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Abstract
This study compared five methods for measuring soil surface roughness, two contact methods: pinboard and 
roller chain, and three non-contact methods: laser scanner, stereophotogrammetry and the “Kinect”. The latter is 
a 3D depth sensor originally developed for gaming consoles, which recently was proved to be applicable for 
Earth Sciences (Mankoff and Russo, 2012). Roughness was in this study defined as irregularities in the surface 
related to soil type and tillage practice. The index random roughness (RR), calculated as the standard deviation 
of a number of elevation recordings, was used for comparison. The methods were compared in terms of 
accuracy, precision, resolution, ease of usage, price and land use. Further, the obtained average roughness values 
were used as input in a physical-based spatially-distributed erosion model, LISEM. This facilitated a one-at-a-
time parameter sensitivity analysis. Results showed that the various methods have different pros and cons and 
since the methods used different principles to obtain roughness data, they are prone to different errors. The 
“Kinect” proved to be a useful sensor. The erosion model was relatively sensitive to the roughness input data. 
Interestingly, roughness data obtained with different methods, which in statistical terms were not significantly 
different from each other (RR 0.81 versus 1.18±0.33) , were still causing a ~50% change in hydrograph peak, 
indicating that the model sensitivity is not adjusted for the accuracy of measured roughness data. For improved 
model performance it is suggested to determine the required accuracy and precision as well as the preferred 
method of measured roughness data when used as input to an erosion model like LISEM.

Key words: soil surface roughnesss, random roughness, erosion modelling, LISEM, the Kinect, data accuracy
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1 Introduction
Soil  erosion  is  a  natural  process  of  sediment  removal  and  settlement  forced  by  climatic  factors  such  as 
precipitation,  overland  flow  and  wind.  However,  soil  erosion  rates  are  accelerated  by  unsustainable  land  
management practices, often in relation to cultivated agricultural fields  (Grimm et al., 2002). Soil erosion is a 
global problem, causing for instance degraded agricultural land (soil and nutrient loss),  damages on roads, algae 
blooms and even abandonment of land  (Morgan, 2005; Øygarden et al., 2006). To introduce sustainable land 
management practices which may prevent increased soil erosion, processes of soil erosion have been extensively 
studied, in laboratories as well as in field (Stroosnijder, 2005). But soil erosion monitoring is a challenge because 
the processes are highly variable spatially as well as temporarily and because erosion often is caused by climatic  
conditions that fluctuate on an inter-annual time scale (Lal, 1994; Lundekvam and Skøien, 1998; Morgan, 2005). 
Erosion monitoring is therefore usually laborious and require long-term studies. Since long-term studies are  
difficult to finance they are rather scarce and much erosion research have relied on modelling.  However, soil  
erosion modelling is in general still not satisfying (de Vente et al., 2013; Takken et al., 1999). The explanation is 
partly to be found in the lack of accurate input data and the lack of data that capture the spatial heterogeneity of  
the area of interest  (Kværnø, 2011; Sheikh et al., 2010), although also the model structure of existing models 
have been questioned (Rompaey and Govers, 2002; Wainwright et al., 2008a). At present one way to increase the 
knowledge of erosion processes is to try to improve the model performance of existing models. This can be done 
by getting more knowledge on the accuracy and precision of model input data and to test how sensitive the  
model is to variations in input data. Input data to erosion models covers a wide range of parameters, for instance  
soil type, soil texture, initial soil moisture level, vegetation cover, land use, slope etc. For many areas this type of  
data is often only estimated in more or less qualified ways. A parameter which often is needed for soil erosion 
modelling is soil surface roughness. 

Soil  roughness  are  the  irregularities  in  surface  which  are  cause  by  soil  type,  grain  sizes,  rock  fragments,  
vegetation  cover  and  land management.  It  is  usually  variation  in  the  surface  too  small  to  be  captured  by 
conventional topographic map, thus soil  roughness is also referred to as the soil  micro-topography  (Takken, 
2000). Soil roughness has a large influence on surface storage, infiltration and overland flow and therefore also  
on sediment detachment (Amoah et al., 2013). Much research have focused on quantifying the relation between 
roughness and surface storage and overland flow, while less research have focused on roughness and infiltration  
(Govers et al., 2000). Soil roughness has been estimated with various methods: pin-profilers, roller-chain, laser 
scanners  and photogrammetric  methods.  At  present  there  is  still  a  need  for  improving  methods,  especially  
methods that yield a very high spatial resolution, i.e. in grid cell size of millimetres, while at the same time being 
cost-efficient and allow for mobility in fieldwork. The aforementioned methods differ in obtainable accuracy and 
resolution. Especially the differences in spatial resolution is interesting as roughness to a certain degree shows 
scale-dependency, i.e. the roughness of a given surface will depend on the density of elevation measurements. It 
is unknown how comparable roughness data obtained with various methods are, and it  is unknown to what 
extent a possible difference is problematic when used in an erosion model.  To know how the variability of  
roughness data will influence the output of an erosion model, will in turn help to formulate guidelines for best  
practices in data collection and will help to improve the model performance. 

Only one study were found which compared pin-profilers,  roller  chain,  laser  scanner  and photogrammetric  
methods (Jester and Klik, 2005). The study compared the methods in terms of accuracy, resolution and ease of 
use, but without considering for what purpose the data was needed. In this study we are comparing methods for  
obtaining roughness data,  much along the lines  of  Jester  and Klik (2005) but  with the  specific purpose of 
inputting the data to an erosion model which we believe will increase the usability of a method comparison. For 
improving the model performance it is useful to know how sensitive the model is to roughness data along a  
realistic range of values. Apart from increasing the knowledge of the model sensitivity to roughness, there is  
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since 2005 now another reason for executing a method comparison. In 2010 a new depth sensor, the “Kinect”, 
much like  a  laser scanner,  was developed.  Although developed for  gaming purpose,  this  sensor  has  shown  
promising results in all sorts of scientific fields where 3D measurements of the surroundings are desired, e.g. in 
robotics. Mankoff and Russo (2012) showed how the sensor could be used to obtain elevation data in a river bed 
and on  glacier  ice,  which  encouraged  us  to  try  to  use  if  for  obtaining  soil  roughness  data.  The  proposed 
advantages of this sensor is that it is relatively cheap to buy and easy to carry, while the spatial resolution of  
measurements is on millimetre scale, thus this sensor could be a solution to the lack of a method which yields  
high spatial resolution, while at the same time is cost-efficient and allow for mobility in the field. This could 
possibly be a mean to improve the quality of input data for erosion models, which in turn could improve erosion 
modelling, which ultimately could contribute to an increased understanding of soil erosion causes and effects.

2 Objective and research question
The objective of this study is two-fold: 1) To investigate the applicability of the “Kinect” 3D depth sensor for  
obtaining soil roughness data as compared to other methods and 2) to test whether this data can improve the  
performance of a physics-based spatially distributed erosion model. 

This leads to the following research questions:

1. What methods have been used to measure soil surface roughness?

2. How can soil surface roughness data be obtained by the “Kinect” 3D depth sensor

3. How can surface roughness data from various methods be compared?

4. Can data obtained from the “Kinect” 3D depth sensors, compared to other methods, improve the 
LISEM model performance?

To address these research questions a combination of literature review, fieldwork and modelling was executed. 
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3 Outline of report

The report  consists of 8 chapters. Introduction and research objectives have already been presented (chapter 1 
and 2),  chapter 4 describes the study area, followed by chapter 5 providing a historical overview of micro-
topography  measurement  methods  and  relevant  roughness  indicators.  This  will  answer  the  first  research 
question. Then follows chapter 6, an extensive description of materials and method, which partly answers second 
research question. Chapter 7 presents the results and discussion, both from fieldwork and modelling. It is divided 
into two main sections,  so that  results  related to  the  method comparison first  are  presented and discussed,  
followed by results and discussion related to modelling. Finally in chapter 8 will the knowledge gained from the  
two main section be synthesized and conclusions will be drawn which gives an answer to the second, third and  
fourth research question. 

Terminology
In this report  micro-topography means the actual soil surface, which is no different than any topography. This 
term just indicates that the topography is considered with very high spatial resolution, i.e. millimeter or sub-
millimeter scale. 

Soil surface roughness  is a term that covers various roughness components as defined by  Takken (2000), i.e. 
micro-relief variations, random roughness, oriented roughness and higher order roughness, such as field parcel  
border.  Random roughness  is additionally also the term for an index calculated as the standard deviation of 
height  measurements.  In  this  thesis  the  index  random roughness is  calculated  to  quantify  the  soil  surface 
roughness.

A 3D depth sensor is any type of sensor that can acquire three-dimensional depth data, i.e. spatial data, which 
have the form of a x-, y,- and z-coordinate. This includes for instance a laser scanner, a digital photo camera and 
the “Kinect”

The “Kinect” is one of the commercial names for the new type of sensor 3D depth sensors which will be tested 
in this thesis. However, there is no general term for this type of sensor and in this thesis another commercial  
product, the “Xtion” was used in stead of the “Kinect”. Consequently, in this report the word Xtion is used to 
name this new 3D depth sensor.  
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4 Study area
The study area for this thesis is the Skuterud catchment, a relatively small catchment, 450 ha, dominated by  
cultivated fields with cereal production (figure 4.1). The catchment is located east of Ås, approximately 30 km 
south of Oslo in Akershus county, Norway. The landscape is undulating with elevations from 150 to 92 masl,  
with  the  steepest  slopes  in  the  eastern  and  western  part  of  the  catchment  (figure  4.2).  Annual  average 
temperature is 5.3° C and precipitation is 785 mm (figure  4.3).  60% of the catchment area is cultivated land, 
while 31% is forest, mainly coniferous or mixed coniferous-deciduous. 7% is urban settlement and roads and 2% 
is covered by forested peatland located in the southern-most depression in the catchment. Main crops are winter 
and summer cereals, sometimes in rotation with oil seed and potatoes. Marine deposits cover most of the area.  
Coarse marine shore deposits dominates on the fringe of the cultivated areas and in the forest. Soil types have 
only been mapped in the cultivated areas. The predominating soil types in the central part are marine silt loam 
and silty clay loam soils (Albeluvisols and Stagnosols). In the areas with shore deposits sandy and loamy sand  
soils dominate (Arenosols, Umbrisols, Podzols, Cambisols and Gleysols). Loamy and sandy loam soils are found 
in the transition zones between marine and shore deposits.

Monitoring of water and sediment discharge has been carried out since 1993 at the catchment outlet, indicated by 
a star, figure  4.1. In 2008 monitoring started at one of the sub-catchment, named Gryteland. The monitoring 
includes detailed measurements of surface runoff (figure 4.4), subsurface drainage discharge, precipitation, and 
soil-water  content  and  temperature.  The  sub-catchment  covers  approximately  27  ha  and  is  dominated  by 
relatively more sandy soils and forest in comparison with the main catchment (Kværnø and Stolte, 2012).
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Figure 4.1: Outline and land use of catchment Skuterud, next to Ås. The black dot on the inserted map of 
southern Norway indicates the location of the catchment. The sub-catchment Gryteland is outlined in black. 
Land use map obtained from Bioforsk. Norway map obtained from: http://www.skogoglandskap.no/kart/kilden 

http://www.skogoglandskap.no/kart/kilden
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Figure 4.3:  Monthly average temperature and precipitation in the period 
1961-1990, from climate station in Ås. Obtained from www.eklima.met.no 

Figure 4.4: The weir installed at the 
Gryteland catchment. Picture taken during 
fieldwork spring 2013. Photo by: Torsten 
Starkloff.

Figure 4.2: Digital elevation model acquired from airborne LIDAR data in 5 m resolution. The upper northern part is not 
included because the image is based on a slightly different watershed calculation than the outline. Data obtained from Bioforsk.



5 Background
To get an overview of what soil surface roughness is, and how roughness has been studied through the last six  
decades, the following background chapter is provided. 

As mentioned in the introduction, soil surface roughness are the irregularities in the soil surface caused by soil 
type,  grain size  rock fragments,  vegetation cover  and land management  practices.  Soil  roughness  has  been 
divided into 4 sub-categories (Takken, 2000): 1) micro-relief variations or grain roughness mainly determined by 
the  soil  type,  2)  random roughness,  which  is  related  to  soil  aggregates  and caused  by  tillage,  3)  oriented 
roughness describes the systematic variations in topography due to tillage practice 4) higher order roughness  
represents  elevation  variations  at  the  field,  such  as  taluds  or  parcel  borders.  These  categorize  are  not  
fundamentally distinguished as they related to the scale with which we consider a soil surface. However, as soil  
roughness in this thesis mainly is related to surface storage, the most relevant categories are random roughness 
and oriented roughness. However, oriented roughness, should be considered separate from random roughness as 
the orientation to a large extent determines the surface storage, e.g. whether the tillage is done parallel or across 
the contour lines will have a huge influence on the surface storage, whereas the random roughness is assumed to  
be without an orientation. Thus, in this study only random roughness is considered.

Micro-topography data has been obtained with a variety of methods. Some methods only capture a profile or  
transect of elevation data, while others covers an area, typical only a few square meters in extent. Five methods  
are used in the study, which will be described in section 6.2: Roughness measurement methods. Common to all 
of them is that to quantify roughness from micro-topography data, some type of index has been calculated. Much 
research has been focused on developing the most  informative index,  e.g.  the index the best  correlate with 
average surface storage or another relevant soil physical parameter. 

Various ways to quantify random roughness
Since the late 1950s researchers have tried to quantifying soil  surface roughness by various indices. Indices 
developed have  been  based  on  either  statistical  indicators  of  surface  elevations  point  measurements  or  on 
quantification of the volume or surface areas of voids between soil clods. Most used has been some form of the 
standard deviation of elevation point data  (Doren and Linden, 1986).  Allmaras et al. (1966) proposed the so-
called random roughness parameter (RR) which was: 

RR ≈ sxh Eq. 1

where h is the mean height among 400 height measurements [m] and sx is the standard deviation of the natural 
logarithm of the height measurements after having mathematically removed the effect of tillage tools marks and 
slope  (Allmaras  et  al.,  1966).  It  was  not  explained  how effect  of  tool  marks  and slope  was  removed and 
consequently no standard method has been proposed for this purpose. Doren & Linden (1986) noted that using 
an index based on the standard deviation will not reflect the horizontal spacing between elevation peaks or the 
frequency  of  peak  extremes.  Thus,  the  standard  deviation  as  an  index  lacks  the  correlation  to  important 
characteristics of the physical-spatial soil surface. However, indices based on the standard deviation are popular  
because of the simplicity of calculation. An index that incorporates physical-spatial significance is the limiting  
distance (LD) (Doren & Linden, 1986). This index utilizes the spatial variability between pairs of elevation 
measurements to quantify the semi-variance, similar to the method used in kriging interpolations. The semi-
variance defined as:

vh=∑
i=1

n

(Z i−Zi+h)
2/2n Eq. 2
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where n is the number of elevation pairs that occur in the data set at a certain lag interval, Z i is the elevation in a 
given point and Zi+h

 is another, and h indicate the given lag number. The term mean-absolut-elevation-difference 
is then defined as:

Δ Zh=∑
i=1

n

∣Z i−Z i+h∣/n Eq. 3

where Zi and Zi+h
 are similar to the above definition. This analysis is applied to each data set, for each row and 

column in a grid of elevation measurements. Linear regression analysis is then used to relate the Δ Z h to the lag 
distance  Δ Xh, giving the following relationship:

Δ Zh = 1/[(b(1/ Δ Xh)) + a ] Eq. 4

where  Δ Zh  is the mean absolute-elevation difference at a horizontal spacing of  Δ Xh  and a and b are fitted 
parameters. The term limiting distance (LD) is finally defined as:

LD = 1/a Eq. 5

where a is the fitted parameter from above. The LD is an indicator of the central tendency of the difference in  
elevation between individual points, while RR is an indicator of the central tendency of the difference between 
points and the mean elevation (Doren and Linden, 1986). Lehrsch et al. (1988a,b) tested 8 indices for how well 
they related to physical properties of soil roughness. Their objective was to find the index most sensitive to  
cultivation method, crop cover and rainfall. Based on their criteria they selected an index based on the micro-
relief index (MI) and the frequency (F):

MIF (mm) = MI x FREQ Eq. 6

where MI (mm) is the micro-relief index defined as, for each transect, the area per unit transect length between  
the surface profile  and the regression line through the measured point  elevations,  and FREQ (mm -1)  is  the 
number of elevation maxima per unit transect length. MIF was also correlated to a list of important soil physical  
properties,  but found to be mostly correlated to bulk density, with correlation coefficient of -0.80 and -0.72  
between MIF and dry and wet bulk density respectively (Lehrsch et al., 1987). Because of the popularity of the 
RR index, RR was compared to MIF. It was found that there was a correlation coefficient of 0.78 between MIF  
and RR and that both indices showed sensitivity to the effect of rainfall, although for RR this effect was not  
found to be statistically significant (Lehrsch et al., 1988a). 

