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1. INTRODUCTION

Identification of non-linear (static) systems has
a long tradition, although it mainly focussed on
the parameter estimation problem. The Gauss,
Newton(-Raphson) and steepest descent method
are therefore known for a long time. However, in
practice, and especially in the pre-computer era,
people frequently used graphical methods on e.g
log-log paper to obtain (rough) parameter esti-
mates. Hence, transformation of the problem into
a linear regression problem was a well-known and
widely accepted method. After the introduction
of computers and the development of simulation
models, at least initially, most often manual cali-
bration was applied. Nowadays, it is still applied
among practitioners to obtain a first guess. It
is only since the early 90’s that computational
software related to the aforementioned numerical
methods has been more and more used in solving
non-linear estimation problems (e.g. leastsq or
lsqnonlin in Matlab, Goal Seek in Excel, etc.) and
it is expected that this line will be continued.

Some key problems in non-linear estimation are:
(i) presence of local minima, (ii) high compu-
tational effort (most often in a small region
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d local/global minimum, (iii) specification of
aints to preserve physical interpretation of
l. Moreover, practical identification of non-
systems, apart from the parameter estima-
roblem and including model selection, model
y assessment and so on, is most often further
red by limited amounts of data and/or lim-
rior system’s knowledge.

ction 2 the mathematical modeling of bio-
cal and environmental systems and re-
identification problems are further dis-
. Then in Section 3 some solutions to the
roblems in the identification of non-linear
s are suggested. The paper finishes with

concluding remarks.

. MATHEMATICAL MODELING

mathematical modeling approaches exist,
g from data-based (using non-linear regres-
neural networks, etc.) to physical modeling
first principles and constitutive relation-

. For biochemical and environmental appli-
s, the grey-box or experimental modeling
ach is usually our starting point. Let us illus-
this to a biochemical process. The dynamics



of a component (x), such as substrate, in a contin-
uously stirred tank bio-reactor are described by

dx

dt
= −ξ(x) +

u1

V
(u2 − x) (1)

see e.g. Bastin and Dochain (1990), where ξ(.) is
the reaction kinetics term, u1 the flow rate, u2

the concentration of x in the so-called influent
and V the volume of the reactor. Hence, bi-
linear terms appear in (1). The reaction term is
frequently described in terms of so-called Monod
or Michaelis-Menten kinetics, i.e.

ξ(x) = μ
x

K + x
(2)

where μ, the kinetic reaction rate, is a function
of the maximum reaction rate, the biomass con-
centration and some conversion factor. The term

x
K+x , with K the half-saturation constant, de-
scribes reaction limitations at low concentrations
of x, for which also alternative expressions exist.
Clearly, (1) needs further adjustment for reactors
with different flow conditions. For instance, in
batch reactors u1 = 0 and in fed-batch reactors
V becomes a state variable instead of a constant.
Hence, (1) and (2) are elementary building blocks
in bio-reactor modeling and serve as a starting
point for identification. Key problems in the iden-
tification of biochemical processes are:

• badly identifiable parameters,
• existence of local minima in non-linear least-

squares estimation,
• time-varying parameters,
• limited amount of substrate/biomass data,
• trade-off between bias reduction and loss of

physical insight in unconstrained optimiza-
tion.

In environmental applications models become far
more complex. For instance, in addition to bio-
chemical processes, the effect of solar radiation,
usually expressed in terms of an exponential func-
tion, may become important. Modeling effects of
erosion most often introduces discontinuous func-
tions, etc.. Moreover, these system are usually de-
scribed as compartmental models with catenary,
circular, mammilary or full web structure with
many parameters. In particular, environmental
systems are driven by disturbances, as solar ra-
diation, wind, precipitation and for identification,
usually, prior knowledge, amount of data and pos-
sibilities for experiment design are limited.

