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Summary 
 
For a better understanding of how human activities influence environmental processes 
like climate change, desertification and ice melting it is necessary to monitor 
environmental changes. This requires long-term spatially distributed datasets of the 
key variables in the interaction between land surface and the atmosphere. Of these key 
variables, soil moisture is the only one that is not yet observed over extensive areas 
and time periods. In order to obtain such a long-term spatially distributed soil 
moisture data set space borne passive microwave remote sensing can be a powerful 
tool, therefore various types of sensors of this kind have been proposed. Of these 
sensors, the recently launched Advanced Microwave Scanning Radiometer (AMSR) 
holds the biggest promise due to its relatively high spatial resolution and the low 
frequencies it uses. To retrieve soil moisture content from AMSR various retrieval 
algorithms have been proposed, of which three are compared in this study. One of 
them, the Jackson algorithm is based on an inversion of the radiative transfer 
equation. The other two, the de Jeu algorithm and the Wen algorithm, are based on an 
iterative solution of the radiative transfer equation.  
 
The Jackson algorithm uses ancillary data to take into account vegetation conditions 
and estimates surface temperature from high frequency brightness temperatures. The 
Jeu algorithm computes surface temperature in the same way and solves the transfer 
equation simultaneously for vegetation optical depth and soil moisture. The Wen 
algorithm estimates vegetation conditions from brightness temperature information 
and solves the transfer equation for soil moisture and surface temperature. 
 
To compare the algorithms they were applied to two datasets: the Mongolian dataset 
contains data from measuring stations in Mongolia over a three month period in the 
summer of 2002, the SMEX02 dataset contains data of a measuring campaign in 
Iowa, USA in June and July 2002. These two datasets were selected because of the 
different vegetation conditions: in Mongolia vegetation consists of very sparse, thin 
grasses, while in Iowa a much denser crop of mainly corn and alfalfa was present. 
Since in Iowa the problem of Radio Frequency Interference (RFI) exists, two sets of 
retrievals were performed here: retrievals with AMSR data were performed using 
higher, less sensitive to RFI, frequencies, and in addition retrievals were performed 
using the Polarimetric Scanning Radiometer (PSR) which is airborne with a higher 
resolution and less sensitive to RFI. In these retrievals, the same frequencies as in the 
Mongolian dataset were used.  
 
For the Mongolian dataset estimated soil moisture contents of the three algorithms 
were in rather good accordance with each other, but not with observations, due to 
differences between the sensing depth of the radiation and the observation depth of 
the measuring station. Also, the soil in Mongolia contained a high portion of rock, 
which is known to reduce the sensitivity to soil moisture content. Since the vegetation 
density changed over the time period and these changes were presented only to the 
Jackson algorithm as ancillary data, this algorithm performed significantly better 
towards the end of the retrieval period where vegetation density increased. The Wen 
algorithm appeared to show the smallest errors, but this was due to a different reaction 
to rainfall events, where brightness temperatures showed large drops. In general, the 
Jackson algorithm performed the best. For the SMEX02 dataset with both AMSR and 
PSR data, roughly the same pattern could be seen since, again, the vegetation 

  
  



 

conditions changed strongly over the time period, although all vegetation layers were 
much higher than for the Mongolian dataset. The results for the Wen algorithm using 
the PSR data were relatively poor, due to the large amount of area and frequency 
dependent variables in the algorithm that have to be validated thoroughly before every 
new application, for which time lacked in this study.  
 
Also surface temperature was retrieved. The Jackson and de Jeu algorithms used high-
frequency brightness temperatures for this goal: this worked well for the Mongolian 
dataset where vegetation is low; in areas with higher vegetation such as Iowa the 
temperature was underestimated. The Wen algorithm solved the radiative transfer 
equation for surface temperature: here surface temperature was consequently 
overestimated, because the parameters mentioned earlier were not well enough 
validated for an optimal surface temperature retrieval.  
 
Concluding, it can be said that it is hard to apply soil moisture retrieval algorithms at a 
global scale because often either a large amount of ancillary data or many 
assumptions are necessary. Datasets with a sufficient enough spatial and temporal 
resolution are not always available and algorithms with many assumptions and 
parameters to set are very difficult to validate at large scales. The de Jeu algorithm 
hardly requires any validation and requires very little ancillary data, so it is relatively 
easy to apply at large (global) scales.  However, over longer periods, when vegetation 
conditions change, it is difficult to perform a reliable retrieval without using ancillary 
vegetation data. The Jackson algorithm, which used this  ancillary data, performed 
significantly better than the de Jeu and Wen algorithms when comparing the 
algorithms under different conditions. 
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Evaluation of soil moisture retrieval algorithms - Introduction 

1 Introduction 

1.1 Background 
 
Currently there is a large interest in the interactions between human activities and 
climate change. There is a strong indication that human activities are disturbing the 
natural climate, causing acceleration in global warming, sea level rise, deforestation 
and desertification (de Jeu, 2003). In order to monitor these environmental changes 
there is a need for long-term spatially distributed data sets of the key variables in the 
interaction between land surface and the atmosphere: soil moisture, soil temperature, 
vegetation and precipitation. Soil temperature, vegetation and precipitation are all 
currently observed using satellite observations. Soil moisture is the only one that is 
not currently observed over large areas and over an extended period using remote 
sensing (Bindlish et al., 2003). Soil moisture is considered the key variable in 
hydrology because it is the switch that controls the proportion of rainfall that 
percolates, runs off or evaporates from the land. It is the life giving substance for 
vegetation and it integrates precipitation and evaporation over longer periods, thus 
introducing an element of memory in the atmosphere/land system (SMEX03, 2003).  

1.2 Problem description 
 
There are no validated large-scale, long-term databases containing soil moisture and 
there are large discrepancies among the results of different land surface hydrology 
models forced with the same data (Bindlish et al., 2003; Jackson et al., 1999; Njoku et 
al., 2003). For both hydrologic and climatologic research creation of a validated, 
large-scale, long-term database is a necessity. Considering the coarse resolutions 
global climate models are running on, space borne microwave remote sensing can be 
used to observe soil moisture at large scales. It can directly measure the dielectric 
properties which are strongly dependent on the liquid water content, and due to the 
long wavelength it is not sensitive to scattering of cloud particles which makes 
microwaves useful in all weather conditions, both day and night since there is no 
dependence on solar radiation (Koike et al., 2000; Njoku et al., 2003). Only 
vegetation can influence microwave radiation and ‘mask’ soil moisture content 
(Jackson et al., 1982). 
 
Several space borne sensors have been developed for this purpose, including the 
Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor 
Microwave/Imager (SSM/I), Tropical Rainfall Measuring Mission (TRMM) / 
Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer 
(AMSR). Being launched in the middle of 2002, the AMSR is recognized to be the 
most suitable for retrieval of soil moisture in regions with low vegetation cover due to 
the low frequency (and thus long wavelength). Also it provides one of the best spatial 
resolutions of current multi-frequency radiometers from space due to its large 
antenna, varying from 5 km at the smallest to 50 km at the largest wavelength 
(Jackson and Hsu, 2001; Jackson et al., 2002; Koike et al., 2000; Njoku et al., 2000). 
For more information about AMSR see the next chapter.  Several algorithms to 
retrieve soil moisture from these microwave sensors’ data have been proposed but not 
yet extensively evaluated due to lack of datasets for this purpose (Jackson et al., 
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2002). Also for older sensors like the already mentioned TRMM/TMI and SMMR 
algorithms have been developed that can be adapted to be used with AMSR data.  
 

1.3 Research objectives 
 
In this work, three of these algorithms will be evaluated and compared. Where 
needed, algorithms will be adapted for use with AMSR data. Of these algorithms, the 
one developed by Jackson (1993) was developed for use with AMSR-data. A second 
one, by de Jeu (2003) was originally applied to SMMR data. The last one, developed 
by Wen et al. (2003) was originally developed for TRMM/TMI. Validation datasets 
that are used for this purpose are the Mongolia Match Up Dataset, data from several 
soil moisture observation locations in eastern Mongolia in the summer of 2002 
(Kaihatsu, 2003), and soil moisture observations from Soil Moisture Experiments 
2002, in the summer of 2002 in Iowa, USA  (SMEX02, 2002). More detailed 
information about these algorithms and datasets is provided in Chapter 2.  

1.4  Research questions 
 
The research questions that can be formulated are: 

• Is it possible with the proposed algorithms to provide reliable soil moisture 
estimations at a global scale? 

• Which of the algorithms provides the most reliable estimations? 
• Which of the algorithms is the most suitable for global application? 
• Are the validation datasets used in this study suitable for validation and 

evaluation of the proposed algorithms?  

1.5 Report setup 
 
In the second chapter of this report an overview shall be given about some 
background theory: general microwave remote sensing, the AMSR sensor, the 
retrieval algorithms that were evaluated and the datasets that were used for the 
validation. After this, in Chapter 3 more information will be provided of the used 
methodologies: how and with which parameter values have the algorithms been 
applied to the datasets and how was the comparison realized. The results of the 
comparison are described in Chapter 4. In Chapter 5 they are discussed and finally in 
Chapter 6 conclusions are drawn and the questions asked in section 1.4 are answered.  
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2 Theoretical background 

2.1 Microwave remote sensing and soil moisture 
 
The main characteristics of electromagnetic radiation are wavelength, polarization, 
amplitude and phase. Here we examine microwave radiation, which has relatively 
long wavelengths from 1 cm up to 1 m. In Table 1 an overview can be found of 
nomenclature, wavelengths and frequencies for microwave radiation.  
 
