
gained from GWAS for milk fatty acids. Moving from linkage analysis toward GWAS
confirmed and refined the size of QTL regions and resulted in new QTL regions.
Genome-wide association studies provide a picture of the genetic architecture of a
trait by scanning the whole genome. This is preferred over candidate gene studies
that may lead to wrong conclusions because of associations due to linkage
disequilibrium.

The second part of the general discussion concentrates on intermediate
phenotypes. Performing GWAS based on individual fatty acids resulted in additional
QTL as compared to GWAS based on fat percentage or yield. This shows that
refinement of complex phenotypes into underlying components results in better
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links between genes and phenotypes, and is a way to fill part of the so called
genotype-phenotype gap.

The next section of the general discussion deals with causal relationships between
the QTL on BTA19 and the de novo fatty acids. For C4:0, C6:0, C8:0, C10:0 and
C14:0 there is evidence for a direct effect of the QTL on BTA19. The QTL indirectly
affects C12:0 through its effect on C10:0. Furthermore, analyses show that the QTL
has no effect on C16:0.

The last part of the general discussion is about prediction of milk fat composition
with mid-infrared (MIR) spectra as alternative for gas chromatography (GC)
measurements. Mid-infrared predicted fatty acids are cheap as compared to the
expensive and time consuming GC measurements. The potential of GWAS based on
MIR predicted fatty acids was explored by comparing GWAS results for GC
measured and MIR predicted milk fatty acids on the same milk samples. Part of the
QTL detected based on GC were not detected using MIR predicted fatty acids due
to reduced power. The loss in power is reflected in the accuracy of predicting milk
fatty acids based on MIR. The GWAS for MIR predicted phenotypes resulted also in
QTL that were not detected based on GC measurements. These QTL probably do
not reflect true QTL for the milk fatty acids studied but may relate to other milk
components. Therefore, MIR predicted phenotypes add complexity to the
genotype-phenotype relationship, and renders MIR predicted phenotypes less
appropriate to identify candidate genes and to infer the biological background of
traits.
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Dit proefschrift beschrijft mijn onderzoek naar de genetische achtergrond van de
samenstelling van het vet in koeienmelk. Het doel van het onderzoek was het
opsporen van gebieden in het DNA die verantwoordelijk zijn voor verschillen tussen
koeien in de samenstelling van het melkvet. Deze DNA gebieden zijn daarna
bevestigd en de locaties zijn verfijnd om genen betrokken bij de synthese van
melkvet te identificeren. Deze identificatie van DNA gebieden en onderliggende
genen die verantwoordelijk zijn voor verschillen in vetsamenstelling van
koeienmelk is belangrijk voor het inzicht in de biologische mechanismen van de
synthese van melkvet. Bovendien vergroot het de mogelijkheden voor het
veranderen van de melkvetsamenstelling door middel van fokkerij.

Voor dit onderzoek zijn van ongeveer 2.000 zwartbonte Holstein-Friesian koeien
gegevens verzameld. De samenstelling van het vet is gemeten met behulp van gas
chromatografie in zowel winter- als zomermelk. We hebben de 14 vetzuren met de
hoogste concentraties in melkvet bestudeerd. Dit zijn de verzadigde vetzuren C4:0,
C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, en C18:0, de enkelvoudig onverzadigde
vetzuren C10:1, C12:1, C14:1, C16:1 en C18:1, en het meervoudig onverzadigde
C18:2cis9,trans11 (Geconjugeerd linolzuur; CLA). Daarnaast zijn van de koeien ook
DNA profielen bestaande uit 50.000 DNA merkers bepaald.

Hoofdstuk 2 beschrijft een genoom-wijde associatie studie (GWAS) voor de
samenstelling van het vet in wintermelk. Hierbij is per DNA merker gekeken of deze
significant geassocieerd is met de individuele melkvetzuren. In totaal waren 54
DNA gebieden op 29 chromosomen significant geassocieerd met een of meerdere
vetzuren. De gebieden op de chromosomen 14, 19 en 26 toonden zeer significante
associaties met zeven tot tien vetzuren elk, en verklaarden een relatief groot deel
van de genetische verschillen tussen de koeien. Daarnaast waren vele andere DNA
gebieden significant geassocieerd met de vetzuren. Sommige van deze DNA
gebieden bevatten genen waarvan bekend is dat ze betrokken zijn bij de synthese
van vet, van andere gebieden is bekend dat ze verantwoordelijk zijn voor
verschillen in de hoeveelheid vet in melk, en weer andere gebieden zijn nieuwe
gebieden waar nog weinig over bekend is.

De GWAS voor de samenstelling van het vet in wintermelk is opgevolgd door een
GWAS voor de samenstelling van het vet in zomermelk van dezelfde koeien, en
staat beschreven in hoofdstuk 3. De GWAS voor de zomermelk resulteerde in 51
DNA gebieden op 24 chromosomen die significant geassocieerd waren met een of
meerdere vetzuren. De resultaten van de GWAS voor vetsamenstelling in
zomermelk waren grotendeels in overeenstemming met de eerder gevonden
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associaties voor vetsamenstelling in wintermelk. De DNA gebieden die significant
waren voor zowel winter- als zomermelk bleken een vergelijkbaar effect te hebben
op de vetsamenstelling in de beide seizoenen. Deze DNA gebieden die
overeenstemmen tussen beide GWAS zijn de moeite waard om verder te
bestuderen.

