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Introduction 

The fungal kingdom has been both beloved and reviled since ancient human civilization. Many 

species of fungi have been within living memory consumed or used as active agent in the 

processing or fermentation of food products, thereby positively influencing their tenability and 

taste [1]. Examples are edible mushrooms like champignon (Agaricus bisporus), shiitake 

(Lentinula edodes) and black truffle (Tuber melanosporum), the leavening of bread by the 

baker’s yeast Saccharomyces cerevisiae, production of soy sauce from a fermented paste of 

soybeans and various Aspergillus species and the fermentation of sugars into alcohol by various 

species of yeast during the production of beer and wine. In the 1930s, the antibiotic penicillin 

was discovered and isolated from the fungus Penicillium chrysogenum, yielding humanity a life-

saving medicine against bacterial infections [2]. During the molecular biology revolution of the 

twentieth century this was followed by discoveries of an arsenal of additional pharmacologically 

active drugs, biopesticides, fine chemicals and enzymes with industrial applications [3]. Many of 

these are produced by fungi in large-scale industrial fermentation processes. A contemporary 

example of a fungus as a biological control organism is the application of spores of the 

entomopathogenic fungus Beauveria bassiana in the reduction of malaria parasites [4]. 

However, fungi are also notorious opportunistic pathogens of humans, causing serious 

discomfort up to fatal infections [5],[6]. Some plant-infecting fungi endanger food safety by the 

production of mycotoxins that cause serious health problems to human and cattle after their 

unintentional consumption [7],[8]. Most reknown are the fungi as causal agents of dramatic 

plant diseases [9]. They endanger global food supply by causing devastating losses to virtually all 

crops including staple foods as wheat, rice, maize and potato. 

Some easy to culture, fast growing and predominantly single-cellular and filamentous fungi are 

used as simple models to study fundamental but highly complex regulatory processes of the 

eukaryotic cell, including cell division [10], circadian rhythms [11],[12],[13], apoptosis [14],[15] 

RNA interference [16] and epigenetics [17]. Because of their scientific and economic importance 

to industry, medicine and agriculture, many fungi are being studied from a biotechnological, 

molecular or genetic perspective (see Table 1). Many have been adopted as model organisms, 

including the famous budding yeast S. cerevisiae [18] and the fission yeast Schizosaccharomyces 

pombe [19]. 

The development of a technique called Sanger-sequencing enabled DNA sequencing from small 

molecules to complete genome sequences [20],[21]. Maturating and upscaling of this technique 

to the level of complete genomes spanned two decades. The genome of S. cerevisiae was the 

first eukaryotic genome to become completely sequenced [22], soon followed by the model 

fungal saprobes Neurospora crassa [23] and Aspergillus nidulans [24] and the rice blast pathogen 

Magnaporthe oryzae [25] (Table 1). The sequencing of the first eukaryotic genome 20 years ago 

was a milestone in genome research, but analogous breakthroughs were achieved in 

understanding biology at the level of the transcriptome, the proteome and the interplay 

between them all. The invention and consecutive up-scaling of various techniques that produced 

biological data sets at an unprecedented speed and magnitude, gave birth to the so-called omics 

era in life sciences [26]. Simultaneously, the scientific discipline bioinformatics was born and co-

evolved with novel techniques and demands and became a major discipline in biology. 

Bioinformatics does not only facilitate storing, retrieving and organizing biological data, but is 

also crucial for exploring novel scientific concepts by developing novel methods and software 
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tools, typically by integrating various data sources. It can address and answer many questions 

that could not be posed and solved previously by lack of analytical tools. 

Table 1: Importance and application of the earliest sequenced fungal genomes 

Fungal species Year Ref Class | Order 1 importance 

Saccharomyces cerevisae 1996 [22] Saccharomycetes | 

Saccharomycetales 

Baker’s yeast, eukaryotic 

model organism 

Schizosaccharomyces pombe 2002 [27] Schizosaccharomycetes | 

Schizosaccharomycetales 

Fission yeast, eukaryotic 

model organism 

Neurospora crassa 2003 [23] Sordariomycetes | Sordariales Eukaryotic model 

organism 

Candida albicans 2004 [28] Saccharomycetes | 

Saccharomycetales 

Human pathogen 

Magnaporthe oryzae 2005 [25] Sordariomycetes | 

Magnaporthales 

Important pathogen on 

rice 

Aspergillus nidulans 

Aspergillus fumigatus 

Aspergillus oryzae 

2005 [24] Eurotiomycetes | Eurotiales Classical genetics; 

industrial production of 

enzymes and chemicals 

Cryptococcus neoformans 2005 [29] Tremellomycetes | Tremellales Opportunistic human 

pathogen 

Ustilago maydis 2006 [30] Ustilaginomycetes | 

Ustilaginales 

Biotrophic pathogen on 

maize 

Stagonospora nodorum 2007 [31] Dothideomycetes | 

Pleosporales 

Important pathogen on 

wheat; first sequenced 

Dothideomycete 

Aspergillus niger 2007 [32] Eurotiomycetes | Eurotiales Producer of chemicals & 

enzymes 

Penicillium chrysogenum 2008 [33] Eurotiomycetes | Eurotiales Producer of antibiotics 

like penicillin 

Fusarium graminearum 

Fusarium verticillioides 

Fusarium oxysporum 

2010 [34] Sordariomycetes | Hypocreales Important pathogens on 

maize, etc. 

powdery mildew species 

Blumeria graminis 

Erysiphe pisi 

Golovinomyces orontii 

2010 [35] Leotiomycetes | Erysiphales Important biotrophic 

pathogens on various 

species 

Tuber melanosporum 2010 [36] Pezizomycetes | Pezizales Edible truffle 

Zymoseptoria tritici 2011 [37] Dothideomycetes | Capnodiales Pathogen on wheat 

Verticillium dahlia 

Verticillium albo-atrum 

2011 [38] Sordariomycetes | 

Glomerellales 

Important pathogen on 

many plant species 

Sclerotinia sclerotiorum 

Botrytis cinerea 

2011 [39] Leotiomycetes | Helotiales Important necrotrophic 

pathogen on many fruits 
1
 classification according to NCBI Taxonomy (25/01/2014) 

Next-generation sequencing 

At the start of this PhD thesis project, tens of fungal genome sequences were available, a 

number that since has rapidly increased. The technological breakthrough of next-generation 

sequencing (NGS) have reduced the effort, duration and costs of genome projects [40]. These 

techniques were realized in commercial products starting from 2005. The term NGS comprises 

the on-going succession of traditional Sanger sequencing by various novel techniques, that are 

often known by the company name that has commercialized them. The reduction in sequencing 
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costs per base has allowed increasing sequencing depth and has consequently increased the 

average sequence coverage of draft genome assemblies compared to those produced by the 

first-generation Sanger sequencing technology. To date, techniques that have played a major 

role are: massively parallel signature sequencing [41], 454 pyrosequencing [42],[43] and 

Illumina/Solexa sequencing [44] (for reviews see [45],[46]). Novel techniques are being 

developed that complement current shortcomings and might develop in their potential 

successors. The currently most promising pioneering technique released in a commercial 

product is single molecule real time sequencing (SMRT), but commonly named PacBio 

sequencing [47]. Various other promising techniques are in various stages of development upon 

commercial release. The advent of NGS techniques resulted in hundreds of sequenced fungal 

genomes that are currently available. The initiation and current realization of the 1000 Fungal 

Genomes project [48],[49] is the hallmark testimony that the omics era is not at its end yet. 

Genomic and comparative genomics analyses of fungi 

Availability of the genome sequence of an organism facilitate in depth genome analyses. A 

typical starting point in the analysis of genome sequences is the identification of its repetitive 

sequences and the annotation of its genes. Once the genomes of multiple organisms have been 

sequenced, comparative genomics can be exploited to find shared and unique genes, traits or 

other genomic features that might explain their commonalities and differences in morphology, 

metabolic potential, lifestyle or niche adaptation. From that perspective, fungi represent a 

taxonomic kingdom of particular interest. They have different life styles, thrive in a multitude of 

different environments and are diverse at the macroscopic level (development/morphology). 

From genome sequencing, it became evident that the same variation was also true for their 

genomes [25],[50]. Comparison of fungal genomes revealed enormous variability of all genomic 

features: genome size, chromosome number, repetitive DNA content, gene content and absence 

of gene colinearity (synteny). This variability is already realized in phylogenetically related fungi 

at the class, family [50],[51] and sometimes even genus level [24]. With respect to their gene 

content, low sequence similarity at the proteome level and large variability in gene family sizes 

were observed. In addition, a large number of orphan genes, defined as genes that lack obvious 

homologs in all other fungal species, was also reported [52],[53]. The societal, ecological and 

industrial importance of fungi and the exciting observations made in the sequenced fungal 

genomes have turned fungi into interesting study objects for bioinformaticians interested in 

genomics and comparative genomics analyses. 

 

Genomics and comparative genomics analyses of several Dothideomycete fungi 

In the last decade, most sequencing efforts were focussed on the filamentous Ascomycete fungi, 

most notably on the classes of Dothideomycetes, Eurotiomycetes, Leotiomycetes and 

Sordariomycetes (Table 1) [49]. Many of these fungi are devastating pathogens of both 

herbaceous plants and trees. Sequencing and gene annotations were predominantly carried out 

in community sequencing consortia like the Fungal Genome Initiative (BROAD institute [54],[55]) 

and the Fungal Genomics Program (Joint Genome Institute [56],[57]). This thesis has focused on 

analysing several Dothideomycetes. Cladosporium fulvum (pathogen of tomato) [58], 

Dothistroma septosporum (pathogen of pine) [59], and Zymoseptoria tritici (pathogen of wheat 

and some grasses; synonymous to Mycosphaerella graminicola) [37] are pathogens with a 

narrow host range. Because of the global importance of wheat and the devastative outcome of 
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its infection, Z. tritici is regarded as one of the major fungal pathogens [60]. Despite their 

pathogenicity on distinct hosts, they start an infection cycle in a similar fashion by entering their 

hosts via open stomata and consequently colonizing apoplastic space, initially without causing 

any damage.. C. fulvum is a biotrophic fungus that on susceptible cultivars (compatible 

interaction) produces conidiophores that emerge from stomata that sporulate within 14 days 

post inoculation (dpi). During interaction with its host, it secretes effector proteins that 

modulate host defence responses and physiology [61]. Compatibility between C. fulvum and 

tomato is dictated by presence or absence of species- or strain-specific avirulence (Avr) effector 

genes of C. fulvum and corresponding resistance (R) genes of tomato [62]. This makes C. fulvum 

a model organism complying with the gene-for-gene interaction [63]. D. septosporum, on the 

other hand, has a hemi-biotrophic lifestyle on pine that typically spans several weeks to a month 

[64]. From this fungus no effector genes have been identified yet, but it is well known for the 

secretion of an aflatoxin-related secondary metabolite called dothistromin [65]. Although 

dothistromin is not essential for pathogenicity [66], recent observations suggest it to be a 

virulence factor (Kabir MS and Bradshaw RE, unpublished data). Z. tritici is a hemi-biotrophic 

wheat pathogen that is difficult to control, as most of the cultured wheat cultivars lack 

resistance genes and the fungus has become tolerant to the once effective azole fungicide [67]. 

The fungus evades basal host defence during the initial latent period (12-20 days), followed by a 

rapid switch to necrotrophic growth followed by production of pycnidia carrying the asexual 

pycnidiospores which completes its life cycle [37]. A comparative genomics approach would 

allow for exploring the gene content of these fungi and relate it to their lifestyle and ecological 

niche. 

At the start of this thesis project, EST analyses [68], and genome sequencing, annotation and 

analyses [37] of Z. tritici had been performed. This experience was of great utility in performing 

comparable and additional analyses on the novel sequenced genomes of C. fulvum and D. 

septosporum, as described in chapter 2. Remarkably, these comparisons revealed occurrence of 

a surprisingly high similarity at the protein level combined with striking differences at the DNA 

level. Most strikingly, the genome of C. fulvum appeared to be at least twice as large, which is 

solely attributable to a much larger content in repetitive sequences. Genomics and comparative 

genomics analyses of these three fungi revealed various intriguing biological phenomena that led 

to further analyses as described in chapters 4 to 6. 

Genome annotation (1): gene structure prediction 

After genome sequencing and assembly, the subsequent in silico analyses aim at the 

identification of the protein-coding genes. In the last two decades, an array of gene 

identification algorithmic software has been developed. The algorithms are categorized in ab 

initio supervised, ab initio unsupervised and (supervised) alignment-based gene predictors, 

which are implemented in tools such as Augustus [69], GeneMark-ES [70] and TWINSCAN 2.0α 

[71],[72], respectively. Examples of software chosen here are those which are most suited for 

the annotations of fungal genomes. Most of the fungal model organism’s genomes were 

sequenced, annotated and published in turn of the 21th century (Table 1). The earliest gene 

prediction software suited for fungal species comprised adjusted variants of tools developed 

earlier for the higher eukaryotic model organisms (mainly Drosophila melanogaster, 

Caenorhabditis elegans, Arabidopsis thaliana and Homo sapiens). But, soon it became clear that 

they were poor predictors of gene models in fungi which have exon-intron structures that are 

significantly different from higher eukaryotes. 
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Overall gene prediction software are far from flawless; state of the art eukaryotic gene 

prediction tools produce a substantial number of errors in gene catalogues, and as a 

consequence in public sequence repositories [73],[74],[75]. The major types of errors include (i) 

bona fide genes that are not predicted (false negative genes), (ii) non-existing genes that are 

predicted as mala fide genes (false positive genes) and (iii) prediction of incorrect intron-exon 

structures. In renown genome centres focused on sequencing and analyses of higher eukaryotes, 

accuracy of gene prediction improved by evidence acquired from large expression data sets, 

which were for a long time sparsely available for fungal model organisms. In addition, a 

substantial number of genes from the gene catalogues of model organisms were manually 

checked and improved. 

 

Figure 1: Intron length distribution of Cladosporium fulvum, Botrytis cinerea and Caenorhabditis 

elegans 

Length bins where started at 30nt; consecutive bins start at a 10% size increase of previous bin. 

 

Figure 2: Overall intron length distribution and total intronome size of various species 

Length bins were defined as explained in the legend of Figure 1. Species shown are Dothistroma septosporum 

(Ds), Cladosporium.fulvum (Cf), Zymoseptoria tritici (Zt), Hysterium pulicare (Hp), Aspergillus nidulans (An), 

Botrytis. cinerea (Bc), Cryptococcus neoformans (Cn) and Caenorhabditis elegans (Ce). 
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The genomes of filamentous fungi have been described as ‘compact genomes with numerous 

small introns`[72],[70]. A distribution of fungal intron length typically peaks sharply around 50 to 

54 nucleotides with 51 to 85% of all introns varying only within 39 to 78 nucleotides in length 

(Figure 1). In total the gene catalogue of a typical filamentous Ascomycete fungus comprises 

10,000 to 15,000 genes carrying between 15,000 and 30,000 introns (Figure 2). For 

Dothideomycetes and Eurotiomycetes (A. nidulans), these short introns account for up to 75% of 

their intronome. In Leotiomycetes (B. cinerea) and Sordariomycetes (data not shown), a 

considerable number of introns falls within the medium length range (79 to 604nt). It was shown 

that short and medium-sized introns have distinct characteristics [70], of which the difference in 

optimal spacing between branchpoint and acceptor site is the most predominant one. Existence 

of a considerable medium-sized fraction seems to be limited to certain subphyla and classes of 

fungi. Gene catalogues predating this observation might contain a relative high error rate in their 

predicted introns. Finally, tiny (<39nt) and long introns (>604nt) are rare in fungi. This is in sharp 

contrast to plants and animals, which contain much longer and on average more introns, as is 

exemplified by the intronome of C. elegans. It is also in sharp contrast to Hemiascomycete yeast 

species like S. cerevisae which contains only 282 introns in its 6,607 protein-coding genes 

(sequence release R64-1-1 2011/02/03 [18]). 

As outlined above, it can be anticipated that fungal gene catalogues contain errors. Besides 

systematic errors of gene prediction software, additional circumstances can be identified that 

make fungal genomes extra vulnerable in respect to errors in their structural gene annotation. 

The available fungal genome sequence data was often supported by low coverage which 

seriously hampers accurate gene predictions. Indeed, an update report of the Human Genome 

Project indicated an estimation of at least 1% sequencing error rate at an average ten-fold 

coverage [76]. A typical fungal genome produced in the pre NGS era is supported by similar or 

even lower sequence coverage, which is likely to have a low reliability in both its overall 

assembly and of individual nucleotide calls [77]. An incorrectly predicted protein sequence is 

often recognized once aligned to its orthologs from other fungi, although the opposite does also 

occur, when the putative ortholog is wrongly predicted and will not align properly to the target 

gene. Manual and semi-automated inspection of the gene catalogues of C. fulvum and D. 

septosporum as described in chapter 2 revealed a considerable number of gene models that 

likely contain errors based on the phenomena described above. 

The wealth of available fungal genome data that have recently become available allow the 

development of unsupervised methods to improve or assess gene annotation quality at the 

individual gene level. A method that predicts gene models by making use of evidence obtained 

from other genome sequences is called evidence- based or alignment-based gene prediction. In 

chapter 3 we describe a novel alignment-based fungal gene prediction method (ABFGP) that is 

particularly suitable for plastic genomes like those of fungi. Usefulness of the method was shown 

by revisiting the annotations of C. fulvum and D. septosporum and of four other fungal genomes 

from the first-generation sequencing era. Thousands of gene models were revised in each of the 

gene catalogues, highlighting different types of errors in different annotation pipelines. 

The ABFGP method was particularly efficient in identifying sequence errors (SEs) and/or 

disruptive mutations (DMs) that caused truncated and erroneous gene models. In chapter 4, we 

revisited the same fungal gene catalogues as those in chapter 3, and aimed at identifying 

pseudogenes caused by DMs. A dataset of fungal pseudogenes which are listed as bona fide 

genes in current gene catalogues is composed and subsequently analysed. It is enriched for gene 
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models that contain false introns circumventing real DMs that otherwise would have caused the 

prediction of truncated genes. 

Genome annotation (2): repeat identification 

Availability of the first eukaryotic genomes showed that many contained large amounts of 

repetitive sequences. Repetitive DNA sequences, also indicated as repeats , can be 

subcategorized in low-complexity sequence, tandem repeats and interspersed repeats. 

Interspersed repeats comprise all classes of retrotransposons and DNA transposons: sequences 

that can (semi-) autonomously move or copy themselves throughout genomic DNA sequences. 

Many distinct classes of transposons have been characterized and studied in detail in fungi (for 

reviews see [78],[79],[80]). Evidence is accumulating that transposons are a major driving force 

causing genomic diversification in fungi: transposon-insertion mediated gene knock-out, altered 

expression of individual genes as well as altered genome organisation by chromosomal 

recombination (for review see [81],[82]). 

Although low-complexity repeat sequences are not strictly repetitive, they are often taken along 

in the same container definition of `repetitive DNA`. For manual and automatic genome 

annotation and gene prediction, repetitive DNA represents a disturbing component. Therefore it 

should be identified and subsequently ignored or removed from further analyses. Recognition of 

repetitive sequence is quite straightforward, with a whole arsenal of dedicated software aiming 

at repeats duplicated in tandem [83], interspersed repeats in general (e.g. [84],[85],[86],[87]) or 

a specific class of repetitive sequence in particular (e.g. [88]). 

The protocol employed for repeat-identification and/or repeat-masking has a major impact on 

the quality and content of the generated gene catalogue. The most simple protocol involves 

gene prediction prior to repeat-identification, without successive integration of data. This will 

result in numerous (parts) of protein-coding domains of transposon sequences to end up in the 

gene catalogue, while another  involves identification of interspersed repeats and low-

complexity sequence, and subsequent repeat masking prior to gene prediction. This is justified 

with the general observation that transposable elements tend to be located in the intergenic 

space. The exception to this rule is of course a transposon-insertion mediated pseudogenization 

event. But, this is expected to occur in low frequencies at the whole-genome scale, and in 

addition it comprises pseudogenes, and not genes. However, when low complexity sequences 

are masked too aggressively, parts of exons or introns of protein-coding genes might be masked 

as well, resulting in erroneous gene models at these loci. 

These protocols represent the extremes of options, but might have been adopted in the earliest 

annotated fungal genomes. This is illustrated by a simple and sensitive BLASTP on NCBI’s NR 

protein database, limited to fungal hits only (e≤1e-20, limited to txid:4890, performed on 

2013/01/10). As query protein sequences, presumably full-length accessions of the most 

abundantly occurring retrotransposons in fungi were randomly chosen: Ty1/Copia (unnamed 

from Pyrenophora tritici-repentis, KF418198.1) and Ty3/Gypsy (Yeti from Podospora anserina, 

AJ272171.1 [89]). Numerous from hundreds of these significant hits (278/394 and 265/302) 

comprised annotated proteins of fungal species (uncharacterized, unnamed, hypothetical, 

conserved, unknown function). In fact, only the minority of accessions (93/394 and 27/302) is 

properly annotated as of presumably transposable origin (keywords: gag, pol, polyprotein, retro, 

transposon, polymerase). 



General introduction 

 

15 
 

Fortified with these prior experiences, extra care was required during the annotation of the 

highly repetitive genome of C. fulvum. During the critical assessment of repetitive sequences and 

structural gene annotation in the genome of C. fulvum we discovered something fascinating. 

Several abundantly occurring classes of unknown interspersed repeats were detected within the 

boundaries of annotated gene models, and turned out to exactly correspond to predicted and 

EST-supported introns. Some of the introns were near-identical, and all were present in 

unrelated genes. 

In chapter 5, we describe explorative genomics and comparative genomics analyses that 

revealed the presence of Introner-Like Elements (ILEs) in many genes of various Dothideomycete 

fungi, including Z. tritici whose genome sequence has been publicly available for many years. 

These ILEs were subsequently characterized in detail showing that they are all normally spliced 

and generate highly structured and thermodynamically stable RNA fold-back loops. In addition, 

intron gain and loss analyses were performed showing that ILEs correspond to recent events of 

intron gains in genes. In chapter 6, we provide additional evidence that ILE multiplication 

strongly dominates over other types of intron duplication. The observed high rate of ILE 

multiplication followed by rapid sequence degeneration led us to the hypothesis that 

multiplication of ILEs has been the major cause and mechanism of intron gain in fungi. 

Non-coding RNA genes: in silico prediction of miRNA hairpins 

In the last two decades, awareness of the occurrence and biological relevance of non-coding 

RNA (ncRNA) genes has increased. Most crucial classes of ncRNAs for (eukaryotic) life are 

transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), micro RNAs (miRNAs) and the small nucleolar 

RNAs (snoRNA) that form the catalytic part of the spliceosome. These and other have in common 

that they are all encoded in the genome as RNA genes (for review see [90]). Many of them have 

characteristic and stable secondary structures required for their biological function, as best 

exemplified by tRNAs and rRNAs. Accurate prediction of most classes of ncRNA genes is even 

more challenging as the prediction of protein-coding genes [91], especially because some of 

them evolve fast at the sequence level, while maintaining their structure [92]. 

After the initial discovery of miRNAs in the worm C. elegans in the early 1990s [93] their 

importance to (multicellular) eukaryotic life was not immediately recognized. In the early 2000s, 

instigated hand in hand with the prospering of NGS, miRNAs were rediscovered and established 

as a distinct, vital and evolutionarily ancient component of genetic regulation in animals 

[94],[95],[96] and plants [97]. In addition, retroviral human pathogens were discovered to 

encode miRNA hairpin genes that encode mature miRNAs that modulate host gene expression 

([98]; for review see [99]). Mature miRNAs are small non-coding RNA molecules of ~21nt length 

which function in transcriptional and post-transcriptional regulation of gene expression (for 

reviews see [100],[101]). The miRNA is encoded on the DNA as a non-coding gene that is 

transcribed as a pri-miRNA transcript, in which the mature miRNA is embedded as a near-perfect 

palindromic repeated sequence. This palindromic sequence folds into a thermodynamically 

stable hairpin structure that is recognized and further processed by a pathway including Dicer 

nucleases that will excise the mature miRNA molecule. The mature miRNA will bind to a nuclease 

called Argonaute guiding the miRNA to a complementary sequence present in of one or more 

mRNAs (for review see [102]). Interaction by direct base pairing results in either cleavage by the 

Argonaute nuclease, or affects the level and/or efficiency of mRNA translation. After initial 

discovery and classifications of miRNAs in eukaryotes, research is shifting towards understanding 

the evolution and functional diversification of miRNAs [103] . 
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Although core components are shared between plants and animals, striking differences exist in 

the miRNA pathway, function and repertoire. This suggests that miRNA repertoires and even 

components of the miRNA pathway itself have evolved independently in the two kingdoms with 

different modes of action [104]. This might suggest that other eukaryotes might have evolved 

equivalent, yet slightly different pathways for gene regulation. This hypothesis is further 

supported by presence of the same core components in many single-cellular eukaryotes, 

including fungi [105],[106]. Initial experiments did not conclusively explain the in vivo role of 

both conserved copies of dicers in Ascomycete fungi [107],[108]. Opposite to its essentiality  in 

multicellular eukaryotes, a few lineages of unicellular eukaryotes appear to have lost the RNAi 

machinery independently and completely [104]. Prior to the NGS era, large-scale de novo miRNA 

discovery was popular among bioinformaticians, because the miRNA hairpin structure can be 

searched for in silico fairly easily in DNA sequences (reviewed in [109]). Each of these methods 

has its pro’s and con’s, but generally all struggle with the problem of balancing between good 

sensitivity and good specificity. In one particular study, conserved secondary structures in six 

Aspergillus genomes were examined, which yielded not a single convincing plant- or animal-like 

miRNA [110]. However, as McGuire and co-authors correctly concluded, putatively existing 

fungal miRNA hairpins1 might have slightly different properties from those of plants and 

mammals. 

Therefore, a method that can be tailored for various types of miRNA hairpins and for which 

exhaustive sets of genomic hairpins can be monitored, filtered and enriched for putative miRNA 

hairpins, is needed to assess miRNA presence in previously unexplored organisms like fungi. In 

chapter 7, we describe a new strategy for miRNA hairpin prediction using statistical distributions 

of observed biological variation of properties (descriptors) of known miRNA hairpins. We show 

that the method outperforms miRNA prediction by previously conventional methods that usually 

apply threshold filtering. Although chapter 7 is not targeted on fungi, the study is relevant in the 

context of having a flexible method of finding evidence for a putative miRNA-like pathway in 

fungi. 

 

Challenges for current and future bioinformatics analyses of fungi 

As is nowadays soberly admitted but factually is ‘the elephant in the room’, several factors have 

complicated the initial genomic and comparative genomics analyses of fungi. An incomplete 

exploration of some of the largest problems is shortly summarized here. As outlined above, and 

although few studies emphasise this problem, it is well accepted in the fungal community that 

gene annotation of most fungal genomes is still of low quality. A recent study quantified putative 

errors in protein-coding genes of higher eukaryotic model organism [112],[75], and predicted a 

considerable number of proteins to be incorrect. In the reannotation of the fungus F. 

graminearum, 1,770 gene models were corrected and thus recognized as previously incorrectly 

annotated [113]. Many genomes were sequenced at low coverage due to the expensive Sanger 

technology, yielding reference sequences with an unknown but high number of sequencing 

errors [114]. The large evolutionary distances and variability among fungi along with the sparsity 

of available genome sequences imposes a general problem of under-sampling, which 

complicates or even negatively influences the outcome of comparative genomics analyses [115]. 

This includes especially incorrect orthology assignment and false detections of horizontal gene 

transfer events. 
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Recognition, correction and description of erroneous predictions of a few genes or a gene family 

are often mentioned in publications, but is rarely followed by traceable updates of public data-

repositories, maintaining the risk of propagating errors by comparative genomics analyses. 

Finally, the scientific community interested in studying a particular fungal species is often rather 

small, unlike the well-organized communities working on famous model organisms like the yeast 

S. cerevisae, the worm C. elegans, the plant A. thaliana and the mammal H. sapiens. Quality 

improving steps that involve human interference, let alone discovering and traceably correcting 

earlier introduced errors, are marginally performed. Any large-scale dataset of in silico 

predictions of biological properties is intrinsically prone to contain errors. Besides dealing with 

the on-going scale up in the omics era, the challenge for current and future bioinformaticians is 

to increase the accuracy of their predictions. This will be the discussion theme in chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 the first fungal miRNA-like RNAs were described to occur in N. crassa [111] after finishing the 

study described in chapter 7. 

  



Chapter 1 

18 
 

References 
1. Ross RP, Morgan S, Hill C: Preservation and fermentation: past, present and future. International journal 

of food microbiology 2002, 79(1-2):3-16. 

2. Fleming A: The antibacterial action of a Penicillium, with special reference to their use in the isolation of B. 

influenzae. Br J Exp Pathol 1929, 10:222-236. 

3. Buchholz K, Collins J: The roots--a short history of industrial microbiology and biotechnology. Applied 

microbiology and biotechnology 2013, 97(9):3747-3762. 

4. Blanford S, Shi W, Christian R, Marden JH, Koekemoer LL, Brooke BD, Coetzee M, Read AF, Thomas MB: 

Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria 

vectors. PloS one 2011, 6(8):e23591. 

5. Ponton J, Ruchel R, Clemons KV, Coleman DC, Grillot R, Guarro J, Aldebert D, Ambroise-Thomas P, Cano J, 

Carrillo-Munoz AJ et al: Emerging pathogens. Medical mycology : official publication of the International 

Society for Human and Animal Mycology 2000, 38 Suppl 1:225-236. 

6. Richardson M, Lass-Florl C: Changing epidemiology of systemic fungal infections. Clinical microbiology 

and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 

2008, 14 Suppl 4:5-24. 

7. Bhatnagar D, Yu J, Ehrlich KC: Toxins of filamentous fungi. Chemical immunology 2002, 81:167-206. 

8. Richard JL: Some major mycotoxins and their mycotoxicoses--an overview. International journal of food 

microbiology 2007, 119(1-2):3-10. 

9. Strange RN, Scott PR: Plant disease: a threat to global food security. Annu Rev Phytopathol 2005, 43:83-

116. 

10. Piel M, Tran PT: Cell shape and cell division in fission yeast. Current biology : CB 2009, 19(17):R823-827. 

11. Kippert F: Cellular signalling and the complexity of biological timing: insights from the ultradian clock of 

Schizosaccharomyces pombe. Philosophical transactions of the Royal Society of London Series B, Biological 

sciences 2001, 356(1415):1725-1733. 

12. Froehlich AC, Liu Y, Loros JJ, Dunlap JC: White Collar-1, a circadian blue light photoreceptor, binding to the 

frequency promoter. Science 2002, 297(5582):815-819. 

13. Eelderink-Chen Z, Mazzotta G, Sturre M, Bosman J, Roenneberg T, Merrow M: A circadian clock in 

Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 

2010, 107(5):2043-2047. 

14. Low CP, Liew LP, Pervaiz S, Yang H: Apoptosis and lipoapoptosis in the fission yeast Schizosaccharomyces 

pombe. FEMS yeast research 2005, 5(12):1199-1206. 

15. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F: Apoptosis in yeast: 

triggers, pathways, subroutines. Cell death and differentiation 2010, 17(5):763-773. 

16. Chang SS, Zhang Z, Liu Y: RNA interference pathways in fungi: mechanisms and functions. Annual review 

of microbiology 2012, 66:305-323. 

17. Aramayo R, Selker EU: Neurospora crassa, a model system for epigenetics research. Cold Spring Harbor 

perspectives in biology 2013, 5(10):a017921. 

18. SGD: Saccharomyces genome database [http://www.yeastgenome.org] 

19. pombase: the scientific resource for fission yeast [http://www.pombase.org/] 

20. Sanger F, Coulson AR: A rapid method for determining sequences in DNA by primed synthesis with DNA 

polymerase. Journal of molecular biology 1975, 94(3):441-448. 

21. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proceedings of the 

National Academy of Sciences of the United States of America 1977, 74(12):5463-5467. 

22. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston 

M et al: Life with 6000 genes. Science 1996, 274(5287):546, 563-547. 

23. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S et 

al: The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003, 422(6934):859-868. 

24. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, 

Clutterbuck J et al: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. 

oryzae. Nature 2005, 438(7071):1105-1115. 

25. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H et al: 

The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434(7036):980-986. 



General introduction 

 

19 
 

26. Methe BA, Lasa I: Microbiology in the 'omics era: from the study of single cells to communities and 

beyond. Current opinion in microbiology 2013, 16(5):602-604. 

27. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S et al: 

The genome sequence of Schizosaccharomyces pombe. Nature 2002, 415(6874):871-880. 

28. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian 

N, Magee PT et al: The diploid genome sequence of Candida albicans. Proceedings of the National Academy of 

Sciences of the United States of America 2004, 101(19):7329-7334. 

29. Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, 

Fraser JA et al: The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. 

Science 2005, 307(5713):1321-1324. 

30. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O  et 

al: Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006, 

444(7115):97-101. 

31. Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan 

JE et al: Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat 

pathogen Stagonospora nodorum. The Plant cell 2007, 19(11):3347-3368. 

32. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, 

Albermann K et al: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. 

Nature biotechnology 2007, 25(2):221-231. 

33. van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova 

ND, Harris DM, Heijne WH et al: Genome sequencing and analysis of the filamentous fungus Penicillium 

chrysogenum. Nature biotechnology 2008, 26(10):1161-1168. 

34. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, 

Grabherr M, Henrissat B et al: Comparative genomics reveals mobile pathogenicity chromosomes in 

Fusarium. Nature 2010, 464(7287):367-373. 

35. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren van Themaat E, Brown JK, 

Butcher SA, Gurr SJ et al: Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in 

extreme parasitism. Science 2010, 330(6010):1543-1546. 

36. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani 

R et al: Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 

2010, 464(7291):1033-1038. 

37. Goodwin SB, M'Barek S B, Dhillon B, Wittenberg AH, Crane CF, Hane JK, Foster AJ, Van der Lee TA, 

Grimwood J, Aerts A et al: Finished genome of the fungal wheat pathogen Mycosphaerella graminicola 

reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS genetics 2011, 

7(6):e1002070. 

38. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J 

et al: Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS 

pathogens 2011, 7(7):e1002137. 

39. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, 

Fillinger S et al: Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis 

cinerea. PLoS genetics 2011, 7(8):e1002230. 

40. Shendure J, Mitra RD, Varma C, Church GM: Advanced sequencing technologies: methods and goals. 

Nature reviews Genetics 2004, 5(5):335-344. 

41. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M et al: 

Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature 

biotechnology 2000, 18(6):630-634. 

42. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, 

Chen Z et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 

437(7057):376-380. 

43. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT et 

al: The complete genome of an individual by massively parallel DNA sequencing. Nature 2008, 452(7189):872-

876. 



Chapter 1 

20 
 

44. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, 

Bignell HR et al: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 

2008, 456(7218):53-59. 

45. Shendure J, Ji H: Next-generation DNA sequencing. Nature biotechnology 2008, 26(10):1135-1145. 

46. Metzker ML: Sequencing technologies - the next generation. Nature reviews Genetics 2010, 11(1):31-46. 

47. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler 

EE et al: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature 

methods 2013, 10(6):563-569. 

48. 1kFG: 1000 fungal genomes project [http://1000.fungalgenomes.org/home/] 

49. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F et al: 

MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic acids research 2014, 42(1):D699-704. 

50. Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B: Genomics of the fungal kingdom: insights into 

eukaryotic biology. Genome research 2005, 15(12):1620-1631. 

51. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser 

F et al: Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen 

Dothideomycetes fungi. PLoS pathogens 2012, 8(12):e1003037. 

52. Mannhaupt G, Montrone C, Haase D, Mewes HW, Aign V, Hoheisel JD, Fartmann B, Nyakatura G, Kempken 

F, Maier J et al: What's in the genome of a filamentous fungus? Analysis of the Neurospora genome 

sequence. Nucleic acids research 2003, 31(7):1944-1954. 

53. Ekman D, Elofsson A: Identifying and quantifying orphan protein sequences in fungi. Journal of molecular 

biology 2010, 396(2):396-405. 

54. FGI: Fungal Genome Initiative [http://www.broadinstitute.org/scientific-community/science/ 

projects/fungal-genome-initiative/fungal-genome-initiative] 

55. Cuomo CA, Birren BW: The fungal genome initiative and lessons learned from genome sequencing. 

Methods in enzymology 2010, 470:833-855. 

56. FGP: Fungal Genomics Program [http://genome.jgi.doe.gov/programs/fungi/index.jsf] 

57. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm 

RA et al: The genome portal of the Department of Energy Joint Genome Institute. Nucleic acids research 2012, 

40(Database issue):D26-32. 

58. de Wit PJ, Joosten MH: Avirulence and resistance genes in the Cladosporium fulvum-tomato interaction. 

Current opinion in microbiology 1999, 2(4):368-373. 

59. Barnes I, Crous PW, Wingfield BD, Wingfield MJ: Multigene phylogenies reveal that red band needle blight 

of Pinus is caused by two distinct species of Dothistroma, D-septosporum and D-pini. Stud Mycol 2004(50):551-

565. 

60. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, 

Kahmann R, Ellis J et al: The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology 

2012, 13(4):414-430. 

61. De Wit PJ, Mehrabi R, Van den Burg HA, Stergiopoulos I: Fungal effector proteins: past, present and 

future. Molecular plant pathology 2009, 10(6):735-747. 

62. Wulff BB, Chakrabarti A, Jones DA: Recognitional specificity and evolution in the tomato-Cladosporium 

fulvum pathosystem. Molecular plant-microbe interactions : MPMI 2009, 22(10):1191-1202. 

63. Dewit PJGM, Joosten MHAJ, Honee G, Wubben JP, Vandenackerveken GFJM, Vandenbroek HWJ: 

Molecular Communication between Host-Plant and the Fungal Tomato Pathogen Cladosporium-Fulvum. 

Anton Leeuw Int J G 1994, 65(3):257-262. 

64. Bradshaw RE: Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. Forest 

Pathol 2004, 34(3):163-185. 

65. Schwelm A, Bradshaw RE: Genetics of dothistromin biosynthesis of Dothistroma septosporum: an update. 

Toxins 2010, 2(11):2680-2698. 

66. Schwelm A, Barron NJ, Baker J, Dick M, Long PG, Zhang S, Bradshaw RE: Dothistromin toxin is not 

required for dothistroma needle blight in Pinus radiata. Plant Pathol 2009, 58(2):293-304. 

67. Cools HJ, Fraaije BA: Update on mechanisms of azole resistance in Mycosphaerella graminicola and 

implications for future control. Pest management science 2013, 69(2):150-155. 

68. Kema GH, van der Lee TA, Mendes O, Verstappen EC, Lankhorst RK, Sandbrink H, van der Burgt A, Zwiers 

LH, Csukai M, Waalwijk C: Large-scale gene discovery in the septoria tritici blotch fungus Mycosphaerella 



General introduction 

 

21 
 

graminicola with a focus on in planta expression. Molecular plant-microbe interactions : MPMI 2008, 

21(9):1249-1260. 

69. Stanke M, Tzvetkova A, Morgenstern B: AUGUSTUS at EGASP: using EST, protein and genomic alignments 

for improved gene prediction in the human genome. Genome biology 2006, 7 Suppl 1:S11 11-18. 

70. Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M: Gene prediction in novel fungal genomes 

using an ab initio algorithm with unsupervised training. Genome research 2008, 18(12):1979-1990. 

71. Korf I, Flicek P, Duan D, Brent MR: Integrating genomic homology into gene structure prediction. 

Bioinformatics 2001, 17 Suppl 1:S140-148. 

72. Tenney AE, Brown RH, Vaske C, Lodge JK, Doering TL, Brent MR: Gene prediction and verification in a 

compact genome with numerous small introns. Genome research 2004, 14(11):2330-2335. 

73. Odronitz F, Kollmar M: Drawing the tree of eukaryotic life based on the analysis of 2,269 manually 

annotated myosins from 328 species. Genome biology 2007, 8(9):R196. 

74. Keller O, Odronitz F, Stanke M, Kollmar M, Waack S: Scipio: using protein sequences to determine the 

precise exon/intron structures of genes and their orthologs in closely related species. BMC bioinformatics 2008, 

9:278. 

75. Nagy A, Hegyi H, Farkas K, Tordai H, Kozma E, Szlama G, Szarka E, Trexler M, Banyai L, Patthy L: MisPred: 

quality control of gene predictions and public databases. Febs J 2013, 280:543-543. 

76. Weber JL, Myers EW: Human whole-genome shotgun sequencing. Genome research 1997, 7(5):401-409. 

77. Staats M, van Kan JA: Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryotic cell 2012, 

11(11):1413-1414. 

78. Oliver R: Transposons in Filamentous Fungi. Molecular Biology of Filamentous Fungi 1992:3-11. 

79. Daboussi MJ, Capy P: Transposable elements in filamentous fungi. Annual review of microbiology 2003, 

57:275-299. 

80. Muszewska A, Hoffman-Sommer M, Grynberg M: LTR retrotransposons in fungi. PloS one 2011, 

6(12):e29425. 

81. Wostemeyer J, Kreibich A: Repetitive DNA elements in fungi (Mycota): impact on genomic architecture 

and evolution. Current genetics 2002, 41(4):189-198. 

82. Feschotte C, Pritham EJ: DNA transposons and the evolution of eukaryotic genomes. Annual review of 

genetics 2007, 41:331-368. 

83. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research 1999, 

27(2):573-580. 

84. Volfovsky N, Haas BJ, Salzberg SL: A clustering method for repeat analysis in DNA sequences. Genome 

biology 2001, 2(8):RESEARCH0027. 

85. Bao Z, Eddy SR: Automated de novo identification of repeat sequence families in sequenced genomes. 

Genome research 2002, 12(8):1269-1276. 

86. Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. 

Bioinformatics 2005, 21 Suppl 1:i351-358. 

87. RepeatMasker [http://repeatmasker.org] 

88. Han Y, Wessler SR: MITE-Hunter: a program for discovering miniature inverted-repeat transposable 

elements from genomic sequences. Nucleic acids research 2010, 38(22):e199. 

89. Hamann A, Feller F, Osiewacz HD: Yeti--a degenerate gypsy-like LTR retrotransposon in the filamentous 

ascomycete Podospora anserina. Current genetics 2000, 38(3):132-140. 

90. Eddy SR: Non-coding RNA genes and the modern RNA world. Nature reviews Genetics 2001, 2(12):919-

929. 

91. Rivas E, Klein RJ, Jones TA, Eddy SR: Computational identification of noncoding RNAs in E. coli by 

comparative genomics. Current biology : CB 2001, 11(17):1369-1373. 

92. Savill NJ, Hoyle DC, Higgs PG: RNA sequence evolution with secondary structure constraints: comparison 

of substitution rate models using maximum-likelihood methods. Genetics 2001, 157(1):399-411. 

93. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with 

antisense complementarity to lin-14. Cell 1993, 75(5):843-854. 

94. Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 

294(5543):862-864. 

95. Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in 

Caenorhabditis elegans. Science 2001, 294(5543):858-862. 



Chapter 1 

22 
 

96. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification of novel genes coding for small 

expressed RNAs. Science 2001, 294(5543):853-858. 

97. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: MicroRNAs in plants. Genes & development 

2002, 16(13):1616-1626. 

98. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C et al: 

Identification of virus-encoded microRNAs. Science 2004, 304(5671):734-736. 

99. Kincaid RP, Sullivan CS: Virus-encoded microRNAs: an overview and a look to the future. PLoS pathogens 

2012, 8(12):e1003018. 

100. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297. 

101. Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. 

Nature reviews Genetics 2010, 11(9):597-610. 

102. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233. 

103. Cuperus JT, Fahlgren N, Carrington JC: Evolution and functional diversification of MIRNA genes. The Plant 

cell 2011, 23(2):431-442. 

104. Shabalina SA, Koonin EV: Origins and evolution of eukaryotic RNA interference. Trends in ecology & 

evolution 2008, 23(10):578-587. 

105. Nakayashiki H: RNA silencing in fungi: mechanisms and applications. FEBS letters 2005, 579(26):5950-

5957. 

106. Nakayashiki H, Kadotani N, Mayama S: Evolution and diversification of RNA silencing proteins in fungi. 

Journal of molecular evolution 2006, 63(1):127-135. 

107. Catalanotto C, Pallotta M, ReFalo P, Sachs MS, Vayssie L, Macino G, Cogoni C: Redundancy of the two 

dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Molecular and 

cellular biology 2004, 24(6):2536-2545. 

108. Kadotani N, Nakayashiki H, Tosa Y, Mayama S: One of the two Dicer-like proteins in the filamentous fungi 

Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small 

interfering RNA accumulation. The Journal of biological chemistry 2004, 279(43):44467-44474. 

109. Berezikov E, Cuppen E, Plasterk RH: Approaches to microRNA discovery. Nature genetics 2006, 38 

Suppl:S2-7. 

110. McGuire AM, Galagan JE: Conserved secondary structures in Aspergillus. PloS one 2008, 3(7):e2812. 

111. Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC et al: 

Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. 

Molecular cell 2010, 38(6):803-814. 

112. Nagy A, Hegyi H, Farkas K, Tordai H, Kozma E, Banyai L, Patthy L: Identification and correction of 

abnormal, incomplete and mispredicted proteins in public databases. BMC bioinformatics 2008, 9:353. 

113. Wong P, Walter M, Lee W, Mannhaupt G, Munsterkotter M, Mewes HW, Adam G, Guldener U: FGDB: 

revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic acids research 2011, 

39(Database issue):D637-639. 

114. Churchill GA, Waterman MS: The accuracy of DNA sequences: estimating sequence quality. Genomics 

1992, 14(1):89-98. 

115. Garcia S, Herrera F: Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals 

and Taxonomy. Evolutionary computation 2009, 17(3):275-306. 



 

 
 

Chapter 2 

The genomes of the fungal plant pathogens Cladosporium fulvum 

and Dothistroma septosporum reveal adaptation to different hosts 

and lifestyles but also signatures of common ancestry. 
 

 

 

de Wit PJGM, van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, Bahkali 

AH, Beenen HG, Chettri P, Cox MP, Datema E, de Vries RP, Dhillon B, Ganley AR, Griffiths SA, 

Guo Y, Hamelin RC, Henrissat B, Kabir MS, Jashni MK, Kema G, Klaubauf S, Lapidus A, 

Levasseur A, Lindquist E, Mehrabi R, Ohm RA, Owen TJ, Salamov A, Schwelm A, Schijlen E, 

Sun H, van den Burg HA, van Ham RC, Zhang S, Goodwin SB, Grigoriev IV, Collemare J, 

Bradshaw RE. 

 

PLoS Genetics 2012, 8(11):e1003088. 

 

doi: 10.1371/journal.pgen.1003088 

 

This article and its Supporting Information are available from: 

http://dx.plos.org/10.1371/journal.pgen.1003088 



Chapter 2 

24 
 

Abstract 
 

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens 

Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are 

closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow 

extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, 

while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of 

genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu 

>61.1 Mb; Dse 31.2 Mb), which is mainly due to the difference in repeat content (47.2% in Cfu 

versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged 

sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for 

detoxification of tomatine, whilst this gene is absent in Dse. Many genes encoding secreted 

proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these 

species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs 

of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-

4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the 

toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression 

differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a 

carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or 

hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not 

expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that 

these closely related plant pathogens had a common ancestral host but since adapted to 

different hosts and lifestyles by a combination of differentiated gene content, pseudogenization 

and gene regulation.  

 

Author summary 
 

We compared the genomes of two closely related pathogens with very different lifestyles and 

hosts: C. fulvum (Cfu) a biotroph of tomato and D. septosporum (Dse) a hemibiotroph of pine. 

Some differences in gene content were identified that can be directly related to their different 

hosts, such as the presence of a gene involved in degradation of a tomato saponin only in Cfu. 

However, in general the two species share a surprisingly large proportion of genes. Dse has 

functional homologs of Cfu effector genes, whilst Cfu has genes for biosynthesis of dothistromin, 

a toxin probably associated with virulence in Dse. Cfu also has an unexpectedly large content of 

genes for biosynthesis of other secondary metabolites and degradation of plant cell walls 

compared to Dse, contrasting with its host preference and lifestyle. However, many of these 

genes were not expressed in planta or were pseudogenized. These results suggest that evolving 

species may retain genetic signatures of the host and lifestyle preferences of their ancestor, and 

that evolution of new genes, gene regulation and pseudogenization are important factors in 

adaptation.  



The genomes of Cladosporium fulvum and Dothistroma septosporum 

 

25 
 

Introduction 
Cladosporium fulvum and Dothistroma septosporum are two related fungal species belonging to 

the class of Dothideomycetes. C. fulvum is a biotrophic pathogen of tomato that has served as a 

model system for plant-microbe interactions since its first effector gene, Avr9, was cloned in 

1991 [1]. It is not related to species in the genus Cladosporium sensu strictu, and has recently 

been renamed Passalora fulva [2]. However, to be consistent with past literature it will be 

referred to here as C. fulvum. Phylogenetic analyses based on sequences of the internal 

transcribed spacer (ITS) region of the ribosomal DNA revealed that C. fulvum is closely related to 

D. septosporum and other Dothideomycete fungi such as species of Mycosphaerella isolated 

from eucalyptus [3]. D. septosporum is an economically important hemibiotrophic pathogen of 

pine species that is well known for its production of an aflatoxin-like toxin, dothistromin [4]. A 

taxonomic revision also occurred for this species: prior to 2004 the name Dothistroma pini (syn. 