Considerations about the random roughness index
Random roughness (RR) is used in several equations to estimate surface depression storage,  the fraction of  
surface covered with water and amount of rainfall excess needed to start runoff. RR was tested and found to vary  
significantly with land use,  temporal  changes and tillage orientation  (Cremers  et  al.,  1996).  Thus,  RR is  a 
relevant index because of the importance as input in physical erosion models and because the index has proved  
sensitive to physical soil surface characteristics and to changes affected by rainfall and land use.  Despite the 
simplicity of the RR index, there seems to be inconsistency in the way researchers have calculated the index  
(Zobeck and Onstad, 1987). Allmaras et al. (1966) calculated RR based on 400 height recordings, the upper and 
lower 10% of recordings were eliminated to avoid erratic data.  Further the data was transformed using the 
natural logarithm, to obtain an approximated normal distribution. Many authors use the RR index but without 
specifying whether or not the upper and lower 10% of recording are eliminated, whether it is transformed using 
the natural logarithm and so forth (Zobeck and Onstad, 1987). Further  Cremers et al. (1996) compared RR to 
other roughness indices and conclude that it is not necessary to remove the 10% upper and lower values of a  
roughness data set, thus reducing the RR-index to the standard deviation (SD) of the dataset, as long as the effect  
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of slope and oriented roughness have been removed. They compared SD of their roughness data to the limiting 
distance (LD) index as described above and found the following correlation between LD and SD using 12 
transects:

LD = 1.58 * SD -0.13 r2=0.98 Eq. 7

Doren & Linden (1986) found a similar relationship between RR and LD:

LD = 1.52 * RR + 0.02 r2=0.909 Eq. 8

Thus, although other indices might show a slightly higher correlation with various soil physical parameters, RR 
has persisted as the dominating index for soil roughness research. 
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6 Materials and methods

6.1 Roughness index
Based on the background chapter, in this study the soil roughness was compared using the RR index, calculated  
as the standard deviation of all elevation recordings, after the effect of slope and oriented roughness have been  
removed. For the rest of the report calculation of RR follows this description. Slope removal was done by fitting  
a  line  (for  2D data)  or  a  plane  (for  3D data)  through  the  point-cloud  using  least  root-mean-square  error  
estimates, and calculating the perpendicular distance from a point to the line or plane. To avoid the effect of  
oriented roughness, only transects along ridges were used to calculate RR for 2D data. For 3D data the RR was 
calculated using the whole point cloud, assuming that the effect of oriented roughness would be minimal.

6.2 Roughness measurement methods
Five methods were used to obtain micro-relief data from which soil surface roughness was quantified. They can 
be divided into two groups: 1) contact methods – devices that touch the soil and as such potentially destroy the  
surface. These are low-tech and cheap methods, while not necessarily faster than group number 2) non-contact  
methods – devices that use sensors to record micro-topography. These are high-tech methods and usually more 
expensive but interesting because the accuracy can be extremely high.  

6.2.1 Contact methods

6.2.1.a Pinboard

The pinboard or pin-meter was the first method proposed to quantify soil surface roughness, based on work of 
Kuipers (1957). The device has been developed in many forms and resolutions (Podmore and Huggins, 1981). 
Allmaras et al. (1966) used a pinboard, see figure 6.1 with 20 pins distributed over a frame of 1 meter with a 5 
cm spacing. As is evident from figure 6.1 the board is mounted on a metal frame, creating the possibility to move 
the board along the frame and get recordings in a grid. Other pinboards have been developed which only acquire  
data in one transect, for instance the one used by Cremers et al. (1996) which had 57 pins over a 70 cm frame, 
giving a spacing between each pin of 1.25 cm. In their experiment one transect was recorded by location. 
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Figure 6.1: Picture showing one of the first documented 
pinboards. From: Allmaras et al. (1966)



Data acquisition and processing
The pinboard used in this study had 3 mm thick metal pins on a wooden frame of 1 meter (figure 6.2). In total 50 
pins was used, having a 2 cm spacing between the pins. The metal pins were lifted up on the frame and at once 
let loose so they fell to the ground, reproducing the surface elevation in one transect. A white screen was placed 
behind the row of pins, and a ruler in front and a photo was recorded. Care was taken to ensure that the camera 
was perpendicular to the board, and as close to the board as possible. The photos was processed in an open-
source image-editing program ImageJ1 (Rasband, 2013), making it possible to establish the scale factor from the 
ruler in the image. In this way an approximation of the real-world distances was obtained from the image and 
thus relative elevation measurements could be recorded. The recordings were exported to Excel. With linear  
regression  an  approximate  slope  in  the  image  was  found and  the  distance  perpendicular  to  the  slope  was 
calculated. Then the standard deviation of distances were calculated. On each plot one transect were recorded  
along and across the direction of cultivation.  Distortion due to the camera lens was not  accounted for,  but  
assumed to be relatively small in comparison with the level of precision for the method.

1 ImageJ v.1.46a, downloaded from http://imagej.nih.gov/ij 
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Figure 6.3: Screen-dump from the image processing program. Using the ruler in the image a Cartesian coordinate system covering the 
picture was created with origin in the upper left corner. Then each tip of pin was digitalized manually and a text file with the coordinates 
was exported to Excel for further processing.

Figure 6.2: Picture showing the pinboard which was 
used in the fieldwork for this thesis. Photo by: 
L.Thomsen

http://imagej.nih.gov/ij


6.2.1.b Roller chain

A roller chain is one of the simplest  methods to measure soil roughness. The method was first proposed by 
Saleh (1993) as a fast and practical field method to obtain roughness data. A roller chain is preferred because the  
joints are fixed and thus approximately only bend in the vertical direction. The ratio between the straight line  
covered by the chain over the soil profile length covered by the chain is an indication for the roughness (figure  
6.4).

Data acquisition and processing
A one meter long roller chain with joints of 4 mm in diameter and 6 mm between joints was used. The chain was 
carefully,  joint-by-joint,  laid  out  on  the surface  and the  straight  length  from start  to  end of  the  chain  was 
measured using a ruler. For each plot 6 measurements were recorded, 3 replicates along and across the ridges.  
The ratio between the straight length of the chain and the measured length it covered on the surface was used as  
a measure for the roughness. The index proposed by Saleh (1993) was used: 

Cr = (1-L2/L1)*100 Eq. 9

where L1 is the known length [m] of the chain (the length of the profile) , L2 is the measured horizontal length 
[m]. Cr was calculated using the average L2 value per plot and related to RR from the pinboard. This was done 
by first calculating the profile length from pinboard transects and calculate the same Cr index, a regression could 
then be established between RR from pinboard and Cr from chain. This was necessary on order to compare 
roughness values from the chain with other methods (Jester and Klik, 2005).
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Figure 6.4: Picture from measuring soil roughness with a  
chain. From the fieldwork. Photo by: L. Thomsen



6.2.2 Sensor methods

In the following three different sensor techniques are described. They can all be used to obtain roughness data  
based on the same principle. From the sensor output data containing a list of x-, y- and z-coordinate data in an  
arbitrary Cartesian coordinate system are created, also called a 3D point cloud. A 3D point cloud can be used to  
construct a digital elevation model (DEM) of raster cells of a chosen resolution or the point-cloud can be used 
directly as elevation data of the soil surface. Since random roughness is defined as the standard deviation of  
height measurements, roughness can be extracted by calculating univariate statistics on the point cloud or the  
raster cells in a GIS or statistics software program. In the following the working principle behind each of the  
methods are briefly explained,  with more emphasis of  the new 3D depth-sensing system, mentioned in the  
introduction, because this has not up to now been used in erosion studies.

6.2.2.a Stereophotogrammetry

With stereo photogrammetry two images are used, looking vertically down on the same spot,  but separated 
horizontally so that the scene is viewed from two different angles (Taconet and Ciarletti, 2007). The construction 
of 3D point data is based on a triangulation process and knowledge on the camera lense. In this thesis, due to  
time constraints the procedure is not further explained, but detailed information is available in Luhmann et al. 
(2006). The accuracy of a stereophotogrammetric point-cloud depends on the images available. Shadows in the 
image will decrease the estimating. The software program used for processing, reported accuracies ranging from 
0.02 – 4mm.

Data acquisition and processing
With a digital camera photos of the soil surfaces where taken. On the front page, the fifth image shows as soil  
surface with black- and white markers. Using these markers the software program PhotoModeler was able to link 
together two or more images. The data processing was done by T. Starkloff.

6.2.2.b 3D-depth sensing using the “Xtion”

In 2010 a new depth-sensing technology was developed in cooperation between PrimeSense and Microsoft,  
originally to boost  the gaming-console industry with a device,  the Kinect,  that  would enable new no-touch 
interface between the gamer and the Xbox. Immediately the sensor was hacked and an abundance of open source  
codes for drivers appeared on the internet (“Kinect - wikipedia,” 2013; Kramer et al., 2012). The potential for the 
use of the sensor has shown to be much greater than first anticipated, for instance the sensor has been used in  
research in various fields from robotics to surgery to bathymetry and geomorphology studies (Comb et al., 2011; 
Mankoff and Russo, 2012; Tölgyessy and Hubinský, 2010; Whelan et al., 2012). Although the sensor became 
known through Microsoft's Kinect, it was PrimeSense that developed the depth-sensing technology, which is 
why also other similar products exist, for instance Asus' Xtion Pro or Pro Live, and PrimeSense's own Carmine. 
In this study an Asus Xtion Pro was used (figure 6.5). In the following the terms the Xtion sensor and 3D depth  
sensor will be used interchangeably, and refers to the PrimeSense 3D depth sensor.  The working principle is the 
same for the sensor in the Kinect and Carmine. 
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The 3D depth-sensing technique belongs to a group of 3D reconstruction techniques called structured light  
imaging. Other types of structured light techniques use so-called gray-coding or sine-waves  (Scharstein and 
Szeliski,  2003;  “Structured  light  imaging,”  2011).  The  Xtion  uses  light-coding  or  pattern  recognition 
(PrimeSense, 2013). The Xtion has an infrared (IR) light projector and an infrared camera (figure  6.6). The 
infrared light projector emits one beam of light that is split by a diffraction grating which emits light in a known  
speckle pattern. This speckle pattern is reflected when it meets an object and recorded by the infrared camera.  
This is correlated to the pattern recorded on a reference plane with a known distance to the sensor which is  
stored in the memory of the sensor.  Figure 6.6 illustrates the conceptual device set up (“Method and system for 
object reconstruction. Patent WO2007043036,” 2007).

The calculation of the depth to the sensor is based on a triangulation process, using the distortion of the recorded 
pattern  relative  to  the  reference  pattern  (figure  6.7)  (Chow et  al.,  2012;  Khoshelham and  Elberink,  2012; 
“Method and system for object reconstruction. Patent WO2007043036,” 2007). For the calculation of depth a 
coordinate system is defined, so that the origin is at C - the position of the IR camera, see figure  6.7, the Z-
coordinates are orthogonal to the object plane and X-coordinates are parallel to the baseline which is the line 
along the IR camera and projector. The distance, b, is known because the sensors are mounted on the same 
frame. The focal length in the camera, f, is known, as well as Z0, which is the reference distance which is stored 
in the memory of the sensor. When the IR laser projector, here abbreviated with L, emits light, it hits an object  
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Figure 6.6: A schematic overview of the working principle 
behind the PrimeSense 3D depth sensing technique. From: 
“Method and system for object reconstruction. Patent 
WO2007043036,” (2007)

Figure 6.5: The Xtion Pro 3D depth sensor. Source: 
www.tekwind.co.jp 



and is reflected and recorded by the ir camera, C. The point in space the light hits is here abbreviated  k. The 
object will be closer or further away, than the reference point, point 0, and results in a distorted pattern in the 
camera, which yield the distance named the disparity, d, in the sensor. 

Based on triangulation the distance Zk can be deduced according to this relationship: 

D
b

=
Z0−Zk

Z0

 eq.10  

d
f
=

D
Zk

eq. 11 

substituting D in equation 10 into 9 and isolating Zk: 

Zk=
Z0

1+
Z0
fb

d

eq. 12

Based on this mathematical model  Khoshelham & Elberink (2012) executed a manual calibration of the depth 
measurements from a Kinect device. The PrimseSense algorithms are protected under license, so the formulas 
above is a best-guess  (Konolige & Mihelich 2010).  According to the product specifications the Xtion works 
within a range of 0.8-3.5 m, but without stating the expected accuracy. Several authors have executed test to 
quantify the accuracy of the Xtion in stable indoor conditions and suggested various calibration routines (Chow 
et al., 2012; Khoshelham and Elberink, 2012; Mankoff and Russo, 2012). A theoretical random error model for 
the  output  of  the  Xtion,  showed that  the  random error of depth measurement is  proportional  to the square 
distance from the sensor to the object, i.e. the further away from an object the higher the probability of error in  
estimation of the distances:

σZ ²=(∂ Z
∂ d )

²

σd ' ² eq. 13
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Figure 6.7: Diagram illustrating the triangulation process used in 
Xtion for depth-calculation. From Khoshelham and Elberink (2012)



where d is a random variable with a normal distribution, Z is the distance to an object and d is the disparity  
value, the raw output from the device, as explained above (Khoshelham and Elberink, 2012). The random error 
model is confirmed by tests where a sensor is scanning a flat wall orthogonal to the sensor at different distances.  
A plane is fitted to the point-cloud and the root-mean-square-error (RMSE) of each plane fit is plotted against 
distance from the sensor. Chow et al. (2012) tested an uncalibrated Kinect sensor with this method for distances 
up to 10m and compared the theoretical random error model with the measured error (figure 6.8). It can be seen 
that for distances up to 5m the RMSE the theoretical and measured error behaviour are in agreement, whereas 
beyond  this  distance,  the  measured  error  results  in  unpredicted  errors,  confirming  the  producer's 
recommendation of using the Xtion only within 5m distances.  However, the quality of the Xtion output depends 
as well on the measurement set up and the surface properties of the object of interest. The Xtion does not work in 
bright sunlight, because the sensor cannot detect the IR speckles. Bright reflecting surfaces might distort the IR 
speckle pattern reflection and certain surface will absorb IR light and the speckles will thus not be reflected  
properly. Large gradients or step changes in distance will also give higher error in the output  (Mankoff and 
Russo, 2012). This can be a problem when assessing soil surfaces, especially over ploughed ridges which can 
have steep gradients.  

Software interface
After  the  Kinect-device  was hacked,  it  was possible  to  develop drivers  that  could  facilitate  the  interaction 
between the device and a computer, thus making it possible to extract data from the device. An abundance of 
software interfaces have been developed for processing Xtion data (for a relevant list see www.openni.org). In 
this thesis the software Skanect2 was used. Skanect communicates with the Xtion, grabs the raw data, which is a 
stream of images of 640 x 480 pixels with depth data quantified as digital numbers (DN) between 0 and 2047.  
An relationship exists between DN and distance to object (figure 6.9). 

2 Skanect Pro v.1.4 (required purchasing a license of 99€ to be able to export the recordings to the xyz-format), obtained 
from:  http://skanect.manctl.com/download/ . Initially we aimed at using the completely opensource code library 
Libfreenect, https://github.com/OpenKinect/libfreenect and guidance from Kramer et al., (2012), but it proved to be too 
big a challenge with the level of programming skills we had.
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Figure 6.8 Relation between distance to object and error in depth estimation, 
by a Xtion sensor. Empirical depth error indicates the measured error, while 
simulated depth error indicates the theoretical error model. From: Chow et al. 
(2012)

http://www.openni.org/
https://github.com/OpenKinect/libfreenect
http://skanect.manctl.com/download/


Data acquisition
Since the Xtion IR camera can have difficulties detecting the IR-light in bright sunshine, the data acquisition was  
done during the late evenings after  sunset.  This means that  there was delay of 4-5 hours between the data  
acquisition of the 4 other methods and the Xtion. Only on one occasion did it rain in between the measurements,  
meaning that the soil moisture was changed, and the surface had experienced splash erosion. However, for far  
most of the data no changes in surface properties occurred during the delay, thus the data represent the same  
roughness. For the data acquisition in the forest the trees provided shade enough to get data during the day,  
simultaneously with the other methods. 

For acquisition the Skanect program is initiated, the sensor is plugged to the computer and a recording frame has 
to be chosen. For this study a cube of 2x2x2m3 was set, in order to be sure that the whole plot was covered, 
while not allowing the program to record too much unused surface. It is necessary to define a cube, rather than a  
surface since the sensor records 3D data. At the moment recordings are started, the first image is assumed to be 
at the center of the imaginary cube. Defining this cube ensured a certain accuracy since the Xtion will only  
record distances within the cube. After activating the program the sensor was swept slowly over the surface in 
approximately 0.5 m above ground.  The sensor  was carefully  held perpendicular  to the soil  surface.  While 
recording the Skanect program correlates vertexes from consecutively recorded images, thus creates a surface  
larger than what is covered in one image frame3. The sensor was hand-held, which is a choice that compromises 
the accuracy of the methods (figure 6.10). However, this approach was chosen because the time constraint did 
not allow us to construct a framework upon which the sensor could slide to ensure a constant distance to the  
surface.