3. IDENTIFICATION APPROACHES

In this section some suggestions to solve the first
four key problems in the identification of bio-
chemical processes will be presented. Identifiabil-
ity analysis on models with many parameters is

10

10

10

10

||y
−

S
|| 2

Fig. 1
(

still a
as (1
theore
Ranta
data,
accur
iment
the es
Stigte

Notic
mode
for th
Keesm
discre

x

which
prope
noise,
in-var
squar
cussin
meter
arran
Conse
linear
lowed
a pred
local
durin
pande

Differ

where
discre

132
1

1.5

2

2.5

−1

−0.5

0

0.5

1

−2

0

2

4

μKs
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substrate), K = 1 and μ = 2.

n unsolved problem, but for smaller models
- 2) it is known that both μ and K are
tically identifiable. However, Holmberg and
(1982) showed that, given noise corrupted
it is difficult to estimate the parameters

ately. Then, one option is to design exper-
s optimally such that e.g. the variance of
timates is minimal (see e.g. Keesman and
r (2002); Stigter and Keesman (2004)).

e that (1 - 2) is a non-linear-in-the-parameters
l. Fig. 1 shows the existence of local minima
is type of rational model (see Doeswijk and
an (2005) for details). However, for the

te-time version of the model we obtain

k−1(xk − xk−1) = [− (xk − xk−1) − xk−1]
[

K
μ

]
(3)

becomes a linear regression with all its nice
rties. However, when x is corrupted with
the estimation problem becomes an errors-
iables problem. Fortunately, total least-
es solutions exist to solve it. Instead of fo-
g on the estimation of the physical para-
s, in this case μ and K, (3) can, after re-
ging terms, be directly used for prediction.
quently, for rational models this so-called
regressive re-parametrization approach fol-
by a linear re-arrangement of terms towards
ictor structure circumvents the problem of
minima and high computational demands
g estimation. This idea can be further ex-
d to non-rational models. For instance, let

ẋ = eαx (4)

entiation of both sides gives

ẍ = α eαxẋ (5)

= α (ẋ)2

α is the unknown parameter. Hence, in
te-time

xk+1 − 2xk − xk−1 = α(xk − xk−1)2 (6)



which again is in a linear regression form from
which the linear predictor can be easily derived.
If, however, the model becomes too complex to
re-parametrize it in a linear regression form, prior
knowledge about parameter correlations and ini-
tial parameter values is essential in solving non-
linear estimation problems. van Straten (1985)
used steady-state analysis to find parameter cor-
relations. Keesman (2002) proposed a method to
find initial estimates from chemical structure for-
mulae and available experimental data. In addi-
tion to this, (graphical) analysis of the cost func-
tion surface may also help to understand the prob-
lem of local minima (see Abusam et al. (2001)).

Bio-processes, due to the living organisms present
in the system, are often described by models
like (1-2) with time-varying parameters. Hence,
there is a need to simultaneously estimate state
variables and model parameters, leading to aug-
mented state vectors of large dimension. It has
been demonstrated by Keesman (2002) how among
other techniques singular perturbation analysis
may help to reduce the dimension of the esti-
mation problem. In batch bio-reactors, one has
the opportunity to distinguish between different
batch phases, like phases of unlimited growth or
phases with only decay. Consequently, the estima-
tion of states and parameters should preferably
be limited to these specific phases in which only
a limited amount of parameters are significant.

The limited availability of experimental data is
another issue that impedes the estimation of pa-
rameters and evaluation of parameter estima-
tion uncertainty in bio-reactor or environmental
models. As an alternative to a stochastic ap-
proach, which fails for small data sets, a so-
called unknown-but-bounded or set-membership
approach has been proposed. For details we re-
fer to Milanese et al. (1996) and, in particular,
for non-linear estimation problems to Keesman
(2003).

4. CONCLUDING REMARKS

Key problems in the estimation of parameters in
bio-reactor models have been indicated. In envi-
ronmental problems we encounter the same prob-
lems, although in general the models are much
more complex and thus the dimensions of the
parameter space are much higher. This curse of di-
mensionality is an issue in many problems, such as
non-linear optimization and identifiability analy-
sis. Identification for control, but then within a
dynamic optimization context for non-linear sys-
tems, the development of automatic identifica-
tion procedures using some multi-model approach,
the design of measurement networks for complex
systems and the application of advanced particle
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ng techniques, are other issues that need
er) attention in the near future.

days, there is a trend to focus on spe-
odel classes, as e.g. polynomial, Volterra,

er or Hammerstein models and to aim at
r development of identification procedures
specific system’s knowledge.

look back, we see a very active system
fication community. Hence, it is expected
n the near future this community may be
ble to tackle the above-mentioned problems.
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