D. septosporum syn. D. septospora) was widely used. The revision involved a split into two 

species: the best-studied and most widespread species was named D. septosporum, and a less 

common species retained the name of D. pini [5]. 

The disease caused by C. fulvum, leaf mold of tomato, likely originates from South America, the 

center of origin of tomato [6]. The first outbreak of the disease was reported in South Carolina, 

USA, in the late 1800s [7]. Since then, disease outbreaks have occurred worldwide in moderate 

temperature zones with high relative humidity. The disease was of high economic importance 

during the first half of the 20th century, but its importance waned after introgression of Cf (for C. 

fulvum) resistance genes by breeders into tomato cultivars began providing effective control [8]. 

However, recent outbreaks have been reported in countries where tomato cultivars lacking Cf 

resistance genes are grown, and in areas where intensive year-round cultivation of resistant 

tomato plants led to fungal strains overcoming Cf genes [9,10].  

In contrast, the foliar forest pathogen D. septosporum (Dorog.) Morelet has a relatively recent 

history and has been less intensively studied than C. fulvum. D. septosporum infects over 70 

species of pine, as well as several minor hosts including some Picea species [11]. During the 

1960s-1980s, Dothistroma needle blight (DNB) was largely a problem of Southern hemisphere 

pine plantations, where primary control was achieved by fungicide applications or planting of 

resistant species (reviewed in [12]). Since the early 1990s DNB incidence has increased greatly in 

the Northern hemisphere, with some epidemics causing unprecedented levels of mortality 

[13,14]. In northwest British Columbia, disease outbreaks are correlated with summer rainfall 

levels, suggesting that climate change could have unpredictable and severe effects on DNB 

outbreaks in forests. [15].  

Infection in both the C. fulvum-tomato and D. septosporum-pine pathosystems starts with 

conidia that germinate on the leaf surface and produce runner hyphae that enter the host 

through open stomata. Subsequently, the fungi colonize the apoplastic space between 

mesophyll cells. In the case of C. fulvum conidiophores emerge from stomata 10-14 days later 

producing massive amounts of conidia that can re-infect tomato [16,17,18](Fig. 1A-D). D. 

septosporum produces conidia several weeks after infection, on conidiomata that erupt through 

the needle epidermis where they can be spread to other pines by rain-splash [19,20](Fig. 1E-H). 

Whilst C. fulvum is considered a biotroph, D. septosporum is assumed to be a hemibiotroph 

based on similarities of its lifecycle to other Dothideomycete fungi. 
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Figure 1. Symptoms caused by Cladosporium fulvum and Dothistroma septosporum on their host 

plants. 

Disease symptoms of Cladosporium fulvum on tomato (A-D). A) C. fulvum sporulating on the lower side of a 

tomato (Solanum lycopersicum) leaf two weeks post inoculation; B) Close-up of C. fulvum sporulating on the 

lower side of a single leaflet two weeks post inoculation; C) Runner hyphae of C. fulvum (GFP-transgenic strain) 

at the surface of the leaf; two of them are penetrating a stoma of tomato four days post inoculation; D) 

Conidiophores of C. fulvum (GFP-transgenic strain) emerging from a stoma at 10 days post inoculation. Disease 

symptoms of Dothistroma septosporum on pine (E-H). E) Mortality of mature lodgepole pines (Pinus contorta 

var. latifolia) in northwest British Columbia, Canada caused by D. septosporum; F) Red band lesions with 

conidiomata on Pinus radiata needles; G)  Penetration of hypha into stoma of P. radiata needle 4 weeks post 

inoculation; H) Eruption of conidiospores through epidermis of pine needle 8 weeks post inoculation. 

There is no evidence that C. fulvum has an active sexual cycle, although both mating type 

idiomorphs occur in its global population [21]. Although its lifecycle is also predominantly 

asexual, D. septosporum is known to be sexually active in some parts of the world. The sexual 

stage Mycosphaerella pini Rostr. (syn Scirrhia pini Funk & Parker) has been reported in some 

forests in Europe and North America but has not yet been found in other regions, such as South 

Africa or the United Kingdom, even though both mating types are known to be present [22]. The 

rare sightings of the sexual stage are due partly to difficulties in identification, but also reflect 

findings from population studies that show mixed modes of reproduction with a significant 

clonal component [23,24]. So far, attempts to induce a sexual cycle between opposite mating 

types of D. septosporum in culture in our laboratory or others (Brown, unpublished data) have 

failed. Further research is required to determine environmental conditions conducive to sexual 

reproduction. The D. septosporum isolate whose genome was sequenced is derived from a clonal 

population with a single mating type that was introduced into New Zealand in the 1960s [22,25].  

The C. fulvum-tomato interaction complies with the gene-for-gene model [2,26]. During infection 

C. fulvum secretes effector proteins into the apoplast of tomato leaves which function not only 

as virulence factors, but also as avirulence (Avr) factors when recognized by corresponding 
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tomato Cf resistance proteins. This recognition leads to Cf-mediated resistance that often 

involves a hypersensitive response (HR) preventing further ingress of the fungus into its host 

plant tomato [8]. To date many cysteine-rich effectors have been cloned from C. fulvum, 

including Avr2, Avr4, Avr4E and Avr9, that can trigger Cf-2-, Cf-4-, Cf-4E-, and Cf-9-mediated 

resistance, respectively, and Ecps (extracellular proteins) like Ecp1, Ecp2, Ecp4, Ecp5 and Ecp6 

that trigger Cf-Ecp-mediated resistance [27,28,29]. Specific functions for some C. fulvum 

effectors have been determined: Avr4 is a chitin-binding protein that protects fungi against the 

deleterious effects of plant chitinases [30,31]; Ecp2 is a virulence factor that occurs in many fungi 

[32,33] and Ecp6 sequesters chitin fragments released from fungal cell walls by chitinases during 

infection thereby dampening their potential to induce pathogen-associated molecular pattern 

(PAMP)-triggered immunity [28]. Initially, the Avr and Ecp effectors seemed unique to C. fulvum, 

but in recent years homologs of Avr4, Ecp2 and Ecp6 with functions in virulence have been found 

in other fungal genomes, including members of the Dothideomycetes [27,28,33]. 

Whilst most studies of C. fulvum have focused on effectors and their interactions with 

components in both resistant and susceptible plants, studies of D. septosporum have instead 

focused on dothistromin, a toxin produced by the fungus that accumulates in infected pine 

needles. Dothistromin is a broad-spectrum toxin with structural resemblance to a precursor of 

the highly toxic and carcinogenic fungal metabolite, aflatoxin [34]. Although dothistromin is not 

essential for pathogenicity [35], recent observations suggest it to be a virulence factor, affecting 

lesion size and spore production (Kabir and Bradshaw, unpublished data). Some dothistromin 

biosynthetic genes were identified in D. septosporum but unexpectedly they were in several 

mini-clusters rather than in one co-regulated cluster of genes as reported for aflatoxin producing 

species of Aspergillus [36,37,38]. The similarity of dothistromin to aflatoxin enabled predictions 

to be made about other D. septosporum genes involved in dothistromin production [39]: the 

complete set of dothistromin genes will help us to understand the evolution of dothistromin and 

aflatoxin gene clusters. 

Here we report the sequence and comparison of the genomes of C. fulvum and D. septosporum 

which have very similar gene contents but differ significantly in genome size as a result of 

different repeat contents. We found unexpectedly high levels of similarity in genes previously 

studied in one or other of these fungi, including those encoding Avr and Ecp effectors of C. 

fulvum, and dothistromin toxin genes of D. septosporum. Surprisingly, compared to D. 

septosporum, C. fulvum has higher numbers of genes normally associated with a necrotrophic or 

hemibiotrophic lifestyle such as genes for carbohydrate-degrading enzymes and secondary 

metabolite biosynthesis. However, in C. fulvum some of these genes were lowly or not expressed 

in planta and others were pseudogenized. Other C. fulvum genes that are absent in D. 

septosporum are putatively involved in virulence on its host plant tomato, such as the α-

tomatinase gene. We suggest that regulation of gene expression and pseudogenization, in 

addition to evolution of new genes, are important traits associated with adaptation to different 

hosts and lifestyles of the two fungi that, however, also retained some signatures of their 

common ancestral host. 
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Results and Discussion 

C. fulvum and D. septosporum are closely related species with very different genome sizes 

The 30.2 Mb genome of D. septosporum (http://genome.jgi.doe.gov/Dotse1/Dotse1.home.html; 

GenBank AIEN00000000) was sequenced at 34-fold coverage (Table S1) and then assembled into 

20 scaffolds (>2 kb), 14 of which have telomere sequences at one or both ends and mostly match 

chromosome sizes estimated from pulsed-field gel electrophoresis (Table S2; [36]). The excellent 

assembly of the D. septosporum genome was facilitated by its very low repeat content of only 

3.2% (Table 1; Table 2; Protocol S1). In contrast, the repeat-rich genome of C. fulvum 

(http://genome.jgi-psf.org/Clafu1/Clafu1.home.html; GenBank number to be provided) was very 

difficult to assemble. Fourteen 2 kb paired-end or shotgun 454 sequencing runs for C. fulvum 

resulted in a  21-fold coverage of the 61.1 Mb assembly in 2664 scaffolds >2 kb (Table 1) with a 

total repeat content of 47.2% (Table 2). The sequencing strategy was initially based on the 

assumption of a genome size of around 40 Mb, but soon it appeared that the C. fulvum genome 

was much larger due to the high repeat content. Problems with the assembly are not caused by 

the sequencing coverage of C. fulvum because it is estimated to be sufficiently high for a good 

coverage of the gene encoding areas. Instead, they are a consequence of its high repeat content. 

An estimated additional 26 Mb of C. fulvum DNA reads could not be assembled as they were 

predominantly repeat sequences (Fig. 2). In the remainder of the manuscript we refer to 

chromosomes (1 to 14) for D. septosporum and scaffolds for C. fulvum. Summary statistics for 

the two genomes are shown in Table 1 and at the Joint Genome Institute (JGI) Genome portal 

(jgi.doe.gov/fungi) [40]. The C. fulvum and D. septosporum genomes are predicted to encode 

approximately 14 and 12.5 thousand gene models, respectively. Nevertheless, the C. fulvum and 

D. septosporum genomes share more than 6,000 homologous gene models with at least 80% 

similarity at the predicted amino acid level, whereas this number drops to 3,000 gene models 

this similar when comparing C. fulvum with other closely related Dothideomycete species such as 

Mycosphaerella graminicola and M.  fijiensis (Fig. 2). Similarly, most introner-like element 

clusters found in C. fulvum and D. septosporum are closely related, more than to elements in 

other Dothideomycetes [41]. 

Table 1. Cladosporium fulvum and Dothistroma septosporum genome statistics. 

Species Genome 

assembly 

size (Mb) 

Number of 

predicted 

gene 

models 

Sequencing 

coverage 

depth 

Number of 

scaffolds
a
 

 

Scaffold L50 

/ N50
b
 (Mb) 

% GC 

content 

Cladosporium fulvum 61.1 14127 21 2664 >2kb 

279 >50kb 

250/0.06 48.8 

Dothistroma septosporum 30.2 12580 34 20 >2kb 

14 >50kb 

5.0/2.6 53.1 

a
For details on statistics see Supporting Protocol S1. 

b
L50 is defined as the smallest number of scaffolds that make up 50% of the genome; N50 is defined as the size 

(Mb) of the smallest of the L50 scaffolds. 
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Figure 2. Species phylogeny, amino acid similarity and repeat content. 

A) Maximum likelihood phylogenetic tree based on 51 conserved protein families showing evolutionary 

relationships of Cladosporium fulvum and Dothistroma septosporum. Branch lengths are indicated by the bar 

(substitutions/site); bootstrap values are shown as percentage. B) Genome-wide amino acid similarity of 

homologous proteins between C. fulvum and other sequenced fungal species. A pair of proteins is only 

reported as homologous when the predicted similarity (blastp) spans at least 70% of their lengths and their 

length difference is at most 20%. Axis indicates number of homologous proteins. Bar shading indicates 

similarity: red, 91-100%; orange, 81-90%; light green, 71-80%; medium green, 61-70%; turquoise, 51-60%; light 

blue, 41-50%; dark blue, 31-40%; and purple, 0-30%. Homologous proteins with high amino acid similarity are 

likely orthologs, whereas for those with lower similarity this relation cannot be inferred. C) Repeat content of C. 

fulvum, D. septosporum and other sequenced fungal species. Bar shading indicates repeat class: red, unique 

non-repeat regions; brown, repeat elements; green, continuous tracts of N characters; blue, duplicated 

regions; and grey, poorly assembled regions (C. fulvum only). Axis indicates number of nucleotides (Mb). 

Phylogenetic analysis of C. fulvum and D. septosporum genomes in the context of nine other 

Dothideomycetes (Ohm et al., unpublished data) confirms that these two species are the most 

closely related of the sampled species (Fig. 2), as was inferred earlier from ITS [3] and mating 

type sequences [21]. This gives us two very closely related genomes with drastically different 

genome sizes mostly due to the greatly increased repeat content of C. fulvum. 

C. fulvum and D. septosporum differ in content and classes of repeats that are affected by 
repeat-induced point mutation 

The massive increase in repetitive elements in C. fulvum might result from expansion of one or 

more repeat families that are also present in D. septosporum. Therefore, we classified the 

different repeat families in D. septosporum and compared them with those in C. fulvum. This 

revealed that some of the repetitive element families present in D. septosporum have expanded 

in C. fulvum (Table 2). This is most remarkable for the Class I retrotransposons which comprise 

over 90% of the repetitive fraction in C. fulvum and together account for over 26 Mb of the 

assembled genome. Retrotransposons are also highly abundant in the large repeat-rich genome 

of the hemibiotrophic sexual pathogen Mycosphaerella fijiensis (Kema et al., unpublished data). 

Both Copia and Gypsy LTR retroelements are expanded in C. fulvum compared to the D. 

septosporum genome, whereas LINEs are detected only in C. fulvum (Table 2). Some other fungal 

species that are closely related to each other, but have a different lifestyle, also differ in repeat 

content, such as the Leotiomycetes of which Botrytis cinerea (<1% repeats) and Sclerotinia 
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sclerotiorum (7% repeats) are necrotrophs, while Blumeria graminis f. sp. hordei (64% repeats) is 

an obligate biotroph [42,43]. The latter species is particularly enriched in Class I elements and 

one of several biotrophs that show expansion of genome size associated with high repeat 

content [43,44]. 

Table 2. Repetitive elements in the Cladosporium fulvum and Dothistroma septosporum genomes. 

    Cladosporium fulvum Dothistroma septosporum 

Repeat Class Repeat type Total 

bases 

covered 

Percent 

of 

genome
a
 

Percent of 

repetitive 

fraction
a
 

Total 

bases 

covered 

Percent 

of 

genome 

Percent of 

repetitive 

fraction
a
 

Class I Ty1-Copia LTR 3,208,305 5.3 11.1 43,598 0.1 4.5 

Retrotransposon

s 

Ty3-Gypsy 

LTR 

13,557,457 22.2 47 178,860 0.6 18.6 

 Misc. LTR 0 0 0 167,893 0.6 17.5 

 LINE 9,464,476 15.5 32.8 0 0 0 

 Sub-total 26,230,238 42.9 90.9 390,351 1.3 40.6 

Class II DDE-1 960,373 1.6 3.3 0 0 0 

DNA transposons hAT 144,765 0.2 0.5 0 0 0 

 Helitron 14,901 0.02 0.1 384,233 1.3 40 

 Mariner 96,124 0.2 0.3 57,646 0.2 6 

 MITE 98,047 0.2 0.3 2,165 0.01 0.2 

 MuDR_A_B 50,899 0.1 0.2 0 0 0 

 Sub-total 1,365,109 2.2 4.7 444,044 1.5 46.2 

Unclassified Unclassified 1,255,529 2.1 4.4 127,027 0.4 13.2 

TOTAL   28,850,876 47.2  961,422 3.2  
a
Numbers refer to repeats present in assembled genome. 

In contrast to the retroelements, Class II DNA transposons comprise only a small percentage 

(4.7%) of the overall repetitive elements in C. fulvum, but 46.2% of the repeats in D. 

septosporum, although they make up only a small portion of the genome overall. Interestingly, 

helitron-like DNA transposons comprise 40% of all repeats in D. septosporum and are 25.8-fold 

higher in terms of sequence coverage than in C. fulvum, whereas the DDE-1, hAT, and 

MuDR_A_B DNA transposons present in C. fulvum are not present in D. septosporum. Helitrons 

are transposons that replicate by a rolling-circle mechanism and are found in a wide range of 

eukaryotes, including the white rot fungus Phanerochaete chrysosporium [45], and are thought 

to have a role in genome evolution [46]. Helitron-like repeats are particularly abundant on D. 

septosporum chromosomes 3, 6 and 11 (Fig. 3) and usually occur in clusters, both with other 

helitron-like repeats and with other types of repetitive elements. 
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Figure 3. Organization of repeats and pathogenicity-related genes in the Dothistroma septosporum 

genome. 

The fourteen chromosomes from the D. septosporum genome assembly are shown as GC (dark grey line) and 

AT (pale grey line) content (%) plots made from a 500-bp sliding window using Geneious (www.geneious.com). 

All chromosomes have telomere sequence at both ends except chromosomes 2, 11 and 14 which have 

telomere sequences only at the left end as shown in the Figure. Chromosome 1 has been split into two parts (L, 

R) because of its length, and the GC/AT content scale is shown beside the right arm of this chromosome. The 
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positions of putative Avr and Ecp effector, secondary metabolite, dothistromin biosynthesis, and mating type 

genes are shown above the GC/AT content plot, while the positions of repeats (>200 bp) are shown below the 

plot. Color-coding of the gene and repeat types is indicated in the legend. The presence of repeat clusters at 

one or two sites per chromosome for most chromosomes is evident, and these coincide with regions of high AT 

content. The chromosome sizes are to scale, as indicated by the vertical pale grey lines, with the values (in kb) 

shown at the bottom; neither the genes nor the repeats are drawn to scale.  

The organization of repeats in D. septosporum is striking in that for the majority of the 

chromosomes, most repeats are localized into just one or two large regions containing a mixture 

of repeat element types (Fig. 3), although other small repeat clusters also occur. In many 

eukaryotes, centromeres are characterized by repetitive DNA [47], and therefore we propose 

that some of the larger complex repeat regions are centromeres, in line with similar suggestions 

made for other fungal genomes [48], although experimental confirmation is required. The 

absence of any repeat cluster from chromosome 14, along with the observation that it harbors 

only one telomere, suggests that it is a chromosome fragment. 

Repeats in fungi are affected by repeat-induced point mutation, also referred to as RIP, a 

defense mechanism employed by fungi to suppress transposable element activity that was first 

described in Neurospora crassa [49]. RIP is a process by which DNA accumulates G:C to A:T 

transition mutations. It occurs during the sexual stage in haploid nuclei after fertilization but 

prior to meiotic DNA replication. Clear evidence of RIP was found in both the C. fulvum and D. 

septosporum genomes (Table 3) and is mainly confined to repeat-rich regions. In total 25.9 Mb 

were RIP’d in C. fulvum and 1.1 Mb in D. septosporum, which represent 42.4% and 3.7% of their 

genomes, respectively. RIP occurred mainly on large repeated sequences (≥ 500 nucleotides) 

that represent 97.2% of all repeats in C. fulvum and 98.0% in D. septosporum (Table 3). The high 

rate of RIP in repeat regions is in the same range as that seen in other Dothideomycetes such as 

S. nodorum  (97.2%; Table S3) [50]. Although RIP is present at high levels in C. fulvum, we 

propose that it has not been able to prevent transposon expansion possibly due to very rare 

sexual activity. 

Of the RIP'd loci, C. fulvum has almost none (0.5%) and D. septosporum little (16.9%) outside the 

main classified repeat regions. This is strikingly different from N. crassa (Table S3), where 35.2% 

of all RIP’d loci are predicted to be non-repeat-associated. For N. crassa it has been shown that 

even single gene duplication events are prey to the RIP machinery, thereby exemplifying its 

efficiency and sensitivity [49]. Clearly such sensitivity is not applicable to C. fulvum and D. 

septosporum, neither for three other studied Dothideomycetes (Table S3). In the 

Dothideomycete phytopathogenic fungus Leptosphaeria maculans, RIP slippage is found in 

regions adjacent to repetitive elements. In that species RIP has occurred in genes encoding small 

secreted proteins, such as the effector genes AvrLm6 [51] and AvrLm1 [52] that are located in 

repeat-rich regions of the genome [53]; mutations in these genes caused by the RIP process 

enabled the fungus to overcome Lm6 and Lm1-mediated resistance, respectively. However, we 

found no evidence of RIP slippage into the known effector genes of C. fulvum and related 

effector genes in D. septosporum. 
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Table 3. Occurrence of Repeat-Induced Point Mutation (RIP) signatures and repeats in 

Cladosporium fulvum and Dothistroma septosporum. 

 Cladosporium fulvum Dothistroma septosporum 

 Bases (kb) Loci
a
 Bases (kb) Loci

a
 

RIP’d sequence in genome 25,882 (42.4%)
b
 5447 1,114 (3.7%)

b
 65 

Repeat sequence ≥500nt in genome
c
 27,170 (44.5%)

b
 7101 798 (2.6%)

b
 133 

Repeat sequence ≥500nt with RIP signature
d
 26,397 (97.2%)

e
 6506 (91.6%)

e
 782 (98.0%)

e
 114 (85.7%)

e
 

a
 Loci are defined as consecutive blocks of sequence assigned as repeats or RIP’d regions. 

b
 Percentage of the genome is indicated in brackets. 

c
 Only classified repeats (as shown in Table 2) were considered. 

d
 Repeated sequence ≥500nt that (at least partially) overlaps with RIP’d sequence.  

e
 Percentage of classified repeats is indicated in brackets. 

 

The C. fulvum and D. septosporum genomes show extensive intrachromosomal 
rearrangements. 

One way to assist the assembly of a fragmented genome is to use synteny with a well-assembled 

genome of a closely related species to order the scaffolds [54]. We attempted to use the D. 

septosporum genome to improve the C. fulvum assembly in this way. However, although it was 

possible to map C. fulvum scaffolds onto the assembled D. septosporum genome (Fig. S2A), 

individual C. fulvum scaffolds are not collinear along their length, but have only short blocks of 

synteny to different parts of the D. septosporum chromosomes. The syntenic regions of the C. 

fulvum and D. septosporum genomes are associated with just 461 of the C. fulvum scaffolds 

(Table 4). In contrast, the remaining >4,000 C. fulvum scaffolds are non-syntenic. A more 

detailed analysis with the ten largest C. fulvum scaffolds (two are shown in Fig. S2B) revealed 

that they each match primarily to only one D. septosporum chromosome, suggesting 

predominantly intrachromosomal rearrangements (mesosynteny), as described for other 

Dothideomycete fungi [55] (Ohm et al., unpublished data; Condon et al., unpublished data). As 

found in other fungi [42,56] non-syntenic regions are repeat-rich; for C. fulvum 79.7% of the 

repeat sequences are present in non-syntenic regions (Table 4). 

 

Table 4. Syntenic and non-syntenic regions between Cladosporium fulvum and Dothistroma 

septosporum are unevenly distributed over the C. fulvum scaffolds. 

Feature Syntenic Non-syntenic Total Syntenic % Non-syntenic % 

Number of scaffolds 461 4,404 4,865 9.5 90.5 

Number of repeats 2,090
a
 6,234 8,324 25.1 74.9 

Mb in scaffolds 37.4
b
 23.7 61.1 61.2 38.8 

Mb in repeats 5.6
c
 21.9 27.5 20.3 79.7 

Mb in whole genome 22.3
b
 38.8 61.1 36.5 63.5 

a
Number of repeat regions on syntenic vs. non-syntenic scaffolds. 

b
A syntenic scaffold is one that contains at least a single syntenic block, but may not be syntenic along its entire 

length. Total syntenic scaffold size (37.4 Mb) is therefore larger than total syntenic size in whole genome (22.3 

Mb). 
c
Summed repeat length on syntenic vs. non-syntenic scaffolds. 
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Non-syntenic, repeat-rich regions are enriched in genes encoding secreted proteins   

Secreted proteins are important for communication of plant-pathogenic fungi with their hosts. 

They comprise not only enzymes required for penetration and growth on plant cell walls, but 

also proteins needed to compromize the basal defence system of plants by either suppressing or 

attacking it, as has been reported for several fungal effector proteins [57]. The percentage of 

proteins predicted to be secreted is similar for both C. fulvum (8.5%) and D. septosporum (7.2%), 

and in the same range as that predicted for other Dothideomycete fungi such as M. graminicola 

(9.1%) and S. nodorum (10.8%) (jgi.doe.gov/fungi) [40,50,58] (Ohm et al., unpublished data). 

Genes encoding secreted proteins including effectors are subject to evolutionary selection 

pressure imposed by environmental and host plant factors [57], and they often show a high level 

of diversification. Repeat-rich, gene-poor regions have been proposed to contain genes involved 

in adaptation to new host plants. For example, in some Phytophthora species and in L. maculans 

significantly higher proportions of in planta-induced species-specific effector genes encoding 

secreted proteins are found in repeat-rich compared to repeat-poor regions [50][59] and in 

pathogenic strains of Pyrenophora tritici-repentis transposable elements are associated with 

effector diversification (Ciuffetti et al., unpublished data). We hypothesized that we would find 

more genes encoding secreted proteins in repeat-rich regions that are less syntenic between the 

C. fulvum and D. septosporum genomes than in repeat-poor syntenic regions. 

Table 5. Location of gene models of Cladosporium fulvum in regions syntenic or non-syntenic with 

the Dothistroma septosporum genome. 

 
Number of gene models

a
 Percentage of gene models

b
 

 
Total Syntenic Non-syntenic Syntenic Non-syntenic 

All proteins
c
 14,127 9,890 4,237 70 30 

BDBH
d
 11,092 8,900 2,192 89.9

g
 51.7

g
 

Secreted proteins
e
 1,195 754 441 7.6

h
 10.4

h
 

Secreted Cys-rich proteins
f
 271 151 120 1.5 2.8 

a
Values are numbers of gene models located in regions of the C. fulvum genome syntenic or non-syntenic with 

the D. septosporum genome as described in materials and methods. 
b
For all proteins the percentage of gene models represents the fraction of all gene models present  in the C. 

fulvum genome; for other categories (BDBH, secreted proteins, secreted Cys-rich proteins) the percentage of 

gene models represents the fraction of gene models present in syntenic and non-syntenic regions. 
c
All proteins encoded by predicted gene models in the C. fulvum genome. 

d
Bi-directional best BLAST hit between C. fulvum and D. septosporum proteins with at least 50% (global) 

pairwise amino acid similarity and at least 60% coverage by overlap-corrected blastp HSPs. 
e
Gene models predicted to encode secreted proteins. 

f
Secreted small cysteine-rich proteins contain less than 300 amino acids of which at least four are cysteines. 

g
The mean amino acid similarities of all protein gene models in syntenic regions and non-syntenic regions are 

85.2% and 65.1%, respectively. 
h
The mean amino acid similarities of secreted protein gene models in syntenic regions and non-syntenic 

regions are 81.1% and 60.7%, respectively.  
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We therefore compared the number of genes and their similarity at the nucleotide and protein 

levels in syntenic and non-syntenic regions of these two genomes (Table 5) using C. fulvum as 

the reference sequence due to its higher overall content of repeat elements in non-syntenic 

regions. The regions syntenic between C. fulvum and D. septosporum representing 22.3 Mb of 

the C. fulvum genome contain 70% of all predicted genes whereas 30% of the genes are located 

in the non-syntenic repeat-rich regions representing 38.8 Mb of the C. fulvum genome (Table 5). 

The syntenic regions contain most of the homologous genes that encode proteins with the 

highest level of conservation between the two genomes, whereas the proteins encoded by 

genes located in the non-syntenic repeat-rich regions are less conserved. In syntenic regions, 

89.9% of gene models have a bi-directional best BLAST hit (BDBH) to a D. septosporum gene 

model, with a mean predicted amino acid similarity of 85.2%, compared to non-syntenic with 

only 51.7% of gene models with BDBH and 65.1% amino acid similarity (Table 5). As expected, 

we found the repeat-rich non-syntenic regions to have higher proportions of gene models 

encoding secreted proteins (10.4%, with a mean predicted amino acid similarity of 60.7%) and 

small secreted cysteine-rich proteins (2.8%) than in syntenic regions (7.6%, with a mean amino 

acid similarity of 81.1%, and 1.5% respectively) (Table 5), as has been reported for L. maculans 

[53]. 

C. fulvum and D. septosporum share functional effectors 

Some C. fulvum effector homologs have previously been reported to occur in other 

Dothideomycete species including M. fijiensis, M. graminicola, and several Cercospora species 

[33] but in the D. septosporum genome we found the highest number of C. fulvum effector 

homologs discovered to date, including Avr4, Ecp2-1, Ecp2-2, Ecp2-3, Ecp4, Ecp5 and Ecp6. Of 

those, Avr4, Ecp2-1 and Ecp6 are core effectors [33] and show the highest identity (51.7%, 59.8% 

and 68.6% amino acid identity, respectively) with those present in C. fulvum, whilst Ecp4 and 

Ecp5 are pseudogenized. We were interested to know whether the D. septosporum effectors 

would be functional in triggering a Cf-mediated hypersensitive response (HR). Therefore we 

inoculated tomato plants MM (cv. Moneymaker) carrying the Cf-Ecp2 resistance trait with 

Agrobacterium tumefaciens expressing potato virus X (PVX) containing D. septosporum Ecp2-1 

and used PVX-containing C. fulvum Ecp2-1 as a positive control. D. septosporum Ecp2-1 triggered 

a Cf-Ecp2-1-mediated HR (Fig. 4A), whilst MM tomato plants lacking Cf-Ecp2 did not show any 

HR when inoculated with PVX containing Ds-Ecp2-1 (results not shown). We also showed that 

the D. septosporum homolog of C. fulvum Avr4 is functional in triggering a Cf-4-mediated HR in 

Nicotiana benthamiana as determined with an Agrobacterium transient transformation assay 

(Fig. 4B). This is remarkable because D. septosporum infects a gymnosperm which is only 

distantly related to tomato, but apparently produces effectors that can be recognized by tomato 

Cf resistance proteins. It would be interesting to examine whether gymnosperms carry 

functional homologs of the well-studied Cf tomato resistance gene homologs [33,60] or other 

major R genes that could confer resistance to Dothistroma spp.. Major R genes have been shown 

to be involved in resistance of some pine species to Cronartium spp. rust pathogens [61,62] and 

are thought to function in a gene-for-gene manner [63]. 

In C. fulvum, adaptation to resistant tomato cultivars is sometimes associated with deletion of 

effector genes [64]. Presence of repeats or location near a telomere can cause repeat-associated 

gene deletion [65]. We analyzed the location of all cloned C. fulvum effector genes in its genome. 

Many scaffolds containing an effector gene are very small (Fig. 5), suggesting that they are 

surrounded by large repeats hampering assembly into larger scaffolds. The location of the C.  
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Figure 4. Recognition of Dothistroma septosporum effectors by tomato Cf receptors. 

A) Ds-Ecp2-1, the D. septosporum ortholog of Cf-Ecp2-1, was cloned into pSfinx (PVX vector). Tomato plants 

were inoculated with Agrobacterium tumefaciens transformants expressing PVX::DsEcp2-1. A hypersensitive 

response (HR) was induced in the tomato line carrying the Cf-Ecp2 resistance gene (MM-Cf-Ecp2). Empty vector 

was used as a negative control and caused only mosaic symptoms. Pictures were taken at four weeks post 

inoculation. B) The C. fulvum avirulence gene Avr4 (Cf-Avr4) and its ortholog in D. septosporum (Ds-Avr4) were 

heterologously expressed in Cf-4 transgenic Nicotiana benthamiana using the A. tumefaciens transient 

transformation assay (ATTA). Expression of Cf-Avr4 and Ds-Avr4 results in an HR demonstrating that Ds-Avr4 is 

recognized by the tomato Cf-4 receptor. Picture was taken at six days post inoculation. 

 

Figure 5. Repetitive regions flanking known effectors of Cladosporium fulvum. 

Scaffolds harboring sequenced C. fulvum effector genes with flanking repeats. Repeat regions longer than 200 

bp are shown, with different types indicated in different colour code. The effector genes are depicted by red 

arrows and sizes are in kb. The sizes of scaffolds range from 8 to 213 kb but some are shortened to fit the figure 

due to differences in size. 
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fulvum effectors is shown in Fig. 5 and the types of flanking repeats are detailed in Table S4. The 

well-characterized effector gene Avr9 is located on a very small (20 kb) scaffold (Fig. 5) and is 

likely flanked on both sides by repeats; on one side there are 11 kb of repeats on the scaffold 

and on the other side probably also repeats just outside the region shown that prevented 

further scaffold assembly. This suggests that the absolute correlation found between deletion of 

the Avr9 gene in C. fulvum and overcoming Cf-9-mediated resistance [64] is most likely due to 

the close proximity of Avr9 to large, unstable repeat regions. As well as causing deletions, 

transposons can contribute to genome plasticity by mutation due to transposition into coding 

sequences. During co-evolution transposons have inserted into effector genes causing their 

inactivation and overcoming Cf-mediated resistance in C. fulvum, as has been reported for 

inactivation of both Avr2 [64] and Avr4E [66]. The C. fulvum homologous effector genes present 

in D. septosporum are also often in close proximity to repeat-rich areas that may represent 

centromeres (Fig. 3), but the biological significance of this is not yet clear. Pseudogenization of 

two D. septosporum effector genes, Ecp4 and Ecp5, homologous to those reported for C. fulvum 

[67], could point to host adaptation in the DNB fungus at the pine genus, species or cultivar 

level. Future population analysis of both fungal strains and host genotypes will reveal the 

mechanism behind this phenomenon. 

New hydrophobin genes in C. fulvum 

Another class of well-studied C. fulvum small cysteine-rich secreted proteins are the 

hydrophobins. These amphipathic proteins are implicated in developmental processes in 

filamentous fungi and are localized on the outer surface of fungal cell walls [68]. They are 

divided into class I and class II hydrophobins based on sequence differences that also correlate 

with their different solubility [68]. 

Six hydrophobin genes (Hcf-1 to Hcf-6) had previously been identified from C. fulvum [66, 67]. 

We identified five additional hydrophobin genes in the C. fulvum genome [two class I (Cf187601 

and Cf189770) and three class II (Cf197052, Cf188363 and Cf183780)] (Fig. S3), which makes C. 

fulvum the Ascomycete species with the largest number of hydrophobin genes reported so far. 

In the D. septosporum genome only four hydrophobin genes were found, one of which 

(Ds75009) is predicted to encode a class II hydrophobin and was highly expressed both in culture 

and in planta. Based on EST data the 11 C. fulvum hydrophobin genes show a range of different 

expression patterns. Of the six class I C. fulvum hydrophobins two were only expressed in culture 

[Cf184635 (Hcf-2) and Cf189850 (Hcf-4)], three were expressed both in culture and in planta 

[Cf189770, Cf187601 and Cf193176 (Hcf-1)], and one was not expressed in culture or in planta 

[Cf184193 (Hcf-3)]. Three of the class II C. fulvum hydrophobins were only expressed in culture 

[Cf197052, Cf188363 and Cf193013 (Hcf-5)], whilst Cf193331 (Hcf-6) and Cf183780 were 

expressed neither in culture nor in planta. None of the C. fulvum hydrophobin genes were 

expressed in planta only.  It has been proposed that hydrophobins may act as ‘stealth’ factors, 

preventing the invading fungus from detection by its host plant [69] or protecting it against 

deleterious effects of plant chitinases and β-1,3 glucanases as reported for C. fulvum [70]. Early 

functional studies focused on the hydrophobin genes Hcf-1 (Cf193176) and Hcf-2 (Cf184635). 

Knocking-down expression of Hcf-1, Hcf-2, or both genes by homology-dependent gene silencing 

did not compromise virulence [71,72]; a similar result was reported for knock-down mutants of 

class I Hcf-3 and Hcf-4 and class II Hcf-6 genes [73]. The phylogenetic tree (Fig. S3) shows that 

the four class I genes (Hcf-1 to Hcf-4) are paralogs, suggesting functional redundancy that might 

explain the lack of a phenotype; functional redundancy may also exist between different classes. 
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It would be interesting to examine the role in virulence of the two most similar hydrophobin 

class I and class II genes of C. fulvum and D. septosporum (Cf 189770/Ds67650 and 

Cf197052/Ds75009, respectively) either by knock-out or knock-down strategies. 

Carbohydrate active enzyme gene and expression profiles reflect adaptation to different 
host plants. 

Because C. fulvum and D. septosporum have very different plant hosts and pathogenic lifestyles, 

we expected that their capacity to degrade carbohydrates would also differ and that this might 

be reflected in their gene complements and expression profiles. We compared numbers of genes 

predicted to encode carbohydrate-active enzymes (CAZymes) [74] in these two fungi to those in 

other fungi representative of different lifestyles. As seen for grouped families of CAZyme genes 

in Table 6 (e.g. GH family of glycoside hydrolases), both C. fulvum and D. septosporum have gene 

numbers in the same range as hemibiotrophic and necrotrophic fungi, and many more than the 

obligate biotroph B. graminis f. sp. hordei. Despite this, both C. fulvum and D. septosporum have 

fewer predicted cellulolytic enzyme genes (e.g. GH6, GH7) as well as fewer genes classified in 

carbohydrate binding module gene families (e.g. CBM1) than most of the other fungi shown 

except for M. graminicola (Tables 6, S5). The reduced number of predicted genes for cell wall-

degrading enzymes in M. graminicola was hypothesized to represent an adaptation to avoid host 

defenses during stealth pathogenicity [58], which also may apply to C. fulvum and D. 

septosporum. However it is known that even a small number of genes can enable high levels of 

enzymatic activity, as has been shown for the strongly cellulolytic fungus Trichoderma reesei 

[75]. 

Next we focused on CAZyme gene families that appear to differ in gene number between C. 

fulvum and D. septosporum. Because small differences in gene number could be due to mis-

annotation, only families that differed by two or more genes were considered and examples of 

these are shown in Table 6 (full data in Table S5). Potentially interesting is the expansion of 

genes associated with pectin degradation in C. fulvum. For example in the GH28 family that 

includes many pectinolytic enzymes, C. fulvum has 15 genes whilst D. septosporum has only four. 

A higher pectinolytic activity in C. fulvum is concordant with the higher pectin content of its host, 

tomato, compared to the pine host of D. septosporum [76,77], but larger numbers of genes 

encoding pectin-degrading enzymes have generally been associated with a necrotrophic rather 

than a biotrophic lifestyle in fungi [78]. High pectinolytic activity is observed in fungi such as 

Botrytis cinerea [79,80] that invades soft, pectin-rich plant tissues causing a water-soaked 

appearance of the infected tissues [42]. However, during colonization of tomato leaves by C. 

fulvum this type of symptom is never observed [79,80]. Instead of contributing to the 

destruction of host cell walls, the C. fulvum pectinolytic enzymes may facilitate local modification 

of primary cell walls of mesophyll cells allowing the fungus to thrive in the apoplast of tomato 

leaves, as suggested for the ectomycorrhizal fungus Laccaria bicolor that thrives on plant roots 

[81]. 
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Table 6. Comparison of selected CAZy gene families between Cladosporium fulvum, Dothistroma 

septosporum and five other Ascomycetes. 

CAZy  Predicted function
b
 Cf 

c
 Ds Mg Sn Mo Ss Bg 

families
a
  B HB HB N HB N B 

GH family 
FCW/energy/PCW-

C/H/HP/pectin 
274 201 191 289 268 223 63 

GH3 PCW/FCW 19 (15, 8) 12 (12, 12) 16 16 18 13 1 

GH5  PCW/FCW 16 (12, 2) 12 (11, 12) 9 18 13 14 3 

GH6 PCW-C 0 0 0 4 3 1 0 

GH7 PCW-C 2 (0, 0) 1 (1, 1) 1 5 5 3 2 

GH10 PCW-H 2 (2, 1) 1 (1, 1) 2 7 7 2 0 

GH28 PCW-pectin 15 (8, 0) 4 (4, 4) 2 4 3 17 0 

GH31 PCW-H 15 (12, 0) 10 (9, 8) 7 11 6 6 1 

GH32 Energy 4 (2, 1) 2 (2, 2) 4 4 4 1 0 

GH35 PCW-H 6 (3, 0) 3 (3, 1) 2 4 0 4 0 

GH39 PCW-H 2 (1, 0) 0 1 1 1 0 0 

GH43 PCW-HP 22 (14, 3) 11 (9, 9) 10 15 20 4 0 

GH78 PCW-pectin 6 (2, 2) 1 (1, 1) 2 4 3 4 1 

GH88 PCW-pectin 2 (1, 0) 0 0 1 1 0 0 

GH95 PCW-pectin 2 (2, 0) 0 0 2 1 1 0 

PL family PCW-pectin 9 4 3 10 5 5 0 

PL1 PCW-pectin 3 (2, 0) 1 (1, 1) 2 4 2 4 0 

PL3 PCW-pectin 3 (1, 0) 0 1 2 1 0 0 

CE family 
FCW/PCW-

H/HP/pectin 
35 23 18 53 54 32 10 

CE5 PCW-H 11 (7, 1) 4 (3, 4) 6 11 18 8 2 

CBM family FCW/energy/PCW 28 24 21 77 113 65 14 

CBM1 PCW 0 1 (1, 1) 0 13 22 19 0 
a
 Predicted CAZymes were identified using the carbohydrate-active enzymes database tools (www.cazy.org). 

GH, glycoside hydrolases; PL, polysaccharide lyases; CE, carbohydrate esterases; CBM, carbohydrate binding 

modules. Pathogenic lifestyle of the fungi is abbreviates as B (biotroph), HB (hemi-biotroph) and N 

(necrotroph). Total gene numbers in these families are shown in bold. Families that are discussed in the text 

and differ greatly in copy number between Cf and Ds are also shown. Additional data are in Supporting Table 

S5. 
b 

Where known, CAZy functions are shown as plant cell wall (PCW) or fungal cell wall (FCW) degrading and 

modifying enzymes, or energy-related, with substrate preferences for PCWs of cellulose (C), hemicellulose (H), 

hemicellulose or pectin side-chains (HP) or pectin, using classifications as shown [42].  
c 

Fungal species and their pathogenic lifestyles are shown: Cf, C. fulvum; Ds, D. septosporum; Mg, 

Mycosphaerella graminicola; Sn, Stagonospora nodorum; Mo, Magnaporthe oryzae; Ss, Sclerotinia 

sclerotiorum; Bg, Blumeria graminis. Numbers in parenthesis for Cf and Ds are number of genes expressed (first 

number: in culture; second number: in planta) under conditions described in Tables S12 and S13. 

Although C. fulvum has a large arsenal of pectinolytic genes compared to D. septosporum, not all 

of them appear to be functional. For example, two of the six GH78 and one of the two GH88 

pectinolytic genes are pseudogenized in C. fulvum, whilst the corresponding D. septosporum 

families do not contain pseudogenes. Another constraint to function is that gene expression 

appears to be tightly regulated. As shown in Table 6, none of the 15 C. fulvum GH28 genes 

appear to be expressed in planta, whilst all four D. septosporum GH28 genes are expressed. 

Indeed in all gene families with predicted pectinolytic function shown in Table 6 (GH28, GH78, 

GH88, GH95, PL1, PL3), expression in planta was only detected in 2 of the 31 C. fulvum genes, 

whilst all 6 genes in these pectinolytic gene families were expressed in D. septosporum. It is 

possible that C. fulvum pectinases are only expressed very locally to modulate complex primary 
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cell wall structures. The location and accessibility of pectin structures embedded in the cell wall 

is an important consideration for its enzymatic degradation. For instance, the Basidiomycete 

Schizophyllum commune grows predominantly on beech and birch wood which is poor in pectin 

[82]. However, the pectin in these cell walls is concentrated around the bored pits that are used 

by S. commune to enter the wood, explaining why this fungus contains a higher number of 

pectinase genes than would be expected based on the overall host pectin content. Differences in 

pectinolytic gene content and expression between C. fulvum and D. septosporum may therefore 

be related to their different strategies of host invasion and subsequent colonization. 

In addition to increased numbers of pectinolytic genes compared to D. septosporum, C. fulvum 

has more genes for enzymes that degrade hemicelluloses (e.g. families GH31, GH35 and GH39) 

[83] and hemicellulose-pectin complexes (GH43) (Table 6). It also contains 11 genes (compared 

to 4 in D. septosporum) encoding CE5 enzymes; these include cutinases that are required for 

early recognition and colonization of the host by fungal pathogens [84,85]. The presence of so 

many genes encoding enzymes for plant cell wall and cuticle degradation in a biotrophic fungus 

like C. fulvum that enters its host via stomata is unexpected. However, the number of cutinase 

genes, and other secreted lipase genes is particularly low in the D. septosporum genome 

compared to other Dothideomycetes, a feature shared with the other tree pathogens 

Mycopshaerella populorum and M. populicola (Ohm et al., unpublished data). Overall our 

comparison shows a similar complement of CAZy genes between C. fulvum and D. septosporum, 

but an increased number of particular CAZyme families in C. fulvum including genes encoding 

pectin- and hemicellulose-degrading enzymes. However, a large proportion of genes in the C. 

fulvum CAZyme families lack expression in planta and some genes are pseudogenized. 

C. fulvum and D. septosporum share a broad range of carbohydrate substrates 

A second aspect of carbohydrate metabolism that we considered was a comparison of growth on 

defined and complex carbon substrates (Figs 6 and S4; www.fung-growth.org). It was anticipated 

that growth profiles could illuminate differences between pathogens with dicot and 

gymnosperm hosts and show correlations with their respective gene complements. In a study of 

polysaccharide hydrolysis activities of many fungal pathogens, King et al. [86] showed 

preferential substrate utilization based on host specificity (dicot or monocot). In general D. 

septosporum grows more slowly on minimal control medium [87] than C. fulvum, but surprisingly 

overall the growth profiles of the two fungi are similar on most substrates (Figs. 6 and S4; Table 

S6) and both appear to utilize a broader range of substrates than M. graminicola (Fig. 6). This is 

not only the case for the oligomeric and polymeric carbon substrates, requiring CAZymes for 

degradation, but also for monomeric carbon substrates, suggesting a diverse and efficient 

carbon catabolism in C. fulvum and D. septosporum. The good growth of D. septosporum on 

sucrose is particularly striking, suggesting that it can utilize sucrose available in apoplastic fluid 

during its early biotrophic colonization phase. 

In terms of complex carbon sources, D. septosporum shows a slightly better capacity than C. 

fulvum to utlise apple and citrus pectin (Figs 6 and S4). This seems to contradict the higher 

pectinolytic gene numbers in C. fulvum compared to D. septosporum, but is supported by the 

expression of fewer C. fulvum pectinolytic genes during infection of tomato when compared to 

the D. septosporum pectinolytic genes during infection of pine needle (Table 6). Interestingly, 

good growth on pectin is also observed for M. graminicola, despite an even lower number of 

putative pectinases than D. septosporum. This suggests that regulation of expression is a more 

dominant factor in pectin degradation by these plant pathogens than the number of pectinase-
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encoding genes in their genomes. In contrast, pectinase gene numbers correlate well with 

growth profiles of Aspergillus ndulans, Aspergillus oryzae and Aspergillus niger [88]. Compared 

to growth on controls lacking a carbon source, D. septosporum also showed slightly better 

growth than C. fulvum on lignin. This would be consistent with the higher proportion of lignin in 

pine needles, estimated to be 25-30% of dry weight [89], compared to less than 10% in dicots 

[90]. However due to the very slow growth of both fungi and the non-uniform growth habit of D. 

septosporum on these media, firm conclusions about their abilities to utilize lignin cannot be 

made.  

Figure 6. Comparative growth 

profiling of fungi on various 

carbohydrate substrates. 

Growth on different substrates was 

compared between 6 fungi on 9 media 

to highlight differences. Cf, C. fulvum; 

Ds, D. septosporum; Mg, M. 

graminicola; Sn, S. nodorum; Mo, 

Magnaporthe oryzae; Ss, Sclerotinia 

sclerotiorum. D-Glucose, D-xylose, L-

arabinose and sucrose were added at a 

final concentration of 25 mM. 

Birchwood xylan, apple pectin and lignin 

were added at a final concentration of 

1% (w/v). 

 

 

 

 

 

 

Adaptations for coping with chemical and structural defences 

Tomato plants produce the antimicrobial saponin, tomatine. The tomato pathogen Fusarium 

oxysporum produces α-tomatinase, which functions as a virulence factor as it degrades tomatine 

into the non-toxic compounds tomatidine and lycotetraose [91]. A gene predicted to encode α-

tomatinase, classified as a GH10 enzyme, was found in the C. fulvum genome (JGI ID 188986) but 

is absent from the D. septosporum genome. Another gene found only in C. fulvum shows 

predicted similarity to the GH5 family enzyme hesperidin 6-O-α-L-rhamnosyl-β-glucosidase that 

can degrade hesperidin [77]. Hesperidin occurs most abundantly in citrus fruits [92] and is a 

member of the flavonoid group of compounds that is well known for its antimicrobial activity. 