Wave polarization is caused by the electrical field that is always present in 
electromagnetic waves. This field rotates in a plane perpendicular to the propagation 
direction and can be considered the vector sum of a horizontal and a vertical 
component. The resulting polarization depends on the phase difference between the 
two components. It can be elliptical, circular or linear. Depending on the sense of 
rotation of the electric field, elliptical and circular polarized waves can be right- or 
left-handed; i.e. respectively rotating clockwise or counter-clockwise. The passive 
microwave systems that will be used in this study only use linearly -horizontally 
and/or vertically- polarized radiation (H or V).  

Table 1: Nomenclature of microwave bands and corresponding wavelengths and frequencies. 

Band designation Wavelength [cm] Frequency [GHz] 
Ka 
K 
Ku 
X 
C 
S 
L 
P 

0.75 - 1.11 
1.11 - 1.67 
1.67 – 2.50 
2.50 – 3.75 
3.75 – 7.50 
7.50 – 15.0 
15.0 – 30.0 
30.0 – 100 

27 – 40 
18 – 27 
12 – 18 
8 – 12 
4 – 8 
2 – 4 
1 – 2 

0.3 – 1 
 
For the determination of the amount of soil moisture, the amplitude or field strength 
of radiation is very important. The amplitude of reflected or emitted waves decreases 
by a certain factor, depending on polarization, incidence angle of the radiation and 
material properties like vegetation cover, soil moisture and surface roughness. The 
factor by which the amplitude is attenuated is called the Fresnel coefficient. Using the 
Fresnel equations, it is possible to derive e.g. soil moisture from the Fresnel 
coefficient, assuming incidence angle and polarization are known.  
 
The fourth and last electromagnetic characteristic to be considered is phase, which 
requires multiple sensors and is only used in interferometric measurements 
(Hoekman, 2000). 
 
In Figure 1 the basic geometry of passive microwave remote sensing is shown: the 
satellite moves over the earth surface following the flight direction while at certain 
intervals the surface is scanned in the perpendicular direction, the scan-direction. Each 
ellipse along the scan line in the figure represents a so-called footprint, one 
measurement.  
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Figure 1: Geometry of passive microwave remote sensing. 

 
The distance perpendicular to the flight direction over which the scan line extends is 
called the swath width. To obtain a detectable signal the energy over a large area has 
to be collected which results in large footprints and a low spatial resolution. In 
general, spatial resolution decreases with frequency as altitude increases. For satellite 
designs at L band, this might results in a footprint as large as 50 km. For more 
information on basic principles of microwave remote sensing, see Dane and Clarke 
Topp (2002), Hoekman (2000) and Lillesand and Kiefer (1999).  
 
The advantages of using passive microwave remote sensing for soil moisture mapping 
are that observations can be made under conditions of cloud cover, are independent of 
solar illumination and can be made at any time in day or night, as opposed to 
instruments that operate in the visible or infra-red parts of the electromagnetic 
spectrum. However, remote sensing cannot replace ground-based methods for 
providing high-quality data; its advantage is in large-scale mapping such as 
continental or global scales. It was recognized early in research that instruments 
operating at low frequencies (< 6 GHz) provide the best soil moisture information: 
there is less influence of atmosphere and vegetation, instruments respond to a deeper 
soil layer, and there is a higher sensitivity to soil water content (Dane and Clarke 
Topp, 2002). 
 

2.2 The AQUA/AMSR-E sensor 
 
Two versions of the Advanced Microwave Scanning Radiometer (AMSR) were 
launched in 2002. AMSR was launched on the Advanced Earth Observing Satellite 
(ADEOS-II), by NASDA. NASA’s Earth Observing System (EOS) Aqua satellite 
included a modified version, AMSR-E. Differences between the sensors include a 
slightly larger antenna for AMSR, resulting in a slightly higher spatial resolution and 
a swath of 1600 instead of 1445 km, and the time of overpass. Aqua’s overpass time 
is 1.30 am and pm local time, while the overpass of ADEOS-II is at 10.30 am and pm. 
AMSR has also additional bands at 50 and 52 GHz with vertical polarization. An 

 -4- 
  



Evaluation of soil moisture retrieval algorithms - Theoretical background 

overview of the characteristics of AMSR-E is shown in Table 2. AMSR-E coverage is 
global between 89.24º N and 89.24º S and the sampling interval at the earth’s surface 
is 10 km for all channels except the 89 GHz channel, which has a sampling interval of 
5 km. The distance between the scan lines (see Figure 1) also is about 10 km. 
Temporal coverage exists since June 2, 2002. The viewing angle of both sensors is a 
constant 55º. Due to the small vegetation penetration capacity at C and X band, which 
are most sensitive to soil moisture content (Dane and Clarke Topp, 2002), AMSR is 
anticipated to provide soil moisture information in regions of low vegetation cover, 
i.e. less than 1 kg/m2 vegetation water content.  More details about AMSR-E and 
AMSR can be found at http://www.ghcc.msfc.nasa.gov/AMSR/, 
http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.html and 
http://adeos2.hq.nasda.go.jp/shosai_amsr_e.htm., SMEX03 Experiment Plan (2003) 
and in Kawanishi et al. (2003). 

Table 2: Characteristics of AMSR-E. 

Frequency [GHz] Polarization Mean Horizontal 
Resolution [km] 

Swath [km] Footprint 
size [km] 

6.925 
10.65 
18.70 
23.80 
36.50 
89.00 

V, H 
V, H 
V, H 
V, H 
V, H 
V, H 

56 
38 
21 
24 
12 
5.4 

1445 
1445 
1445 
1445 
1445 
1445 

75 x 43 
51 x 30 
27 x 16 
31 x 18 
14 x 8 
6 x 4 

 

2.3 From satellite measurements to soil moisture 
 
There are two approaches to retrieve Volumetric Soil Moisture (VSM) from 
Brightness Temperature (Tb) data. One of them is an inversion of the forward model, 
which is the prediction of Tb from soil properties using radiative transfer theory. 
These algorithms thus invert the equations and estimate soil properties such as VSM 
from Tb. The second approach solves the forward model iteratively, optimizing soil 
properties to minimize the difference between predicted and measured Tb. Several 
algorithms of this latter kind have been proposed (de Jeu, 2003; Njoku & Li, 1999; 
Wen et al., 2003; Koike et al., 2000; Njoku et al., 2000; Njoku et al., 2003). There are 
five steps involved in extracting VSM using passive microwave remote sensing, which 
are the following: 
 

• Normalizing brightness temperature to emissivity 
• Removing the effects of vegetation 
• Accounting for the effects of surface roughness 
• Relating the emissivity measurement to soil dielectric properties 
• Relating the dielectric properties to VSM 

 
In this study, three algorithms are compared. The algorithm developed by Jackson 
(1993), from now called the Jackson algorithm, is based on an inversion of the 
forward model. The algorithm developed by de Jeu (2003), the de Jeu algorithm, 
solves the forward model iteratively. The third model, by Wen et al. (2003), the Wen 
algorithm, is also based on the iterative approach, but in a different way as is 
explained later. The following sections provide descriptions of each. 
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2.3.1 The Jackson algorithm 
 
For a vegetated site, the TB value measured is a combination of the radiation emitted 
by the vegetation and the radiation emitted by the underlying soil as modified by the 
vegetation. This is described by the radiative transfer equation (Jackson, 1993): 
  

ΓΓ−−−+Γ−−+••Γ= )1()1)(1()1()1( CrCSrB TeTTeT ϖϖ    (1) 
 
Where TB is the brightness temperature, TS and TC are temperatures of soil and canopy 
respectively, ω is the single scattering albedo, er is the surface emissivity and Γ is the 
transmissivity of the canopy.  At microwave wavelengths, the single scattering albedo 
is very small. When this term is set to zero and if it is assumed that the physical 
temperatures of soil and canopy are nearly the same, Equation 1 reduces to: 
 

2)1(1)( Γ−−== r
S

B e
T
Te         (2) 

 
Where e is the emissivity of the surface covered with vegetation. Inverting Equation 2 
gives er expressed in TB and TS: 
 

2

)(1(
1

Γ

−
−= S

B

r
T

T

e         (3) 

 
The surface temperature (TS) is estimated using the brightness temperature from the 
vertically polarized 37 GHz band according to the following equation (De Jeu, 2003): 
 

550.52*861.0 37, += VBs TT        (4) 
 
The transmissivity of the canopy Γ can be described by: 
 

)
)cos(

exp( )(
)( θ

τ p
p

−
=Γ         (5) 

 
Where p is polarization, τ is the optical depth of the canopy and θ is the incidence 
angle of the radiation. τ is determined by:  
 

VWCb *=τ          (6)  
 
