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Abstract 

The present work was conducted in the core zone of the Sumava Mountains National Park in 

the Czech Republic. Two field campaigns were performed to obtain the required field 

measurements of a Norway spruce (Picea abies (L.) Karst.) forest stand. This data was used to 

simulate hyperspectral images of high spatial resolution (0.90 m.) and to evaluate three different 

methods to retrieve the chlorophyll content of the Norway spruce crowns. The tested approaches 

were: (a) scaling-up method using a merit function, (b) scaling-up methods using the neural 

networks, and (c) scaling-up method of the vegetation optical indices. These methods were 

evaluated and compared in frame of three different scenarios of varying conditions, being: (1) a 

“clean” scene without any disturbing factors, (2) a scene with 20% of the additional spectral 

information of lichens (Pseudovernia sp.) at the crown level and (3) a scene with 20% presence of 

lichens within the crown and the addition of noise computed in accordance with the signal to 

noise ratio equal to 5. To simulate these scenarios the discrete anisotropic radiative transfer model 

(DART) was used to generate the input hyperspectral data for the sensitivity study concerning the 

chlorophyll content retrievals. The obtained results showed that the overall performance of the 

scaling-up method using neural networks (cascade propagation generated from BRDF database 

containing an error of +/- 5%) was the most accurate method. The predicting capabilities of this 

neural network approach were: scenario 1 (r2= 0.51 and RMSE = 13.97 µg/cm2), scenario 2 (r2= 

0.70 and RMSE = 11.69 µg/cm2) and scenario 3 (r2= 0.52 and RMSE = 15.99 µg/cm2). In the case 

of scenario 1 the best performance was obtained from the scaling-up method using the optical 

index TCARI/OSAVI (r2= 0.63 and RMSE = 12.84 µg/cm2), but when one outlier from the 

sample values was removed the RMSE of the neural network decreased to 9.54 µg/cm2 which 

was the lowest obtained value. It is necessary to note that these results need further testing, 

because they were carried out using only 13 sample trees, and the comparison of the methods was 

accomplished only with a nadir hyperspectral image simulated by the DART model. 
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1. Introduction 

Norway spruce (Picea abies (L.) Karst.) is one of the most important tree species in Europe. It 

grows in the north, central and east Europe outside permafrost areas, south to north Greece and 

west of the Massif Central, France; south of 47° N latitude only in mountains above 400-500 m 

and ascends to 2200 m in the Balkans. This fast growing species can be identified by a dark green 

crown with drooping branches and a triangular shape. It is often used for timber production 

(Frankis, 1999).  

In recent years a lot of research has been conducted to determine the causes of spruce forest 

decline in Europe (Ulrich, 1984). One of the essential bio-indicators of this process is the amount 

of chlorophyll a and b that is controlled by the tree physiological processes. This bio-indicator 

should be surveyed at different dates and spatial scales to understand the functioning of forest 

ecosystems (Demarez and Gastellu-Etchegorry, 2000). Stress of the vegetation decreases the total 

chlorophyll content causing a change in the proportion of light-absorbing pigments. This allows 

remote sensing methods, especially in combination with hyperspectral sensors, to identify 

vegetation stress and classify it by means of the drop of chlorophyll content (Zarco-Tejada, 

2001). Hyperspectral sensors are instruments that acquire images in many, narrow and continuous 

spectral bands. These systems can discriminate among earth surfaces features that have specific 

diagnostic absorption and reflection characteristics over narrow wavelength intervals such is the 

case of monitoring the chlorophyll content (Lillesand and Kieffer, 2000). 

Extraction of the biochemical information from remote sensing image data has been the 

purpose of many studies (Haboudane et al., 2002). Most of them rely on empirical or semi-

empirical approaches that derive statistical regression equations to estimate the biochemical 

content of a forest canopy based on their spectral reflectance (Gastellu-Etchegorry et al., 1996; 

Johnson et al., 1994). An important role, in retrieval of the quantitative parameters from remote 

sensing image data plays the canopy radiative transfer models. These models are able to relate 

biochemical and biophysical properties of vegetation to bidirectional reflectance distribution 

function (BRDF) measurements. This is a key element to the correct interpretation of remote 

sensing images of terrestrial surfaces (Garcia-Haro and Sommer, 2001).  

This study evaluated three different methods to retrieve chlorophyll content in Norway spruce 

crowns: (1) Scaling-up method a using merit function, (2) scaling-up methods using the neural 

networks (Combal, 2002), and (3) scaling-up method of the vegetation optical indices (Zarco-

Tejada, 2001). To compare the performance of the methods, all of them were evaluated under 
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different scenarios of varying conditions of interest. The ideal situation would be to gather 

hyperspectral images where only the biophysical parameter of interest varies while all the other 

parameters remain constant. This option is difficult to reach in reality, but the canopy reflectance 

models constitute a unique and powerful alternative (Bruniquel-Pinel and Gastellu-Etchegorry, 

1998). Therefore, the DART model simulated the input hyperspectral data for our sensitivity 

studies about chlorophyll content retrieval.  

The discrete anisotropic radiative transfer (DART) model is capable of simulating radiative 

transfer within 3-D scenes that may include any spatial distribution of trees, soil, water and grass. 

The Scenes are divided into rectangular elementary cells. Each cell can represent any landscape 

element (soil, trunk, leaf, grass and others) with specific optical (reflectance, transmittance and 

phase function) and structural (leaf density) characteristics. All grass and leaf cells are supposed 

to be made of a homogenously distributed medium. Phase functions of surface (soil, water and 

trunk cells) and volume (grass and leaf cells) mechanisms can come from field measurements. 

The space of propagation directions is discretized into contiguous sectors, according to the so-

called discrete ordinate theory. Topography, hot spot and multiple interactions (scattering and 

attenuation) with elementary cells are modeled (Gastellu-Etchegorry et al., 1996).  

1.1. Research objective 

The main objective is to contribute to the estimation of stress biochemical indicators of 

Norway spruce crowns by generating knowledge on the best performing methodology to 

determine their chlorophyll content from remote sensing hyperspectral images. 

1.2. Research question 

Which is the best performing method to retrieve chlorophyll content in Norway spruce 

crowns from high spatial resolution hyperspectral data? 

1.2.1. Sub-research questions 

• What is the accuracy to estimate chlorophyll (Cha+b) content for Norway spruce crowns by 

the selected methods?  

• Are the methods capable of estimating slight changes in the Cha+b content (<15µg/cm2)? 

• What is the effect of lichen thalluses covering the crowns in the estimation of Cha+b content 

by the methods? 

• What is the effect of artificially generated noise in the prediction of Cha+b content by the 

methods? 
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1.3. Set-up of the report 

Chapter 1 makes a brief description of the research problem and gives the general 

methodology on what has been done in the present work. The research questions and research 

objectives are also stated. 

 In chapter 2 a literature review is conducted in order to have an understanding of the 

different radiative transfer models currently available for scientific purposes. The chapter presents 

a detailed description on how the DART and the PROSPECT models work their assumptions and 

also their performance. An important input for the DART is the estimation of leaf area index 

(LAI), which is one of the driving forces to obtain an accurate BRDF simulation. The 

methodology about how to measure leaf area index in the field is explained there. This section 

also describes the three methods that were applied to retrieve the content of chlorophyll pigments 

from the canopies of Norway spruce stands.  

Chapter 3 describes the methodology used in the present work. The study was conducted at 

the Sumava National Park (Czech Republic). At this place Norway spruce trees of two categories 

of chronic multiple stress reaction (resilient-RN and resistant-RT) were selected, and their optical, 

biochemical, and bio-physical parameters were measured. This information was used as an input 

for the DART model to simulate a forest stand and consequently three different scenarios of 

varying conditions of interest were simulated. The chlorophyll content of the trees was estimated 

by means of three methods, scaling-up of optical indices, merit function and neural networks. 

The results and related discussion are presented in chapter 4. The changes made to the 

physical parameters of the trees to fit the DART model are explained and, the simulated 

hyperspectral images are represented; a brief study on the performance of DART is also carried 

out. A comparison at the needle level was performed to determine which of the methods performs 

better without the effect of the tree structure. The final analyses were made at the level of the 

canopy to determine the best performing retrieval method. 

The conclusions and recommendations are presented in chapter 5. Here the research objective 

and research questions are answered in order to determine the best performing method to retrieve 

the content of chlorophyll from a simulated forest stand.  
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2. Literature overview  

2.1. Radiative Transfer Models 

The current development of satellite technology and airborne sensors provides improved 

spatial and spectral resolution of remote sensing data. This data requires careful interpretation that 

can be done with the aid of reflectance models that describe the complex process of radiative 

transfer within the vegetation leaf and canopy respectively. A radiative transfer (RT) model 

should describe the interaction of light with an entity: the reflectance, absorption and scattering. 

The RT models consist of an abstract and simplified version of reality and they should not rely 

excessively on unstable mathematical hypothesis (Jacquemoud et al., 2000). A number of canopy 

bi-directional reflectance models of different complexity have been developed in the past 

decades. They include simulation models with radiosity and Monte Carlo techniques, geometric 

models, three-dimensional photon transport models and turbid models among others (Garcia-

Haro and Sommer, 2001). Some of them will be discussed in the following sections. It’s worth 

mentioning that the present work only used PROSPECT and DART. The purpose of describing 

the other methods was to give an overview on how they work and on their performance.     

2.1.1. PROSPECT model 

The PROSPECT model simulates leaf spectral hemispherical reflectance and transmittance 

from 400 to 2500 nm as a function of leaf structural parameters and leaf biochemical components 

such as chlorophyll. Scattering is described by a specific refractive index (n) and a parameter 

characterizing the leaf mesophyll structure (N). Absorption is modeled using pigment 

concentration (Ch ), water content (C ) and the corresponding specific spectral absorption 

coefficients (Ka+b and Kw). With the 3.01 version of the PROSPECT model it is possible to 

reconstruct, with reasonable accuracy, the leaf hemispherical reflectance and transmittance by 

adjusting four input variables: 

a+b w

N, Ch , C , and dry matter content (C ). The advantage of such 

parameterization may be useful when using models that require leaf optical properties as input 

parameters to model BRDF at a higher level 

a+b w m

(Jacquemoud and Baret, 1990).  

The simplicity of this model makes it a suitable tool to elucidate the physical and 

physiological processes controlling the leaf spectral characteristics. However, some of the 

assumptions limit the accuracy of the model. For example, the model assumes that there is a 

uniform distribution of water, pigments and structure inside the leaf. Another assumption is that, 

the angle representing the surface roughness is constant, which is not the case (Jacquemoud and 

Baret, 1990). 

 4



2.1.2. Scattering by Arbitrarily Inclined Leaves (SAIL) model 

The SAIL model is a 1D turbid medium radiative transfer model for reflectance prediction of 

a homogeneous vegetation canopy. The SAIL model assumes that leaf azimuth angle exhibits a 

random distribution. This assumption is reasonable since only a few plant species have been 

reported to show definite heliotropic behavior. The only parameters describing the morphology of 

a canopy layer are the leaf area index, leaf inclination density function and the layer thickness. 

The model allows to vary the solar zenith angle, LAI and the leaf optical properties of the 

vegetation in a number of separate wavebands, as well as the reflectance of the soil substrate and 

the proportion of sky radiance in these bands (Verhoef, 1984). 

2.1.3. GeoSail model 

The GeoSail model combines a geometric model that calculates the amount of shadowed and 

illuminated components in a scene with a turbid medium model that calculates the reflectance and 

transmittance of the canopy. This model combines the SAIL model (Verhoef, 1984) with the 

Jasinski geometric model (Jasinski, 1990). The SAIL model provides the within-canopy radiative 

transfer calculations and Jasinski’s model combines the SAIL results into a scene reflectance. It is 

designed to use canopy components such as: optical properties, canopy shape, solar zenith angle 

and canopy cover. This is done to calculate scene reflectance and the fraction of absorbed or 

intercepted photo-synthetically activity radiation for e.g. forest stands. GeoSail is based on 

several assumptions like: all trees have the same shape and size, trees do not shadow each other 

and the crowns do not overlap each other. The illuminated canopy, illuminated background and 

the tree shadows each have a single reflectance. The model is limited to nadir views (Huemmrich, 

2001).  

2.1.4. Parcinopy model 

The Parcinopy, is a 3-D radiative transfer model that uses a Monte Carlo ray tracing method 

to compute the BRDF of vegetation. Photons are thrown from the sun direction. When a photon 

hits the vegetation or the soil, it can be absorbed, reflected towards another direction for further 

interactions with the canopy or it can be reflected outside the canopy to contribute to the canopy 

bi-directional reflectance. About three million rays might be thrown to compute the BRDF’s of a 

given scene. This results in a relative accuracy of 2.5 - 3.0 %. The model requires the canopy 

architecture to be represented with an ensemble of triangles. Leaves and soil are assumed to be 

lambertian surfaces (Chelle, 1997). 
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2.1.5. K-K model 

The K-K model is a 3D-leaf canopy transport model that takes into account the architecture 

of covers. The scene is divided into a rectangular cell matrix and radiation transport is simulated 

with the discrete ordinate method. The source vector is restricted to propagate in a finite number 

of directions. The most important drawback of this model is the fact that multiple scattering 

processes occurring within neighboring cells are neglected. The propagation of cell scattering 

radiation is always simulated from the center of the cell, causing important errors whenever cells 

do not have infinitesimal optical depth. Another limitation arises from the hypothesis that discrete 

directions are equally spaced, which provides far from optimal accuracy (Kimes and Kirchner, 

1982.). 

2.1.6. Discrete Anisotropic Radiative Transfer (DART) model 

The DART is a 3-D radiative transfer model, based on the discrete ordinance method and on 

an iterative approach. The approach used by DART is comparable with the K-K model. The 

scene is represented as a rectangular solid medium of adjacent cells forming a matrix. The 3-D 

radiation regime and the BRDF of 3-D canopies are realistically simulated by considering 

topography, major physical mechanisms (hot spot), leaf optical properties and four types of 

scattering. The following section will describe the basic principles of the DART model published 

by Gastellu-Etchegorry et al. (1996). 

A matrix of cells forming a 3-D scene represents a landscape in the DART model. The cells 

are not required to have equal dimensions and they are identified with the x, y and z coordinates 

at their center point. Cells are used for simulating different types of scene elements, classified as 

opaque or solid cells (soil and water) and semi-opaque or turbid cells (trunk, leaf and grass).  

Each of them requires a specific optical and structural characteristic such as leaf area index, leaf 

angle distribution, reflectance and transmittance functions. DART cells are simulated as turbid 

medium with volume interaction mechanisms or solid media with surface and possibly volume 

interaction mechanisms. 