Flavonoid-degrading enzymes such as hesperidin 6-O-α-L-rhamnosyl-β-glucosidase might enable 

C. fulvum to detoxify hesperidin or related compounds present in tomato. 
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Chemical defence molecules in pine needles include antimicrobial monoterpenes. Thus it is 

expected that D. septosporum is adapted to tolerate or degrade these compounds whilst C. 

fulvum is not. Recent work on the pine pathogen Grosmannia clavigera revealed several classes 

of genes that are upregulated in response to terpene treatment [93]. After 36 hrs, major classes 

of upregulated genes included those involved in beta-oxidation as well as mono-oxygenases and 

alcohol/aldehyde dehydrogenases that may be involved in activating terpenes for beta-

oxidation. A drug transporter, GLEAN_8030, was functionally analyzed and found to be required 

for tolerance of the fungus against terpenes, enabling G. clavigera to grow on media containing 

these compounds. A search for three of these genes showed that both C. fulvum and D. 

septosporum genomes share a similar gene complement to each other, including a GLEAN_8030 

homolog (Table S7). However, since these genes have not all been functionally characterized 

in G. clavigera and all are predicted to encode proteins involved in general metabolic processes, 

further work is required to determine the roles of the homologs found in both C. fulvum and D. 

septosporum. 

As well as chemical mechanisms, plants employ basal structural defence mechanims including 

lignification of cell walls [94,95]. Due to the abundance of lignin in pine needles that block access 

to usable cellulose, fungal pathogens and saprophytes living on pines have a particularly 

challenging environment [96]. For D. septosporum to complete its lifecycle, degradation of pine 

needle tissue must occur so that conidiophores bearing conidia can erupt through the epidermis 

(Fig. 1H), which contains lignin [97]. This is in contrast to C. fulvum whose conidiophores emerge 

from tomato leaves through stomatal pores (Fig. 1D). Thus, we investigated genes that may be 

involved in lignin degradation. 

Some saprophytic fungi utilize oxidoreductases, particularly class-II peroxidases such as lignin 

peroxidases, manganese peroxidases and laccases, and a number of H2O2-producing enzymes to 

achieve lignin breakdown [98,99]. However, the number of genes encoding oxidoreductases in 

D. septosporum is no higher than those of other Dothideomycetes (C. fulvum, M. graminicola and 

S. nodorum) that infect plants with lower levels of lignin (Table S8). D. septosporum appears to 

have a similar complement of laccase genes  as C. fulvum and only one distant relative of a class-

II peroxidase, missing in C. fulvum, but also present in M. graminicola and S. nodorum. 

Interestingly, the classical Ascomycete laccases found in C. fulvum, D. septosporum and M. 

graminicola bear a carbohydrate-binding domain (CBM20, putative starch binding domain). This 

type of laccase is only found in Dothideomycetes but the significance of this novel modular 

structure is unclear. Brown-rot saprophytes such as Serpula lacrymans have a reduced 

complement of ligninolytic genes compared to lignin-degrading white-rot fungi and are 

proposed to initially weaken lignocellulose complexes by non-enzymatic use of hydroxyl radicals 

[81], prior to enzymatic assimilation of accessible carbohydrates [81]. It is likely that D. 

septosporum uses a similar strategy to breach the lignin-rich components of pine needles, as 

complete degradation of this polymer is not required to complete its life cycle. 
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The secondary metabolite gene complement of C. fulvum and D. septosporum 

Secondary metabolites (SMs) are important compounds for the colonization of specific 

ecological niches by fungi. In particular, plant-pathogenic fungi can produce non-specific and 

host-specific toxic SMs [100]. SMs also include mycotoxins that contaminate food and feed and 

are harmful to mammals [100]. The only known SMs produced by C. fulvum and D. septosporum 

are cladofulvin and dothistromin, respectively [101,102]; both compounds are anthraquinone 

pigments. In fungi, SM biosynthetic pathways often involve enzymes encoded in gene clusters 

[103] and always require the activity of at least one of four key enzymes: polyketide synthase 

(PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase (TC) or dimethylallyl 

tryptophan synthase (DMATS) [104]. It has been suggested that loss of SM biosynthetic 

pathways is associated with biotrophy [43]. We searched for SM gene pathways in both 

genomes. Surprisingly, the biotroph C. fulvum has twice the number of key genes (23 in total) 

compared to the hemibiotroph D. septosporum (11 in total) (Table 7), of which 14 and 9, 

respectively, are organized into gene clusters along with other SM-related genes. The numbers 

of key SM enzyme-encoding genes are comparable to those of M. graminicola, but are lower 

than those in most other sequenced Dothideomycetes (Ohm et al., unpublished data). Like all 

Ascomycetes [105], the majority of key SM enzymes in C. fulvum and D. septosporum are PKSs, 

NRPSs and hybrid PKS-NRPSs. Annotation of all key SM genes was manually checked and two 

truncated (Pks4 and Nps1) and five pseudogenized (Pks9, Hps2, Nps5, Nps7 and Nps10) genes 

were found in the C. fulvum genome, while all D. septosporum genes except Pks4 (truncated) are 

predicted to encode functional enzymes. Overall, the number of predicted functional pathways 

suggests that C. fulvum and D. septosporum can produce at least 14 and 10 different SMs, 

respectively. 

Table 7. Key secondary metabolism genes in Ascomycete genomes.  

Fungal species Lifestyle PKS NRPS Hybrid TC DMATS Total 

Cladosporium fulvum Biotroph 10 10 2 0 1 23 

Dothistroma septosporum Hemibiotroph 5 3 2 0 1 11 

Mycosphaerella graminicola Hemibiotroph 11 6 2 1 0 20 

Stagonospora nodorum Necrotroph 22 10 2 2 2 38 

Magnaporthe oryzae Hemibiotroph 22 8 10 3 3 46 

Fusarium graminearum Necrotroph 13 12 2 3 0 30 

Aspergillus nidulans Saprophyte 26 10 2 5 2 45 

Neurospora crassa Saprophyte 6 3 1 1 1 12 

Numbers of predicted polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), hybrid PKS-NRPS 

(Hybrid), terpene cyclase (TC) and dimethylallyl tryptophan synthase (DMATS) genes are shown. Data are from 

this study and from Collemare et al. 2008 [105]. 

Surprisingly, only three of the key SM genes are predicted to belong to biosynthetic pathways 

shared between the two species (Table S9) suggesting a diverse SM repertoire. This is much 

lower than expected given the overall level of similarity in gene content between the two 

genomes, and suggests that this SM repertoire is under strong selection. The three common 

genes are predicted to be involved in production of a pigment related to melanin (Pks1), a 

siderophore (Nps2) and dothistromin (PksA) based on similarities to other characterized genes. 

In addition in C. fulvum, the three other functional non-reducing PKS enzymes are candidates for 

production of cladofulvin. 
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The genomic locations of the 11 biosynthetic SM genes in D. septosporum do not show any 

enrichment at sub-telomeric positions, as reported for Aspergillus spp. and Fusarium 

graminearum [106,107], or near putative centromeres (Fig. 3). However, 8 out of the 11 genes 

are located on chromosomes smaller than 2 Mb (chromosomes 8 to 12; Fig. 3). The genomic 

regions immediately surrounding all 11 D. septosporum SM genes are conserved in the C. fulvum 

genome, although 8 of them lack the key SM gene itself and sometimes putative accessory genes 

also (Fig. S5). Reciprocally, only 9 C. fulvum SM genomic regions out of 23 are conserved in D. 

septosporum with 6 of these lacking the key SM gene, suggesting either gain or loss of SM genes 

has occurred. For two of the regions where flanking genes are conserved but SM gene(s) are 

missing in C. fulvum (regions corresponding to those surrounding Pks3 and Nps3 in D. 

septosporum), the presence of repeats suggests that SM gene loss may have occurred in C. 

fulvum (Fig. S5). The C. fulvum-specific SM loci Pks5, Pks6, Nps5/Dma1 and Nps9 include many 

transposable elements and genes that have similarity to genes scattered in the D. septosporum 

genome, often on the same chromosome, leading to the hypothesis that these SM loci were 

assembled by gene relocation as recently proposed for the fumonisin gene cluster in F. 

verticillioides [108].  

Dothistromin toxin genes are present in both genomes 

Analysis of the D. septosporum 1.3 Mb chromosome 12 revealed that the three previously 

identified mini-clusters of dothistromin genes [38] are widely dispersed, confirming 

fragmentation of this gene cluster (Figs. 3 and 7). Candidates for additional dothistromin genes, 

previously predicted based on aflatoxin pathway genes [39], are also present. Although three of 

these genes (OrdB, AvnA, HexB) are located in the published VbsA mini-cluster, the others are 

dispersed over different regions of chromosome 12 as shown in Fig. 7. The end of the Nor1 gene 

cluster (Nor1, AdhA, VerB) is less than 10 kb from one predicted telomere, whilst Ver1 

(previously called dotA [35]) is only 81 kb from the other. As expected, a gene similar to the 

aflatoxin AflR regulatory gene is present and, like in aflatoxin-producing species of Aspergillus, is 

divergently transcribed with an adjacent AflJ regulatory gene candidate. Functional analysis of 

these genes is in progress. 

Although C. fulvum is not known to produce dothistromin, the complete set of predicted 

dothistromin genes is present in its genome, encoding proteins with amino acid identities 

ranging from 49% (AflJ) to 98% (Ver1) when compared with those of D. septosporum (Table S10). 

The arrangement of predicted dothistromin genes in C. fulvum reveals a high level of synteny 

with some rearrangements. With the exception of the Ver1 gene cluster, the mini-clusters 

contain the same genes in the same orientations in the two species (Fig. 7A). The three mini-

clusters on C. fulvum scaffold 130775 are much closer together than in D. septosporum, but are 

still separated from each other by considerable distances (approximately 24 kb between Est1 

and the VbsA gene cluster, and 40 kb between the VbsA and Nor1 gene clusters). A comparison 

of the relative locations of the mini-clusters in the two species suggests inversions (AflR/J and 

VbsA gene clusters) as well as rearrangements over relatively small (VbsA-Nor1) and large (Ver1-

AflR/J) distances. This is consistent with the overall pattern of intrachromosomal 

rearrangements observed between these two genomes. 
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Figure 7. Arrangement of predicted dothistromin genes in Dothistroma septosporum and 

Cladosporium fulvum. 

A) Predicted dothistromin genes within the labeled clusters (left to right) are: Ver1, DotC (Ver1 cluster); PksA, 

CypA, AvfA, MoxA (PksA cluster); AflR, AflJ (AflR/J cluster); OrdB, AvnA, HexB, HexA, HypC, VbsA (VbsA cluster); 

Nor1, AdhA, VerB (Nor1 cluster). Positions of mini-clusters are approximate and they are not drawn to scale. 

Dothistromin genes within the published D. septosporum PksA and VbsA clusters [36,38] and the newly 

discovered AflR/J and Nor-1 clusters are found in the same order and orientation in C. fulvum. B) Expression of 

dothistromin biosynthetic genes (Ver1, PksA, VbsA) and regulatory gene (AflR) was determined in D. 

septosporum by quantitative PCR. Mean expression and standard deviations are shown for at least 3 biological 

replicates relative to beta-tubulin expression. In D. septosporum all genes but DsVbsA are expressed more 

highly in planta (late stage sporulating lesions from a forest sample) than in culture (PDB or B5 media) as 

highlighted by the dashed-grey line. C) Expression of C. fulvum genes is shown as for (B), revealing that 

expression is not higher during tomato infection than in culture (dashed-grey line). Note the different scales for 

expression, which reveal a much lower level of transcription both in planta and in PDB medium compared to D. 

septosporum. 

Given the presence of the dothistromin biosynthetic pathway genes, we tested whether 

dothistromin is produced by C. fulvum. However, no dothistromin was detected by HPLC analysis 

of extracts from C. fulvum PDB cultures, which is a condition favorable to dothistromin 

production by D. septosporum. Despite the lack of dothistromin production under these 

conditions, a strong evolutionary constraint on dothistromin biosynthetic genes was seen by 

analyzing the ratio of non-synonymous to synonymous mutations (Ka/Ks) between C. fulvum and 

D. septosporum. The low Ka/Ks ratios seen for dothistromin genes (range 0.018-0.169) are 

indicative of purifying selection [109] and did not differ from the distribution observed for four 

housekeeping genes (Tub1, Eif3b, Pap1, Rps9; range 0.003-0.073) (P = 0.561). Evidence for 

purifying selection was also shown for aflatoxin pathway genes in Aspergillus flavus and A. 

nomius [110]. On the basis of this we propose that C. fulvum might produce dothistromin, or a 

metabolite related to dothistromin, under certain environmental conditions when it is required.  
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Regulation of secondary metabolite biosynthetic pathways suggests lifestyle adaptation at 
the transcriptome level 

Many fungal SM biosynthetic pathways are cryptic, meaning that they are  not expressed in wild-

type strains under laboratory conditions. However, manipulation of genetic regulatory pathways 

or environmental conditions has shown that some of these cryptic pathways are functional 

[111,112]. As seen for other gene families such as CAZyme genes, C. fulvum appears to be more 

economical in its gene expression than D. septosporum, particularly in planta. In C. fulvum, EST 

support was obtained from in vitro conditions for all key SM genes except Hps2, Nps7 and 

Nps10, which are pseudogenized. The two truncated genes (Pks4 and Nps1) and the 

pseudogenized Nps5 genes also have EST support but the resulting proteins are unlikely to be 

functional. However, no evidence for in planta expression could be obtained for any of the C. 

fulvum key SM genes from this EST library. In contrast, all D. septosporum key SM genes have 

EST support from both in vitro and in planta libraries, with the unique DsPKS2 being one of the 

most highly expressed genes during pine needle infection.  

Differences in dothistromin pathway regulation were confirmed by quantitative PCR. In D. 

septosporum, Ver1, PksA, AflR and VbsA show higher expression during pine infection than in 

controlled culture conditions used to induce dothistromin production (Fig. 7B). In contrast, the 

same genes show a low expression level in C. fulvum during infection and in vitro (Fig. 7C). 

Because no dothistromin could be detected in liquid culture, this low expression likely 

represents background transcription with no biological relevance. Such an expression pattern is 

significantly different from the up-regulation of Avr4 and Avr9 genes during tomato infection 

(Fig. S6). 

SM production is associated with development in fungi and involves common regulators [113]. 

We searched the genomes of C. fulvum and D. septosporum for conserved regulators of 

development and SM production and, based on predicted protein sequences, found clear 

homologs for most of these genes in both fungi (Table S11). The two species appear to lack a 

PpoB oxygenase, but PpoA and PpoC are sufficient to produce all psi factors (oxylipins) identified 

in Aspergillus species [114]. In addition, C. fulvum lacks clear homologs of the G-protein 

regulators FlbA and RgsA, while possible homologs are found in D. septosporum. In Aspergillus 

species both proteins are negative regulators of G-protein signaling pathways. Neither C. fulvum 

nor D. septosporum have a homolog of BrlA, an essential regulator of conidiation in Aspergillus 

species [115], suggesting that they use another regulator for this role. Future studies analyzing 

expression of the SM genes, and the roles of regulatory genes, will help to determine 

fundamental differences in how C. fulvum and D. septosporum differentially regulate their SM 

gene expression.  
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Conclusion 
We embarked upon a comparative genomics analysis of C. fulvum and D. septosporum to test for 

differences that might explain their host specificity and lifestyles. The comparison revealed 

surprising similarities, such as the presence of dothistromin toxin genes in C. fulvum and 

functional Avr4 and Ecp2 effector genes in D. septosporum. However, the genome sizes of the 

two fungi are remarkably different, mainly due to a vast expansion of transposable elements in 

C. fulvum, and show several key differences in gene content. Adaptation of C. fulvum to its host 

plant tomato is exemplified by the specific presence of a gene encoding α-tomatinase, likely 

involved in degradation of tomatine. In contrast, the dothistromin gene cluster is present in both 

fungi, but while it is strongly expressed in D. septosporum at later stages of pine needle 

infection, it is lowly or not expressed in C. fulvum during infection of tomato leaves. Both fungi 

contain additional key SM genes, but the majority of these are not in common, contrasting with 

the high degree of homology between the two genomes. We suggest that this lack of 

conservation of key SM genes in the C. fulvum and D. septosporum genomes is a consequence of 

different evolutionary pressures that result from their different lifestyles, either as a pathogen 

inside their host or possibly as a saprophyte outside their host.  

Another key difference between the two fungi during pathogenesis concerns their differential 

gene regulation. Gene expression in C. fulvum is strictly regulated in planta, with many SM, 

hydrophobin and CAZy genes not expressed, while expression in D. septosporum is more 

constitutive. This differential regulation of expression may be crucial in determining 

differentiation between these fungi despite very similar gene profiles. Furthermore, this 

expression pattern is consistent with a biotrophic lifestyle without gene loss. Finally we suggest 

that the higher repeat content of the C. fulvum genome, along with evidence for gene 

pseudogenization (van der Burgt et al., unpublished data) has facilitated the evolution of 

different lifestyles between C. fulvum and its sister species D. septosporum. Overall, our 

comparison of the two genomes suggests that even closely related plant pathogens can adapt to 

very different hosts and lifestyles by differentiating gene content and regulation, whilst retaining 

genetic signatures of a common ancestral way of life. 
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Materials and Methods 

Fungal strains and growth conditions 

The fungal strains of C. fulvum (race 0WU; CBS131901) and D. septosporum (strain NZE10; 

CBS128990) were isolated from tomato growing in an allotment garden in Wageningen, The 

Netherlands, in 1985, and from a needle from an eight-year-old Pinus radiata tree on the West 

Coast of the South Island of New Zealand in 2005, respectively. Monospore cultures, whose 

identities were confirmed by ribosomal ITS sequencing, were used throughout. Unless specified 

otherwise, cultures of these fungi were maintained on potato dextrose agar (PDA) or potato 

dextrose broth (PDB) media (C. fulvum) or Dothistroma Medium (DM; 5% w/v malt extract, 2.8% 

w/v nutrient agar or nutrient broth) at 22°C prior to use. Cultures were maintained for long-term 

storage in closed vials as −80°C stocks in 20% glycerol. 

Tomato Infections 

Conidia of C. fulvum were harvested from two-week old PDA plates with distilled water. The 

conidial suspension was filtered through Calbiochem(R) Miracloth (EMD Millipore Chemicals, 

Philadelphia, PA) and washed once with water prior to calibration to 5x105 conidia/mL. Five-

week-old tomato Heinz plants were sprayed on the lower side of the leaves with the conidial 

suspension (10 mL per plant). The plants were kept at 100% relative humidity for 48 h. The 

plastic-covered cages were then opened to grow the plants under regular greenhouse conditions 

(70% relative humidity, 23-25°C during daytime and 19-21°C at night, light/dark regime of 16/8 

h, and 100 W/m2 supplemental light when the sunlight influx intensity was less than 150 W/m2). 

The 4th composite leaves of infected tomato plants were harvested at 2, 4, 8, 12 and 16 dpi, and 

immediately frozen in liquid nitrogen. 

Phylogenetic comparison of fungal species 

To highlight the phylogenetic relationships of C. fulvum and D. septosporum with 

Dothideomycetes and other fungi relevant to this study conserved protein families were 

predicted by use of the MCL Markov clustering program [116] with pairwise blastp protein 

similarities and an inflation factor of 4. From this multi-gene family set, 51 orthologous groups of 

genes were identified. Predicted protein sequences were concatenated, aligned using MAFFT 

6.717b [117] and a species tree calculated using RAxML 7.2.8 [118]. We also determined protein 

homology data based on bidirectional best hits when comparing the proteomes of eleven 

Dothideomycete species (Alternaria brassicicola, C. fulvum, Cochliobolus heterostrophus, D. 

septosporum, Hysterium pulicare, Mycosphaerella fijiensis, Mycosphaerella graminicola, 

Pyrenophora tritici-repentis, Rhytidhysteron rufulum, Septoria musiva and Stagonospora 

nodorum), together with four out-group species (Aspergillus nidulans, Fusarium graminearum, 

Neurospora crassa and Magnaporthe grisea).  

Repetitive sequences and transposable elements 

Repeat sequences in both genomes were identified using RECON [119]. To group repetitive 

elements together into different families the default RECON output was parsed to include 

families with 10 or more elements. The parsed RECON repeat library was used to determine the 

extent of the repetitive fraction in the D. septosporum and C. fulvum genomes using 

RepeatMasker [120] and to annotate repetitive families and identify structural features, such as 

Long Terminal Repeats (LTRs) and Terminal Inverted Repeats (TIRs), using BLAST.  
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Repeat-induced point mutation (RIP) 

Sequences that had undergone Repeat-Induced Point mutation (RIP) were identified according 

to the composite RIP index (CRI) method [121]. The CRI was calculated for each 500 nt sequence 

window which was shifted by a 25 nt step. Sequences were identified as having been subjected 

to RIP when the RIP product, RIP substrate and composite RIP indices were at least 1.2, at most 

0.8 and at least 1.0 respectively. As a final constraint, series of overlapping sequence windows 

had to exceed 750 nt in length and the CRI value of any of the windows peaked to 1.5 in order to 

be scored as a RIP’d locus. 

Syntenic and non-syntenic regions. 

Syntenic regions shared between C. fulvum and D. septosporum were detected ab initio on their 

repeat masked genome sequences using promer [122], blastp and a suite of custom made 

python scripts. A script called blastpmer obtained all translated ORFs above a threshold 

nucleotide length from both query and subject genomes, performed a blastp on these ORFs, and 

subsequently filtered on expect value and high-scoring segment pair (HSP) length. Protein 

matches (using C. fulvum as query and D. septosporum as subject) were obtained with promer (--

maxmatch) and blastpmer (–ORF 500 nt –HSP 250 nt –expect 1e-9). Both genomes were masked 

for these protein matches before being subjected to a second round of searching for weaker and 

shorter protein similarities, again using promer (–b 50 –c 15 –l 5 --maxmatch) and blastpmer (–

ORF 300nt –HSP 110 nt –e 1e-7). These four searches yielded 57,270, 44,865, 1,864 and 2,367 

matches, respectively, many of which were redundant and overlapping. This large set was 

reduced to 24,480 unique matches by removing all except the best alignment for each unique 

genomic locus. This step removed overlapping alignments with different phases or orientations, 

and excluded suboptimal alignments caused by paralogs and common protein domains. The 

product of amino acid similarity and match length was employed as a final alignment quality 

score. Matches were ordered by query scaffold position and joined into linked syntenic regions 

according to the following criteria: (i) adjacent matches were identical on the query and subject 

scaffolds, (ii) matches had the same strand orientation, and (iii) maximum and average 

nucleotide distance between adjacent matches on the query and subject scaffolds were <10 kb 

and <5 kb, respectively. This step resulted in a reduction to 1,875 collinear match regions, of 

which 1,277 were >5 kb.  For comparison of protein coding genes in syntenic versus non-syntenic 

areas, gene models were classified as syntenic if they overlapped with any of the 1,875 collinear 

syntenic areas. Thus, subsets of 9,890 syntenic and 4,237 non-syntenic genes were inferred for 

C. fulvum.  

In order to investigate mesosynteny on a whole genome scale a refined synteny dataset was 

created with correction for inversions and rearrangements, and removal of spurious, small 

alignments. Match regions were compared and merged further if (i) adjacent groups had 

opposite orientations, or (ii) groups with identical query and subject scaffolds were separated by 

at least one (group of) matches on a conflicting subject scaffold, but maximum and average 

nucleotide distances between match regions were at most 20 kb or on average <10 kb apart, and 

finally (iii) match regions <5 kb were rejected. The final refined dataset contained 1,103 syntenic 

regions between 5 and 226 kb (average 22,194 bp), representing 22,700 matches from the 

original 24,480 unique matches. 
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C. fulvum and D. septosporum-specific proteins 

To identify potential C. fulvum and D. septosporum-specific proteins, the total protein set from 

both fungi was used in comparative blastMatrix [123] searches against sequences from the nine 

additional members of the Dothideomycetes listed in the phylogenetics section. 

C. fulvum and D. septosporum secretome analysis 

Initially, subcellular localizations for all C. fulvum and D. septosporum proteins were predicted 

using WoLF PSORT (wolfpsort.org; [124]), resulting in identification of 1886 putative extracellular 

C. fulvum proteins and 1591 putative extracellular D. septosporum proteins. Only proteins 

containing a signal peptide and a signal peptide cleavage site, but lacking transmembrane (TM) 

domains or proteins containing a single TM that overlaps with the secretion signal, were 

selected. Signal peptides and cleavage sites were predicted using SignalP version 3.0 [125], 

where a final D-Score cut-off of 0.5 was used to increase specificity while retaining sensitivity. 

Subsequently, all proteins with signal peptides (1886 and 1591 for C. fulvum and D. 

septosporum, respectively) were analyzed for the presence of TM domains using the web servers 

Phobius [126] and TMHMM (version 2.0; [127]). The servers identified different, partially 

overlapping, sets of proteins with putative TM domains. On average Phobius detected 22% more 

TM domain proteins than did TMHMM, and about 75% of the predictions were shared between 

the servers. For further analyses, all proteins with putative TM domains as predicted by either of 

the two servers were removed from the dataset. Then, the proteins that contain a putative 

mitochondrial targeting signal as predicted by TargetP version 1.1 [128] were removed. Finally, 

proteins containing a potential GPI-anchor signal as predicted by the PredGPI web-service were 

discarded [129]. 

Functional analysis of D. septosporum Avr4 by A. tumefaciens-mediated transient gene 
expression in N. benthamiana 

A C. fulvum Avr4 (Cf-Avr4) gene homolog was identified in the genome of D. septosporum (Ds-

Avr4) by blastp, with an E-value of 1x10-4. To determine Cf-4-mediated HR-inducing ability of Ds-

Avr4 of D. septosporum the Agrobacterium tumefaciens-mediated transient gene expression 

(ATTA) method was performed in N. benthamiana as described by Van der Hoorn et al. [130]. 

The Cf-Avr4 and Ds-Avr4 genes were each fused to a PR-1A signal peptide sequence [131] for 

secretion into the apoplast. Subsequently a Gateway cloning strategy was performed to clone 

them into a pK2GW7 binary expression vector [132] containing the CaMV 35S promoter. A. 

tumefaciens (strain GV3101) was finally transformed with pK2GW7 binary vectors containing Cf-

Avr4 or Ds-Avr4 genes by electroporation. Agroinfiltration of Cf-4 transgenic N. benthamiana 

leaves with Cf-Avr4- and Ds-Avr4-containing A. tumefaciens clones was performed as described 

by van der Hoorn et al. [130]. Photographs were taken at six days post inoculation. 

Heterologous expression of the D. septosporum Ecp2 (Ds-Ecp2-1) gene in MM-Cf-Ecp2 
tomato plants 

Three D. septosporum homologs of C. fulvum Ecp2 genes (Ds-Ecp2-1, Ds-ecp2-2 and Ds-Ecp2-3) 

were identified as described for Avr4. A binary Potato Virus X (PVX)–based vector, pSfinx, was 

used for transient expression of the Cf-Ecp2-1 ortholog, Ds-Ecp2-1, in MM-Cf-Ecp2 tomato lines 

based on methodology described by Hammond-Kosack et al. [131]. The recombinant viruses 

were obtained by cloning Ds-Ecp2-1 (an intron-less gene), encoding the mature protein, 

downstream of the PR-1A signal sequence for secretion into the apoplast and under the control 

of the CaMV 35S promoter. Recombinant pSfinx::Ecp2-1 and pSfinx::Empty viruses 



The genomes of Cladosporium fulvum and Dothistroma septosporum 

 

51 
 

corresponding to the C. fulvum Ecp2 (Cf-Ecp2-1) were published before [33]. A. tumefaciens 

(GV3101) was transformed with pSfinx::Ds-Ecp2-1 construct by electroporation. A. tumefaciens 

strains containing the pSfinx constructs for the expression of Cf-Ecp2-1 and  Ds-Ecp2-1 proteins 

were inoculated on MM-Cf-Ecp2 tomato lines containing the cognate R gene and MM-Cf-0 

tomato lines that contain no R genes mediating recognition of  the Ecp2-1 effector. Photographs 

were taken four weeks post inoculation. 

Analyses of hydrophobin-encoding genes 

All six previously reported hydrophobin genes from C. fulvum [133] were found in the automated 

gene predictions performed on the genome sequence. Five of the hydrophobins (Hcf-1 to Hcf-5) 

are predicted to contain an interpro motif common in fungal hydrophobins (IPR001338), while 

Hcf-6 has an interpro motif, which is restricted to Ascomycetes only (IPR010636). To identify 

putative hydrophobin-encoding genes in other genomes, all secreted gene models of C. fulvum, 

D. septosporum and M. graminicola were computationally annotated using Interpro scan and 

Gene Ontology terms. Then, gene models with IPR001338 and IPR010636 Interpro scan terms 

were identified as putative hydrophobin candidates. Also, a HMM profile search (which was built 

based on the conserved cysteine motifs in class I hydrophobins) was performed to identify 

missed hydrophobins by standard similarity searches. In this way five additional hydrophobin 

genes were identified in the C. fulvum genome. Hydrophobin sequences were aligned with 

ClustalW and edited in GeneDoc software. Then a consensus phylogenetic tree of predicted 

hydrophobin amino acid sequences was constructed using MEGA5 software [134] performing 

the minimum-evolution algorithm with default parameters and 1000 bootstrap replications. 

Analyses of carbohydrate-active (CAZy) enzymes 

The carbohydrate-active enzyme catalogs of C. fulvum and D. septosporum were compared with 

the corresponding catalogs from other Dothideomycete fungi (Ohm et al., unpublished data). The 

boundaries of the carbohydrate-active modules and associated carbohydrate-binding modules of 

the proteins encoded by each fungus in the comparison were determined using the BLAST and 

HMM-based routines of the Carbohydrate-Active-EnZymes database ([74]; www.cazy.org). For 

determining the growth profiles on different carbohydrate substrates Aspergillus minimal 

medium [87] adjusted to pH 6.0 and containing 1.5% agar (Invitrogen, 30391-049) was used. 

Carbon sources were added at concentrations as indicated in the text and using standard 

methods as described at www.fung-growth.org. Duplicate plates were inoculated with 2 μl of a 

suspension containing 500 conidia/μl. Cultures were grown at 22-25°C for two weeks for C. 

fulvum and four weeks for D. septosporum, and representative plates were photographed. 

Secondary metabolite gene analysis 

Genes encoding polyketide synthases (PKSs), non-ribosomal peptide synthases (NRPSs), hybrids 

of PKS and NRPS, terpene cyclases (TCs) and dimethylallyl tryptophan synthases (DMATSs) were 

sought in the two genomes using tblastn/blastp and several Ascomycete protein sequences as 

queries (Ace1 for PKS and hybrids; MGG_00022.7 protein for NRPS; tri5, cps/ks, all TCs from B. 

cinerea for TCs; Dma1 from Claviceps purpurea for DMATSs). For each tblastn/blastp hit, 

functional annotation was confirmed by searching for conserved domains (CDS at NCBI, 

InterproScan) and performing blastp analysis at NCBI and InterproScan. The locus of each key 

gene was analyzed for genes that could potentially be involved in a biosynthetic pathway. 

Functional annotation of downstream and upstream genes was confirmed using blastp at NCBI. 

In addition, homologs to genes that were shown to be involved in the regulation of fungal 
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development and secondary metabolism were sought using tblastn/blastp with the sequences of 

the characterized proteins as queries. 

Ka/Ks calculations were carried out to estimate evolutionary constraints on putative 

dothistromin genes (PksA, VbsA, Ver1, HexA, AvfA, CypA and MoxA) in comparison to four 

housekeeping genes (Tub1 JGI PIDs Cf-186859 Ds-68998, Eif3b Cf-190521 Ds-75033, Pap1 Cf-

190301 Ds-180959 and Rps9 Cf-196996 Ds-92035). DNA sequences from D. septosporum and C. 

fulvum were aligned with the codon-aware multiple sequence alignment software, RevTrans 

[135]. Sequence alignments were trimmed in codon units to remove missing data across both 

species with the sequence editor, Jalview [136]. The non-synonymous/synonymous amino acid 

ratio (Ka/Ks or ω) was obtained using the Ka/Ks Calculator [137] with the algorithm of Nei and 

Gojobori [138]. Statistical differences between Ka/Ks values for dothistromin and housekeeping 

genes were determined using Student’s two-sided t test [139]. For determination of 

dothistromin production, previously published extraction and hplc methods were followed [140]. 

Quantitative PCR 

For quantification of dothistromin gene expression in D. septosporum, RNA was extracted from 

sporulating lesions on Pinus radiata needles collected from a forest in New Zealand (in planta 

sample) or grown in PDB or B5 [141] broths for 6 days as described previously [140]. cDNA 

synthesis and relative quantitative RT-PCR were carried out using primers and methods 

described earlier [140], with three biological replicates and two technical replicates. For C. 

fulvum, similar protocols were followed except that tomato infections, RNA extraction and cDNA 

synthesis followed the protocols of [142] and four biological replicates were used. 

Oligonucleotides were designed with Primer3Plus [143] and are shown in Table S14. Their 

efficiency and specificity were tested on a genomic DNA dilution series. For both species, 

quantitative PCR was performed with the Applied Biosystems 7300 Real-Time PCR system 

(Applied Biosystems, USA) using the default parameters. Raw data were analyzed using the 2-∆Ct 

method [144].  
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Supporting Information 
 

Figure S1. Amino acid similarity to Dothistroma septosporum. Genome-wide amino acid similarity of 

homologous proteins between C. fulvum and other sequenced fungal species. A pair of proteins is only 

reported as homologous when the predicted similarity (blastp) spans at least 70% of their lengths and their 

length difference is at most 20%. Axis indicates number of homologous proteins. Bar shading indicates 

similarity: red, 91-100%; orange, 81-90%; light green, 71-80%; medium green, 61-70%; turquoise, 51-60%; light 

blue, 41-50%; dark blue, 31-40%; and purple, 0-30%. Homologous proteins with high amino acid similarity are 

likely orthologs, whereas for those with lower similarity this relation cannot be inferred. Species abbreviations: 

Cf, Cladosporium fulvum; Sm, Septoria musiva; Mf, Mycosphaerella fijiensis; Mg, Mycosphaerella graminicola; 

Rr, Rhytidhysteron rufulum; Hp, Hysterium pulicare; Ab, Alternaria brassicicola; Pt, Pyrenophora tritici-repentis; 

Ch, Cochliobolus heterostrophus; Sn, Stagonospora nodorum; An, Aspergillus nidulans; Nc, Neurospora crassa; 

Mo, Magnaporthe oryzae; Fg, Fusarium graminearum. 

 

Figure S2. Synteny of Cladosporium fulvum and Dothistroma septosporum genomes. 

A) Whole-genome synteny, computed using the JGI synteny browser (available at http://genome.jgi-

psf.org/Dotse1/Dotse1.home.html) and shown as pairwise alignment blocks. The 14 main D. septosporum 

chromosomes are shown with colored blocks indicating regions of synteny with C. fulvum, computed with a 1 

kb cut-off. The different colored blocks represent the different C. fulvum scaffolds; colour keys were generated 

independently for the 14 chromosomes and are as shown on the JGI synteny browser. B) Synteny between two 

examples of large scaffolds of C. fulvum (top, Cf2, 526 kb; bottom, Cf5, 315 kb) with corresponding regions of D. 

septosporum chromosomes 2 (3.3 Mb) and 4 (2.6 Mb). In each case the top line (eg Cf 2) shows blocks 

indicating regions of synteny with D. septosporum, computed with a 50-bp cut-off. Different colours represent 

matches to different chromosomes, indicating that each C. fulvum scaffold predominantly aligns with just one 

D. septosporum chromosome. Slanting lines connecting Cf and Ds scaffolds show matching regions between 

the two, illustrating that the syntenic blocks are not collinear but show fragmentation and different degrees of 

dispersal, consistent with intrachromosomal rearrangements.  

 

Figure S3. Hydrophobin genes in Dothideomycete species. Consensus phylogenetic tree of predicted class I 

and class II hydrophobins from Cladosporium fulvum (Cf), Dothistroma septosporum (Ds), and Mycosphaerella 

graminicola (Mg). Amino acid sequences of hydrophobins were aligned using ClustalW2 and the phylogenetic 

tree was constructed using the minimum-evolution method of MEGA5 with 1000 bootstraps. Bootstrap values 

less than 90% are not shown. Scale bar shows the genetic distance (substitutions per site). The letters c and p in 

brackets indicate whether expression was detected in culture or in planta, respectively, in EST data. Asterisks 

indicate hydrophobin proteins for which no hydrophobin conserved domain could be identified using 

InterproScan. However, the phylogenetic tree clearly shows that Ds67650 belongs to class I, and Mg965336 

and Cf183780 belong to class II hydrophobins.  

 

Figure S4. Growth profile assays for Cladosporium fulvum and  Dothistroma septosporum. The fungi were 

grown on 32 solid agar media containing well-defined or complex carbohydrate substrates as detailed at 

www.fung-growth.org. A) C. fulvum grown for 2 weeks and B) D. septosporum grown for 4 weeks, both in the 

dark at 22-25°C.   

 

Figure S5. Synteny of secondary metabolism loci between Dothistroma septosporum and Cladosporium 

fulvum. Gene clusters of D. septosporum- (A) and C. fulvum-specific (B) key genes were predicted based on 

functional annotations. Synteny of the borders of each gene cluster was checked in the other species. All D. 

septosporum-specific gene clusters are located at conserved loci in C. fulvum. Conversely, only 6 C. fulvum-

specific gene clusters are located at conserved loci in D. septosporum. For Cf-Pks5, Cf-Pks6 and Cf-Nps5, the 

border genes are scattered over one or more chromosomes in D. septosporum. Black arrows represent key 

genes; dark grey arrows represent putative accessory genes; light grey arrows represent putative border genes; 

outlined arrows indicate genes present in only one species; black triangles represent transposable elements. 

The C. fulvum scaffold numbers and D. septosporum chromosome numbers are indicated for syntenic loci. Loci 

are not drawn to scale. 



Chapter 2 

60 
 

 

Figure S6. Expression of Cladosporium fulvum effector genes Avr4 and Avr9 during infection of tomato.  

Expression of Avr4 and Avr9 was measured by quantitative PCR during tomato infection and in two in vitro 

conditions (PDB and B5 media). Expression was calibrated using the tubulin gene according to the 2
-∆Ct

 method 

[136]. Expression was not detected in vitro for Avr9 and weakly in B5 medium only for Avr4. Induction of the 

expression of both effectors during tomato infection is highlighted by the grey-dashed curve. Relative 

expression of actin is shown as the control for calibration. 

 

Protocol S1 Genome sequencing, assembly and annotation methods. 

 

Table S1 Cladosporium fulvum and Dothistroma septosporum sequence statistics. 

 

Table S2 Dothistroma septosporum genome scaffolds. 

 

Table S3 Overview of Repeat-Induced Point Mutations (RIP) in Cladosporium fulvum, Dothistroma septosporum 

and other related Dothideomycete fungi. Neurospora crassa is used as a reference. 

 

Table S4 Repetitive regions flanking known effectors of Cladosporium fulvum and Dothistroma septosporum. 

 

Table S5 Comparison of CAZy gene numbers in Cladosporium  fulvum and  Dothistroma  septosporum. 

 

Table S6  Growth diameters of Cladosporium fulvum, Dothistroma septosporum and other fungi on various 

carbon sources. 

 

Table S7 Putative monoterpene-degrading genes.   

 

Table S8 Comparison of oxidoreductase gene numbers in Cladosporium fulvum, Dothistroma septosporum, 

Mycosphaerella graminicola and Stagonospora nodorum. 

 

Table S9 Key secondary metabolism enzyme identifiers in Cladosporium fulvum and Dothistroma septosporum. 

 

Table S10 Putative dothistromin genes in Cladosporium fulvum and Dothistroma septosporum. 

 

Table S11 Regulatory genes involved in development and secondary metabolism of Cladosporium fulvum and 

Dothistroma septosporum. 

 

Table S12 Conditions for Cladosporium fulvum EST libraries. 

 

Table S13 Conditions for Dothistroma septosporum EST libraries. 

 

Table S14 Primers used for reverse transcription quantitative PCR.  
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Abstract 
 

Background: Automated gene-calling is still an error-prone process, particularly for the highly 

plastic genomes of fungal species. Improvement through quality control and manual curation of 

gene models is a time-consuming process that requires skilled biologists and is only marginally 

performed. The wealth of available fungal genomes has not yet been exploited by an automated 

method that applies quality control of gene models in order to obtain more accurate genome 

annotations. 

 

Results: We provide a novel method named alignment-based fungal gene prediction (ABFGP) 

that is particularly suitable for plastic genomes like those of fungi. It can assess gene models on a 

gene-by-gene basis making use of informant gene loci. Its performance was benchmarked on 

6,965 gene models confirmed by full-length unigenes from ten different fungi. 79.4% of all gene 

models were correctly predicted by ABFGP. It improves the output of ab initio gene prediction 

software due to a higher sensitivity and precision for all gene model components. Applicability of 

the method was shown by revisiting the annotations of six different fungi, using gene loci from 

up to 29 fungal genomes as informants. Between 7,231 and 8,337 genes were assessed by 

ABFGP and for each genome between 1,724 and 3,505 gene model revisions were proposed. The 

reliability of the proposed gene models is assessed by an a posteriori introspection procedure of 

each intron and exon in the multiple gene model alignment. The total number and type of 

proposed gene model revisions in the six fungal genomes is correlated to the quality of the 

genome assembly, and to sequencing strategies used in the sequencing centre, highlighting 

different types of errors in different annotation pipelines. The ABFGP method is particularly 

successful in discovering sequence errors and/or disruptive mutations causing truncated and 

erroneous gene models. 

 

Conclusions: The ABFGP method is an accurate and fully automated quality control method for 

fungal gene catalogues that can be easily implemented into existing annotation pipelines. With 

the exponential release of new genomes, the ABFGP method will help decreasing the number of 

gene models that require additional manual curation. 
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Background 
 

In the past decade, numerous fungal genomes of importance to medicine, agriculture and 

industry have been sequenced [1,2] and continuous innovations in next generation sequencing 

technology will spur this number to rapidly increase further. Once sequenced and assembled, 

genomes are annotated through an automated gene-calling pipeline, which is still an error-prone 

process, particularly for the highly plastic and diverse genomes of fungal species. 

Most gene annotation pipelines integrate different gene prediction algorithms to increase the 

accuracy of the annotation [3]. These algorithms include ab initio supervised, ab initio 

unsupervised and (supervised) alignment-based gene predictors, which are implemented in tools 

such as Augustus [4], GeneMark-ES [5] and TWINSCAN 2.0α [6], respectively. Augustus is one of 

the most frequently employed and best performing ab initio supervised gene prediction tools 

that offers parameterizations for several dozens of fungi [4]. For species lacking a provided 

parameterization, a considerable manual input is required to obtain such species-specific 

parameterization by training the algorithm with a large sample (~1000) of correct gene models 

[5]. Thus, its applicability is limited to only those species for which parameterization is available 

[5,6]. GeneMark-ES-2 is an ab initio unsupervised gene predictor iteratively training itself on the 

input genome sequence alone that outperformed Augustus [5], but is reported to be relatively 

inaccurate in predicting single exon genes [5]. A hybrid strategy between ab initio and 

alignment- (or evidence) based gene prediction is currently implemented in several tools. 

Updated versions of Augustus integrate evidence obtained from unigene alignments [4], protein 

multiple sequence alignments [7] and intron- and exon-hints acquired from RNA-Seq data, which 

greatly improved their prediction accuracy. To our knowledge, alignment-based gene prediction 

in fungi using genomic data alone has only been successfully applied using TWINSCAN 2.0 α, 

which was specifically adapted and trained to Cryptococcus neoformans [6]. In that case, the 

whole-genome DNA alignment of two strains of this fungus, whose genomes are largely syntenic 

and exhibit around 95% nucleotide identity in coding regions, served as input. The reported 

~60% gene accuracy clearly outperformed non-alignment-based ab initio gene prediction 

software [6]. TWINSCAN 2.0 α requires extensive species-specific training and parameterization, 

offering a tailor-made solution for a defined pair of related species only. Most importantly, the 

approach taken in TWINSCAN 2.0 α is difficult to apply to fungal genomes because of their high 

plasticity [8-10]. The absence of conserved regions exhibiting macro- or even meso-synteny 

between related fungal genomes [8] severely hampers the construction of whole-genome DNA 

alignments. Besides reshuffled gene orders, a highly variable gene content is also observed 

among fungi with a large number of genes showing a discontinuous distribution in the fungal 

tree of life. This is caused by frequent gene, gene-cluster, segmental and whole chromosome 

duplications, losses or horizontal transfers, which have created complex variation in both gene 

family expansion and reduction [8,10]. Although homologous gene loci can often be inferred 

easily between distantly related fungi, annotation of fungal genomes by classical alignment-

based gene prediction tools is problematic. In recent years, ensemble predictors have been 

developed to weigh and combine similarity evidence and the predictions made by various other 

tools into a single, more accurate gene model [11,12]. However, it “often requires significant 

effort in implementation to cast comparative information into a form compatible with the 

existing gene models” [13]. 



Chapter 3 

64 
 

 

Because none of the available gene prediction tools were specifically developed for fungal 

genomes, automatic gene annotation of fungi often yields a relatively high fraction of incorrect 

gene models. These can only be revised through a time-consuming process of quality control and 

manual curation by skilled biologists or bioinformaticians, but this is often only marginally 

performed. Manual curation usually involves comparative analyses with tools that can accurately 

identify a spliced gene structure in a target DNA sequence using a homologous protein sequence 

as a so-called “informant” sequence (e.g.  eneWise [14], Scipio [15], etc.). However, a large 

proportion of gene models and derived protein sequences in current fungal sequence releases 

contain errors, and a manual curator can easily propagate existing errors when using incorrectly 

predicted informant protein(s). A typical example of the marginal quality of fungal gene 

catalogues is exemplified by the re-annotation of the Fusarium graminearum genome [16]. In 

the new version, 1,770 gene models were revised by using various new gene predictors, 

exploiting expression data, performing extensive manual curation and evidence-based selection 

of the best gene model from alternative predictions [16]. Despite this effort, recent RNA-Seq 

data provided experimental proof for at least another 655 incorrectly predicted gene models in 

the latest version of the F. graminearum annotation [17]. 

We have now entered an era in which genome sequencing of clusters of related fungi will be 

performed on a massive scale. Subsequent gene prediction on these genomes will require 

automation with very little manual inspection [6]. Although gene prediction software suitable for 

fungal genomes has become more accurate over the last decade, they are still error-prone. A 

method that facilitates or automates the process of curating gene models is therefore needed to 

increase the accuracy of the catalogues of predicted genes in sequenced fungal genomes. Here, 

we present a novel gene-by-gene method for alignment-based gene prediction that is 

particularly suitable for the plastic genomes of fungi. Our method, called alignment-based fungal 

gene prediction (ABFGP), (i) provides improved accuracy of predicted gene models, (ii) is species-

independent, (iii) does not require partial or whole-genome DNA alignments, (iv) does not 

require supervision and (v) can use a variable number of informant genes. We demonstrate the 

accuracy and versatility of the ABFGP method by re-annotating the genomes of a selection of six 

sequenced Ascomycete fungi. 

Results 

The alignment-based fungal gene prediction (ABFGP) method 

The ABFGP method re-annotates gene models on a gene-by-gene basis by using informants, 

which differ from regular alignment-based approaches that require a whole-genome DNA 

alignment. An ABFGP informant refers to the genomic locus at which an homologous gene is 

encoded that may support revision of the target gene locus. First, a similarity matrix of predicted 

protein sequences from several fungal species is obtained (Figure 1; Additional file 1). From this 

matrix, bi-directional best hits (BDBH) with sufficient overlap between both annotated proteins 

are selected, representing most likely orthologous informant gene loci. Subsequently, the 

genomic loci that encodes these proteins - not the predicted proteins themselves - are used as 

informants to avoid propagation of errors in the gene structures. Other resources can be used to 

find informant gene loci such as unigene datasets or any alternative homology search (Figure 1). 
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Figure 1 Flow diagram of informant gene selection for the alignment-based fungal gene prediction 

(ABFGP) method. 

The output of an ABFGP execution is a GFF file containing the predicted gene model and several features that 

assist manual inspection of the predicted gene model. Input for ABFGP is a list of orthologous gene loci, of 

which one is assigned as the target locus to be re-annotated, and all others serve as informants. This resulting 

list of gene encoding loci is provided as a multi fasta file. A second input option provides additional 

functionality, where each (informant) gene locus is a folder that contains the genomic locus (fasta format), 

optionally its currently annotated gene model (gff format) and unigenes aligned to this locus (gff format). A 

provided unigene is used as an additional informant, from which spliced alignments are exploited as guidance 

to infer intron-exon boundaries to enhance the prediction performance. A provided gene structure is used to 

speed up similarity searches by prioritization and to visualize differences between current annotation and the 

ABFGP prediction. Optionally, the exons of provided genes can be used as prior knowledge to facilitate 

detection of poorly conserved parts of the gene. 

The ABFGP method is an automated workflow that includes all steps typically undertaken when 

performing manual annotation of a predicted gene model. It comprises nucleotide and protein 

similarity searches (BLAST, ClustalW and HMM) to build (pairwise) alignments, motif searches 

(SignalP and TMHMM ) and degenerate Position Specific Scoring Matrix (PSSM) searches to 

identify elements of gene structure [18] including splice sites, branch points, polypyrimidine 

tracks and translational start sites. A flow diagram of the consecutive steps undertaken in the 

ABFGP method is presented in Figure 2. Graph-theory is used to translate pairwise alignments of 

sequences, open reading frames (ORFs), sequence elements or positional attributes to multiple 

alignments of these entities. The gene similarity graph is an estimation of the gene tree and is 

used to favor, demote or remove nodes and edges from the ORF similarity graph. Inconsistencies 

or missing data in series of multiple aligned ORFs trigger a more sensitive HMMER protein 

search, which can identify missing ORFs of target or informant genes or can recognize lower 

similarity. The ABFGP method accurately predicts intron-exon boundaries by exploiting ORF 

(dis)continuity surrounding intron presence-absence patterns [19]. In contrast to ab initio gene 

prediction software, the ABFGP method is able to cope with sequence errors (SEs) and true 

disruptive mutations (DMs), and recognizes those as inconsistencies in coding region continuity. 