Where b is a vegetation parameter, dependent on land use and frequency, and VWC is 
the vegetation water content in [kg m-2]. The vegetation water content can be obtained 
from the Normalized Difference Vegetation Index (NDVI) data (Clevers, 2001), 
converted to VWC by means of linear relationships: 
 

NDVIVWC *0.2=     50.036.0, ≤< NDVI   
NDVIVWC *5.2=     36.020.0, ≤< NDVI  (7) 
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NDVIVWC *0.3=     20.000.0, ≤< NDVI  
 
The surface emissivity er is corrected for the influence of surface roughness s 
according to (Choudhurry et al., 1979), giving the smooth surface emissivity es: 
 

)cosexp()1(1 2 θhee rs −+=        (8) 
 
Where h is a roughness parameter (=4s2k2) proportional to the root mean square 
(RMS) height variations of the soil surface, and k = 2π/λ (with λ is wavelength). With 
the inverted Fresnel equation for horizontally polarized radiation the dielectric 
constant k is computed from the smooth surface reflectivity Rs (=1-es): 

 
2

2 )
1)(

1
(cossin

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−
+=

S

S

R
R

k θθ       (9) 

 
From k the VSM is computed using the dielectric mixing model of Wang and 
Schmugge (1980). An alternative method for this mixing model is provided by 
Hallikainen et al. (1985). An advantage of this method is that it is also useful for X-
band, while the Wang-Schmugge model is only valid for L- and C-band. Both models 
require soil texture information and are described in Appendix D. An overview of the 
computational process of the Jackson algorithm is shown in Figure 2. 
  
Before brightness temperature values are used in the algorithm, they are screened for 
rainfall using the screening algorithm demonstrated in Ferraro et al. (1997), and on 
land use: retrieval is only possible in areas with low vegetation content, so e.g. forests 
are left out. Only clear pixels with retrievable land use types are used in the algorithm 
(Bindlish et al., 2003). 
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Figure 2: Flowchart showing the computational process of the Jackson algorithm. 

 
2.3.2 The de Jeu algorithm 
 
The methodology of de Jeu is also based on the radiative transfer equation, Equations 
1 and 5. The equation is solved in a forward, iterative manner for dielectric constant k 
and the optical depth of the vegetation τ. This means that some other variables have to 
be estimated independently: surface temperature is calculated according to equation 4, 
and vegetation temperature is assumed equal to the surface temperature. For the single 
scattering albedo ω a constant value of 0.06 is assumed. Surface roughness is assumed 
to be negligible in this algorithm and thus not accounted for. The unique part of this 
algorithm is in the fact that the radiative transfer equation is solved for k and τ 
simultaneously.  
 
Another component of this algorithm is the use of the Microwave Polarization 
Difference Index (MPDI). This is used in an attempt to remove the dependence on the 
physical temperature of the emitting layer: 
 

)()(
)()(

hTvT
hTvTMPDI

BB

BB

+
−

=         (10) 
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At the wavelength that is used, about 6 GHz, the MPDI contains information on both 
canopy properties (τ) and soil dielectric properties. An empirical relationship between 
τ and the MPDI was developed based on simulations: 
 

43
2

2
3

1 )ln()ln()ln( CMPDICMPDICMPDIC +++=τ     (11) 
 
Parameters C1, C2, C3 and C4 are a function of k and can be defined by the 
relationship: 
 

)1(,.
)1(

2,1, ... +
− ++++= NjNj

N
j

N
jj MkMkMkMC     (12) 

 
Where j is the coefficient number (1 to 4), N is the degree of the polynomial and M 
refers to the polynomial constants that are given in Table 3.  
 
The last term in Equation 1 that is not yet expressed in k is the emissivity es. This is 
done by means of the Fresnel equation for horizontally polarized radiation: 
 

2

2

2

)(sin)cos(

)(sin)cos(
1)(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

−−
−=

θθ

θθ
θ

k

k
es       (13) 

 
 
Since H-polarization has the greatest sensitivity to soil moisture, the radiative transfer 
equation (Equation 1) is solved using H-polarized TB. The complete radiative transfer 
equation is expressed in terms of k and can be solved using a non-linear iterative 
procedure, by optimizing k. After convergence of the equation, soil moisture content 
is calculated from k using the Wang-Schmugge mixing model (Wang and Schmugge, 
1980).  An overview of the computational process of the de Jeu algorithm is shown in 
Figure 3. For more information about this algorithm, see de Jeu (2003). 
 

Table 3: Polynomial parameters that describe the relation between the absolute value of the 
dielectric constant k and the fitting parameters C1, C2, C3, C4 in the de Jeu algorithm.. 

j 1 2 3 4 
Mj,1
Mj,2
Mj,3
Mj,4
Mj,5
Mj,6
Mj,7
Mj,8

  3.9629 · 10-12 

- 5.0037 · 10-10 

2.5814 · 10-8 

- 7.0276 · 10-7 

1.1020 · 10-5 

- 1.0600 · 10-4 

7.1840 · 10-4 

- 1.0976 · 10-3

 5.9932 · 10-11 

-7.6059 · 10-9 

3.9687 · 10-7 

-1.1018 · 10-5 

1.7748 · 10-4 

-1.7392 · 10-3 

1.1381 · 10-2 

-1.0594 · 10-2

2.4073 · 10-10 

-3.0573 · 10-8 

1.6003 · 10-6 

-4.4697 · 10-5 

7.2593 · 10-4 

-7.1565 · 10-3 

4.7158 · 10-2 

-3.2233 · 10-1

1.9334 · 10-9 

-2.4698 · 10-7 

1.3092 · 10-5 

-3.7305 · 10-4 

6.1918 · 10-3 

-6.0774 · 10-2 

3.4518 · 10-1 

-1.1777
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Figure 3: Flowchart showing the computational process of the De Jeu algorithm. 

 
2.3.3 The Wen algorithm 
 
This algorithm is based on a similar but slightly differently formulated radiative 
transfer equation (Wen et al., 2003): 
 

SpVpBp LTrTLLrT )1()1)(1)(1(),( −+−−+= ωθτ     (14)  
 
where TBp is the brightness temperature at p polarization, which refers to H or V. TV 
and TS are vegetation temperature and soil temperature respectively, rp is soil 
reflectivity at p polarization, L is canopy attenuation given by L = exp(-τsec(θ)). τ is 
the vegetation opacity or optical thickness, which depends on the canopy extinction 
coefficient and height, ω is the single scattering albedo of the vegetation layer. When 
the radiance that is emitted downward from the vegetation layer and reflected by the 
surface layer is neglected –this term is usually very small- equation 14 can be reduced 
to: 
 

SpVBp LTrTLT )1()1)(1(),( −+−−= ωθτ      (15) 
     
The canopy attenuation L is estimated by deriving the Leaf Area Index (LAI) from the 
Normalized Difference Polarization Index (NDPI): 
 

( )
⎥
⎦

⎤
⎢
⎣

⎡
=

),(
),0(ln*cos*

θτ
θ

κ
λθν

NDPI
NDPILAI      (16) 
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where ν is an empirical correlation factor between plant water content and LAI, λ is 
wavelength, κ is a vegetation type dependent factor. Typical values for ν are 3.3 for 
corn and 1.0 for natural grass. For κ typical values are 0.1 m1/2 for sunflower and 0.4 
m1/2 for alfalfa. NDPI can be expressed as follows: (NDPI(0,θ) is the NDPI for bare 
soil.) 
 

hBvB

hBvB

TT
TT

NDPI
,,

,,),(
+

−
=θτ        (17) 

 
where TB,v is vertically polarized brightness temperature and TB,h is horizontally 
polarized brightness temperature. A linear relationship between τ and LAI and thus a 
logarithmic relationship between L and LAI is assumed. 
 
For the single scattering albedo ω constant values are assumed based on van de 
Griend, (1996): 0.05 for vertically polarized radiation and 0.06 for horizontally 
polarized radiation. Now enough parameters in the radiative transfer equation are 
known, a system of 3 equations is set up using brightness temperatures of 3 channels 
to obtain the value of three unknowns: reflectivity for horizontal radiation, reflectivity 
for vertical radiation and surface temperature. 
  
Subsequently, using the vertical and horizontal reflectivity, another system of 2 
equations is set up to correct for the influence of surface roughness, using the results 
of the first equation system as input. The two unknowns are the corrected values for 
respectively horizontal and vertical reflectivity. The equations are based on 
Choudhurry, (1979): 
 

[ ] )cosexp()1( 222 θσkQQ sqspp −Γ+Γ−=Γ      (18) 
 
where Γp is reflectivity of the rough surface and Γsp is reflectivity of the smooth 
surface, p and q are orthogonal polarizations (h and v), k is the wavenumber (which is 
expressed by k = 2π/λ, σ is the standard deviation of the surface height and Q can be 
determined as expression: 
 

[ ])66.0exp(135.0 2 fQ σ−−=        (19) 
 
where f is the frequency of the microwave radiation beam in GHz. From the resulting 
horizontal reflectivity soil moisture is derived according to an approximately linear 
relationship (Yang et al., 2000): 
 

bMa vsh +=Γ *         (20) 
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where a and b are constants at the given soil texture, frequency and incidence angle 
and Mv is volumetric soil moisture content. An overview of the computational process 
of the Wen algorithm is shown in Figure 4 and for more information about this 
algorithm see Wen et al. (2003). 