3 For further explanations and a very easy video look here: http://skanect.manctl.com/support/ [accessed 2013-12-22]
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Figure 6.9: Relation between the range of sensor digital number (DN) (primary y-axis) 
and distance to object. The dashed lines relates to the secondary y-axis, indicating 
resolution of the depth image at certain distances. This is based on the Libfreenect code-
library written for the Kinect. It was not possible to obtain the same information for the 
Skanect software, but it will be very similar since the sensor hardware is the same. From: 
Mankoff and Russo (2012) 

http://skanect.manctl.com/support/


6.2.2.c Terrestrial laser scanner

Laser scanners have been increasingly popular during the last 2 decades for measuring short-range as well as  
large-range objects  with very high  precision both in  the  industry  and for  surveying as  well  as  in  research  
(Luhmann et al., 2006; Pfeifer and Briese, 2007). Terrestrial laser scanners (TLS) have been used for soil surface 
studies. While the technique was not very well developed it was only possible to obtain one-dimensional data,  
whereas the last 20 years have seen increased intensity of TLS to obtain 3D data of micro-topography (Takken 
2000; Aguilar et al. 2009; Haubrock et al. 2009; Barneveld et al. 2013).The commercially most popular laser 
scanner emits pulses of laser light and uses a time-of-flight principle to calculate distance. The laser device emits  
a laser signal that is reflected when it hits an object and the reflected light is recorded by a receiver on the laser  
station (Luhmann et al., 2006). The time it takes the laser beam to return to the receiving device is used in the  
following relationship:

d = 0.5tc Eq. 14

where d is the distance between the object and the scanner, t [sec] is the recorded laser pulse travel time and c  
[m/sec]  is  the  speed  of  light.  The  x-,  y-  and  z-coordinates  are  calculated  using  the  d and  the  angular 
measurements of the emitted laser beam with simple trigonometry presented by this equation:

(
x
y
z )=d (

cosαcosβ
sin αcosβ

sin β ) Eq. 15

There  are  many different  types  of  laser  scanners,  varying  in  physical  properties,  i.e.  measuring  frequency,  
accuracy, range of operation, beam diameter etc. (Luhmann et al., 2006). The one used in this study is a time-of-
flight laser scanner (Leica ScanStation 2) (figure 6.11), that emits pulses of laser light, using a rotating mirror to 
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Figure 6.10: Data acquisition with the Xtion during late in the evening. The Xtion is 
mounted on a wooden stick and is connected to a laptop. Photo by: L. Thomsen



obtain signals in many directions, and further rotates the head of the emitted which is mounted on the scan  
station, in that way obtains a 360º horizontal and a 270º vertical  field-of-view, while acquiring up to 50000 
points / sec (Leica-Geosystems, 2007).

According to the manufacturer the instrument accuracy of the laser scanner is 4-6 mm within a range of 50 meter 
(Leica-Geosystems, 2007). Other important factors that affect the actual accuracy is the measurement setup, 
distance and view angle to object of interest, as well as ambient conditions, most importantly air temperature  
gradient,  soil  moisture and wind  (Barneveld et al.,  2013) and also surface colour, with for instance a black 
surface reflecting less energy than a white, causing a range bias (Chow et al., 2012).

Data acquisition and processing
The sensor is mounted on the tripod and connected to a laptop, which runs the required software (Leica Cyclone) 
for the Leica ScanStation2 to work. A scan of a few square meters of surface takes around 10min. Subsequently,  
the data is processed and linked together using an algorithm in the software program and outputted as xyz-data 
(figure  6.12). The data processing was done by R. Barneveld.
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Figure 6.11: The Leica 
ScanStation2 mounted on a 
tripod. Source: 

Figure 6.12: Using the TLS to get soil roughness data from the harrowed field in gryteland. 
Photo from the field work, by T. Starkloff.



6.3 Data sampling strategy

6.3.1 Land units

To compare  the  different  measurement  methods  it  would  be  useful  to  create  land  units  based  on  the  soil  
properties that has the greatest influence on soil roughness. It was initially decided to make land units based on 
texture class and land management. However, the fieldwork experienced practical and time related restrictions.  
For instance, while most of the fields were ploughed not all the measurement devices were ready for use and at  
the time when the  equipment was ready most of the fields had been seeded and were inaccessible for us, making  
it impossible to test for effect of land use and texture class. Instead data collection was based on land use only.  
Based  on  observations  in  Skuterud  during  June  2013,  a  land  use  map  was  created  using  the  following 
characteristic surfaces in Skuterud: ploughed, harrowed, direct seeding on stubble and forest  For one of the  
harrowed fields, roughness on 3 plots on two different soil texture types were obtained, showing no significant  
differences in roughness value based on texture class. As for the ploughed surfaces, since all field in Skuterud  
were harrowed at the start  of the fieldwork and ploughed fields were not found in the study area, instead a 
mouldboard ploughed field near Leirsund, Lillestrøm (UTM zone 32N, 616634m east, 6653133m west) was  
included. The soil type here is dominated by heavy clay from fluvial deposits, thus not very comparable to the  
fields of Skuterud. Later some marginal spots in Gryteland with ploughed ridges were discovered and included 
in the analysis. The ploughed spots (figure 6.13 and 6.14) were obviously margins which the farmer decided not 
to harrow and the location were therefore not random or truly representative for the whole field. However, it was  
expected that the most crucial parameter influencing random roughness was tillage, and therefore it was decided  
to include these data as well.

In  contrast  to  the  field  in  Leirsund,  the  ploughed  field  margins  were  located  on  the  most  sandy  spots  in 
Gryteland, and thus representing a different texture class. Despite the texture difference between the clay and the  
sandy soils the ploughed fields did also not show significant differences in soil roughness. 

6.3.2 Data sampling in practice

In practice the relevant data had to be sampled from the fields that were available and of interest to the research,  
as the above section illustrates. Thus, the chosen fields of data collection were based on availability rather than  
random selection.  But, within the chosen field geographic coordinates were extracted using a random point  
generator tool in ArcGIS, ensuring, to a certain extent a randomized data sampling strategy. Table 6.1 gives an 
overview of the data collection. 
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Figure 6.14: Another mouldboardploughed margin, 
located in Gryteland, which was included in the data 
sampling

Figure 6.13: Margin of field, located in Gryteland, with 
mouldboard ploughed surface, which was included in 
the data sampling.



Table 6.1: Dates of fieldwork as well as the number (n) of data sampling plots per method and land use 

date Land use Xtion (n) Stereo (n) Pinboard (n) TLS (n) Chain (n)

30.05.2013 Harrowed 
field, 
Gryteland

1 1 8 1 8

04.06.2013 Harrowed 
field, Rustad

5 6 12 - 36

07.06.2013 Mouldboard 
ploughed, 
Leirsund

- 3 6 - 21

14.06.2013 Forest, 3 3 6 1 18

18.06.2013 Direct seeding 
on stubble

3 3 6 - 18

19.06.2013 Ploughed, 
Gryteland

3 3 10 - 21

A land use map of Skuterud from June 2013 was created (figure 6.16, on next page). The map also indicates the 
locations for data collection. The map was created in ArcGIS 10.1. 

Data acquisition routine
On  each  identified  location  the  five  methods  were  applied.  A routine  was  developed  ensuring  that  the  
measurements were taken in the same way at all locations. When the random point in the field was found with 
gps, 5 markers were placed on the surface delineating the field of interest, the markers were placed so that it was 
parallel to the tillage direction, if there was any. This area was approximately 1x1m 2.  The fifth marker was 
placed randomly on one of the sides, ensuring that when reconstructing the sensor point-clouds it would be  
possible to recognize the orientation (figure 6.15). At the two occasions where the TLS was available this was 
the first method to apply. Then 1) Photos were taken for the stereophotogrammetry, 2) the chain was applied, 3) 
the pinboard was applied and finally 4) the Xtion was applied. The Xtion had to come last because it usually was  
taken in twilight later in the day, while the other methods were taken during daytime.
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Figure 6.15: Field photo from the forest surface, showing the markers 
used marking the area of intest.



30Figure 6.16: Land use map of Skuterud June 2013. 



6.4 Point-cloud data processing
All the sensor data was outputted as xyz-data in an arbitrary coordinate system. To remove any effect of slope in  
the data a plane was fitted to the point cloud using least squares error method with a iterative solver function 
solving the equation with three unknowns. A plane was defined as: 

Z = aX + bY + c Eq. 16 

with a, b and c being fitted parameters to the data which were estimated based on least root-mean-square error  
between the points and the plane . After the plane was defined the distance of each point normal to the plane was  
calculated using: 

D=
ax0+by0+cz0

√a2
+b2

+c2
Eq. 17

This distance equals the elevation measurement. The calculation was developed in R4, (Appendix I). For each 
point cloud a subset of 0.8m x 0.8m around the origin of the coordinate system was considered rather than the  
full point cloud, this ensured the elimination of the markers as well as surface outside the relevant plot square  
which was affected by foot steps or tools. With the final elevation data the standard deviation was calculated  
which corresponds to the random roughness index. The reported values from TLS, Xtion and stereophotos are  
the RR calculated directly from the 3D point-clouds.

Later the data was loaded into GRASS GIS5, an open source raster based GIS. When loading the xyz data into 
GRASS a raster grid file was defined. Depending on the desired resolution of the grid, the number of points that  
fall within one grid-cell was used to calculate the value of the cell. 

6.5 Comparison of measurement techniques
The most  interesting  aspects  of  comparing  methods  to  measure  roughness  are  the  accuracy,  precision  and 
resolution. Accuracy is defined as the degree of conformity of a measured or calculated quantity to the “true”  
value, while precision is the degree of mutual agreement among a series of measurements of the same value or 
the reproducibility of a  result.  Resolution is here defined as the number of measurement points per unit of  
length, which is along the lines of the work by Jester & Klik (2005). These aspects are all interlinked, but it is 
important to be able to distinguish them from each other and to be able to quantify all  3 parameters when 
measuring soil roughness. 

6.5.1 Accuracy

In the description of the methods the internal accuracy of the methods was described. But the actual accuracy  
depended as well on external factors such as measurement set up and the ambient conditions and was therefore  
difficult to quantify. The absolute accuracy was however not very important for the random roughness index 
because it was a measure for relative elevation differences within a plot, although, the approximate accuracy of  
any method of course is interesting to know in the comparison to other techniques. In this study the methods 

4 R version 3.0.1 (64bit) downloaded from: http://cran.r-project.org/bin/windows/base/old/3.0.1/, used with the graphical 
user-interface R Studio 0.97.511, downloaded from: http://www.rstudio.com/ide/download/ 

5 GRASS version 6.4.3RC3
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were only indirectly compared in terms of accuracy. Assuming that TLS provides the closest to “true” roughness  
value, a value for accuracy can be obtained by calculating the difference between roughness measurements from 
the other methods and the TLS. Further ANOVA tests were executed to test the degree to which the methods  
agree about a roughness value, which as such was a measure for the relative accuracy. For the statistical analysis  
the software SigmaPlot was used.

6.5.2 Precision

The acquired data was compared in terms of precision, with the standard deviation of a group of measurements  
as a measure for precision. The spatial unit to compare was the land use units, thus, although the measurements 
were not repeated over the same plot several times, it was assumed that the surfaces within one land unit were  
spatially uniform and thus represented the same random roughness. Unfortunately not enough replicates were 
taken to test the assumption of spatially homogeneity within land units.  As for the pinboard and chain method  
the precision was difficult to obtain in any other way since the method was destructive to the soil surface, i.e.  
the exact same transect will not be present after one measurement.

6.5.3 Resolution

The methods were compared in terms of resolution. The point-clouds were converted to raster files at different  
resolutions to see the effect of grid resolution on the random roughness index. It was tested if the increased 
resolution obtained with the TLS compared to the Xtion had an effect on the calculated roughness index. 

6.5.4 Other aspects

Other aspects which are interesting to take into account when comparing methods are the ease of obtaining data, 
the cost related to the method and the possible spatial extent the method can cover. These aspects will briefly be  
touch upon in the discussion of the methods.
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6.6 LISEM – a physically-based erosion model
Another way to compare the roughness data is to see what influence roughness data has in an erosion model. In 
this thesis the erosion model LISEM was chosen. In the next section the theoretical framework will be discussed 
briefly, with emphasis on the process of simulating surface storage, as roughness is the main input for these  
calculations. Further the calibration method is described, together with characteristics of the rain events used to  
run the model, and a description of how the model results will be used to compare the effect of roughness. 

6.6.1 Theoretical framework of LISEM

The Limburg Soil Erosion Model (LISEM) is an event-based physically based model, originally developed to 
simulate the effect of grass strips on soil loss in the province of Limburg in the Netherlands  (De Roo et al., 
1994). The model simulates the hydrology and sediment transport during and after a single rain event. The model 
is raster-based, meaning that a catchment is represented by a grid of equally spaced cells of a chosen size.  
Preparation of input raster maps is done in the a raster GIS: PCRaster 6 (PCRaster documentation, 2013). The 
model incorporates rainfall, interception, surface storage in micro-depressions, infiltration, vertical movement of 
water in the soil, overland flow, channel-flow, detachment by rainfall and throughfall, transport capacity and  
detachment by overland flow. The model is driven by rainfall input data, given as rainfall intensity. The model  
has been continuously developed during the last 20 years and some of the theoretical framework as well. Two 
versions are used in this study LISEM version 2.587 and the newest version: OpenLISEM version 1.708  (Jetten 
2013).

A schematic overview of the incorporated physical processes in LISEM is shown in figure 6.17. Each rectangle 
indicates a physical process, that contributes to an estimated transport capacity for each cell, which in turn is  
used to estimate flow, detachment and deposition, as well as the water and sediment which is transported to a  
downslope cell. The thin dotted lines links to the input maps, which have a value for each cell based on land  
units. Random roughness  (RR) is input for calculated surface storage, which together with the local drainage 
direction (ldd) map, Manning's n and the slope is used to calculate overland flow. In the following only the part  
of the model simulating surface storage will be described since this is the only process that uses roughness input  
data (De Roo et al., 1996b; Jetten, 2002).

6 PCRaster version 3.0.1. with Nutshell version 4.5 [10 Mar 2013], a graphical user-interface (instead of a command-line 
interface). Downloaded via Sourceforge: http://sourceforge.net/projects/pcraster/ and 
http://sourceforge.net/projects/nutshellqt/  

7 Accessed via Jannes Stolte at BioForsk.
8 Accessed via: http://sourceforge.net/projects/lisem/ 
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Surface storage and roughness in LISEM
Surface storage relates to micro-depressions in the soil surface in which rain water will pond until they overflow  
and start overland runoff. The process depends on the infiltration rates, the slope and the soil roughness (Amoah 
et al., 2013). For a given spatial unit an average surface storage value can be estimated, however it is recognized 
that surface runoff actually starts before this average value is reached. Runoff is a rather complex spatial process 
where a network of micro-depressions will fill up and overflow into each other. Thus, in LISEM two concepts 
are  used to  simulate surface runoff:  the Maximum Depressional  Storage (MDS) and the Start  Depressional  
Storage  (SDS).  MDS  is  defined  as  the  threshold  value  for  a  given  area  above  which  the  surface  micro-
depressions will overflow. It means that when this threshold value is reached in any given cell, each additional  
rain drop will directly create overland runoff out of the cell  (Jetten, 2002). In LISEM RR is used to estimated 
MDS, using the following relationship:

MDS = 0.234RR + 0.01RR2 + 0.012RR*S Eq. 18

where RR is random roughness [cm] and S is terrain slope [%] . This is based on work of  Kamphorst et al. 
(2000) and earlier work of Onstad (1984), who related various roughness indices to MDS, in order to find an 
easy way to estimate surface storage. It was found that among various indices RR showed the best correlation to 
MDS (R2 = 0.8). Before threshold MDS is reached some runoff will occur in some part of the cell. In LISEM  
v2.589 it is assumed that when 10% (that is an arbitrarily chosen threshold) of a cell surface is ponded runoff  

9 The following explanation follows the LISEM Manual as of 2002 (Jetten 2002). The newest version of LISEM, 
OpenLISEM v1.7 estimates the fraction of ponded surface slightly different, but since reported results in this report 
comes from LISEM v. 2.58 this is explained in detail.
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Figure 6.17: flowchart of physical processes incorporated in LISEM, from: De Roo et al. (1996b) 



starts. The fraction of ponded surface is estimated by:

fps
 = 1 – exp(- a h) Eq. 19

where fps is the cell fraction of ponded surface, h [mm] is the water height at the surface and a [-] is an empirical  
factor with values between 0.04 and 1.8. It is found that there is a strong linear relationship between factor a and 
RR (R2 = 0.99):

a = 1.406*  (RR)-0.942 Eq. 20

where RR is in mm. When fps = 0.1 runoff will start , this threshold is termed Start Depressional Storage (SDS). 
For a graphical illustration of the relationship between water height, RR and fraction of ponded surface, see  
figure 6.18. At threshold SDS: fps = 0.1 and the water height will equal:

0.1 = 1- exp(-a h) <=> h= ln(0.9)/ (-a) Eq. 21

Figure 6.18: Graph showing how the fraction of ponded surface (per cell) will develop as a function of water height, for difference 
input values of RR (from 4 to 50 mm). The horizontal line (SDS) is the Start Depressional Storage, if fps is above this threshold (0.1) 
runoff is assumed to start. The graph is made in Excel, for a list of randomly chosen RR values, approximately illustrating the 
common range of RR values.