A quality check on the similarity graph is performed at various stages during ABFGP execution, 

which can result in removal of an informant once recognized as too distinct. In case the target 
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gene locus is distinct from all informants (which are all homologous to each other), they are all 

removed. Once the number of informants drops below a user-adjustable threshold (by default 

set at four), execution of the method is aborted. Finally, an a posteriori introspection procedure 

is applied to each intron and exon in the predicted gene model which assigns a reliability label 

(‘ok’ or ‘doubtful’) to the predicted gene model. 

 

Figure 2 Flow diagram of the ABFGP method. 

An example of a re-annotated gene model by ABFGP is given in Figure 3A. It illustrates the 

predicted gene model at the genomic locus that encodes a Major Facilitator Superfamily (MFS) 

transporter (Cf189922) in the Cladosporium fulvum genome. In this example ABFGP proposes 

two revisions compared to the originally annotated gene model. Introns (orange) and exons 

(red) with revised nucleotides are indicated in a separate track. Both revisions involve inclusion 

of novel exons that split up one intron into two smaller ones. The multiple protein sequence 

alignment around the second proposed revised site is shown for the unrevised (Figure 3B) and 

revised (Figure 3C) model. The improved continuity and quality of the sequence alignment 

suggest that the proposed revision is most likely correct. Moreover, TMHMM prediction 

performed on a 3-frame translation of the complete locus assigns two transmembrane helices in 

the revised exon, which is consistent with the secondary structure of the proteins encoded by 

the informant gene loci (data not shown). Finally, the additional exon is supported by a partial 

unigene aligned to the informant gene locus of Fusarium verticillioides (TC27075). A more 

detailed description of the ABFGP method is provided in Additional file 2. 
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Figure 3 ABFGP-based curation of the MFS transporter-encoding gene Cf189922 of Cladosporium 

fulvum. 

A. Selected tracks of the GFF results obtained by applying ABFGP on the Cf189922 gene locus using 17 fungal 

informant genes. The annotated (blue) and the ABFGP-predicted gene model (green and grey) are shown on 

top. The grey part of the ABFGP prediction indicates an intron-exon boundary with status ‘doubtful’. Below are 

indicated the introns (orange) and exons (red) that were revised; the red box highlights the site of the second 

revision. The intron evidence track lists intron-exon boundaries obtained from informants; the colours used in 

the informant gene similarity track represent a measure for pairwise amino acid similarity. The alignment 

similarity track represents a summed representation of the inferred multiple sequence alignment of all 

informants. 

B. Multiple protein sequence alignment of currently annotated gene models of Cf189922 and its informants. 

Sequence is restricted to the red box shown in panel A. 

C. Multiple protein sequence alignment of the ABFGP-revised gene model of Cf189922 and its informants. 

Sequence is restricted to the red box shown in panel A. The proposed revision is highlighted in the black box. 
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Benchmarking of the ABFGP method 

To benchmark the performance of the ABFGP method, we selected genes from ten different 

fungi, for which their intron-exon structure is confirmed by full-length unigenes. Of those, 6,965 

genes have at least four reliable informant gene loci and passed all selection criteria (Additional 

file 3; an excel file with all gene identifiers is available at http://tinyurl.com/k9qft5o). Using this 

dataset, the ABFGP method achieves an overall gene sensitivity of 79.4% (Table 1; Additional file 

4), meaning that on average 79 out of 100 gene models are predicted correctly without a single 

nucleotide error in their overall intron-exon structure. 

Table 1 Benchmarking of the ABFGP performance on validated genes compared to GeneMark-ES 

Species  10 pooled species
1
 Magnaporthe oryzae

2
 Fusarium verticillioides 

Method  ABFGP ABFGP GeneMark-ES ABFGP GeneMark-ES 

# unigenes 6965 956 169 1154 327 

Intron Sn 91.16 91.5 89.3 92.2 90.7 

 Pr 97.08 97.4 90.5 98.2 94.3 

Exon Sn 88.54 89.1 88 90.4 85.4 

 Pr 98.91 99.4 89.1 98.9 87.9 

Nucleotide Sn 98.75 98.3 98.2 99.3 98.8 

 Pr 99.08 99.3 97.1 99 97.1 

Gene
3
 Sn 79.4 (5,533) 81.7 (781) n.a. 82.1 (947) n.a. 

Sensitivity (Sn) and precision (Pr) of the gene model components (introns, exons, nucleotides) are expressed in 

percentages. Sn is calculated as true positives divided by: (true positives + false negatives); and Pr as true 

positives divide by: (true positives + false positives) [3]. 
1
A list of all ten fungal species and results per species are provided in Additional file 4. 

2
Formerly named Magnaporthe grisea. 

3
The gene sensitivity is the percentage of gene models that is predicted without a single error. Total number of 

correctly predicted gene models is indicated in between brackets. Gene sensitivity was not provided for 

GeneMark-ES. 

The ABFGP method applied to a set of available fulllength unigenes from Magnaporthe oryzae 

and Fusarium verticillioides was compared to GeneMark-ES [5], which was previously used on a 

smaller set of unigenes from these two fungi (Table 1). The ABFGP method performed better 

than GeneMark-ES on all gene components (exons, introns and nucleotides), in terms of 

sensitivity but most noticeably in terms of precision. The gene sensitivity achieved by ABFGP was 

81.7% and 82.1% for the unigenes of M. oryzae and F. verticilloides, respectively. The results of 

this benchmarking show that the ABFGP method can confidently be applied to improve gene 

models in fungal genomes. 

ABFGP as a tool to curate gene models of six annotated fungal genomes 

To illustrate its versatility, we applied the ABFGP method on the gene catalogue of six different 

fungal species previously sequenced and annotated at the BROAD [2] and JGI institutes [1]: 

Botrytis cinerea, Cladosporium fulvum, Dothistroma septosporum, Mycosphaerella fijiensis, 

Verticillium dahliae and Zymoseptoria tritici (Table 2). ABFGP was performed after selection of 

eligible genes (BDBH category) based on informant genes retrieved from a set of 29 fungal 

genomes (Additional file 1). A second, much smaller set of genes was compiled from informants 

that suggested species-specific variation or gene models with errors (GME). Between 7,285 and 

8,504 annotated gene loci per species were eligible for ABFGP using these criteria. For 0.4-2.0% 

of these, ABFGP was aborted during execution because the number of representative informants 
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Table 2 Gene models in six fungal species re-annotated by the ABFGP method 

Species Botrytis Cladosporium Dothistroma 

 
cinerea fulvum septosporum 

Sequence technology Sanger  454  Illumina/454/ 

Sanger 

Fold genome coverage 4.5 
 

21 
 

34 
 

# Annotated genes 16,448 
 

14,127 
 

12,580 
 

Annotation pipeline
2
 BROAD GeneMark-ES JGI 

 
Annotation year

3
 2005 2009 

 

2010 
 

Reference  [21] 
 

 [20] 

 

 [20] 
 

Total eligible gene models 8,503 7,574 

 

8,090 
 

Bi Directional Best Hit 7,165 6,990 

 

7,511 
 

Gene Model Error 1,338 584 

 

579 
 

Confirmed/unchanged
4
 4,832 57% 5,823 77% 6,249 77% 

Revised
4
 3,505 41% 1,724 23% 1,770 22% 

Bi Directional Best Hit
5
 2,481 35% 1,304 19% 1,404 19% 

Gene Model Error
5
 1,024 77% 420 72% 366 63% 

Aborted
4
 166 2,0% 27 0,4% 71 0,9% 

       
Species Mycosphaerella Verticillium Zymoseptoria 

 
fijiensis dahliae tritici 

1
 

Sequence technology Sanger 
 

Sanger 
 

Sanger 
 

Fold genome coverage 7.1 
 

7.5 
 

8.9 
 

# Annotated genes 10,313 
 

10,535 10,952 

Annotation pipeline
2
 JGI 

 
BROAD JGI 

 
Annotation year

3
 ≤2008 

 
2008 

 
2008 

 
Reference n.a. 

 
 [22] 

 
 [23] 

 
Total eligible gene models 7,283 

 
8,362 7,893 

 
Bi Directional Best Hit 6,773 

 
7,814 7,317 

 
Gene Model Error 510 

 
548 

 
576 

 
Confirmed/unchanged

4
 4,775 66% 5,390 64% 5,262 67% 

Revised
4
 2,456 34% 2,870 34% 2,553 32% 

Bi Directional Best Hit
5
 2,064 30% 2,511 32% 2,137 29% 

Gene Model Error
5
 392 77% 359 66% 416 72% 

Aborted
4
 52 0,7% 102 1,2% 78 1,0% 

1
Formerly named Mycosphaerella graminicola. 

2
Sequencing centre which sequenced and annotated this genome (BROAD institute or Joint Genome Institute); 

C. fulvum was sequenced at Wageningen University and annotated using GeneMark-ES version 2.2 [20]. 
3
Estimated year the gene calling was performed. 

4
Number and percentage of all gene models in this category. 

5
Number and percentage of revised gene models in this category. 
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dropped below four during the integrated quality assessment. For the remaining loci, the gene 

models predicted by ABFGP were compared to their current annotations. As expected, the 

currently available annotation and the ABFGP-predicted structures of a large fraction of the gene 

models (on average 68%) were identical (Table 2). Predicting the same intron-exon-structure by 

two independent methods is a strong indication that the predicted gene models are correct. The 

ABFGP method proposed at least a minor revision for 22% to 41% of the assessed genes in a 

given species. Among those, the GME category of genes is highly overrepresented, with 62% to 

75% of them being revised versus only 19% to 34% from the BDBH category. The lowest number 

of revisions is proposed for the most recently annotated genomes of the fungi C. fulvum and D. 

septosporum [20], and the highest number for B. cinerea. This is likely due to the fact that the 

genome assembly of B. cinerea has a low sequence coverage produced by Sanger technology, 

and its annotation was performed by older, less accurate gene predictor software (Table 2). 

Reliability of the ABFGP-predicted gene models 

The ABFGP method confirmed 57 to 77% of the previously reported annotated gene models and 

proposed revisions for the remaining in six fungal species (Table 2). The overall quality of the 

revised predictions is supported by high accuracy as shown by the benchmarking on unigenes 

(Table 1). To address the reliability at the level of individual genes, the ABFGP method was 

equipped with an a posteriori introspection module. Each intron and exon in the multiple gene 

model alignment was evaluated on a series of stringent criteria (e.g. alignment quality, length 

variance, splice site score, etc.) and was labelled to indicate the likelihood of its correctness: 

gene models were labelled as ‘ok’ only if all individual introns and exons received this label, and 

were labelled as ‘doubtful’ in case one or more introns or exons received this label (Table 3). Of 

the confirmed gene models on average 86.4% was labelled ‘ok’ and 13.6% ‘doubtful’, whereas of 

the revised gene models 66.1% was labelled ‘ok’ and 33.9% ‘doubtful’. The introspection 

procedure was also applied to the benchmark set of 6,965 genes supported by unigenes and 

resulted in 5,016 true positives (72.2%), 496 true negatives (7.1%), 533 false negatives (7.7%) 

and 899 false positives (12.9%). This analysis shows that the introspection procedure is quite 

accurate, and that the majority of ABFGP-revised models of the re-annotated genomes is 

reliable. 

Types of revisions proposed by the ABFGP method 

The most conspicuous differences between the annotated and ABFGP-predicted gene models 

are summarized in Table 4. Major revisions proposed by the ABFGP method comprise 

corrections of falsely fused and split gene models in current annotations. B. cinerea appears 

enriched for both incorrectly merged and split genes and C. fulvum for incorrectly merged genes. 

Up to 19% of the revisions proposed by the ABFGP method are due to SEs and/or DMs, which 

were particularly often encountered in genes of B. cinerea, C. fulvum and V. dahliae. Other 

revisions involve boundary changes, removal and addition of exons and introns in predicted gene 

models. Additional exons are more rarely predicted, but they are frequently occurring as internal 

revisions (as shown in Figure 3 for C. fulvum) of genes in B. cinerea and V. dahliae. ABFGP 

frequently removed stopless 3n introns in the gene models of M. fijiensis and Z. tritici. The 

proposed revisions resulted mainly in a decrease of the average intron length: -42, -35, -30, -29, -

6 and +1 nucleotides for M. fijiensis, B. cinerea, C. fulvum, Z. tritici, V. dahliae and D. 

septosporum, respectively. 
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Table 3 Introspection of results obtained by the ABFGP method 

Species Botrytis Cladosporium Dothistroma Pooled 

 
cinerea fulvum septosporum unigenes

2
 

Total number of assessed genes
3
 8,337 

 
7,547 

 
8,019 

 
6,965 

Confirmed/unchanged 4,832 
 

5,823 
 

6,249 
 

Correct 

Labeled ‘ok’
4
 3,942 82% 5,186 89% 5,505 88% 5,015 (TP) 

Labeled ‘doubtful’
4
 890 16% 637 11% 744 12% 533 (FN) 

Revised 3,505 
 

1,724 
 

1,770 
 

Incorrect 

Labeled ‘ok’
4
 2,137 61% 1,160 67% 1,209 68% 899 (FP) 

Labeled ‘doubtful’
4
 1,368 29% 564 33% 561 32% 496 (TN) 

        Species Mycosphaerella Verticillium Zymoseptoria 
 

 
fijiensis dahliae tritici

1
 

 
Total number of assessed genes

3
 7,231 

 
8,260 

 
7,815 

  
Confirmed/unchanged 4,775 

 
5,390 

 
5,262 

  
Labeled ‘ok’

4
 4,216 88% 4,536 84% 4,539 84% 

 
Labeled ‘doubtful’

4
 559 12% 854 16% 723 16% 

 
Revised 2,456 

 
2,870 

 
2,553 

  
Labeled ‘ok’

4
 1,730 70% 1,864 65% 1,734 68% 

 
Labeled ‘doubtful’

4
 726 30% 1,006 35% 819 32% 

 
1
Formerly named Mycosphaerella graminicola. 

2
Correctly predicted gene models (benchmarked on the full-length unigenes) that were labelled by the 

introspection procedure as ‘ok’ are true positives (TP) and labelled ‘doubtful’ are false negatives (FN).  enes 

that were incorrectly predicted and were labelled ‘ok’ are false positives (FP) and labelled ‘doubtful’ are true 

negatives (TN).
3
Total eligible number of genes minus number of genes aborted during execution (Table 2). 

4
Number and percentage of genes that are labelled ‘ok’ and ‘doubtful’ by the introspection procedure in each 

category. 

Increasing the number of informants improves performance of the ABFGP method  

ABFGP performance decreased when using fewer informants or when closely related informants 

are not available (data not shown). For the curation of a particular gene model, the most closely 

related fungal species failed to provide informants for 7 to 19% of selected loci (Additional File 

5). Conversely, fungal species that provided the lowest number of informants still contributed 16 

to 38% of informant loci. In addition, in some cases, fungal species that provided most of the 

informant loci are not always the closest relatives. For example, M. fijiensis, the closest relative 

of Z. tritici, is not among the top three species that provided the highest number of informants 

(Additional File 5). Similarly, N. haematococca and M. oryzae provide more informants than V. 

albo-atrum for the curation of V. dahliae. For C. fulvum and M. fijiensis, it is striking that fungi 

that belong to a different taxonomic class are in the top three species that provided the highest 

number of informants. Our results show that the six studied fungal gene catalogues differ in 

quality. Because all informant catalogues were predicted by the same genome sequence centres 

(see Additional file 1), similar error rates are expected to occur in their gene models. An 

unexpected low contributor to the pool of informants could be explained by a slightly higher 

error rate in its gene catalogue. In addition, many genes show a discontinuous distribution in the 

fungal tree of life [8],[10]. This underlines the importance of selecting informants from a wide 

phylogenetic spectrum of species rather than from a small set of closely related species. 
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Table 4 Types of revisions in annotated gene models made by the ABFGP method 

Species Botrytis 

cinerea 

Cladosporium 

fulvum 

Dothistroma 

septosporum 

Total revised genes
2
 3,473 

 
1,721 

 
1,761 

 
Genes containing SE and/or DMs

3
 353 

 
333 

 
176 

 
Genes split by ABFGP 195 

 
183 

 
62 

 
Genes merged by ABFGP 102 

 
12 

 
16 

 
Total annotated exons 12967 

 
5675 

 
5211 

 
Unrevised 5970 

 
2372 

 
2078 

 
Boundary revision

4
 4851 

 
2274 

 
2341 

 
5’ or 3’ removed (−) / added (+)

5,6
 −783 617 −451 252 −265 224 

Internal removed (−) / added (+)
5,7

 −51 616 −20 98 −24 35 

Total annotated introns 9459 
 

3947 
 

3438 
 

Unrevised 4907 
 

2019 
 

1740 
 

Boundary revision
8
 1799 

 
692 

 
727 

 
Stopless 3n removed (−) / added (+)

9
 −447 189 −166 146 −365 146 

 

Species Mycosphaerella 

fijiensis 

Verticillium 

dahliae 

Zymoseptoria 

tritici
1
 

Total revised genes
2
 2,448 

 
2,865 

 
2,552 

 
Genes containing SE and/or DMs

3
 127 

 
515 

 
66 

 
Genes split by ABFGP 91 

 
94 

 
130 

 
Genes merged by ABFGP 27 

 
19 

 
28 

 
Total annotated exons 7525 

 
10709 

 
8316 

 
Unrevised 2593 

 
4956 

 
3116 

 
Boundary revision

4
 3230 

 
4355 

 
3357 

 
5’ or 3’ removed (−) / added (+)

5,6
 −297 341 −529 333 −415 335 

Internal removed (−) / added (+)
5,7

 −59 74 −66 346 −76 75 

Total annotated introns 5058 
 

7838 
 

5753 
 

Unrevised 2276 
 

4048 
 

2836 
 

Boundary revision
8
 889 

 
1738 

 
839 

 
Stopless 3n removed (−) / added (+)

9
 −1032 99 −331 244 −953 130 

 

1
Formerly named Mycosphaerella graminicola. 

2
The total number of revisions can exceed the total number of revised genes because a gene model can contain 

more than one revision. 
3
Genes for which the revision(s) include sequence errors or mutations. 

4
Exons with a different start and/or end coordinate when comparing both gene models. 

5
Exons incorporated in only one of both gene models (not in the ABFGP model/only in the ABFGP model). 

6
Omitted and additional exons in recognized false gene splits and fusions were not counted. 

7
(Large) intron in one gene model, split into two smaller introns with intermediary (small) exon in the other 

gene model. 
8
Introns with a different donor and/or acceptor site when comparing both gene models. 

9
Stopless 3n introns incorporated in only one of both gene models (not in the ABFGP model/only in the ABFGP 

model). 
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Discussion 

The ABFGP method accurately predicts intron-exon structures of protein-encoding genes 
in fungi 

The ABFGP method can accurately re-annotate the intron-exon structure in a gene-by-gene 

fashion when a gene locus is provided with sufficient informants. GeneMark-ES was chosen as a 

state of the art ab initio gene predictor, and we have shown that the ABFGP method improves 

the quality of the gene models. This is explained by a higher precision (Table 1), which means 

that a lower number of false positives are reported by ABFGP. Indeed, in general, evidence- or 

alignment-based methods are less prone to wrongly assign additional exons [3], because they 

are only predicted when supported by informants. Predicting introns in compact genomes with 

numerous small introns is challenging [5], yet ABFGP achieves both a high sensitivity (91.2%) and 

precision (97.3%) (Table 1). This is achieved by exploiting abundantly occurring intron presence-

absence patterns [19]. SEs and/or DMs can be confidentially recognized as discontinuities when 

compared with exonic sequences of informant genes. Finally, lack of synteny in distantly related 

fungi facilitates recognition of false gene fusions, which is a frequently observed error made by 

ab initio gene predictors [5,16]. Adjacent genes with the same orientation are prone to be falsely 

fused to the target gene, but this is minimized in the ABFGP method because of the shuffled 

gene order in informant genomes. Whole-genome alignment-based gene prediction 

benchmarked on a test set of 1,483 genes from two strains of C. neoformans achieved 88% and 

89% exon sensitivity and precision, respectively, resulting in an overall gene sensitivity of ~60% 

[6], which is low considering the high conservation between the two genomes. This shows that 

the gene-by-gene approach by the ABFGP method is more powerful, even by making use of 

informant genes from evolutionary distant fungal species. The benchmark test showed uniform 

performance on unigenes from ten selected species (Additional file 4). Yet, this performance 

was, in case of D. septosporum, achieved with generic PSSMs that were not derived from its own 

splice sites. Species-specific parameterization of gene properties was indicated as crucial for the 

performance of ab initio supervised [4], unsupervised [5] as well as the alignment-based gene 

prediction methods [6]. We speculate that in the ABFGP method, the number of informants 

compensates for the absence of species-specific parameterization. 

ABFGP as a genome-wide annotation assessment tool 

Between 7,205 and 8,270 gene models of six fungal genomes were automatically assessed by the 

ABFGP method. Between 1,724 and 3,505 (on average 2,480) of these gene models were 

proposed to be incorrect and needed revision. A more stringent indication of correct revisions is 

obtained by counting only those revised gene models that were labelled ‘ok’ (Table 2), corrected 

for the observed error rate of the ABFGP method (based on 79% gene sensitivity). This yields an 

estimated revision of between 1,362 and 2,769 gene models for each fungal species. These 

numbers are in the same range as those obtained in a recent genome-wide re-annotation effort 

of the F. graminearum genome, which was based on predictions by a suite of gene predictors, 

using expression data and followed by extensive manual curation [16]. In that case, 1,770 gene 

models were revised, 691 new gene models were added and 286 gene models were removed. 

Yet, a recent study using RNA-Seq data revised another 655 gene models [17], showing that the 

quality-improving manual curation effort was not yet exhaustive. Their analysis [16] and ours 

independently show that thousands of genes are still wrongly annotated in gene catalogues of 

many published fungal genomes. Interestingly, the same types of revision were reported (false 
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gene splits and fusions, novel introns and a decrease in average intron length) as those proposed 

by the ABFGP method. 

Types of revision are often related to the annotation pipelines used (Table 2). For example, 

inclusion of new exons represents a rare class of revisions, except in the two genomes that were 

annotated at the BROAD institute. In contrast, prediction of too many stopless 3n introns was 

observed in the genomes of M. fijiensis and Z. tritici that were sequenced at the JGI. The lowest 

number of revised gene models was proposed for C. fulvum and D. septosporum, which 

represent the most recently sequenced and independently annotated genomes [20]. We 

speculate that this might reflect the steady increase in accuracy of ab initio gene prediction 

software. In this study six different fungi from three distinct phylogenetic classes were re-

annotated, using informants from five classes of Ascomycota and two unrelated Basidiomycota. 

This shows that the ABFGP method is species-independent and can be applied to a wide variety 

of fungal genomes. 

Genome-wide re-annotation by the ABFGP method did not capture the complete gene 

catalogues (Table 2) which is mainly due to the stringent criteria that were chosen to obtain the 

most likely orthologous informant genes (see Methods). This effect is most obvious for 

informant genes obtained from poorly annotated genomes. Performance for those genes can be 

improved, besides lowering this threshold, by expanding beyond using annotated genes only. An 

informant locus can be any genomic region that has ample sequence similarity to the target 

protein or locus. TBLASTN or TBLASTX could be used to detect loci that failed to be recognized 

and annotated as protein-coding genes or were poorly annotated (see Figure 1). Loci that are 

obtained directly from a (non-annotated) genomic sequence could be used as an additional 

resource for informants that would simultaneously increase the number of eligible target genes 

and prediction performance of ABFGP. The reverse strategy could also be employed by using the 

ABFGP method to generate de novo gene models in the target genome that lack predicted gene 

models but have significant sequence similarity to predicted proteins in other species. However, 

a general limitation of de novo evidence-based gene prediction, including the ABGFP method, is 

that annotation of species-specific or fast evolving genes is not possible by any prediction 

method. The ABFGP method follows an alternative approach to the various other ensemble 

predictors, because it derives its evidence directly from genomic informant sequences. 

Moreover, it proposes revised gene models that include SEs and/or DMs. This makes the ABFGP 

method complementary to other ensemble predictors, because these occur frequently in the 

gene catalogues of these fungal genomes [24]. 

Sequence errors and disruptive mutations in fungal genes 

Presumed inconsistent gene models were revised in 70 to 83% of all cases (Table 2), of which on 

average 55% were labelled by the introspection procedure as ‘ok’ for all introns and exons. 

Among these revisions was an unexpected high number of gene models containing SEs and/or 

DMs. Because ab initio gene prediction software does not allow in-frame stops or frame-shifts 

causing indels, (pseudo)genic regions with strong coding signals will often be predicted to be 

truncated or split gene model(s). Of the six studied fungi, most revisions were proposed for B. 

cinerea, likely because its Sanger sequenced genome assembly is supported by 4.5× coverage 

only [21], and its annotation was performed several years ago. Recently, resequencing of B. 

cinerea using Illumina, supplemented with some additional small Sanger reads, resulted in a new 

assembly with 50× coverage [25]. This new sequence not only revealed 31,275 SEs (personal 

communication Dr. Martijn Staats), but also a considerable number of assembly errors in the 
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original reference sequence, of which many were located in coding regions that contained 

annotated, yet apparently fragmented genes (personal communication Dr. Jan van Kan). This 

could be an explanation for the higher frequency (2.0% versus 0.4-1.2% for the other five fungi, 

Table 2) of abandoned executions by the ABFGP method. However, a considerable fraction of 

inconsistencies observed in coding regions were confirmed by resequencing, indicating that they 

were not SEs but true DMs. Additional studies on DMs in these six fungal species suggest that 

pseudogenization is very common in fungi [24]. Our results show that many fungal gene 

catalogues still contain numerous unidentified truncated and erroneous gene models due to SEs 

and/or DMs, that are readily detected by the ABFGP method. 

Introspection of proposed gene model revisions 

The introspection module for assessing gene model correctness is a useful extension of the 

ABFGP method as it helps to prioritize gene models that still need manual curation. For the six 

fungal genomes, between 3,942 and 5,505 genes were suggested to not require additional 

manual curation (Table 3). Based on the benchmarked performance of the introspection 

procedure using the unigene dataset, the error rate of genes incorrectly labelled as ‘ok’ is 

estimated to be 12.9%. This accounts for only 500 to 700 models out of 4,000 to 5,500 that 

contain errors. For gene models that were recogni ed as ‘doubtful’, the ABF P method provides 

a GFF-track that shows the doubtful parts of the predicted gene model that require manual 

curation. However, the introspection module still needs further improvement because 20.6% of 

the gene models is incorrectly labelled: 12.9% is labelled as ‘ok’ but do contain (small) errors and 

7.7% is labelled as ‘doubtful’ whereas the gene models are correct. Lowering the number of false 

positives can possibly be achieved by including ab initio gene model prediction in the ABFGP 

method, which would allow better detection of species-specific variation of genic regions. This 

would further increase the efficiency of the ABFGP method as an automated and accurate 

method for gene model curation. 

Conclusions 
 

Availability of an accurate gene catalogue of an organism is a prerequisite and starting point for 

functional analyses of its genes. Obtaining such a catalogue with minimal manual input is still a 

major challenge. The ABFGP method is a useful tool to integrate into existing gene annotation 

pipelines because it can assess and improve gene models with great accuracy in a fully 

automated manner. The concept of gene-by-gene alignment-based gene prediction exploits the 

availability of dozens of sequenced fungal genomes, which is particularly useful for annotating 

novel genomes of these plastic organisms. The possibility of the ABFGP introspection procedure 

at the gene and intron-exon level helps to decrease the number of gene models that still require 

manual curation. Because fungal genome sequencing is undertaken at an accelerating pace [1], 

both quality and number of informant gene loci are expected to increase in the coming years, 

which will disclose more target gene loci in genomes and also increase the efficiency and 

reliability of the ABFGP method. 
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Methods 
 

Sequences, annotations and third party software used 

Genomes, proteomes and annotations of 29 fungal species were downloaded from the Fungal 

Genome Initiative of the BROAD Institute [2] and the Fungal Genomics Program of the Joint 

Genome Institute (JGI) [1] (Additional file 1). Available unigenes from ten fungal species were 

downloaded from the JGI and The Gene Index Project (http://compbio.dfci.harvard.edu/tgi/). 

The ABFGP method uses several third party applications: BLAST 2.2.8, ClustalW 2.0.12, HMMER 

2.3.2, SignalP 3.0, TMHMM 2.0, transeq, getorf and tcode from EMBOSS 6.2.0. 

 

Full-length unigenes 

Datasets of assembled unigenes (Additional file 1) were aligned to their genomes using 

GeneSeqer (October 2005) and for each unigene the obtained intron-exon structure of its coding 

sequence was compared to its annotated gene model. For benchmarking the ABFGP method 

only those unigenes that were full-length were selected. 

 

Informant selection 

An all-versus-all similarity matrix was created between all proteins from the 29 predicted 

proteomes using BLASTP. From this matrix, informant proteins from different fungi were 

selected for each target protein by applying the following criteria: the protein must represent (i) 

the bi-directional best hit (BDBH) in the informant’s proteome, (ii) the alignment must span at 

least 70% of the length of both target and informant protein, (iii) the relative difference in length 

between target and informant protein must be below 50% (calculated from ii) and (iv) the 

alignment‘s bitscore between target and informant protein must be at least 10% of the bitscore 

of the proteins when compared to themselves. As a final criterion, at least four informant 

proteins must be available for a target protein, and the total number of informants was limited 

to the 19 most similar informants (based on bitscore). This dataset of genes eligible for ABFGP is 

referred to as BDBH. A second category was created by lowering the requirement of length 

coverage to 25% and increasing length difference to 300%, followed by filtering for target 

proteins that were linked to either consistently longer or shorter informant proteins. Consistent 

protein length variation putatively indicates species-specific variation or that the corresponding 

gene model contains major errors (this dataset is referred to as GME). For both categories, 

target and informant proteins were loaded into ABFGP as DNA sequence of their genomic locus 

flanked by an additional 1.5 kb of sequence on both sides of the gene’s start and stop codon. 

Unigenes aligned to these gene loci were taken along as additional informants. In the benchmark 

that uses unigenes, informants were selected only by the BDBH approach and full-length 

unigene data aligned to the target gene locus were discarded; the parameters `–abinitio` and `–

benchmark` were used to discard the unigene of the target locus and annotated gene models as 

hints. In all benchmark analyses, sensitivity and precision are calculated according as described 

by Picardi and Pesole [3], in which specificity is an alias for precision. 
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Position Specific Scoring Matrices of genic elements 

Definitions of donor site, acceptor site, branch point and polypyrimidine tracks were chosen 

according to [18]. Generic fungal PSSMs (Additional file 2) for the canonical donor (n = 571,185), 

the non-canonical GC donor (n = 2,428) and the canonical acceptor (n = 576,021) were derived 

from all splice sites without any nonambiguous nucleotide in 25 annotated genomes (excluding 

the annotations of Cladosporium fulvum, Coccidioides posadasii, Dothistroma septosporum, 

Nectria haematococca and Trichoderma atroviride, which were added as target and/or 

informant species in a later stage of the analyses). 

 

Access to the method and data 

A technical explanation of the ABFGP method, and its GFF visualization is provided in Additional 

file 2. The source code of the ABFGP method is available (see Availability and requirements). 

Other datasets are available upon request by the corresponding authors: the complete list of 

unigene identifiers used for the benchmark analyses (.xls), the predicted gene models from the 

benchmark that uses unigenes (GFF files) and the genome-wide re-annotation of the six fungi 

(fasta and simplified GFF files). 

 

Availability and requirements 

Project name: ABFGP 

Project home page: https://github.com/atevanderburgt/ABFGP 

Operating system: Linux, Unix Programming language: Python 

Other requirements: Python 2.6 or higher Licence: GNU GPL 

Any restrictions to use by non-academics: None 
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Additional files 
 

Additional file 1: Fungal genomes used for alignment-based fungal gene prediction. Fungal genomes and their 

phylogeny used in this study. 

 

Additional file 2: Explanation of the ABFGP method. In-depth explanation of the ABFGP method. 

 

Additional file 3: Determination of a dataset from ten fungi for benchmarking the ABFGP method. 

Determination of a dataset of 6,965 experimentally validated genes models from ten fungal genomes for 

benchmarking the performance of the ABFGP method. 

 

Additional file 4: Benchmarking results of ABFGP performance. Benchmarking results of ABFGP performance 

on 6,965 experimentally validated gene models from ten fungal species. 

 

Additional file 5: Rank of species providing informant gene loci used for the six re-annotated gene catalogues. 

Top three and bottom two species that provided the highest number of informants for the re-annotation of the 

gene catalogues of six fungal species. 
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Summary 
Pseudogenes are genes with significant homology to functional genes but contain disruptive 

mutations (DMs) leading to production of non- or partially functional proteins. Little is known 

about pseudogenization in fungi. Here we report on identification of DMs causing pseudogenes 

in the genomes of the fungal plant pathogens Botrytis cinerea, Cladosporium fulvum, 

Dothistroma septosporum, Mycosphaerella fijiensis, Verticillium dahliae and Zymoseptoria tritici. 

In these fungi we have identified 1740 gene models containing 2795 DMs obtained by an 

alignment-based gene prediction method. The contribution of sequencing errors to DMs was 

minimized by analyses of resequenced genomes to obtain a refined data set of 924 gene models 

containing 1666 true DMs. The frequency of pseudogenes varied from 1 to 5% in the gene 

catalogues of these fungi, being the highest in the asexually reproducing fungi C. fulvum (4.9%), 

followed by D. septosporum (2.4%) and V. dahliae (2.1%). The majority of pseudogenes do not 

represent recent gene duplications, but members of multi-gene families and unitary genes. In 

general there was no bias for pseudogenization of specific genes in the six fungi. Single exception 

are those encoding secreted proteins including proteases which appeared more pseudogenized 

in C. fulvum than in D. septosporum. Most pseudogenes present in these two phylogenically 

closely related fungi are not shared suggesting that they are related to adaptation to a different 

host (tomato versus pine) and lifestyle (biotroph versus hemibiotroph). 

Introduction 
Pseudogenes show homology to functional genes, but contain disruptive mutations (DMs) 

leading to non- or partially functional proteins [1]. A pseudogenization event caused by a single 

DM can result in a premature stop codon, frameshift, defective splice junction or distortion of 

regulatory sequences required for transcription [1], [2]. Similarly, a transposon insertion 

dramatically alters gene continuity, but also represents a single DM event leading to 

pseudogenization. Most eukaryotic pseudogenes are disabled copies of duplicated parental 

genes [3] and their majority will eventually disappear, while some will evolve new functions and 

might become fixed in an organism [4]. Unitary pseudogenes are single copy genes that may 

become non-functional through loss-of-function (LOF) variation caused by various types of 

mutations [5],[2]. A residual biological function might develop for genes encoding multi-domain 

proteins that have lost only one or a few of their functional domains. However, when a lost 

domain in a unitary pseudogene is essential and is not compensated for by another protein, the 

LOF variant will affect the performance of an organism [2]. LOF variants and unitary 

pseudogenes have been reported to cause several inheritable human diseases [2]. However, in 

some cases an organism might also profit from pseudogenization as for pathogens and 

commensals that need to adapt and co-evolve with their hosts.  

When only few DMs are present, pseudogenes still bear all hallmarks of a protein-encoding gene 

and ab initio gene prediction software will likely predict gene models at these loci, also in the 

case of absence of splice sites or presence of a premature stop. Therefore, DMs will often cause 

erroneous gene model predictions. This is also true for sequence errors (SEs) in genomic 

sequences that introduce in-frame stops by erroneous base calling or distortion of reading 

frames by insertions or deletions (indels). Thus, SEs can cause incorrect assignment of DMs and 

incorrect assignment of pseudogenes that contain them [5]. 
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The extent of pseudogenization in (plant pathogenic) fungi has not been studied on a whole 

genome scale yet, although numerous reports describe individual genes that were subjected to 

pseudogenization. Selection pressure imposed on plant pathogenic fungi by plant disease 

resistance genes has led to rapid development of pseudogenes of which the parental genes 

encode effectors that are recognized by matching resistance gene-encoded receptor-like 

proteins [6],[7]. Repeat-induced point mutations (RIP) can cause pseudogenization by 

introducing premature stop codons by C to T and G to A transitions. RIP occurs in sexually active 

fungi mainly belonging to the Ascomycetes, where it was first discovered in Neurospora crassa 

[8]. Genes directly adjacent to repeats are at risk for being pseudogenized when RIP activity 

slightly protrudes the repeat locus boundaries. This has been shown in the oil seed rape 

pathogen Leptosphaeria maculans where pseudogenization of the AvrLm1 effector gene is 

caused by RIP [9]. 

Here we report on identification of DMs causing pseudogenes in the fungal plant pathogens 

Botrytis cinerea, Cladosporium fulvum, Dothistroma septosporum, Mycosphaerella fijiensis, 

Verticillium dahlia and Zymoseptoria tritici. From these six fungi we have identified many DMs 

obtained by an alignment-based fungal gene prediction method [10]. The frequency of 

pseudogenes was highest in in the gene catalogues of the phylogenetically related C. fulvum 

(4.9%) and D. septosporum (2.4%). There was no clear bias for pseudogenization of specific 

genes in these two fungi except for those encoding secreted proteins including proteases and 

genes involved in production of secondary metabolites like dothistromin. The biotrophic tomato 

pathogen C. fulvum shares many genes with the hemi-biotrophic pine pathogen D. septosporum, 

but the gene set affected by pseudogenization in the two fungi is not shared. A possible role of 

pseudogenization and eventually gene loss in adaptation to a different hosts and lifestyle is 

discussed. 

Results 
 

The genomes of C. fulvum and D. septosporum have recently been released [11]. The Alignment-

Based Fungal Gene Prediction (ABFGP) method [10] was applied to six fungal genomes in order 

to identify disruptive mutations (DMs) that would cause pseudogenization. Gene models 

predicted by ABFGP represent exons which are chained by both introns and DMs. The ABFGP 

method recognized DMs in genes which resulted in frame shifts (non-3n indels) or would lead to 

an in-frame stop codon when compared with homologous informant genes from several 

different fungi lacking the DMs. In multiple protein sequence alignments, the DMs are 

recognized as extension of conservation (i) throughout annotated introns, (ii) upstream of 

annotated start codons or (iii) downstream of annotated stop codons (Figure 1). In all cases, high 

sequence similarity is shared with corresponding exonic parts of informant genes. Predicted DMs 

coincided predominantly with incorrectly predicted introns (1a,1c), truncated predicted proteins 

(1a,1b) and rarely in a single gene splitted into two gene models (1c). 
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Figure 1: Examples of ab initio-predicted gene models that should have been designated as 

pseudogenes according the ABFGP method. 

Three samples of GeneMark-ES- predicted gene models (blue) compared with ABFGP-predicted [10] 

pseudogene models (cyan) containing disruptive mutations (DMs, marked red). DMs are labelled as insertion, 

deletion or in-frame stop. Available EST data were manually annotated as CDS (grey) or UTR (orange). 

Cf195670: gene encoding an unknown protein. Cf190330: gene encoding an oxidoreductase. 

Cf190614/Cf190615: gene presumably encoding a glycosyl hydrolase. The genes are taken from the gene 

catalogue of Cladosporium fulvum (de Wit et al., 2012). Five randomly chosen blastx similarities (brown) against 

proteins from the nr and Trembl database indicate approximate coding regions and in all cases support the 

pseudogene model extensions and the false gene split for Cf190614 and Cf190615. 

Table 1. Biological properties, genome sizes and gene content of six fungal species. 

Species Mode of 

reproduction 

Life style Size 

(Mb) 

Genomic 

coverage 

(fold) 

Refe 

rence 

No. of 

genes 

Studied 

genes 

Botrytis 

cinerea 

Sexual Necrotroph 43.4 4.5 [34] 16448 8504 

Cladosporium. 

fulvum 

Asexual 
1
 Biotroph 61.1 21.1 [11] 14127 7575 

Dothistroma. 

septosporum 

Asexual 
2
 Hemi-biotroph 31.2 34.2 [11] 12580 8091 

Mycosphaerella 

fijiensis 

Sexual Hemi-biotroph 74.4 7.1 JGI
 4

 10313 7285 

Verticillium 

dahliae 

Asexual 
3
 Hemi-biotroph 34.4 7.5 [35] 10535 8362 

Zymoseptoria 

tritici 

Sexual Hemi-biotroph 40.3 8.9 [36] 10952 7904 

1
 sexual stage unknown (Thomma et al., 2005; Stergiopoulos et al., 2007) 

2
 For D. septosporum, both mating types have been reported, but reproduction is predominantly asexually [17]. 

The sequenced D. septosporum NZE10 was isolated from a population in New Zealand that contains only one 

mating type and only reproduces asexually since its introduction in the 1960s. 
3
 For V. dahliae, both mating types have been reported, but reproduction is predominantly asexually (Usami et 

al., 2009). 
4
 Unpublished; http://genome.jgi.doe.gov/Mycfi1/Mycfi1.home.htm 
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Genes with predicted disrupted mutations. 

Around 8,000 predicted gene models for each of the six selected fungi were assessed by ABFGP 

[10] using informant genes from up to 28 different fungal species (Table S1, see Supporting 

Information). Biological properties and genome statistics of the six fungi belonging to the class of 

Ascomycetes are shown in Table 1. From this data set, we retrieved the gene models with 

predicted DMs resulting in a subset of 1713 genes (ranging from 68 to 567 affected genes per 

species) containing 2762 DMs in total for the six fungal species. 

The number of SEs occurring in sequenced genomes is expected to be inversely related to 

genome coverage. This renders the prediction of DMs in Z. tritici, V. dahliae, M. fijiensis and B. 

cinerea (in decreasing order of genome coverage) more unreliable than in the genomes of C. 

fulvum and D. septosporum, which have been sequenced using next generation sequencing 

techniques at 21-fold and 34-fold coverage, respectively [11]. From those genomes with low 

coverage DMs that could not be confirmed by resequencing (or sequencing related isolates) 

were scored as incorrect and accordingly were removed from the DM data set (Method S1, see 

Supporting Information). This accounted for 39 (34%), 453 (54%), 105 (46%) and 363 (72%) SEs, 

in the four fungi which indeed correlate with sequence coverage. A 100nt window surrounding a 

predicted DM in C. fulvum was inspected in the genome assembly for coverage, correct base 

calling and presence of polypyrimidine tracts. No indication for sequence errors was observed 

(data not shown). This refinement yielded a final set of 1.662 presumed true DMs in 924 genes 

which were used throughout this analysis (Table 2). The predicted ancestral protein products of 

the 924 genes are provided in Datafile S1 (see Supporting Information).  

Table 2. High quality set of 1.666 presumed true disruptive mutations (DMs) in 924 genes. 

Species All 

DMs 

Genes with 

DMs 

Genes (%) Substitutions Indels 

Botrytis cinerea 130 82 1.0 66 64 

Cladosporium. fulvum 565 372 4.9 256 309 

Dothistroma. septosporum 497 194 2.4 247 250 

Mycosphaerella fijiensis 97 60 0.8 47 50 

Verticillium dahliae 308 173 2.1 121 187 

Zymoseptoria tritici 69 43 0.5 34 35 

Total 1666 924  771 895 

 

As DMs recognized by ABFGP are located in exons of their functional homologs, we conclude 

that DMs are present in mature mRNAs and not in the introns. For five out of six of the studied 

fungi we aligned available unigene data to their genomes to verify whether predicted DMs 

overlapped with exons or introns (Table S2, see Supporting Information). Many of the identified 

pseudogenes appeared to be expressed at 72% and 74% for C. fulvum and D. septosporum, 

respectively. In total 572 DMs were covered by ESTs confirming that they occurred in exons. In 

all cases where a DM was overlapping with a predicted intron (like the first deletion in Cf195670 

in Figure 1), EST data indicated absence of splicing. Only eleven DMs (1.9%) matched to introns 

and are therefore wrongly predicted as DMs. The latter number reflects the false discovery of 

DMs by ABFGP. Interestingly, three out of these eleven wrongly predicted DMs matched to 

alternatively spliced transcripts with intron retention around the DM site. 
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Although examination of unigene data indicated at least 98% accuracy in appointing DMs by 

ABFGP, we decided to closer examine and experimentally confirm several of them. DMs were 

not chosen at random, but all predicted DMs in a particular class of genes in C. fulvum, namely 

secreted proteases, were selected. Five protease genes with predicted DMs (Figure 2) were 

resequenced in the type strain and in six additional isolates of C. fulvum originating from 

different parts of the world (Table S3 and S4, see Supporting Information). All DMs were 

confirmed and appeared identical in all seven isolates analyzed: two collected in The 

Netherlands , two collected in Cuba and two collected in Japan. Seven out of eight DMs 

coincided with introns predicted by GeneMark-ES [12], which all were in conflict with observed 

expression data. This suggests that the predicted introns are incorrect and represent DMs. To 

validate this, cDNA libraries from the C. fulvum sequenced reference strain (CBS131901) grown 

in different conditions were analyzed (Table S3, see Supporting Information). The results 

confirmed that, except for Cf189824, all genes were clearly expressed and in none of the tested 

growth conditions support for splicing of any of the wrongly predicted introns was observed 

(data not shown). For the second DM leading to protein truncation of Cf186241, the cDNA 

covered the complete ancestral protein, suggesting that the parental gene locus once produced 

a functional transcript. All genes encode proteins with crucial functional domains interrupted by 

or downstream of the first encountered DM (Figure 2). Based on these results we conclude 

thatnone of them produce mRNAs that can be translated in a functional protease. 

Analysis of 1.662 disruptive mutations in 924 genes 

The 1662 DMs identified in 924 genes could be subcategorized as nucleotide substitutions (46%) 

and indels (54%) (Figure 3a). Indels were based on the DNA sequences of informant genes 

estimated to represent nucleotide deletions (30%) and nucleotide insertions (24%). The 

frequencies of these subcategories appeared fairly similar for the different species; they varied 

from 39 to 50% for substitutions (Figure 3b). The point mutations leading to the stop codons 

TAG, TGA and TAA accounted for 49, 27 and 23% of in-frame stops, respectively (Figure 3c). 

These frequencies are as expected based on the notion that transitions occur more frequently 

than transversions and observed codon usage in C.fulvum and D. septosporum (Method S2, see 

Supporting Information). We conclude that the observed type of mutations result from random 

DNA mutations. Remarkably, only fourteen pseudogene models contained long stretches of N-

nucleotides which might represent repetitive sequence due to inserted transposons as will be 

discussed later. 

Pseudogenes with DMs are evenly distributed over the genome. 

If transposon insertion or repeat-induced point mutation (RIP) would play a significant role in the 

creation of pseudogenes, they would occur more frequently in direct vicinity of repeats that 

might have undergone RIP. Other biased genomic distributions of pseudogenes could point to 

preference of specific chromosomes, specific parts of chromosomes or gene clusters. Only 105 

(11%) of the pseudogenes are located within a distance of 1-kb of a repeat or scaffold end 

(Figure S1, see Supporting Information), and only 32 pseudogenes (3.4%) are located close to 

repeat areas that have undergone RIP (Figure S2, see Supporting Information). Only 14 

pseudogenes embedded a repeat within their coding sequence (Datafile S1, see Supporting 

Information), which represent most likely genes inactivated by transposon insertion. On average, 

pseudogenes were 26.3-kb apart from repeats, and for the extremely repeat-dense C. fulvum 

genome [11] the average distance was reduced to 14.5-kb. Therefore we conclude that presence 

of repeats and RIP activity were of minor importance on the evolution of pseudogenes genes 
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that we have studied here. The pseudogenes did not only lack a positional bias towards repeats, 

also no general trends for chromosome enrichment neither a positional enrichment towards 

other pseudogenes could be observed. In general, pseudogenes are evenly distributed over the 

chromosomes of Z. tritici and D. septosporum.(Table S5 and S6, see Supporting Information). No 

enrichment on the dispensable chromosomes of Z. tritici was observed. 

 

Figure 2: Pseudogenization of genes in Cladosporium fulvum encoding secreted proteases. 

Gene models and predicted PFAM domains (purple) of five pseudogenized secreted proteases of Cladosporium 

fulvum;.for explanation of colours and symbols see Figure 1. For Cf192067, its fourth exon exon is incorrectly 

predicted by ABFGP. For Cf189824, an additional 3’ exon is predicted by high-confidence sequence alignment 

to informant genes (data not shown). 

 

Figure 3: Disruptive mutations (DMs), type of DMs and their frequency. 