Tb 10 V 

Non-linear model based 
on radiative transfer 

theory 

Surface roughness 

Tb 6 H 

Soil texture 

LAI 

Surface 
temperature 

Dielectric 
constant 

Volumetric Soil 
Moisture 

Soil reflectivity 

Smooth surface  
reflectivity 

Tb 6 V 

Tb 10 H 

Tb 10 V 

Figure 4: Flowchart showing the computational process of the Wen algorithm. 

2.4 Validation datasets 
 
Two data sets were used to compare and validate the retrieval algorithms described in 
the previous sections, one from Mongolia and the other from Iowa. 
 
2.4.1 Mongolia Match up dataset 
 
In this dataset, provided by NASDA (now JAXA), AMSR-data and ground 
measurements were processed and georeferenced into a grid of 26 x 26 pixels between 
45.0° and 47.5° N, and 105.5° and 108.0° E. The spatial resolution of the grid is 0.1°. 
The location of the area in Mongolia is shown in Figure 5. The period covered was 
three months, between July 1 and September 21 2002. Some gaps were present in the 
data, especially during the beginning of August. In addition to this gridded data, the 
same data was provided as point type data. A file was provided for each satellite 
overpass and each observation site containing the AMSR brightness temperatures in 
all of its frequencies and the observed soil temperature and soil moisture at 3 and 10 
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cm depth (for the 12 hours before and after the overpass). These observations were 
taken at in situ stations, which provide continuous measurement of soil moisture 
content (Kaihatsu, 2003). A picture of such an observation station can be found in 
Appendix B.  
 

 

105.5 105.6 105.7 105.8 105.9 106 106.1 106.2 106.3 106.4 106.5 106.6 106.7 106.8 106.9 107 107.1 107.2 107.3 107.4 107.5 107.6 107.7 107.8 107.9 108

Figure 5:  Location of the study area (left; the dark square) and the observation points in the 
study area (right).  Satellite observations are averaged over the smaller box around the 

observation points.
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For the validation of the algorithms, the soil moisture was retrieved over the whole 
2.5° by 2.5° grid using the gridded brightness temperatures. The in situ observation 
locations were centered in a small part of the larger match-up (see Figure 5). It was 
not considered valid to compare a retrieval over the whole area with the relatively 
small observed area. Therefore, a validation box was defined around the observation 
locations and only pixels within this box were used for our analyses. This box was 
located between 45.8° and 46.8° N, and 106.1° and 107.5° E. The retrieved soil 
moisture was then averaged over this smaller area and statistically compared with the 
averaged observed values. The locations of observation points and the box mentioned 
above are also shown in Figure 5. Observed values were available at 3 and 10 cm 
depth, but considering the penetration depth of microwave radiation at the used 
frequency (which is assumed to be less than 3 cm, namely in the order of 1 - 1.5 cm), 
only the observations at 3 cm depth were used.  
 
2.4.2 Soil Moisture experiments 2002 
 
Soil Moisture Experiments 2002 took place in an area around Ames, Iowa, from June 
25 to July 12, 2002. This area was selected to provide a dataset for the development 
and verification of alternative soil moisture retrieval algorithms under significant 
biomass levels associated with agricultural crops (SMEX02, 2002). The location of 
the research area in latitude/longitude coordinates and in UTM coordinates is shown 
in Figure 6. 
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Figure 6: The SMEX02 study area. Coordinates are in UTM Zone 15, WGS84, in meters and in 
WGS84 Lat/Lon. These coordinates represent the pixel centers of each corner pixel. The coordinate 
system is designed for representation with 30 m pixels in UTM, WGS84.  Ancillary data is provided, 

formatted in the resulting 1851 x 3831 matrix (VWC and Land cover). In the right plot the 
distribution of observation points (dots) and AMSR-E footprints (crosses) is shown. 

 
 
 
 
 
 
Nearly 95 % of the region is used for row crop agriculture. Corn and soybean are 
grown on approximately 80 % of the row crop acreage with more than 50 % corn, 40-
45 % soybean and the remaining 5-10 % in forage and grains. 
  
Regional observation sites were selected to provide representative coverage over an 
area large enough to include several AMSR sized footprints. Selection of the size was 
based on factors like geographic distribution, travel time, balance of corn and soy 
bean, soil types and permission to use.  At these sites soil moisture was sampled to 
provide a reliable estimate of the volumetric soil moisture content mean and variance 
within a single satellite passive microwave footprint (~ 50 km) at the overpass time. A 
grid of 47 sites covering approximately 50 x 100 km was sampled once every day. 
The primary measurement at each site was the 0-6 cm dielectric constant measured by 
a device called Theta Probe. The Theta Probes were calibrated using site-specific 
calibration equations based on supplemental gravimetric soil moisture and bulk 
density sampling. This was done by extracting a sample of the 0-1 cm and 1-6 cm soil 
layers using a coring tool. Soil temperature was also measured at these 47 sites using 
a hand-held infrared thermometer for surface temperature and temperature probes for 
soil temperatures at 1, 5 and 10 cm depths. Observed data used for validation in this 
study are the Theta Probe measurements over the top 6 cm of the profile, and soil 
temperature at 1 cm depth (SMEX02, 2002). 
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3 Methodology 

3.1 Ancillary Datasets 
 
The algorithms require different amounts and kinds of input data. The Jackson 
algorithm requires land cover data to filter out ‘bad’ pixels, vegetation cover data to 
compute optical depth and soil texture information to calculate the soil moisture 
content from the dielectric properties. The de Jeu algorithm uses the soil texture 
information as well, but does not require a land-cover based filter and attempts to 
retrieve vegetation properties directly. The Wen algorithm requires soil moisture 
observations to calibrate the soil texture coefficients in Equation 20 and attempts to 
retrieve vegetation properties directly from brightness temperature data as well. To 
ensure a proper comparison between the algorithms however, the same pixels should 
be used for all retrievals. Therefore, the land cover and rainfall filters in the Jackson 
algorithm were also applied to the de Jeu and Wen algorithms. 
  
For land cover information in the Mongolian area, the global 8-km scale product from 
the University of Maryland (http://glcf.umiacs.umd.edu) was used. Soil texture 
information came from Reynolds et al. (2000). The following land cover types were 
considered for retrieval: 
 
         1.  wooded grasslands/shrubs   
         2.  closed bushlands or shrublands 
         3.  open shrublands 
         4. grasses 
         5. bare 
         6. mosses and lichens 
         
A change that was made to the Jackson algorithm was the replacement of the NDVI 
with the Enhanced Vegetation Index (EVI). This is developed by the Terrestrial 
Biophysics and Remote Sensing Lab (2003) and derived from MODIS data. This data 
appeared to be in better agreement with ground vegetation observations, because the 
images were real-time, as the NDVI originally used was averaged over 10 years. EVI 
can be described as follows: 
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ρρρ
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    (21) 

 
Where G is a gain factor, L is a canopy background brightness correction factor, C1 is 
an atmosphere resistance red correction coefficient and C2 is an atmosphere resistance 
blue correction coefficient. C1 and C2 are meant to correct for the influence of 
aerosols. To derive EVI, a value for G of 2.5 is used; L is 1, C1 is 6 and C2 is 7.5.  
 
In the three-month period used for the comparison, EVI data was available at six 
dates, spread over the period. For the other dates, EVI was linearly interpolated 
between these six days. In Figure 7 the VWC, which is directly computed from EVI by 
means of a set of linear relations (Equation 7) for the period of the experiment in 
Mongolia is shown. Since the multipliers in Equation 7 are arbitrarily and based on 
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experience, Equation 7 was used to compute VWC from EVI as well, assuming the 
differences between NDVI and EVI very small.  
 
Also a change was made to the Wen algorithm: since the coefficients in Equation 20 
are difficult and unpractical to determine for both the Mongolian and the SMEX02 
datasets, instead of Equation 20 the dielectric constant was calculated from the 
smooth surface reflectivity for horizontally polarized radiation using the inverted 
Fresnel equation (Equation 9) and subsequently the VSM was calculated from the 
dielectric constant using the Wang-Schmugge dielectric mixing model, using the same 
soil texture datasets as the Jackson and de Jeu algorithms.  
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Figure 7:  Average VWC as derived from EVI for the Jackson algorithm during the time period of 
the Mongolia experiment.

 
For the SMEX02 dataset, a large amount of ancillary data for the specific location and 
period was available. Of these data, the VWC and Land cover data were used. VWC 
data was available over the whole area with a 30 m pixel resolution (see Figure 6). 
The average VWC over the area during the experiment period is shown in Figure 8. It 
was estimated using Landsat TM data, available at 5 dates during SMEX02.  For the 
process of deriving VWC see Appendix C.  
 