Between SDS and MDS the amount (mm) of runoff is modeled in a non-linear way. After MDS is reached runoff 
increases linearly with the water height in the cell (figure 6.19): 

h < SDS: no runoff
h > SDS: runoff = (h – SDS) * (1- exp(-h*(h-SDS)/(MDS-SDS))) 
h > MDS: runoff = (h-MDS)
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Figure 6.19: Illustrates how runoff is calculated in LISEM depending on the RR, the water height and the slope.  Below SDS (the black 
line) no runoff will occur, this is independent of slope. As soon as the water height has increased to transgress the SDS, the runoff for 
each cell depends on the slope for the given cell.

The flow width of runoff and the hydraulic radius is assumed linearly related to the fraction of ponded surface,  
fps,:

w = fps *dx Eq. 22

where w [m] is the flow width and dx [m] is the cell width. All equations and model descriptions are taken from 
the LISEM manual (Jetten, 2002).

6.6.2 Model choices 

The model was set up for the Skuterud catchment by Kværnø and Stolte (2012) who tested various soil physical 
data and the influence on model results. This means that unless otherwise mentioned input data choices were 
based on their work. Also land use units and soil units were based on work of Kværnø and Stolte (2012), see 
Appendix II. Two rain events were used, one for calibration and another one for modelling. The properties of the 
two rain events are presented in table 6.2. 

36



Table 6.2 Properties of rain events

Kværnø and Stolte 
(2012)

Calibration event Modelling event

Date 13.08.2010 04.09.2009 19.08. 200810

Duration11, min 860 1060 1000
Peak intensity, 
mm/h

24 18 60

Total 
precipitation, 
mm

23.7 18.6 49.8

Area Sub-catchment 
Gryteland

Sub-catchment 
Gryteland

Catchment Skuterud

Comment Event used for 
calibration by the 
mentioned authors

Event used for 
calibration because 
surface discharge 
measurements were 
available, however 
the event was not 
big enough to create 
runoff for catchment 
Skuteud

Event used for 
modelling because is 
was big enough to 
create runoff, 
however this event 
happened prior to the 
setup of surface 
discharge 
measurements and 
could therefore not be 
used for calibration

Calibration method
At the outlet of the Skuterud catchment total discharge (combined surface and drainage) and sediment load was 
measured, however since LISEM only models surface runoff, this data record could not be used for calibration  
of  the  model.  Instead  the  sub-catchment  Gryteland  was  considered,  because  discharge  measurements  were 
available (see chapter  4, page  13). It  was assumed that upscaling of fitted data input  for Gryteland applied 
directly to Skuterud. Further it was assumed that the calibration factors used with one rain event, applied directly  
to another event. This was necessary because another (larger) rain event was used for modelling purposes of the  
whole catchment,  since the calibration event  was not  able to create runoff for the whole catchment. It  was  
thought to be reasonable since it was at the same time of the year and crop status most likely was the same for  
both events. The larger event could not be used for calibration purpose because this event happen prior to the set  
up of the measurement station Gryteland. Following Kværnø and Stolte (2012) calibration was done by changing 
initial Ksat values for the clay soil. A Ksat multiplication factor was chosen based on the best fit between simulated 
and measured hydrographs and comparison of total (summed) discharge [m 3] , peak disharge [Q, l/s] and peak 
timing [min].

10 Event used for model simulation of the Skuterud catchment.
11 Duration indicates here the period of time used for modelling. Thus, for instance the August 29 2011 event is the largest rainfall peak out of 3 
consecutively peaks that occurred between the 28th and 30th of August 2011.
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6.6.3 Sensitivity analysis

With the acquired roughness data a simple sensitivity analysis was executed to get an initial idea about the model  
sensitivity to roughness input. This was done by increasing and decreasing input roughness values with 20% and 
40% and compare model output results. For these test the assumed most accurate roughness data, from TLS, was 
used. Further, the average RR value from each of the methods were used as input for a model run and the effect  
of using different RR input was compared in terms of hydrographs.

6.6.4 Evaluation of land use changes as reflected in RR values

As another way to compare various RR values the model was tested using roughness values obtained from 
different land uses. This gave some ideas about the effect of land use on surface storage. The model runs were  
compared in terms of surface storage rather than soil loss because the soil loss rates were very low for the event  
and because surface storage was directly affected by RR. It was expected that running the model using RR from  
harrowed  fields  would  yield  lower  surface  storage,  while  ploughed fields  or  fields  with  direct  seeding  on 
stubbles would yield relatively higher surface storage. Apart from comparing model runs on hydrographs and  
output statistics like total runoff, the temporal and spatial patterns were compared by calculating average surface  
storage as a function of time and elevation classes,  as well  as visually evaluate surface storage maps from 
various time steps. For input parameters and land use units for the the model runs, refer to Appendix II.
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7 Results and discussions
In this chapter the results of the thesis work are presented followed by discussions. The chapter is divided into 
two parts: 

– Section  7.1:  Method comparison.  All  roughness  data  collected  in  the  field are  compared  using 
statistical tools. Variations in roughness values are discussed, as well as other aspects of the methods  
such as spatial resolution, ease of acquisition, price, data processing etc.

– Section 7.2: Modelling. Model output from LISEM runs are presented followed by a discussion of 
the results  including various ways to visualise the model  output such as hydrographs,  discharge 
numbers,  maps  of  surface  storage  and spatial  correlations  between  surface  storage  and  various 
terrain parameters. 

7.1 Method comparison for roughness data acquisition
In this section the results from the roughness data collected in the field are presented and compared. The data  
obtained with the rollerchain was converted to RR values by correlating it to the RR from pinboard. Results  
showed that the correlation was not very good (R2 = 0.55) and the converted chain data, was mostly a function of 
the pinboard (Appendix III). The chain method is included in the subsequent statistical tests, but not used further 
in the model run.

7.1.1 Statistical comparison – precision and accuracy

Data presentation - precision
The field work resulted in a collection of roughness values, summarized in table 7.1. The data is also presented 
in a bar chart, figure 7.1. Complete overview of the data is presented in Appendix IV. 

Table 7.1: Measured random roughness. Table show average random roughness values [cm] for each land use 
together with standard deviation. For the chain measurements both the RR values as converted is shown, 
together with the Cr-index. See Appendix III for an explanation of the conversion method.

RR (cm) TLS Xtion Stereo. Pinboard Chain (Cr value in italic)

Harrow 0.81
(n=1)

1.18 ±0.33 
(n=6)

1.52 ±0.70 
(n=7)

1.43 ±0.59 
(n=10)

1.63 ±0.31 (12.55 ±5.07)  
(n=10)

Forest 1.05
(n=1)

1.65 ±0.59 
(n=3)

0.94 ±0.24 
(n=3)

1.38 ±0.51 
(n=6)

1.07 ±0.03 (4.04 ±0.44) 
(n=6)

Plough No data 2.84 ±0.86 
(n=3)

2.70 ±0.55 
(n=5)

2.71 ±1.09 
(n=12)

2.23± 0.42 (21.63 ±6.42)  
(n=10)

Stubble No data 2.04 ±0.57 
(n=3)

0.63 ±0.03 
(n=3)

1.10 ±0.37 
(n=6)

1.24 ±0.10 (6.69 ±1.48)  
(n=6)
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Figure 7.1: Bar chart of average random roughness values, acquired on different land use surfaces and using different methods. The 
error bars indicate one standard deviation. For TLS data (abbreviated ls) only one plot was acquired, thus no standard deviation 
could be calculated

St

Student's t-test - “absolute” accuracy
For  land  uses  harrow  and  forest the  “absolute”  accuracy  of  each  method was  quantified  as  the  difference 
between TLS and the respective method. The differences were tested with student's t-test for one-samples, where  
the random roughness from TLS was assumed to be the true mean, and the values to come from a normal  
distribution (table  7.2).  The hypothesis was tested with a 95% confidence level.  In addition to the classical  
hypothesis testing, also the exact probability of making an error by rejecting H0 while H0 is true, was calculated. 
For instance, the P-value associated with the test-statistics of Xtionharrow was 0.64, meaning that there was a 64% 
chance of making an error if H0 is rejected. Thus H0  was not rejected. For the harrowed surface stereo, pinboard 
and chain are all significant different from TLS, only Xtion was in agreement with TLS. For forest surfaces no  
significant difference were detected. Prior to the student's t-test data passed the Shapiro-Wilk normality test 
(Appendix V).
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Table 7.2: Results of student's t-test for difference in mean. μ = average TLS RR, while x = Rrmethod.  The null 
hypothesis, H0, is that no difference exists, while the alternative hypothesis, Ha, is that a difference exists, P = 
probability of making a type I error, df=degrees of freedom

One-sample difference of mean t-test
H0: μ-x = 0
Ha: μ-x ≠ 0

xXtion xStereo xPinboard xChain

Harrow (μ=0.81) No difference 
H0 not rejected 
P=0.64, df=5

Difference 
H0

 rejected. 
P=0.05, df=6

Difference 
H0

 rejected. 
P=0.01, df=9

Difference 
H0

 rejected. 
P<0.01, df=9

Forest (μ=1.05) No difference 
H0 not rejected 
P=0.30, df=2

No difference 
H0 not rejected 
P=0.66, df=2

No difference 
H0 not 
rejected 
P=0.22, df=5

No difference 
H0 not rejected 
P=0.22, df=5

ANOVA tests – relative accuracy
An analysis of variance (ANOVA) tests was executed to check for statistical differences in roughness between 
the methods and between land uses, this is both facilitating the comparison of relative accuracy: to what extend 
do the methods agree on a roughness value per land use, and testing how well each of the methods are able to 
distinguish different land uses from each other in terms of roughness. 

First an ANOVA test was executed to see if there was significant difference between the 4 methods one land use  
type at a time (table 7.3). For some of the data the normality test failed and an ANOVA test on ranks was done 
instead. Only for stubbles a significant difference between the various methods was found. To isolate which 
methods  were  significant  different  from  each  other  a  multiple  pairwise  comparison  (Dunn's  method)  was 
executed for the stubble roughness data. Only Xtion and stereo were significantly different from each other 
(P<0.05), whereas it could not be confirmed that pinboard and Xtion were different. Because chain had a mean 
value closer to Xtion than pinboard the chain-Xtion pair was not tested, however they might be significant  
different because the variance for chain is very small as evident from figure 7.1, for details refer to Appendix V.

Table 7.3: Results of ANOVA tests for comparing methods (95% confidence level). Only the exact level of 
significance associated with rejecting the H0 is calculated, when it is not calculated the P-value > 0.05.

ANOVA test for difference 
between methods

Type of 
ANOVA test

Result Level of 
significance

Forest Ranks No difference P > 0.05
Stubbles Ranks Difference

Xtion and Stereo 
are different.

P < 0.05
(P=0.013)

Plough Ranks No difference P > 0.05
Harrow Parametric No difference P > 0.05
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Secondly, it was tested if there were significant differences between roughness of different land uses. For each  
method an ANOVA test was executed. For all methods a significant difference was found when comparing the 
different  land  uses.  To test  which  land  uses  were  significantly  different  from each other,  again  a  multiple  
pairwise comparison was executed, see figure 7.2. All results are significant on 95% level. For details refer to 
Appendix V. For all four methods only the ploughed surface was significantly different from the other surface.  
All methods were able to capture the difference between harrowed and ploughed surfaces. Most methods were  
not able to capture differences between forest, stubble and harrow. 

To test whether the methods were able to capture the same relative difference between land uses ratios were  
calculated based on the roughness from stubble, since stubble in most cases has the lowest RR value (figure 7.3). 
If  the  lines  followed the  same trajory it  would indicate  that  they  capture  the  same relatively difference  in  
roughness that exists between land uses, however, at evident from the lines the methods do not show the same 
relative differences between land uses. Xtion shows a different pattern compared to stereo, pinboard and chain.  
Unfortunately, the RR from TLS could not be included because of the lack of measurements on all surfaces.
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Figure 7.2: Bar charts indicating the average RR values [cm] per method and landuse. Arrows 
indicates a significant differences between land uses for each of the method. A “D” together with  
a two-headed arrow indicate significant difference between the two land uses. 



7.1.2 Comparison of resolution

Since roughness is scale dependent it is important to compare the methods in terms of the obtainable resolution.  
Table 7.4 shows the resolution and min. grid cell size of the methods. For chain it was not possible to estimate  
the resolution. For pinboard the resolution was obtained as height recordings per unit length, but to be able to  
compare with the sensor methods, the resolution per transect was multiplied with 20, assuming that to cover one 
m2  minimum 5 cm was required between consecutive transects because of the metal frame of the pinboard. ,  
which is a relevant parameter because point data usually is converted to raster to use for spatial calculations. The  
mentioned cell  size is based on an subjective evaluation, because even when using a smaller cell  size it  is  
possible to create the grid, although the ratio of data to data gap will increase. Not surprisingly are resolution and  
min. cell size correlated. One important observation is the difference between stereo and Xtion. Xtion has in 
average 20 000 point more than stereo, while both have a min. grid cell size of 10mm.

Table 7.4: Comparison of resolution of the various roughness methods, expressed both as elevation recordings 
per unit area (averaged and rounded up to nearest 1000) and maximum raster grid resolution that can be 
computed from the point cloud

Method Resolution (points per m2) Possible min. grid cell size

TLS 2 705 000 2 mm

Xtion 90 000 10 mm

Stereo 69 000 10 mm

Pinboard 1000 50 mm
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Figure 7.3: Graph showing the relative differences in RR between land uses per method. 



The density of the Xtion and stereo point-clouds varied with land use, indicating that the performance of the  
sensor methods depends on the properties of the surface. As figure  7.4 shows it  was not always Xtion that 
perform best in terms of point density. But the stereo showed the largest variety in point density. On the bare soil  
surface, harrow and plough, the Xtion had largest point-clouds  density, whereas on the plots with vegetation 
stereo photos had the highest point density.

The percentages of missing cell values when constructing a 10 mm grid using Xtion and stereophotogrammetry 
gives an idea about which method had the best coverage (table 7.5). Although it is possible to create a grid with a 
resolution of 10 mm with both Xtion and stereophotogrammetry there is larger data gap with the 
stereophotogrammetry. This is especially valid for the ploughed field in Gryteland with an average of 10% 
missing cell values for rasters based on stereophotogrammetry.

Table 7.5: The average percentage of missing cell values when a 10 mm resolution raster grid is constructed 
based on the input point-cloud

Land use TLS Xtion Stereo

Harrowed 0.0% 0.7% 4.6%

Ploughed (Gryteland) - 0.1% 10.6%

Ploughed (Leirsund) - - 0.4%

Forest - 0.0% 0.4%

Direct seeding on stub. - 0.0% 0.1%
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Figure 7.4: Barchart showing the difference in point density for Xtion and Stereo. The point 
densities are given as points per m2 and is calculated as the average of the number of points for 
each plot.
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7.1.3 Prices differences
For this study a roller chain was purchased for a value of ~€74. The pinboard was made by R. Barneveld with  
very cheap materials, ~€20. To apply stereophotogrammetry a high-quality camera is needed. The one we used  
costed ~€1000, in addition we used the PhotoModeler program, a license for this program can cost €2,145. A 
TLS costs ~ €60 000. Finally, the Xtion was purchased for ~€100 together with the Skanect program license,  
€100. Meaning that the Xtion is by far the cheapest sensor method and cost a bit more or the same as the contact  
methods.
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7.1.4 Discussion of results

Having presented the results of the method comparison in terms of precision, accuracy, resolution and price, this 
section discusses the results and further include practical issues related to the methods.

In terms of absolute accuracy only the surfaces  harrow and forest could be compared. For  harrow only Xtion 
was in agreement with TLS. This can possible be explained by the higher point-density of Xtion in comparison 
with stereo, pinboard and chain. This gives confidence in the Xtion as a new sensor for monitoring roughness.  
However,  for  forest all  methods  were  in  agreement  with  TLS,  which  indicates  that  the  methods  perform 
differently depending on the surface properties. This point was also emphasized when observing the bar chart  
and the graphs with ratios. Based on the ANOVA tests most methods were in agreement about the RR value per  
land use. Only for the stubbles the Xtion showed a significant higher RR value than the other methods. It could  
indicate that the Xtion point-clouds contain noise. Considering that a filter of 3 times the standard deviation was  
applied to all point-clouds most outliers are assumed to be removed. For the sensor methods the explanation  
might as well be differences in the way the data is processed which causes a different surface. Apart from the  
statistical  comparison,  a  visual  comparison  gives  insight  into  how much detail  of  the  surface  the  methods 
captured. Figure 7.5 shows the point-clouds of stubble plot 2 from Xtion and stereo. The z-scale is different so 
the images cannot be directly compared. However, it is clear that the two methods capture different level of  
details. In fact the Xtion point-cloud seems very smooth but has a greater range of values, whereas the stereo  
point-cloud  seems  more  rough  but  cover  a  smaller  range  of  values.  Since  the  pinboard  and  chain  are  in 
agreement with stereo it could suggest that the Xtion overestimates the roughness of  stubble. However, it is 
difficult to say which method captures the roughness better than the other because the “true” size of soil clods 
are not measured. To do such evaluations of sensor methods known reference objects are usually used (Luhmann 
and Wendt, 2000). 