Op chromosoom 19 vonden we een relatief groot DNA gebied dat zeer significant
geassocieerd was met de samenstelling van het vet in wintermelk en in zomermelk.
Van dit gebied was nog niet met zekerheid bekend welk gen betrokken is bij de
synthese van melkvet. Het doel van de studie beschreven in hoofdstuk 4 was om
dit DNA gebied beter te karakteriseren met behulp van een groter aantal DNA
merkers. Het aantal DNA merkers op chromosoom 19 werd daarom uitgebreid van
1.454 naar 18.893. Hierdoor werd de resolutie van het gebied groter en konden we
beter inzoomen op de vele genen die in dit gebied liggen. Zodoende bleek dat 2
genen een mogelijke rol spelen: coiled-coil domain containing 57 (CCDC57) en fatty
acid synthase (FASN). Er is niet veel bekend over CCDC57; dit gen is nooit eerder
geassocieerd met melkvet, maar is wel actief in het uier van de koe. Het gen FASN
is eerder geassocieerd met zowel melkvetzuren als vetzuren in het vetweefsel van
koeien. Bovendien is FASN betrokken bij de synthese van korte en middellange
verzadigde vetzuren, en daarom een goede kandidaat voor het DNA gebied op
chromosoom 19.

Hoofdstuk 5 beschrijft de studie van de onderlinge relaties tussen de individuele
vetzuren in melkvet. Melkvetzuren zijn sterk gecorreleerd, maar het is niet bekend
of deze correlaties direct of indirect zijn. Directe relaties worden ook wel
oorzakelijke of causale relaties genoemd. Bij causale relaties tussen vetzuren is een
verandering in de concentratie van het ene vetzuur de oorzaak van een
verandering in de concentratie van een ander vetzuur. Het doel van deze studie
was om een causaal netwerk te vinden voor melkvetzuren. Het resultaat was een
netwerk van C4:0 tot C12:0 dat overeenkomt met de synthese-route van korte en
middellange verzadigde vetzuren. Op basis van de analyses kon geen richting
worden gegeven aan dit netwerk. Echter, met behulp van bestaande kennis over de
synthese van melkvet kon dit netwerk alsnog worden voorzien van een richting.
Het gerichte netwerk is vervolgens gebruikt om de omvang van de causale relaties
tussen deze vetzuren vast te stellen. Hierdoor kunnen uitkomsten van interventies
toegepast op het netwerk worden voorspeld.

Hoofdstuk 6 is de algemene discussie. Het eerste deel richt zich op de inzichten
verkregen door GWAS voor de samenstelling van melkvet. De GWAS heeft geleid
tot het bevestigen en verfijnen van DNA gebieden betrokken bij melkvet-
samenstelling en heeft bovendien geresulteerd in de identificatie van nieuwe
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gebieden. Genoom-wijde associatie studies geven een goed beeld van de
genetische architectuur van een kenmerk omdat het volledige genoom wordt
onderzocht. Dit heeft de voorkeur boven het bestuderen van individuele genen die
worden gekozen op basis van bestaande kennis over het kenmerk.

Het tweede deel van de algemene discussie richt zich op de verfijning van complexe
kenmerken in onderliggende componenten. Genoom-wijde associatie studies op
basis van individuele melkvetzuren resulteerden in meer DNA gebieden in
vergelijking met GWAS op basis van melkvetpercentage of kilo’s melkvet. Dit
bevestigd dat verfijning van complexe kenmerken in onderliggende componenten
meer inzicht geeft in de verbanden tussen genen en kenmerken.

De volgende sectie van de algemene discussie gaat over causale relaties tussen het
DNA gebied op chromosoom 19 en de korte en middellange verzadigde vetzuren.
Dit DNA gebied is geassocieerd met meerdere vetzuren die onderling causale
relaties vertonen. Het DNA gebied kan dus een direct effect hebben op elk vetzuur
(y;«<—DNA—y,), of een indirect effect waarbij het DNA een effect heeft op een
ander vetzuur dat vervolgens een effect heeft op het bestudeerde vetzuur
(DNA—y;—y,). Er is bewijs voor een direct effect van het DNA gebied op
chromosoom 19 op C4:0, C6:0, C8:0, C10:0 en C14:0, en een indirect effect op
C12:0 via C10:0. Bovendien is er geen effect van dit gebied op C16:0.

Het laatste deel van de algemene discussie gaat over het gebruik van mid-infra
rood (MIR) spectra voor het voorspellen van de samenstelling van het melkvet als
alternatief voor melkvetsamenstelling gemeten met gas chromatografie (GC). Het
voorspellen van de concentratie van melkvetzuren op basis van MIR is veel
goedkoper dan de dure en tijdrovende GC bepalingen. De mogelijkheden van
GWAS op basis van MIR voorspelde samenstelling van het melkvet zijn onderzocht
door GWAS resultaten van GC bepaalde en MIR voorspelde vetsamenstelling van
dezelfde melkmonsters te vergelijken. Een deel van de DNA gebieden gevonden op
basis van GC zijn niet gevonden met de MIR voorspelde melkvetsamenstelling. Dit
is waarschijnlijk het gevolg van de onnauwkeurigheid van de MIR voorspelling van
melkvetsamenstelling. De GWAS op basis van MIR voorspellingen resulteerde
bovendien in DNA gebieden die niet gevonden zijn op basis van GC. Deze gebieden
vertegenwoordigen waarschijnlijk geen DNA gebieden die echt geassocieerd zijn
met melkvetsamenstelling, maar zijn mogelijk gerelateerd aan andere
componenten in melk die ook worden opgepikt uit het MIR profiel. Deze analyses
laten zien dat MIR voorspelde kenmerken complexiteit toevoegen aan de
verbanden tussen genen en kenmerken. Dit maakt MIR voorspelde kenmerken
minder geschikt voor het opsporen van genen betrokken bij het kenmerk en voor
het vergroten van het inzicht in de biologische mechanismen achter het kenmerk.
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