Land cover data was used in all algorithms. During SMEX02 the area was classified 
using Landsat TM data. For classification procedures see Appendix C.  As a result, 
the following classes (also with a resolution of 30m, Figure 5) were used: 
 

0 Unclassified 
1 Alfalfa 
2 Corn 
3 Grass 
4 Soybean 
5 Trees 
6 Urban 
7 Water 
10 Overlaid Roads 
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Of these classes, classes 1, 2, 3 and 4 were considered to be retrievable. Pixels 
containing other classes were filtered out.  
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Figure 8: Average VWC as derived from the SMEX02 ancillary dataset for the Jackson 
algorithm during the experiment period of SMEX02.  

3.2 Data quality check 
 
A data quality check was performed on the Mongolian data set. Several kinds of 
analyses and plots were produced (Appendix A). The features observed in the quality 
check were taken into account in the rest of the procedures. The first check was to see 
whether there was any connection between the (observed) soil moisture contents and 
the horizontally polarized brightness temperatures at lower frequencies (6 and 10 
GHz), which are supposed to be the most sensitive to changes in soil moisture 
content. This was done by plotting moisture content and brightness temperature 
against each other in scatter plots. These graphs are shown in Figures A.1 and A.2 of 
Appendix A, for all the twelve observation locations in the area, for brightness 
temperatures of both ascending and descending orbits. Since generally a trend seemed 
to exist of increasing soil moisture with increasing brightness temperature, which is 
the opposite of what’s to be expected, additional analyses were performed.  
 
Firstly, the temporal patterns of both observed soil moisture and brightness 
temperatures were  compared (Figures A.3 and A.4 of Appendix A). It appeared that 
rainfall events (large drops in brightness temperature) corresponded with sharp 
increases in soil moisture content. After producing the same plots for surface 
temperature (Figure A.6), it was concluded that both observed and satellite data are in 
good agreement from temporal respect. Secondly, to eliminate the influence of surface 
temperature, brightness temperatures are normalized to emissivities (Figure A.5) and 
lastly, since the Mongolian dataset was already georeferenced, the spatial pattern of 
brightness temperature of the provided dataset is compared to the original AMSR-E 
data, resampled to the same 26 x 26 matrix as the provided dataset. Original and 
provided data appeared to be in good agreement from a spatial point of view. It was 
concluded that the brightness temperatures were provided for correct area and period 
(no mistakes were made). Therefore, the features observed here have to be taken into 
account during the interpretation of the results.  
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3.3 Running the algorithms for the Mongolian dataset 
 
For the Mongolian dataset, the already processed and georeferenced brightness 
temperatures (see previous section) were used as input. For the actual soil moisture 
computation brightness temperatures at the lowest possible frequencies were used, i.e. 
6.9 GHz horizontally polarized for the Jackson algorithm and 6.9 GHz dual-polarized 
for the de Jeu algorithm. The Wen algorithm used 6.9 GHz dual-polarized, 10.65 GHz 
vertically polarized and in addition to estimate the LAI 10.65 GHz dual-polarized. 
The rainfall- and data quality filters require additional bands, namely TB at 18, 23, 36 
and 89 GHz. Since the TB-value measured at the satellite is composed of the 
brightness temperature of the surface and the atmosphere, a correction factor for 
atmospheric effects was introduced. All TB-values used in the retrievals were 
subtracted with 3 Kelvin, since sky brightness is constant for most atmospheric 
conditions ( Jackson, 1993). 
 
For the Jackson algorithm, values of the h- and b-parameters are determined by means 
of an optimization run where different combinations of parameter values were 
evaluated. The combination producing the lowest statistical errors (see section 4.5) 
was selected and  used in the retrievals. In the de Jeu algorithm the single scattering 
albedo was assumed to be constant at a value of 0.06. For computation of soil 
moisture content from dielectric constants the Wang-Schmugge dielectric mixing 
model (Wang and Schmugge, 1980) was used in all algorithms. Besides the roughness 
parameter h, which is assumed to be 0.2, the Wen algorithm requires some additional 
parameter settings. Some are defined in chapter 2.3.3 (Equation 16), other parameters 
are factors to account for the difference in transmissivity and single scattering albedo 
between the two frequencies that are used in the retrieval. The factor with which the 
transmissivity for 6 GHz is multiplied to obtain transmissivity for 10 GHz is 0.5 and a 
similar factor for single scattering albedo is 0.9. To calculate vegetation optical depth 
in the Wen algorithm the LAI is multiplied by a factor k, similar to the b-parameter in 
the Jackson algorithm. For the Mongolian dataset this factor is assumed to be 0.3. 
These three multipliers in the Wen algorithm are dependent on vegetation conditions 
and frequency and their values are estimated based on experience and trial and error. 
As is already mentioned, the LAI is estimated from TB at 10.65 GHz. The estimation 
method is based on linear regression and it appeared to be difficult to obtain 
reasonable values: probably due to lack of pixels in the images LAI values differed 
significantly between various days. Retrievals were performed using both estimated 
and a constant value of LAI. The retrievals are compared statistically in Table 4 and 
graphically in the upper two plots of Figure 9. The constant value assumed for the 
Mongolian dataset was 0.5. This seemed a reasonable value considering the pictures 
of the landscape in Appendix B. As can be seen in Table 4 errors were significantly 
lower for the constant value of LAI. In Figure 9 it can be seen that with the estimated 
LAI VSM is constantly and significantly overestimated. Therefore, the retrievals for 
the Mongolian dataset were performed using a constant value of LAI. For a more 
detailed explanation of the values in the Table 4, see section 3.5.   
 
Each algorithm was used to produce output information in terms of computed soil 
moisture, soil temperature, and, for the de Jeu algorithm, also optical depth for each of 
the 676 pixels for each day, as well as averaged over the pixels in the box described in 
section 3.2. Since overpass times of the satellite are at 1:30 AM and 1:30 PM, all 
computations were subject to diurnal cycles, so temperatures and VSM differed at 
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these times. Therefore, all analyses were separated in ascending and descending 
orbits. 
Table 4: Statistics for the Wen algorithm retrievals for both datasets: using estimated LAI by TB 
10 GHz, or a constant value of  0.5 for the Mongolian dataset and 1.5 for the SMEX02 dataset. 

Ascending Descending Mongolia 
dataset Estimated 

LAI 
LAI = 0.5 Estimated 

LAI 
LAI = 0.5 

Bias VSM  5.0881 0.3803 6.4589 0.8995 
SEE VSM  6.6554 2.9482 6.6554 2.8369 
% of days 
with error < 3 
%  

29.8 78.7 20.9 72.1 

Ascending Descending SMEX02 
dataset Estimated 

LAI 
LAI = 1.5 Estimated 

LAI 
LAI = 1.5 

Bias VSM  -6.2592 -4.9727 1.1806 0.3156 
SEE VSM 9.0527 8.4073 9.6089 4.5683 
% of days 
with error < 3 
% 

25.0 37.5 62.5 62.5 

3.4 Running the algorithms for the SMEX02 dataset 
 
In populated areas, there can be sources of Radio Frequency Interference (RFI) at the 
same frequency as the channels that are used by AMSR (Li et al., 2003). The effects 
of this RFI can be considerable. While this problem was relatively small in Mongolia 
due to the sparse population, in Iowa this problem was significant.  

 -19- 
  

 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ob s SM  [ %]

Es
t S

M
 [%

]

est imat
ed  LA I
LA I=1.5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ob s SM  [ %]

Es
t S

M
 [%

] est imag
ed  LA I

LA I=0 .5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ob s SM  [ %]

Es
t S

M
 [%

] est imag
ed  LA I

LA I=0 .5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Obs SM [%]

Es
t S

M
 [%

] estimate
d LAI

LAI = 0.5

Figure 9: Retrieval results of the Wen algorithm for the Mongolian dataset in the upper two 
plots and the SMEX02 dataset in the lower two plots. Ascending orbits are left and 

descending orbits are right, for both estimated LAI using TB 10 GHz and a constant LAI (0.5 
for Mongolia and 1.5 for SMEX02). 
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Therefore, the algorithms could not be used in a straightforward manner with using C-

ce roughness parameter h in the Jackson and Wen algorithms was assumed 

uring the SMEX02 experiment, an aircraft sensor that was similar to AMSR-E was 

band. As a result, brightness temperatures at the slightly higher X-band were used. 
The bands that will be used for each algorithm are 10 GHz horizontally polarized for 
the Jackson algorithm and 10 GHz dual polarized for the de Jeu algorithm. For the 
Wen algorithm, 10 GHz dual polarized and 18 GHz vertically polarized were used. 
Additionally, the rainfall and data quality filters required TB values at 18, 23, 36 and 
89 GHz. For the land use filter, the high resolution land cover dataset of the SMEX02 
dataset was used, as well as the high-resolution VWC data for the Jackson algorithm. 
For soil texture however, the same (global) dataset was used as for the Mongolian 
dataset.  
The surfa
to be (similar to the Mongolian dataset) 0.2. In the de Jeu algorithm h was not taken 
into account. Since the VWC-values increase significantly over the experiment period 
(Figure 8), two values for the b-parameter were selected: in case the VWC was higher 
than 1.5 kg m-2  a value of 0.25 was used, if the VWC was lower than or equal to 1.5 
kg m-2 a value of 0.35 was used. The Wang-Schmugge mixing model to compute soil 
moisture from the dielectric constant that was used in the Mongolia computations is 
only valid for L and C bands (Wang and Schmugge, 1980). Therefore, an alternative 
model, developed by Hallikainen (Hallikainen et al., 1985) was used. This model also 
used soil texture information and the dielectric constant to compute soil moisture 
content and it is described in Appendix D. As a correction for atmospheric effects, 3 
Kelvin was subtracted from all TB-values used in the retrievals in ascending orbits. 
For descending orbits, the atmosphere was assumed to be cooler, so effects would be 
smaller and here assumed negligible. Again, the Wen algorithm required some 
additional parameter settings, which are different from the Mongolian dataset due to 
different frequencies that are used and different vegetation conditions. Similarly to the 
Mongolian dataset, the regression-based estimated LAI and a constant value were 
compared, of which the results can be found in Table 4 and the lower two plots of 
Figure 9. Due to the higher amount of vegetation, as can be seen in the pictures in 
Appendix B, this time a LAI value of 1.5 was assumed. Although the differences were 
much smaller compared to the Mongolian dataset (Figure 9), statistical errors were 
slightly lower as can be seen in Table 4. Therefore, again the constant value is used in 
the retrievals. The multiplier to obtain vegetation optical depth from LAI is higher 
than in the Mongolia retrievals, namely 0.35.  Factors to account for differences in 
transmissivity and single scattering albedo caused by frequency were both 0.9.  
 