Like with  stubble,  the  Xtion seems to over-estimate  the  roughness  for  forest in  comparison with the  other 
methods (see barchart, figure 7.1), although there is no significant difference between any methods. Figure 7.6 
shows point-clouds from TLS, Xtion and stereo from forest, here the z-scale is the same for all three images. It is 
surprising that the stereo has a very similar RR value to the TLS value when considering the visual differences,  
both in point-density and smoothness of surfaces. In contrast to the Xtion it is observed that the TLS manages to 
captured more detail,  whereas Xtion seems to smooth out the surface.   A possible explanation could be the 
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Figure 7.5: Comparison of (from left to right) Xtion (rr = 2.54) and stereo (rr= 0.64). Note that the z-scale is different, for 
Xtion the z-scale is from -0.02 to 0.04m, whereas for stereo the z-scale is from -0.01 to 0.01m. The scale difference makes it 
difficult to visually compare the images, but it can be seen that the Xtion elevations stretch over a large range of values than 
the stereo. Note also that the images are not viewed from the same angle. The stereo is rotated 90 degrees clockwise compared  
to the xtion.



algorithm the Skanect software uses for stitching together the recordings. Another explanation could be that the 
speckles correlation technique upon which the Xtion sensor relies is more sensitive to irregularities like grass 
straws, and not able to capture very thin or fine features because the sensor technique depends on the correlation  
of the whole speckle pattern. In another study it was also observed that the Xtion could not capture very fine  
structures (Mankoff and Russo, 2012). However, it is important to remember that only one plot is recorded with  
TLS, whereas the Xtion and stereo is represented by the average of three plots. The discrepancy that is observed  
when using sensor methods on vegetated surfaces indicates that sensor methods are best used on bare surfaces.  
In general it is problematic to get roughness values from vegetated plot, because it is the roughness of the soil  
that is targeted. Removing the vegetation also seems problematic because it is difficult to remove vegetation  
without disturbing the soil surface.

Looking at the RR values for the  harrowed surfaces, the TLS value is much lower than the other methods. 
Especially the difference between the stereo and the TLS is remarkable. This is different than what would be  
expected,  usually increasing resolution would lead to increased roughness,  similar to the so-called coastline 
problem, i.e. on a map showing a coast-line, the measured length of the coast line will depend on the scale (or  
the resolution) of the map. The smaller the scale of the map the longer will the measured coast line appear  
(Barneveld et al., 2013)  A possible explanation could be that TLS data was only captured on the Gryteland field 
(see table 6.1, page 29), while the other methods were applied on field Rustad as well. It is clear that the Rustad 
field had larger soil aggregates than the Gryteland field, see figure 7.7, which probably is reflected in the higher 
roughness values. An explanation for the differences in aggregate size could be differences in tillage practices 
and machinery. Both fields were seeded just prior to the measurement, but it is likely that the Gryteland field in  
addition was prepared with a seedbed preparation machine, e.g. PTO-driven harrow, while seeding (T. Starkloff,  
pers.  Comm.). Another explanation could be that the two fields were tilled at different soil  moisture levels,  
causing  a difference in soil aggregate size (Arvidsson & Bölenius, 2006). Yet another explanation could be that 
the moisture level at the time of data acquisition was different. For the contact methods, pinboard and chain, this  
meant that the hard soil surface was easier to follow causing an image of a rougher surface, whereas the more  
moist soil surface was very easier to penetrate consequently causing a more smooth surface. In contrast to the 
harrowed surfaces the RR values from ploughed surface were in much better agreement with each other, despite 
the fact that the values were partly acquired from Leirsund on heavy clay soil, partly from Gryteland on very 
sandy  soils.  This  reconfirms  our  assumption  that  tillage  practice  are  of  greater  importance  than  texture  
composition with regards to roughness. On the other hand the variation of values were very large, thus no strong 
conclusion can be drawn based on this data, in particularly also because the number of replicates was limited. 

The performance of each individual method with regard to distinction of land uses from each other, showed  
somehow disappointing results, because mostly only  ploughed  surfaces could be distinguished from the other 
surfaces, whereas harrow, forest and stubble not were significantly different from each other. This could both be 
because the surfaces are not different in terms of roughness or because the few numbers of replicates do not  
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Figure 7.6: Comparison of the point-clouds of forest plot 1. From left to right is: TLS (RR =1.05), Xtion (RR =1.30) and stereo 
(RR=1.13). Please note that the TLS cloud with regard to viewing angle (by coincidence) is turned 180 degrees compared to the two 
other clouds.



allow to detect differences. As the graph of ratios suggests, the methods do not agree on the relative roughness of 
each land use. This would be interesting to underpin with a larger number of replicates.

Regarding the precision of the methods, there are no clear trends when comparing the methods. For  ploughed 
surfaces the precision seems in general to be lower than with the other methods. Intuitively, it seems reasonable 
because the ploughed surface have some larger scale roughness patterns. The lower precision is also reflected in 
the table of missing cell values (table 7.5). There seems to be larger data gaps in the ploughed surfaces than the 
other surfaces. This is mainly valid for stereo. The stereo technique has problems reconstructing the surface if  
there are larger areas in shade. The decrease in precision for rougher surfaces was confirmed by other studies 
that focused on the influence of tillage on roughness (Álvarez-Mozos et al., 2011; Govers et al., 2000).

As already shown in comparison above,  most  of  the  RR estimates  from the methods were statistically not  
different from each other. This is interesting considering that the resolution of the methods are different and that 
roughness which is  scale dependent  would be expected to change with resolution. The scale-dependency of 
roughness and surface storage has received quite some attention as a research topic, however it is mainly with 
focus on surface storage. One of the few studies that actually compared roughness and the effect of resolution  
from TLS, stereo, pinboard and chain is by Jester & Klik (2005). They compared effect of rain on soil roughness 
in laboratory settings on two different plots instead of land uses and field conditions as this study is concerned 
with. In accordance with our findings they observed that the laser scanner provides greater detail of the surface. 
They did not relate RR from pinboard and chain with the sensor methods. Their study showed that the calculated  
surface storage and surface inclinations were underestimated using stereo compared to TLS. This is somehow in 
contrast with our findings since the estimated RR values are lower for TLS than for stereo and thus the MDS 
value will be lower as well. Martin et al. (2008) tested both the scale-dependency of RR and MDS and reported a 
20mm increase in RR as grid cell size increased from 7.5 mm to 1m. This, they stated, is a relatively small  
change and thus concluded that the RR index was robust along this resolution range. 

Another aspect of the scale-dependency and resolution is the considered length of surface for calculating the 
roughness index.  Taconet & Ciarletti (2007) used stereophotogrammetry to obtain DEM of micro-topography 
and tested the scale-dependency of a roughness index. They observed that the roughness index increased when  
the considered length of DEM increased from 0.5m to approximately 3 m. However the index first increased 
abruptly  and  later  oscillated  around  an  asymptotic  value,  indicating  that  after  a  certain  length  the  scale-
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Figure 7.7: Comparison of harrowed field from Gryteland – left (more soil moisture, smaller roughness value) and Rustad – 
right (drier, higher roughness value)



dependency has no influence. They concluded that the minimum length of the DEM for a 7.5% accuracy was  
0.841m. This somehow confirms the findings in this study that the roughness value do not change significantly 
across  our  resolutions,  since  we  extracted  roughness  values  on  plots  with  a  length  of  0.8m minimum. An 
interesting observation is that most studies compared changes in resolution from the same method, i.e. a TLS is 
used to create a high-resolution DEM and a comparison is facilitated by increasing the sampling interval from 
the raster grid (for instance Álvarez-Mozos et al. (2011)), whereas this study compares different methods which 
have varying resolution. This might create differences in the results and would be interesting to study further. It  
is  also  interesting to  observe that  the  studies  which are  concerned with soil  roughness  and comparison of 
resolution among themselves choose to focus on very different scale ranges and parameters to compare the  
methods, something that makes it difficult to actually compare different studies of soil roughness.

Following the last observation that studies are focusing on different scales for comparison, it is logic to critically  
discuss  the  way we decided to  compare  roughness  among methods,  especially  for  the  point-clouds.  In  the  
literature  review no  other  studies  were  found  that  calculated  the  RR on  the  raw point  data.  Most  studies  
concerned with soil roughness construct raster grids which in a way reduces the detail of the data, because an 
average value will be assigned to each cell in the raster grid. In this study it was thought to be an advantage to  
calculate RR on point data, partly because also the pinboard data is point data and partly because it was assumed 
that the oriented roughness would be removed when all data in the plot was used to calculate the RR value. The  
last  assumption  might  be  a  misinterpretation,  for  further  studies  this  should  be  tested,  for  instance  by 
constructing raster grids of all the point-clouds and then compare the RR of the full point-cloud with RR from 
transects along and across tillage direction. Alternative ways to compare point clouds are for instance presented 
by Khoshelham & Elberink (2012) who worked with a 3D depth sensor. They compared point-clouds of TLS 
and  the  3D depth  sensor  by  referencing  marks  and  selected  1000  point-pairs  randomly  and  measured  the  
discrepancy. This method is probably better suited for indoor environments, where more parameters can be held 
constant. Other ways to compare point-clouds could be to construct DEM and subtract them from each other,  
however to facilitate that we would need clear distinguishable features in each plot so that the point-clouds could  
be  recognized  to  each  other.  For  further  research  it  is  recommended  to  use  reference  markers  to  enable 
referencing of point-clouds.  An interesting approach was used by  Aguilar  et  al.  (2009) and  Planchon et  al. 
(2001). Both studies used laser scanner and stereophotogrammetry and created raster grids of 1 mm out of the  
point-clouds. Using the formula proposed by Planchon et al.(2001) the RR of the raster grid was calculated as: 

RR=√∑ji

(z ij−zi.−z. j+z ..)
2

n−1
Eq. 23 

Where j and i indicates the row and column index, zij is the value of a given cell, zi. is the mean of row i, z.j is the 
mean of column j, and z.. is the mean of all cells, n is number of cells in the grid. This method to calculate RR is  
advantageous because it removes effect of slope and tillage-marks simultaneously according to the authors.  As  
the point-density of our stereo and Xtion point-clouds could only support 1cm2 grids, this method was thought to 
be too imprecise for our study. It would be interesting to also calculate this index and compare with our current  
results.

The price of the various devices was presented in the material and methods chapter. Moreover, price should be  
considered together with time of data acquisition. In this fieldwork the stereo was the fastest method considering 
time spend in the field. Also considering mobility in the field stereo was attractive because very little equipment  
was needed –  the camera  and five  carton  paper  markers.  However,  many hours  went  afterwards  into data  
processing. Similarly, with the Xtion data acquisition was very fast. But several drawbacks have to be considered  
here: i) the data has to be acquired during late evening/night or cloudy weather for the technique to work, ii) it  
has to be connected to a laptop which has enough battery power for the whole fieldwork time period. The data  
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collection is easiest with two persons. The data processing is very easy, thanks to the Skanect program which 
automatically link together the recordings, however, it is not known how exact the algorithm which is applied 
during the Skanect processing is. The TLS we used is stationary, it was very heavy to carry the equipment, which  
apart from the sensor also include the tripod and big batteries to make it run. The data processing is relatively 
easy as  well,  since a  software program is  linked to  the  sensor.  The pinboard was  the absolute  most  time-
consuming method and it was very unhandy to carry around, further the data processing was long and tedious, 
because each picture had 50 pintips which had to be digitized. A roller chain is easy to carry, but it is not very  
fast to acquire data, since great care has to be taken when placing the chain. Thus, the chain method was after the  
pinboard the most time-consuming field method. 

Considering the obtainable (low) resolution both for pinboard and chain compared to the relatively uneasy way  
of acquiring data and the price, the contact methods are only useful when there is not access to electricity supply  
or if no laptops are available. Comparing the three sensor methods the best choice of method depends on the 
budget  available  and  whether  mobility  or  accuracy  is  of  greatest  importance.  For  mobility  both  the 
stereophotogrammey and Xtion is worthy while the accuracy of the TLS is best. However, in order to use the 
stereophotogrammetry a lot of money and time has to be invested in the necessary software, whereas for the  
Xtion this is not necessary. For further studies the new generation of Microsofts's Kinect incorporates time of  
flight sensor technology, similar to a TLS12, which might as well create opportunities for improved and cheap 
measurements for soil surface roughness. Experiments with drones and 3D depth sensors for indoor scanning  
proves that there od potential for this method (Huang et al., 2011), although many issues have to be addressed 
for outdoor use, for instance the effect of climatic conditions (wind, rain, sunlight) on the accuracy, precision of  
the GPS in the drone and availability of reference markers on the field (B. Veldhuisen, Pers. Comm.). Laser  
scanners are also in fast development and it is possible to find both cheaper and lighter versions than the one we  
used here. 

12 http://www.brekel.com/kinect-2-details/ accessed 3 Nov 2013
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7.2 Random roughness as input to LISEM
In this section results from various model runs are presented. After a small notice on LISEM model versions, the 
presentation of results will  follow this order 1) the results of the calibration process, 2) model responses to  
variation in roughness input,   3) the temporal  development and spatial  patterns of surface storage based on  
different RR input data. Subsequently, the results are discussed.

Model version differences
Inconsistencies in model outputs between the older LISEM v.2.58 and the new openLISEM were discovered 
which indicates a potential bug in the openLISEM version, since model results evidently show behaviour that is 
in disagreement with the process theory behind the model (Appendix VI). Executing a sensitivity analysis using 
openLISEM yielded increased peak discharge when RR was increased and vice versa. This is according to the  
theory expected to be opposite. At the moment there is no good explanation for this model behaviour, contact has 
been made with the developer (Victor Jetten).  Because the (older) LISEM v2.58 showed expected response 
according to the model theory, this model version was used for the rest of the study. In the following whenever 
“LISEM” is mentioned it is referring to LISEM v2.58.

7.2.1 Calibration

Before testing the influence of RR on LISEM output, the model was calibrated for the Gryteland subcatchment,  
using the rain event of 04 September 2009 (section  6.6.2, page  36).  Based on best fit of hydrographs, peak 
discharge [l/s] and total discharge [m3]  the adjustment factors are chosen. Finally a Ksat multiplication factor of 3 
and a Manning's N for the fields of 0.45 (instead of initially 0.6) were chosen (figure 7.8 and 7.9). This is along 
the lines of the work of Kværnø & Stolte (2012) who adjusted Ksat with a factor 4.51 for a similar rain event (13 
August 2010). The pedo-transfer function used for estimating Ksat, (the Mualem-van Genuchten equation) does 
not take macropore flow into account, while the Albeluvisols in Gryteland can be highly macroporous, which 
makes it reasonable to increase Ksat (Kværnø and Stolte, 2012). For an overview of input parameters, refer to 
Appendix II. 
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7.2.2 Sensitivity analysis

7.2.2.a Simple 20-40% sensitivity analysis

A simple RR input sensitivity analysis was executed using the 04 September 2009 event and the sub-catchment, 
suing RR values from TLS (table 7.6). Peak discharge increased when RR was decreased and vice versa (figure 
7.10). Apart from peak discharge, also timing of the rising limb was affected although this effect was mainly 
visible when RR is increased by 40%. A delay in the rising limb is an expected consequence of increasing the 
roughness, because on a very rough surface it will take longer time before the micro-depressions are filled up  
with water. The differences in total discharge and peak discharge are summarized in figure 7.11. The influence of 
increasing and decreasing RR is similar, although increasing RR seems to have a relatively greater impact on  
both total and peak discharge compared to decreasing RR. This is in agreement with another study that tested the 
sensitivity of several of the input parameters, using the LISEM v1.0  (De Roo et al., 1996a).
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Figure 7.8: Comparison of simulated hydrographs and measured hydrograph from Gryteland watershed outlet point. The different 
colored lines indicate model runs with different Ksat multiplication factors and the value of Manning's n for the cultivated fields. 

Figure 7.9: Calculated differences between measured and simulated total discharge and peak discharge using different 
calibration factors.



Table 7.6: Random roughness input values used for the sensitivity analysis.

RR (cm) Forest Urban Harrowed

TLS 1.05 1 0.81

TLS + 20% 1.26 1.2 0.972

TLS + 40% 1.47 1.4 1.134

TLS -20% 0.84 0.8 0.648

TLS -40% 0.63 0.6 0.486
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Figure 7.11. Calculated differences in percentage between the model run using measured roughness data and roughness data 
that was increased or decreased with 20% and 40%. «ls» indicate that the data is from laser scanner (ls).

Figure 7.10. Hydrographs from the sensitivity analysis. The black-coloured hydrograph indicates the model run 
using the original measured RR data from terrestrial laser scanner. The coloured hydrographs are model runs 
with RR input increased and decrease the the given percentage.



7.2.2.b Model response to roughness data from various methods

The LISEM model was tested with the roughness estimates from the different methods to illustrate the impact  
the  data  acquisition  method has  on  the  model  output  (figure  7.12 and  figure  7.13).  This  is  similar  to  the 
sensitivity analysis just presented, but with certain differences. One difference is that the roughness value is not  
uniformly changed with a percentage, but changed according to the measured value for each land use, another  
difference is that the RR values are not arbitrarily increased or decreased but the result of different acquisition  
methods,  which proved to be at  much higher percentages than 20-40% as were the case for the sensitivity 
analysis. Table  7.7 shows together with the mean roughness value per methods, the difference in percentage 
between the TLS value and the value from the relevant method. The differences are not consistent, thus for the  
harrowed surfaces the roughness increases from TLS, through Xtion and stereo, to pinboard, but the same is not  
true for the forest surface. Based on the sensitivity analysis it is not surprising that the RR input values from the  
pinboard has such a big influence on the output. However, it is remarkable that the difference in RR acquired 
with different methods can be this large. 