A. Numbers of DMs caused by substitutions (black), insertions (dark grey) and deletions (light grey) after 

removal of sequencing errors in the six different fungi. B. The frequency of DMs (%) caused by substitutions, 

insertions  and deletions in six different fungi. C. The frequency (%) of TAG (dark), TGA (white) and TAA (grey) 

in-frame stop codons observed in DMs representing substitutions from the six different fungi. 
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We observed a median distance of pseudogene per 147-kb, with the exception of C. fulvum, 

where this number was on average one pseudogene per 34.8-kb (Figure S3, see Supporting 

Information). The observed median and average inter-pseudogene distances indicate that 

pseudogenes do not tend to cluster together, although occasionally (nearly) adjacent gene pairs 

were pseudogenized. In C. fulvum and D. septosporum, the species with the most pseudogenes, 

in total 23 pairs of directly adjacent pseudogenes were observed (Table S7 and S8, see 

Supporting Information). This is slightly more than what could be expected based on chance only 

(data not shown); therefore all pairs were inspected for being member of a gene cluster. In the 

pseudogene-rich C. fulvum some clear examples of functionally related, adjacent pseudogenes 

were found: a quartet of four adjacent pseudogenes which are involved in carbohydrate 

metabolism (Cf186934- Cf186937) and a triplet that encoded a putative chitinase, amino acid 

transporter and phosphodiesterase/alkaline phosphatase (Cf191135-Cf191137), respectively 

(Table S8, see Supporting Information). 

A bias for pseudogenization of members of multi-gene families and secreted proteins 

For each gene and pseudogene, the (global) amino acid similarity to their most similar protein-

encoding homolog in the complete protein catalogue was determined (Figure 4a). Additionally, 

the total number of potential homologs was counted to express membership and size of a multi-

gene family. In total 682 pseudogenes, representing 74% of all DM-containing pseudogenes, 

share 45% to 75% similarity with at least a single homologous, non-pseudogenized protein which 

is more than the genomic average. The majority of this class of pseudogenes has more than one 

homolog (Figure 4b) suggesting that multi-gene families seem more frequently affected by 

pseudogenization. When comparing the multi-gene family size of this class with all multi-gene 

families, no significant difference, increase nor decrease, in gene-family size could be observed. 

Genes encoding proteins that are less than 45% similar are less affected by pseudogenization 

(Figure 4a). Based on these findings, we have made an arbitrary distinction between recent gene 

duplicates (>75% similarity), single copy genes (<45% similarity) and genes that share between 

75 and 45% sequence similarity. Remarkably, the set of 924 pseudogenes is not enriched for 

recent gene duplications, as was expected based on the general observation made in other 

higher eukaryotes [3]. Figure 4a shows that recent gene duplications do not only occur rarely in 

the six studied genomes, but they are also not enriched for pseudogenes. At the proposed 

threshold of at most 45% similarity, 22% of all pseudogenes (8 to 62 per species and 203 in total) 

can be classified as single-copy, unitary pseudogenes [5],[2]. Pseudogenization of genes 

belonging to multi-gene families suggests that some members might be redundant. In contrast, 

pseudogenization of unitary genes have most likely a direct impact on the functional repertoire 

of an organism. 

Because the studied fungi are all plant pathogens which manipulate their host by means of 

secreted proteins, pseudogenization of genes encoding this class of proteins was studied in more 

detail. Between one and 51 genes encoding secreted proteins appeared pseudogenized (Figure 

5). On average secreted proteins account for around 10% of all proteins in these pathogenic 

fungi. In C. fulvum, pseudogenes encoding secreted proteins are significantly overrepresented, 

but are significantly underrepresented in M. fijiensis (but it should be noted that only small 

numbers of pseudogenes are present in the latter fungus). Remarkably, the percentage of 

pseudogenes that used to encode secreted proteins in C. fulvum was twice as high as that 

observed in its close relative D. septosporum. 
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Figure 4a: Pairwise amino acid sequence 

similarity of proteins encoded by pseudogenes 

and their most similar functional homolog 

present in the predicted proteome. 

Figure 4b: A bias for pseudogenization of 

multi-gene families 

Gene family size distribution of (pseudo)genes with 

at least a single functional homolog (between 45 

and 75% homology). All proteins (n=74,955) are 

compared to all pseudogenes (n=924) in six species 

in the specified range of similarity. Gene family 

membership threshold are set to a bit score of ≥ 200 

(blastp) and similarity ≥ 60% of the protein’s length. 

 

 

 

Figure 5: Pseudogenization of genes encoding 

secreted proteins in six different fungi. 

 

Frequency (%) of genes encoding secreted proteins 

(grey bars) and of pseudogenes encoding secreted 

proteins (black bars) for six different fungi. Total 

number of (pseudo)genes analyzed per species is 

shown on top of the bars. Two-tailed Z-test 

statistics were calculated 

(http://socscistatistics.com); at p<0.05 

pseudogenes encoding secreted proteins are 

significantly enriched in C. fulvum, whereas they 

are significantly underrepresented in M. fijiensis.

Figure 6: Protein truncation and number of PFAM 

domains lost by truncation caused by the first 5’ 

disruptive mutation (DM). 

 

Truncation of proteins is expressed as percentage 

of the total protein length; the number of PFAM 

domains lost by the first 5’ DM are indicated in a 

greyscale from 0 (white), 1, 2, 3 to  ≥4 (black). 
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Estimation of loss of function among the 924 genes with disruptive mutations 

A pseudogene can cause a loss of function (LOF), or a change of function of the encoded protein, 

but detailed functional analyses are required to draw reliable conclusions. To address this 

question by an in silico approach, we quantified protein length truncation and the number of lost 

PFAM domains which are located downstream of the most 5’ DM in the gene.(Table S9, see 

Supporting Information).The results are summarized in Figure 6. 824 of the encoded proteins 

(89%) are truncated by more than 50% or lost at least one functional domain. In contrast only 75 

proteins (8%) are truncated by less than 30% without having lost a single known protein domain. 

Based on these numbers, we assume that the vast majority of genes with DMs do no longer 

encode a functional protein, or a protein that no longer fulfils its ancestral function. 

Discussion 
 

The ABFGP method recognized many DMs in genes which resulted in frameshifts (non-3n 

insertions) or in-frame stop codons when compared with functional informant genes from fungi 

lacking these DMs. Closer inspection of four resequenced genomes showed that a large fraction 

of DMs appeared SEs. Genes in genomes sequenced with low coverage contain considerable 

numbers of SEs in regions of protein-encoding genes (B. cinerea, V. dahlia, M. fijiensis and Z. 

tritici) which hampered the correct assignment of gene models. Occurrence of thousands of SEs 

in the original reference genomes was independently shown in B. cinerea [13] (Method S1, see 

Supporting Information). This is likely also the case for many other fungal genomes that have 

been sequenced in the era of low coverage Sanger sequencing.  

Estimation of the extent of pseudogenes in fungi 

In this study we identified 924 pseudogenes in the gene catalogue of six different fungi, 

representing 0.5 to 4.9% of their annotated genes. This number is likely a strong 

underestimation of the total extent of pseudogenization in these fungi due to the necessity of 

and method chosen for sampling informant genes. In the following section evidence for 

underestimation is provided and discussed. The provided examples are all chosen from C. fulvum 

and D. septosporum, for which the prior knowledge of higher than expected levels of 

pseudogenization was used throughout the analyses of their genomes [11]. 

As a start, only 7300 to 8500 of the annotated genes per species have been searched for the 

occurrence of pseudogenization of genes that are shared among 28 fungi. Genes that were not 

eligible to ABFGP are highly divergent, short, clade- or species-specific like effector genes. Only 

few effectors are shared among fungi and most are species-specific, but they can also be subject 

to pseudogenization when selection is imposed. A clear example of pseudogenization of a 

species-specific effector is reported for the Avr2 gene of the tomato pathogen C. fulvum [14]. 

Other examples are the homologs of the C. fulvum effector proteins Ecp4 and Ecp5, which were 

identified as pseudogenes in D. septosporum due to presence of in-frame stop codons [11]. 

These pseudogenes were not identified in this study because of absence of close homologs in 

the gene catalogues of the 28 fungi used. 

Furthermore, DMs were called by ABFGP [10] in regions supported by strong sequence similarity 

to exons of informant genes. DMs in regions with poor similarity support, directly adjacent or 
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even in splice sites, translational start sites or promoter regions are not addressed by ABFGP, but 

their contribution to pseudogenization can be significant. An example is the key secondary 

metabolite (SM) pseudogene (Pks9) in C. fulvum [11], which was not detected in our study, 

because of a single in-frame stop codon only 16nt upstream of the donor sequence of its third 

(EST-supported) intron. 

Finally, when several DMs or dramatic DMs (e.g. transposon insertions) are present in a gene, 

gene prediction software is likely to predict a fragmented (like example three in Figure 1), highly 

truncated or even no gene model at all. This might account for a rather large number of genes, 

which is emphasized by failure of detection of six out of seven manually annotated key SM 

pseudogenes in C. fulvum [11]. Due to occurrence of DMs, Nps5 was predicted to be divided over 

two separate gene models; Nps7, Nps10 and Hps2 even over three separate gene models. Nps1 

is highly truncated, most likely by the transposon insertion (which concurrently marks the end of 

its contig), whereas Pks4 has several adjacent DMs which resulted in a predicted but not existing 

864nt intron. In all instances, recruitment of suitable informant gene loci failed for these 

(fragmented) gene models, explaining why the gene model was not to be among the assessed 

genes by ABFGP. 

In general, the (manual) annotation efforts invested in the gene catalogs of each of the six 

studied species varies significantly and might have affected the quality of the integral gene 

catalogue considerably, for instance by prior removal of obvious pseudogenes. This indicates 

that the practical delimitation to (somewhat properly) annotated gene models might have 

introduced a methodological bias in this study, resulting in failure of detection of pseudogenes 

that contain more or dramatic DMs, which is the most obvious category to be resolved by 

manual curation of a gene catalogue. To further investigate this issue, we decided for an 

additional experiment which compares the gene catalogs of closely related species. In a pairwise 

comparison, genes unique to one species can be the result of gene gains in that species, gene 

losses in the other or due to un-annotated genes because of pseudogenization [2]. Such an 

analysis was performed on our data set using the closely related Capnodiales species C. fulvum, 

D. septosporum and Z. tritici, and unambiguously identified 674 additional pseudogenes on loci 

lacking annotated gene models or containing misannotated fragments of longer genes (Method 

S2, Table S10, Datafile S2, see Supporting Information). In this pseudogene dataset, C. fulvum 

again stands out in terms of total number of pseudogenized genes. Among these genes were 

several (types of) pseudogenes that were expected. Approximately half of the pseudogenes are 

listed in the gene catalogue of these species, but as truncated, incorrectly predicted genes. 

Second, a small proportion was identified as being disrupted by repetitive sequence, which most 

likely represent transposon insertions and explains why they were not predicted as genes by the 

gene prediction software. A higher incidence of putative transposon insertion in C. fulvum 

compared to D. septosporum is likely correlated to the much higher repetitive content of the 

first The additionally identified pseudogenes do not alter the lower degree of pseudogenization 

in Z. tritici compared to C. fulvum and D.septosporum. Therefore, the initial observation that less 

genes are pseudogenized in sexual versus asexually reproducing fungi remains valid. 

Overall, we conclude that the actual number of pseudogenes in these six fungi is considerably 

higher than that described in this study as assigned by ABFGP [10]. The data set described here 

represents only a subset of pseudogenes that is listed in current gene catalogs. DMs and SEs 
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together account for a high error-rate in current gene catalogs, which hampers in silico 

comparative genomics analyses. 

Pseudogenes occur more frequently in asexually reproducing fungi 

Significant difference in the frequency of DMs occur in the six different fungi. The highest 

frequency of DMs was observed in the two related fungi C. fulvum and D.septosporum.These 

large differences in level of pseudogenization might be related to their mode of reproduction 

(Table 1). Species that, apart from asexual reproduction, reproduce also sexually like B. cinerea, 

M. fijiensis and Z. tritici show lower numbers of pseudogenes as compared to those that 

reproduce predominantly asexually like C. fulvum [15], [16] D. septosporum [17] and V. dahlia 

[18]. Deleterious DMs in sexually reproducing Ascomycetes can be either lost or restored after 

recombination and selection. It is assumed that haploid asexual fungi will initially adapt quicker 

to a new environment than sexually reproducing relatives. Pseudogenization of genes which are 

no longer required, not of advantage or even deleterious for a pathogen might enable it to 

quickly adapt to new environments including new host plants. 

The set of 924 pseudogenes that were identified in the six fungal genomes did not show a biased 

genomic distribution. The only exception to a random distribution over chromosomes are 

occasional (nearly) adjacent pseudogenes with related functions, suggesting that more than one 

gene of the same pathway was affected (Table S7 and S8, see Supporting Information). 

Unexpectedly, no preference for pseudogenes in vicinity of repeats, whether or not affected by 

RIP, was observed. A relation between repeats and pseudogenes/gene loss has been suggested 

in powdery mildew fungi due to retrotransposon insertions in the absence of RIP [19], while RIP 

activity in Leptosphaeria maculans clearly affected nearby located genes [9]. Also in fungi that 

are assumed to reproduce asexually, RIP signatures have been observed [20], as was the case in 

C. fulvum and D. septosporum [11]. This indicates that these fungi once were sexually active but 

lost their ability to reproduce sexually or sexual reproduction occurs only rarely [17]. Extensive 

RIP activity will dramatically affect continuity of a coding sequence and ab initio gene prediction 

will likely not predict a gene on a RIP-affected locus. Because the data set of 924 pseudogenes 

were retrieved from catalogues of predicted genes it is expected to be underrepresented for 

pseudogenes caused by RIP. The same holds true for genes inactivated by transposon insertion; 

indeed only fourteen gene models with putative transposon insertions were identified. The 

apparent underrepresentation of pseudogenes by transposon insertion was further addressed 

by the additional in silico experiment on the three Capnodiales species discussed before (Table 

S10, see Supporting Information), where a small number of additional pseudogenes of this type 

was identified. However, even when these additional pseudogenes are taken along, the 

contribution of transposon insertion to pseudogenization is of minor impact compared to indels 

and substitutions. 

Pseudogenes in multi-gene families and unitary pseudogenes 

Our analyses showed that fungal pseudogenes are not predominantly associated with recent 

gene duplications, but occur predominantly in multi-gene families. 74% of all pseudogenes have 

a closest homolog within the 45-75% similarity range and of these 70% belong to multi-gene 

families of at least 5 members (Figure 4b). One could argue that predominantly (partially) 

redundant genes become randomly pseudogenized. For example, high-throughput gene knock-

out studies in Schizosaccharomyces pombe [21],[22] showed that 17.5% of genes when knocked-

out caused a lethal phenotype. Most knock-out mutants gave no or weak phenotypes, 
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suggesting some level of functional redundancy for many genes. However, these conclusion can 

only be drawn when supported by ecological studies performed on populations enabling 

comparison the fitness of wild-type and knock-out mutants under different environmental 

conditions. Therefore, we expect that pseudogenization of members of multiple gene families is 

likely involved in subtle adaptations of fungi to different environmental conditions, whereas 

pseudogenization of unitary genes is expected to have more drastic effects on phenotypes 

including even beneficial ones when they would facilitate adaptation to a new environment. 

However, attributing pseudogenes in multi-gene family to mere redundancy is not supported by 

reported functional diversification in gene families. Proteases cluster into several gene families 

based on sequence similarity in their functional domain(s), yet have very distinctive substrate 

specificities (Monod et al., 2002, Hedstrom, 2002, Yike 2011). In Figure 4a, they fall in the class of 

sharing intermediary similarity to a non-pseudogenized homologue and putatively being 

member of a multi-gene family. Some but not all proteases have been reported to cause tissue 

necrosis and their pseudogenization might suppress this phenotype [23]. 

Pseudogenization of genes encoding secreted proteins and key secondary metabolite 
genes in C. fulvum might reflect host adaptation 

In C. fulvum genes encoding secreted proteins showed a higher frequency of pseudogenization, 

and among these were five secreted proteases. The eight DMs in these five genes were 

confirmed by various approaches. It is tempting to speculate that pseudogenization of genes 

encoding secreted proteases could be related to the lifestyle of C. fulvum. Many proteases are 

known to induce senescence and sometime cell death, which could facilitate some plant 

pathogenic fungi to kill plants and retrieve nutrients from necrotized or death cells. C. fulvum is a 

biotrophic fungus thriving in the apoplast in close contact with mesophyll cells of tomato leaves 

where it lives on nutrients released by the host either passively or induced by fungal effectors. 

Only at very late stages of infection host cells may collapse. The origin and the ancestor of C. 

fulvum is not known, but it is closely related to D. septosporum, a pine pathogen that behaves as 

a hemi-biotroph, killing host cells after a short biotrophic phase [11]. At proteome level they are 

remarkably similar and their genomes share extended regions of meso-synteny, which accounts 

for about 70% of all genes and facilitates robust inference of orthology. When comparing the 

complete pseudogene catalogues of both species, only 22 pairs of closest homologs are 

pseudogenes in both species (Table S11, see Supporting Information). In these pairs, not a single 

individual DM is shared (compare Supporting Information 4). Over 85% of the pseudogenes in 

either of the two species have non-pseudogenized closest homologs in the other species, of 

which many are indisputable orthologs based on presence in meso-syntenic areas. In a few cases 

(four and 23, representing 2 and 6%), the pseudogenized gene is absent in one of the two 

species. These 23 pseudogenes in C. fulvum could represent quickly diversifying genes, C. 

fulvum-specific gene gains followed by pseudogenization, or genes which have been lost in D. 

septosporum at an early time point after species divergence, and now might await the same 

faith in C. fulvum. Given the fact that those genes have easily recognizable closest homologs in 

many more distantly related Ascomycetes, the latter hypothesis seems most likely. 

These observations suggests that many, if not all, of the observed DM events leading to 

pseudogenization in C. fulvum and D. septosporum occurred post speciation. After occurrence of 

a first DM, the gene’s locus is expected to exhibit neutral evolution, until it is lost from the 

genome. A discrepancy between the speed at which neutral evolution takes place and the speed 

at which small genomic segments get lost might explain why relative large numbers of 



Chapter 4 

94 
 

pseudogenes can pile up in two genomes that recently speciated. Pseudogenization of some of 

those genes could provide an advantage to these fungi in adapting to a new host, and the lack of 

a sexual cycle could accelerate the process of adaptation for these haploid fungi. The effector 

genes Ecp4 and Ecp5, known to be involved in virulence of C. fulvum on tomato, are 

pseudogenes in D. septosporum [11]. Similarly, two crucial genes of the pathway that produces 

the toxin dothistromin during infection of pine by D. septosporum, are pseudogenes in C. fulvum 

[24]. Apparently selection pressure on loosing certain genes or reversely, the necessity to 

maintain certain genes is acting on a different gene set in these two fungi, which could reflect 

adaptation to a new environmental niche. We speculate that pseudogenization of genes 

involved in secondary metabolite production, secreted proteases and other damaging enzymes 

might be one of the reasons why C. fulvum might have been a hemi-biotrophic tree pathogen 

like D. septosporum but started to live as a biotroph when it became pathogenic on tomato. It 

would be interesting to determine whether removal of the stop codons in a number of these 

pseudogenized protease genes would make C. fulvum more aggressive and possibly also hemi-

biotrophic on tomato. Additionally, further research in the recent ancestry of C. fulvum and D. 

septosporum could determine the age of the pseudogenization events and therefor the speed at 

which pseudogenization takes place. 

This study not only supports the generally accepted fact that fungal genomes contain 

pseudogenes, it demonstrates that some actually have a larger number of pseudogenes than 

others and that many pseudogenes are still listed as bona fide genes in gene catalogues. 

Therefore, we argue for the need of providing fungal (functional) gene annotations not only as a 

gene catalogue but additionally with a pseudogene catalogue counterpart. Comparative 

genomics studies heavily rely on the predicted gene catalogue, but these can be hampered by 

the occurrence of pseudogenes that were failed to be identified. Moreover, the pseudogene 

arsenal of a species might still reflect an echo of the legacy of an earlier, at that point in time, 

optimal gene repertoire. Especially for plant pathogenic fungi, comparing several complete 

pseudogene repertoires might reveal interesting facts about their recent evolutionary past that 

could provide insight in their current host-specificity and pathogenicity. 

 

Experimental procedures 

Fungal genomes used in this study 

The genomes, proteomes, annotations and available unigenes of five fungal species were 

downloaded from the Fungal Genome Initiative of the BROAD Institute[25] [26] and the Fungal 

Genomics Program of the US Department of Energy Joint Genome Institute (JGI) [27] in 

collaboration with the user community. The data from the C. fulvum genome and transcriptome 

were generated at Wageningen University [11] and are also available on the JGI MycoCosm 

website [27]. 

Alignment-based fungal gene prediction  

Genes with predicted disruptive mutations (DMs) were obtained by genome-wide gene model 

assessment of six fungi with the Alignment-Based Fungal Gene Prediction (ABFGP) method [10]. 

Gene loci from 29 different fungi mainly belonging to the Ascomycetes, served as informant DNA 



Pseudogenization in pathogenic fungi might reflect their evolutionary past 

95 
 

sequences for alignment-based assessment of the genes in the six target genomes (Table S1, see 

Supporting Information). 

Distinguishing sequencing errors from true disruptive mutations 

SEs among predicted DMs were identified by comparing a 200nt window around each predicted 

DM with base calling in Illumina-based assemblies from Z. tritici strains STIR04_A26b and 

STIR04_A48b (62-fold versus 8.9-fold coverage of the reference genome Z. tritici IPO323) [28], V. 

dahliae strain JR2 (30-fold versus 7.5-fold coverage of V. dahlia VdLs.17 genome) [29], M. 

fijiensis strain CIRAD139a (25-fold versus 7.1 fold coverage of M. fijiensis CIRAD86 genome) and 

B. cinerea strain B05.10 (50-fold versus 4.5-fold coverage assembly of the same isolate) [13]. All 

DMs that could not be confirmed as truly occurring in the population of these fungi were 

removed from the DM data set (Method S1, see Supporting Information). Additionally, DMs that 

were discovered to be falsely predicted by analyses of EST data (11 DMs, Table S2, see 

Supporting Information) and gene models containing short, contiguous stretches of n-characters 

directly adjacent to DMs (7 DMs, data not shown) were removed. 

Determining closest protein homolog and gene family size 

For each protein, the closest homolog (in the proteome of the fungal species) was determined as 

the protein with the highest bitscore of concatenated alignments (blastp), requiring the 

alignment to span at least 60% of the length of both proteins. A simple estimation of gene family 

size was performed by counting number of proteins with a score of at least 200 bits, requiring 

the same alignment length. 

Third party software 

Predicted (pseudo-) protein sequences of the gene loci with DMs were searched for putative 

secretion signals using SignalP 3.0 [30] and known PFAM protein domains with InterproScan 

[31]. Unigenes were aligned to their genomes using GenomeThreader version 1.1.1.2 [32]. 

Confirmation of base calling and mRNA splicing in C. fulvum genes 

Five C. fulvum genes encoding secreted proteases with predicted DMs were selected for 

confirmation of genome base calling and intron splicing. The original sequences were obtained 

from the published genome of C. fulvum race 0WU (CBS131901) [11]. The sequences at and 

around a DM site were amplified with primers given in Table S3 (see Supporting Information). 

The presence of the DMs was analysed in six different C. fulvum isolates varying in geographical 

origin, race and mating type (Table S4, see Supporting Information). From C. fulvum CBS131901 

total RNA was isolated from mycelium grown under different in vitro and in planta conditions 

(Table S3, see Supporting Information) and the amplified cDNA fragments (using the same 

primer pairs) were evaluated for occurrence of splicing around the DMs. 

Repeat identification and RIP analyses 

Repeats were determined using mummer (-maxmatch -nosimplify) [33] as segments of at least 

250nt that are present in at least five copies in a given genome. RIP analysis was performed as 

described for C. fulvum and D. septosporum in de Wit et al. (2012). 
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Summary 
Spliceosomal introns are noncoding sequences that separate exons in eukaryotic genes and are 

removed from pre-messenger RNAs by the splicing machinery. Their origin has remained a 

mystery in biology since their discovery [1,2] because intron gains seem to be infrequent in many 

eukaryotic lineages [3,4]. Although a few recent intron gains have been reported [5,6], none of 

the proposed gain mechanisms [7] can convincingly explain the high number of introns in 

present-day eukaryotic genomes. Here we report on particular spliceosomal introns that share 

high sequence similarity and are reminiscent of introner elements [8]. These elements multiplied 

in unrelated genes of six fungal genomes and account for the vast majority of intron gains in 

these fungal species. Such introner-like elements (ILEs) contain all typical characteristics of 

regular spliceosomal introns (RSIs) [9,10] but are longer and predicted to harbor more stable 

secondary structures. However, dating of multiplication events showed that they degenerate in 

sequence and length within 100,000 years to eventually become indistinguishable from RSIs. We 

suggest that ILEs not only account for intron gains in six fungi but also in ancestral eukaryotes to 

give rise to most RSIs by a yet unknown multiplication mechanism. 

Results and Discussion 

Characterization of a New Type of Spliceosomal Intron that Is Able to Multiply in Unrelated 
Genes 

Spliceosomal introns are one of the key innovations of eukaryotes [1]. They are an important 

component of the eukaryotic gene structure mainly because they enlarge the proteome diversity 

by alternative splicing and regulate gene expression at the posttranscriptional level [11,12]. 

Canonical regular spliceosomal introns (RSIs) share GT/AG donor and acceptor sites that are 

required for their recognition and removal by the spliceosome [10]. Although most RSIs contain 

branch point sequences and polypyrimidine tracts involved in the splicing mechanism, the 

sequences of RSIs are usually not conserved [9,10,13]. Since their discovery, the origin of introns 

has remained a mystery to molecular biologists. Evolution of the eukaryotic gene structure 

seems to have been predominated by intron loss [4] and the theoretically calculated intron gain 

rates cannot explain the large number of introns in present-day eukaryotic genomes [14]. 

However, extensive recent intron gains have been reported in the microcrustacean Daphnia 

pulex [5], the fungus Mycosphaerella graminicola [6], and possibly in the green alga Micromonas 

pusilla [8] and the urochordate Oikopleura dioica [15]. These reports suggest that the number of 

introns in a given genome is not only subject to losses but also to substantial gains. In this study, 

we report on a particular type of spliceosomal introns that show a high level of sequence 

similarity and some reminiscence of introner elements found in Micromonas [8]. These so-called 

introner-like elements (ILEs) likely originate from multiplication of a discreet number of ancestral 

elements that are present in related fungal genomes. Although they are typical spliceosomal 

introns, ILEs are significantly longer and predicted to fold into more stable secondary structures 

than RSIs. Rigorous intron gain analyses in six fungal species revealed that the vast majority of 

gained introns are ILEs. By analyzing closely related fungi that diverged less than 100,000 years 

ago, we could show that the majority of newborn ILEs rapidly degenerate in length, sequence, 

and stability to become indistinguishable from RSIs. We propose that ILEs are the predecessors 
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of RSIs in these six fungal species. This multiplication mechanism might also be involved in intron 

gains in other fungi and possibly in ancestral eukaryotic lineages. 

 

Identification of Near-Identical Introns in Six Fungal Genomes 

Using a simple BlastN-based method, numerous introns with near-identical sequences could be 

identified in the intronome of the Dothideomycete fungus Cladosporium fulvum. Our analysis 

thoroughly excluded repeated sequences originating from repetitive elements, segmental 

duplications, or recombinant genes. This observation corroborates recent findings of near-

identical intronic sequences in the marine picoeukaryote Micromonas [8], the tunicate 

Oikopleura dioica [15], and the Dothideomycete fungus M. graminicola [6]. In Micromonas, such 

repeat sequences are located within introns and were called introner elements [8]. The analysis 

was extended to the intronomes of 22 additional Ascomycete fungi and one Basidiomycete. The 

use of hidden Markov models (HMMs) corresponding to near-identical introns resulted in the 

identification of 45 to 538 near-identical introns in six different fungi: C. fulvum, Dothistroma 

septosporum, M. graminicola, Mycosphaerella fijiensis, Hysterium pulicare, and Stagonospora 

nodorum. In each fungus, these introns could be grouped into one to eight different clusters, 

each likely originating from a single ancestral element that had been multiplied. Each cluster 

contains between 10 and 180 members. Thereafter, they will be called ILEs to distinguish them 

from introner elements found in Micromonas [8]. According to expressed sequence tag (EST) 

support in the different species, ILEs are introns that are spliced out (see Table S1 available 

online). Although the available EST data for some fungal species is limited, EST support for ILEs is 

slightly higher than for the entire intronome (Table S1). 

 

Figure 1. Introner-like 

Elements Originate from 

Common Ancestor Elements 

The four ILEs with highest HMM 

expect similarity of each 

Cladosporium fulvum cluster were 

aligned to construct a maximum 

likelihood phylogenetic tree. 

Identifiers contain ILE 

number|length (nt)|pairwise 

identity (%)|HMM expect 

similarity (%). ILE cluster number is 

indicated next to brackets. The 

midpoint rooting method was 

used to estimate the root of the 

tree. Only bootstrap values over 

50 are shown. Scale indicates 0.1 

substitutions per site. See also 

Figure S1 and Table S2. 
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ILE Clusters Share Common Origins in Several Fungal Species 

Phylogenetic analyses for each species showed that most ILE clusters are monophyletic clades, 

indicating that all elements of a given cluster share the same origin Figure 1; Figure S1). A 

similarity matrix suggests that most ILE clusters in M. graminicola are related to each other and 

that clusters mf04 and mf05 in M. fijiensis are related to cluster cf01 in C. fulvum (Figure S1). In 

addition, the closely related fungi C. fulvum and D. septosporum share three ILE clusters (cf04/ 

ds03, cf06/ds02, and cf08/ds04). These results indicate that ILE clusters present in different 

fungal species originate from the multiplication of a single ancestral element that was present 

before species divergence. Using HMMs to search the intronomes of closely related fungi not 

only showed that some of the identified ILE clusters contain additional members (mf04/mf05, 

cf05, cf06/ds02, mg05) but also revealed initially not identified shared clusters (Table S2). The 

intronomes of D. septosporum and Septoria musiva seem to contain less-conserved ILEs 

belonging to clusters cf07 and cf01/mf04/ mf05, respectively. These results argue for the 

presence of ancestral ILEs that cannot easily be detected in other fungal intronomes. 

 

ILEs Harbor All Hallmark Features of Spliceosomal Introns 

We characterized ILEs in more details to distinguish them from RSIs. Sequence analysis of all ILEs 

showed that they are genuine spliceosomal introns of which 99% contain canonical acceptor and 

donor sites (a representative example is given for C. fulvum in Figure 2A). In addition, 96% of all 

ILEs contain a predicted CURAY branch point sequence, 95% contain a 5´ polypyrimidine tract, 

and 76% contain both 5´ and 3´ polypyrimidine tracts, frequencies that are higher than those 

reported for fungal RSIs [9]. Introns that lack an identifiable branch point sequence likely contain 

another noncanonical sequence that can be recruited as a branch point. Indeed, many introns 

lacking an identifiable branch point sequence have EST support for proper splicing (Table S1). 

Similar to RSIs [16], ILE clusters with the highest number of members show a preference for 

insertion in AG/GY sites and in phase 0 of coding sequences. They do, however, show a slight 

bias for being present in the center of genes in contrast to RSIs, which are more frequently found 

at the 5´ end of genes (Figure 2B; Figure S2). The biased location of RSIs was reportedly due to 

intron losses that primarily occur at the 3´ end of genes [17]. Altogether, these hallmark features 

suggest that ILEs are model RSIs and, more importantly, they can be perfectly spliced by the 

spliceosome immediately after multiplication and insertion in a new location. 

 

ILEs Are Predicted to be More Stable than RSIs but Are Also Prone to Degeneration 

Although ILEs are model spliceosomal introns, they also have particular features that distinguish 

them from RSIs. Indeed, ILEs are longer than RSIs and show different length distributions with 

multiple peaks that correspond to the optimum lengths of different clusters (Figure 2C; Figure 

S2). In a given cluster, ILEs with the lowest identity are predominantly those showing sequence 

deletions (Figure S3). Further analyses confirmed a positive correlation between pairwise 

identity and length of all ILEs (Figure 3A). Substitutions and minor insertions are observed over 

ILEs’ full length, but deletions occur less often around the conserved branch point sequence at 

the 30 end (Figure 3B). This bias could be the result of selection pressure to retain splicing 

features. These observations suggest that ILEs may lose their ability to multiply due to 

degeneration in length and sequence. Although RSIs have some secondary structures that can  
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Figure 2. Characteristics of Introner-like Elements 

Each panel presents representative results obtained for ILEs from Cladosporium fulvum. Similar results were 

obtained for the five other fungal species. (A) Alignment and consensus sequence of selected ILEs. Identifiers 

are as shown in Figure 1. Colors show splicing elements typical of RSIs. (B) Distribution of RSIs and ILEs within C. 

fulvum genes. Genes were divided in four sections expressed as percentages. Number of RSIs and ILEs in each 

section was counted and expressed as a percentage of all RSIs and ILEs, respectively. (C) Length distribution of 

RSIs and ILEs from C. fulvum. Scale numbers on the x axis indicate the shortest length of 5 nt bins. See also 

Figure S2. 

facilitate splicing [12], the lower predicted  ibbs free energy (Δ ) of ILEs suggests a significant 

greater molecular stability (Figure 3C). Remarkably, the increase in Δ  values of ILEs correlates 

with their degree of degeneration, until Δ  values of RSIs are eventually reached (Figures 3A and 

3C). The low Δ  values of ILEs are explained by their predicted alignment-based secondary 

structures that often consist of three stem-loops containing many G-U pairs (Figures 4A and 4B). 

Consistent with the similarity matrix analysis, structure predictions for all M. graminicola ILE 

clusters suggest that they all have a common structure due to stretches of identical nucleotides 

(Figure 4B; Figure S4). Moreover, alignments of related ILEs revealed many compensatory 

mutations that conserve hairpin structures. Together, these observations argue for evolutionary 

constraints that preserve ILE secondary structures. We propose that they are an important 

feature because such predicted stable secondary structures are known for noncoding RNAs with 

specific functions [18]. Overall, our results strongly suggest that highly structured ILEs are likely 

mobile, but they are prone to degenerate mainly through deletions. They seem to gradually 

evolve to become RSIs that lost the ability to multiply and lack conserved predicted secondary 

structures. Thus, we hypothesize that RSIs might originate from ILEs. 
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Figure 3. Degeneration of Introner-like Elements 

(A) Correlation between pairwise identity and normalized length of all identified fungal ILEs. The gray scale 

indicates normali ed  ibbs free energy (Δ ). (B) Conserved, substituted, deleted, and inserted nucleotide 

positions within ILEs. ILE length was expressed as percentage and arranged in 5% bins. Numbers of conserved 

positions, substitutions, deletions, and insertions were counted in each bin and expressed as a fraction. 

Distribution is shown for all ILEs from Cladosporium fulvum, Dothistroma septosporum, Mycosphaerella 

graminicola, and Mycosphaerella fi iensis. (C) Mean and SD of normali ed Δ  values of all RSIs, ILEs with < 80%, 

and ILEs with R 80% pairwise identity from all six fungi. A non-parametric Kruskall-Wallis test was carried out 

(***p < 0.0001), followed by a Dunn’s pairwise comparison test at a = 0.05 significance level. See also Figure S3.  
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ILEs Account for the Vast Majority of Intron Gains in Six Fungi 

The proposed hypothesis for the origin of RSIs implies that recent intron gains in fungi are mainly 

the result of ILE multiplication. Previous studies suggested that intron losses prevail over intron 

gains in most eukaryotic lineages [4], although several extensive gains have been reported as 

well [5,6]. The balanced rates estimated in fungi are consistent with the presence of active ILEs 

[4, 14, 17]. By using up to six nodes between C. fulvum/D. septosporum and the most distant 

outgroup, the Basidiomycete Cryptococcus neoformans, single intron gains in Dothideomycetes 

could confidently be assigned as intron presence in only one of all species included in this study 

Figure 4. Predicted Secondary Structure of Introner-like 

Elements 

(A) Alignment-based predicted secondary structure of ILEs from 

clusters cf03 and ds04 of Cladosporium fulvum and Dothistroma 

septosporum, respectively. Stars indicate pairs that involve a G-U 

pair in at least one sequence of the alignment. Pink circles 

highlight pairs that contain compensatory mutations. The color 

scale indicates the number of compatible pair types (C-G, G-C, A-

U, U-A, G-U, or U-G). The saturation decreases with the number 

of incompatible base pairs. 

(B) Alignment-based predicted secondary structure of HMM 

consensus sequences of clusters mg01, mg02, mg03, mg04, and 

mg06 from Mycosphaerella graminicola. See also Figure S4. 
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(Figure 5A). Thirteen single gains were identified in both C. fulvum and D. septosporum when 

using the maximum number of outgroups, which allowed inspection of 951 orthologs only. As 

outgroups are removed and more orthologs become available for inspection, the number of 

single gains increased to 199 (Table S3). Strikingly, on average, 50% of single gains originate from 

ILEs, irrespective of the number of outgroups used in the analysis (Figure 5B). It is noteworthy 

that 75% to 90% of ILEs present in a set of orthologs are associated with gains in both C. fulvum 

and D. septosporum (Table S3). Up to 351 single gains were inferred in their common ancestor, 

of which ILEs only represent 10%. Similar numbers of single gains were not only found in M. 

graminicola and M. fijiensis but also in S. musiva that only contains highly degenerated ILEs 

(Table S3). From these results, we conclude that due to ILE degeneration, it is essential to 

compare species with shorter evolutionary distances in order to confidently estimate the 

contribution of ILEs to intron gains. 

Newborn ILEs Become Undistinguishable from RSIs within 100,000 Years 

The genomes of M. graminicola (three isolates), two sister species S1 and S2 (five and four 

isolates, respectively), and Septoria passerinii (one isolate) were used because divergence 

between M. graminicola, S1 and S2 was dated to 11 and 22.3 thousand years, respectively [19]. 

C. fulvum and D. septosporum were included as an outgroup and, in contrast to the recent report 

on extensive intron gains in M. graminicola [6], polymorphic positions that mainly represent 

segregating introns within populations were excluded from the analysis. This new data set 

confirmed that 50% of the single gains in C. fulvum and D. septosporum originate from ILEs 

(Figure 5C). ILE contribution to intron gains reaches 90% in M. graminicola and S2, which 

diverged more recently than C. fulvum and D. septosporum, but only 40% of the single gains in S. 

passerinii and the common ancestor of M. graminicola, S1, and S2, could be ascribed to 

distinguishable ILEs (Figure 5C; Table S4). ILE contribution to single gains even drops to 6%– 10% 

in older ancestors. These observations support the hypothesis that many or even potentially all 

RSIs are degenerated ILEs. Rough dating of the species divergences suggests that extensive 

intron gains have occurred in all these species during the last 100 thousand years. The dating 

also shows that all six M. graminicola ILE clusters must have multiplied more than 22 thousand 

years ago, but members of clusters mg05 and mg06 are no longer active (Figure 5D). Certainly, 

degenerated ILE clusters identified in D. septosporum and S. musiva lost their ability to multiply a 

long time ago. Additionally, over this short time frame, average pairwise identity and average 

length of ILEs have decreased (Figure 5E), showing that ILE clusters can emerge and successfully 

multiply, but multiplication may also stop due to rapid degeneration. As such, ILE identification 

becomes difficult in organisms with short generation times in which the last multiplication event 

has occurred more than 100 thousand years (according to the dated species tree). 
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Figure 5. Contribution of 

Introner-like Elements to 

Single Intron Gains 

(A) Species tree [21] and pattern 

used to assign single intron gains 

in Dothideomycetes.  

(B) Contribution of ILEs and non-

ILEs to single gains in Cf and Ds 

when including outgroups of 2 to 

6 nodes. Size of the pies is 

proportional to the total number 

of single gains.  

(C) Contribution of ILEs to single 

gains in Mg, S1, S2, Sp, Cf, and Ds. 

Inferred gains in the oldest 

ancestors were determined using 

other Dothideomycetes as 

outgroup. Size of the pies is 

proportional to the total number 

of single gains. The species tree 

was constructed using four genes 

(TUB1, EIF3b, PAP1, and RPS9). 

Numbers at the nodes indicate 

bootstrap values of 500 replicates. 

The tree was rooted according to 

Wang et al. [21]. The molecular 

clock was calibrated using the 

dating of S2 speciation [19].  

(D) Number of ILEs per Mg cluster 

(mg01 to mg06) that are 

conserved in all species at each 

dated node. The dating on the x 

axis corresponds to the age of the 

nodes determined in the 

phylogenetic tree. Kya, thousand 

years ago. 

(E) The average pairwise identity 

and average length of conserved 

ILEs is indicated per cluster for 

each dated node of the 

phylogenetic tree. An, Aspergillus 

nidulans; Cf, Cladosporium fulvum; 

Ch, Cochliobolus heterostrophus; 

Cn, Cryptococcus neoformans; Ds, 

Dothistroma septosporum; Fg, 

Fusarium graminearum; Hp, 

Hysterium pulicare; Mf, 

Mycosphaerella fijiensis; Mg, Mycosphaerella graminicola; Mo, Magnaporthe oryzae; Nc, Neurospora crassa; 

Rr, Rhytidhysteron rufulum; Sm, Septoria musiva; Sn, Stagonospora nodorum; Sp, Septoria passerini. See also 

Tables S3 and S4. 
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Conclusions 
 

Based on this study, we conclude that ILEs account for most of the intron gains in at least six 

fungal species. Several mechanisms have been proposed for intron gains, from intron 

transposition to intronization of exons [7]. Most, however, are supported by few experimental 

data [7] and none can convincingly explain ILE multiplication. The contribution of these 

mechanisms to intron gains appears limited in comparison to the ILE multiplication reported 

here. A recently proposed mechanism involves reverse splicing of introns directly into the 

genome followed by reverse transcription [3]. This hypothetical mechanism requires fewer steps 

than the hitherto accepted mechanism of intron transposition but requires RNA-DNA 

hybridization. This mechanism could apply to ILEs because new ILEs perfectly insert into genes 

(no sequence deletion or duplication), and it would not involve homologous recombination. Such 

a step is required in the other proposed mechanisms although it occurs at low frequency in 

filamentous fungi [20]. ILEs multiplication might be linked to transcription because they are 

always found on the coding strand of genes as reported for introner elements in Micromonas 

[8]. 

Our findings show that introns in fungi are highly dynamic because only 51% of introns are 

conserved from S. passerinii to C. fulvum (Figure 5C). Because up to 90% of intron gains in the 

fungal species included in this study originate from ILEs, we propose that ILEs, too degenerated 

for detection, represent the species-specific introns in other fungi. Introner elements in 

Micromonas extensively multiplied in thousands of copies, which suggests that intron 

multiplication could also occur outside the fungal kingdom [8]. However, introner elements 

differ from ILEs because they lack predicted stable secondary structures. We could not find ILEs 

in intronomes of other eukaryotic lineages that contain near-identical introns such as O. dioica 

[15]. However, we speculate that active ILEs might have appeared very early in eukaryotes 

evolution but have become indistinguishable from RSIs. It is also possible that similar ILEs are 

currently spreading in other not yet studied eukaryotes. Further studies on ILEs are required to 

increase our understanding of eukaryotic gene structure evolution. 
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Summary 
The recent discovery of introner-like elements (ILEs) in six fungal species shed new light on the 

origin of regular spliceosomal introns (RSIs) and the mechanism of intron gains. These novel 

spliceosomal introns are found in hundreds of copies, are longer than RSIs and harbor stable 

predicted secondary structures. Yet, they are prone to degeneration in sequence and length to 

become undistinguishable from RSIs, suggesting that ILEs are predecessors of most RSIs. In most 

fungi, other near-identical introns were found duplicated in lower numbers in the same gene or 

in unrelated genes, indicating that intron duplication is a widespread phenomenon. However, 

ILEs are associated with the majority of intron gains, suggesting that the other types of 

duplication are of minor importance to the overall gains of introns. Our data support the 

hypothesis that ILEs’ multiplication corresponds to the main mechanism of intron gain in fungi. 

 

The Proposed Mechanisms for Intron Gain Cannot Explain the High Intron Density in 
Present Day Eukaryotic Genomes 

Eukaryotic genes consist of exons that contain the coding sequence, and of introns that are non-

coding and are removed from premature mRNA after transcription. The spliceosome machinery, 

a large ribonucleoprotein that recognizes specific intronic features, catalyzes two consecutive 

transesterification reactions that result in splicing of the nuclear introns and ligation of adjacent 

exons [1]. Such a mosaic gene structure is certainly one of the most important features that 

allowed the appearance of complex organisms during evolution of higher Eukaryotes [2]. Indeed, 

land plants and animals, including humans, have intron-rich genomes (> 3 introns per kb coding 

sequence) as compared with more simple organisms such as most fungi (< 3 introns per kb 

coding sequence) [3],[4]. Yet, more than 30 y after their discovery, the origin of spliceosomal 

introns is still unknown. Analyses of gain and loss of introns in diverse eukaryotic lineages kept 

the mystery on introns’ origin alive because there was less evidence for gains as compared with 

losses [4],[5]. In many Eukaryotes, the estimated rates for intron gain and loss cannot explain the 

high intron density in many present-day genomes. Indeed, a higher intron loss rate would 

ultimately result in the disappearance of spliceosomal introns. However, some lineages such as 

fungi have experienced more balanced rates of intron gains and losses [6-7], suggesting that 

intron gains can still occur to a large extent in present days. In addition to fungi [6-9], extensive 

recent intron gains have been reported in the micro-crustacean Daphnia pulex [10]. 

Several mechanisms have been proposed for intron gains and have been recently reviewed in 

detail [11]. The model that has received most support in the scientific community is referred to 

as intron transposition. It involves reverse splicing of a spliced intron into the mRNA of another 

gene, followed by reverse transcription and homologous recombination at the gene locus. This 

model is almost identical to the main mechanism proposed for intron loss by reverse 

transcription and homologous recombination after intron splicing [11-12]. Observations of intron 

losses occurring more frequently at the 3' end of the genes support this mechanism [6,12,13]. 

However, according to these models, the difference in rates of intron gain and loss solely 

depends on the rate of reverse splicing, which is expected to occur at low frequency [14]. Thus, 

the balanced rates of intron gain and loss in certain lineages challenge the intron transposition 

model. Roy and Irimia proposed two new models to resolve this paradox: spliceosomal 

retrohoming (reverse splicing of an intron directly into DNA followed by reverse transcription) 
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and template switching during reverse transcription [14]. Other mechanisms have also been 

suggested including: (1) recombination between two paralogs, one containing an intron and the 

other one intronless (intron transfer); (2) insertion of a transposable element followed by 

conversion to an intron; (3) intronization of an exon by acquisition of splicing sites; (4) 

mobilisation and propagation of a self-splicing group II intron from an organelle into the nucleus; 

(5) insertion during DNA double-strand breaks repair; and finally (6) duplication of a genomic 

segment that contains cryptic splicing sites [11]. However, only the last mechanism has been 

experimentally proven [15]. All the other models, including intron transposition, only rely on 

indirect evidence and fail to describe how the vast majority of introns were gained [11]. It is 

likely that all proposed mechanisms contribute to intron gains to some extent, but the 

frequencies at which they occur cannot explain the high number of introns present in numerous 

Eukaryotes. Therefore, it has been suggested that the mechanism of intron gain in ancestral 

lineages might differ from those that occur in modern Eukaryotes [5]. 

 

Intron Duplication is a Widespread Phenomenon in Fungi 

A striking observation in the animal Oikopleura dioica [16] and in the alga Micromonas pusilla 

[17] was the presence of introns that are nearly identical at the sequence level. In M. pusilla, 

these near-identical introns are present in thousands of copies and were named introner 

elements (IE). Near-identical introns were also reported to occur in the fungus Mycosphaerella 

graminicola [8]. Recently, we reported on the occurrence of near-identical introns in five 

additional fungal species, where they are present in up to five hundred copies [9]. We named 

these high-copy introns introner-like elements (ILE) to refer to IEs found in M. pusilla. Like 

regular spliceosomal introns (RSIs), ILEs have typical splicing features including canonical 

acceptor and donor sites, branch point sequence and polypyrimidine tracts, which suggest that 

they can be spliced by the spliceosome machinery. However, in addition to being present in 

many near-identical copies, we also found that ILEs have features completely different from RSIs. 

They are significantly longer and have lower predicted  ibbs free energy (ΔG) values that were 

ascribed to stable predicted secondary structures. A robust gain analysis showed that up to 90% 

of gained introns are ILEs. Because our data showed that ILEs quickly degenerate in length and 

sequence to become undistinguishable from RSIs, we hypothesized that non-ILE-associated gains 

are highly degenerated ILEs. Thus, most RSIs might originate from ILEs in at least six fungal 

species [9]. 

In this study, the very first step of the pipeline that was developed to identify ILEs involved a 

simple BlastN search and clustering method, which retrieved three different types of near-

identical introns [9]. Depending on the number of introns with a near-identical sequence and 

whether they were duplicated within the same gene or in different genes, these multi-copy 

introns were classified as same gene duplications (SGD; 82 members), low-copy introns (LCI; 302 

members) and high-copy introns (1226 members) that were subsequently named ILEs. This 

search revealed that intron duplication is a widespread phenomenon in fungi because it was 

found in all species included in the study except Aspergillus nidulans (Table 1). However, the 

contribution of each category to the observed duplication events varies. Nine species contain 

only LCIs, while both SGDs and LCIs are found in five other species. In the latter, SGDs occur less 

frequently and contribute to 25–54% of the observed duplications (Table 1). The remaining six 

fungal species have all three types of duplicated introns, but they also have a very high number 
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of ILEs (24 to 377), which contribute between 60% and 92% to all duplication events (Table 1). 

Noteworthy, Rhytidhysteron rufulum, Fusarium graminearum and Sclerotinia sclerotiorum 

contain near-identical introns in high numbers but they correspond to repetitive elements that 

inserted within RSIs and were not retrieved as ILEs in the subsequent and more stringent steps 

of ILE identification (Table 1) [9]. 