D
used as well: the aircraft based Polarimetric Scanning Radiometer (PSR). For details 
on PSR, see Jackson et al. (2002). Due to the smaller scale PSR operates on, it is less 
sensitive to RFI; therefore the C-band of PSR could be used. PSR data were available 
in a grid of 800 x 800 m, but since surface temperature was only available at AMSR-E 
footprint scale (AMSR-E 37 GHz V band), the PSR pixels were averaged to AMSR-E 
footprints. Also, PSR overpasses only occurred during daytime, so only ascending 
AMSR overpasses were used. Parameters that depend on frequency were changed 
with respect to the retrievals using AMSR data for the Jackson algorithm: instead of 
b-values of 0.35 (VWC < 1.5 kg m-2) and 0.25 (VWC > 1.5 kg m-2), values of 
respectively 0.33 and 0.23 were used. Changes in h were assumed negligible, so h 
remained 0.2 in both the Jackson and Wen algorithms. In the de Jeu algorithm there 
were no parameters to be changed: the polynomials in Table 3 are frequency 
independent. The Hallikainen mixing model is frequency dependent and therefore its 
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parameters were changed according to Table D.1 in Appendix D. Since this is again a 
different combination of frequencies and vegetation conditions, some parameters in 
the Wen algorithm were changed as well: although the LAI is, similar to retrievals 
with AMSR data, 1.5, the vegetation multiplier k, which is frequency dependent, is 
0.55. The other multipliers to account for frequency differences are both set at 0.9. 
These values are set, as already mentioned in the previous section, based on 
experience and trial and error. An extensive optimalization of the parameters for all 
conditions in this study was not possible due to lack of time and the fact that the Wen 
algorithm, as it was used in this study, was not very computationally efficient.  
  
Since this time no ready-made matrix was available, retrieval is performed on a 

3.5 Statistical assessment 

fter running all algorithms output information consisted of a file for each day and 

footprint base, where those footprints were selected that fall in the study area. This 
was roughly between latitudes 41.6º and 42.7º N, and longitudes 93.2º and 93.8º W, 
for precise coordinates see Figure 5. The latitude/longitude coordinates of each pixel 
were converted to the corresponding pixel in the VWC and land cover matrices 
(section 4.1). After retrieval, the VSM and TS were averaged over the mentioned 
footprints and compared to the average of the observations in the area. Over all orbits 
(separated for ascending and descending), Bias and SEE were computed for VSM and 
TS. 

 
A
each orbit containing retrieved VSM, TS and vegetation parameters. In addition, each 
algorithm produced two files (ascending and descending orbits) containing average 
values of these parameters over the pixels in the box described in section 3.1 for the 
Mongolian dataset, or over the research area for SMEX02. Over these averages, the 
following statistical quantities were computed over time: the Standard Error of 
Estimate (SEE) and the Bias. The latter can be described as follows: 
 

N

OBSEST
BIAS

i

N

i
i )(

1
−

=
∑
=  .      (22) 

 
here EST is the retrieved value, OBS is the observed value and N is the number of W

observations. The SEE can be described by: 
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 third quantity that was computed was the percentage of observations where the A

difference between estimated and observed values is smaller than 3 %. All three 
quantities can be found for each retrieval in Tables 5 and 6. Besides these statistical 
quantities, for each algorithm temporal plots (observed and estimated average VSM 
and TS over time) and scatter plots (observed versus estimated) were produced. 
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4 Results  
 
In this chapter, the results of the retrievals with all algorithms are described for both 
datasets. First, the results of the Mongolian dataset are discussed. 

4.1 Mongolian dataset 
 
In this section, the results of the analyses for the Mongolian dataset are described. 
First, parameters h and b in the Jackson algorithm were optimized as described in the 
previous section. Graphical results can be found in Figure 10, where it appears that 
the results differ slightly between ascending and descending orbits, but overall the 
optimal value for the b-parameter seems to be 0.3: a little over 0.3 for ascending and a 
little under 0.3 for descending orbits. For this value, the SEE is lowest and the Bias is 
closest to zero. For the h-parameter, the optimal value for ascending orbits seems to 
be lower for descending orbits as well compared to ascending orbits, but overall the 
best value seems to be 0.2. These values were used in the remaining retrievals. 
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Figure 10: Optimization of the b- and h-parameters for the Jackson algorithm and the Mongolian dataset. In the 
upper graphs SEEs for ascending (left) and descending (right) orbits are shown and in the lower graphs the Bias 

for ascending (left) and descending (right) orbits. 

 
Statistical results of all retrievals can be found in Table 5. As follows from Equations 
22 and 23, negative values for Bias mean that VSM was on average underestimated, 
positive values indicate overestimation. It appeared that all algorithms on average 
overestimated the VSM, except for the Jackson algorithm at ascending orbits, where 
VSM was slightly underestimated. In Figure 11 the distribution of the errors can be 
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seen: it appears that at the majority of the days for all algorithms VSM was slightly 
underestimated (max. about 5 percent), while at only a few days VSM was strongly 
overestimated (sometimes up to about 10 percent). The amount of days at which the 
difference between observed and estimated VSM was smaller than 3 % is on average 
about 70 % (Table 5; somewhat higher for the Wen algorithm, somewhat lower for 
the de Jeu algorithm), resulting in very reasonable SEEs for all algorithms: all SEEs 
were between 2.5 and 4.5 %. Especially SEEs for the Wen algorithm are very low 
with only a little over 2 %. Results were about the same for ascending and descending 
orbits. An explanation for the phenomenon that on a small number of days a large 
overestimation occurred can be found in Figure 12, where the observed and estimated 
VSM are shown over time for all algorithms. Here it can be seen that large peaks in 
estimated VSM occurred: for ascending orbits about 3 times during the 3-month 
period, for descending orbits about 5 times. These peaks are the overestimated points 
in Figure 11. It seems that overall the estimated VSM was in the same order of 
magnitude as the observed values, but when sudden changes occurred, estimated and 
observed VSM reacted differently: estimated VSM values rose and dropped in a very 
short time (typically one or two days), while in the observed VSM the results of such 
an event lasted much longer. The underestimations in Figure 11 correspond with the 
days immediately after the peaks. This can also explain the relatively big difference 
between estimations and observations in the first 10 days of the simulation: probably a 
similar sudden rise just before the start of the observed period caused higher observed 
levels of soil moisture. The temporal pattern described above can be seen in Figure 12 
for all algorithms.  

 
Table 5: Summarizing statistics for the Mongolian dataset. 

Jackson de Jeu Wen Mongolia 
Match Up Ascending Descending Ascending Descending Ascending Descending 
Bias VSM  -0.9144 0.3605 1.6498 0.8072 0.3803 0.8995 
SEE VSM 3.2350 3.3799 4.1958 4.1643 2.9482 2.8369 
% of days  
with error 
< 3% 
VSM 

70.2 74.4 63.8 69.8 78.7 72.1 

Bias TS 0.0577 -3.1113 0.0577 -3.1112 13.7744 9.2084 
SEE TS 1.5964 3.2149 1.5964 3.2148 13.8178 9.2717 
% of days  
with error 
< 3 K TS

95.7 37.2 95.7 37.2 0 0 
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As can be seen in Figure 13, the sudden changes in estimated VSM correspond with 
the brightness temperature input data: drops there also occurred in a very short period 
and correspond to the rises in estimated VSM. The anomaly between estimated and 
observed data can partly be explained by the fact that observations took place at a 
depth of 3 cm and the sampling depth of the 6 GHz radiation that was used is only in 
the order of about 1.25 cm. The closer to the surface, the faster the VSM reacts to 
rainfall events and evaporation. After a rainfall event the VSM at 1.25 cm decreases 
faster than the VSM at a depth of 3 cm. Also, as can be seen at the photographs in 
Appendix B, the Mongolian soil contains a lot of stones and rocks. It is known that 
the presence of large amounts of rocks in the soil will reduce the sensitivity to VSM 
for C-band data (Jackson et al., 1992).  
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Figure 11: Scatter plots of observed versus estimated VSM  for the Mongolian dataset and all algorithms, 
ascending (left) and descending (right) orbits. 
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Figure 12: Observed and estimated VSM  over time for all algorithms for the Mongolian dataset, 
ascending and descending orbits.  From top to bottom Jackson, de Jeu and Wen algorithms, ascending 

orbits left and descending orbits right. Triangles are estimated, squares observed VSM. 