The model processes the interactions of each individual source vector with all encountered 

cells as it propagates down and up in the scene. During their propagation source vectors meet 

individual cells. Interaction mechanisms depend on the cell type. Source vectors are transmitted 

through gaps, totally intercepted by opaque cells or partly intercepted and transmitted by semi-

opaque cells. Radiation intercepted by a cell gives rise to scattering and absorption mechanisms. 

Thus, each cell where scattering mechanisms take place becomes a secondary source. 
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In a first iteration all direct solar source vectors are processed. They give rise to secondary 

source vectors in all illuminated cells that are characterized by non-nil scattering phase functions. 

A solar source vector is processed until it reaches a zero threshold value or encounters a medium 

where it is totally absorbed and scattered. In a second iteration all source vectors that originate 

from all secondary sources, and the atmospheric source vectors, are processed. Iterations are 

systematically conducted for all sources and for all directions. Processing goes on until source 

vectors escape from the canopy or reach a zero threshold level of flux within the scene.  

Once all source vectors have been processed, directional reflectance factors of all upper cells 

are computed. In a subsequent step the BRDF of each upper cell is resampled in a cylindrical 

coordinate system for obtaining a cylindrical representation of a hyperspectral image. Depending 

on the choice of the operator, different types of results can be obtained. For example, if the 

position, viewing direction and instantaneous field of view of an airborne sensor is known, the 

DART model can simulate the remote acquisition of spectral images of a specific scene (Gastellu-

Etchegorry et al., 1996). 

2.1.6.1 Improvements of DART 

The DART 1996 version was validated in the framework of the RAMI (Radiation transfer 

Model Inter-comparison) project (Pinty et al., 2001). The experiment consisted in the comparison 

of four 3-D reflectance models: Flight (North, 1996), Sprint (Thompsson and Goel, 1998), 

Raytran (Govaerts and Verstraete, 1998) and DART (Gastellu-Etchegorry et al., 1996). Only 

BRDFs could be compared because DART is the only 3-D model able to simulate images. 

This evaluative work was conducted with a simple landscape: trees on a flat soil. DART was 

found to be very close to the other models in the visible spectral domain, but difference appeared 

in the near infrared domain for most view angels. The maximal difference was 11% with a sun 

zenith angle of θs = 50o. This difference between DART and the other models led to a deep 

analysis of the approximation DART uses. Three major approximations were stressed out: 

1) The location of the middle point (Ms) used to compute scattered radiation is inaccurate 

2) The incident radiation that gives rise to multiple scattered radiation is not isotropic 

3) The location of points from which scattered radiation propagates is inaccurate. 

These 3 major approximations were improved with the aim not to increase computational 

time. To asses how these changes improved the results, DART simulations were compared to 

simulations of the reflectance models used in the RAMI experiment. In the near infrared, the 

spectral domain in which DART differed the most with the other models, the changes decreased 

 7



the difference by a factor of three. The maximal difference decreased from 11.1% to 3.2% for  

θs = 50 . It was shown that the new changes, introduced into DART, improved significantly its 

accuracy without increasing the time of computation (Gastellu-Etchegorry et al., 2004).

o

2.2.  Methods to estimate Chlorophylla+b content in vegetation canopies   

Over recent years, expanding research has been conducted to understand the relation between 

vegetation optical properties and photosynthetic pigment concentration. From the optical point of 

view, these pigments have a different spectral behavior, with specific absorption features at 

different wavelengths. The spectral regions that are identified as the most suitable to study 

chlorophyll are those around 680 nm, corresponding to the absorption peak of Ch  and the region 

around 550 nm that corresponds to the minimum chlorophyll absorption in the visible spectral 

domain (Haboudane et al., 2002)

a

.  

The leaf chlorophyll content, low in stressed vegetation, is changing the proportion of light-

absorbing pigments. The difference in reflectance between healthy and stressed vegetation due to 

changes in pigment levels allows the use of remote detections to identify mainly acute vegetation 

stress by means of mapping it throughout the chlorophyll concentration decline. This relationship 

is primary through reflectance ratio indices, spectral derivatives and spectral position, particularly 

in the red edge spectral region. At the leaf level, there has been an emphasis on the identification 

of optical indices for pigment correlation, bio-indicators and leaf status or vigor. Such 

relationships have been explored at the canopy level through data from field spectrometers and 

airborne imaging spectrometers, as well as documenting and exploring the potential confounding 

effects of canopy structure variables, such as leaf area index (Zarco Tejada et al., 2004). The 

successful application of leaf-level optical indices by remote sensing requires the progressive 

development of a link between leaf and canopy optical properties. To establish this relationship, 

four methodologies have been used: 

1) The first method correlated directly the canopy reflectance, measured by remote sensing, with 

ground-measured pigment concentrations. No leaf reflectance was measured and the link 

between canopy reflectance and biochemical content was found through statistical 

relationships. Although significant correlation can be found, no predictive capabilities could 

be inferred to other study sites since the locally derived relationships are affected by species 

type and canopy structures (Johnson et al., 1994). 

2) The second method used statistically derived leaf-level relationships applied to canopy 

reflectance for pigment estimation. This method was site and species specific and therefore 

required a specific calibration for canopy level applicability, which is a function of the 
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canopy structure and viewing geometry at the time of the remote sensing data acquisition. 

The reason for this is the difference between the two media: one is where the relationship was 

derived (leaf) and the other one is where it was applied for the chlorophyll estimations (forest 

canopy) (Gitelson and Merzlyak, 1997).  

3) The third method uses the relationship between the leaf biochemical content and the canopy 

reflectance. The relation is derived by scaling up optical indices through the canopy 

reflectance models. An advantage of this method is the use of canopy reflectance models as 

part of the calculation, avoiding the post-calibration step to compensate for canopy structure 

or viewing geometry. Therefore, a scaled-up leaf-level statistical relationship can be used 

directly for bio-indicator predictions on measured canopy reflectance data (Zarco-Tejada, 

2001). 

4) The fourth method uses the inversion of a canopy reflectance model coupled with a leaf 

model. In this approach a leaf radiative transfer model uses leaf biochemical components as 

input to model leaf reflectance and transmittance. This information is used as an input for the 

canopy reflectance model. The main advantage of this approach is that no leaf sample 

collection is needed to derive the relationships, but it suffers from the constraint that only the 

biophysical parameters considered as the leaf-level model inputs can be estimated from 

measured canopy reflectance (Demarez and Gastellu-Etchegorry, 2000).  

2.2.1. Empirical scaling-up method of the vegetation optical indices 

The scaling-up methodology is a relationship between leaf biochemical content and canopy 

reflectance derived by scaling up optical indices through canopy radiative transfer (RT) models. 

The objective is to derive an algorithm to predict a statistical correlation between sensor 

reflectance and ground measurements (Zarco-Tejada, 2001) as described in point 3 of section 2.2. 

Leaf optical properties (hemispherical transmittance and reflectance) are measured from field 

data sampling. This information is used to simulate canopy reflectance using a canopy RT model 

(e.g. DART). Specific derived and/or assumed input parameters resemble the canopy structure, 

and the angular geometry is defined by the solar zenith, solar azimuth and viewing angles. The 

canopy spectral bidirectional reflectance factor, simulated through the RT model is used to 

calculate specific optical indices. For a given optical index a set of optical properties, calculated 

from the leaf-level spectral measurements, will be used to simulate the canopy BRDF. Leaf bio-

indicators measured in each leaf sample (e.g. chlorophyll content) are related to the optical 

indices calculated from the above canopy-simulated spectra. Therefore, the relationship between 
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a given bio-indicator and a given optical index is calculated from simulated canopy reflectance 

rather than from leaf-level measurements. 

2.2.2. Scaling-up method using merit functions or neural networks 

Radiative transfer models describing the relationship between canopy characteristics and the 

bi-directional reflectance can be used in the inverse mode to estimate canopy biophysical and 

biochemical variables. The look-up table method is based on generation of an output table for a 

discrete set of input parameters covering the expected range of parameters. This approach 

consists of adjusting the values of input canopy biophysical and biochemical variables V such 

that the BRDF simulated with the radiative transfer model M matches the best BRDF measured 

by the sensor R. The model M requires a set of nvar input variables and the corresponding 

measurement configuration C (sun illumination direction, the observation angles and 

wavelengths) (Combal, 2002). Then  

R = M (V,C) + ε                             (1) 

where ε is the uncertainty counting for both measurement and model uncertainties. It represents 

the adequacy between the model and the measurements. The simplest way to solve Eq. 1 is to 

compute and store the graph of the function M (V, C). This look-up table (LUT), containing pre-

computed reflectance values, is searched in order to find out the reflectance that most resembles 

the measured reflectance (Gastellu-Etchegorry et al., 2003). Iterative optimization is the classical 

technique for inverting radiative transfer models in remote sensing and consists of minimizing a 

merit function that calculates for instance the root mean square error (RMSE) between the 

measured and estimated quantities by successive input parameter iteration. Another way how to 

relate a set of input variables to a set of output variables are the neural networks (NN) composed 

by two major phases: (a) learning process, and (b) application of the created NN. These 

nonphysical methods have been shown to be efficient in inversion of canopy models (Combal, 

2002). 

2.3. Determination of leaf area index in the field 

Leaves are the active interface of energy, carbon and water exchanges between forest 

canopies and the atmosphere. The leaf component of a canopy may be quantified by its structural 

attributes as leaf area index (LAI). LAI is defined by the one side leaf area per unit of ground 

area. This important parameter regulates a number of eco-physiological processes, such as for 

instance evapotranspiration and photosynthesis (Cutini et al., 1997). Direct measurements of 

canopy structure are tedious and labor intensive; therefore indirect procedures have been 
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developed. Indirect techniques are based on the close coupling of radiation penetration and 

structure of the canopy. This theory can be explained as follows: 

On a sunny day, the ground beneath a large shaded tree provides an instructive place to 

contemplate radiative transfer through the canopy. The seemingly uniform shade on the ground is 

interrupted by sun-flecks. These sun-flecks provide a powerful tool for indirect canopy structure 

measurements, or better to say the gaps in the canopy that cause the sun-flecks. The gap fraction 

of a canopy is the fraction of view that is unobstructed by canopy in a particular direction. The 

sun-fleck fraction is equivalent to the gap fraction at the solar angle. If the foliage in the tree was 

randomly distributed the probability of interception is proportional to the path length, foliage 

density and foliage orientation. Then the probability of direct bean radiation passing through the 

crown without interception T (θ, φ) is given by: 

T (θ, φ) = exp (-G (θ, φ) S (θ, φ) µ)                 (2) 

where θ zenith angle, φ azimuth angle, G (θ, φ) is the fraction of foliage projected toward 

direction (θ, φ), µ is the foliage density and  S (θ, φ) is the path length thought the canopy (Welles 

and Norman, 1991). 

A potential problem with indirect radiation techniques is the fact that randomness lies at the 

hart of simple radiation models, yet foliage position of higher plants, especially trees, is never 

random. Leaves or needles don’t float freely in space, but are arranged along stems or branches in 

an orderly manner. The branches or stems and the leaves attached to them tend to be separated 

and distinctive; this apparent clumping effect allows more radiation to pass through unobstructed 

to the lower parts of the canopy than the random model would predict. In order to correct for this 

assumptions Chen and Cihlar (1995) defined three major issues in optical measurements of LAI: 

1) Leaf angle distribution (LAD): leaf angle distribution is solved with multi-angle 

measurements with the plant canopy analyzer (PCA) LAI-2000.  

2) Leaf spatial distribution: the effect of non-random distribution of foliage is quantified by 

using a clumping index. Needles in conifer canopies are clumped into shoots (one-year set of 

needles), branches (assembled from shoots) and tree crowns creating the forest stand canopy. 

In this case the shoots are threatened as the basic foliage unit, so the clumping is separated 

into two components: 

a) Clumping of a scale larger than the shoots 

b) Clumping of a scale within shoots    
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3) Contribution of the supporting woody material to light attenuation: the effect of woody 

material can be quantified by destructive sampling followed by a relationship between trunk 

diameter and leaf area to determine wood area (Chen, 1996). 

Many optical instruments, such as the PCA, can measure the angular distribution of the 

canopy gap fraction P (θ), where θ is the zenith angle. From this measurement only the product 

called effective LAI, denoted by Le, is obtained as the combination of clumping index (Ω) and the 

plant area index (Lt). When Le is measured, Lt can be obtained from: 

Le =                  (3) Ω*Lt

where Lt is combined effect of leaf area index (L) and wood area index (Lw) and Ω is a correction 

factor required to convert Le to Lt. Note that the smaller the Ω, the more clumped is the canopy. 

By treating shoots as the basic foliage units, Chen and Cihlar  (1995) derived that: 

Ω = 
Eγ

ΩE
                     (4)

where ΩE is the element clumping index quantifying the effect of foliage clumping at scales 

larger than the shoot and γE is the needle to shoot ratio for the foliage clumping within the shoot. 

By combining equations (3) and (4) we have: 

Le = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
E

E
t

γ
Ω*L                          (5) 

The above equations show that to obtain the true leaf area index (L), three corrections must 

be applied on the effective leaf area index (Le), obtained from multi-angle gap fraction 

measurements (for more detailed information see Chen, 1996). 

LAI is an important parameter to model an accurate canopy BRDF. The cell characteristics in 

DART are defined by LAI, LAD (leaf angle distribution) and foliar optical properties. The DART 

model uses these input parameters in order to compute the scattering transfer function that 

characterizes the turbid cells (Gastellu-Etchegorry et al., 1996). 
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3. Methodology 

3.1. Conceptual model 

The conceptual model, depicted in figure 1, is showing the general working methodology 

established for this research project. To be able to simulate the bi-directional reflectance 

distribution function (BRDF) of a forest stand the optical and structural characteristics of the trees 

and landscape elements (logs, grasses, bare soil and others) are required as well as their leaf area 

index and leaf angle distribution. The DART model was used to simulate BRDF of four Norway 

spruce forest stands, resulting in hyperspectral images. Three different methodologies ((1) 

scaling-up methods using vegetation optical indices, (2) scaling-up method using merit functions 

and (3) scaling-up method using neural networks) were applied to assess the Cha+b content in the 

frame of three different scenarios. After that an accuracy assessment was performed to compare 

the predicted values of Cha+b concentrations with the ground truth. Finally, a statistical analysis 

was used to evaluate the performance of each method. 

Figure 1. Conceptual model describing the general working methodology. 
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3.2. Research area 

The study area was located near the village of Modrava (48°59’N, 13°28’E), at the Sumava 

Mountains National Park. This is the largest national park (69,030 Ha.) in the Czech Republic. 

The National Park is divided into three zones that are supposed to differ in strictness of 

conservation measures.  

1) The core zone (strictly protected) covers 13% of the area and consists of the most valuable 

natural ecosystems virgin and semi-virgin forest, peat bogs and glacial lakes. 