Table 1. Identification of multi-copy introns in 24 fungal species 

Fungal species Total SGD
a
 LCI

a
 ILE

a
 

Cladosporium fulvum 408 3 (1) 28 (7) 377 (92) 

Mycosphaerella graminicola 344 16 (5) 22 (6) 306 (89) 

Dothistroma septosporum 322 7 (2) 17 (5) 298 (93) 

Hysterium pulicare 188 16 (9) 28 (15) 144 (77) 

Mycosphaerella fijiensis 97 14 (14) 22 (23) 61 (63) 

Stagonospora nodorum 40 0 16 (40) 24 (60) 

Fusarium oxysporum 37 0 37 (100) 0 

Coccidioides immitis 24 6 (25) 18 (75) 0 

Histoplasma capsulatum 18 0 18 (100) 0 

Rhytidhysteron rufulum 17 5 (29) 8 (47) 4
b
 (24) 

Leptosphaeria maculans 13 0 13 (100) 0 

Septoria musiva 13 4 (31) 9 (69) 0 

Nectria haematococca 13 7 (54) 6 (46) 0 

Fusarium graminearum 12 0 2 (17) 10
b
 (83) 

Cryptococcus neoformans 12 0 12 (100) 0 

Sclerotinia sclerotiorum 10 0 8 (80) 2
b
 (20) 

Cochliobolus heterostrophus 8 0 8 (100) 0 

Botrytis cinerea 8 2 (25) 6 (75) 0 

Neurospora crassa 6 0 6 (100) 0 

Trichoderma atroviridae 6 0 6 (100) 0 

Verticillium albo-atrum 6 0 6 (100) 0 

Magnaporthe oryzae 6 2 (33) 4 (67) 0 

Verticillium dahliae 2 0 2 (100) 0 

Aspergillus nidulans 0 0  0 0 

Total 1610 82 (5) 302 (19) 1226 (76) 

For each intron of a given fungal species, a BlastN analysis was performed using the complete intronome. Then, 

intron clusters were built by grouping a given intron with its near-identical introns. Introns that were 

duplicated only within the same gene were classified as same gene duplications (SGD). Near-identical introns 

found in unrelated genes were classified as low-copy introns (LCI) when a search using hidden Markov models 

did not increase the number of members by more than 2-fold; they were classified as high-copy introns when 

this search increased the number of members by more than 2-fold. These high-copy introns were subsequently 

named introner-like elements (ILE) [9]. 
a 

Number of introns. Contribution of a duplication type to the total 

number of duplications is indicated as percentage in brackets. 
b 

These high-copy introns were not retrieved as 

ILEs by additional more stringent analyses. 

As was done in our previous study on ILEs, the length and stability of the two other types of 

near-identical introns were measured. The median length of SGDs and LCIs are in the same range 

as observed for non-duplicated introns (NDI), but ILEs are about twice as long (Fig. 1A). The ΔG 

free energy of SGDs and LCIs is not different from that of NDIs, while ILEs have a significantly 

lower ΔG (Fig. 1B). These results suggest that different mechanisms might be involved in the 

duplication of each intron type. SGDs are found in only 11 fungal species and are limited in 

number (maximum of 16 members in a given species). Fifty percent of these duplication events 
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represent segmental duplication within the same gene because exon sequences on each side of 

these introns are also duplicated. The other 50% might represent intron transpositions within 

the same transcript or intron transfers between paralogs. Comparable low numbers were also 

reported in Caenorhabditis elegans in which only three gained introns are SGDs [18]. In C. 

neoformans, a single gene with several putative SGDs was also shown to be most likely the result 

of a duplication of exonic repeats [19]. The two other types of multi-copy introns are found in 

different unrelated genes, suggesting that they may represent the same type of introns, but 

differ in multiplication frequency. They have different characteristics (length and ΔG), which 

suggests that different duplication mechanisms are involved. However, these differences are 

also consistent with ILE degeneration and LCIs might represent degenerated ILEs. This hypothesis 

might explain why we could not identify more introns that would have originated from them. 

Alternatively, LCIs could originate from a low frequency transposition mechanism. Altogether, 

our results suggest that ILEs are prevailing duplication events in fungi, explaining on average 76% 

of intron duplications. 

 

 

Figure 1. Length and stability of the different types of duplicated introns. 

The length and predicted  ibbs free energy (ΔG) were measured for non-duplicated intron (NDI), same gene 

duplications (SGD), low-copy introns (LCI) and introner-like elements (ILE) from 24 fungal species included in 

this study [9]. (A) Median length and interquartile range are plotted for each type of intron. The median length 

is indicated above the bars. (B) Mean and SD of ΔG values of introns with a length corresponding to the median 

of each type of intron. A non-parametric Kruskall-Wallis test was performed (p < 0.0001), followed by a Dunn’s 

pairwise comparison test at α = 0.05 significance level. Only significant differences are indicated. 

 

Introner-Like Elements Reconcile the Intron Gain Mechanism in Ancestral and Modern 
Genomes 

Based on the observed degeneration, we speculated that ILEs are at the origin of most RSIs in at 

least six fungal species, which implies that they should be associated with intron gains. Indeed, 

ILEs can contribute up to 90% of recent intron gains [9]. An intron gain and loss analysis (IGL) in 

fungal species that contain ILEs showed that gains occur on average 10-fold more frequently 

than losses (Table 2). Remarkably, this is also true in Septoria musiva, a species that carries 

highly degenerated ILEs only, which initially could not be identified as such [9]. In the IGL analysis 
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shown here, up to 50% of the gains are explained by ILEs, while almost none are explained by 

SGDs or LCIs (Table 2). The non-explained gains certainly correspond to more ancient gained 

introns that cannot be recognized as ILEs because of the high level of degeneration [9]. 

Our analysis also revealed that introns absent in other species are similar in length to ancestral 

introns that are conserved in all fungal species included in this study, although with a much 

lower standard deviation (Fig. 2A). Our findings suggest that the majority of new introns 

originate from ILEs, which subsequently lose their stable secondary structure and shorten 

toward the optimal intron length, to eventually be lost (Fig. 2B). Accordingly in Aspergillus 

species, it was found that lost introns are significantly shorter than conserved introns [7]. Our 

proposed model for fungal intron birth, life and death is consistent with the high intron 

dynamics observed in fungi, but also with lower dynamics in higher Eukaryotes, which is most 

likely related to the different generation times. Intron-rich genomes usually have longer introns 

[3], which would hamper their loss. 

 

Table 2. Single intron gain and loss analysis in fungal species containing ILEs 

Fungal species Orthologs Introns ILEs Ancestral Single Single SGD at gain LCI at gain ILE at gain  

intron
a
 gain

b
 loss

b
 positions

c
 positions

c
 positions

c
  

 

Cladosporium 

fulvum 
3050 3483 110 2209 178 20 0 5 (0.028) 95 (0.534) 

 

Dothistroma 

septosporum 
3050 3516 101 2209 199 10 0 2 (0.010) 91 (0.457) 

 

Septoria 

musiva 
2824 2084 - 906 372 60 1 (0.003) 2 (0.005) - 

 

Mycosphaerella 

fijiensis 
2824 1951 14 906 236 43 0 1 (0.004) 14 (0.059) 

 

Mycosphaerella 

graminicola 
2824 2240 44 906 388 40 0 1 (0.003) 43 (0.111) 

 

Single gains and single losses were determined using only one outgroup clade for each species as described in 

our previous report [9]. Contribution of same gene duplications (SGD), low-copy introns (LCI) and introner-like 

elements (ILE) to single gains was determined. 
a 

Intron position conserved in all analyzed fungal species; 
b 

Introns that are present or absent only in the considered species; 
c 

Numbers in brackets are numbers of SGDs, 

LCIs or ILEs at single gain positions divided by the number of single gains. 
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Figure 2. Birth, life and death of spliceosomal introns in fungi. 

(A) Gained introns are single gains in Cladosporium fulvum, Dothistroma septosporum, Mycosphaerella 

graminicola, Mycosphaerella fijiensis or Septoria musiva as determined in Table 2. Ancestral introns are 

conserved among all fungi included in this study. Lost introns are single losses in one of the five fungal species. 

Length of lost introns that are still present in the other four species was calculated and corrected for outliers 

using the formula: (sum-max-min)/(length-2). A non-parametric Kruskall-Wallis test was performed (p < 

0.0001), followed by a Dunn’s pairwise comparison test at α = 0.05 significance level. Only significant 

differences are indicated. (B) Length distribution of non-duplicated introns (NDIs), introner-like elements (ILEs) 

and lost introns in the five fungal species listed above. 

 

With the resonance of IEs in M. pusilla, it is very likely that genome invasion by introns could 

have occurred at least once in an ancestral Eukaryotic lineage to give rise to the present-day 

intron-rich Eukaryotes. This hypothesis suggests that the mechanisms of intron gains in ancestral 

and modern genomes are still the same. From the results presented above, multiplication of ILEs 

in fungi and IEs in M. pusilla is certainly the main mechanism of intron gain in these species. 

Because of the high frequency of duplication events, ILE and IE multiplication likely involves a 

mechanism different from those proposed so far. Yet, spliceosomal retrohoming is the model 

that would comply best with our observations, but additional concepts are required in this 

model to take into account ILE specific characteristics. The predicted stable secondary structures 

of ILEs seem to be under selection pressure as suggested by the many compensatory mutations 

observed in ILEs [9]. It is tempting to speculate that ILE secondary structures might significantly 

contribute to the multiplication mechanism. We are now setting up experiments to find 

evidence for the mobility of ILEs and deciphering the mechanism of their multiplication. 
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Abstract 
 

Background: MicroRNAs (miRNAs), short ~21-nucleotide RNA molecules, play an important role 

in post-transcriptional regulation of gene expression. The number of known miRNA hairpins 

registered in the miRBase database is rapidly increasing, but recent reports suggest that many 

miRNAs with restricted temporal or tissue-specific expression remain undiscovered. Various 

strategies for in silico miRNA identification have been proposed to facilitate miRNA discovery. 

Notably support vector machine (SVM) methods have recently gained popularity. However, a 

drawback of these methods is that they do not provide insight into the biological properties of 

miRNA sequences. 

Results: We here propose a new strategy for miRNA hairpin prediction in which the likelihood 

that a genomic hairpin is a true miRNA hairpin is evaluated based on statistical distributions of 

observed biological variation of properties (descriptors) of known miRNA hairpins. These 

distributions are transformed into a single and continuous outcome classifier called the L score. 

Using a dataset of known miRNA hairpins from the miRBase database and an exhaustive set of 

genomic hairpins identified in the genome of Caenorhabditis elegans, a subset of 18 most 

informative descriptors was selected after detailed analysis of correlation among and 

discriminative power of individual descriptors. We show that the majority of previously 

identified miRNA hairpins have high L scores, that the method outperforms miRNA prediction by 

threshold filtering and that it is more transparent than SVM classifiers. 

Conclusion: The L score is applicable as a prediction classifier with high sensitivity for novel 

miRNA hairpins. The L-score approach can be used to rank and select interesting miRNA hairpin 

candidates for downstream experimental analysis when coupled to a genome-wide set of in 

silico-identified hairpins or to facilitate the analysis of large sets of putative miRNA hairpin loci 

obtained in deep-sequencing efforts of small RNAs. Moreover, the in-depth analyses of miRNA 

hairpins descriptors preceding and determining the L score outcome could be used as an 

extension to miRBase entries to help increase the reliability and biological relevance of the 

miRNA registry. 

Background 
 

MicroRNAs (miRNAs) are ~21-nucleotide (nt) short, single stranded RNA molecules involved in 

post-transcriptional regulation of gene expression [1]. They are present in higher eukaryotes and 

some viral genomes [2]. Because the miRNA and small-interfering RNA (siRNA) pathways partly 

overlap, current understanding of miRNA biogenesis has gained from advances made in the field 

of RNA interference. Mature, functional miRNAs develop from degenerate palindromic repeats 

with a characteristic hairpin-like secondary structure [1,3,4]. Initially, experimental identification 

of miRNAs was achieved through direct cloning and sequencing of small RNAs [5,6]. However, 

such relatively low-throughput screenings were biased towards abundantly or ubiquitously 

expressed miRNAs [6] and missed many miRNAs with restricted temporal or tissue-specific 

expression patterns [1]. Recently, strategies using PCR [7], microarrays [8,9] or ultra high-
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throughput sequencing [10,11] have expanded the list of known miRNAs. Many of these show 

tissue-specific expression [9,12] or appear to be species-specific [12,13]. In both Arabidopsis 

thaliana [14,15] and Caenorhabditis elegans [10,16], for example, high-throughput sequencing 

of small RNAs shows moderate overlap in detected miRNAs between experiments in each 

species, indicating that also in well studied genomes many new miRNAs remain to be discovered. 

In addition, the observation that many miRNA loci exhibit compelling hairpin structures on both 

sense and antisense strands led to the discovery of anti-sense miRNA transcription [17]. 

Antisense miRNA transcription and processing yield distinct mature miRNAs. This contributes to 

the functional diversification of miRNA genes for a considerable fraction of the known miRNA 

loci [17,18]. 

Various methods for the in silico prediction of miRNAs have been developed to aid in 

experimental studies of miRNA discovery [19,20]. These methods generally consider the hairpin-

like secondary structure of the miRNA precursor, the miRNA hairpin, as the most important 

characteristic of a miRNA gene. They use RNA secondary structure prediction (RSSP) algorithms, 

such as RNAfold [21] or Mfold [22], to predict the secondary structure and thermodynamic 

stability of the RNA hairpin structures. Current bioinformatics approaches for the prediction of 

miRNAs [19,20] generally include three steps: (1) genome-wide prediction of hairpin structures; 

(2) filtering or scoring of those hairpins on the basis of their similarity in physical and sequence 

features to known miRNA hairpins and (3) experimental validation of putative candidates. 

A common approach for the first step is to search for hairpin structures using a sliding window 

and perform RSSP on each window [5,8,23,24]. An improvement in overall calculation time over 

this approach is to first identify degenerate palindromic sequences and to analyse only these 

further with RSSP [25,26]. Unfortunately, these approaches detect vast numbers of hairpin 

structures in complete eukaryotic genomes. Depending on the method used, 1E3 to 4E3 hairpins 

per Mb of genomic sequence are found, resulting in about 1E7 hairpins identified in the human 

genome [8,24-27]. The challenge is, therefore, to devise an appropriate filtering method to 

separate the chaff from the wheat. 

Different criteria for filtering candidate miRNA sequences have been proposed, generally with 

the aim to reduce the search space and/or to increase the specificity of prediction [20]. 

Evolutionary conservation is considered an important feature of the hairpin sequence [1] and 

analysis thereof is often used to identify and focus comparisons on the conserved non-coding 

sequence space in different genomes [5,23]. An evolutionary approach known as phylogenetic 

shadowing has been used for combined selection and filtering of miRNA candidates [28]. This 

study revealed a characteristic camel-shaped conservation pattern of putatively orthologous 

miRNAs that was useful as a criterion for finding conserved miRNA candidates in primate 

genomes. Other filtering criteria include intragenomic matching of candidate miRNAs and their 

potential targets [29], evidence for expression, thresholds on structural properties of hairpins, 

e.g. minimal folding energy (MFE), absence of repetitive or low-complexity sequences, 

occurrence in introns or intergenic regions [11], or proximity to known miRNA loci [2,24,30]. 

Stringent filtering is performed to attain high specificity, that is, to minimize the number of false 

positive predictions of miRNA genes [20,25]. Obviously, maximizing specificity increases the 

number of false negative predictions, that is, a decreased sensitivity [31]. This implies that with 

stringent filtering, relevant miRNAs will be missed. The success of any filtering procedure 

depends however on the validity of the underlying assumptions. For example, filtering on 
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evolutionary conservation will miss species-specific or fast evolving miRNAs [12] and low-

complexity filtering is likely to miss miRNAs originating from transposable elements [32,33]. 

Several recent methods employ machine learning techniques such as a Support Vector Machine 

(SVM) [24,27,34,35] for classification. Such SVMs evaluate differences in hairpin properties 

between true-positive and true-negative examples of miRNAs for a given taxon to generate a 

prediction classifier. SVMs have been successfully used for miRNA gene prediction [24,34,35] 

and for the prediction of 5' Drosha processing sites in miRNA hairpins [26,11]. Although the SVM 

approach is claimed to outperform earlier methods [35], SVM-based classifications combine 

many features in a single kernel function and therefore do not provide direct insight into the 

biological significance of these features. Such insight can only be obtained through expert 

analyses and dedicated feature selection procedures [19]. Moreover, the set of true-negatives 

which is required for training an SVM is often very difficult to define. 

Here, we present an innovative strategy for miRNA prediction that focuses on attaining optimal 

sensitivity. We define and combine 40 different filtering criteria and, using a set of genomic 

hairpins identified in the genome of Caenorhabditis elegans, show that 18 of these 

characteristics capture the biological variation of miRNA features present in sets of known 

miRNA hairpins. These 18 criteria are used to establish a combined likelihood score L that 

assesses the likelihood that a predicted hairpin structure in a genome contains a genuine miRNA. 

L is a continuous classifier that allows user-adjustable thresholds for sensitivity and specificity in 

ab initio miRNA prediction and miRNA analysis. Good performance of L for large sets of hairpins 

from the genomes of C. elegans and four viruses demonstrates the added value of the new 

analytical strategy for future miRNA discovery and selection. 

Results 
We have developed and evaluated a new computational strategy for the prediction of candidate 

miRNAs in DNA sequences. The new approach focuses on high sensitivity in an initial hairpin 

detection step, followed by a flexible, user-adjustable procedure to balance sensitivity with 

specificity and selectivity. For all hairpin sequences from an input sequence, a miRNA likelihood 

score L is calculated, given an underlying scoring model based on descriptors of the physical and 

sequence characteristics of miRNAs (Table 1; [see Additional file 1]). The performance of the 

strategy was assessed by retrieval of known miRNAs from hairpin structures identified in the 

genome of C. elegans. Appropriate scoring models were derived for various taxonomic sets of 

known miRNAs. 

Descriptor data fit 

Most of the descriptors used for miRNA characteristics have been proposed in previous studies 

[3639], but a few are, to the best of our knowledge, for the first time defined in this study, for 

example 'GAsurplusCU' (Table 1). In all cases except one, the empirical data showed a good fit to 

a skewnormal (SN) probability distribution [40] accord-ing to a Chisquare goodness-of-fit test (p 

≤ 1.4E-5; [see Additional file 2]). As example, the frequency distribution, fitted SN distribution 

and the transformed likelihood distribution function (LDF) are shown for the descriptors MFE 

and GC content in Figure 1. The only exception to an SN probability distribution fit was found for 

the descriptor 'P', which is the p-value of the MFE of randomized sequence [38]. This fitted best 

to an exponential distribution corrected for zero values. Results of the data fit for all descriptors 

from the taxonomic set Metazoa are listed in Additional file 1. 
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Figure 1. Data fit and likelihood distribution function for two descriptors. 

Frequency distribution (black bars), SN-fitted distribution (red curve) and likelihood distribution function (LDF) 

(green curve) for descriptors MFE (A) and GC-content (B) of the taxonomic set Metazoa (3,902 miRNA hairpins). 

Red vertical lines mark the upper and lower 5% tails of the distribution. 

Table 1: Subset of 18 most informative miRNA hairpin descriptors 

Descriptor Explanation Bound
a
 

Type
b
 Discriminative 

power 
c
 

K 
d
 

bulgeRatio ratio asymmetrical bulges vs. stem length ↑ str 1.45 0.416 

dP adjusted base pairing propensity (dP) ↓ str 2.28 0.417 

largest bulge longest bulge in stem (nt) ↑ str 1.74 0.343 

longest match-stretch longest match-stretch in stem (nt) ↓ str 1.20 0.336 

Looplength central loop length (nt) ↑ str 1.17 (u) 0.191 

max match count matches in 24 nt ↓ str 2.75 0.477 

MFEahl index [39] MFEahl corrected for GC- Content ↓ str 4.75 0.706 

Q [37,39] Normalized Shannon entropy (Q) ↑ str 3.01 0.844 

stem length stem length ↑↓ str 1.29 (l) 0.404 

GAsurplusCU surplus of GA over CU in sequence ↑↓ seq 1.12 (u) 1.05 (l) 0.195 

GsurplusC surplus of G over C in sequence ↓ seq 1.12 0.995 

polyA longest poly-A stretch (nt) ↑ seq 1.58 0.834 

polyNucHairpin longest mono-nucleotide stretch (nt) in the hairpin ↑ seq 1.64 0.846 

polyU longest poly-U stretch (nt) ↑ seq 1.53 0.540 

SCS-di Di-nucleotide Sequence Complexity (-) ↑ seq 1.77 0.557 

SCS-mono Mono-nucleotide Sequence Complexity (-) ↓ seq 1.60 0.317 

GU-match contribution ratio of GU-matches vs. all matches ↑ mix 1.28 0.173 

MFEahl (dG) [37,39] MFE Adjusted for hairpin length ↓ mix 13.33 0.742 

A detailed explanation of all 40 descriptors is given in the additional information [see Additional files 1 and 2]. 
a
 Boundary; indication of extreme tail of descriptor distribution that was transformed into S < 1 fraction. 

Symbols denote: ↓ lower tail; ↑ upper tail, and; ↓↑ both tails. 
b
 Type; descriptor based on structural (str), 

sequence (seq) or both structural and sequence (mix) properties of the hairpin. 
c
 Discriminative power; 

expressed at 95% sensitivity, measured on the taxonomic set Metazoa (3,902 miRNA hairpins, positives) and 

genomic hairpins in C. elegans (3,526,115 hairpins, negatives). * Discriminative power of descriptor 'Z' was 

measured on 25,599 identified hairpins in four viruses. 
d
 K; highest Cohen's kappa coefficient [41] with another 

descriptor, measured on the taxonomic set Metazoa with S < 1 cut-off of 95%. 
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Likelihood score S for miRNA hairpin descriptors 

The CDF of the fitted distribution was transformed into an LDF with outcome S. The range of S 

(between 0 and 1) has an S < 1 and an S = 1 fraction which are separated by the cut-off value 

derived from the 95% confidence interval of the descriptor's CDF. The S < 1 fraction contains 

miRNAs hairpins with descriptor values in the tail(s) of the distribution. These have a low 

probability of occurring in true miRNA hairpins. The S = 1 fraction contains miRNA hairpins with 

values in the remainder of the distribution and corresponds to likely properties of miRNA 

hairpins. Descriptors were treated differently with respect to the transformation of the tails of 

the CDF (Table 1; [see Additional file 2]). For example, for the descriptor "minimal folding 

energy" (MFE) of a miRNA, there is in principle no need to impose a lower bound, even though 

the fitted distribution (Figure 1A) indicates that very low MFE values occur rarely in known 

miRNAs. The LDF of the descriptor MFE assigns a score S = 1 for all values below - 23.72 

kcal/mol. Higher MFEs are penalized proportional to the LDF and therefore assigned a score S < 

1. MFE is an example of a descriptor where the S < 1 fraction represents the upper 5% tail of the 

confidence interval. For other descriptors, the S < 1 fraction is represented by the lower 5% tail 

of the distribution (e.g. match ratio) or by both the lower 5% and the upper 5% tail (e.g. GC-

content, Figure 1B). Table 1 and Additional file 1 list the unlikely tails for each descriptor. 

Correlation of descriptors 

The 40 descriptors here defined were either based on the sequence of the hairpin, the structure 

of the hairpin or on a combination of both (Table 1; [see Additional file 1]). Correlations among 

these were obvious, for instance, between stem length or GC-content on the one hand and the 

MFE of a hairpin on the other hand. Correlated descriptors will overemphasize the importance of 

a more general feature of a miRNA hairpin and affect the usefulness of L. To assess the 

correlation among descriptors in their S < 1 fractions, we calculated Cohen's kappa coefficient κ 

[41] for all 780 possible pairs of descriptors, using the miRNA hairpins of the taxonomic set 

Metazoa [see Additional file 3]. For each descriptor the most strongly correlated descriptor, as 

determined by the highest observed κ is listed in Table 1 (column κ) and Additional file 3. The 

highest κ was found between descriptors ' Cratio' and ' surplusC' (κ = 0.995), followed by 'D' 

and 'Q' (κ = 0.844) and the pair 'P' and 'Z' (κ = 0.784). 

Discriminative power of descriptors 

A discriminative descriptor contributes to the separation of true miRNA hairpins from non-

miRNA hairpins. The discriminative power of a descriptor was defined as the ratio of percentages 

of miRNA hairpins and genomic hairpins that comply with a threshold set to the descriptor's 

limiting value between S = 1 and S < 1 of the LDF (95% of the CDF). A discriminative power 

smaller than 1.0 implies that relatively more miRNA hairpins are rejected than genomic hairpins. 

Higher values are obtained for descriptor values that are typically encountered in miRNA 

hairpins, but that are less common in collections of genomic, predominantly non-miRNA 

hairpins. The most discriminative descriptor was MFEahl (13.33) and least discriminative were 

polyC, polyCstem, polyGstem (0.95) (Table 1; [see Additional file 2]). Figure 2 illustrates the 

discriminative power of descriptor MFEahl and reveals a substantial difference between the SN-

fitted CDFs of miRNA hairpins and randomly selected genomic hairpins. Only 7% of genomic 

hairpins complied with the criterion of an MFEahl of 0.314, representing 95% of the CDF of 

metazoan miRNA hairpins. The opposite was true for the least discriminative descriptors: for 
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example for polyC, 99% of the genomic hairpins versus 96% of the metazoan miRNA hairpins had 

a longest polyC stretch smaller than five (not shown). 

Delimiting a subset of most informative descriptors 

The correlation and discriminative power of descriptors were used to select a non-redundant 

subset of most informative descriptors. Descriptors that either correlated with a more selective 

descriptor, using a threshold for correlation of κ>0.4, or that had a discriminative power smaller 

than 1.1 were omitted. This resulted in a subset of 18 descriptors, seven of which were sequence 

related, nine structure related, and two descriptors with mixed properties (Table 1). Remarkably, 

the descriptors 'GC-content' and the MFE randomization descriptors 'P' [38] and 'Z' [37], which 

are often used in miRNA prediction studies, were not included in the subset [see Additional file 

1]. The latter two ranked among the most selective descriptors, but were excluded because of 

their strong correlation with the most selective descriptor MFEahl index, in which the MFE is 

adjusted for hairpin length and GC-content [see Additional file 3]. 

 

 

 

Figure 2. Discriminative power of the 

descriptor MFEahl. 

Figure 3. Accuracy of fit and scoring model 

performance depends on the size of the input 

set. 

Red curve represents the CDF of the descriptor 

MFEahl for the taxonomic set Metazoa (3,902 miRNA 

hairpins). Blue curve represents the CDF of the SN-

fitted distribution of the same descriptor in case of 

100,000 randomly selected hairpins from the C. 

elegans genome. Green curve represents the 

discriminative power, calculated as sensitivity/(1.0-

specificity). The fraction of hairpins in the S < 1 

fraction is shaded (S < 1 cut-off at 95% of the CDF of 

known miRNA hairpins). The discriminative power at 

95% sensitivity is shown by a green arrow (13.33). 

SN-fitted means are shown by red (0.44) and blue 

(0.18) arrows. 

AUC performance (red line) and average Chi-square 

accuracy of fit of 40 descriptors (green bars), using 

six scoring models that were based on varying sizes 

of the input set. Input-set sizes are indicated with a 

prefix 'R' and comprised 50, 250, 500, 1000, 2000, 

and the complete set (3,902) of metazoan miRNA 

hairpins. The smaller sets were compiled by 

randomly selecting miRNA hairpins from the 

complete set. This was repeated 50 times for each 

set. The accuracy of fit was then calculated by 

averaging Chi-square test statistics over all 40 

descriptors and the 50 randomly selected subsets of 

each indicated size. Both AUC performance and Chi-

square statistics show a strong dependency on Input 

set size. 
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Assessment of scoring model performance 

The 18 most selective descriptors (Table 1) were used to define and analyze different scoring 

models. The CDF of the fitted distribution of all 18 descriptors was transformed into an LDF with 

outcome S and the L score for a given miRNA sequence was calculated as the product of all S 

values. Scoring model performance, defined as the power to distinguish (potential) miRNA 

hairpins from other (or random) genomic hairpins, was compared for different models that were 

built using varying settings for five parameters (see below). Scoring model performance was 

measured as AUC performance and, where appropriate, with selectivity measured at two values 

of sensitivity (95% and 75%), using genomic hairpins in C. elegans and the collection of miRNAs 

hairpins in the taxonomic set Metazoa. 

(1) Size of taxonomic set 

As expected, scoring models based on small taxonomic sets had a less accurate data fit, as 

shown by increasing Chi-square statistics for decreasing set size (Figure 3). Gain in goodness-of-

fit and AUC performance saturated with increasing set size. The data presented in Figure 3 

indicate that a minimal set size of a thousand miRNA hairpins is required for an accurate data fit 

(average p(Chi-square) < 0.05). Performance in terms of selectivity appeared to increase beyond 

this set size, suggesting that prediction performance can be further improved by using larger 

taxonomic sets. 

(2) Composition of taxonomic set 

Performance was found to depend on the evolutionary distance between the species contained 

in a scoring model's taxonomic set and the species for which (miRNA) hairpins are scored by that 

scoring model. When five taxonomic sets were constructed that comprised equally sized sets of 

miRNA hairpins from taxa with a decreasing evolutionary distance and diversity relative to 

human (Figure 4), these showed increasing AUC performance on the miRNA hairpins from 

human. The opposite trend, i.e. a decrease in AUC performance of the same five scoring models, 

was observed for miRNA hairpins from Nematoda and Metazoa. Seemingly small differences in 

AUC values translate to substantial differences in genome-wide counts of positive hairpins. 

When choosing an arbitrary miRNA detection sensitivity of 75%, the difference between an AUC 

of 0.9831 (red bar Metazoa- Mammalia in Figure 4) and 0.9806 (red bar Homo sapiens in Figure 

4) results in 6,749 or 17.6% fewer remaining genomic hairpins (38,383 and 31,634 hairpins, 

respectively). The results confirm that a scoring model based on a set that is taxonomically 

closest to the organism for which the miRNA hairpins are scored, performs best. However, it is 

noteworthy that taxonomic sets that do not contain human miRNA hairpins (e.g. Mammalia 

excluding H. sapiens, Figure 4) can yield scoring models with a good performance for identifying 

human miRNAs. 

(3) Composition of descriptor subset 

Selection of informative descriptors was found to be a crucial step in the development of scoring 

models, and three factors that affected scoring model performance were therefore analyzed in 

detail, i.e. the number of descriptors selected (quantity), discriminative power of descriptors 

(quality) and correlation between descriptors. Correlation of structural properties that describe 

RNA molecules is well-known [37]. In a miRNA prediction method such correlations can strongly 

influence the prediction accuracy and should therefore be dealt with cautiously. Figure 5 

illustrates the effect of highly correlated descriptors on scoring model performance, using the 
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strongly correlated descriptors 'D' and 'Q' (κ = 0.84) and a third descriptor 'SCS-di' that has a 

weak correlation with both 'D' and 'Q' (κ = 0.13 and 0.12, respectively). Scoring models 

containing pairs of uncorrelated descriptors had a higher selectivity value than the individual 

descriptors. In contrast, the scoring model based on the strongly correlated descriptors 'D' and 

'Q' gave a lower discriminative power than one based on the most discriminative, individual 

descriptor 'Q' (Figure 5). Although this decrease (-0.14) seems small, the combined effect over all 

correlated descriptors will have a considerable effect in terms of the absolute number of 

genomic hairpins that are penalized. It illustrates the necessity of selecting a descriptor subset 

with as little pairwise correlation as possible in the development of appropriate scoring models. 

(4) Parameterization of the LDF 

The effect of parameterization on performance was assessed by lowering the default cut-off 

value (default 95% of the CDF) to 90% and 80% before use in calculation of the transformed 

likelihood distribution score S. The parameterization caused the number of miRNA hairpins 

included in the S < 1 fractions to double (90%) or quadruplicate (80%) and increased the 

penalization of hairpins relative to the default cut-off value. Figure 6 shows that increased AUC 

performance and selectivity values were obtained by lowering the cut-off value compared to the 

reference model, with selectivity indexed for the reference model. The increase is explained by 

the fact that most descriptors gain in discriminative power at a decrease in sensitivity (see Figure 

2). 

Figure 4. Scoring model performance 

depends on the taxonomic distance of the 

input set. AUC performance of five different 

scoring models that vary in the distance of the 

taxonomic input set. Area under the ROC curves is 

measured for the taxonomic sets Metazoa (red), 

Nematoda (yellow) and H. sapiens (blue) versus 

200,000 randomly selected hairpins from the set of 

3,526,115 C. elegans hairpins. Scoring models "X – Y" 

have as taxonomic input set all miRNA hairpins from 

set X after removal of set Y. From these subsets (and 

the set Hominidae) 781 miRNA hairpins have been 

randomly selected. The results presented for the 

random subsets are averages from 50 independent 

repeats.

Figure 5. Scoring model performance 

depends on the correlation of descriptors. 

Discriminative power of three individual and three 

pairs of descriptors. For the descriptor pairs, Cohen's 

kappa coefficients are also given. Selectivity is 

expressed at 95% sensitivity on the set of all 

metazoan miRNA hairpins; specificity is measured on 

the set of 3,526,115 hairpins in the genome of C. 

elegans. 



Chapter 7 

128 
 

(5) Weighting of descriptors 

The effect of weighting individual descriptors was studied by assigning weights to each of the 18 

previously selected descriptors. Weights were equal to the square root of a descriptor's 

discriminative power as measured at a sensitivity of 95% and ranged from 1.06 for GAsurplusCU 

to 3.65 for MFEahl (Table 1; [see Additional file 1]). Figure 6 shows that a scoring model with 

weighted descriptors (W95% and W90%) had a significantly increased AUC performance and 

selectivity index relative to their unweighted models (95% and 90%). Obviously, when weighted 

on the basis of their discriminative power, descriptors with a high discriminative power 

contribute stronger to the overall L score than descriptors with low discriminative power. As 

such, a better separation between miRNA hairpins and random genomic hairpins is 

accomplished. 

 

 

Figure 6. Scoring model performance depends 

on LDF parameterization and weighting of 

descriptors. 

AUC performance and selectivity of six different 

scoring models that vary in parameterization of the 

LDF (95-90-80%) and have no weighted (weight = 

1.0) or weighted individual descriptors (W). Weights 

were adjusted to the square root of the descriptor's 

discriminative power as measured at a sensitivity of 

95% (Table 1). The square root was taken to prevent 

disproportionate influence of descriptors with high 

discriminative power. All models have the same 

input set (3,902 metazoan miRNA hairpins) and are 

based on the previously selected set of 18 

descriptors. Selectivity is expressed at 95% (purple) 

and 75% (blue) sensitivity on the set of all metazoan 

miRNA hairpins; specificity is measured on the set of 

3,526,115 hairpins in the genome of C. elegans. 

Relative values of selectivity are presented with the 

initial scoring model taken as index (selectivity of 

12.6 at 95% and 74.1 at 75% sensitivity). 

Figure 7. ROC-curve of the L-score classifier of two 

different scoring models. 

 

 

ROC curve of the L-score classifier of the final scoring 

model Metazoa (red) and the initial model without 

weighting and default parameterization (blue). True 

positives are measured on the taxonomic set 

Metazoa (3,902 miRNA hairpins), false positives on 

500,000 randomly selected genomic hairpins from C. 

elegans. 
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Finally, combinations of weighting and varying the parameterization of descriptors were tested 

(models W90% and W80%, Fig. 6). Scoring model W90% had the highest AUC performance on 

metazoan miRNA hairpins of all tested models. When weighting and parameterization were 

compared, weighting showed a stronger effect on selectivity measured at 95% sensitivity, 

whereas parameterization had a stronger effect on selectivity at 75% sensitivity. This implies that 

both variables have a distinct effect on the shape of the ROC curve. 

Building optimal scoring models 

The data collected and analyses presented allowed the selection of optimal scoring models, with 

maximal discriminative power to distinguish true miRNA hairpins from other genomic (or 

random) hairpins for any given case. In general, significant increases in selectivity were gained by 

descriptor weighting and parameterization. In terms of choice for a specific scoring model, the 

taxonomic input set should be sufficiently large and taxonomically as close as possible to the 

organism of interest. In total, 23 scoring models were built, based on 23 distinct taxonomic sets 

and the subset of 18 most informative descriptors, with the LDF parameterized at 90% of the 

CDF and using individual weighting of descriptors. Weighting and parameterization at 90% of the 

CDF resulted in the highest AUC performance. Table 2 shows the performance gain of these 

optimal scoring models relative to their non-optimized counterparts. Figure 7 shows the ROC 

curves for the final and initial scoring model Metazoa. The final scoring model Metazoa was 

subjected to a 10-fold cross-validation for benchmarking and yielded an AUC of 0.9732. The 

arbitrary cut-off for L of 1.0e-4 classifies 87.3% (1,774/2,033) of miRNA hairpins correctly as 

positive and 97.0% of all genomic hairpins of C. elegans as negative. The difference in 

performance with the non cross-validated AUC performance (0.9874) is due in part to the much 

smaller taxonomic input set used. The latter was obtained by clustering all Metazoan miRNA 

hairpins on the basis of sequence similarity. Nearly identical hairpin sequences can have subtle 

variation in some descriptor values and thereby accurately represent the fact that miRNAs occur 

in families. Therefore, and to maintain a classifier as selective as possible, we recommend to use 

the non-clustered variant of the scoring model. 

Table 2: Scoring model performance 

Scoring model  # 
a
 Wt 

b
 LDF 

c
 Chi-Square 

d
 AUC 

e
 AUC 

e
 AUC 

e
 Selectivity 

f
 

description     Nematoda H. sapiens Metazoa 95% 75% 

Default models 
g
          

Metazoa 3,902 - 0.95 9.95e-7 0.9760 0.9764 0.9814 12.57 74.06 

H. sapiens 781 - 0.95 0.090 0.9733 0.9794 0.9806 11.04 68.90 

C. elegans 131 - 0.95 0.405 0.9747 0.9638 0.9735 7.73 41.43 

Optimized models 
g
          

Metazoa 3902 Y 0.90 9.95e-7 0.9813 0.9848 0.9874 21.92 105.7 

H. sapiens 781 Y 0.90 0.090 0.9798 0.9870 0.9871 21.93 87.36 

C. elegans 131 Y 0.90 0.405 0.9817 0.9775 0.9835 16.65 75.34 
a
 Number of miRNAs in taxonomic set. 

b
 -; No weighting (weight = 1), Y; weighting individual descriptors by the 

square root of their discriminative power (Table 1) 
c
 LDF parameterized at 95% or 90% of the CDF 

d
 Goodness-of-fit is evaluated by averaging Chi-square test statistics of all 40 descriptors 

e
 Area under the curve of ROC curves measured on the taxonomic sets of known miRNA hairpins from 

Nematodes (211 miRNA hairpins), H. sapiens (781) and Metazoa (3,902) versus 200,000 randomly selected 

genomic hairpins from C. elegans. 
f
 Selectivity expressed at 95% and 75% sensitivity, with sensitivity measured 

on the taxonomic set of Metazoa, specificity measured on set of 3,526,115 C. elegans genomic hairpins. 
g
 Scorings models composed of the subset of 18 most informative descriptors 
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Combined likelihood score L for miRNA hairpin descriptors 

The combined L score for a given miRNA hairpin was calculated as the product of all S values of 

descriptors considered in a scoring model. In Figure 8, the distribution of the resulting L scores 

for all miRNA hairpins from the taxonomic set 'Metazoa' is given for two different scoring models 

in a cumulative L-score plot. For the scoring model Metazoa (red), 31% of the known metazoan 

miRNA hairpins had an L score of 1.0. This means that for 1,227 miRNA hairpins, the S score of 

the LDF of each of the 18 descriptors was 1.0. A cumulative L score plot can be used to select a 

desired level of sensitivity: an arbitrarily chosen sensitivity of 90% is reached at an L of 0.0004 for 

the optimized scoring model Metazoa (red) and at an L of 0.032 for the initial scoring model 

Metazoa (blue). This hundred-fold difference is caused by adjusted parameterization and 

weighting of descriptors in the first model, resulting in a higher overall penalization. This 

example illustrates that the L score is a relative measure that depends on the scoring model. For 

all 3,984 miRNA hairpins used in this study, L scores were calculated for all 23 scoring models 

[see Additional file 4], which were all based on the subset of 18 descriptors. Figure 9 shows an 

example of a detailed descriptor report for cel-mir-51 for scoring model Metazoa. The report 

shows the individual descriptor values, positions of these values in the CDF of the descriptors 

and the transformed S scores. The resulting L score equals 0.057 due to the fact that three 

descriptors fall outside the 90% range of the CDF. Data for all 91,632 combinations of miRNAs 

(3,984) and scoring models (23) are available in the accompanying web document μRNALL [42]. 

 

 

Figure 8. Cumulative L-score plot of two 

different scoring models. 

Ratio of miRNA hairpins in the taxonomic set 

Metazoa (3,902) that have an L score of at least a 

certain value. Data are shown for the final scoring 

models Metazoa (red) and the initial model without 

weighting and default parameterization (blue). 

Comparison of the L score approach to threshold filtering 

Comparison of our L score method to binary threshold filtering on miRNA hairpin descriptors 

showed superior performance of the L classifier (Table 3). For sets of miRNA and genomic 

hairpins that were filtered at the bordering value between the S = 1 and S < 1 fractions for all 18 

descriptors, values for the performance parameters sensitivity, specificity and selectivity were 

obtained. Next, we kept either sensitivity or specificity constant, assessed at which L score this 

parameter was equalled and compared the other performance parameters. In both cases, our 

scoring model approach outperformed threshold filtering. When fixed at sensitivity, the scoring 

model approach achieved 17% better. Sensitivity was measured on all metazoan miRNA hairpins 

(3,902 hairpins) instead of on C. elegans miRNA hairpins (132 hairpins) because of the inaccuracy 

caused by the limited number of miRNAs in the C. elegans set (data not shown). 
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Figure 9. Detailed descriptor analyses report for cel-mir-38. 

Detailed report for the observed descriptor values of cel-mir-38 in the scoring model Metazoa (L score = 0.057). 

For each descriptor, a color-coded representation of the likelihood score S, the actual value of S, the actual 

observed descriptor value and the position of this value in the CDF of the descriptor are given. Descriptors 

MFEahl index, polyA and GAsurplusCU are in the S<1 fraction outside 90% of the CDF. 

Table 3: Comparison of threshold filtering of miRNA hairpins with the L-score classifier 

Method Sensitivity Specificity Selectivity 
c
 L score 

a
 

 % (number) % (number)   

Threshold filtering 56.8 (2,216) 99.57 (15,049) 133 - 

Scoring model Metazoa     

   Fixed at specificity 62.0 (2,421) 99.57 (15,048) 145 0.221 
a
 Sensitivity measured on the taxonomic set Metazoa (3,902 miRNA hairpins) 

b
 Specificity measured on the set of 3,526,115 genomic hairpins in C. elegans 

c
 Selectivity calculated with sensitivity on metazoan miRNAs and specificity measured on C. elegans genomic 

hairpins. 
d
 minimal L score of the scoring model Metazoa for which the performance of threshold filtering 

performance is equalled 
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Predicting hairpins from a genomic sequence 

We developed a procedure for predicting hairpin structures from genomic sequences using 

Vmatch [43]. The algorithm detects degenerate palindromic repeats and is therefore able to 

recover known miRNA hairpins with very high sensitivity. To benchmark the procedure, we 

predicted hairpin structures in the genomes C. elegans and four viruses: Epstein-Barr virus (EBV), 

Mareks disease virus (MDV), Human cytomegalovirus (HCMV) and Kaposi sarcoma-associated 

herpesvirus (KSHV). The number of recovered, known miRNA hairpins, number of identified 

hairpins and percentage and absolute number of non-overlapping hairpins on unique loci are 

given for three different L score criteria for the scoring model Metazoa, for both miRNA and 

genomic hairpins (Table 4). 

In the four viral genomes, 25,599 hairpins were identified, including all 55 known miRNAs 

hairpins of these viruses. In C. elegans, 3,526,115 hairpins were predicted and only four out of 

132 known miRNAs hairpins were missed (cel-mir-262, cel-mir-260, cel-mir-272 and cel-mir-256). 

When benchmarking the performance of the hairpin identification with the miRBase entries [44] 

of all metazoan miRNA hairpins, 3,803 out of 3,902 (97.5%) miRNA hairpins were recovered. The 

hairpin prediction algorithm is independent of sequence context (data not shown). This 

benchmark is therefore an estimate of the algorithm's good performance on metazoan 

genomes. Similar performance has been reported for other edit-distance based hairpins 

detection methods [26]. On a genome scale, all these methods yield around 10,000– 20,000 

hairpins per single stranded Mb of sequence. These hairpins are predominantly overlapping and 

nested. 

Analyses of miRNA hairpin candidates in viral genomes 

The data in Table 4 show that only 1.3–2.6% of the indentified hairpin loci in four viral genomes 

have a high L score (L ≥ 0.05). This corresponds to 69–247 loci per genome. In addition, 83–100% 

of all known miRNA hairpins comply with this threshold for L. Out of 6,182 hairpins predicted in 

the genome of EBV, only 23 hairpins, originating from 20 unique loci, had an L score of 1.0. Ten 

of these were experimentally validated miRNA loci [2] [see Additional file 5]. Further support for 

our miRNA prediction and scoring method comes from recently discovered miRNAs in the MDV 

genome [45] that were not included in miRBase 9.0. All five novel miRNAs (mdv1-mir-M9 to 

mdv1-mir-M13) were present in the set of here predicted hairpins and three of these had L score 

of 1.0 [see Additional file 6]. The 15 unique loci in MDV with an L score of 1.0 collapsed into eight 

unique sequences due to a large inverted repeat. Out of these eight, all five loci that did not 

overlap with annotated exons corresponded to known miRNA loci. 

The two examples show that most hairpins in viral genomes with high L score are true miRNA 

hairpins and that the absolute number of hairpin loci with high L scores is small. This allowed us 

to manually examine the remaining, non-miRNA loci with high L scores, using additional filtering 

criteria for genomic location such as proximity to known miRNAs [2] and intronic position [44]. 

Among the remaining loci in MDV with L ≥ 0.05, one appeared to be located in the transcribed 

strand of an intron and two others closely flanked (0.3 kb) the mdv1-mir-M1 gene in the same 

orientation [see Additional file 6]. Similarly, out of the remaining ten EBV loci with L = 1.0, two 

candidate miRNAs were located directly upstream and amidst a cluster of eleven known miRNAs 

in an intronic region of the BART gene [46] [see Additional file 5]. 
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Table 4: Identified (miRNA) hairpins in genomes of C. elegans and four viruses 

Organism Identified 

miRNA 

hairpins 
a
 

Identified 

genomic 

hairpins 

miRNA hairpins % (number) 
b
 genomic hairpin loci %(number) 

b
 

L = 1.0 L ≥ 0.05 L ≥ 1e-5 L = 1.0 L ≥ 0.05 L ≥ 1e-5 

      

C. elegans 128/132 3,526,115 34 (45) 71 (94) 89 (117) 0.1 (3,110) 0.6 (21,313) 2.8 (98,309) 

EBV 23/23 6,182 35 (8) 87 (20) 100 (23) 0.3 (20) 2.6 (162) 13 (793) 

MDV 8/8 5,374 25 (2) 100 (8) 100 (8) 0.3 (15) 1.3 (69) 6.1 (329) 

HCMV 10/11 
c
 9,747 40 (4) 90 (9) 100 (10) 0.3 (30) 2.5 (247) 12 (1,147) 

a
 Identified miRNA hairpins/number of known miRNA hairpins in genome(s) in miRBase version 9.0 [44]. 

b
 Percentage of miRNA or genomic hairpin loci that have at least a certain L-score for scoring model Metazoa 

(absolute numbers between brackets). 
c
 MiRNA hcmv-mir-UL148D could not be mapped on the genomic sequence of HCMV [EMBL: X17043]. 

d
 MiRNA kshv-mir-K12-10b could not be mapped on the genomic sequence of KSHV [EMBL: U75698HCMV]. 

Table 5: Mining the C. elegans genome for putative miRNA hairpins 

 

Rejected miRNA 

hairpins 
a
 

Clustered 
b 

(miRNAs/loci) 

Similar 
b
 

(miRNAs/loci) 

5 kb flanking sequence NA 132 15,514 - - 

Similarity to mature miRNA 
c
 NA - - 132 937 

No overlap with exons 
d
 2 130 11,197 130 706 

L = 1.0 87 45 80 - - 

L >= 1e-5 15 - - 116 197 

Exclude TRF overlap 
e
 0 45 74 - - 

Filter on 7 descriptors 6 - - 116 162 

Exclude known miRNA loci 132 0 20 0 64 

similarity positioned correctly 
f
 18 - - 0 41 

a
 Rejected C. elegans miRNA hairpins by this step alone. 

b
 Remaining cumulative number of C. elegans miRNA 

hairpins; remaining cumulative number of genomic hairpin loci. 
c
 Similarity to a metazoan mature miRNA of at 

least 19 nt length with at most three mismatches 
d
 Cel-mir-354 is fully located in the final exon of Y105E8A.16; 

cel-mir-356 is largely located in the 3'utr of ZK652.2, but overlaps 6 nt with the final exon. 
e
 At most 40 nt 

overlap with a repeat identified by Tandem Repeats Finder [47]. 
f
 Similarity with mature miRNA may have at 

most 3 nt overlap with hairpin loop coordinates and at least 8 nt of the stem must separate the similarity from 

the end of the hairpin. Criteria are set according to the biological model of miRNA maturation from hairpins [3]. 