 
All algorithms showed a roughly similar pattern, but in the last ±30 days of the period, 
estimated VSM for the de Jeu and Wen algorithms was significantly higher than the 
estimations for the Jackson algorithm and the observed VSM, especially for ascending 
orbits. As can be seen in Figure 13, this rise in VSM corresponds to a slight decrease 
in TB over the same period, which is indeed more distinct in the ascending orbits. A 
reason for this occurring only in the de Jeu and Wen algorithms can be found in the 
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vegetation data: the VWC, which was indirectly presented to the Jackson algorithm as 
ancillary data (Figure 7), rose the first part of the period, then it dropped strongly 
during the last 30 days, from a value of about 0.5 kg m-2 to 0.36 kg m-2. This drop in 
VWC compensated the lower TB values in the Jackson algorithm, so the estimated 
VSM remained at the same level. The other algorithms lacked this ancillary data and 
computed both VSM and vegetation optical depth from TB. The resulting optical depth 
for the Jeu algorithm can be found in Figure 14 and stayed more or less at the same 
level (about 0.2) throughout the period, except for some negative values that occur at 
days with excessively high or low TB-values (Figure 13), presumably caused by 
rainfall events. Optical depth as computed by the Wen algorithm stayed at one level 
due to the constant value of LAI that was assumed. Due to this lack of compensation 
by vegetation information, VSM reacted to the drop in TB causing a higher VSM-level 
for the rest of the period. A second difference between the two algorithms was that the 
estimated VSM by the Jackson algorithm changed rather ‘smoothly’ over time, while 
the estimated VSM by de Jeu fluctuated more abruptly. The Wen algorithm shows a 
bit of both: for ascending orbits estimated VSM varies rather smoothly, for descending 
orbits changes are rather abruptly. This may partly be explained by the ancillary 
vegetation data as well: in the Jackson algorithm VSM was not only dependent on TB 
values but also on the, much more gradually changing, VWC. This had a smoothening 
effect on estimated VSM, while the estimated VSM in the de Jeu algorithm responded 
directly to every change in TB, which also fluctuated rather abruptly, see Figure 13. 
The Wen algorithm used TB values at two frequencies as opposed to the de Jeu 
algorithm, which also has a smoothening effect. From Figure 12 it also appears that 
the low SEE and Bias for the Wen algorithm is mainly caused by the lower value of 
the ‘peaks’ compared to the Jackson algorithm. Overall, apart from the peaks, 
differences between observed and estimated values are smallest for the Jackson 
algorithm.  
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Figure 13: H-polarized brightness temperature over the Mongolian experiment 
period for both ascending (top) and descending (bottom) orbits. 
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In addition, the TS  was evaluated: the Jackson- and de Jeu algorithm used Equation 4 
for that purpose, in the Wen algorithm the non-linear equation system was solved for 
both VSM and TS. The results are shown in Figure 15 and the statistics are 
summarized in Table 5. Especially for ascending orbits in the Jackson and de Jeu 
algorithms observed and estimated values appear to be very close: the SEE was only 
about 1.5 K and 96% of the days were within 3 K of the observed value. For 
descending orbits however, all estimations were structurally below the observed 
values, by about 2 to 3 Kelvin; almost 40 % of the days were within 3 K of the 
observations.  The SEE for descending orbits was almost completely explained by the 
Bias, while the SEE for ascending orbits was relatively large considering the very 
small Bias. This may be explained by the fact that ascending orbits correspond to the 
afternoon (1:30 pm), when local differences can be larger than at night, when the 
descending orbits take place, e.g. in or out the shadow of the observation station. The 
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computed by the de Jeu algorithm for both ascending (top) and descending 
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estimated TS values as obtained by the Wen algorithm were structurally higher than 
observed values, as can be seen in Figure 15. During daytime TS was overestimated by 
more than 13 K, during nighttime descending overpasses by about 9 K. Although the 
Bias was very high, the SEE is hardly higher, indicating almost no deviation around 
the average. No clear physical explanation exists for the large Bias, probably it is 
caused by the parameter settings, which are chosen to obtain reasonable VSM results. 
With other parameter settings, a reasonable TS value may be found, causing less 
reliable VSM values. As already mentioned, an extensive optimization could not be 
performed. As in the Jackson and de Jeu algorithms TS was underestimated for 
descending orbits, the overestimation in the Wen algorithm is smaller for descending 
orbits.   
  
The structural underestimation for the descending orbits may, similar to VSM, be 
explained by the observation depth: TS was estimated using TB values at 37 GHz; this 
corresponds to a sampling depth of about 2 mm, while the observation took place at a 
depth of 3 cm. The closer to the surface, the faster the soil warms up and cools down 
compared to deeper layers. By the time of the descending overpass (1.30 am), the 
surface (at 2 mm depth) has cooled down faster than the soil at 3 cm, resulting in a 
lower estimated TS compared to the observed TS. This would suggest a slightly 
overestimated surface temperature during daytime (ascending orbits) for the Jackson 
and de Jeu algorithms, which can indeed be seen in Figure 15, albeit less clear than 
the underestimation for descending orbits.  

4.2 SMEX02 
 
In this section, first the results are discussed of the retrievals with AMSR-E X-band 
for the SMEX02 dataset, after that the results of the retrievals with PSR C-band will 
be described. In Table 6, the summarizing statistics of all retrievals can be found. In 
Figure 16 the observed and estimated VSM are plotted for the retrievals with the 
AMSR-E TB data, for all three algorithms and both ascending and descending orbits. 
From Table 6 it appears that for this dataset the VSM was mostly underestimated, as 
opposed to the Mongolian dataset. For the Jackson algorithm, the Bias was relatively 
small for both orbits (less than 1 %), but the SEE was relatively high, over 5 %. For 
descending orbits the algorithm performed slightly better, as can be derived from the 
amount of days where the error was less than 3 % as well: 50 % for descending orbits, 
12.5 % for ascending orbits.  The Bias was relatively small because VSM was almost 
equally often over- and underestimated, as can be seen in Figure 16 as well. For the de 
Jeu algorithm, the difference between descending and ascending orbits was bigger, 
which was mainly caused by 3 days with ascending orbits that heavily underestimated 
VSM. Three similar points cause a high negative bias and SEE in the Wen algorithm. 
An explanation for this phenomenon follows later on. These three points caused a 
high negative Bias (-6.5%) and a very large SEE (more than 9%). Apart from these 3 
days, the algorithm didn’t perform worse than for descending orbits: the number of 
days with errors smaller than 3 % was even higher than for descending orbits. The 
Wen algorithm also shows a large difference in  
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Table 6: Summarizing statistics for the SMEX02 dataset. 

Jackson de Jeu Wen SMEX02 
Ascending Descending Ascending Descending Ascending Descending 

Bias VSM -0.9989 -0.4636 -6.5661 -2.2169 -4.9727 0.3156 
SEE VSM 5.4405 5.0948 9.1403 5.1203 8.4073 4.5683 
% of days 
with error 
< 3% VSM 

12.5 50.0 25.0 20.0 37.5 50.0 

Bias TS -8.9115 -13.2631 -8.9345 -13.2751 11.2350 17.4507 
SEE TS 9.4148 15.6898 9.4272 15.6998 17.5059 19.4590 
% of days 
with error 
< 3 K TS

0 0 0 0 0 0 

 PSR C-
band 

(ascending) 

Descending 
without 
days 180 & 
188* 

PSR C-
band 

(ascending) 

Descending 
without  
days 180 & 
188 * 

PSR C-
band 

(ascending) 

Descending 
without  
days 180 & 
188 * 

Bias VSM -2.1385 -0.5865 1.5972 -4.3236 4.3288 0.6134 
SEE VSM 3.6606 3.8066 5.4919 4.7647 12.7106 5.0777 
% of days 
with error 
< 3% VSM 

50.0 62.5 33.3 25.0 33.3 37.5 

Bias TS -7.7906 -15.4666 -7.7997 -15.4816 4.0460 15.0778 
SEE TS 8.3488 16.1595 8.3599 16.1716 6.7101 15.7983 
% of days 
with error 
< 3 K TS

0 0 0 0 16.7 0 

* these two days had in the used dataset exceptionally high or low brightness temperature values. In 
another datasets of the same satellite they didn’t occur at all. Therefore here these days are omitted 
from the statistics’ computation. 
 
performance between ascending and descending orbits. For descending orbits SEE is 
good: less than 5%. As opposed to the other algorithms, here VSM is a little 
overestimated. For ascending orbits however, VSM is as much underestimated as with 
the other algorithms. As can be seen in Table 6, statistics were also computed for 
descending orbits in the case when 2 days were omitted, because of excessive high or 
low TB-values at those days. This is illustrated in Figure 17: day number 180 had a 30 
K higher TB-value than the other days and day number 188 was 10 K lower.  For the 
Jackson and de Jeu algorithms SEE values decreased compared to the situation with 
those two days, especially for the Jackson algorithm, while the Bias-es increased for 
both algorithms. In the Wen algorithm the bias increased, but also the SEE. An 
explanation for this can be found in Figure 18. Here it appears that at day numbers 
180 and 188 VSM was overestimated by the de Jeu algorithm, while at other days 
VSM was underestimated. Leaving out these days thus resulted in a higher (negative) 
Bias. Since in the Jacksonalgorithm days where VSM was underestimated and 
overestimated were more evenly  
 
spread, the Bias didn’t change significantly. The SEE decreased because of the large 
errors at the omitted days compared to the other days. For the Wen algorithm 
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however, the errors were smallest at the two omitted days. Therefore, both Bias and 
SEE increased with an equal amount. 
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Figure 16: Scatter plots of observed versus estimated VSM for the SMEX02 dataset and all algorithms, 
ascending (left) and descending orbits (right). AMSR-E TB values are used. 