2) The second zone covers 82% of the area and consists of human-affected ecosystems (mostly 

planted Norwegian spruce). The aim of its management is their re-naturalization and future 

inclusion into the core zone. 

3) The third zone, covering 5% of the park's area, is represented by the human settlements and 

agricultural land. 

The present work was done in the core zone of the national park close to the information 

center called Breznik. On September 2002 and September 2003 two field campaigns were 

performed. During that time the field measurements were taken on Norway spruce research plots 

and later the data was analyzed. Figure 2 shows the location of the research area.     

Figure 2. Location of the research area in the Sumava National Park, Czech Republic. 

 14



3.3. Selection of Norway spruce trees of interest 

Researchers from the Laboratory of Forest Ecology, Institute of Landscape Ecology 

(Academy of Sciences of the Czech Republic) developed a method to evaluate the response of an 

individual Norway spruce to multiple stresses. The method is based on the crown transformation 

and it takes into account the formation of so-called proventitious (secondary) shoots of different 

orders, which are regenerative shoots initiated by the damage of the foliage. This method also 

considers the defoliation of the branches. Both characteristics are estimated in the production1 

crown part. Four general categories of multiple stress response can be distinguished based on 

these bio-indicators, as described in the table 1. 

Table 1. Definition of four categories of multiple stress responses of Norway spruce. 

Stress response Category Total defoliation of the 
production crown part (%) 

Secondary Shoots 
(%) 

Resistant tree (non-transformed) RN ≤ 35% ≤ 50% 
Resilient tree (transformed) RT ≤ 35% > 50% 
Damage tree non-transformed DN > 35% ≤ 50% 
Damaged tree transformed DT > 35% > 50% 

In the present work only RN and RT trees were considered. Their selection was made by 

botanist and ecologist Dr. Pavel Cudlín. In total 17 trees were selected, 8 RN and 9 RT, from 

them 2 groups were made: (a2) 13 (6 RN and 7 RT) trees were used to determine the optical 

properties of needles, the chlorophyll content and their structural biophysical properties (height of 

tree, crown length, DBH, etc.), and (b3) 4 (2 RN and 2 RT) trees were used to determine foliage 

clumping and composition of different age classes of needles. 

3.4. Data collection from the sample RN and RT trees 

The sample trees were situated inside the forest stands. Four temporal research plots were 

delimitated around them in accordance with the following criteria: 

1) The interest was to simulate the BRDF, so a sufficiently large piece of forest stand was taken 

to simulate the radiative transfer properly. The trees of interest had to be surrounded by 

neighboring trees and background elements had to be present. The selection was based on the 

assumption that each object which could influence the reflectance and transmittance of the 

                                                 
1 The middle part of the crown, called production crown part, supplies most of the tree assimilate 

production. 
2 This group of trees will be reference as the “sample” ones 
3 This trees will be reference as the “destructive” ones 
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tree of interest by means of multiple scattering must be taken into account. Considering this 

information the plots were established and the locations and allometric properties of all the 

trees inside the research plots were measured. 

2) Each plot must be efficient, this means have as much trees of interest per plot area as 

possible. 

The sample set consisted of 13 Norway spruce trees, 6 RN and 7 RT. Two south4 branches 

were cut off per tree by a tree-climber: one branch from the juvenile part and the second branch 

from the upper level of the production functional part. Three age-classes were sampled for 

measurements of the optical properties and chlorophyll concentration analysis of the shoots: 

current year (C), two growing periods old (C+1), and three growing periods old (C+2) shoots. 36 

samples were taken from the RN trees: 3 age-classes from 2 branches of 6 RN trees.  63 samples 

were taken from the RT trees: 3 age-classes from the primary structure (primary shoots) of 2 

branches, and 3 age-classes from secondary structure (secondary shoots) of the production branch 

were sampled within 7 RT trees. Sampled shoots were placed into zip-lock plastic bags, 

containing moist towel paper, and transferred in a dark cooler to the laboratory for processing. 

3.4.1. Measurement of the leaf optical properties 

The methodology used to obtain the optical properties was based on Daugtry’s method 

(Daughtry et al., 1989). The LI-COR spectroradiometer Li-1800, connected by optical cable to 

the integrating sphere 1800-12, was used to collect the hemispherical reflectance and 

transmittance of the spruce needle samples. The wavelengths used to gather the information were 

set between 400-1100 nm with a step of 5 nm, and bandwidth of 1 nm. The protocol to measure 

spruce needles optical properties was modified by Malenovsky et al. (not published). This setup 

was used as a standard for all the measurements.  

The DART model is presently able to work only with one type of foliage optical property per 

tree crown. Hence we had to make a weighted average of all the optical properties of functional 

growing parts and age classes to obtain a representative sample. For this purpose we used the 

information gathered when the destructive sampling was conducted.  

3.4.2. Analysis of the chlorophyll content 

The needles for chlorophyll content measurement were sampled from the same area where 

the needles for optical properties were acquired in order to minimize the discrepancy between 

                                                 
4 The south part is where the tree should conserve better its crown structure, due to more favorable 

climatic conditions.  
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these two samples. Because a chlorophyll concentration measurement is a biochemical 

destructive method, it was not possible to use the same needle set for determination of both: (a) 

optical properties and (b) chlorophyll content. The sample needles were put in micro-tubes 

packed into a dark cloth and transported in a cooler at a temperature about of -40 C to the 

laboratory. At their arrival they were frozen at -700 C. A sub-sample weighting 0.5 grams was 

obtained, placed in 10 ml of dimethylformamide and then left in the dark at 80 C. for 5 days 

(Porra et al., 1989). The absorbance from the extract was determined spectrophotometrically at 

wavelengths of 480, 647 and 664 nm using a Unicam Helios α spectrophotometer. The 

chlorophyll content was calculated according to the equation of Wellburn (1994).   

3.4.3. Optical properties of the woody parts and bark 

The optical properties of the woody parts (bark, branches and twigs) were collected during 

the fieldwork in September 2003. The optical properties were taken by the LI-COR 

spectroradiometer Li-1800 connected to the integrating sphere 1800-12. Due to the opaque nature 

of this material only reflectance spectral signatures were measured.   

3.4.4. Structural parameters of sample trees 

The tree structural data was collected during September 2003. To determine the tree 

architecture the Laser Rangefinder Impulse 200, combined with the electronic compass MapStar, 

was used. The data was gathered in a direct electronic way and post-processed by means of the 

FieldMap software in order to obtain the final information. The acquired and analyzed parameters 

were: 

• Position of the tree: X, Y and Z coordinates were taken. The height (Z) was subtracted or 

added from the tree height to eliminate the effect of the ground elevation. 

• DBH: The diameter at breast height (1.30 m from the tree base) was measured. For trees 

shorter than 1.3 meters, the diameter was measured where the crown started.    

• Height of the tree: the height of a tree was measured from the tree base to the top. 

• Bottom of the crown: the lowest starting point of the crown was determined where at least 

two fully developed branches of the same age whorl were present.  

• Circumference of the crown: to calculate the circumference of the crown at least 8 points 

were taken to determine the perimeter. The ground-points were place in a way that they 

formed a horizontal drop line from the end of the canopy. 
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3.5. Destructive data collection from RN and RT trees 

During September 2003, four trees (2 RN and 2 RT) were selected and used for destructive 

observation of several crown structural parameters. Four south branches were taken from each 

tree: (a) one from the juvenile, (b) one from the upper and one from lower production part, and 

(c) one from the saturation functional part of the crown. The branches were transported in black 

plastic bags to the laboratory and analyzed. A destructive approach was conducted to obtain the 

ratio of growing shoot periods per tree type and the foliage-clumping index per functional crown 

part. The methodology used to obtain the information by the destructive sampling can be 

explained as follows: 

1) The branches of first order (branch growing directly from the tree trunk) that were 100% 

defoliated were measured and removed from the sample. Both diameters (at the beginning 

and ending of this segment of branch) were measured, too. 

2) Defining the sample units (SU): 

a) The remaining branch was laid on the floor and then it was divided into segments of 60 

cm (branches from production and saturation crown part) or 40 cm (branches of juvenile 

part). The length was a general rule; the real length depended on the shape and form of 

each branch. 

b) After that, each segment was divided according to the natural clumps of shoots, into the 

parts defined as sample units (SU). 

3) Each SU was analyzed in a visual way. The presences of four age-classes shoots (C, C+1, 

C+2 and C+older) per SU were counted. 

4) Taken into account this information 10 representative shoots per SU were selected and 

analyzed in the following way: 

a) 10 shoots were scanned by a desktop scanner to obtain a picture of their projected area. 

Each shoot was post-processed in order to eliminate the inside gaps between the needles 

of the shoot and to acquire the real horizontal projected area (not the silhouette of the 

shoot). The process of shoot scanning had a weak point mainly due to the irregularity of 

the shape of the needles around the twig. Due to variable distances of the twig to the 

scanner surface, a low grayscale intensity of some shoots was recorded, which couldn’t 

be detected by the automatic procedure used to calculate the area. This problematic point 

was solved by manual editing of the scanned shoots.  
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b) Afterwards the shoots were dipped in liquid nitrogen and the needles were detached from 

the woody twig. 

c) The separated needles were again scanned to obtain their projected area. It is important to 

mention that each needle had to be facing the surface of the scanner. The remaining 

needle extension sprigs were removed and all non-needle objects were cleaned from the 

image during the post-processing of the scanned images. In the final step, the needle-

projected area was determined in an automatic way. 

d) The projection of the remaining woody twigs was also scanned. The post-processing was 

done in a way that all the non-twig segments were cleaned from the image; here also the 

remaining of the needles was removed. As final step, the projected area of woody twigs 

was automatically measured.  

e) Finally, the sample needles and twigs of the 10 representative shoots were oven-dried at 

60 °C for 2 days and their dry mass was weighted.  

5) The rest of each SU was analyzed in the following manner:  

a) The remaining shoots of each SU were placed in dry and dark conditions, so the needles 

would fall from the twigs. 

b) Both needles and woody twigs per SU were dried in a laboratory oven, and their dry 

matter content was determined. 

c) The woody parts of branches with diameter greater than 1 cm were measured separately. 

Diameters of both ends and the total length were measured to compute the projected area 

of the wood inside the branch.  

6) To upscale the information from shoot/branch level to the tree level, the volume of each 

functional crown part was determined. The Laser Rangefinder Impulse 200 combined with 

the electronic compass MapStar was used to obtain the height and radius per functional 

crown part. The crown profile from the south side of the tree was used for this purpose.  

3.6. Measurement of the leaf area index in Norway spruce crowns 

3.6.1. Leaf area index of the sample trees 

The data to estimate effective leaf area index (Le) of 13 sample trees was collected during the 

field campaign in September 2003. Le was determined by an indirect technique based on the close 

coupling of the canopy radiation penetration and canopy structure using the Li-Cor Plant Canopy 

Analyzer (PCA) LAI-2000. The technique combines a measurement of sky brightness from a 

sensor leveled above the canopy with a second measurement taken beneath the canopy with a 
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skywards-viewing sensor. The ratio of signal (below/above) is then assumed to be equivalent to 

the canopy’s gap fraction at a specific viewing angle (Welles and Norman, 1991). The PCA 

sensor was restricted to a horizontal angle of 90° (i.e. one measurement per each geographic 

direction was required). Four measurements were acquired to obtain the total Le per tree. This 

procedure was repeated twice and the average of all measurements was used.  

The same procedure as described for Le was used to estimate the wood area index (Lw), the 

only difference was that dead trees (100 % defoliated trees) were used. Four trees, freshly 

defoliated due to the bark beetle attack, were measured and then an average of them was made to 

obtain mean Lw. 

As described in the previous chapter, the measurement from the PCA device is resulting into 

Le, so this needs to be corrected in order to obtain L, based on the equation below:   
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where L is leaf area index, Le is effective leaf area index, ΩE  is element clumping index of a 

scale larger than the shoots, γE is clumping at needle-to-shoot scale. Lw is plant wood area index 

(100 % defoliated trees), Ωw is wood element clumping index of the scale larger than shoots, γw is 

supposed to be wood clumping at needle-to-shoot scale. In the computation of the total clumping 

index for wood area index, the γw is dismissed, because first there are no needles in a dead tree 

and secondly there is just one woody twig present in frame of an age-class shoot (to make a 

clump at least two woody twigs have to be present). The Ωw was assumed to be equal to ΩE 

(Malenovsky, personal communication). This assumption needs further review to determine the 

real effect of the wood element-clumping index. Taking into account these assumptions the 

equation to calculate the leaf area index was finally defined as: 

L = ( )Ee
E

E Ω*WL
Ω
γ

−                                       (7) 

 

3.6.1.1 Needle-to-shoot area ratio γE 

Shoots of a conifer forest are distinctive foliage units. Needles, tightly grouped in shoots, are 

making difficulties to infer the amount of needle surface area from optical measurements. Gower 

and Norman (1990) used the ratio of projected needles area to the projected shoots area at one 
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angle as a correction to the PCA measurements to obtain leaf area index. This approach was used 

and slightly modified according to the following description: 

γE = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
shoots of area Projected

gs woody twiof area Projected  needle of area Projected
          (8) 

All three variables were generated from samples of the “destructive” trees. The projected area of 

needles had to be corrected due to the diamond shape of needle cross-section by a specific 

correction factor in following way: projected area of needles * 2.57/2 (Grace, 1987). 

3.6.1.2 Branch element clumping index ΩE   

If shoots would be randomly positioned within the canopy (tree crown) the correction factor 

needle-to-shoot area ratio should be sufficient to obtain the leaf area index. However, conifer 

canopies are organized at several levels: shoots, branches, and the crown. Grouping of foliage at 

these levels results in a canopy gap fraction larger than in the case of a random canopy (Gower 

and Norman, 1990). The element-clumping index was used to quantify the effect of foliage 

clumping at the scale of the branch. The following formula was applied to determine one branch 

element-clumping index: 

ΩE = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
shoots of area Projected
branch of area Projected

                               (9) 

• Projected area of shoots: this information was generated from the analysis of the branch 

segments and shoot samples derived from the four “destructive” trees of interest. The total 

projected area of shoots for the branch (ASB) was computed using the next equation: 

ASB = ( )( )
∑
∑∑

SSD
SB DASS

m

m                           (10) 

where ASB is area of all shoots in frame of a branch, ASS represents the area of sample 

shoots, DmSB is the dry matter of all the shoots from the branch and the DmSS is the dry 

matter of sample shoots. 10 representative shoots per sample unit (SU) were analyzed to 

obtain their projected area as explained earlier in section 3.5. This information had to be up 

scaled because it was impossible to measure all the shoots from the branch in order to obtain 

their projected area. Based on this, the shoots for all sample units were oven-dried and their 

dry biomass was compared to the dry biomass of the whole branch to obtain their projected 

area.   
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• Projected area of branch: the projected area of a branch was determined based on the 

percentage of area occupied by each fully developed branch in the crown horizontal cross-

section. A detailed explanation is given in figure 3, where the aerial representations of both 

the juvenile and the production functional crown parts are depicted. 