Table 7.7: Random roughness input values for various land uses, used in LISEM. The numbers in parenthesis is 
the change in percentage from the TLS-value to the given measured value.

RR in cm Forest Urban Arable
Ploughed Harrowed Direct seeding

Terrestrial laser scanner13 1.05 1 - 0.81 -
Xtion 3D depth sensing 1.65 (+57%) 1 2.84 1.18 (+46%) 2.04
Stereophotogrammetry 0.94 (-10%) 1 - 1.52 (+88%) -
Pinboard 1.38 (+31%) 1 - 1.43 (+77%) -
Values used by Kværnø & 
Stolte (2012)

3.2 (+205%) 0.80 - 0.88 (+ 9%) -

13 Used for calibration
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Figure 7.13. Bar chart indicating the calculated differences in percentage between the measured discharge and the simulated. The 
names per bar indicate the method used for acquiring the RR data which was used as input.

Figure 7.12. Hydrographs as a function of RR input data. 



7.2.3 Spatial and temporal differences in model output

To test how the land use differences, as reflected in different RR values affected the model output the LISEM 
model was set up for the larger catchment Skuterud. Model properties other than RR input and leaf area index  
(LAI) were held constant (Appendix II). When the cultivated areas were assumed to be ploughed or harrowed 
instead of direct seeding on stubbles, the LAI was set to zero. For these model runs the roughness data from 
Xtion was used, because only with Xtion did we acquire roughness data for all types of land use (figure 7.14). In 
agreement with the sensitivity analysis and method comparison, the hydrograph peak decreases in accordance  
with increased roughness. The black hydrograph based on the TLS roughness are included to show that there is 
agreement between the model run using RR from TLS (harrowed) and Xtion (harrowed). Model run with direct  
seeding on stubbles (“stubbles”) has a LAI of 2.5, yields more runoff than on the ploughed fields, probably  
because the model is more sensitive to RR input than LAI input.
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Figure 7.14: Simulated hydrographs from Skuterud catchment, using various RR input. The hydrograph TLS indicates 
the model result based on RR from TLS, this is included to show that the RR from Xtion are in good agreement with the 
TLS. Apart from the RR input also the LAI (leaf area index) was set to zero for the cultivated fields, for land use to 
reflect a realistic situation. The dashed vertical lines indicates time transect which are used later on.



Apart from the comparison of hydrographs a temporal analysis of surface storage was executed (figure  7.15). 
The graph is based on simulated average surface storage values for given points in time. The points in time were 
chosen based on the hydrograph, indicated as transects on figure  7.14. From start  to time 02:45 the surface 
storage develops similarly among the different land uses (figure 7.15), because the rain intensity is low enough 
compared to the infiltration and maximum storage capacity and so surface storage build up with all 3 land uses.  
From 02:45 onwards an increasing rainfall intensity causes the 3 surfaces to fill up unequally. At 03:45 the peak 
rain intensity occurs which causes the stubble field and the harrowed surface to reach the maximum storage  
capacity. This is evident because the surface storage does not build up after this point, although another rain  
intensity peak occurs around 05.30. In contrast the surface storage for the ploughed fields increases (slightly)  
again from 05:00 to 05.30 until the maximum storage capacity is reached. After 07.00 it stops raining and the 
water runs off, thus decreasing the amount of water stored on the surface due to runoff and infiltration.  

To get an overview of the spatial patterns, maps of surface storage over time are compared. Figure 7.16 shows 
maps of  surface storage over the Skuterud catchment at five time steps for the three different land uses. It is  
clear that with ploughed surfaces the surface storage capacity is higher than when the surface is harrowed or with 
stubbles. This is especially clear from min. 238 onwards (around time 04.00), because there the proportion of  
water storage at the cultivated area compared to the surrounding forest seems to be higher for the ploughed  
fields, whereas for the harrow surface the surface storage remain less on the cultivated areas compared to the 
forest. On the last map, min 549 (around time 09:00) the surface storage seems to be concentrated on the flattest  
areas and especially in the depressions in the landscape, which intuitively could be expected. 
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Figure 7.15: Surface storage development over time calculated for each time step as the average over the whole Skuterud 
catchment. The secondary y-axis shows rainfall intensity in mm/h. The surface storage is generally following the expected 
trend based on the roughness input. Around time 03:15 and time 05:45 there are interesting differences between the graphs.



58Figure 7.16: surface storage over time as a function of land use



To see if a relation between elevation and surface storage within the catchment existed, the DEM was classified  
into 50 equally sized classes. For each elevation class the number of cells was extracted. For each group of cells 
the average surface storage value was calculated. When surface storage was plotted against elevation class, it  
gave an indication about where in the catchment the surface storage was located, in relative terms, e.g. highest  
elevation classes are on the periphery of the catchment, lowest in the centre and downstream (figure 7.17, 7.18 
and 7.19). It is useful to compare with the DEM of the catchment presented in chapter 4. The columns show the 
frequency distribution of cells per elevation class. The lines indicate per time step the average surface storage.  
Comparing the level of the lines in each plot gives an impression of the temporal development of surface storage  
as a function of elevation and land use. Note that the highest elevation classes have a constant development in  
surface storage when the 3 land uses are compared, this is because the highest locations in the catchment in  
general are covered with forest or urban area, and thus the RR has not been changed. It is interesting to see that 
the ploughed surface has an increasing amount of surface storage the lower the elevation, meaning that the lower 
part of the catchment is filling up relatively more than with the other land uses, thus acts as a buffer. It can be  
explained by the fact that the maximum storage capacity is higher for ploughed surfaces and when run off starts  
relatively more water is stored within the center, downstream parts of the catchment whereas this is flowing out 
of the catchment much earlier with the other surfaces.
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Figure 7.19: Surface storage [mm] for direct seeding on stubbles surfaces at different points in time (lines) 
(primary y-axis) as a function of elevation classified into 50 equal classes (x-axis). The frequency of cell 
count per elevation class is shown on the secondary y-axis.

Figure 7.18: Surface storage [mm] for harrowed surfaces at different points in time (lines) (primary y-axis) 
as a function of elevation classified into 50 equal classes (x-axis). The frequency of cell count per elevation 
class is shown on the secondary y-axis.

Figure 7.17: Surface storage [mm] for ploughed surfaces at different points in time (lines) (primary y-axis) as  
a function of elevation classified into 50 equal classes (x-axis). The frequency of cell count per elevation class  
is shown on the secondary y-axis.



7.2.4 Discussion of results

In this section the results of the model runs will be discussed.

As the 20-40% sensitivity analysis showed LISEM is relatively sensitive to changes in RR value. So it is not  
surprising that the hydrographs from the model run with RR from different methods show such a large difference 
in hydrograph peak. What is more surprising is that the values indeed are this different. Although both the one-
sample difference of mean and the ANOVA test did not find any significant difference between RR harrow from 
TLS and Xtion, the Xtion RR was still 46% greater than the TLS RR in absolute terms. In other words the  
sensitivity  of  LISEM is  not  adjusted  for  the  inaccuracy  there  exists  between  various  ways  to  obtain  soil  
roughness data. The temporal and spatial analysis show patterns which is in agreement with the process theory 
behind the model, however, it remains unknown how well the model captures the actual spatial and temporal 
patterns, as there is a lack of field observations. 

As the spatial and temporal analysis of land use changes showed the surface storage build up differently both 
spatially and temporally in accordance with the roughness of the soil. The ploughed surfaces which had the  
largest RR values could store more water than both direct seeding on stubble and harrowed surfaces could.  
Interestingly, the modelling showed that even after six hours of rain surface storage still built up on the ploughed 
surfaces, whereas the maximum storage capacity was reached after four hours for both harrowed and direct  
seeded surfaces. It indicates that for rain events shorter than six hours and with the given rain intensities, a  
ploughed surface in Skuterud will on average store more surface water and thus create less runoff than a surface 
with  direct  seeding.  This  is  an  interesting  observation  because  one  of  the  prevailing  recommendation  to  
Norwegian farmers is to use direct seeding as an erosion prevention measure (Grønsten et al., 2007). The model 
results provided here could suggest that whether direct seeding on stubbles or autumn ploughing is best might be 
a function of the assumed rainfall intensity and length, however more runoff does not necessarily mean higher  
erosion risk, this depends as well on the vegetation cover and the runoff speed. It would be interesting to do 
further research into this topic, especially to evaluate pros and cons for both land management techniques against  
the predicted frequency of large rain events.  

In LISEM, MDS is calculated based on a study executed by  Kamphorst et  al.  (2000). In their work both a 
pinboard  with  30  mm  spacing  and  a  TLS  providing  2  mm  spacing  were  used.  From  the  pinboard  with 
consecutive transects and TLS, raster based DEM were calculated, the first one with 30mm resolution, the latter  
one with 2mm resolution. Initially MDS was calculated using an algorithm that identified all depressions in the  
plot and virtually filled them up with water. Effect of changing resolution on the average MDS value was tested, 
showing that as long as the DEM resolution was between 10-30 mm the MDS value was stable. This would 
imply  that  also  RR  values  should  be  obtained  from  the  same  resolution  range  to  correlate  to  the  MDS.  
Kamphorst et al. (2000) did not test this, and they extracted their RR values from all the DEM regardless of  
whether the elevation data was from a 2mm TLS or a 30 mm pinboard. It might very well be that RR which in 
LISEM is used to determine MDS is performing best when RR is obtained with methods that yield a DEM 
resolution of 10-30 mm. This would be a topic for further research. However, with the increase in computational  
power and better availability of very-high resolution DEM it might in the future be more feasible and accurate to  
estimate MDS directly from DEMs instead of calculating the RR index. It is already possible to scan areas of up 
to 100m2 today with TLS (Barneveld et al., 2013). With the ongoing fast development of drones it might in the 
near future be possible to acquire high-resolution micro-topography data with a 3D depth sensor mounted on a 
drone. At the moment when a whole hillslope or even catchment can be scanned with high-resolution sensors it 
might  be possible  to  bridge the gap between the surface storage processes  and modelling input,  e.g.  high-
resolution DEM can be used directly as input for simulating surface storage when modelling a rain event using 
LISEM.
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There are several other critical parameters that are important for better modelling results, which could not be  
taken into account in the thesis because of time constraints or lack of available data. LISEM is a data input heavy 
model  (Kværnø, 2011) and although great effort has gone into acquiring input data many parameters are still  
assumed and potentially inaccurate, for instance soil data from forest areas (33% of the Skuterud catchment)  
which is extracted from the national soil survey rather than field studies (Wang, 2013). Another weakness in the 
model set up is the lack of discharge measurements at the Skuterud outlet station. Having this data available  
would allow the model to be calibrated on the whole catchment, instead of using the sub-catchment. Applying 
the  calibration  factors  from  the  sub-catchment  to  the  whole  catchment  introduces  uncertainties,  especially  
because the soils are relatively more sandy in Gryteland compared to the whole catchment (Kværnø and Stolte, 
2012). Further, the results of the calibration are applied directly on another rain event. Several studies indicate  
that calibration results are depending on the magnitude of rain event and therefore LISEM should be calibrated 
individually for rain events of different magnitude (Baartman et al., 2012; Hessel, 2002). Arbitrary choices were 
made regarding cell  size (10m) and time step (30 sec) again following the example of  (Kværnø and Stolte, 
2012). Tests show that predicted discharge and soil loss vary considerably with cell size and time step, with a 
increase in cell size and time step resulting in a decrease in predicted discharge most likely due to a decrease in  
slope by increasing cell size (Hessel, 2005). 

In LISEM RR is only used for estimating surface storage,  but  roughness also affects the overland flow by  
exerting a resistance to runoff . This is expressed through Manning's formula and Manning's n. In LISEM we 
used assumed values of Manning's n. Some authors have suggested a relationship between surface roughness and 
Manning's n (Mwendera & Feyen 1992). It would be interesting to test the effect of estimating Manning's n from 
RR, also since LISEM sensitivity tests have indicated that the model is responsive to changes in Manning's n  
with an order of magnitude similar to RR, see figure 7.12. 

A factor which has not received much attention in this study is the effect of slope gradient on roughness. The 
effect of slope is indeed removed when calculating the RR index, but this does not change the fact that roughness 
is altered with slope gradient which is also altering the surface storage as well as overland flow (Álvarez-Mozos 
et al., 2011; Hessel, 2002). A way to overcome this could be to apply a correction factor depending on slope in  
the preparation of input maps for LISEM. 

The oriented roughness, which is the systematic pattern on cultivated fields caused by tillage has not been given 
much attention in  this  thesis,  mainly  because the topic  has  been  restricted  to  random roughness.  However  
oriented roughness has a great impact on both surface storage and overland flow. For instance, if the tillage 
direction follow the slope the  ridges  will  act  as  channels  that  concentrate  and increase  the surface  runoff,  
whereas  ridges  along the contour  lines  will  retain water.  In  other  words,  on  agricultural  soils  the  oriented 
roughness is often more important than the random roughness for surface storage and overland flow (Takken, 
2000; Takken et al., 2000). Until now most DEMs cannot capture micro-topography, and consequently tillage 
direction have to be implemented indirectly in the model. Several studies have focused on tillage direction for  
improving runoff models  (Takken et al. 2005; Takken et al. 2001; Hyväluoma et al. 2013). An algorithm for 
taking tillage direction into account in the flow-routing was developed and implemented to LISEM by Takken et 
al. (2001)14. Due to time constraints it was not possible to test this flow-routing algorithm in combination with 
the roughness data in this thesis,  but would be an interesting topic to research further.  It is recognized that  
erosion on agricultural fields in Norway is clearly affected by tillage practices (Lundekvam and Skøien, 1998; 
Lundekvam et al., 2003).

14 which is available on the internet: http://geo.kuleuven.be/geography/modelling/erosion/tcrp/download/index.htm 
[accessed 2013-11-07]
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Finally, it is, due to the lack of erosion observations, not possible to conclude how well LISEM performs for 
simulating erosion and runoff patterns. It seems even hard to conclude whether one type of roughness input data 
is  yielding  a  better  performance  than  another  due  to  the  numerous  other  unknown  or  arbitrarily  chosen 
parameters, some of the most important ones being calibration procedure and K sat values, different rain events 
and model cell size. To increase the knowledge of the performance of LISEM in the Skuterud catchment erosion  
observation is needed. Work is ongoing to facilitate erosion monitoring using an unmanned aerial vehicle to  
observe and locate erosion features or even quantify soil loss using a digital camera or even a 3D depth sensor  
(T.  Starkloff,  per.  comm.).  Experiments  have  shown  promising  results,  for  instance  Marzolff  &  Poesen 
(2009) successfully used various unmanned aerial vehicles to monitor gully development in Spain.

The lack of erosion observations is a regrettably general trend among erosion model studies as several authors  
have pointed out (Jetten et al., 2003; Takken et al., 1999) . In most erosion studies calibration and validation is 
done only on outlet data, while the most interesting feature of the model is the spatial prediction of erosion 
patterns. Thus, models happen to be calibrated and validated for the wrong reason, e.g. simulating well discharge  
timing and peak, but failing to identify erosion features (Jetten et al., 2003). Most spatially distributed erosion 
model simulate sediment transport using the sediment transport capacity approach  (Nord and Esteves, 2010; 
Sander et al., 2007). Alternatives to this approach is the transport distance approach suggested by (Wainwright et 
al., 2008a) or the continuous deposition approach suggested by (Hairsine and Rose, 1992). As Nord & Esteves 
(2010) note in their introduction and which is evident from numerous comments that were published following 
the critics of the transport capacity approach initially posted by Wainwright et al. (2008) the discussion of the 
approach to erosion modelling is still not closed, just as there are still many unknown factors that make erosion  
modelling  and  erosion  mitigation  a  challenge  today  and  for  future  research  (Rompaey  and  Govers,  2002; 
Wainwright et al., 2010, 2009a, 2009b, 2008b).

As this discussion has emphasized the evaluation of the performance of LISEM is hampered by the numerous  
parameters  which  simultaneously  can  be  adjusted.  However,  in  the  literature  several  authors  have  drawn 
attention  to  the  disappointing  performance  of  erosion  models,  not  only  regarding  LISEM but  also  similar  
spatially-distributed physically based models such as WEPP, KINEROS2 and EUROSEM (Jetten et al., 2003; 
Takken et al., 1999). A recent review tried to compare the model performance of 14 erosion models, including 
LISEM  (de  Vente  et  al.,  2013).  Their  main  conclusions  are  that  most  models  still  provide  insufficient 
performance for identification of sediment sources and dominant erosion process, performance seems to be more 
difficult  for  smaller  catchment  and that  spatially  distributed models  generally  provide  lower  accuracy than  
spatially lumped models.  The latter point echoing an interesting observation by Rompaey & Govers (2002) that 
more complex models not necessarily result in better accuracy. This is interesting when considering LISEM  
which indeed can be impractical to work with because of the need for very detailed field campaign to suffice the  
data input requirements (de Vente et al. 2013). A striking point is that while the physics-based models (including 
LISEM) have the greatest potential to simulate land use or climatic changes they are often optimized for one  
small catchment with specific environmental conditions and produce poor validation results when applied in 
other  catchments  or  with  other  rain  events,  which  ironically  is  the  contrary  of  the  intention.  It  would  be  
interesting to test the performance of LISEM towards a less complex model to evaluate whether there indeed are 
any benefit of using LISEM in a catchment like Skuterud over another more simple model. 
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8 Conclusions
The objective of this thesis was two-fold: 1) To investigate the applicability of the 3D depth sensor for obtaining 
soil roughness data as compared to other methods and 2) to test whether this data can improve the performance  
of a physical-based spatially-distributed erosion model. Based on the results presented and discussed in the last  
chapter conclusions are here drawn with regard to these two objectives.