Mining the C. elegans genome for putative miRNA hairpins 

Using the scoring model Metazoa, the genome of C. elegans was searched for potentially novel 

miRNA hairpins. For the set of 3,525,115 genomic hairpins, a cut-off value L ≥ 0.05 resulted in a 

reduction of the number of candidate miRNA loci to 21,158 (0.6%). For L = 1, only 3,099 hairpins 

loci remained, but the sensitivity measured from retrieval of known miRNA hairpins was only 

34%. Nevertheless, this shows that filtering criteria in addition to the L score are required prior 

to experimental evaluation of candidate miRNAs. Such criteria may include the use of annotation 

data or genomic context. It has been suggested, for example, that metazoan miRNAs do not 

overlap with exons [11]. Indeed, in the annotation used here (Ensembl build 150), manual 

inspection of the genomic position of 132 known miRNAs of C. elegans showed that only two 

hairpins (2%) overlap with annotated exons (cel-mir-354, cel-mir-356, Table 5). Another very 

selective criterion is similarity to a known (metazoan) mature miRNA. We used this criterion such 

that similarity should be present in the stem of the hairpin and cover at least a 19 nt overlap 

with at most three mismatches. This resulted in a reduction to only 937 hairpin loci (Table 5). 
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Another property of many miRNAs is their clustered occurrence, with 45 from 132 miRNAs in C. 

elegans separated by less than 5 kb [10]. This criterion limited the number of hairpin loci to 

15,514 (Table 5). An example of a less selective criterion is removing all hairpins that fall in highly 

repetitive genomic areas. A catalogue of repeat regions can be obtained by an algorithm as 

Tandem repeats finder [47]. Additional selection can be accomplished with threshold filtering 

using the same (or a subset of) descriptors already used in our scoring model. Besides translating 

miRNA hairpin properties into a statistic for relative rating, as done in calculating the L score, a 

descriptor can be used as a binary decision criterion: below the threshold, the hairpin is rejected 

as potential candidate; above it is included. Which descriptor(s) to use for further filtering is in 

the hands of the individual researcher and may depend on the data studied. In the following, we 

provide two examples of such filtering using seven individual descriptors: four based on 

structure (stem length <= 55, loop length <= 40, largest bulge <= 8, max match count >= 17) and 

three based on sequence complexity (polyNucHairpin <= 8, SCS-mono >= -10, SCS-di <= 0.40). 

Except for stem length, all individual thresholds fall within their S < 1 fractions and separately 

reject at most three C. elegans miRNA hairpins. This ensemble of thresholds excludes low-

complexity sequences, captures palindromic repeats with limited degeneracy and should 

comprise the vast majority of miRNAs. In total, only six C. elegans miRNA hairpins fail this filter 

and the same sensitivity (96%) is achieved on all metazoan miRNA hairpins. Only 30% of the set 

of genomic hairpins in C. elegans passes this filter, representing a selectivity of 3.3 (data not 

shown). 

In the following examples, filtering on L score was combined with filtering on either genomic 

context or on a similarity threshold to known metazoan mature miRNAs (we refer to these 

protocols as "Clustered" and "Similar"). Goal of these filtering protocols was to achieve sets 

feasibly sized for manual inspection and/or laboratory evaluation. The protocols comply with 

characteristics of miRNAs mentioned above: occurrence in clusters and presence in families. 

"Clustered" and "Similar" resulted in lists of 20 and 64 candidate miRNA loci [see Additional files 

7 and 8], respectively, that were manually inspected. The most compelling cases among these 

are presented in Figure 10 and Figure 11. 

Figure 10 shows a cluster of hairpins of which several have L = 1, starting 3 kb downstream of 

cel-mir-76. Figure 11 shows two conspicuous hairpins that share similarity with the two known 

mature miRNAs cel-mir-269 and cel-mir-266 (hairpins 1,165,306 and 2,047,661, with L scores of 

0.030 and 0.007, respectively). The multiple alignment of the four hairpin sequences revealed 

the characteristic camel-shaped conservation pattern that is often observed between related 

miRNAs [28]: high or perfect conservation in the stem of the pre-miRNA hairpins, low 

conservation in the hairpin loop and the up-and downstream stem sequences. The 5' seed 

sequences of both mature miRNAs (position two to seven) are exactly conserved in the novel 

hairpins, suggesting that hairpins 1,165,306 and 2,047,661 are likely members of the miRNA 

families to which cel-mir-269 and cel-mir-266 belong [10]. Furthermore, candidate 1,165,306 is 

located in the 12th intron of the gene F54F11.2, for which the C. elegans unigene set (build 28) 

[48] provided evidence of transcription. Cel-mir-269 and cel-mir-266 were predicted by 

comparative computational approaches and confirmed by a PCR amplification protocol, but their 

precise mature miRNA ends are unknown [36,44]. Recent high-throughput sequencing of 

miRNAs from C. elegans [10,16] could not confirm the existence of both miRNAs. 
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Figure 10. A cluster of candidate miRNA hairpins in C. elegans 3 kb upstream of cel-mir-76. 

Five candidate miRNA hairpin loci with L score = 1 on chromosome III of C. elegans, selected by the filtering 

protocol Clustered. Loci are marked by green bars. Three out of five loci have hairpins with L score = 1 on both 

strands (positive strand: 3145224–3145336, 3146698–3146781, 3147197–3147283 and 3147660–3147798; 

negative strand: 3145240–3145320, 3145991–3146089, 3146703–3146775 and 3147690–3147767). The L 

score of genomic hairpins is indicated by a color gradient that ranges from dark green (L = 1) over yellow (L = 

1e-4) and red (L = 5e-7) to black (L = 0). 

 

 

Figure 11. Candidate miRNA hairpins in C. elegans closely related to cel-mir-266 and cel-mir-269. 

ClustalW alignment of the hairpin sequences of cel-mir-266, cel-mir-269 and the genomic hairpins 1,165,306 

(chr I, 1733470..1733572 (+), L score = 0.030, 12
th

 intron of F54F11.2) and 2,047,661 (chr II, 

13515555..13515672 (+), L score = 7.2E-3, 7
th

 intron of Y71G12B.11). The position of the mature miRNA 

sequences of cel-mir266 and cel-mir-269 (in lowercase) is projected on the sequences in green. Lowest two 

lines show again the mature miRNA sequences of cel-mir-266 (MIMAT0000325) and cel-mir-269 

(MIMAT0000322), with their seed sequence in uppercase. 

 

The data presented for the filtering protocols "Clustered" and "Similar" (Table 5) show that 

combined filtering on L score, genomic context and threshold filtering allows for compilation of a 

priority list of candidate miRNAs that is amenable to manual inspection and experimental 

verification. Apart from filtering on genomic clustering or similarity to known miRNAs, filtering 

on L score attains the largest data reduction. This shows that the L score was important in 

compilation of the priority list and demonstrates the added value of our approach for in silico 

miRNA prediction. 
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Discussion 
 

We here present a new computational strategy for the in silico prediction of miRNA hairpins and 

show the applicability of the method for predicting new candidate miRNA hairpins in four viral 

genomes and in the genome of C. elegans. While using the latter as an example for model 

construction, the L score method as here optimized for C. elegans is well usable for other 

metazoan genomes. However, further improvement of performance of the method on different 

taxonomic groups can be achieved by constructing dedicated scoring models [see Additional file 

9]. Our strategy aims at minimizing the number of false negative predictions (optimal sensitivity), 

rather than at minimizing the number of false positive predictions (optimal specificity), as 

proposed in previous studies. Focusing on sensitivity rather than specificity should help uncover 

new classes of miRNA molecules in biological systems. Hairpins in genomic sequences are 

identified with the help of an adjusted suffix-tree based method. When the performance of the 

hairpin prediction was benchmarked on sets of all known miRNAs hairpins from viruses and 

Metazoa, all 55 viral miRNAs were recovered (100%), 128 of 132 (97%) C. elegans miRNAs were 

recovered and 3,803 out of 3,902 (97.5%) metazoan miRNAs were shown to be recoverable 

when considered in their genomic context. Similar performance was reported for another edit 

distance-based hairpin identification method [26]. 

Four C. elegans miRNAs (cel-mir-262, cel-mir-260, cel-mir-272 and cel-mir-256) remained 

undetected due to the absence of a stringently base-pairing area in their stems. They all had 

extremely poor L scores (2.7e-41, 2.5e-27, 3.5e-20 and 3.8e-10), ranking first, third, fourth and 

eight among the C. elegans miRNA hairpins with lowest L scores. None of the four was found in 

recent high-throughput sequencing datasets, which otherwise retrieved the vast majority of 

known C. elegans miRNAs [10,16]. This suggests that these four may not be genuine miRNAs. If 

so, the reported performance of our hairpin prediction method is underestimated. 

The biological variation and evolutionary diversity of various properties of miRNA hairpins were 

captured in a likelihood score L, based on statistics derived from accurately fitted (generally 

skewed normal) distributions of hairpin characteristics derived from known miRNA hairpins. In 

total 40 hairpin characteristics were defined and analyzed. The L score is a measure for a single 

hairpin sequence: a descriptor that captures evolutionary conservation in another species is not 

included. Although conservation has proven to be an extremely selective miRNA detection 

criterion [28], it conflicts with the aim to maximize sensitivity, because of the existence of 

species-specific miRNAs. The strategy was evaluated on genomic hairpins and known miRNAs 

from the C. elegans genome. Although details of analyses and results are likely to differ when 

applied to other genomes and other negative sets of genomic hairpins, major trends and results 

were shown to be similar [see Additional file 9]. 

Based on analyses of correlation and discriminative power, 18 hairpin characteristics were 

identified as most selective. Comparison of the 18 descriptor scoring model with a binary 

threshold filtering protocol using the same 18 descriptors (Table 3) shows that a 17% higher 

selectivity is achieved with the L score strategy. Binary decision thresholds on all or even a few 

descriptors can easily result in a major decrease of sensitivity. In the strategy developed here, L < 

1 represents individual sequences that have one or more descriptors with S < 1, indicating that 

these descriptors have a relatively low probability of occurrence in miRNA hairpins because they 
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occur in the tail(s) of their respective distribution. When a descriptor value falls outside the 

observed range of biological variation, the continuous likelihood score L allows for the 

compensation of an unlikely score for a single descriptor by likely scores for other descriptors. In 

such a case, the sequence is not a priori rejected as a miRNA hairpin candidate. The L score thus 

allows for more deviations from 'genuine' miRNA characteristics than binary selection (yes/no) 

on the basis of the same characteristics. This is an important improvement over the use of pre-

defined thresholds for filtering on single or multiple descriptors published previously [19]. 

Assigning scores to descriptors, as opposed to binary selection on pre-defined thresholds, has 

also been used in previous work. For example, MIRscan [5,6] employs an heuristic score 

assignment to seven features and assigns weights based on the relative entropy between known 

miRNA hairpins and genomic hairpins. PalGrade [8] uses a statistical distribution by arbitrarily 

binning the ordered vector of descriptor values. SVM kernels achieve descriptor scoring and 

weighting as part of the SVM [35]. Novel to the approach here developed is that the score 

assignment is based entirely on the statistical evaluation of the variation in physical and 

sequence properties observed in known miRNAs and no binary selection prior to building a 

scoring model is used. 

The L score is a relative measure of the likelihood that a given hairpin is a miRNA hairpin 

candidate. An important parameter contributing to useful L scores is the number of miRNAs 

used to derive the discriminating statistics of the individual characteristics. A minimum of about 

a thousand miRNA hairpins is required, but results indicate that the larger the available data set, 

the better the scoring model captures the variation in miRNA hairpin characteristics and 

performs. In the context of machine learning, the input miRNA set could be considered a training 

set, although in the L score derivation no formal 'training' is included. It is noteworthy that the 

evolutionary distance between the species contained in the taxonomic set for a scoring model 

influences L considerably. In general, the scoring model based on the set that is taxonomically 

closest to the organism being analyzed performs best. This indicates that over a wide range of 

characteristics, miRNA hairpins within (related) species are substantially more alike than miRNA 

hairpin sequences between less-related species. This should be taken into account when 

searching for similarity between miRNA hairpins from distantly related species. However, we 

observed that, for example, taxonomic sets that do not contain human miRNA hairpins can yield 

scoring models that accurately identify human miRNA hairpins. In addition, descriptor weighting 

and parameterization appeared to considerably influence the performance of a scoring model. 

The analyses presented allow the selection of optimal scoring models, with maximal 

discriminative power to distinguish true miRNA hairpins from other genomic (or random) 

hairpins for a selected set and a given data set. However, each set of data, for example in case of 

a new genome sequence, will require its own analysis to build an optimal scoring model. 

Whereas the analyses started with 40 descriptors, based on extensive correlation and selectivity 

analyses, a subset model based on 18 descriptors was performing better than the model 

comprising all 40 descriptors. In view of the importance of the taxonomic composition of the set 

used in the model, it should be pointed out, that this may reflect a taxonomic bias for metazoan 

sequences that may not be valid for other taxonomic groups, such as, for example plant miRNA 

hairpins. In the set of 18 most informative descriptors selected, it is remarkable that three 

descriptors that are generally considered important are not represented: GC content and the 

MFE randomization descriptors P and Z. GC-content is widely used as a pre-filtering step of in 

silico miRNA prediction methods [36], but is not among the 18 descriptors used in the final 
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scoring models. The GC-content showed the highest variability in the (skewed-normal) mean 

over different taxonomic sets (data not shown), reflecting the apparently large variation in GC-

content found among miRNA hairpins from different species. Any scoring model that includes 

the fitted distribution of GC-content would disqualify hairpin structures in species containing 

miRNAs with relatively high or low GC-content. Also the descriptors P and Z, based on MFE 

randomization shown to be significantly lower for miRNAs hairpins than for randomized 

sequences [37,38], were not among the18 descriptors selected. Although P and Z ranked among 

the most selective descriptors, they were excluded because of their strong correlation [see 

Additional file 3] with the most selective descriptor MFEahl index, in which the MFE is adjusted 

for hairpin length and GC-content. 

SVMs have similar aims as the L-score strategy and perform well in miRNA classification [35]. In 

assessing and comparing the performance of different methods, however, several caveats 

should be considered. First, methods that use evolutionary conservation perform well on 

conserved miRNAs [25,11] but fail to detect species-specific or fast evolving miRNAs [12]. The 

importance of the latter should not be underestimated. Second, the particular data set(s) on 

which the performance is achieved is important to the evaluation and comparison of the results 

from different methods. Unfortunately, there is no benchmark set of both positive and negative 

examples of miRNA hairpins available. Many methods are tailored on a specific organism and are 

likely to perform best in that exact context. Assembling a set of true negative sequences is 

particularly challenging: hairpins in non-coding RNAs, e.g. the set of tRNAs as used in [25], are 

likely to possess different and more diverse hairpin features than miRNA hairpins, whereas a set 

of genomic hairpins might contain bona fide miRNA hairpins. SVMs explicitly require negative 

examples for training and testing, whereas the L scoring method uses such a set only for 

benchmarking purposes. Third, data on prediction performance are not reported consistently in 

literature. Our method enables reporting of AUC performance as well as sensitivity and 

specificity values over the entire range of the ROC curve. Comparison with binary classifiers from 

other methods therefore requires transformation of the continuous outcome to a binary 

outcome by choosing an arbitrary threshold for L and using the associated sensitivity and 

specificity values as measure of the performance. 

With these caveats in mind, we compared the performance of our method to three leading SVM-

based methods miPred [35], RNAmicro [25] and miRNA SVM [26] Note that RNAmicro is based 

on multiple sequence alignments. Using different positive and negative datasets, these methods 

report the following values of sensitivity and specificity; 1) MiPred: 86.69% and 97.68%, using 

323 human miRNAs as positive and 646 human genomic hairpins as negative set; 2) MiPred: 

87.65% and 97.75%, using 1,918 Metazoan, non-human miRNAs as positive and 3,836 human 

genomic hairpins as negative set; 3) RNAmicro: 90% and 99%, using 147 Metazoan miRNA 

hairpin alignments as positive and 383 shuffled miRNA hairpin and tRNA alignments as negative 

set, and; 4) miRNA SVM: 90% and 95%, using 322 human miRNAs as positive and 3,000 random 

human genomic hairpins as negative set. These performances compare well to the values of 

87.26% and 97.02% obtained in the 10 fold-cross validated performance of our L score model, 

using 203 Metazoan miRNA hairpins as positive and 200,000 randomly selected genomic hairpins 

from C. elegans as negative set. The performance of the L scoring model is most similar to that of 

miPred, which does not include sequence conservation as a parameter. An analysis of the 

performance of our model on sets of genomic hairpins other than those derived for the C. 

elegans genome is provided as Additional file [see Additional file 9]. 
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A major challenge of any SVM is understanding its behavior in, for example, a biological context. 

While SVMs are known to produce classifiers that perform well in case of unseen data [49], 

SVMs are essentially black-box classifiers. This makes it difficult to judge the relative importance 

of individual descriptors or to translate results in biologically relevant understanding. As all 

parameters are embedded in the kernel function of the SVM, SVM classifiers are also difficult to 

adjust, although they do not require the pre-selection of parameters required for the L score 

strategy here presented. Classifier selection based on the detailed descriptor analysis presented 

here may improve future SVM approaches. A key advantage of the L score strategy over SVMs is 

that the contribution of individual descriptors to a scoring model can be analyzed in a 

straightforward way by adding or removing a descriptor or changing the parameterization or 

weight of descriptors. This way the scoring model becomes better tailored to the biologist's 

needs in a particular research environment. 

Conclusion 
 

At the laboratory bench, the criterion that is of most interest is simply how many putative 

hairpins should be evaluated by experimentation. With current developments in microarray 

analysis and high-throughput sequencing, the numbers of potential candidates that can be 

screened with relative ease will increase dramatically. Still large numbers of new miRNAs may be 

identified. Yet, for the time being, the individual laboratory would like to see as little putative 

candidates as possible with as high a success rate as feasible. The highest L score is 1, implying 

that the given hairpin scores are maximal for all descriptors in the model. In the 100 Mb large 

genome of C. elegans, still 3,110 hairpin loci remain that cannot be ranked further on the basis 

of L. It implies that relatively large numbers of genomic hairpins (3,110 loci from 3,526,115 

hairpins, i.e. 0.09%; see Table 4) comply with all miRNA hairpin descriptors, whereas it is unlikely 

that they all generate mature miRNAs, given the relative small number of 132 currently known C. 

elegans miRNAs. It is likely that this situation will occur in most genomic contexts. If so, several 

strategies are open. The model parameters could be adjusted, so that the individual descriptor is 

less likely to get the maximal score. This way, the L score approach will convert to more 

traditional threshold filtering. Given that the analysis requires high sensitivity, it would however 

be more advantageous to incorporate more biological expert knowledge in the selection 

process, such as the presence of the hairpin in an intron, sequence similarity to known miRNAs, 

etc. When following this strategy, one has to be aware that the number of novel miRNAs that 

could be discovered is constrained by the filtering on genomic context. For example, in the set of 

132 miRNAs in C. elegans (miRBase 9.0), 87 occur in singletons when clustered on distance, 56 

have no other family representative and 102 are not located in an intron [10]. These numbers 

can thus be considered as indicative for the fraction of true miRNAs that will remain concealed 

when filtering on genomic context. With the filtering protocols ("Clustered" and "Similar") we 

show that a combination of filtering on L score, genomic context and threshold filtering allows 

for compilation of a priority list of manageable size for manual inspection and further 

experimentation. 
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In addition to good performance in comparison with other leading (SVM-based) methods and a 

user-defined selectivity, an additional advantage of the L score approach over threshold filtering 

and support vector machine classifiers is that the prior analysis of taxonomically defined sets and 

fitted distributions, correlations, and discriminative power of descriptors gives detailed insight in 

the behavior of a scoring model and can accommodate expert knowledge. It should therefore 

appeal to the experimental biologist, despite the fairly time-consuming construction of a suitable 

scoring model. 

The scoring model proposed here is independent of the hairpin prediction step and can 

therefore be coupled to any in silico or experimental miRNA prediction method. It can facilitate 

the analysis of large sets of putative miRNA hairpin loci obtained in deep-sequencing efforts of 

small RNAs [10,14-16]. The L score approach can be used to rank and select interesting miRNA 

hairpin candidates for downstream experimental analysis in search for novel miRNAs. Moreover, 

our in-depth analyses of known miRNA hairpins from miRBase [44], our detailed descriptor 

analyses (Figure 9) and the L score approach here presented are likely to increase the reliability 

and evidence of miRBase entries and will help to further increase the biological relevance of the 

miRBase repository. 

Methods 
 

Sequence and annotation data 

The complete set of 3,498 non-plant miRNA hairpin sequences were retrieved from the web 

resource miRBase version 9.0 [44]. In addition, 474 miRNA hairpin sequences from human and 

chimpanzee [12] and 18 from C. elegans [10] were obtained from the supplementary material of 

the respective publications. Secondary structures of the sequences were predicted using 

RNAfold version 1.6 [21] with the constrained folding option (-C) used to position the mature 

miRNA sequence(s) in the stem of the hairpin. The hairpin structure of six sequences, three from 

miRBase and three from the human/chimpanzee set [12], deviated considerably from the 

predicted characteristics of miRNA hairpins. These six sequences were therefore excluded from 

all subsequent analyses [see Additional file 10]. The resulting 3,984 miRNA hairpin sequences 

were included in this study, 3,902 from Metazoa and 82 from virus genomes. Sequence and 

annotation of the C. elegans genome (build 150) was obtained from Ensembl [50]C. elegans 

unigenes (build 28) were downloaded from NCBI UniGene [48]. Viral genome data for the 

Epstein-Barr virus [EMBL: AJ507799], Human cytomegalovirus [EMBL: X17403], Kaposi sarcoma-

associated herpesvirus [EMBL: U75698] and Mareks disease virus [EMBL: AF243438] were 

obtained from EMBL [51]. 

Informatics and statistics 

Supplemental data are available through the Additional data files and the accompanying web 

document μRNALL, which can be downloaded at 

http://appliedbioinformatics.wur.nl/murnall/[42]. All statistical analyses were performed using 

the package R [52], as integrated in python through Rpy [53]. 
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Definition of miRNA descriptors 

A set of 40 potentially discriminative features of miRNA hairpins, hereafter referred to as 

descriptors, was defined based on the set of 3,984 miRNA hairpins. The descriptors include both 

physical and sequence characteristics of miRNA hairpins [Table 1; see Additional files 1 and 2]. A 

subset of descriptors is given in Table 1. To take the evolutionary diversity of the descriptors into 

account in the statistical analyses, miRNA sequences were divided in hierarchically organized 

subsets based on their taxonomic relationships. Taxonomic sets that comprised at least 100 

sequences were used for analysis. In total, 23 taxonomic sets were defined [see Additional file 

4], including one set containing all metazoan miRNA sequences, eleven sets representing 

metazoan taxa and eleven species-specific sets. The virus set was not used because it contained 

only 82 sequences. Unless stated otherwise, all results presented in this paper use the combined 

taxonomic set 'Metazoa' (3,902 miRNAs). 

Individual likelihood score S for each descriptor 

For all 3,902 sequences, descriptor values were calculated and their distributions within each of 

the 23 taxonomic sets were fitted to an appropriate probability distribution. Goodness-of-fit was 

determined by a Chi-square test. For each distribution, the probability that the descriptor takes a 

value less than or equal to a specified value was calculated as the cumulative distribution 

function (CDF) and transformed into a likelihood distribution function (LDF). For the LDF, a 

default cut-off value was set at 0.05, corresponding to the 95% confidence interval of the fitted 

distribution of the descriptor. For each descriptor, values of the CDF above the cut-off value 

were transformed to the LDF likelihood score S = 1. Values below the cut-off were transformed 

to the likelihood score S = (CDF/cut-off). Table 1 and Additional file 2 list for each descriptor 

whether the lower tail of the CDF, upper tail or both were transformed. As a result of this 

transformation, each descriptor in the taxonomic set has a likelihood distribution S comprising 

an S < 1 and an S = 1 fraction. S = 1 indicates a descriptor for which characteristics of the 

individual sequence are in 95% of the distribution. 

Likelihood score L for the combined descriptor values 

To obtain a single metric for a given taxonomic set, the likelihood scores S for all descriptors 

were multiplied to obtain the combined likelihood score L. The ensemble of likelihood scores S 

for a given set of hairpin sequences is referred to as the scoring model. L is the outcome of the 

scoring model and functions as classifier for miRNA hairpin sequences. L ranges between 0 and 1 

and represents the likelihood of a hairpin sequence to be a true miRNA hairpin given the 

underlying descriptors used in the scoring model. It is possible to incorporate additional expert 

knowledge in the scoring model by assigning a relative weight to the S score of an individual 

descriptor. In the default setting reported here, no difference between descriptors is made 

(assigned weight = 1). An L score of 1.0 for a hairpin sequence indicates that S = 1 for each 

descriptor of the set. L is only affected by descriptors with a value S < 1. 

Correlation and discriminative power of descriptors 

To prevent potential over-penalization of hairpin sequences when combining correlated 

descriptors, we determined the independence (orthogonality) of all descriptors in the S < 1 

fraction by calculating Cohen's kappa [41] for each combination of descriptors. The value κ = 0 

indicates that there is no more correlation between descriptors than expected by chance alone, 

and κ = 1 indicates that the descriptors are fully dependent. The discriminative power of a 
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descriptor, i.e. its ability to distinguish true miRNA hairpins from non-miRNA hairpins, was 

calculated as the ratio of percentages of miRNA hairpins and genomic hairpins that comply with 

a given threshold for this descriptor. As threshold the descriptor's limiting value between S = 1 

and S < 1 of the LDF was chosen (95% of the CDF). Discriminative power was calculated using 

known miRNA hairpins from the taxonomic set Metazoa and genomic hairpins from a set of 

3,526,115 hairpins identified in C. elegans (see section Identification of putative miRNA hairpin 

structures). It is calculated with the formula for selectivity (see below), but for the sake of clarity 

we will here use the term 'discriminative power' for the performance of a single descriptor and 

the term 'selectivity' for the performance of a scoring model. 

Descriptor selection and model evaluation 

To select a subset of descriptors that was most informative for the combined assessment of 

miRNA hairpins by the L classifier, descriptors that either correlated with a more discriminative 

descriptor (κ>0.4) or that showed low discriminative power (< 1.1) were discarded from the 

initial set. The resulting subset was used to evaluate the impact of different settings of variables. 

For all models, L scores were calculated for 100,000 randomly selected hairpins from the C. 

elegans genome. We evaluated (1) the effect of the size of the input set, which refers to the 

number of miRNA hairpins in a given taxonomic set; (2) the impact of evolutionary distance 

between taxa; (3) the impact of different combinations of descriptors in a scoring model; (4) the 

effect of parameterization of descriptors and (5) the effect of weighting of descriptors. 

Performance of L 

The performance of the outcome classifier L of scoring models was measured in two ways. First, 

by the area under a receiver operating characteristic (ROC) curve [54]. Trapezoids were 

constructed as approximation of the Area Under the Curve (AUC). Unless described otherwise, 

ROC curves were made for the taxonomic set of metazoan miRNA hairpins (3,902) versus 

200,000 randomly selected hairpins from the C. elegans genome. Second, sensitivity, specificity, 

and selectivity were calculated for each scoring model from the counts of true and false positive 

and negative cases (TP, FP, TN, and FN, respectively) in the following way: 

Sensitivity = (100∗)TP /(TP + FN) 

Specificity = (100∗)TN /(TN + FP) 

Selectivity = Sensitivity /(100 - Specificity) 

TP and FN were counted from taxonomic sets of known miRNA hairpins, TN and FP were 

determined as a fraction of genome-wide identified hairpins. Although these sets of genomic 

hairpins contained an unknown number of true miRNAs (so FN and TP), this number was 

expected to be sufficiently small to be ignored. For uniform comparison, we benchmarked 

selectivity at discrete values of sensitivity (95% and/or 75%). Discrete points on the ROC curve 

correspond to pairs of sensitivity and specificity values, and as such describe the shape of the 

curve. 

The performance of the classifier L was compared with sensitivity, specificity and selectivity of 

threshold filtering on descriptors of miRNA and genomic hairpins. For the 18 most informative 

descriptors, the threshold used did represent the same cut-off value between the S = 1 and S < 1 

fraction of the LDF, at 95% of the CDF at the side(s) of the distribution as listed in Table 1. This 
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cut-off was used as a binary decision criterion: below the threshold, the (miRNA) hairpin was 

included; above it was rejected. 

A 10-fold cross-validation was performed on 200,000 randomly chosen genomic hairpins and 

repeated ten times. As input set, a non-redundant variant of the taxonomic set Metazoa was 

constructed. This involved clustering miRNA hairpins with identical mature miRNA seed 

sequences and an overall hairpin sequence identity larger than 90%. All but a single 

representative for each cluster were then removed, yielding a subset of 2,033 sequences. 

Identification of putative miRNA hairpin structures 

The suffix-tree based tool VMatch [43] was used to identify small genomic hairpin structures in 

the genomes of C. elegans and four viruses, using a sliding window of 1,000 nt with an overlap of 

200 nt. The latter value exceeds the length of the largest known metazoan miRNA hairpin (153 

nt). Each sequence window was stored as a VMatch database (index) and its reverse 

complement was used as query sequence in a VMatch search for degenerate palindromic 

sequences, allowing GU-base pairing. Parameter settings that allowed exhaustive retrieval of 

known miRNA hairpins were found empirically (data not shown). Such a palindromic sequence 

consists of two inverse complementary sequences for the stem, at a physical distance 

representing the loop of a putative hairpin. Palindromes were discarded if the distance was 

larger than 50 nt, which represents the upper limit of loop size in the vast majority of metazoan 

miRNAs. Overlapping palindromes were merged if they had at most 8 non-overlapping 

nucleotides on either side. With these parameter settings, only a small number of known miRNA 

hairpins was missed. The remaining set of palindromic sequences was used for secondary 

structure prediction using RNA-fold version 1.6 with the constrained folding option (-C) to 

enforce the stem structure in the folding of the molecule [21]. All hairpin structures were filtered 

for five threshold values: (1) minimal hairpin length = 45 nt; (2) minimal number of base pairs in 

the stem = 15; (3) minimal number of paired bases in the most stringently paired window of 24 

positions in the hairpin stem = 15; (4) maximum length of a bulge in the stem = 29 nt; (5) 

minimal ratio of the number of paired positions divided by all positions in the stem (match-ratio) 

= 0.45. 

Grouping identified genomic hairpins into unique loci 

Many of the genomic hairpins identified were overlapping or nested. Such hairpins were 

grouped into unique loci when the centers of their loops were less than 20 nt apart, regardless 

of the strand on which the hairpins were located. 
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Additional material 
 

Additional file 1:Data fit of descriptors. 

Results of the data fit for 40 descriptors from the taxonomic set Metazoa (3,902 miRNA hairpins). 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S1.pdf 

 

Additional file 2: Detailed explanation of descriptors. 

A set of 40 potentially discriminative features of miRNA hairpins, referred to as descriptors, was defined and 

includes both physical and sequence characteristics of miRNA hairpins. 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S2.pdf 

 

Additional file 3: Descriptor interdependency. 

Correlation among descriptors in their S<1 fractions, assessed by Cohen's kappa coefficient κ of all 780 possible 

pairs of descriptors, using the miRNA hairpins of the taxonomic set Metazoa. 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S3.pdf 

 

Additional file 4: Taxonomic sets with at least 100 miRNA sequences. 

MiRNA sequences were divided in hierarchically organized subsets based on their taxonomic relationships. A 

total of 23 taxonomic sets comprised at least 100 sequences and were used for analysis. 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S4.pdf 

 

Additional file 5: Hairpins identified in Epstein-Barr Virus 

Details of 23 hairpins with L score = 1.0, identified in Epstein-Barr Virus [EMBL: AJ507799] for the scoring model 

Metazoa.  

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S5.pdf 

 

Additional file 6: Hairpins identified in Mareks disease Virus. 

Details of 18 hairpins with L >= 0.30 identified in Mareks Disease Virus [EMBL: AF243438] for the scoring model 

Metazoa.  

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S6.pdf 
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Additional file 7: Hairpin loci in C. elegans obtained by the filtering protocol "Clustered". 

Filtering on L score was combined with filtering on genomic context, a protocol referred to as "Clustered". 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S7.pdf 

 

Additional file 8: Hairpin loci in C. elegans obtained by the filtering protocol "Similar". 

Filtering on L score was combined with filtering on a similarity threshold to known metazoan mature miRNAs, a 

protocol referred to as "Similar". 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S8.pdf 

 

Additional file 9: Performance of the scoring model Metazoa. 

Analysis of the performance of the scoring model Metazoa on sets of genomic hairpins other than those 

derived for the C. elegans genome. 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S9.pdf 

 

Additional file 10: MiRNAs that excluded from the analyses. 

The hairpin structure of six sequences deviated considerably from the predicted characteristics of miRNA 

hairpins and were excluded from all subsequent analyses. 

http://www.biomedcentral.com/content/supplementary/1471-2164-10-204-S10.pdf 

References 
1. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.  

2. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, 

Chien M, et al.: Identification of microRNAs of the herpesvirus family. Nature methods 2005, 2(4):269-

276.  

3. Zeng Y, Cullen BR: Efficient processing of primary microRNA hairpins by Drosha requires flanking 

nonstructured RNA sequences. The Journal of biological chemistry 2005, 280(30):27595-27603.  

4. Berezikov E, Plasterk RH: Camels and zebrafish, viruses and cancer: a microRNA update. Human molecular 

genetics 2005, 14(Spec No 2):R183-190.  

5. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP: The microRNAs 

of Caenorhabditis elegans. Genes & development 2003, 17(8):991-1008.  

6. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T: New microRNAs from mouse and human. 

RNA (New York, NY) 2003, 9(2):175-179.  

7. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF: The expansion of the 

metazoan micro-RNA repertoire. BMC genomics 2006, 7:25.  

8. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, et al.: 

Identification of hundreds of conserved and nonconserved human microRNAs. Nature genetics 2005, 

37(7):766-770.  

9. Beuvink I, Kolb FA, Budach W, Garnier A, Lange J, Natt F, Dengler U, Hall J, Filipowicz W, Weiler J: A novel 

microarray approach reveals new tissue-specific signatures of known and predicted mammalian 

microRNAs. Nucleic acids research 2007, 35(7):e52.  

10. Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP: Large-scale sequencing reveals 

21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006, 127(6):1193-1207.  

11. Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, Kellis M: Systematic discovery and 

characterization of fly microRNAs using 12 Drosophila genomes. Genome research 2007, 17(12):1865-

1879.  

12. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH: Diversity of 

microRNAs in human and chimpanzee brain. Nature genetics 2006, 38(12):1375-1377.  

13. Lindow M, Krogh A: Computational evidence for hundreds of non-conserved plant microRNAs. BMC 

genomics 2005, 6:119.  

14. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in 

Arabidopsis thaliana. Genes & development 2006, 20(24):3407-3425.  



Chapter 7 

146 
 

15. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, 

Dangl JL, et al.: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and 

death of MIRNA genes. PLoS ONE 2007, 2(2):e219.  

16. Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, Sewell AK, Liu X, Yates JR 3rd, Han M: Systematic 

identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with 

GW182 proteins AIN-1 and AIN-2. Molecular cell 2007, 28(4):598-613.  

17. Tyler DM, Okamura K, Chung WJ, Hagen JW, Berezikov E, Hannon GJ, Lai EC: Functionally distinct 

regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes & 

development 2008, 22(1):26-36.  

18. Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E, Brennecke J, Bartel DP, Cohen SM, Kellis M: A single 

Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes & 

development 2008, 22(1):8-13.  

19. Yoon S, De Micheli G: Computational identification of microR-NAs and their targets. Birth Defects Res C 

Embryo Today 2006, 78(2):118-128.  

20. Lindow M, Gorodkin J: Principles and limitations of computa-tional microRNA gene and target finding. 

DNA and cell biology 2007, 26(5):339-351.  

21. Hofacker IL: Vienna RNA secondary structure server. Nucleic acids research 2003, 31(13):3429-3431.  

22. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research 

2003, 31(13):3406-3415.  

23. Lai EC, Tomancak P, Williams RW, Rubin GM: Computational identification of Drosophila microRNA genes. 

Genome biology 2003, 4(7):R42.  

24. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van Nimwegen E, Zavolan M: 

Identification of clustered microRNAs using an ab initio prediction method. BMC bioin-formatics 2005, 

6:267.  

25. Hertel J, Stadler PF: Hairpins in a Haystack: recognizing micro-RNA precursors in comparative genomics 

data. Bioinformatics (Oxford, England) 2006, 22(14):e197-202.  

26. Helvik SA, Snove O Jr, Saetrom P: Reliable prediction of Drosha processing sites improves microRNA gene 

prediction. Bioinformatics (Oxford, England) 2007, 23(2):142-149.  

27. Nam JW, Shin KR, Han J, Lee Y, Kim VN, Zhang BT: Human micro-RNA prediction through a probabilistic 

co-learning model of sequence and structure. Nucleic acids research 2005, 33(11):3570-3581.  

28. Berezikov E, Guryev V, Belt J van de, Wienholds E, Plasterk RH, Cuppen E: Phylogenetic shadowing and 

computational identifica tion of human microRNA genes. Cell 2005, 120(1):21-24. 

29. Lindow M, Jacobsen A, Nygaard S, Mang Y, Krogh A: Intragenomic matching reveals a huge potential for 

miRNA-mediated regulation in plants. PLoS computational biology 2007, 3(11):e238. 

30. Baskerville S, Bartel DP: Microarray profiling of microRNAs reveals frequent coexpression with 

neighboring miRNAs and host genes. RNA (New York, NY) 2005, 11(3):241-247. 

31. Brennecke J, Cohen SM: Towards a complete description of the microRNA complement of animal 

genomes. Genome biology 2003, 4(9):228. 

32. Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like mRNA targets directed by a class of 

Arabidopsis miRNA. Science (New York, NY) 2002, 297(5589):2053-2056. 

33. Piriyapongsa J, Marino-Ramirez L, Jordan IK: Origin and evolution of human microRNAs from transposable 

elements. Genetics 2007, 176(2):1323-1337. 

34. Xue C, Li F, He T, Liu GP, Li Y, Zhang X: Classification of real and pseudo microRNA precursors using local 

structure-sequence features and support vector machine. BMC bioinformatics 2005, 6:310. 

35. Ng KL, Mishra SK: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins 

using global and intrinsic folding measures. Bioinformatics (Oxford, England) 2007, 23(11):1321-1330. 

36. Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J: Computational and experimental 

identification of C. elegans microRNAs. Molecular cell 2003, 11(5):1253-1263. 

37. Freyhult E, Gardner PP, Moulton V: A comparison of RNA folding measures. BMC bioinformatics 2005, 

6:241. 

38. Bonnet E, Wuyts J, Rouze P, Peer Y Van de: Evidence that micro-RNA precursors, unlike other non-coding 

RNAs, have lower folding free energies than random sequences. Bioinformatics (Oxford, England) 2004, 

20(17):2911-2917.  



In silico miRNA prediction in metazoan genomes 

147 
 

39. Ng Kwang Loong S, Mishra SK: Unique folding of precursor microRNAs: quantitative evidence and 

implications for de novo identification. RNA 2007, 13(2):170-187. 

40. Azzalini A, Capitanio A: Statistical applications of the multivariate skew normal distribution. Journal of 

the Royal Statistical Society: Series B (Statistical Methodology) 1999, 61(3):579-602. 

41. Cohen J: A Coefficient of Agreement for Nominal Scales. Educational and psychological measurement 

1960, 20(1):37. 

42. Applied Bioinformatics (PRI/WUR) [ http://appliedbioinformatics.wur.nl/murnall/] 

43. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R: REPuter: the manifold 

applications of repeat analysis on a genomic scale. Nucleic acids research 2001, 29(22):4633-4642. 

44. Griffiths-Jones S: miRBase: the microRNA sequence database. Methods in molecular biology (Clifton, NJ) 

2006, 342:129-138. 

45. Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, Watson M, Nair V: MicroRNA profile of Marek's disease virus-

transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. Journal of virology 2008, 

82(8):4007-4015. 

46. Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR: Epstein-Barr virus 

microRNAs are evolutionarily conserved and differentially expressed. PLoS pathogens 2006, 2(3):e23. 

47. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research 1999, 

27(2):573-580. 

48. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, 

Tatusova TA, et al.: Database resources of the National Center for Biotechnology. Nucleic acids research 

2003, 31(1):28-33. 

49. Schölkopf B: Support Vector Learning R. Oldenbourg Verlag, Munich; 1997. 

50. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, et al.: 

Ensembl 2008. Nucleic acids research 2008:D707-714. 

51. Kulikova T, Akhtar R, Aldebert P, Althorpe N, Andersson M, Baldwin A, Bates K, Bhattacharyya S, Bower L, 

Browne P, et al.: EMBL Nucleotide Sequence Database in 2006. Nucleic acids research 2007:D16-20. 

52. The R Project for Statistical Computing [http://www.Rproject.org/] 

53. RPy (R from Python) [http://rpy.sourceforge.net/index.html] 

54. Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) 

curve. Radiology 1982, 143(1):29-36. 



 

148 
 

  



 

 
 

Chapter 8 

 

 

General discussion 



Chapter 8 

150 
 

My thesis project was part of an initiative of the graduate school Experimental Plant Sciences 

(EPS) to stimulate bioinformatics-related research projects, within the framework of EPS 

‘Strategische middelen’ and Plant Research International (PRI) ‘Kennisbasis-financiering’. 

Wageningen University (WU) and Research Centre implemented the full spectrum of high 

throughput omics technologies in the infrastructure of its laboratories to be used in large scale 

research programs that focus on the biology of important agricultural species. However, the 

challenge is to extract and interpret the biological information from the data and to integrate 

this information into a comprehensive knowledge base on the functioning of cellular and 

organismal systems. To strengthen this effort, bioinformatic recourses are required for the 

handling and integration of large datasets generated with modern omics technologies. Some of 

the prioritized areas included plant and fungal comparative genomics (comparative studies at 

the genome level in areas such as gene structure, regulatory networks or metabolic pathways) 

and general omics data management, standardization and integration. A further prerequisite 

was that the development of methodology, algorithms, and software implementations must be 

useful for both experimentalists and bioinformaticians. Because collaborations between 

research groups from WU and PRI were given high priority, a twinning project `Comparative 

Fungal Genomics` was granted that comprised two PhDs, each based in one of the research 

groups. 

In search for in silico evidence of existence of miRNAs in fungi 
I started to study the occurrence and possible regulatory roles of miRNAs that were just 

discovered. Already in 2006 Andy Fire and Craig Mello won the Nobel Prize for their work on 

RNA interference (RNAi), for work mainly done on the nematode C. elegans, underlining its 

enormous impact. In chapter 7 we describe a novel and flexible approach in ranking the 

likeliness that a given hairpin structure represents a miRNA hairpin. We showed that our 

approach can assign miRNAs in C. elegans, D. melanogaster and various human viruses with 

great accuracy. By choosing an optimal Likeliness score L, known miRNAs as well as several 

highly likely novel miRNA candidates were assigned. Unfortunately, the potential to maturate 

functional miRNAs from these candidate miRNA hairpins were never tested in vitro or in vivo. 

This study on miRNAs was initiated for a different reason. Our hypothesis was that fungi would 

encode miRNAs. Some of the pathogenic fungi could even encode miRNAs that are targeted 

towards host defence genes (plant or mammal). Most Ascomycete fungi encode the full protein 

potential for one or more silencing pathways [1]; most of their genomes encode two distinct 

Dicer-like and a variable number of Argonaute proteins. Existence of a functional silencing 

pathways (including quelling and meiotic silencing by unpaired DNA) and the requirement of one 

of these Dicer-like proteins in these pathways had some experimental support [2],[3]. However, 

comparative genomics of fungal sequence data, available at that time, showed a considerable 

diversification of proteins known to be involved in the RNA silencing machinery [1]. 

The L score approach and the exhaustive mining of genomic hairpins applied to fungal genomes. 

Exhaustive sets of genomic hairpins were mined in various fungal genomes (Neurospora crassa, 

Zymoseptoria tritici, Fusarium graminearum and others) and several custom-made scoring 

models were employed to calculate the L score. Various models were taken into account to 

prevent the L score to be tailored on animal or plant miRNA hairpins, with the purpose to 

increase the chance to find the unexpected. The results were surprising. Hundreds of hairpins 

per fungal species were assigned at thresholds that yielded the majority of known metazoan 
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hairpins. Even the most stringent filtering (L=1) yielded tens to a hundred of hairpins per fungal 

genome. Next, we tried to prioritize these hairpins by looking for conservation. Since many 

metazoan and plant miRNAs regulate developmental processes (for reviews see [4],[5]) by 

targeting highly conserved genes. As a consequence, these miRNAs are near-identical even at 

the complete hairpin level among distantly related species. Imposing a conservation threshold 

criterion on this, requiring a complete hairpin or a 21nt segment to be somewhat conserved over 

several species, reduced the number of miRNA candidates to zero. Analyses following the same 

line of thought, but applied by others in various Aspergillus species, yielded the same outcome, 

i.e. not a single conserved miRNA-like hairpin structure was detected [6]. Additional searches 

allowing for faint similarity and subsequent manual inspection of all resulting pairwise and 

multiple alignments yielded a few interesting candidates. Potentially the strict conservation 

requirement, which was shown to be successful in the prediction of plant and animal miRNA 

hairpins, did not apply to fungal miRNAs. Likely, developmental regulation in fast evolving single-

cellular organisms as fungi is not as conserved as that in complex, multicellular organisms. 

Moreover, the hypothesis that a considerable pool of non-conserved, ‘young’ miRNAs would 

exist in animals and plants [7],[8] got increased scientific support. 

Yet, in that particular period (~2007-2008), miRNA research started to rely on and demand more 

and more that published miRNAs had some degree of experimental proof. The first deep-

sequencing miRNA data sets of model organisms were being published, showing that some 

earlier published miRNAs might be incorrect. We realized that without (large-scale) experimental 

support the effort to publish any of these results would be fruitless. Unfortunately, funding for 

these experiments were not available during my thesis project. Therefore, the difficult but 

sensible decision was made not to proceed this line of research during my thesis. A fundamental 

scientific breakthrough can only be achieved if bioinformatics, biological datasets and functional 

analyses are combined, preferably in an a priori and carefully planned manner. Precious time 

and resources will get lost if not all of these prerequisites are met in a scientific research project. 

Validity of L score miRNA predictions 

Later scientific reports have shown the value our miRNA prediction effort and provided a 

posteriori justification for the quest for miRNAs in fungi. In chapter 7, we provide lists of high-

scoring genomic hairpins in three species (Additional Files 5-8). These lists show large overlap 

with the miRNAs known at that time, however some of these did not correspond to known 

miRNAs. From these, we mention a few highly compelling miRNA candidates in viruses: two in 

Epstein-Barr virus (EBV) and three in Mareks disease virus (MDV). By revisiting the miRBase 

registry [9], release 20, we noticed that the novel miRNAs ebv-mir-BART21 [10], ebv-mir-BART22 

[11],[10] and mdv1-mir-M31 [12] exactly correspond to our predictions. For C. elegans, we 

elaborated on only four out of 132 known miRNA hairpins that were not among our exhaustive 

population of over 3.500,000 genomic hairpins. We speculated that these (cel-mir-262, cel-mir-

260, cel-mir-272 and cel-mir-256) might not be genuine miRNAs. Current miRBase entries 

provide accumulated Reads Per Million (RPM) data obtained from various next-generation 

sequencing (NGS) experiments. Cel-mir-256 and cel-mir-272 have yet to be detected in any 

experiment, and cel-mir-260 and 262 are only supported by very low RPM values (12.2 and 18.3, 

respectively). This is in sharp contrast to typical expression levels of the earliest described, non-

constitutively expressed miRNAs lin-4 (29.300 RPM) and let-7 (6.510 RPM), and even to the 
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median (41 RPM) of 223 currently known miRNAs. Overall, these results underline the strengths 

of our predictions using the L-score classifier. 

Discovery of miRNA-like small RNAs and cross-kingdom RNAi in plant-pathogenic fungi 

The hypothesis that miRNAs also occur in fungi was later demonstrated in N. crassa [13]. It was 

experimentally shown that 21nt miRNA-like small RNAs (milRNAs) were cleaved from 

endogenous RNA precursor hairpins. Evidence was provided that these milRNAs regulate gene 

expression in Neurospora by downregulation of (protein-coding) transcripts that contain 

imperfectly complementary target sites, just like reported for animal miRNAs [14]. The results 

uncover several pathways for small RNA production in filamentous fungi, and show that the 

milRNA-maturation pathway is indeed slightly different from those reported in animals and 

plants [14],[15], which could explain why several distinct types of RNA hairpins were substrates 

for Dicer. These differences let to the naming of a miRNA-like pathway in fungi, indicating that 

further research was required to fully understand this pathway. 

Existence of an extensive, diverse and tissue-specific population of small RNAs in fungi was 

shown by NGS sequencing [13],[16],[17],[18],[19] of which only a small proportion probably 

resemble milRNAs. Remarkably, in a recent study in B. cinerea it was shown that fungal-encoded, 

processed small RNAs selectively silence host immunity genes [19]. These small RNAs hijack the 

host RNAi machinery by binding to Argonaute 1; “thus, this fungal pathogen transfers ‘virulent’ 

small RNA effectors into host plant cells to suppress host immunity and achieve infection” [19]. 