Figure 3. Aerial representations of Norway spruce functional crown parts. (a) 
juvenile and (b) production/saturation functional parts.  

The representative sample branch is the white one. Figure 3a shows the horizontal cross-

section of a juvenile crown part and 90° sector delineating the area of the branch of interest. 

The radius of the crown profile at this functional part was used to compute the projected area. 

Figure 3b represents the horizontal cross-section of a production or saturation functional part 

of the tree and 45° sectors representing the area of the branch. The radius of the crown profile 

at this functional part was used to obtain the projected area. It is worth to mention, that this 

information was obtained based on several very high ground resolution aerial pictures of 

spruce crowns, taken from a high tower, and the pictures of branches sampled from the four 

“destructive” trees. Combining all this information the angle representing the area of each 

branch could be adjusted. However, it appears that this information needs to be more 

elaborated, because its precision affects significantly the value of the branch element-

clumping index. Therefore, the methodological approach to obtain this information should be 

verified and improved.  

(a) (b)(a) (b)

3.6.2. Leaf area index (L) of the neighbouring trees 

Leaf area index of the neighbouring trees (spruce trees surrounding the sample trees) was 

estimated through a statistical relationship establish between percentage of total crown defoliation 

and measured L of the 13 sample trees. The defoliation assessment of all the trees was done 
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visually by a trained expert ecologist. Total defoliation of the neighboring trees was then placed 

into the generated regression equation to estimate their individual L. 

3.7. Optical and spatial properties of background elements 

To model the research plots in a proper way, the optical properties of each ground element 

that could be detected (elements greater than 0.25 m2) were measured. For this reason the 

background surfaces of 4 plots were sampled (one sample per each element was taken). After 

collecting the samples, they were placed in a zip-lock bag with moist towel paper, inserted in a 

dark cooler, and transported to the laboratory. 

The optical properties were measured in the integrating sphere 1800-12 connected to the LI-

COR spectroradiometer Li-1800. A matrix of the observed biological material was placed into the 

special carrier and measured. In order not to affect the optical properties (mainly transmittance 

signature) the matrix was created as homogenous as possible, avoiding multiple layers (one layer 

only) and intermediate holes.  

Concerning the spatial composition of the background elements, the botanical composition 

was drawn by hand in the field per research plot.  The tree location and a compass were used to 

reference each background element and a 2-meter pole lying on the ground as reference was used 

to maintain the scale. This way a basic schematic land cover map of the area per plot was 

obtained. Later this information was digitalized and referenced to a local coordinate system. The 

height of each herbaceous species, its standard deviation, LAD and LAI was estimated by the 

botanist and ecologist Dr. Pavel Cudlín.  

3.8.  Modelling hyperspectral images of the Norway spruce research plots by the 
DART model 

The original purpose of the radiative transfer simulation in the DART model was to simulate 

the spectral information that was generated by an AISA airborne hyperspectral sensor over the 

Finnish Norway spruce forest during 1999. This AISA imaging spectrometer used was equipped 

by a CCD matrix of 384 columns and 286 rows. The CCD sensor matrix and the optical system 

limited the wavelength range from 450-870 nm. The row dimension of the CCD array was used 

for the spectral sampling, resulting in a basic spectral channel width of 1.6 nm; up to 5 basic 

channels can be summed to make channels up to 8.0 nm wide (see table 2 containing the band 

set-up). The spectral resolution along the flight track is determined by the aircraft speed and the 

exposure time for each raw data row. The nominal aircraft speed when collecting data was 51 m/s 

and the exposure time was 20.5 milliseconds, resulting in a raw data pixel length of 1.05 meters. 
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Unfortunately, we did not succeed to get the ground truth information of this image (especially 

chlorophyll content); therefore we did not use it directly in this study, only the set-up of the bands 

for the DART simulations remained. 

Table 2. Spectral band description of the AISA imagery. 

Band No. Center (nm) With (nm) Band No. Center (nm) With (nm) 
1 452.6 7.3 10 671.3 7.6 
2 474.5 7.3 11 700.2 7.6 
3 464.9 7.3 12 748.8 7.6 
4 524.0 7.3 13 780.7 7.6 
5 551.7 7.3 14 800.4 7.6 
6 576.5 7.3 15 844.5 7.6 
7 601.2 7.3 16 861.2 7.6 
8 624.6 7.3 17 870.3 7.6 
9 648.5 7.6    

The input parameters required by the DART model to simulate BRDF of the 4 temporal 

research plots are described as follows: 

1) Geometric (directional) parameters: 

The sun position over the research area was calculated for September 15th 2003 at real noon. 

At that time the sun zenith angle was 42.2o and the sun azimuth angle was 181.2o. These two 

parameters were transformed to fit the DART setup in the following form:  

a) DART sun zenith angle = 180o - 42.2o                       

b) DART sun azimuth angle = 360o - 181.2o                                                                

2) Input parameters of radiative transfer: 

a) Multi-spectral simulations: 12 spectral bands were modeled based on an AISA image. 

The AISA bands 4-14, with a bandwidth of 8 nm, and an additional band placed between 

bands 11 and 12 (band center at 726 nm) were simulated. The DART model itself had a 

limit in number of spectral bands simulated at once. That was the reason why we had to 

compute 6 bands in two rounds, which doubled the time demanded to simulate the whole 

hyperspectral image for one research plots. 

b) Number of interactions of radiative transfer: we specified 4 interactions of radiative 

transfer to simulate the images. More interactions could yield more reliable result of the 

simulation, but due to the time constrains the minimum was used. In the last iteration the 

multiple scattered radiation was extrapolated based on the Gauss-Seidel method. 

3) The DART product specifications: 
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• As outputs the mean bidirectional reflectance function (BDRF) per image was requested. 

This gave us a matrix based output of the BRDF per band-image with a pixel based 

energetic status. 

4) Input 3-D landscape representations and the surface phase functions: 

• The basic cell size of the representative “maket” (mock-up) of the 3-D research plots was 

set to be 0.30 X 0.30 X 0.30 meters. The final image (nadir view) was resampled into the 

cell-size of 0.90 m, so this means we had an average of 9 original cells per one final pixel. 

The DART algorithm contains a refining routine, which divided the basic cell into 4 

smaller regular pixels meaning that the DART cell-size was originally 0.075 m. 

5) Soil optical properties: 

• The basic layer of the landscape simulation is soil. The optical properties of soil from the 

study area (measured in the laboratory) were used. The reflectance was assumed to be 

lambertian with standard deviation of 0.05.  

6) Structural and optical properties of the background elements: 

a) The DART model contains an extension, the vegetation model, which is able to translate 

automatically a GIS raster layer representing the background elements (herbaceous 

associations, fallen dead logs, etc.) into a background layer of a DART 3-D 

representation. A raster map of 0.30 m cell-size made for each research plot (see section 

3.7) was used as input for the vegetation model. Unfortunately, the output was too 

detailed having an unsustainable high number of plots (for example plot number 2 had 

1600 polygons at the background). Based on this we decided to generalize the 

background making the smallest plot of 3.0 X 3.0 meters, maintaining the original cell-

size. 

b) Each vegetation type of the background was characterized by a number of biophysical 

properties (see table 3). 
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Table 3. Structural description of the vegetation background elements. 

Biologic species Height (m) STD (m) LAI LAD 
Calamagrostis villosa 0.5 0.10 1.5 Erectophile 
Deschampsia (Avenella) flexuosa 0.17 0.03 1.2 Spherical 
Dicranum scoparium 0.07 0.03 1.2 Uniform 
Dryopteris austriaca 0.42 0.17 1.2 Planophile 
Luzula silvatica 0.22 0.08 1.2 Spherical 
Polytrichum commune 0.17 0.12 1.5 Uniform 
Sphagnum sp. 0.17 0.12 1.2 Uniform 
Vaccinium myrtillus 0.22 0.12 2.5 Planophile 

 
c) To obtain the DART leaf area index (LAI) for each biologic species the following 

equation was used: 

DART LAI = ⎟
⎠
⎞

⎜
⎝
⎛

scene  wholeof Area
sceneper  species specific by the covered Area * LAI Measured

       (11) 

d) Leaf angle distribution (LAD) was determined in accordance with the graphs described in 

appendix 8.  

e) Optical properties of each species were measured in the integrating sphere 1800-12 

connected to the LI-COR spectroradiometer Li-1800. The obtained optical properties are 

described in the appendix 10.     

7) Tree crown architectural and optical properties:  

a) Percentage of full cells per functional crown part is the main input parameter for the 

DART model to introduce heterogeneity into the canopy of a tree species. In practice the 

percentage of full leaf cells in DART is equal to the total clumping index (Ω) of the 

crown. The total clumping index was calculated by the equation (4) (see section 2.3). 

Trees of two categories of multiple stress response were analyzed separately and the Ω 

values for each functional part were obtained. To represent the trees in the DART model 

as realistic as possible, the tree crown was divided into 10 vertical levels: 1 level for the 

juvenile part, 3 levels for the productive part and 6 levels for the saturation crown part. 

The values of foliage clumping per level were introduced in accordance with the 

measurements (see appendices 2, 3 and 4). 

b) DART is able to model different 3-D shapes representing the tree crown. In our case we 

used the truncated cone for the spruce crown and two sets of four parallelograms to 

represent the trunk (one outside of the crown and the second one inside of the crown). 
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Figure 4 shows the difference between a real spruce crown appearance, the measured 

vertical profile and the DART representation. 
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Figure 4. Comparison between the real Norway spruce crown and the crown simulated by 
the DART model. (a) picture of Norway spruce crown, (b) measured south profile, (c) 
DART model south profile and (d) comparison between profiles b and c.

The significant difference between the one-side profile of a real spruce tree (blue crown 

profile, 4b) and the DART generated one (white crown profile, 4c) is clearly visible. To 

get closer to the real spruce appearance, some changes to the measured data of the trees 

were introduced. The tree height was reduced by 20%. The crown length was also 

reduced by 20% for trees with less than 10 meters crown height, and two meters were 

subtracted from the crowns higher than 10 meters. These changes were taken to reduce 

the negative effect of the tree crown shape on the radiative transfer simulation. A 

truncated cone joined with a cylinder should be available in the DART model in order to 

resemble a more reliable spruce crown shape. The diameter of the trunk was modified in 

the way that the maximum trunk diameter at the tree top was limited to 0.20 m. The 

decision about this diameter was based on the cell size, and our intention to avoid seeing 

the trunk inside of the upper crown part. Figure 4c shows that the upper part of the conic 

crown had a very narrow diameter meaning that a too thick trunk can strongly influence 

the RT process simulated at this part. Is worth mentioning that DART is able to handle 

only one diameter per set of parallelograms (trunk diameter), so an average of the upper 
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part with the lower part was made for each trunk segment. The trees were classified in 

four categories as follow: 

i) Tree of interest: the LAI was estimated using the PCA device, the Le values were 

corrected for foliage clumping and then they were directly used as input into the 

DART model5. The needle optical properties of the crown were computed as the 

weighted average of the optical properties of the first three age-classes. The weights 

were equal to the percentage occurrence of each age-class within the spruce crown, 

obtained during the destructive analysis of four “destructive” sample trees. The 

distribution of full foliage cells through the canopy was derived separately per stress 

category RN & RT.     

ii) Tree in neighbourhood: LAI was estimated using the regression equation of the tree 

defoliation compared to the LAI. The trees were sorted into clusters of the DART 

species based on their LAI (a nominal scale was used to make the clusters). The 

optical properties were calculated as an average of the “sample” 13 trees of interest. 

The distribution of full leaf cells within the canopy was also derived as the average of 

both multiple stress categories.      

iii) Young tree: LAI assessment was based on direct expert estimation (the statistical 

relationship between defoliation and LAI was derived only for adult trees). The 

optical properties were used as the average of the 13”sample” trees of interest. The 

distribution of full leaf cells through the canopy was assumed to be equal to the upper 

part of the crowns of the “sample” trees of interest.     

iv) Dead tree: the only possibility to simulate a dead tree in the DART model was to 

create a trunk with a fractionally small crown (length of 0.50 m and 0.50 m in 

diameter). To pretend leaf absence a low (neglecting) value of LAI was defined 

(<0.01). The optical properties were the same as for the neighbouring trees. The 

distribution of full canopy cells was assumed to be equal to 0.5%. The DART model 

had some difficulties modeling such unrealistic tree and some cases it was decided to 

eliminate it from the plot due to an error obtained in the calculation of the hotspot 

effect. 

                                                 
5 LAI needs to be transformed into the DART LAI. 

 28



3.9.  Scenarios of the BRDF simulations 

Three different scenarios (see table 4) were performed using the DART simulations. These 

“virtual” situation, build up on the realistic assumptions were used to determine the best 

performing method to retrieve Cha+b content under different conditions.   

Table 4. Scenarios of varying condition of interest to be simulated by DART model. 

Scenarios Noise in % Presence of lichens in % LAI Chlorophyll content 
1 No No Real6 Real 
2 No Yes (20) Real Real 
3 Yes (20) Yes (20) Real Real 
 

1) Scenario 1 represents the real “clean” scene without any disturbing effect. The way how this 

scenario was obtained is described through the sections 3.2-3.8. This scenario was used as a 

reference to evaluate the effect of lichens presence in the spruce canopy. 

2) Scenario 2 was performed by changing the optical properties of the trees of interest. The 

optical properties (hemispherical reflectance and transmittance) of most common lichen at the 

Sumava spruce forests, Pseudovernia sp., were measured by the LI-COR spectroradiometer Li-

1800. The final optical properties of the trees of interest resulted from spectral mixing of 80% 

of the original needle properties and 20% of the lichen optical properties. A visual assessment 

of 13 “sample” trees of interest was performed in the forest to determine a realistic level of 

lichens. 

3) Scenario 3 was simulated by adding a certain level of noise to the simulated image of scenario 

2. The noise simulated in this work tries to resemble only the noise caused by a detector. This 

kind of noise is due to the discrete nature of radiation. The fact that each hyperspectral system 

is recording an image by counting photons allows the assumption that this noise can be 

modeled with an independent, additive model: the noise n(i,j) has a zero-mean Gaussian 

distribution described by its standard deviation and/or variance. This means, that each pixel in 

the noisy image is the sum of the true pixel value and the random Gaussian distributed noise 

value ( ). The intensity of sensor noise in an image is described by the signal to noise ratio 

(SNR), which is given by  

2
nσ

SNR = 12

2

−
n

f

σ
σ

                       (12) 

                                                 
6 Real represents measured values. 
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where,  is the variance of the real recorded image (in our case the image of scenario 2 

plus noise) and  is the variance of the zero-mean noise image (Fisher, 1994). The SNR 

value was set to be 5 to simulate noise with standard deviation ~ 20% of the true image 

standard deviation . Then  was computed from: 

2
fσ

2
nσ

nσ

sσ nσ

σ  =n  SNR
sσ

               (13) 

The IDL function 'gen_image_doit' was used to generate an image with zero-mean noise of 

 distributed by the Gaussian function per each spectral band. In the final step the 

appropriate noisy image was summed with the image (scenario 2) of each spectral band at a 

spatial resolution of 0.90 m.   

nσ

3.10. Database of BRDF of varying conditions for Norway spruce 

A database of BRDF was developed for the purpose to provide an estimation of the 

chlorophyll content at the level of canopy. Figure 5 shows the general methodology to construct 

such a database. 