The applicability of the 3D depth sensor was investigated by comparing it to four other roughness measurement 
methods on a variety of parameters: Accuracy, precision, resolution, price, easy of data acquisition. Further land  
use was used as a covariate. From the method comparison some general conclusion about the methods can be 
made. The agreement between the methods differed with land use, meaning that not all land surfaces are equally 
easy  to  monitor,  for  instance,  the  rougher  the  surface  the  more  replicates  are  needed  to  obtain  a  realistic 
roughness estimate. Interestingly, the methods did not agree on the order of ratios, which indicates that the  
methods did not capture the same relative roughness between land uses. This might partly be explained by the  
fact that it is complicated to compare contact methods with the sensor methods, as the methods uses different  
principles to obtain the micro-topography data, and therefore are sensitive to different surface features, e.g. it  
seemed like the sensor methods had difficulties quantifying roughness when the plot was vegetated, while the 
contact methods were affected by varying soil moisture content. The contact method are, based on experiences in  
this thesis, only recommended to use when no electricity is accessible, since the (un)ease of acquiring data and 
data-processing together with obtainable (low) resolution and accuracy make them very unattractive to work 
with.  While  these  general  considerations  relates  to  interesting  questions  such  as  what  influences  the  soil 
roughness, the applicability of the 3D depth sensor is already proven, since the method did not show deviating 
results and proved to be as useful as both TLS and stereophotogrammetry. All sensor methods have their pros  
and cons and whether one method is preferable over another depends on the purpose of acquiring the data. i.e.  
are resolution and accuracy of greatest importance the TLS might be the best choice, but if also the price and  
mobility in the field are important parameters the 3D depth sensor or the stereophotogrammetry might be better  
options.

For this study the purpose of acquiring the roughness data was to use it as input for the LISEM model, with the 
goal of improving the model performance. A first step to evaluate the performance of the model was to see how 
sensitive the model was to RR input data.  As the results showed the model was very sensitive to the RR input,  
so sensitive that the variations between average values from the various methods caused unrealistic hydrograph 
peak reductions. For instance, the RRTLS was 0.81, while RRXtion was 1.18 (±0.33), which was not statistically 
different from each other, however using RRXtion resulted in a  ~50% reduction of both peak discharge and total 
discharge compared to measured values, while RRTLS yielded only ~3% increase in peak discharge and total 
discharge compared to measured values. It can then be concluded that the accuracy and precision of RR when 
used for LISEM are extremely important, as the model sensitivity is very high. Yet, considering the possible  
range of RR values for the same land use, which was investigated in the first part of the thesis, this suggests that  
the model sensitivity to RR not only is extremely high, but maybe even is too high, as the RR TLS  and RRXtion 

statistically were indifferent. This would imply that either the data or the model needs to be adjusted. As the  
model is now, it would improve the performance if a required precision (in terms of standard deviation) of the  
RR input and a preferred method of acquiring RR data could be determined and stated in the LISEM manual. 
But,  another option is to try to adjust the LISEM model sensitivity to a “realistic” obtainable accuracy and  
precision.  To come back to the second research objective,  it  can be concluded that  the model  performance  
evaluated on hydrographs only, was not improved by using the 3D depth sensor (if improvements are defined as  
how well the hydrographs fit to measured data), on the other hand, based on our data we can not conclude that  
the 3D depth sensor decreased the performance of the model. In fact, it is more informative to conclude that the 
model was too complex to evaluate the performance properly. For further studies it might be useful to test a less 
complex model against LISEM.
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Appendices
Appendix I  R-code for processing point-cloud data

The following is the raw code that was developed to process the 3D point-clouds in R.
Name<-
c("ls01harrow","ls02skog","st5mmGrytelandharrowed","stforest1","stforest2","stforest3","stharrowplot1","stharrowplot2","stharrowplot3","st
harrowplot4","stharrowplot5","stharrowplot6",      
"stplleir1","stplleir2","stplleir3","stplsku1","stplsku2","ststub1","ststub2","ststub3","xforest1","xforest2","xforest3","xharrow1","xharr
ow2","xharrow3","xharrow5","xharrow6","xharrowGryt","xplsku1","xplsku2","xplsku3","xstub1","xstub2","xstub3")
Data<-vector("list", length(Name))
Data[[1]]<-read.table("C:/users/JORTTH/Desktop/line.data/ls01harrow.xyz",header=FALSE,sep = "",dec = ".",col.names=c("x","y","z"))
Data[[2]]<-read.table("C:/users/JORTTH/Desktop/line.data/ls02skog.xyz",header=FALSE,sep = "",dec = ".",col.names=c("x","y","z"))
…#full list of read data are not shown
Data[[34]]<-read.table("C:/users/JORTTH/Desktop/line.data/xstub2.xyz",header=FALSE,sep = "",dec = ".",col.names=c("x","y","z"))
Data[[35]]<-read.table("C:/users/JORTTH/Desktop/line.data/xstub3.xyz",header=FALSE,sep = "",dec = ".",col.names=c("x","y","z"))
pin<-read.table("C:/users/JORTTH/Desktop/line.data/pin_r.csv",header=FALSE,sep = "",dec = ".")
#Data[[1]]
#k<-1
##### laser scaning recentering
for (k in 1:2){   # always 1:2
length(abs(Data[[k]][,2])<0.4)
Data[[k]][1:100,]

max(Data[[k]][,1])
min(Data[[k]][,1])
max(Data[[k]][,2])
min(Data[[k]][,2])

xmax<-max(Data[[k]][,1])
xmin<-min(Data[[k]][,1])
ymax<-max(Data[[k]][,2])
ymin<-min(Data[[k]][,2])

Data[[k]][,1]<-Data[[k]][,1]-mean(c(max(Data[[k]][,1]),min(Data[[k]][,1])))
Data[[k]][,2]<-Data[[k]][,2]-mean(c(max(Data[[k]][,2]),min(Data[[k]][,2])))
}
#######
#Data2<-vector("list", length(Name))
Coo<-matrix(0,11,length(Name))
dimnames(Coo)[[1]]<-
c("a","b","c","R2","mean.raw.subset","Sd.raw.subset","mean.corr.subset","Sd.Corr.subset","n.raw","n.subset","n.subset.corr")
dimnames(Coo)[[2]]<-Name
Elevation<-vector("list", length(Name))   # Elevation compared to the best fit regression plan
Datat<-vector("list", length(Name))       # xyz file after horizontal transformation
Datat_r<-vector("list", length(Name))     # XYZ file after horizontal transformation and out-       

lier elimination
for (k in 1:35){
  Coo[9,k]<-dim(Data[[k]])[1]
  #  k<-23

  if(max(abs(Data[[k]]))>4){Data[[k]]<-Data[[k]]/100} # test if the matrix is in cm and convert it in m 
if necessary 

# take a subset of 0.8mx0.8m to exclude the markers
  Data[[k]]<-Data[[k]][which(abs(Data[[k]][,1])<0.4 & abs(Data[[k]][,2])<0.4),] 
  
  }
#i<-30 #defining the plane based least square error estimation
for (i in 1:35){
 
X<-Data[[i]]$x
Y<-Data[[i]]$y
Z<-Data[[i]]$z

Plane<-nls(Z ~ a*X + b*Y + c , start=list(a=1, b=1, c=1), trace=T)
(RSS.p2 <- sum(residuals(Plane)^2))
(TSS2 <- sum((Z - mean(Z))^2))
R2.2<-1 - (RSS.p2/TSS2)
Coo[1,i]<-summary(Plane)$coefficients[1,1]
Coo[2,i]<-summary(Plane)$coefficients[2,1]
Coo[3,i]<-summary(Plane)$coefficients[3,1]
Coo[4,i]<-round(R2.2,4)
Coo[5,i]<-mean(Z)
Coo[6,i]<-sd(Z)
Plane<-NULL

#calculating the point-to-plane from each z coordinate. Per point-cloud calculating the mean and standard deviation, i.e. the random 
roughness
Elevation[[i]]<- -(Coo[1,i]*X+Coo[2,i]*Y-Z+Coo[3,i])/(Coo[1,i]**2+Coo[2,i]**2+1)**0.5
Coo[7,i]<-mean(Elevation[[i]])
Coo[8,i]<-sd(Elevation[[i]])

i<-30 #filtering out data outside a defined confidence interval
confidence<-3
Datat[[i]]<-cbind(X,Y,Elevation[[i]])
#Datat_r[[i]]<-Datat[[i]][-which(abs(Datat[[i]][,3]-Coo[7,i])>abs(confidence*Coo[8,i])),]
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Datat_r[[i]]<-Datat[[i]][which(abs(Datat[[i]][,3]-Coo[7,i])<abs(confidence*Coo[8,i])),]

Coo[10,i]<-length(Elevation[[i]])
Coo[11,i]<-dim(Datat_r[[i]])[1]
}
###################################################
### 3D scatterplot. Visualizing data
library(rgl)
myColorRamp <- function(colors, values) {
  v <- (values - min(values))/diff(range(values))
  x <- colorRamp(colors)(v)
  rgb(x[,1], x[,2], x[,3], maxColorValue = 255)
}
i<-30

X<-Data[[i]]$x
Y<-Data[[i]]$y
Z<-Data[[i]]$z

cols <- myColorRamp(c("blue", "green","yellow","orange","red"), Z) 
plot3d(X,Y,Z, col=cols, size=3,aspect=c(1,1,0.2),main=Name[i])

cols <- myColorRamp(c("blue", "green","yellow","orange","red"), Datat_r[[i]][,3]) 
plot3d(Datat_r[[i]][,1],Datat_r[[i]][,2],Datat_r[[i]][,3], col=cols, size=3,aspect=c(1,1,0.2), xlab="X", ylab="Y", zlab="Z",main=Name[i])

#### write data to table

write.table(Coo, file = "foo3.csv", sep = ",", col.names = NA)
i<-30
#for (i in 1:35){
  write.table(Datat_r[[i]], file = paste("F",Name[i]), sep = ",", col.names = NA)
}

72



Appendix II  Model input parameters

Model input parameters for the subcatchment Gryteland (table  8.1).  The soil units indicate which areas that 
were assigned a calibration factor (only clay) (figure 8.1) and the land use units indicate which area that were 
assigned a different RR value. The model input parameter for the whole catchment are almost identical (table 
8.2). For Skuterud only the land use units are shown (figure 8.3), each land use units equal a different RR value.

Table 8.1: Model input parameters for sub-catchment Gryteland

Constant model parameters (abbreviation, unit) Forest (5)15 Urban (1)Arable (12) Gully
Saturated hydraulic conductivity (Ks, cm d-1) 86.1 (sand) 

17.55 (clay) 
86.1 86.1 (sand)

17.55 (clay)
-

Chosen adjustment factor for Ks (only clay soil map 
unit, figure 8.1)

3 -

Porosity (ϴs, m3 m-3)?????? INPUT? 0.4 0.4 ?? -
Depth topsoil (-, cm) 25 25 25 -
Initial matric potential (inithead, cm) -50 -50 -50 -
Manning’s n 1,2 2,4 0.4516 -
Soil fraction covered by vegetation (per, -) 0.9 0.9 1 -
Vegetation height, (ch, m) 7 - 0.7 -
Leaf area index (lai, -) 6 - 2.5 -
d50 value of the soil (d50, µm) 50 50 50 -
Cohesion of bare soil (coh, kPa) 500 500 25 -
Additional cohesion by roots (cohadd, kPa) 10 5 1 -
Aggregate stability (aggr, -) 200 200 200 -
Channel cohesion (chancoh, kPa) 15000
Channel Manning’s n (chanman, -) 0.01
Channel width (chanwidt, m) 1
Slope of channel sides (chanside, -) 45

15 A very small area is covered with deciduous trees which for some of the parameters has different values. They are not included in the table. For ch (m) = 
0.2, lai (-) = 1.46
16 Adjusted for calibrating the hydrograph. Originally Manning's n was 0.6 for cultivated fields.
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Figure 8.1: LISEM soil units. Key:  102 = 
forest on clay, 103 = agriculture on clay, 
201 = urban on sand, 202 = forest on sand, 
203 = agriculture on sand.

Figure 8.2: LISEM land units. Key: forest (turquoise), 
agriculture (red), urban (purple) and deciduous forest 
(blue).



Table 8.2: Model input parameters for catchment Skuterud

Constant model parameters (abbreviation, unit) Forest 
(5, 
4)17

Urban 
(1)

Arable 
(12)

Peat 
(16)

Stream

Saturated hydraulic conductivity (Ks, cm d-1)
Chosen adjustment factor for Ks (only clay soil 
map unit)

1.3 1.3

Porosity (ϴs, m3 m-3)
Depth topsoil (-, cm) 25 25 25
Initial matric potential (inithead, cm) -300 -300 -300 -300
Manning’s n 1.2 2.4 0.6 1.2
Soil fraction covered by vegetation (per, -) 0.9 0.9 1 0.9
Vegetation height, (ch, m) 7 0.2 0.7 7
Leaf area index (lai, -) 6 1.46 2.5 4
d50 value of the soil (d50, µm) 50 50 50 50
Cohesion of bare soil (coh, kPa) diff bw 
article/pcr maps

20 30 variable 50

Additional cohesion by roots (cohadd, kPa) 10 5 1 0.01
Aggregate stability (aggr, -) 150 170 25-120 190
Channel cohesion (chancoh, kPa) 15000
Channel Manning’s n (chanman, -) 0.04
Channel width (chanwidt, m) 5
Slope of channel sides (chanside, -) 45

17 Same as footnote 16
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Figure 8.3: Land unit map of the whole Skuterud catchment, each cell is 10m x 
10 m. Unfortunately, the colour key is not equivalent to the one in figure 8.2, 
since the colouring is randomly generated. Here: Forest (blue), deciduous forest  
(dark blue), green (agriculture), urban (purple) and peat (red). Please note that 
the two maps do not have the same scale, thus Gryteland are magnified in figure  
8.2 compared to here.



Roughness input
It is assumed that the RR of the cultivated fields on 04 September 2009 were similar to measured RR from 
harrowed fields. This is based on two arguments: 1) after harvest it is common not to plough the fields but leave  
them idle with stubbles, confirmed by a google earth image from the 05. September 2012 showing stubbles in 
Gryteland (figure 8.4), so there is a high probability that the fields also had stubbles on the same date three years 
earlier.  2) It  is then further assumed that the roughness of a post-cultivated crop field (with stubbles) has a  
similar roughness as a recently harrowed field. It is recognized that the roughness changes over the growing 
season (Cremers et al., 1996), but several counteracting factors are in play. The growth of crop will increase the 
roughness when the seedlings break through the soil, but rain will simultaneously decrease the roughness. Based 
on this it is assumed to be reasonable to apply the roughness for a harrowed surface on a September field. A 
roughness value of 0.81 cm is also in agreement with values from a similar study, reporting roughness values 
from July at harvest of 0.99cm (sugar beet), 1.14 cm (corn) and 0.94cm (winter wheat) (Cremers et al., 1996). It 
is important to emphasize that the land use which in most graphs are named “stubbles” are indicating  direct  
seeding on stubbles, and is as such different from stubbles because the seeding machines have made rills in the 
soil and it has been lightly tilled..
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Figure 8.4 Google earth image showing the Gryteland catchment from the 05 September 2012. The 
stubbles are visible, together with some marks in the catchment which coincide with the depression in 
the landscape.



Appendix III  Chain-pinboard conversion

TLS, stereophotos, Xtion and pinboard all yields elevation data directly, whereas the chain method data has to be  
converted to be compared with the other data. To convert the chain data, first the pinboard and chain data were  
related to each other. The profile length of the pinboard was calculated as the sum of straight length between two 
consecutively pins using Pythagoras sentence. The horizontal distance (x) between two pins is two cm, and  
consequently the distance between two pin-tips will be 2 cm or larger, whereas the straight length between two 
consecutively joints on the chain is 0.6 cm. Thus it is not a perfect approximation to construct the profile length 
from the pinboards to compare with the chain. Based on the calculated profile length and the known straight  
length of the pinboard (1 meter) it was possible to calculate the Cr-index as reported by Saleh (1993) and relate it 
to the Cr-index calculated from the chain. Figure 8.5 shows the correlation between Cr from chain and pinboard. 
A linear regression line shows that it is not a perfect 1:1 relation, with measurements from the pinboard giving a  
higher roughness value than from chain.