The loci which produce these small RNAs are LTR retrotransposons and do not correspond to 

milRNA loci. Such cross-kingdom RNAi was already demonstrated to exist in mammalian virus-

encoded miRNAs ([20]; for review see [21]). Yet, it is an exciting finding for pathology, which 

opens up a new level of manipulation in fungus-host interactions. The obvious question that 

remains is how the fungus manages to transfer small RNAs into plants. 

Comparative genomics of Dothideomycete genomes 
In the last decade numerous fungal genomes were sequenced and most of them became 

publicly available. Focus In our laboratory is on the Ascomycetes, and more specifically the class 

of Dothiodeomycetes. As part of this thesis, the genome sequencing, annotation and 

comparative analyses of Cladosporium fulvum and Dothiostroma septosporum was performed in 

a joint effort with an affiliated group, and by commitment of all colleagues and co-authors. The 

availability of those two genome sequences in particular, fortified by a steady growing array of 

(closely) related genomes, opened up the possibility of various comparative genomics analyses. 

In the following part of the discussion, the most striking observations are further discussed. 

Increased level of pseudogenization in Cladosporium fulvum 

Pseudogenization of effector genes of a plant pathogenic fungus have been reported on. 

Examples are the avirulence (AVR) genes of C. fulvum [22] and Leptosphaeria maculans [23] 

which show allelic variation by acquiring mutations resulting in frame shifts or in-frame stops, 

which effectively results in a loss of function mutation of the conserved AVR. In the studied fungi 

in chapter 3 and 4, or fungal genomes in general, pseudogenization was expected to occur at 

very low frequencies but this was so far never quantified. The exception to the rule of a low 

pseudogenization frequency is the observation of abundant gene loss in the genomes of the 

ectomycorrhizal symbiont Tuber melanosporum [24] and the obligate biotrophic pathogen 
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Blumeria graminis [25]. In T. melanosporum, the loss of gene is explained primarily by 

pseudogenization. In B. graminis, it was stated that the genes were completely lost from its 

genome [25]. However, TBLASTX analyses using annotated fungal proteins yielded significant 

and abundant similarity all throughout its genome (data not shown), indicating that gradual 

pseudogenization is a better explanation and in accordance with the observation in T. 

melanosporum. In both species, the loss of genes was attributed to transposon activity [25],[24], 

and simultaneously this proliferation of transposable elements resulted in an expansion of their 

genome sizes to around 120-125MB. The loss of numerous individual genes up to complete 

pathways and an biotrophic lifestyle seems to go hand in hand. It might represent an 

evolutionary dead end of an organism that becomes increasingly specialised but at the same 

time fully dependent on its host. Therefore it is difficult to quantify the total number or the 

pseudogenized fraction of the (ancestral) gene catalogue of these fungi. Based on the estimation 

of a typical fungal gene catalogue (12,000) and the number of predicted proteins in B. graminis 

(5,854 [25]) and T. melanosporum (~7,500 [24]), 38 to 51% of all genes could have become 

pseudogenes. 

Of the species that were studied in chapter 4, up to 372 representing 5% of the annotated genes 

of C. fulvum might represent pseudogenes. Additionally, hundreds of not yet annotated gene loci 

were found to be significantly similar to predicted fungal proteins, yet only when tolerating in-

frame stop codons and frame shift mutations. This similarity was not limited to single or partial 

domain hits, but spanned the full query protein sequence. In most cases a HMMER model could 

serve as query, based on a multiple protein sequence alignment of commonly observed fungal 

proteins. This observation, combined with a likely somewhat overestimated number of genes in 

the annotated gene catalogue (based on ongoing RNA-seq analyses; data not shown), indicates 

that the stated 5% likely represents a two-fold underestimation. We showed that for a small 

minority of these mutated genes the description gene truncation might be more justified than 

their classification as pseudogene. For mutations that are not dramatic to protein continuity, the 

encoded protein might still have complete, residual or a new function. Without functional 

characterization, the impact of a mutation in regard to preservation, loss or change of function is 

difficult to indicate.  

Comparison of the observed extend of pseudogenization among the six studied Ascomycetes 

revealed a relation to reproductive mode. A higher degree of pseudogenization was observed for 

species that reproduce preferably asexually compared to those that are known to reproduce 

both sexual and asexual. It might be possible that C. fulvum, the species with by far the highest 

number of pseudogenes, is at the onset of becoming an obligate biotroph like B. graminis. The 

additional striking resemblance between C. fulvum and these two species is the expanded 

genome size due to massive retrotransposon proliferation. Although the legacy of its putative 

ancestral hemi-biotrophic lifestyle is still encoded on its genome, many of these genes are either 

pseudogenized or not expressed during host colonization (see chapter 2).  
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Introner- and Introner-Like Elements could represent the missing 

link in intron dynamics 
Chapter 5 and 6 describe the discovery and characterization of introner-like elements (ILE) in 

several Dothideomycete fungi. Multiplication of ILEs was shown to be responsible for massive 

and on an evolutionary timescale recent gain of introns. ILEs were shown to be the main 

contributor to intron gains. In addition, inter- and intra-species comparison of ILEs showed a 

considerable degree of analogy by sequence similarity and predicted secondary structure, which 

is maintained by a manifold of compensatory mutations. On the contrary, individual copies of 

ILEs rapidly diverge in sequence, and tend to lose their particularly stable secondary structure 

during this process. ILEs received their name because of their resemblance to introner elements 

(IE) which were discovered in the green alga Micromonas pusilla [26],[27]. IEs were recognized 

to be responsible for the massive and apparently sudden invasion of new introns in this species. 

Because genomes of closely related species were not available, no further comparative analyses 

was performed in that species. 

The origin of introns remains a great mystery. Although the genomes of virtually all eukaryotes 

are intron-rich, little evidence for intron gain could be found [28]. One of the most accepted 

hypotheses explains the unambiguous and abundant presence of introns in eukaryotes by a 

sudden and massive invasion as early as the last eukaryotic common ancestor (LECA) [29]. Thus 

the LECA genome was full of introns and from this ancestor the radiation of eukaryotic life 

initiated. Some would have lost introns at a fast pace (e.g. Saccharomyces cerevisiae has few 

introns) or at a slow pace , like all vertebrate genomes which are nowadays still rich in introns. 

This hypothesis would imply that intron gain would be very rare. Successive analyses in various 

taxonomic clades kept this hypothesis on introns alive [28],[30], but it would ultimately result in 

the disappearance of spliceosomal introns. However, some lineages such as fungi have 

experienced more balanced rates of intron gains and losses [31],[32]. Recently intron gains have 

also been described in in multicellular animals like the micro-crustacean Daphnia pulex (water 

flea) [33] and the tunicade (sea-squirts) Oikopleura dioica [34]. These observations suggest that 

intron gains does still occur in present day genomes. 

Although the mechanism of IE and ILE multiplication is unknown, it caused intron gains at a so 

far unprecedented scale in recent evolutionary history and in two unrelated branches of the 

eukaryotic tree of life. Hundreds of (gained) introns in different genes in several Dothideomycete 

species could be attributed to the multiplication of ILEs. In Zymoseptoria tritici, and a subset of 

insertions could be dated to the last 20,000 to 2,000 years. Moreover, evolutionary distance 

could be correlated to sequence divergence of ILEs, which shows that ILE sequences degenerate 

within 100ky to become indistinguishable from regular spliceosomal introns assuming an 

average mutation rate. This would indicate that, assuming that ILE multiplication is been ongoing 

for longer than 100ky, many more intron gains could be identified in ILE-containing 

Dothideomycetes. This is exactly what we observed, as shown in Figure 1. 

This figure shows the paradox of apparent decrease of ILE-accounted contribution to intron gain 

at increasing branch length. ILE’s account for up to 90% of all most recent intron gains in various 

Zymoseptoria species, which decreases to 40-60% in species that lack a recent branching 

speciation event (D. septosporum, C. fulvum and Septoria passerinii) and finally drops to less 

than 10% in the common ancestors. 
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Figure 1: Contribution of Introner-like Elements to Single Intron Gains 

Contribution of ILE-multiplication to intron gain plotted on the species tree of Cladosporium fulvum (Cf), 

Dothistroma septosporum (Ds), Septoria musiva (Sm), Mycosphaerella fijiensis (Mf) and recently speciated 

Zymoseptoria species: Mycosphaerella graminicola (Mg, renamed Zymoseptoria tritici, sister species S1, sister 

species S2 and Septoria passerinii. Adapted from Figure 5c in Chapter 5; bootstrap-supported branch lengths 

are only informative for the Zymoseptoria species; topology of the Dothideomycete species tree according to 

Figure 2a of Chapter 2. For M. fijiensis and S. musiva, only half of the total number of intron loci could be 
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inspected due to the requirement of an additional outgroup node (see Table S3, Chapter 5). Most informative 

,however, is the proportion of ILE-multiplication to intron gain. 

At the same time, the overall rate of intron gains since the radiation of the Capnodiales species 

does not seem to vary. This pattern is also observed for M. fijiensis. For Septoria musiva, no 

recently active ILE cluster was detected, supported by absence of several near-identical copies. 

Yet, an overwhelming number of hits was retrieved by a HMM search of ILE sequences in its 

intronome (see Table S2, Chapter 5), which is consistent with the fast sequence degeneration of 

individual ILE copies. 

This implies that, as exemplified for C. fulvum and D. septosporum, the total number of ILE- 

intron gains since the divergence from the Zymoseptoria branch could represent nearly four 

times the number that is now recognized as such ( 538 and 445 ILEs, respectively) in their 

genomes. This brings the total number of ILE-mediated gained introns at around 2,000 which is 

at the same order of magnitude as observed in M. pusilla. A major difference remains the 

apparent timescale during which those thousands of multiplications occurred. In these fungi, the 

estimated timescale would be one million year, whereas in M. pusilla lack of sequence 

divergence among individual IE copies suggest a very narrow and recent window of time. 

However, this suggestion is based on the pattern of fast sequence degeneracy of ILEs in fungi. 

Future analyses of yet to be discovered closely related M. pusilla species might give further 

insight. 

What is the origin and the molecular mechanism behind the mobility of Introners and 
introner-like elements? 

An hypothesis for the intron-richness of current eukaryotic species is a sudden invasion of 

introns in the LECA. Several mechanism were initially proposed to explain the acquisition of 

introns [35]. Some of these have some experimental support to occur in nowadays genomes, but 

none of these are supported by an observed frequency that can explain the current abundance 

of introns in eukaryotes. Therefore, it was proposed that the mechanism of the ancestral intron 

invasion would be different from that in the nowadays genomes [35]. The observed 

multiplication frequency of IEs in M. pusilla and ILEs in Dothideomyectes makes the hypothesis of 

a massive and sudden intron invasion of the LECA plausible. Simultaneously it would imply that 

mechanistically there is no difference between ancestral and nowadays intron gain. Because of 

the high frequency, ILE and IE multiplication likely involves a mechanism different from that 

proposed for intron gain in earlier reports [35]. The models that currently received most support 

involve intron transposition [36],[35],[27] and spliceosomal retrohoming [37]. Both involve 

reverse splicing and reverse transcription, but the first model assumes spicing into mRNA and 

the latter directly into DNA. In the case of ILEs, it is tempting to speculate that their secondary 

structures might significantly contribute to the multiplication mechanism. The predicted stable 

secondary structure of ILEs seems to be under selection pressure as can be concluded from the 

multiple compensatory mutations observed in ILEs. Noteworthy here is that IEs have comparable 

stable predicted secondary structures, but only on their reverse complementary strand 

compared to their normal orientation in genes (data not shown). From the results presented 

above and in Chapter 6, multiplication of ILEs in fungi and IEs in M. pusilla is certainly the main 

mechanism of intron gain in these species. If large-scale intron invasion is indeed limited to IEs 

and ILEs, absence of these elements might explain why only few genomes have experienced 

recent (massive) intron gains. But, the question how some genomes acquired Introners remains. 
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Errors in the gene catalogue of fungal species 
 

Any biological data set that heavily relies on in silico prediction will contain errors. However, the 

frequency, type and gravity of errors will depend on many different factors. The application of a 

specific tool or method – or the omission of it – could be a source for a particular systematic 

error to occur more frequently. Having insight in type and frequency of expected errors is of 

crucial importance for planning and performing experiments, regardless if they are done in vivo, 

in vitro or in silico. 

During the analyses on ILEs in six Dothideomycetes (chapter 5), we discovered that many of the 

introns recognized as ILEs likely had incorrectly predicted boundaries. Sensitive HMMER models 

of multiple DNA sequence alignments of ILEs we used to align spurious introns and by manual 

inspection the boundaries of many ILEs could be corrected. Such tedious work and its results on 

intron-exon structures are rarely reported in the main text of a publication; at best in 

supplementary data it is mentioned that `many genes/sites/introns were manually curated`. In 

case of the manual curation of ILEs, hundreds of ILE sequences that showed aberrancies to their 

expected size were checked. In the different species 6-39 ILEs were corrected (5-10% of all ILEs), 

meaning that their currently annotated boundaries were incorrect. Some introns were 

completely mis-annotated; often two introns would be fused leading to kb-sized long introns 

that linked two distinct genes in a false gene fusion. In extreme cases, the wrongly predicted 

intron camouflaged a third, intermediary positioned, gene that was overlooked by the gene 

prediction software. In total 52 ILEs (3%) were mapped to genomic positions lacking a gene 

model. Convincing similarity obtained by TBLASTX against proteins from other fungi at these loci 

indicate that these loci likely correspond to missing (parts of) genes. In addition, 7 to 55 introns 

per species were removed to yield the further studied datasets of 45-538 ILEs. These introns, 

around 10% of all ILEs per species, are certainly ILEs, but their exact 5’ (donor) or 3’ (acceptor) 

boundary could not be verified yet. Recent inspection of these ILEs by using RNA-Seq data of C. 

fulvum and Z. tritici (kindly provided by Eva Stukenbrock) confirmed that indeed the majority of 

these boundaries were incorrect (data not shown). This drilled down list of all errors 

encountered in a simple dataset of only 1750 introns underlines the apparent high error rate in 

the predicted introns of these species. 

In chapter 6, we identified putative events of intron duplication in 24 fungal genomes. To 

achieve this, stringent filtering was required to remove introns that are themselves embedded in 

a duplicated sequence (see chapter 5, Supplemental Experimental Procedures). In those cases, 

the intron was most likely co-duplicated along with its adjacent sequence. By far the largest 

number of discarded introns were identified as being embedded in a longer, highly repetitive 

sequence context (data not shown). This presumably reflect a similar type of error as was shown 

in the introduction: parts of transposons that were erroneously predicted as protein-coding 

genes. 

The overall poor quality of gene catalogues of fungi was quantified in chapter 3, where a 

substantial part of the gene catalogues of six different Ascomycete species were analysed. The 

method used, called Alignment-Based Fungal Gene Prediction (ABFGP) predicted models 

identical to current annotated genes in 57-77% of all cases. On the contrary, 22-41% of all gene 

models had proposed revisions. Corrected for the accurately defined error-rate of ABFGP itself, 
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this account for thousands of gene models containing errors in a complete fungal gene 

catalogue. A significant decrease in average intron length was observed for the revised 

catalogues versus the current ones. This average length decrease was primarily caused by 

removal of large introns (>604nt) that were part of falsely fused genes and splitting of medium 

sized introns (79-604nt) into two small introns. Overall, this result in sharpening of the peak of 

small introns (47-78nt) in the length distribution of the intronome (compare Figure 1 and 2 in 

Chapter 1). The same trend, a decrease in mean intron length upon improvement of gene 

models, was also observed by others in the re-annotation of F. graminearum [38]. Generalized 

comparisons of the gene catalogues of the initially sequenced Ascomycete fungi yielded the 

observation that `Introns are typically short in fungi, averaging between 80 and 150 bp in many 

ascomycetes` [39]. Such generalisations likely contributed to incorrect assumptions in gene 

prediction efforts. 

An additional outcome of the results obtained by ABFGP is the quantification of sequence errors 

in coding regions and the discovery of a considerable number of pseudogenes in various fungi 

(chapter 4). Existing (ab initio) gene prediction approaches focus on predicted genes, but are not 

capable of recognizing pseudogenes. For a genome with a high number of pseudogenes this will 

result in a high error rate. 

The genome sequences of some of the fungi analysed were supported by low sequence coverage 

(4x to 8x coverage, based on traditional Sanger-sequencing). Many genes that were recognized 

(in chapter 3) to contain inframe stops and frameshift mutations were shown by comparison to 

NGS resequencing data to actually represent sequence errors. Recently, a resequenced NGS 

assembly (50x) update of the B. cinerea strain B05.10 reference assembly (4x) was described [40]. 

The comparison of both assemblies yielded 19,917 wrong base calls and 11,258 short indels 

(personal communication Martijn Staats), indicating a sequence error rate of at least 0.8 

bases/kb. A typical fungal Sanger-sequenced genome with 4x to 7x coverage will contain 

numerous sequence errors in genic areas [41], and will result in inaccurate de novo gene 

predictions at these loci. 

Comparative genomics studies on data sets with high error rates 
 

In all chapters (2-6) that direct or indirectly dealt with gene catalogues of fungi, a considerable 

number of errors in these gene catalogues was encountered. There are serious pitfalls of 

working with large-scale (gen)omics data that mainly rely on predictions. Even the simplest of all 

meta-datasets describing a genome sequence, namely its gene catalogue, will have an 

intrinsically high error rate. 

For most of the best studied model organisms, integration of data obtained from various 

expression data sets and research community efforts to manually improve gene models will have 

reduced the number of errors to an acceptable level by consecutive rounds of updated gene 

annotations. This is useful and appreciated by biologists that will work on functional analysis of 

genes. This is best exemplified by the TAIR annotation of Arabidopsis (TAIR10, 24/10/2013), 

which has seen its 6th major update since the first whole-genome TIGR 4.0 release (June 2003). 

This is an ideal scenario that is rarely achieved for fungi, except for a few of the best studied 

species (e.g. S. cerevisae [42], S. pombe [43]). For some model organisms, the annotations are so 



General discussion 

 

159 
 

detailed and accurate that they describe characterized non-coding RNAs (tRNA, rRNAs, snoRNAs, 

various types of silencing small RNAs, etc) and differentiate between genes and pseudogenes. 

Most fungal annotations were never revisited since their original annotation and/or publication 

was released. The majority of annotations have not gone beyond version 1 [44],[45]. There are 

several reasons for this. First, semi-manual (re-)annotation of a gene catalogue is time- and 

labour-consuming, and thus unrealistic for small scientific communities working on one or 

several of these fungi. Second, projecting gene-model evidence from related fungi is far from 

straightforward. Besides the risk of propagating an error in the gene model of an informant 

protein, the evolutionary distances between fungi are often large leading to poor sequence 

conservation. Besides these practical limitations, there is also a reason of science policy: a study 

describing an improved gene catalogue of a particular species as the principal result is not 

particularly appreciated by scientific journals and funding agencies. Even research groups with 

in-house improved – potentially RNA-seq guided – annotations do not undertake the effort to 

publish their results in peer-reviewed journals for reasons mentioned above. 

An often used argument, since the availability of RNA-sequencing technology, is that inclusion of 

RNA-seq data will solve the problem of low-quality gene predictions. This is likely too optimistic, 

at least for the timeframe in which this improvement will take place. First, current software 

dealing with RNA-seq data is often aimed at identifying expression level variation (of 

characterized and correct transcript catalogues), and not per se structural annotation of 

transcripts. Although some tools do perform the second task (e.g the popular tool Cufflinks [46]), 

they perform generally well on the genomes of eukaryotes that are relatively gene-poor due to 

large intergenic distances. However, when intergenic distances are short, as observed in fungal 

and oomycete genomes, reference-based assembly of mapped RNA-seq data is highly prone to 

predict erroneously merged models. RNA-seq data will, however, indisputably reduce the error-

rate in novel published gene catalogues. On the contrary, the genomes of earlier published 

model fungi that nowadays serve as text-book examples, often still have their initial, erroneous 

gene catalogues. But often their gene catalogues are required to be included in comparative 

genomics studies as representatives of their clade, in favour of their lesser known, but putatively 

better annotated, more recently sequenced and annotated phylogenetically related fungal 

genomes. 

This preference for generation of novel, yet error-prone data over improving existing data is 

largely imposed by the demands from society. Our society is in constant search for new, 

unexpected solutions for the unanswered global problems as pollution, depletion of natural 

resources and disease of crop, livestock and humans. Genomic sequencing and analyses without 

being over-accurate has shown its value to discover the unexpected. As best examples are the 

restriction enzymes and polymerase genes derived from extremophile bacteria, which paved the 

road for molecular biological research. A contemporary example is the interest in the lignin-

degradation capability of mainly white-rot fungi that can bring commercial biofuel-production to 

maturity. 

In many research groups that study the interactions between plants and bacteria/fungi research 

is usually aimed at delivering in planta experimental evidence on the role of one or a few genes 

involved in virulence or avirulence. For plant pathologists small errors in gene catalogues are not 

disturbing, because the gene model(s) will be manually checked and verified by single-gene 

resequencing. However, exploiting bioinformatics in these research disciplines is increasing. 
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Experimental data acquired in one species needs to be quickly and reliably transferred to 

another, and comparative genomics studies are more frequently undertaken. With the increase 

in efficiency and decrease of costs, such systems biology studies are being initiated in the 

discipline of phytopathology. The ultimate goal is to explain pathogenicity and virulence of a 

pathogen: to understand the molecular basis and evolution of pathosystems up to the complex 

interactions between a complete microbiome with host plants. Thus, studies have evolved from 

single gene-for-gene interactions into multiple gene-for gene interactions between (pathogenic) 

microbes and their hosts It is important to understand mechanisms of adaptation of pro- and 

eukaryotic microbes to their host plants in time and space in order to predict durability of plant 

resistance genes. For those types of studies, good quality of the starting data is of crucial 

importance. 

As soon as multiple datasets are integrated, individual error rates will accumulate in a higher 

level error rate. For comparative genomics studies that critically depend on accurate gene 

annotations, we must reluctantly and as a community admit that already this first layer of meta-

data on a fungal genome sequence, namely its structural gene annotations, does not often meet 

the required quality. Proteins that are functionally characterized are often from non-fungi or the 

hemi-ascomycetes like the yeasts S. cerevisae or S. pombe. The ability to confidently recognize 

functional orthologues at these evolutionary distances is limited to a subset of highly conserved 

genes (e.g. CEGMA [47]). However, when less conserved or evolutionary more dynamic genes or 

pathways of genes are studied, proteins are poorly conserved at the sequence level and their 

occurrence throughout the fungal kingdom varies significantly. In many comparative genomics 

studies, predicted gene catalogues are used as-is, without any quality control. And in cases 

where it is done, how and which quality-improving improvements were undertaken exactly is 

often poorly documented. Due to strict formats and quota imposed by peer-reviewed journals, 

typical phrasing included in materials and methods comprises `when appropriate, gene models 

were corrected manually` or `genes A-Z were corrected`. Current emphasis in research on NGS 

projects (as the 1000 Fungal Genomes Project) will yield an explosion on fungal genomic data. 

`Science is a quickly moving front` is often stated by colleagues. Advances in bioinformatics will 

in time reduce the error level in many omics data sets to workable levels. The timeframe in 

which this will take place will vary per type of error, and the perception of this timeframe might 

vary between individual scientists. It requires a change in attitude within research communities 

to either make an effort to correct errors in datasets and use these in meaningful analyses, or to 

abstain from analyses that will lead to inconclusive or flawed interpretation due to errors in the 

input data. 

 

  



General discussion 

 

161 
 

References 
 

1. Nakayashiki H, Kadotani N, Mayama S: Evolution and diversification of RNA silencing proteins in fungi. 

Journal of molecular evolution 2006, 63(1):127-135. 

2. Catalanotto C, Pallotta M, ReFalo P, Sachs MS, Vayssie L, Macino G, Cogoni C: Redundancy of the two dicer 

genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Molecular and 

cellular biology 2004, 24(6):2536-2545. 

3. Kadotani N, Nakayashiki H, Tosa Y, Mayama S: One of the two Dicer-like proteins in the filamentous fungi 

Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small 

interfering RNA accumulation. The Journal of biological chemistry 2004, 279(43):44467-44474. 

4. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297. 

5. Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. 

Nature reviews Genetics 2010, 11(9):597-610. 

6. McGuire AM, Galagan JE: Conserved secondary structures in Aspergillus. PloS one 2008, 3(7):e2812. 

7. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA: Conservation and divergence of plant microRNA 

genes. The Plant journal : for cell and molecular biology 2006, 46(2):243-259. 

8. Jones-Rhoades MW: Conservation and divergence in plant microRNAs. Plant molecular biology 2012, 

80(1):3-16. 

9. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. 

Nucleic acids research 2011, 39(Database issue):D152-157. 

10. Zhu JY, Pfuhl T, Motsch N, Barth S, Nicholls J, Grasser F, Meister G: Identification of novel Epstein-Barr 

virus microRNA genes from nasopharyngeal carcinomas. Journal of virology 2009, 83(7):3333-3341. 

11. Cosmopoulos K, Pegtel M, Hawkins J, Moffett H, Novina C, Middeldorp J, Thorley-Lawson DA: 

Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. Journal of 

virology 2009, 83(5):2357-2367. 

12. Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers BC, Green PJ, Markis M, Isaacs G, Huang E et 

al: Deep sequencing of chicken microRNAs. BMC genomics 2008, 9:185. 

13. Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC et al: 

Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. 

Molecular cell 2010, 38(6):803-814. 

14. Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y: qiRNA is a new type of small 

interfering RNA induced by DNA damage. Nature 2009, 459(7244):274-277. 

15. Yang Q, Li L, Xue Z, Ye Q, Zhang L, Li S, Liu Y: Transcription of the major neurospora crassa microRNA-like 

small RNAs relies on RNA polymerase III. PLoS genetics 2013, 9(1):e1003227. 

16. Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev IV, Torres-Martinez S, Moulton V, Ruiz-Vazquez RM, 

Dalmay T: Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate 

mRNAs in the basal fungus Mucor circinelloides. Nucleic acids research 2010, 38(16):5535-5541. 

17. Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F, Brown DE, Oh Y, Mitchell TK, Dean RA: Diverse and tissue-

enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC genomics 2011, 12:288. 

18. Zhou J, Fu Y, Xie J, Li B, Jiang D, Li G, Cheng J: Identification of microRNA-like RNAs in a plant pathogenic 

fungus Sclerotinia sclerotiorum by high-throughput sequencing. Molecular genetics and genomics : MGG 

2012, 287(4):275-282. 

19. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H: Fungal small RNAs suppress 

plant immunity by hijacking host RNA interference pathways. Science 2013, 342(6154):118-123. 

20. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C et al: 

Identification of virus-encoded microRNAs. Science 2004, 304(5671):734-736. 

21. Kincaid RP, Sullivan CS: Virus-encoded microRNAs: an overview and a look to the future. PLoS pathogens 

2012, 8(12):e1003018. 

22. Stergiopoulos I, De Kock MJ, Lindhout P, De Wit PJ: Allelic variation in the effector genes of the tomato 

pathogen Cladosporium fulvum reveals different modes of adaptive evolution. Molecular plant-microbe 

interactions : MPMI 2007, 20(10):1271-1283. 



Chapter 8 

162 
 

23. Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ: Evolution of 

linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to 

resistance genes in host plants. PLoS pathogens 2010, 6(11):e1001180. 

24. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R  

et al: Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 

2010, 464(7291):1033-1038. 

25. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren van Themaat E, Brown JK, 

Butcher SA, Gurr SJ et al: Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in 

extreme parasitism. Science 2010, 330(6010):1543-1546. 

26. Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV  

et al: Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes 

Micromonas. Science 2009, 324(5924):268-272. 

27. Verhelst B, Van de Peer Y, Rouze P: The complex intron landscape and massive intron invasion in a 

picoeukaryote provides insights into intron evolution. Genome biology and evolution 2013, 5(12):2393-

2401. 

28. Roy SW, Gilbert W: Rates of intron loss and gain: implications for early eukaryotic evolution. Proceedings 

of the National Academy of Sciences of the United States of America 2005, 102(16):5773-5778. 

29. Koonin EV: The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-

early versus introns-late debate? Biology direct 2006, 1:22. 

30. Csuros M, Rogozin IB, Koonin EV: A detailed history of intron-rich eukaryotic ancestors inferred from a 

global survey of 100 complete genomes. PLoS computational biology 2011, 7(9):e1002150. 

31. Nielsen CB, Friedman B, Birren B, Burge CB, Galagan JE: Patterns of intron gain and loss in fungi. PLoS 

biology 2004, 2(12):e422. 

32. Zhang LY, Yang YF, Niu DK: Evaluation of models of the mechanisms underlying intron loss and gain in 

Aspergillus fungi. Journal of molecular evolution 2010, 71(5-6):364-373. 

33. Li W, Tucker AE, Sung W, Thomas WK, Lynch M: Extensive, recent intron gains in Daphnia populations. 

Science 2009, 326(5957):1260-1262. 

34. Denoeud F, Henriet S, Mungpakdee S, Aury JM, Da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, 

Canestro C et al: Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic 

tunicate. Science 2010, 330(6009):1381-1385. 

35. Yenerall P, Zhou L: Identifying the mechanisms of intron gain: progress and trends. Biology direct 2012, 

7:29. 

36. Torriani SF, Stukenbrock EH, Brunner PC, McDonald BA, Croll D: Evidence for extensive recent intron 

transposition in closely related fungi. Curr Biol 2011, 21(23):2017-2022. 

37. Roy SW, Irimia M: Mystery of intron gain: new data and new models. Trends in genetics : TIG 2009, 

25(2):67-73. 

38. Wong P, Walter M, Lee W, Mannhaupt G, Munsterkotter M, Mewes HW, Adam G, Guldener U: FGDB: 

revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic acids research 

2011, 39(Database issue):D637-639. 

39. Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B: Genomics of the fungal kingdom: insights into 

eukaryotic biology. Genome research 2005, 15(12):1620-1631. 

40. Staats M, van Kan JA: Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryotic cell 2012, 

11(11):1413-1414. 

41. Weber JL, Myers EW: Human whole-genome shotgun sequencing. Genome research 1997, 7(5):401-409. 

42. SGD: Saccharomyces genome database [http://www.yeastgenome.org] 

43. pombase: the scientific resource for fission yeast [http://www.pombase.org/] 

44. FGI: Fungal Genome Initiative [http://www.broadinstitute.org/scientific-

community/science/projects/fungal-genome-initiative/fungal-genome-initiative] 

45. FGP: Fungal Genomics Program [http://genome.jgi.doe.gov/programs/fungi/index.jsf] 

46. Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel transcripts in annotated genomes 

using RNA-Seq. Bioinformatics 2011, 27(17):2325-2329. 

47. Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. 

Bioinformatics 2007, 23(9):1061-1067. 



 

 

163 
 

  



Summary 

164 
 

Summary 

Fungi are a diverse group of eukaryotic micro-organisms particularly suited for comparative 

genomics analyses. Fungi are important to industry, fundamental science and many of them are 

notorious pathogens of crops, thereby endangering global food supply. Dozens of fungi have 

been sequenced in the last decade and with the advances of the next generation sequencing, 

thousands of new genome sequences will become available in coming years. In this thesis I have 

used bioinformatics tools to study different biological and evolutionary processes in various 

genomes with a focus on the genomes of the Dothideomycete fungi Cladosporium fulvum, 

Dothistroma septosporum and Zymoseptoria tritici. 

Chapter 1 introduces the scientific disciplines of mycology and bioinformatics from a historical 

perspective. It exemplifies a typical whole-genome sequence analysis of a fungal genome, and 

focusses in particular on structural gene annotation and detection of transposable elements. In 

addition it shortly reviews the microRNA pathway as known in animal and plants in the context 

of the putative existence of similar yet subtle different small RNA pathways in other branches of 

the eukaryotic tree of life. 

Chapter 2 addresses the novel sequenced genomes of the closely related Dothideomycete plant 

pathogenic fungi Cladosporium fulvum and Dothistroma septosporum. Remarkably, it revealed 

occurrence of a surprisingly high similarity at the protein level combined with striking differences 

at the DNA level, gene repertoire and gene expression. Most noticeably, the genome of C. 

fulvum appears to be at least twice as large, which is solely attributable to a much larger content 

in repetitive sequences. 

Chapter 3 describes a novel alignment-based fungal gene prediction method (ABFGP) that is 

particularly suitable for plastic genomes like those of fungi. It shows excellent performance 

benchmarked on a dataset of 7,000 unigene-supported gene models from ten different fungi. 

Applicability of the method was shown by revisiting the annotations of C. fulvum and D. 

septosporum and of various other fungal genomes from the first-generation sequencing era. 

Thousands of gene models were revised in each of the gene catalogues, indeed revealing a 

correlation to the quality of the genome assembly, and to sequencing strategies used in the 

sequencing centres, highlighting different types of errors in different annotation pipelines. 

Chapter 4 focusses on the unexpected high number of gene models that were identified by 

ABFGP that align nicely to informant genes, but only upon toleration of frame shifts and in-frame 

stop-codons. These discordances could represent sequence errors (SEs) and/or disruptive 

mutations (DMs) that caused these truncated and erroneous gene models. We revisited the 

same fungal gene catalogues as in chapter 3, confirmed SEs by resequencing and successively 

removed those, yielding a high-confidence and large dataset of nearly 1,000 pseudogenes 

caused by DMs. This dataset of fungal pseudogenes, containing genes listed as bona fide genes 

in current gene catalogues, does not correspond to various observations previously done on 

fungal pseudogenes. Moreover, the degree of pseudogenization showing up to a ten-fold 

variation for the lowest versus the highest affected species, is generally higher in species that 

reproduce asexually compared to those that in addition reproduce sexually. 
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Chapter 5 describes explorative genomics and comparative genomics analyses revealing the 

presence of introner-like elements (ILEs) in various Dothideomycete fungi including Zymoseptoria 

tritici in which they had not identified yet, although its genome sequence is already publicly 

available for several years. ILEs combine hallmark intron properties with the apparent capability 

of multiplying themselves as repetitive sequence. ILEs strongly associate with events of intron 

gain, thereby delivering in silico proof of their mobility. Phylogenetic analyses at the intra- and 

inter-species level showed that most ILEs are related and likely share common ancestry. 

Chapter 6 provides additional evidence that ILE multiplication strongly dominates over other 

types of intron duplication in fungi. The observed high rate of ILE multiplication followed by 

rapid sequence degeneration led us to hypothesize that multiplication of ILEs has been the major 

cause and mechanism of intron gain in fungi, and we speculate that this could be generalized to 

all eukaryotes. 

Chapter 7 describes a new strategy for miRNA hairpin prediction using statistical distributions of 

observed biological variation of properties (descriptors) of known miRNA hairpins. We show that 

the method outperforms miRNA prediction by previous, conventional methods that usually 

apply threshold filtering. Using this method, several novel candidate miRNAs were assigned in 

the genomes of Caenorhabditis elegans and two human viruses. Although this chapter is not 

applied on fungi, the study does provide a flexible method to find evidence for existence of a 

putative miRNA-like pathway in fungi. 

Chapter 8 provides a general discussion on the advent of bioinformatics in mycological research 

and its implications. It highlights the necessity of a priori planning and integration of functional 

analysis and bioinformatics in order to achieve scientific excellence, and describes possible 

scenarios for the near future of fungal (comparative) genomics research. Moreover, it discusses 

the intrinsic error rate in large-scale, automatically inferred datasets and the implications of 

using and comparing those. 
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Samenvatting 

Schimmels zijn een heterogene groep van eukaryotische micro-organismen die zich bijzonder 

goed lenen voor het doen van vergelijkend DNA-onderzoek. Schimmels zijn belangrijk voor de 

industrie en fundamenteel wetenschappelijk onderzoek; vele soorten zijn beruchte 

ziekteverwekkers van voedingsgewassen en bedreigen de wereldvoedselvoorziening. Van vele 

tientallen schimmels zijn de genomische DNA sequenties inmiddels bekend, en door de 

beschikbaarheid van `next-generation` DNA sequencing methodes zullen er naar verwachting op 

korte termijn duizenden nieuwe genomen beschikbaar komen. In dit proefschrift heb ik door 

middel van bio-informatica verschillende biologische en evolutionaire processen in verscheidene 

schimmels bestudeerd en vergeleken, daarbij gebruik makend van genomisch DNA van een 

aantal schimmels uit de klasse der Dothideomyceten waaronder Cladosporium fulvum, 

Dothistroma septosporum en Zymoseptoria tritici. 

In Hoofdstuk 1 introduceer ik de mycologie en de bio-informatica vanuit een historisch 

perspectief. Er wordt een voorbeeld gegeven van de analyse van een compleet 

schimmelgenoom, waarbij met name gekeken is naar structurele gen voorspelling en detectie 

van repetitieve DNA-sequenties. Daarnaast wordt een kort overzicht gegeven van de microRNA-

pathway in dieren en planten, met het oogpunt om eventuele overeenkomsten en verschillen in 

de microRNA-pathway op te sporen Dit heeft als doel om gericht te kunnen zoeken naar 

vergelijkbare pathways in andere takken van de eukaryotische boom van het leven. 

Hoofdstuk 2 is gewijd aan de nieuw gesequencete genomen van de nauw verwante, 

plantpathogene schimmels C. fulvum en D. septosporum uit de klasse der Dothideomyceten. In 

de genomen van deze twee schimmels worden twee tegenstrijdige verschijnselen 

waargenomen, namelijk een onverwacht grote overeenkomst op het niveau van eiwit-sequentie 

en opvallende verschillen op DNA-niveau, waaronder verschillen in genrepertoire en 

genexpressie. Meest opvallend is dat het genoom van C. fulvum minstens twee keer zo groot is 

als dat van D. septosporum, wat te verklaren is op grond van een veel grotere hoeveelheid 

repetitief DNA in het genoom van eerstgenoemde schimmel. 

Hoofdstuk 3 beschrijft een nieuwe genvoorspellingsmethode (ABFGP: alignment-based fungal 

gene prediction) die bijzonder geschikt is voor dynamische genomen zoals die van schimmels. De 

methode voldoet uitstekend in een vergelijkende prestatietest op een dataset van 7.000 door 

geobserveerde expressie bewezen genmodellen uit tien verschillende schimmels. 

Toepasbaarheid van de methode wordt aangetoond door de gen-annotatie in C. fulvum, D. 

septosporum en enkele andere schimmelgenomen die nog op klassieke wijze waren 

gesequenced opnieuw onder de loep te nemen. Duizenden genmodellen werden gereviseerd 

per gencatalogus. Er werden, zoals verwacht, correlaties gevonden tussen de kwaliteit van de 

genoomassemblage en de DNA sequencing strategieën zoals toegepast in verschillende centra 

voor DNA sequencing. Er is ook een correlatie tussen de verschillende typen van waargenomen 

fouten en de gebruikte strategieën voor gen-annotatie. 

Hoofdstuk 4 beschrijft het onverwacht grote aantal door ABFGP voorspelde genmodellen dat in 

vergelijking met homologe informant genen frame-shifts en/of stopcodons in het open leesraam 

heeft. Deze onregelmatigheden kunnen sequentie-fouten (SEs) en/of disruptieve mutaties (DMs) 

zijn, die beide resulteren in verkorte of foutieve genmodellen. We bestudeerden hier weer 
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dezelfde gencatalogi als beschreven in hoofstuk 3, we bevestigden SEs door opnieuw te 

sequencen en verwijderden deze vervolgens. Hierdoor verkregen we een opgeschoonde dataset 

van genmodellen met hoge betrouwbaarheid met bijna 1000 door DMs veroorzaakte 

pseudogenen. Observaties aan deze dataset van pseudogenen in schimmels, enkel bestaande uit 

genen die als bonafide te boek staan in huidige versies van hun gencatalogi, komen niet overeen 

met verschillende eerder gedane observaties aan pseudogenen in schimmelgenomen. Daarnaast 

vertoont de mate van pseudogenisatie in een zestal schimmelgenomen een variatie van een 

factor tien tussen het laagste en hoogste niveau. De trend tekent zich af dat er meer 

pseudogenen lijken te zitten in soorten die aseksueel reproduceren dan in soorten die daarnaast 

ook seksueel reproduceren. 

Hoofdstuk 5 beschrijft exploratieve en vergelijkende genomische analyses die de aanwezigheid 

van Introner-Like Elements (ILEs) in verscheidene schimmels uit de klasse der Dothideomyceten 

aantonen. Daaronder ook Z. tritici, waarin ILEs nog niet beschreven waren, hoewel de DNA-

sequentie van deze schimmel reeds enkele jaren publiek beschikbaar is. ILEs combineren 

tekstboek-eigenschappen van intronen met het klaarblijkelijke vermogen zich te kunnen 

multipliceren als repetitieve sequenties. ILEs zijn sterk geassocieerd met nieuw verworven 

intronen, en leveren in silico bewijs voor hun mobiliteit. Fylogenetische analyses van ILEs binnen 

en buiten verschillende soorten bewijzen dat de meeste ILEs verwant zijn en waarschijnlijk 

allemaal een gemeenschappelijke voorouder delen. 

Hoofdstuk 6 levert additioneel bewijs, dat de multiplicatie van ILEs sterk domineert over 

mogelijke andere vormen van intronduplicatie in schimmels. De waargenomen grote 

multiplicatie-frequentie gevolgd door snelle sequentie-degeneratie heeft ons tot de hypothese 

gebracht, dat ILE-multiplicatie de belangrijkste bijdrage levert aan en voorziet in een 

mechanisme voor het ontstaan van nieuwe intronen in schimmels. Wij achten het aannemelijk 

dat deze observatie gegeneraliseerd kan worden naar alle eukaryoten. 

Hoofdstuk 7 beschrijft een nieuwe strategie om microRNA hairpins te voorspellen op basis van 

geobserveerde biologische variatie in statistische distributies van eigenschappen (descriptoren) 

van bekende microRNA hairpins. We laten zien, dat onze methode betere resultaten geeft dan 

de eerder beschreven conventionele methodes die op de gebruikelijke wijze filteren op gekozen 

grenswaardes. Met deze methode konden enkele nieuwe kandidaat-microRNAs gevonden 

worden in het genomisch DNA van Caenorhabditis elegans en twee humane virussen. Alhoewel 

dit hoofdstuk niet toegespitst is op schimmels, verschaft deze studie een flexibele methode om 

bewijs te vinden in schimmels voor het mogelijk bestaan van een soortgelijke microRNA-

pathway. 

In Hoofdstuk 8 bediscussieer ik de bijdrage van bio-informatica aan mycologisch onderzoek en 

de implicaties daarvan. Ik benadruk de noodzakelijkheid van a priori planning en integratie van 

functionele analyse en bio-informatica om wetenschappelijke excellentie te kunnen bereiken, en 

ik beschri f mogeli ke scenario’s voor (vergeli kend) onder oek aan genomisch DNA in schimmels. 

Daarnaast worden de intrinsieke foutenmarges in grootschalige, automatisch gegenereerde 

datasets en de implicaties van het gebruik en vergelijken daarvan besproken. 
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tweede uit de hand gelopen hobby is het 

zoeken naar Alpenmineralen in het Binntal, 

Zwitserland. Hierover publiceert hij regelmatig 

in populairwetenschappelijke tijdschriften. 

September 2004 startte hij zijn PhD-onder oek ‘Comparative Fungal  enomics’ bi  Plant 

Research International. In de jaren die volgden combineerde hij zijn PhD-onderzoek met atletiek 

en behaalde hij, onder supervisie van Jeroen Zeinstra, aansluiting bij de Europese subtop op de 

1500m. Dit omlijstte hij met enkele nationale titels en deelname aan meerdere EK´s en 

Europacup. Voor een gedeelte van die periode werd Ate professioneel ontzien en financieel 

ondersteund door Wageningen UR. Op 19-honderdste van een seconde miste Ate in 2007 

deelname aan de Wereldkampioenschappen in  apan. Echter, met een ti d van 3.38’19” op de 

1500m staat hij momenteel op de 11e plek van de Nationale Ranglijst allertijden. 

In oktober 2010 pakte hij, op uitnodiging van prof. Dr. Ir. Pierre de Wit, zijn promotie fulltime op 

bij de vakgroep Fytopathologie van Wageningen Universiteit. Een flink aantal 

onderzoeksonderwerpen werd onderhanden genomen en zijn beschreven in dit proefschrift, 

met als terugkerende rode draad de schimmel Cladosporium fulvum en enkele nauw verwante 

Dothideomyceten. Zijn meest aansprekende publicaties betreffen de ontdekking van Introner-

Like Elements in schimmels. 
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1) Start-up phase  date 

► First presentation of your project  
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► Writing or rewriting a project proposal  

  Project proposal Fungal Comparative Genomics Dec 10, 2004 

► Writing a review or book chapter  

  MSc courses  

► Laboratory use of isotopes  

  Subtotal Start-up Phase 7.5 credits* 

   

2) Scientific Exposure  date 

► EPS PhD student days  

  EPS PhD Student Day, Radboud University Nijmegen Jun 02, 2005 

  EPS PhD Student Day, Wageningen University Sep 13, 2007 

► EPS theme symposia  

  EPS theme 3 symposium 'Metabolism and Adaptation', Wageningen Nov 06, 2007 

  EPS theme 4 symposium 'Genome plasticity', Wageningen Dec 12, 2008 

  EPS theme 4 symposium 'Genome plasticity', Nijmegen Dec 11, 2009 

► NWO Lunteren days and other National Platforms  

  Netherlands Conference on BioInformatics 2004 "Images of life", Groningen Oct 04, 2004 

  ALW meeting Experimental Plant Sciences, Lunteren Apr 04-05, 2005 

  NBIC: Netherlands Bioinformatics Conference, Ede Apr 24, 2006 

  ALW meeting Experimental Plant Sciences, Lunteren Apr 04-05, 2011 

► Seminars (series), workshops and symposia  

  Fungal Pathogenicity symposium, CBS, Utrecht (whole day) Jul 08, 2005 

  Evolutionary Bioinformatics symposium, Utrecht (whole day) Nov 16, 2006 

  EPS Flying seminar James C. Carrington:  Mar 26, 2007 

  Invited seminar Regine Kahmann: Effectors of the plant-pathogen Ustilago maydis Oct 29, 2010 

  EPS/Plantum symposium 'Intraspecific pathogen variation' Jan 22, 2013 

  Invited seminar Howard Judelson: Molecular Insights into Spore Biology and 

Metabolism of Phytophtora infestans, the Potato Blight Pathogen 

May 07, 2013 

  Invited seminar Rays Jiang: Integrative genomics of destructive pathogens from 

oomycetes to malaria parasites 

May 07, 2013 
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  Invited seminar Brian Staskawicz:  May 21, 2013 

  Invited seminar Eric Schranz: Whole genome duplications as drivers of evolutionary 

innovations and radiations? 

Nov 21, 2013 

►  Seminar plus  

  James Carrington: EPS Flying seminar Mar 26, 2007 

►  International symposia and congresses  

  Benelux Bioinformatics Conference, Gent, Belgium Apr 14-15, 2005 

  Comp. Genomics of Euk. Micro-Organisms, Spain Nov 12-17, 2005 

  M. gramminicola annotation jamboree, JGI / Walnut Creek (CA, USA) Jun 07-09, 2006 

  Comp. Genomics of Euk. Micro-Organisms, Spain Oct 20-25, 2007 

  Benelux Bioinformatics Conference, Leuven, Belgium Nov 12-13, 2007 

  Benelux Bioinformatics Conference, Maastricht, Netherlands Dec 15-16, 2008 

►  Presentations  

  Oral: Benelux Bioinformatics Conference 2006, Wageningen Oct 17-18, 2006 

  Oral: 1th joint WUR-Marburg meeting: Annotated gene structure assessment and 

improvement 

Oct 2010 

  Oral: 2th joint WUR-Marburg meeting: Introner-like Elements in Fungi Jan 2012 

  Oral: ECFG 11 Dothideomycete Sattelite Meeting, Marburg: Introner-like Elements in 

Fungi 

Apr 03, 2012 

  Oral: ALW Platform Molecular Genetics Annual Meeting, Lunteren: Introner-like 

Elements in Fungi  

Oct 04-05, 2012 

  Oral: Benelux Bioinformatics Conference 2012, Nijmegen Dec 10-11, 2012 

►  IAB interview  

  Meeting with a member of the International Advisory Board Sep 14, 2007 

►  Excursions  

  Joint Lab meeting Regine Kahmann group (Max-Planx Institut, Marburg), Wageningen Oct 2010, 2 days 

  Joint Lab meeting Regine Kahmann group (Max-Planx Institut, Marburg), Marburg Jan 2012, 2 days 

Subtotal Scientific Exposure 18.5 credits* 

3) In-Depth Studies date 

►  EPS courses or other PhD courses (higly recommended)  

  Postgraduate course 'Molecular Phylogenies: Reconstruction and Interpretation' Oct 17-21, 2005 

  Postgraduate course 'Multivariate Analysis'  Apr 19-27, 2006 

► Journal club  

  Literature discussion Lab.of Bioinformatics / Applied Bioinformatics 2004-2008 

► Individual research training  

Subtotal In-Depth Studies 6.0 credits* 

4) Personal development date 

► Skill training courses  

  WGS course 'Scientific Writing' Feb-Apr 2006 

  WGS course 'Career Orientation' May-Jun 2009 

  EPS ExPectationS Day: Scientific Integrity and Dealing with Supervisors Mar 28, 2014 

► Organisation of PhD students day, course or conference  

► Memberschip of Board, Committee or PhD council  

Subtotal Personal Development 3.6 credits* 

TOTAL NUMBER OF CREDIT POINTS* 35.6 
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