PROSPECT
MODEL

DART  
MODEL

Fixed inputs
Cw, Cm, (N)

 Variable inputs
Ch (20-100) 

Leaf optical
properties

Trees
characteristics

% canopy closure
(35, 55 and 80%)

Background
optical/physical
characteristics

Fixed DART
inputs

162 BRDF
Varying Ch, LAI, %

of canopy closure

LAI
(2,3,4,5,7,9)

 

Figure 5. Methodology to generate a BRDF database of varying conditions of 
interest using the PROSPECT and DART models.   
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Two RT models were couple for this purpose. First the PROSPECT model was used to 

generate the Norway spruce needle optical properties for different Cha+b content and afterwards 

the DART model was used to upscale this reflectance and transmittance functions to the level of 

the canopy. The final output was a database of 162 BRDFs varying in Cha+b content, LAI and 

percentage of canopy closure (CC).   

3.10.1. Simulations in the PROSPECT model 

Needle hemispherical reflectance and transmittance were simulated by the PROSPECT model 

adjusted for Norway spruce by Zbyněk Malenovský in the frame of his PhD study at the 

Wageningen University. He also provided the fixed input parameters required to simulate the 

needles optical properties in PROSPECT. His preliminary results are presented in table 5. 

Table 5. Biophysical characteristics of Norway spruce needles of two multiple stress 
reactions.  

 Reaction to multiple stress  
 RN RT Average 

Water content Cw [cm] 0.06 0.06 0.06 
Dry matter Cm [g/cm2] 0.028 0.024 0.026 
Leaf structure (N) 2.2 2.1 2.15 

Due to time restrictions only fixed average values of Cw, Cm, and N parameters obtained from 

needles of both RN and RT trees were used for the generation of the database (see table 5). The 

only free parameter was the Chlorophyll content, varying from 20 µg/cm2 to 100 µg/cm2 with a 

regular increment of 10 µg/cm2. The outputs were 9 optical properties of Norway spruces needles 

with a spectral ranging from 400 to 1100 nm at a wavelength interval of 5 nm.  

3.10.2. Set-up of the DART model to create the BRDF database 

Set-up of DART, to model the BRDF database, was the same as described in section 3.8. The 

only differences were in the canopy structural characteristics and the background, which was 

entirely represented by the most frequent grass Calamagrostis villosa. The allometric 

characteristics of the trees are described in table 6. 
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Table 6. Universal tree characteristics for building the BRDF database. 

Length of trunk (m) Trunk diameter (m) Length of 
crown (m) Crown radius (m) 

Outside of 
crown 

Inside of 
crown 

Outside of 
crown 

Inside of 
crown  Lower part Upper 

part 

7.75 9.20 0.36 0.19 13.50 2.70 0.00 

 

3.10.3.  Canopy closure of the simulated forest stands 

Three categories of percentage of canopy closure (CC) were specified to consider different 

densities of the forest stands. The locations of the universal trees were changed for building up a 

sub-scene of 35%, 55% and 80% of CC (see figure 6).  

Figure 6. Representation of three different canopy closures for generating the BRDF 
database. 

 

3.10.4.  Simulation of the BRDF database  

In a final step 162 DART simulations were carried out to acquire hyperspectral images of the 

spruce forest stands representing all possible combinations of these inputs: LAI (2, 3, 4, 5, 7 and 
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9), Cha+b content (20, 30, 40, 50, 60, 70, 80, 90, 100 µg/cm2) and % of CC (35, 55, 80%). 

Afterwards degradation of the spatial resolution was performed over all these images to obtain a 

pixel size of 0.90 m, which resembles the spatial resolution of the AISA image. Finally, the 

spectral signatures of only sunlit pixels extracted from the crowns of simulated trees, were used to 

build the reference BRDF database. 

3.11.  Methods to estimate Chlorophyll content in Norway spruce crowns 

3.11.1. Empirical scaling-up method of vegetation optical indices  

A reference BRDF database of 162 spruce crown spectral signatures was formed (see section 

3.10). Using these information different optical indices was calculated at the canopy level and a 

predictive scaling-up relationship was established between chlorophyll concentrations and canopy 

optical indices. The logarithmic scaling-up equation relationship was chosen to estimate 

chlorophyll concentrations from the different scenarios (Haboudane et al., 2002; Zarco-Tejada, 

2001). The vegetation optical indices used for this methodological approach were: 

1) Modified chlorophyll absorption reflectance index (MCARI) (Daughtry et al., 2000) defined 

as: 

MCARI = ( ) ( )[ ] ⎟
⎠
⎞

⎜
⎝
⎛−
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2) Transformed chlorophyll absorption in reflectance index (TCARI) (Haboudane et al., 2002) 

defined as 
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3) Ratio between transformed chlorophyll absorption in reflectance (TCARI) index and 

optimized soil adjusted vegetation index (OSAVI) (Rondeaux et al., 1996) defined as: 

TCARI/OSAVI = 
( ) ( ) ( )
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4) Area normalized to maximal band depth between 700 and 800 nm (ANMB700-800) 

(Malenovsky, 2003) defined in the following way. 
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The reflectance signature between 700 and 800 nm is inverted by subtracting the reflectance 

value from 1. Then the continuum removal procedure described by Kokaly and Clark (1999) 

is applied on the transformed reflectance, resulting in continuum removed band depths. After 

that the maximal band depth (MBD) is selected. The area under the continuum-removed 

inverted reflectance curve (AUC) is calculated based on this equation: 

AUC = ( )( b2ρρλλ
2
1

1

1

1
−+− ++∑

−

=

jjj

n

j
1j )              (17) 

 where ρj and ρj+1 are reflectance values at the bands j and j+1 , λj and λj+1 are wavelengths of 

the bands j and j+1; b is the value of the base line, for this case equal to 0; n is the number of 

used spectral bands. The final step to obtain ANMB700-800 is to normalize the AUC by 

dividing it by MBD.  

3.11.2. Scaling-up method using a merit function 

In this approach the BRDF database was used to find the measured value that was directly 

related to a given set of input parameters. The database was sorted according to a cost function; in 

this case a simple root mean square error (RMSE) was used. To improve the prediction capability 

of this method a Pearson correlation was first established between wavebands and Cha+b content. 

After that only bands having a correlation factor greater than 0.60 were selected for chlorophyll 

content estimation. It was assumed that bands with lower correlation coefficient would not have a 

significant prediction capability in the merit function. More likely they could negatively influence 

the final output by adding additional noisy information not related to Cha+b content. After 

selecting the most significant bands the fallowing merit function was applied:  

RMSE = ( )∑ −
=

n

i
dii bn 1

,
2RefRef1

           (18) 

where Refi is the BRDF measured for the wavelength i from a scenario and Refi,db is the BRDF 

obtained from the reference database (PROSPECT + DART). In total nine bands were selected 

and used in this merit function. After computing all different possibilities, the lowest values 

(lowest RMSE) was selected (Combal, 2002).  

3.11.3. Scaling-up method using Neural Networks 

Neural networks (NN) are nonphysical methods that relate a set of input variables to a set of 

output variables by means of a learning process. The learning task consists of a set of data from 

which training samples are formed. Each training sample is usually comprised of input data and 
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desired network response. Applying a neural network to learn this set of data, so called training of 

the network, requires the user to make a number of decisions related to the use of the available 

training methods (Logical-designs, 1996). 

The learning set was formed from the reference BRDF database (see section 3.10), where an 

error of +/- 5% was added to the canopy spectral signatures. The testing set was the same 

database, but without the additional error. The decision to make this set-up was based on the 

number of samples and the methodology used by Combal et al. (2002) where 2.5 % noise was 

added to a database of 8000 samples. The decision to increase the error to 5% was based mainly 

on the low number of samples, because 162 samples is a restricted set of variables. If the noise 

would not be added then the training and testing datasets would have very high reciprocal 

correlation, and after running a simulation the difference of errors from testing and training would 

be 0, which is incompetent.  The addition of more information to the set-up of the neural network 

was also tested, by adding the information about LAI of the trees. Based on this two following 

learning sets were: 

1) Database + 5%e: the selected 9 spectral bands with the addition of 5% error to the 

reflectance.  

2) Database + 5%e + LAI: the selected 9 spectral bands with the addition of 5% error to the 

reflectance and the information about the leaf area index (LAI). 

The setting of the neural network in the ThinksPro software package was time demanding, 

because there is no general rule to choose the best performing NN architecture. After testing 

several architectures the best performance was obtained from Cascade correlation learning, with 

standard input parameters and 10 nodes. The cascade approach is one of the most effective 

learning methods for supervise learning and for classification problems. It combines the speed of 

quick propagation with the ability to grow complex multi-layer networks. It is important to 

mention that the data had to be modified to be able to run this NN architecture. The cascade NN 

has been designed to perform classification, thus the values of chlorophyll content were needed to 

be in an interval of 0 to 1; that is why they were divided by a factor of 100. The number of 

iterations was set to 20000 but the error didn’t change already after 15000 iterations. 
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4. Results and discussion 

4.1.  Structural characteristics of Norway spruce trees 

The “virtual” forest stand was defined in terms of four tree types: (a) trees of interest, (b) 

neighbourhood trees, (c) young trees and (d) dead trees. The general information displayed in 

table 7 was obtained from the field campaign in September 2003. This information was corrected 

and transformed to fit to the DART model inputs. The results of this pre-processing 

transformation are shown in table 8. 

Table 7. Structure characteristics of Norway spruces in the Sumava National Park. 

 Crown 
projection (m2) 

Height of base 
trunk (m) 

Crown length 
(m) 

Tree height 
(m) DBH (m) 

Tree type Mean Std Mean Std Mean Std Mean Std Mean Std 
Interest 20.35 7.49 5.02 3.19 22.36 3.29 27.38 2.15 0.53 0.08 
Neighbour 12.75 6.97 6.21 3.50 17.51 5.84 23.73 6.86 0.43 0.16 
Young 1.59 1.05 0.27 0.15 2.02 1.06 2.30 1.20 0.03 0.02 
Dead 1.83 4.24 5.74 3.90 7.79 6.52 13.54 9.18 0.27 0.16 

To obtain the original input information (see table 7) the Laser Rangefinder Impulse 200 

combined with the MapStar electronic compass was used. The horizontal accuracy of this device 

was proclaimed by its producer to be approximately 0.2 m. Because the objective of our data 

collection was to carry out a reliable representation of a Norway spruce forest stand, but not its 

precise copy, the misplaced tree location (shifted X, Y coordinates) or changes in structural 

parameters caused by this systematic device error could not affect the results of our work. 

However, it is worth mentioning that this positioning error was increasing by the equipment 

reestablishment within the research plots. A central geo-reference point was established after 

delimitating the plot. Each time when the equipment was moved to another position it had to be 

re-established and geo-referenced towards this point and so the horizontal error could increase. 

Therefore it is recommended to maintain the equipment as much as possible at the same position 

and provide its reestablishment carefully in order to reduce this error. 
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Table 8. Norway spruces structure characteristics as input for the DART model. 

 Length of trunk in 
(m) 

Diameter of trunk 
(m) 

Length of 
crown (m) 

Radius of 
crown (m) 

Tree type out of 
crown 

inside 
crown 

out of 
crown 

inside 
crown   

Interest 4.83 11.47 0.51 0.33 20.65 2.48 
Neighbour 6.27 6.47 0.40 0.26 15.63 1.95 
Young 0.23 0.01 0.02 0.01 1.67 0.68 
Dead 4.63 1.54 0.25 0.16 - - 

 

It was necessary to transform Norway spruce structural characteristics to fit required inputs of 

the DART model. As mentioned in section 3.8, the height as well as crown length of the tree was 

reduced by 20% and the height of trees with crown exceeding 10 meters in length was shortened 

by 2 m. The shape type that was selected to represent Norway spruce crown architecture in the 

DART model was the truncated cone with an upper radius of 0 cm. When the original data was 

used to create a 3-D representation of the spruce crowns, the simulated hyperspectral images 

showed a notable effect of the tree trunk in the upper part of the crown, which did not correspond 

to reality. Based on this, the modification of the crown structural data was performed. The ratio 

between radius and crown length was increased from 0.11 cm/m to 0.13 cm/m. Even though this 

increase, the mentioned effect of the inner trunk was still visible, due to the ratio of turbid foliage 

cells and non-turbid air cells of very narrow shaped upper crown layers. For example if the ratio 

of the non-turbid and turbid cells at one of the top crown levels was set to 29% of air cells against 

71% of leaf full cells, then the narrow conical crown at the top allowed the trunk to be visible. To 

correct this disturbing feature the trunk has to be unrealistically shortened. Therefore we would 

recommend redefining the crown shape templates in the DART.  

Rautiainen et al. (2004) studied the effect of crown shape on the reflectance of coniferous 

stands. In his study the Kuusk-Nilson forest reflectance model was used to evaluate the effect of 

four crown shapes on a Norway spruce stand. The crown shapes were: (a) ellipsoid, (b) cone, (c) 

cylinder and (d) cylinder + cone. Comparison of the distribution of single scattering from the tree 

crowns showed that: the conical crowns had the smallest scattering, cylindrical crowns had the 

highest, ellipsoid and cylinder + cone were in between. Unfortunately, no comparison was made 

to the real airborne images of coniferous crowns in order to conclude which crown shape was the 

best fitting. Based on these findings it would be interesting to make a detailed analysis of the best 

performing crown shape for Norway spruces using the DART radiative transfer model. In 
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connection to this a new crown shape template consisting of a cylinder combined with the 

truncated cone should be added to DART. 

4.2. Biochemical and biophysical characteristics of Norway spruce trees of 
interest   

Table 9 describes the biophysical and biochemical characteristics of the 13 “sample” trees of 

interest from the study area sorted in two categories of multiple stress reaction. The leaf area 

index was estimated using the PCA device and corrected for foliage clumping by means of the 

total clumping index. The percentage of defoliation was assessed visually and the chlorophyll 

concentration was extracted based on the Porra et al., (1989) and the Wellburn (1994) 

methodologies. The chlorophyll content was a weighted average in terms of the age-classes 

distribution within the spruce crown and for the three age-classes of needles.  