Since the R2 value was sufficiently high, although not as high as reported by Jester & Klik (2005),  a regression 
to relate Cr from chain to random roughness (RR) as calculated from the pinboard was made, see figure . To get  
an acceptable fit 3 data points were excluded from the regression, which improved the R2 from 0.55 to 0.82. The 
excluded data points were two measurements from ploughed areas and one from forest. With this conversion  
formula, (regression equation indicated on figure) RR-values from chain measurement were obtained. For the 3 
outliers excluded from the regression, the RR value from pinboard replaced their value.
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Figure 8.5: Scatter plot showing the relation between the Cr index calculated from chain and pinboard measurements 
respectively
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the less than perfect 1:1 relation between the calculated Cr-index from pinboard and chain, figure 8.6 shows that 
the profile length calculated from pinboard data are longer than the profile. This is in accordance with findings  
from Jester & Klik (2005). They suggested that the difference is due to the fact that the pinboard manages to  
capture small gaps between soil aggregates which the chain cannot capture. This is confirmed by observations in  
the field. It was indeed difficult to make the chain fit each single soil aggregate, partly because the chain joints  
became a bit inflexible – especially after some days of fieldwork, where dust settled in the joints, partly because 
the  soil  was  loose or  moist,  making it  impossible  to  make  the chain fit  the  aggregates  accurately  without  
destroying the soil surface. This also seems to be reflected in the regression between RR and Cr. Jester & Klik 
(2005) found a higher correlation coefficient, R2=0.956, n=16, which is better than what our data yielded, even 
after removing outliers, figure  8.6. One important difference is that they only used two surfaces ('rough' and 
'smooth') and compared before and after rain, whereas we in this study looked at 4 difference land uses and did  
not incorporate temporal changes, thus the spread in our data is probably higher.  Jester & Klik (2005) further 
concluded that the smoother the surface the better is the pinboard-chain relation. Thus, an explanation might be 
that the regression between pinboard and chain is dependent on land use type and limited to smooth surfaces,  
while the discrepancies between the methods becomes to high when the surface is rough.

Based on the literature review executed for the background chapter in this thesis, it seems like there are very few  
studies that use the chain to obtain random roughness data with. Further, it is questionable how used the method 
is in general, especially recalling the critics the index received because of the lack of  capabilities to captured  
differences between small and big tillage ridges  (Skidmore, 1994). Based on our fieldwork observations it is 
suggested that the chain method is best suited for relatively smooth, but crusted surfaces which not easily is  
penetrated when the chain is laid out on the surface.  The chain method is included in the subsequent statistical  
test, but not used further on in the model runs, because it basically is a function of the pinboard method.
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Figure 8.6: Regression between profile index Cr from chain measurement and random roughness (stdev of elevations  
) from pinboard measurements
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Appendix IV  All random roughness data
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Point-cloud: 0.8mx0.8m region
number of points

ls
harrow 2134146 0.81 0.81 -

forest 2193589 1.05 1.05 -

69945 0.75 1.18 0.33
Harrow 1 78069 1.29
Harrow 2 74615 1.32
Harrow 3 68958 0.79
Harrow 5 81951 1.36
Harrow 6 83057 1.58

Forest 1 59551 1.30 1.65 0.59
Forest 2 57570 2.33
Forest 3 59260 1.32

71391 2.23 2.84 0.86
94710 2.47
73981 3.83

Stubble1 60636 2.16 2.04 0.57
Stubble2 74078 2.54
Stubble3 68239 1.42

stereo
105109 0.68 1.52 0.70

Harrow 1 7598 2.59
Harrow 2 52705 1.09
Harrow 3 26410 1.11
Harrow 4 11275 2.33
Harrow 5 41560 1.23
Harrow 6 22725 1.60

Forest 1 41340 1.13 0.94 0.24
Forest 2 53080 1.01
Forest 3 168204 0.67

32776 2.39 2.70 0.55
63235 2.06
39510 2.89
36261 2.64
11918 3.51

Stubble1 35676 0.60 0.63 0.03
Stubble2 60598 0.64
Stubble3 172761 0.66

rr (cm) Mean rr per LU stdev

xtion
harrow Gryt

Plough_Gryt1
Plough_Gryt2
Plough_Gryt3

Harrow Gryt

Plough_Leir1
Plough_Leir2
Plough_Leir3
Plough_Gryt1
Plough_Gryt2
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transects with 50 elevation recordings

along
0.94 0.84 1.43 0.59
0.99
0.56
0.86

along
Harrow1 1.87 1.82
Harrow2 1.72
Harrow3 1.53
Harrow4 1.71
Harrow5 1.55
Harrow6 2.55

across
1.55 1.51 1.86 0.38
1.50 (not used)
1.24
1.77

across
Harrow1 2.33 2.09
Harrow2 2.10
Harrow3 2.32
Harrow4 1.60
Harrow5 2.08
Harrow6 2.14

forest
forest1 1.89 1.38 1.38 0.53
forest1 1.97
forest2 0.81
forest2 1.67
forest3 1.02
forest3 0.89

leirsund1 2.49 2.54 2.54 0.39
leirsund2 2.80
leirsund3 2.18
leirsund4 2.11
leirsund5 2.21
leirsund6 2.91
leirsund7 3.07

gryt1 1.90 2.94 2.94 1.71
gryt2 1.62
gryt3 2.08
gryt4 3.34
gryt5 5.76

gryt1 2.77 4.09 4.09 1.21
gryt2 2.77 not used
gryt3 4.84
gryt4 5.02
gryt5 5.07

stubble
stubble1 0.58 1.10 1.10 0.37
stubble2 1.68
stubble3 1.14
stubble4 0.87
stubble5 1.07
stubble6 1.24

pinboard rr (cm) Mean rr (cm) Mean rr per LU stdev

harrow Gryt 1
harrow Gryt 2
harrow Gryt 3
harrow Gryt 4

harrow Gryt 1
harrow Gryt 2
harrow Gryt 3
harrow Gryt 4

plough  no direction

Plough along

Plough across
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chain length=100.5 cm f(x)=0.066x + 0.802
chain measured length (cm)

along 1 2 3 4 average Cr index
91 91 9.5 1.4 1.63 0.21

94.5 94.5 6.0 1.2
91.5 91.5 9.0 1.4

94 94 6.5 1.2

harrow 91 85 91.5 89.2 11.3 1.5
harrow 85 80 93.5 86.2 14.3 1.7
harrow 87 84 91.5 87.5 12.9 1.7
harrow 85.5 80 79 81.5 18.9 2.0
harrow 89.5 87.5 74.5 83.8 16.6 1.9
harrow 85 81 73 79.7 20.7 2.2

across
87 86.5 86 84.5 86 14.4 1.8 1.90 0.23

not used
harrow 86 86 87 86.3 14.1 1.7
harrow 88 74 88.5 83.5 16.9 1.9
harrow 82 88 94 88.0 12.4 1.6
harrow 76 86 73 78.3 22.1 2.3
harrow 85 83 85 84.3 16.1 1.9
harrow 80.5 87 73 80.2 20.2 2.1

forest
forest1 95.5 97 96 96.2 4.3 1.1 1.07 0.03
forest2 96 95.5 97 96.2 4.3 1.1
forest3 96 94 98 96.0 4.5 1.1
forest4 96.5 94.5 98 96.3 4.1 1.1
forest5 98 96 97 97.0 3.5 1.0
forest6 95 98 98 97.0 3.5 1.0

leirsund1 85 67.5 80 77.5 22.9 2.3 2.23 0.34
leirsund2 79 75.5 76 76.8 23.5 2.4
leirsund3 66 78.5 63.5 69.3 31.0 2.8
leirsund4 79.5 74 72 75.2 25.2 2.5
leirsund5 76.5 78 75 76.5 23.9 2.4
leirsund6 73.5 76 84 77.8 22.6 2.3
leirsund7 73 73.0 27.4 2.6
leirsund8 67.5 67.5 12.8 1.6

gryt1 83 83 65 77.0 10.6 1.5
gryt2 83 79.5 76 79.5 16.4 1.9
gryt3 80 82 61 74.3 26.0 2.5
gryt4 70 70.0 30.3 2.8

gryt1 84 93 86 87.7 12.8 1.6 1.59 0.18
gryt2 92.5 91 86 89.8 10.6 1.5 not used
gryt3 85 89 78 84.0 16.4 1.9
gryt4 90 90.0 10.4 1.5
gryt5 91 91.0 9.5 1.4

Stubble
stubble1 94 94 94 94.0 6.5 1.2 1.24 0.10
stubble2 90 89 94.5 91.2 9.3 1.4
stubble3 92.5 94 94 93.5 7.0 1.3
stubble4 97 93.5 94 94.8 5.6 1.2
stubble5 98 97 91.5 95.5 5.0 1.1
stubble6 94 93 94 93.7 6.8 1.3

R2= 0.62
converted to 

rr (cm)
Mean rr per 

LU stdev
harrow Gryt.
harrow Gryt.
harrow Gryt.
harrow Gryt.

harrow Gryt.

plough no direction

Plough along

Plough across



Appendix V  Results of statistical analysis

Comparison of methods. Analysis of variance. 

One way Analysis of Variance test for difference between methods, analyzed separated for each land use type.  First tests for 
normality and equal variance are executed, if it fails ANOVA on ranks are executed.

FOREST
Normality Test (Shapiro-Wilk) Passed (P = 0,411)

Equal Variance Test: Failed (P < 0,050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Forest
Group N Median 25% 75%   
Xtion 3 1,323 1,298 2,327
Stereo 3 1,010 0,668 1,130
Pinboard 6 1,345 0,870 1,910
Chain 6 1,081 1,032 1,089

H = 4,958 with 3 degrees of freedom.  (P = 0,175)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference    (P = 0,175)

 
HARROW
Normality Test (Shapiro-Wilk) Passed (P = 0,262)

Equal Variance Test: Passed (P = 0,179)

Harrow
Group N Mean Std Dev SEM  
Xtion 6 1,182 0,333 0,136
Stereo 7 1,521 0,702 0,265
Pinboard 10 1,427 0,591 0,187
Chain 10 1,631 0,334 0,106

Source of Variation DF SS MS F P
Between Groups 3 0,791 0,264 0,999 0,407
Residual 29 7,658 0,264
Total 32 8,449

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference  (P = 0,407).

Power of performed test with alpha = 0,050: 0,049

The power of the performed test (0,049) is below the desired power of 0,800.
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
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should be interpreted cautiously.

PLOUGH
Normality Test (Shapiro-Wilk) Failed (P < 0,050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Plough
Group N Median 25% 75%   
Xtion 3 2,471 2,233 3,830
Stereo 5 2,639 2,222 3,200
Pinboard 12 2,351 2,086 3,027
Chain 10 2,334 1,825 2,501

H = 2,782 with 3 degrees of freedom.  (P = 0,427)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference    (P = 0,427)

STUBBLE
Normality Test (Shapiro-Wilk) Passed (P = 0,071)

Equal Variance Test: Failed (P < 0,050)

Stubble
Group N Median 25% 75%   
Xtion 3 2,156 1,417 2,541
Stereo 3 0,640 0,596 0,657
Pinboard 6 1,105 0,796 1,346
Chain 6 1,240 1,163 1,300

H = 10,813 with 3 degrees of freedom.  (P = 0,013)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a 
statistically significant difference  (P = 0,013)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

All Pairwise Multiple Comparison Procedures (Dunn's Method) :

Comparison Diff of Ranks Q P < 0.05

xtion-s vs stereo-s 13,667 3,135 Yes

xtion-s vs pinboard-s 8,833 2,340 No

xtion-s vs chain-s 5,833 1,545 Do Not Test

chain-s vs stereo-s 7,833 2,075 No

chain-s vs pinboard-s 3,000 0,973 Do Not Test

pinboard-s vs stereo-s 4,833 1,280 Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.
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1. Comparison of land uses. Analysis of variance. 

XTION
Normality Test (Shapiro-Wilk) Passed (P = 0,243)
Equal Variance Test: Passed (P = 0,454)

Xtion
Group N Mean Std Dev SEM   
Forest 3 1,650 0,589 0,340
Harrow 6 1,182 0,335 0,137
Plough 3 2,843 0,863 0,498
Stubble 3 2,040 0,570 0,329

Source of Variation DF SS MS F P
Between Groups 3 5,794 1,931 6,261 0,010
Residual 11 3,393 0,308
Total 14 9,186

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a 
statistically significant difference  (P = 0,010).

Power of performed test with alpha = 0,050: 0,808

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):
Overall significance level = 0,05

Comparison Diff of Means t Unadjuste
d P

Critica
l Level

Significant

plough-x vs. harrow-x 1,662 4,23
1

0,001 0,009 Yes

plough-x vs. forest-x 1,193 2,63
2

0,023 0,010 No

stubble-x vs. harrow-x 0,858 2,18
6

0,051 0,013 No

plough-x vs. stubble-x 0,803 1,77
2

0,104 0,017 No

forest-x vs. harrow-x 0,468 1,19
3

0,258 0,025 No

stubble-x vs. forest-x 0,390 0,86
0

0,408 0,050 No
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STEREO
Normality Test (Shapiro-Wilk) Passed (P = 0,263)

Equal Variance Test: Passed (P = 0,347)

Stereo
Group N Mean Std Dev SEM   
Forest 3 0,937 0,239 0,138
Harrow 7 1,519 0,701 0,265
Plough 5 2,698 0,548 0,245
Stubble 3 0,633 0,0306 0,0176

Source of Variation DF SS MS F P
Between Groups 3 10,198 3,399 11,152 <0,001
Residual 14 4,267 0,305
Total 17 14,465

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a 
statistically significant difference  (P = <0,001).

Power of performed test with alpha = 0,050: 0,990

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):
Overall significance level = 0,05

Comparison Diff of Means t Unadjuste
d P

Critica
l Level

Significant

plough-s vs. stubble-s 2,065 5,121 <0,001 0,009 Yes

plough-s vs. forest-s 1,761 4,368 <0,001 0,010 Yes

plough-s vs. harrow-s 1,179 3,648 0,003 0,013 Yes

harrow-s vs. stubble-s 0,885 2,324 0,036 0,017 No

harrow-s vs. forest-s 0,582 1,527 0,149 0,025 No

forest-s vs. stubble-s 0,303 0,673 0,512 0,050 No
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PINBOARD
Normality Test (Shapiro-Wilk) Failed (P < 0,050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Pinboard
Group N Median 25% 75%   
Forest 6 1,345 0,870 1,910
Harrow 10 1,540 0,920 1,757
Plough 12 2,350 2,087 3,030
Stubble 6 1,105 0,797 1,350

H = 18,380 with 3 degrees of freedom.  (P = <0,001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a 
statistically significant difference  (P = <0,001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

All Pairwise Multiple Comparison Procedures (Dunn's Method) :
Comparison Diff of Ranks Q P < 0.05

plough-p vs stubble-p 17,750 3,565 Yes

plough-p vs forest-p 14,250 2,862 Yes

plough-p vs harrow-p 13,950 3,272 Yes

harrow-p vs stubble-p 3,800 0,739 No

harrow-p vs forest-p 0,300 0,058
3

Do Not 
Test

forest-p vs stubble-p 3,500 0,609 Do Not 
Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.
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CHAIN
Normality Test (Shapiro-Wilk) Passed (P = 0,324)

Equal Variance Test: Failed (P < 0,050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Chain
Group N Median 25% 75%   
Forest 6 1,085 1,030 1,093
Harrow 10 1,605 1,350 1,937
Plough 10 2,335 1,828 2,505
Stubble 6 1,240 1,160 1,298

H = 24,407 with 3 degrees of freedom.  (P = <0,001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a 
statistically significant difference  (P = <0,001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

All Pairwise Multiple Comparison Procedures (Dunn's Method) :
Comparison Diff of Ranks Q P < 0.05

plough-c vs forest-c 22,600 4,665 Yes

plough-c vs stubble-c 15,183 3,134 Yes

plough-c vs harrow-c 8,050 1,919 No

harrow-c vs forest-c 14,550 3,004 Yes

harrow-c vs stubble-c 7,133 1,473 No

stubble-c vs forest-c 7,417 1,369 No

Note: The multiple comparisons on ranks do not include an adjustment for ties.
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Appendix VI  Model version differences

Initially  the  rain event  04.09.2009 was calibrated using LISEMv2.54.  Ksat  was multiplied with 3,  and the  
Manning’s N for cultivated fields set to 0.45. See figure 8.7.

Figure 8.7: Calibration of rain event 04.09.2009. The various hydrographs indicate model runs with different Ksat 
multiplication factors and the chosen Manning’s N. The thicker black line, indicates the model that fit the measured 
hydrograph best

With the chosen calibration factors the same rain event was modelled using openLISEM v1.34. A sensitivity  
analysis of the RR input data was executed. The model was run with the measured RR input values (obtained 
with a Terrestrial Laser Scanner (TLS)), afterwards RR input was increased and decreased 20 and 40%. As figure 
8.8 shows this version of LISEM does not respond in the same way to the rain event as the former model  
version. All the hydrographs are following the same shape that is why only the blue line is visible. Figure 8.9 
shows  some  other  model  runs  trying  to  adjust  Ksat  and  Manning’s  N to  make  the  simulated  data  fit  the 
measured.
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Figure 8.8: Model run using the openLISEM v1.34 and the same calibration factors as mentioned in the text above

Figure 8.9: Model runs using openLISEM v1.34 and readjusting Ksat and Manning’s N
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