Table 9. Biophysical characteristics of Norway spruces trees of interest.  

ID tree Multiple stress 
reaction 

Le (PCA) % of 
defoliation 

Leaf area index 
(LAI) 

Chlorophyll 
content in µg/cm2 

5 RN 3.52 60 4.37 60.40 
15 RN 3.29 60 3.94 47.96 
16 RN 4.55 45 6.32 74.15 
17 RN 3.02 65 3.43 77.90 
21 RN 4.69 45 6.59 93.55 
22 RN 3.77 50 4.85 81.74 
6 RT 1.83 60 1.16 58.94 
8 RT 3.31 60 3.73 27.56 

10 RT 4.51 55 5.82 63.16 
11 RT 5.33 45 7.24 43.41 
24 RT 6.45 35 9.18 81.79 
25 RT 6.27 45 8.87 68.99 
29 RT 5.34 50 7.26 55.13 

 

4.3. Hyperspectral images simulated from temporal research plots of Norway 
spruce forest stands using the DART model 

Figure 7 represents the general working methodology to obtain the radiative transfer 

simulation from the research plots. Figure 7a shows a graphical representation of the input data. 

Figure 7b shows how this information was transformed to fit the DART model and finally figure 

7c represents the output image in RGB false colour composition of the radiative transfer from a 3-

D forest stand representation.  
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Figure 7. Representation of graphical changes made to the input data to fit the DART 
model and the radiative transfer simulation from plot #2. (a) input data, (b) transformed 
data and (C) output data of the radiative transfer simulation.   

(7c)(7c)

Figure 7a represents part of a real Norway spruce forest stand. The bottom of the production 

functional crown part, the widest segment of the crown, was used to determine the crown radius. 

The shape of the observed crown horizontal projection line was irregular and highly varying. 

Thus it had to be simplified to a constant radius at the base of the crown. Detailed information 

was collected in the terrain to express properly the heterogeneity of the forest ecosystem. A map 

of the background understorey was created to contain every element with an area greater than 

0.25 m2. The DART model was equipped with the software utility called VEGETATION which 

translated the detailed understorey map into the DART representative pattern containing in case 

of research plot # 2 around 1600 rectangular polygons of background surfaces. Unfortunately, 

combination of the RT model with the available computing hardware was not able to handle such 

detailed information and the simulation crashed due to insufficient computer performance 

(inadequate processor rate and RAM memory size). The only solution was to generalize the 

simulations of the scenes. In a first step the objects (understorey) smaller than 5 m2 in area were 

removed. Secondly the background elements were resample to the cell size of 3x3 meters. As a 

result of the generalization the background had a square form and the crowns of the trees had a result of the generalization the background had a square form and the crowns of the trees had a 
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constant radius (see figure 7b). Natural variability and heterogeneity was reduced compared to 

figure 7a to fulfil requirements of the DART RT simulation. 

Figure 7c shows the hyperspectral image, as a false colour composition, simulated by the 

DART (spatial resolution of the image was 0.0757m). The original position of the trees and their 

crown radius are overlaid over the image to clarify the image interpretation. Observing values of 

the BRDF a dramatic change was found in reflectance near the outside borders of the circles 

representing the crowns. This might be explained by means of the percentage of turbid leaf cells 

per functional crown level (see appendix 4) and the spectral mixture with the reflectance of 

background elements. The percentage of full turbid cells was decreasing from top to bottom of 

the tree crown, and so the lowest part contained only about 33% of foliage turbid cells. This way 

the influence of background optical properties (reflectance and transmittance) at these areas 

increased significantly. Further investigation showed also a shift of the original crown radiuses 

(tree positions) at the generated images. This minor problem was explained by the rounding 

performed by the DART. The exact position of the tree was rounded always down to the lower 

value of the cell size, i.e. the tree at the position of 9.29 m in X coordinate direction was rounded 

by the DART to 9.00 m and not to 9.30 m. It is important to stress that the resulting scenes of the 

DART simulation (see figure 7c) represent the “clear” reference image created according to 

scenario 1. The rest of the simulated images are depicted in the appendix 11. 

In general the DART performance was satisfactory. However, the BRDF of the simulated 

scenes should be compared with the real airborne images to analyse the difference in order to 

reach clear conclusions about the reliability of the DART simulations. Especially the detail used 

in this study would make this evaluation interesting, because a forest stand representation of high 

similarity to the reality was accomplished. While working with the DART model, the following 

potential improvements that would increase the model performance and operability were 

recognised:  

1) Increase in number of simulated spectral bands: the model is presently limited to simulate 6 

bands per simulation. The required number of bands for this work was 12, meaning that each 

simulation had to be performed twice which increased two times the computational time. 

Current hyperspectral sensors have the capability to obtain images with several hundreds of 

spectral bands (e.g. AISA+ sensor in spectral mode acquires 244 bands). To simulate such an 

                                                 
7 The DART algorithm includes a resampling procedure dividing the original input cell (resolution of 

0.30 m) into 4 cells. 
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image in DART it would require running the model 41 times, which would be inconvenient 

and time consuming. 

2) Sophisticated visualization of the 3-D representation of the landscape: there is a visualization 

module in DART that allows moving through the 3-D scene and verifying the appearance of 

its features. In addition to this, it will be useful to have a direct nadir view of the scene to 

determine and verify the position of the trees and their crown shape. The optical properties of 

surfaces could be represented by different colours, so the operator would be able to notice 

where the different background elements are placed and detect differences in optical 

properties of the trees.  

3) New templates of the crown shape: the crown shape that would probably better fit to the 

architecture of the Norway spruce crown is a cylinder combined with a truncated cone at the 

top. The cylinder would represent the saturation growing functional part and the truncated 

cone would represent the juvenile and production part. It would be interesting to compare 

BRDFs of spruce crowns from a real hyperspectral image with several simulated templates of 

crown shapes to determine which of them performs most reliably, if no other changes are 

introduced. 

4) Numerous leaf optical properties per crown: the DART model is presently able to use optical 

properties of only one leaf type per tree crown (species). This fact decreased the reliability of 

the second scenario where 20% abundance of lichens had to be homogeneously introduced 

throughout the crown. Such a homogeneous distribution of lichens is far from reality, because 

they are growing mainly inside the crown (at the defoliated branches) and at the upper part of 

the crown. If several optical properties of surfaces could be defined in frame of one biologic 

species, then the DART model would be able to simulate correctly the lichens distribution 

and furthermore it could simulate properly differences in optical properties of needle age-

classes.  

5) Variable leaf density within a canopy: leaf density inside the turbid leaf cells is constant 

within the whole crown, which means the model is not considering properly the spatial 

variability of the foliage clumping. In appendix 4 measured values of the total clumping 

index per canopy level are described. As one can see, the upper juvenile part of the crown 

exposes a very high clumping index of 0.14, meaning that the leaf density there is very high 

compared to a lower saturation part where the total clumping index is about 0.67. Implicitly 

the leaf density of the upper crown branches is higher than of branches placed at the bottom 

of the crown. Foliage clumping is one of the significant structural properties of the canopy, 
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driving the ratio of the sunlit and shaded needles which is important for photosynthetic 

processes. For this reason the RT model giving opportunity to specify a vertically and 

horizontally variable leaf density would be much more universal and closer to reality.     

6) Optimisation of the data storage: if the database of the input data was several times edited and 

saved, the DART started to cumulate useless information. As example, if a simulation was 

done with the needle optical properties of “non-stressed” RN tree and then the same 

simulation was repeated with the needle optical properties of “stressed” RT tree, links for 

both optical properties were stored, even if only the last one was in use. The effect of this 

redundancy was not investigated, but there is a general trend to optimise any software source 

code to reach its best potential performance. 

4.4. Comparison of the optical indices at the leaf level 

An analysis was performed for four selected optical indices (TCARI, TCARI/OSAVI, 

MCARI and ANMB700-800) at the leaf level, to determine their capability of chlorophyll content 

prediction. Three input data sets were considered: (a) optical properties simulated by the 

PROSPECT model, (b) optical properties of the 13 “sample” trees measured during the field 

campaign in 2002 and (c) optical properties of the same 13 trees mixed in ratio 5:1 with spectral 

signatures of the most common spruce lichen Pseudovernia sp. The Pearson correlation statistical 

test was performed to evaluate the reciprocal relation between chlorophyll content of needles and 

computed optical indices. Results of this statistical test are presented in table 10.  

Table 10. Correlation of the chosen optical indices and chlorophyll concentration at the 
level of needles. 

 PROSPECT data Scenario 1 (real data) Scenario 2 (plus lichens) 

Optical Indices R* Sig.** R Sig. R Sig. 
TCARI -0.989 0.008 -0.865 0.001 -0.865 0.001 
TCARI/OSAVI -0.956 0.000 -0.862 0.001 -0.862 0.001 
MCARI -0.990 0.000 -0.885 0.000 -0.859 0.001 
ANMB700-800 -0.995 0.000 -0.847 0.001 -0.848 0.001 

*Pearson correlation coefficient, ** significance within the confidence interval of 0.95. 

Results on the significance level and correlation coefficients in table 10 suggest that all the 

tested optical indices have a strong correlation with the Cha+b content at the level of needles. The 

first case of the PROSPECT data had the highest Pearson correlation coefficient (0.96 – 0.99); 

                                                 
8 The statistical software SPSS version 10.0 works with 5 decimal placements, meaning that these 

values were less then 0.000. 

 43



then it decreased in case of real data (0.86-0.88) and the lowest values were obtained in the third 

case (0.85-0.87). The conclusion of this analysis is that all the indices were responding similarly 

to the clear information as well as information influenced by the presence of lichen optical 

properties. This test proved proper selection of the optical indices used for this work. However 

the remaining question was; what is their performance at the level of the forest canopy.  

Leaf reflectance signatures simulated by the PROSPECT model were also used to validate the 

sensitivity of the optical indices for changes in chlorophyll content. The results are depicted in 

figure 8, where the independently changing variable is the Cha+b content and the dependent 

variables are the different optical indices.  

Comparison of 4 indices from leaf reflectance, generated by 
the Prospect model to estimate the content of Chlorophyll
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Figure 8. Sensitivity to Cha+b variability of 4 optical indices at needle level generated 
by the PROSPECT model. 

As one can see the optical indices ANMB700-800, TCARI and TCARI/OSAVI have a constantly 

decreasing trend with increase of the Cha+b content. This consistency expressed that there are no 

confounding variables for these indices, i.e. there is only one index value per Cha+b content. This 

is not the case for the MCARI index where almost similar values of 0.294 and 0.295, 

respectively, resulted from a chlorophyll content of 20 and 30 µg/cm2. This behavior denotes a 

sensitivity limitation of MCARI at low pigment concentration, probably due to its response to 

non-photosynthetic leaf material (Haboudane et al., 2002). The lowest value of Cha+b content 

measured in the frame of this work was 28 µg/cm2, so this confounding effect will probably not 

affect the performance of the MCARI index. The trends of the indices TCARI, TCARI/OSAVI 

and MCARI start flattening after Cha+b content of 80 µg/cm2, which could indicate low sensitivity 
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of these indices to high chlorophyll values. Reflectance of the spectral bands used to compute 

these indices could get saturated by the high Cha+b content (see figure 9 for more explanation). 

The index ANMB700-800 is not affected by this trend, which would indicate its high prediction 

suitability.  

The slope of the reflectance differences between two successive contents of Cha+b was 

calculated based on the following formula, to investigate how the reflectance of spectral bands 

used in the indices connected to chlorophyll concentration behaves in terms of saturation: 

Slope = 
( )
( )12

12

XX
YY

−
−                          (19) 

Where X represents the chlorophyll content and Y represent the percentage of reflectance. 

The slope coefficients of the reflectance of the four used spectral bands are plotted in figure 9 

against the intervals of Cha+b concentration. 

Comparison of slope between Ch content at the level of 
needles generated by PROSPECT model at 4 

wavelengths (552, 671, 700 and 800 nm)
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Figure 9. Comparison of slope between Cha+b content at needle level generated by 
PROSPECT in four spectral bands used by the optical indices. 

The slope values computed from the reflectance of spectral bands 552 nm, 671 nm and 700 

nm have quite similar tendencies, i.e. when the content of Cha+b increases the slope of reflectance 

differences decreases. The spectral region around a wavelength of 680 nm corresponds to the 

absorption peak of Cha and the region around 550 nm (green part) corresponds to the minimum 

chlorophyll absorption in the visible spectral domain (Haboudane et al., 2002). Reflectance of all 
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three bands, specially the band 671, is saturated at Cha+b concentrations greater than 80 µg/cm2 

(flat line of their graphs means no variability – see figure 9). Based on this information, it can be 

stated that these indices will not predict values of chlorophyll concentration greater than  

80 µg/cm2 in a consistent manner. 

 The preliminary results at the leaf level indicate that the indices TCARI and TCARI/OSAVI 

would estimate values between 20 and 80 µg/cm2 in an accurate way. MCARI should perform 

well between 30 and 80 µg/cm2 and ANMB700-800 is expected to determine well values between  

20 and 100 µg/cm2. These results are valid only at the leaf level; therefore the indices have to be 

evaluated at canopy level to determine their performance in retrieving Cha+b values from crowns 

of a forest stands. 

4.5. Performance of selected optical indices at the canopy level 

The methodology of empiricall scaling-up is based on a relationship established between the 

canopy vegetation optical indices and the content of chlorophyll. The required statistical relation 

was carried out using the BRDF database, where the LAI, Cha+b and % of canopy closure were 

free variables (see section 3.10). The regressions and their determination coefficients can be seen 

in appendix 6.  In general, regressions of all the indices have a very high r2 (0.93- 0.99), meaning 

that indices should be able to predict well the content of chlorophyll at the canopy level. Similar 

results were obtained by Haboudane et al. (2002) where the coefficient of determination exceeded 

0.98 for the TCARI/OSAVI ratio. In their work the logarithmic scaling-up relationship was 

chosen because it has been found as a consistent chlorophyll content estimator. Also results of our 

study showed the logarithmic regression to be the most appropriate function to predict the content 

of chlorophyll from the optical indices. As examples the indices TCARI and MCARI are shown 

in figure 10.  

Scalling-up optical index (TCARI) from a database 
generated by the PROSPECT and DART models
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Figure 10. Logarithmic relation between chlorophyll content and the optical ratios TCARI 
and MCARI at the level of a canopy generated by the PROSPECT and DART models. 
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4.6. Evaluation of the chlorophyll prediction methods using a simulated 
hyperspectral image of a forest stands  

Three scaling-up methods (vegetation optical indices, merit function and neural network 

approach) were used to estimate the content of chlorophyll from a simulated hyperspectral image 

of the forest stand. Their performance was evaluated for hyperspectral images of three different 

scenarios: (1) “pure” spruce canopy without any side effect, (2) canopy with the optical properties 

mixed with lichen optical properties at a ratio 1:5, and (3) canopy with 20% plus zero-mean 

Gaussian noise generated for a SNR of 5. The results are presented in tables 11, 12 and 13.    

4.6.1. Method of the vegetation optical indices applied to scaled-up spectral 
bands  

The indices TCARI, TCARI/OSAVI and MCARI were able to successfully estimate the 

chlorophyll content of the sample trees in case of scenarios 1 and 2 (see table 11). The level of 

correlation significance was lower than 0.05 meaning that predicted values are statistically very 

close to the measured ones. The scenario 1 shows better results compared to scenario 2, meaning 

that the influence of lichens could affect the results of this method, if their presence through the 

canopy will increase. The presence of noise and lichen optical properties together, scenario 3, 

affected strongly the performance of all the indices. There none of the used indices were able to 

predict the Cha+b content properly in this scenario. The significance level for the MCARI index 

was close to the 5% of α- level, but still making this correlation not statistically significance.  

Table 11. Scaling-up method of the vegetation optical indices. 

 Scenario 1 (true data) Scenario 2 (lichens) Scenario 3               
(lichens + noise) 

Optical indices R* Sig.** R Sig. R Sig. 
TCARI 0.791 0.001 0.735 0.004 0.391 0.186 
TCARI / OSAVI 0.774 0.002 0.726 0.005 0.431 0.142 
MCARI 0.889 0.001 0.831 0.001 0.524 0.066 
ANMB700-800 0.440 0.132 0.014 0.963 -0.274 0.364 

The independent variable was the Cha+b content measured and the dependent variable the Cha+b content 
estimated by the indices, *Pearson correlation, **significant within α- confidence interval of 0.95. 

The Chlorophyll Absorption in Reflectance Index (CARI) (Kim et al., 1994) is the original 

index from which the indices TCARI, TCARI/OSAVI and MCARI were generated. MCARI tries 

to minimize the underlying soil reflectance and the canopy non-photosynthetic material by adding 

the ratio (Ref700 / Ref670). Nevertheless, this index is still sensitive to background reflectance 

being difficult to interpret at low values of LAI (Daughtry et al., 2000) and Cha+b (Haboudane et 
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al., 2002). TCARI tries to counteract the effects of the background (soil and non-photosynthetic 

materials) by using the ratio (Ref700 / Ref670) influencing just the difference (Ref700 – Ref550). 

Despite this improvement, the index is still sensitive to the underlying background reflectance 

properties, particularly in case of low LAI values (Rondeaux et al., 1996). To compensate for this 

problem Haboudane et al. (2002) proposed to combine the TCARI index with a soil line 

vegetation index (OSAVI). This ratio makes accurate predictions of crop chlorophyll content, and 

it has been shown to be relatively insensitive to canopy cover variations, even with low LAI 

values. These modifications made to the CARI index tried to reduce the effect of the soil 

background and non-photosynthetic material, which is not the case of our work. At the time of 

this study the DART model was not able to simulate the branches of first order inside the canopy, 

which means that low LAI of the tree crowns only allowed increase of the background 

(understorey) and inner trunk influence. The background was covered mainly by grasses, so the 

effect of bare soil on the canopy reflectance was not present. These facts could explain why 

MCARI had the best performance compare to the other indices. It is important to remember that 

only the sunlit pixels were used to obtain the optical properties of the trees of interest (between 4 

and 6 pixels per crown depending on its diameter). This selection also decreased the background 

effect and can explain in some extend the performance of this index. The new version of the 

DART is supposed be able to model directly the branches of first order and wood turbid cells 

inside the canopy. Because the spectral signatures of raw bark have quite similar optical 

properties compare to the bare soil, the low values of crown LAI could imitate bare soil as a 

background inside the crown. It would be interesting to explore the effect of branches and woody 

twigs in case of low LAI on the performance of the optical indices.  

The optical properties of the “sample” trees of interest in scenario 2 were affected by the 

presence of most common species of lichen in a constant way. In figure 11 a comparison between 

the optical properties of scenario 1 and scenario 2 at canopy level are given. The presence of 

lichens increased the reflectance in the visible part of the spectrum and decreased the reflectance 

in the NIR. These changes didn’t affect the performance of optical indices up-scaling retrieval 

methods. The ratios of bands within the optical indices were able to eliminate the effect of the 

presence of lichens. A comparison of the average index values from scenario 1 and 2 was 

performed to evaluate the robustness of the optical indices. The TCARI index was minimally 

affected by the presence of lichens; it was able to compensate for this kind of additional 

information. Making a comparison of this index obtained from scenario 1 and scenario 2, we did 

not find any significant difference (see table inside figure 11). 
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Figure 11. Average canopy spectral signatures for scenario 1 and 2. 

The modifications made to TCARI during the transformation from MCARI (the ratio Ref700 / 

Ref670 influences only the difference Ref700 – Ref550) could be the reason why this optical index 

was able to compensate for the presence of lichens. Values of the TCARI/OSAVI ratio were 

driven by the denominator (OSAVI index). The reduction of the reflectance at the NIR plateau 

decreased the OSAVI mean value from 0.77 to 0.71, which caused an increase in predicted 

chlorophyll content.  

The addition of the noise to scenario 2 resulted in an image with a SNR of 5, which can be 

considered as a very noisy data. None of the chosen optical indices was able to predict accurately 

the content of Cha+b for scenario 3. This might be explained by means of the data creation. The 

zero-mean noise was distributed randomly per spectral band in the real scenes, but its effect was 

not introduced when the BRDF database was generated. The optical indices were not able to 

compensate for the noise and the predicting capability of the statistical equations decreased. A 

graphical comparison of canopy spectral signatures of all three scenarios for two selected trees is 

given in figure 12 in order to observe the variability introduced into the spectral signatures by the 

randomly generated noise. 

The optical index ANMB700-800 was not able to predict the Cha+b content at the canopy level. 

However, it was expected to perform well based on the results obtained at the needle level. This 

discrepancy could be related to the low Pearson correlation (see appendix 7) obtained for the 
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optical band at 749 nm and the Cha+b content at the canopy level. Due to the low number of bands 

available to calculate this index, this band at 749 nm was always selected as the maximum band 

depth (MBD), so its value was negatively influential on this index. It’s also worth to mention that 

there was a positive correlation influence of the dry matter (Cm) content on this index at the 

needle level, as the coefficient of determination between Cm and Cha+b was 0.95 (see appendix 9). 

This can be explained by the fact that the NIR reflectance is affected by the amount of transitions 

between cell walls and air intercellular spaces in the leaf tissue, which is related to the dry matter 

content; so an increase in dry matter will increase also the reflectance at the NIR plateau 

(Lillesand and Kieffer, 2000).  Dry matter concentration affects directly the area under the 

continuum-removed inverted reflectance curve (AUC) forcing it to have a high correlation with 

the Cha+b content. This relation could be the reason why the high performance of this index at the 

level of needles.  

4.6.2. Methods of a merit function applied to scaled-up spectral bands 

In the first run all 12 bands were used to determine the capability of a merit function to 

predict the Cha+b content. The resulting prediction was assessed to be inaccurate, because the 

significance α- level of regression was higher than 0.05 (see table 12), which means that predicted 

and measured values were statistically different. Based on this finding a Pearson correlation was 

used between reflectance of all spectral bands and the chlorophyll content within the BRDF 

reference database (see appendix 7).  Spectral bands with correlation coefficient less than 0.60 

were rejected for the next analysis. The second run of the merit function up-scaling, performed on 

the new 9 band dataset, increased the accuracy of the result, and the correlation significance was 

found to be significant. However the merit function approach was not able to predict properly the 

content of Cha+b in scenario 2, because the method did not contain any corrective mechanism for 

the presence of lichen optical properties. The capability of this method in frame of the noisy 

scenario 3 was reduced even more. 

Table 12. Evaluation of the scaling-up method using merit function. 

Bands use in Scenario 1 (real data) Scenario 2 (lichens) Scenario 3 (Lichens + noise) 
calculation  R* Sig.** R Sig. R Sig. 
1 till 12 0.492 0.088 0.369 0.215 0.105 0.734 
1 till 9  0.674 0.011 0.522 0.067 0.148 0.629 

The independent variable was the Cha+b content measured and the dependent variable the Cha+b content 
estimated by the merit function, *Pearson correlation, ** significance within a confidence interval of 0.95. 
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The use of the merit function was significantly affected by the set-up used to build up the 

BRDF database. The generated BRDF database varied only in the content of Cha+b, LAI and % of 

canopy closure. The effect of lichens and noise presence was not added, hence minimizing the 

cost function, looking for the smallest RMSE between the spectral signature of the simulated 

scenario and signatures of the BRDF database, failed to estimate correctly the chlorophyll 

amount. This was not the case of scenario 1, where the BRDF database contained all the required 

information to make the right predictions.  
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Figure 12. Spectral signatures of two Norway spruce crowns for all three considered 
scenarios.  

The spectral signatures of two selected spruce crowns for all three scenarios are plotted in 

figure 12. As one can see the spectral signatures of the second scenario have an expected pattern 

when compared to the scenario l, i.e. increase of reflectance in the visible part and decrease in the 

NIR. The spectral signature of scenario 3 shows a high variability within wavelengths, i.e. the 

changes in reflectance are irregular. Therefore, the discrepancy in prediction by the merit function 

approach is very high. To compensate such a non-systematic variability is difficult and needs a 

more sophisticated algorithm.  

An additional factor affecting negatively the accuracy of the merit function estimation was 

the minimal chlorophyll content increment of 10 µg/cm2 introduced for the BRDF database 

creation.  These constrain results in capability of the merit functions to predict only rounded Cha+b 

values (e.g. 40 or 50 µg/cm2, but never 45 µg/cm2). 
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4.6.3. Methods of neural network applied to scaled-up spectral bands 

Both neural networks (NN) set-ups, based on cascade propagation, were able to predict 

accurately the Cha+b content for scenarios 1 and 2 with the statistical significance level lower than 

0.05 (see table 13). In case of scenario 3 only the setup with 5% error introduced into the training 

dataset was able to estimate Cha+b precisely. It is very important to stress, that this was the only 

method able to have a significant correlation and proper chlorophyll prediction for the noisy 

scenario 3. 

Table 13. Evaluation of the scaling-up method using a neural network (cascade 
propagation). 

Neural network set-up Scenario 1  
(real data) 

Scenario 2  
(lichens) 

Scenario 3 
 (Lichens + noise) 

Training Test R* Sig.** R Sig. R Sig. 
Database9+ 
5% e Database 0.713 0.006 0.834 0.001 0.715 0.006 

Database+ 
5% e + LAI 

Database + 
LAI 0.650 0.016 0.771 0.002 0.358 0.230 

The independent variable was the Cha+b content measured and dependent variables Cha+b content estimated 
by neural networks, *Pearson correlation, ** significance within confidence interval of 0.95. 

The tendency of the previous methods was always a decrease in their performance when the 

disturbing effects were introduced. This was not the case for the neural network up-scaling 

approach. The best result was obtained for scenario 2, which could be explained by establishment 

of the NN. A +/- 5% error was added to the training database to increase the robustness of the 

neural network and to decrease the inner correlation between the reflectance values of training 

and testing sets. The system was learned on this information and the resulting NN was evaluated 

on a testing set (database without +/- 5% error). The spectral signatures of the 13 trees in scenario 

1 were not affected by any disturbing factor, so the performance of neural networks might be 

expected to be lower compared to scenario 2, under assumption that the effect of lichen presence 

is equal to the 5% error added to the NN training database. This is the most probable explanation, 

why the NN approach performed better in case of scenario 2 than scenario 1. Also in scenario 3 

the NN method was able to compensate for the extra added random noise, but not so efficiently as 

in scenario 2. 

The addition of extra information like LAI to the training set and testing set didn’t improve 

the performance of this method. All the Cha+b predictive results from this set-up were lower 

                                                 
9 The database is conformed of the 9 spectral bands selected earlier during the merit function method. 
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compared to the one that didn’t contain the LAI. This is explained by the low Pearson correlation 

between LAI and chlorophyll content (R = 0.29), so we conclude that the addition of extra 

structural information decreased the performance of the neural network. 

To explain the performance of neural networks is very difficult, because they enable to relate 

a given set of input variables to a set of output variables, irrespective to any known functional 

relationship between input and output, providing an implicit relationship existing between these 

sets (Combal et al., 2002). The NN method does the learning and testing of the data and finally 

gives you an output. This process can be considered as a kind of “black box” procedure where 

something comes in and something comes out, but principles behind the results are unknown. In 

case of this study the learning process benefits from the additional of noise (+/- 5% error), but 

this is not a general rule and it might not be valid for another data set.  

4.7. Comparison of the chlorophyll content retrieving approaches  

Based on the findings of the previous sections we can summarize that three optical indices 

and two neural network set-ups were capable to predict suitably the chlorophyll content in 

scenarios 1 and 2. In case of scenario 3 only one method of the neural network retrieved correctly 

the content of Cha+b. The purpose of this study was to determine the best performing chlorophyll 

retrieving approach, thus a comparison of these methods was carried out. The predicting 

capability was measured by means of the RMSE (prediction - measured) and the determination 

coefficient of a linear regression. The results are described in table 14.   

Table 14. Comparison of the best performing methods to estimate the content of Cha+b.

 
Scenario 1 (true data) Scenario 2 (lichen) Scenario 3  

(lichen + noise) 
Methods Mean* RMSE** r2*** Mean RMSE r2 Mean RMSE r2

Scaling-up 
TCARI 56.13 13.52 0.63 56.15 14.50 0.54 60.80 18.36 0.15 

Scaling-up 
TCARI/OSAVI 57.99 12.84 0.60 54.09 15.96 0.53 56.95 18.23 0.19 

Scaling-up       
MCARI 53.59 13.30 0.79 63.08 10.06 0.69 66.92 16.41 0.28 

NN               
Database+5%e  61.89 13.97 0.51 69.91 11.69 0.70 71.08 15.99 0.52 

NN        
Database+5%e 
+LAI 

60.13 13.91 0.42 70.13 14.01 0.59 63.87 23.82 0.13 

* Is the average Cha+b content of the predicted values, ** RMSE (root mean square error) is the difference between the 
measured and predictive value of chlorophyll *** is coefficient of determination (linear regression of predicted and 
measured Cha+b content). The average measured Cha+b content was 64.21 µg/cm2.  
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The highest acceptable RMSE between retrieved and measured Cha+b was set to be 15 µg/cm2, 

which is a statistically proved difference in chlorophyll concentration of the needles between 

spruce trees of RN and RT stress categories. The five tested methods were able to meet this limit 

for scenario 1, only four methods for scenario 2, and none of them succeeded to stay below this 

limit in case of scenario 3. By analyzing the results from table 14, up-scaling of the vegetation 

optical index TCARI/OSAVI is the best method to estimate the content of Cha+b in scenario 1. For 

scenario 2, the index MCARI is the best method to estimate the Cha+b content. Finally up-scaled 

neural network (database +/- 5%e) appeared to be the best working method in scenario 3. 

From a first sight the up-scaling of the vegetation optical index MCARI seems to have the 

best performance in general. It was the second best method for the scenario 1, the best one for 

scenario 2 and the second best method for the scenario 3, again. The index MCARI showed some 

inconsistency in the prediction of the chlorophyll values. The average retrieved chlorophyll 

estimation for scenario 1 was 53.59 µg/cm2, but for scenario 2 it was increased up to 63.08 

µg/cm2, which suggests the influence of the lichen thalluses presence. The TCARI is likely more 

robust optical index, because it presented almost no change in predicted Cha+b values between 

scenarios 1 and 2. This could be related to the improvements introduced into this index for a soil 

and non-photosynthetic material compensation. As one can see in table 14, the predicting 

capability of the MCARI index was increased by the “beneficial” effect of lichen appearance, due 

to the reflectance increase of all the spectral bands used to calculate this index. Based on this 

analysis it is worth to mention that if the percentage of lichen occurrence would increase even 

more, then the prediction done by MCARI index will probably overestimate the chlorophyll 

content.  

The up-scaling methods based on the neural networks performed well for scenarios 2 and 3. 

Because of the MCARI index inconsistency in robustness, we can state that the NN up-scaled 

approach (database +/- 5%e) was the best performing method in general. For scenario 1 and 2 its 

RMSE was less than 15 µg/cm2, this was the maximum tolerance value. The RMSE of scenario 3 

exceeded this limit only very slightly (about 1 µg/cm2). To achieve a real high spatial resolution 

hyperspectral image free of any noise (scenario 1) is practically impossible, so probably the 

scenarios 2 and 3 are more suitable and important to draw the final conclusion on the 

performance of the tested chlorophyll retrieving methods. 
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Figure 13. Comparison between measured and retrieved Cha+b content by means of used up-
scaling methods.  

Figure 13 shows the regressions between chlorophyll content estimated by the MCARI index 

and neural networks (database +/- 5% error), which turned out to be the best performing methods. 

The regression graphs of the other methods are described in the appendix 13. A detailed analysis 

was performed on these two methods to corroborate their performance by removing the most 

significant outlying value. The neural network approach is strongly affected by the outliers (see 

figure 13b) especially in scenario # 1 were the RMSE decreased from 13.97 µg/cm2 of 

chlorophyll to 9.54 µg/cm2 and the r  increased from 0.51 to 0.72. This indicates how strong was 2
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the effect of this one value on the predicting capability of the NN method. We did not observe 

such a strong influence, caused by one outlier on NN approach results of the rest of the scenarios 

(RMSE decreased only by 1 µg/cm2). For the optical index MCARI the effect of removing one 

outlier was not so influential it reduced the RMSE only by 1.5-0.5 µg/cm2 in all the different 

scenarios. All these achievements are underlying the neural network method (database +/- 5% 

error) as the best performing approach within all the scenarios.  

Zarco-Tejada et al., 2002 carried out a study with aims and methodology comparable with our 

present work. The chlorophyll amount was estimated from crown sunlit pixels of an airborne 

hyperspectral image using a merit function of the optical index Ref750 / Ref710. Their results 

showed a lower coefficient of determination (r2= 0.40) between the measured and estimated Cha+b 

concentration. On the other hand their RMSE for predicted and measured chlorophyll content 

ranging between 26.8 and 56.8 µg/cm2 was only 8.1 µg/cm2. Our best performing approach, NN 

up-scaling, had more significant coefficient of determination, but the RMSE was almost two 

times higher compared to their findings. The potential explanations of this phenomenon might be 

i) a low number of sample trees used in our work, and ii) a high variability of the sample crowns 

in Cha+b content. However, taking out one most significant outlying crown from the retrieval 

procedure forced the RMSE to drop down on the value of 9.54 µg/cm2, which is already 

comparable with their results. 
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5. Conclusions and recommendations 

The objective of this study was to contribute to the estimation of stress biochemical indicators 

of Norway spruce crowns by generating knowledge on the best performing method to determine 

the chlorophyll content from hyperspectral images of high spatial resolution. Three different 

scenarios were simulated, using the DART radiative transfer model, and later analyzed to solve 

the defined objective concerning the best performing method for chlorophyll content retrieval. 

Based on the obtained findings conclusions are: 

1) For the simulated hyperspectral image of scenario 1 (no disturbing factor present) all three 

tested methodological approaches of up-scaling leaf optical properties to the level of the 

canopy were able to predict in an accurate way the chlorophyll content. The used up-scaling 

methods were: i) optical indices TCARI, TCARI/OSAVI, and MCARI, ii) Merit function for 

9 spectral bands, and iii) neural networks (database and database + LAI). All methods 

showed a RMSE in chlorophyll prediction less than 15 µg/cm2, which was the maximum 

limit of tolerance. The best performance was obtained by the index TCARI/OSAVI. 

2) In scenario 2 (presence of lichen optical properties in the canopy by a proportion of 20%), 

two general methods were able to predict accurately the chlorophyll content. The optical 

indices (TCARI and MCARI) and the neural networks approaches (database and database + 

LAI) had a RMSE less than 15 µg/cm2. However, the optical index MCARI seems to be 

influenced by the presence of lichen. Based on this the neural network (database +/- 5% 

error) approach was chosen as the best performing method of this scenario is. 

3) In scenario 3 (image with SNR equal to 5 and presence of lichen by a 20% share on the 

crown optical properties) only one method was able to estimate correctly the chlorophyll 

content. The neural network (database) approach applied on up-scaled spectral bands 

produced the RMSE between estimated and measured chlorophyll concentration about 16 

µg/cm2, which is slightly higher than the required limit of 15 µg/cm2. It is expected that the 

RMSE value would decrease below the defined limit with higher number of sample trees, and 

it was decreased by removing one significant outlier from the analysis.   

4) The setup of the referential BRDF database is a crucial factor in the performance of the 

chlorophyll retrieving methods. The negative effect of not considering the lichens and noise 

presence in the BRDF database was discovered for the performance of the merit function 

approach. Consequently, this method wasn’t able to perform well under scenarios 2 and 3. 

The used PROSPECT input parameters N, Cw and Cm were kept constantly fixed, due to the 
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time constrains of the BRDF database creation. This caused their systematic under and/or 

overestimation (see appendix 9). The influence of this potential negative factor was not 

directly investigated, but there is a strong recommendation for the next studies to let these 

parameters varying.  

Based on the obtained results we can generally conclude that the best performing method to 

retrieve the chlorophyll content over a spruce forest stand simulated by the DART model was the 

scaling-up approach of the neural network (cascade propagation network generated from BRDF 

database with +/- 5% error). From the three different scenarios, of varying conditions of interest, 

the neural network approach performed well over the scenario 2 (lichen presence) and the best 

over scenario 3 (noise + lichen presence). In case of scenario 1 (no disturbing factor) it was not 

the best method when all the samples were consider, but when removing one outlier the RMSE 

decreased to 9.54 µg/cm2, which was the lowest one. It is necessary to stress that these results 

need further testing, because they were carried out using only 13 sample of Norway spruce trees. 

Furthermore, the conclusions are based only on the data simulated by the DART radiative transfer 

model. Therefore, they should be verified by a next study using a real hyperspectral image of high 

spatial resolution obtained from a complex airborne/field campaign over the Norway spruce 

forest stand.  
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Appendix 1. Distribution of the age classes of Norway spruces needles from two 
reactions to multiple stress. 

 Percentage of age classes of needles 
Tree id C C + 1 C + 2 C + older C +2 + older 
3001 12.27 30.66 19.70 37.37 57.07 
3002 16.01 21.10 14.84 48.05 62.89 
RN 14.11 25.95 17.30 42.64 59.94 

3005 9.75 13.39 14.59 62.27 76.86 
3006 14.75 13.08 11.78 60.39 72.17 
RT 11.76 13.27 13.46 61.51 74.97 

The information presented in the above table describes the volume weighted average of needle 
ages per stress classes.  

 

 

 

 

Appendix 2. Clumping index within the shoot, needle-to-shoot area ratio γE. 

  Measured projected area in cm2 (10 shoots)  
Tree Type Functional part Needles Shoots Twigs γE

RN Juvenile 381.79 134.54 40.07 3.14 
 Upper-production 310.50 152.29 33.80 2.26 
 Lower-production 758.00 271.70 82.05 3.09 
 Saturation 356.46 173.11 38.67 2.28 
 Average 393.50 181.09 42.61 2.41 

RT Juvenile 672.95 252.17 69.26 2.94 
 Upper-production 1365.61 529.90 136.84 2.84 
 Lower-production 685.02 331.84 64.58 2.26 
 Saturation 932.29 531.24 90.68 1.93 
 Average 426.63 228.92 41.88 2.05 

This information was obtained from the “destructive” sample trees where only 10 shoots per 
sample unit (SU) were analyzed. 
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Appendix 3. Element clumping index at scale larger than shoot ΩE.  

  Measured area in cm2 (hole branch)  
Tree Type Functional part Shoots Projected branch Wood ΩE

RN Juvenile 2680.77 1189.10 39.00 0.44 
 Upper-production 4037.79 2972.74 120.58 0.71 
 Lower-production 9288.02 11890.96 358.65 1.23 
 Saturation 11132.67 15312.16 617.39 1.30 
 Average 10271.15 13777.62 540.79 1.27 

RT Juvenile 3925.67 1593.42 47.85 0.40 
 Upper-production 7217.34 5884.22 333.60 0.78 
 Lower-production 12503.55 16071.38 638.18 1.22 
 Saturation 22276.41 28438.11 1079.75 1.22 
 Average 18544.11 22347.28 875.06 1.15 

These measurements were obtained from the “destructive” sample trees. The projected branch 
area was estimated, based on a visual assessment. This information needs further knowledge to 
obtain more precise projected branch area. This parameter than can affect the outcome 
significantly.  

 

 

Appendix 4. Clumping index (Ω) per functional part of Norway spruce.  

  Reaction to multiple stress  
Functional part Level Ω of RN Ω of RT Average Ω 
Juvenile 1 0.14 0.14 0.14 
Production 2 0.32 0.27 0.29 
 3 0.36 0.41 0.38 
 4 0.40 0.54 0.47 
Saturation 5 0.45 0.55 0.50 
 6 0.50 0.60 0.55 
 7 0.57 0.63 0.60 
 8 0.57 0.63 0.60 
 9 0.60 0.65 0.62 
 10 0.65 0.70 0.67 

The data was obtained from the “destructive” sample trees; the intermediate results are described 
in appendix 2 and 3. The values highlighted were the measured ones. It is worth to mention that 
the average per functional part was maintained. For the saturation part there was only one 
measurement, but 6 levels were made: level 7 and 8 are the averages and for the rest +/- 5% was 
added. In the production part the measured levels were 2 and 3 and an average of them was made 
to carry out level 3. The juvenile part is the percentage of measured clumping.  
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Appendix 5. Statistical relationship between percentage of crown defoliation 
and Leaf area index. 

Relation bwtween leaf area index and % of 
defoliation in Norway spruce crowns
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A regression between the L and the percentage of defoliation of the 13 trees of interest was 
performed. Only 11 trees were used in the analysis, the remaining crowns were excluded because 
they were considered as outliers.  

 

 

 

Appendix 6. Determination coefficients of several regressions between optical 
indices and Cha+b content at canopy level generated by the PROSPECT 
and DART models. 

 Regression - determination coefficient 
Optical indices (Linear) r2 (Polynomial 2nd 

order) r2
(Exponential) r2 (Log) r2

TCARI 0.93 0.98 0.98 0.99 
TCARI / OSAVI 0.89 0.97 0.97 0.97 
MCARI 0.96 0.98 0.95 0.97 
ANMB700-800 0.93 0.94 0.95 0.93 

The independent variable was the Cha+b content and the dependent variable was represented by 
the optical index. The 162 samples were used, generated by the PROSPECT (Ch content 20, 30, 
40, 50, 60, 70, 80, 90, 100) and up-scaled by the DART (LAI, 2, 3, 4, 5, 7 and 9 and % scene 
coverage 35, 55 and 80).  
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Appendix 7. Pearson correlation coefficient between reflectance of the optical bands 
and Cha+b content at the canopy level. 

Optical band (nm) 
wavelength 

Database* Trees** Trees + 
Lichens** 

Trees +  
Lichens + Noise** 

524 -0.92 -0.43 -0.44 -0.16 
552 -0.93 -0.55 -0.60 -0.33 
576 -0.61 -0.45 -0.43 -0.22 
601 -0.91 -0.38 -0.37 -0.10 
625 -0.90 -0.25 -0.24 0.02 
648 -0.88 -0.14 -0.11 0.09 
671 -0.84 0.12 0.06 0.13 
700 -0.93 -0.58 -0.50 -0.18 
726 -0.88 -0.54 -0.48 -0.07 
749 -0.23 0.05 -0.02 0.05 
781 -0.07 0.32 0.26 0.26 
800 -0.08 0.27 0.11 0.17 

* All 162 samples were used to perform this correlation.  
** Optical properties of 13 “sample” trees were used to perform this correlation. 

 

 

 

 

Appendix 8. Functions of the leaf angel distribution (LAD) defined in the DART 
model. 

0

0 . 0 0 5

0 .0 1

0 . 0 1 5

0 .0 2

0 . 0 2 5

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

pr
ob

ab
ili

té
  

 d
f

u n i fo r m e
s p h é r i q u e
e r e c t o p h i l e
p l a n o p h i l e
e x t r e m o p h i l e
p l a g i o p h i l e

 θ f ( ze n it h  a ng e l fro m  n o r m a l fo lia g e )  
       Referred to Gascon (2001)  

 

 66



Appendix 9. Comparison between measurements of Norway spruce needle 
biophysical parameters (leaf internal structure, dry matter content and 
water content) with the values used to simulate the hemispherical 
optical properties in the PROSPECT. 
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Appendix 10. Optical properties of representative elements used to create a realistic 
Norway spruce forest stand. 
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Optical properties of Pseudevernia sp.
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Appendix 11. Hyperspectral images simulated by the DART model, the RGB colour 
composition of investigated forest stands (scenario 1). 
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Appendix 12. Hyperspectral images simulated by the DART model, a RGB colour 

composition of the temporal research plot # 4 (scenario 2). 
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Appendix 13. Comparison between measured and retrieved Cha+b content using up-
scaling methods (optical indices, merit functions and neural 
networks).    
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