Figure 17: H-polarized brightness temperature over the SMEX02 experiment period, for ascending and 
descending orbits.
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Figure 18:  Observed and estimated VSM over time for all algorithms for the SMEX02 dataset,  ascending and 
descending orbits.  From top to bottom the Jackson, de Jeu and Wen algorithms, ascending left, descending 

right. Triangles are estimated, squares observed VSM. 

The three days causing very big errors in the de Jeu and Wen algorithms all occurred 
in the end of the retrieval period as can be seen in Figure 18. This cannot be explained 
using TB-values because TB also drops towards the end of the retrieval, but problems 
occurred in this part of the retrieval due to the dense vegetation layer: VWC values 
were about 2 kg m-2 (Figure 8), which is higher than values at which retrieval is 
considered possible by AMSR-E (see section 1.2). Early in the period VWC-values 
were a little over 1 kg m-2, causing less vegetation related problems in the retrieval. In 
the Jackson algorithm this phenomenon is less clear because similar to the Mongolian 
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dataset, by the VWC information provided to the Jackson algorithm vegetation effects 
are taken into account. 
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Figure 19: Vegetation optical depth over the SMEX02 experiment period as computed by the de Jeu 
algorithm for both ascending (left) and descending (right) orbits. 

 
All algorithms performed significantly better for the descending orbits compared to 
the ascending orbits, while observations took place during daytime and thus close to 
the ascending overpass. Also due to this fact, the error introduced by TS (also 
measured during daytime) was smaller for ascending overpasses (see Table 6). One 
explanation for this could be in the atmospheric effects: although a correction of 3 K 
for the ascending orbits was assumed, the atmospheric brightness maybe was higher 
than this value due to higher temperatures causing an overestimation of the TB of the 
surface and subsequently an underestimation of VSM. Another explanation is in the 
dense canopy layer: TS was estimated from TB at 37 GHz, which has a very small 
penetration depth and thus measured the canopy temperature rather than TS.  In 
daytime when the sun is shining, the difference between these temperatures is bigger 
than at night, causing an underestimation of TS, an overestimation of the soil 
emissivity and subsequently an underestimation of VSM. In the results for the de Jeu 
and Wen algorithms this effect was more distinctly visible because, similar to the 
Mongolian dataset, the VWC, which increased strongly over the experiment period, 
was presented to the Jackson algorithm as ancillary data. This caused the VSM for the 
Jackson algorithm to increase, while for the Jeu algorithm, where computed optical 
depth values remained rather constant (see Figure 19), VSM was underestimated 
throughout the experiment period and, due to vegetation issues mentioned earlier, 
especially in the latter part of the simulation. The Wen algorithm performed similar 
due to the constant LAI value that was assumed. The optical depth as computed by the 
de Jeu algorithm (Figure 19) contained some days where the optical depth turned out 
to be negative.  Similar to the Mongolian dataset, this was caused by excessively high 
or low TB-values (such as rainfall events, or when the soil seems locally saturated). 
Note that at both day numbers 180 and 188 (of which the descending orbits were 
omitted) the optical depth was negative.  
 
As can be seen in Figure 20 and Table 6, for the Jackson and de Jeu algorithms TS was 
underestimated for both ascending and descending orbits, while in the Wen algorithm 
TS was, similar to the Mongolian dataset, consequently overestimated. Since 
temperature observations took place in the afternoon, Bias and SEE of TS for 
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descending orbits were much higher (about 5 K) than for ascending orbits, since 
temperatures during nighttime are much lower. For ascending orbits, the 
underestimation was about 8 K, which was explained before: TS was estimated from 
TB at 37 GHz, which measured the temperature of the canopy more than that of the 
soil (which was observed). Especially during daytime, the temperature of the canopy 
is lower than the soil temperature, causing a large underestimation of TS and thus also 
introducing an error to the VSM retrieval. The Wen algorithm structurally 
overestimates TS, predicting roughly the same values for both ascending and 
descending orbits (Figure 20), causing a high overestimation especially for 
descending orbits with a bias of more than 17 K. As explained before for the 
Mongolian dataset these large errors for the Wen algorithm are caused by the 
parameter settings: the algorithm included a large number of guess values; other 
settings could have lead to better TS estimations and probably poorer VSM 
estimations. An extensive optimalization for both VSM and TS was not possible, as is 
explained before as well.  
 
Next, the results of retrievals using C-band from PSR are discussed. Statistical results 
can be found in Table 6, observed and retrieved VSM values are plotted in Figures 21 
and 22.  
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Figure 20: Observed versus estimated TS  for the SMEX02 dataset, for ascending and descending orbits. 
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Figure 21: Observed versus estimated VSM for the SMEX02 dataset using PSR C-band 
data. 
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Figure 22:  Observed and estimated VSM for theSMEX02 dataset with PSR C-band TB, for the Jackson 
algorithm (top left), the de Jeu algorithm (top right) and the Wen algorithm (bottom).

The PSR C-band TB-values (Figure 23) appeared to be on average 3 to 4 Kelvin lower 

 -34- 
  



Evaluation of soil moisture retrieval algorithms - Results 

than the AMSR X-band TB-values (Figure 17). This is due to differences in dielectric-,  
vegetation- and roughness effects between C- and X-band and in correspondence with 
reported differences between PSR C-band and X-band (Jackson et al., 2002). The 

Jackson algorithm results were in good accordance with observations with a SEE of 
3.6 %.  
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Figure 23: H-polarized TB values of PSR for the SMEX02 experiment period. 

 
At some days however, VSM was underestimated resulting in a relatively high 
negative Bias and only 50 % of the days had an error of less than 3 % (Table 6). 
These days mainly occurred in the latter part of the period when due to the dense 
canopy layer the problems occurred that were described earlier, since PSR overpasses 
occurred in daytime and were thus comparable with ascending AMSR overpasses. 
The de Jeu algorithm mainly overestimated VSM which can be explained by lower TB-
values compared to the X-band. Since the algorithm does not have frequency 
dependent parameters that can be adjusted, the lower TB values were not compensated. 
Nevertheless, the algorithm performed better than for the AMSR-data with a SEE of 
5.5. Also the Bias was relatively small, because in the latter part of the retrieval VSM 
was underestimated, compensating the earlier overestimation. This underestimation 
was caused by the dense canopy layer as was explained earlier. For the Wen algorithm 
especially the SEE is very high with 12 %, the Bias is relatively small because over- 
and underestimations compensate each other. As can be seen in Figure 22, there are 
mainly 2 points that cause the large errors: at day number 176 the estimated VSM is 
off the scale with approximately 45 %. At day number 190 VSM is underestimated by 
about 15 %. For the other days the errors are relatively small. An explanation is again 
that the parameter settings should be determined more carefully for changing 
vegetation and radiation conditions.  
 
In Figure 23 the PSR C-band TB-values are shown: no anomalies are present and the 
pattern of the estimated VSM is in accordance with the pattern showing in the TB. 
Surface temperature as computed by the Wen algorithm is surprisingly well in 
accordance with observed values compared to the AMSR-E retrieval (Table 6 and 
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Figure 24): a SEE of less than 7 K for PSR and a SEE of 17 K for AMSR-E. Again, 
this is the result of the parameter settings: while the VSM results were relatively poor, 
results for TS are better. For optimal results of the Wen algorithm a complicated and 
extensive optimalization should be performed for all changing frequencies, vegetation 
and soil conditions, taking VSM as well as TS into account.  
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Figure 24: Surface temperature as computed by Equation 4 for the de Jeu and Jackson 
algorithms and the Wen algorithm for the SMEX02, using PSR C-band data (TS for de Jeu 

and Jackson are the same as in Figure 18). 
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5 Discussion  
 
In this study three soil moisture retrieval algorithms have been compared; one, the 
Jackson algorithm, is based on an inversion of the forward radiative transfer model 
and uses ancillary datasets to account for vegetation effects, while the remaining two, 
the de Jeu and Wen algorithm, solve the radiative transfer equation iteratively and do 
not need ancillary data to account for vegetation. After validation for the specific site, 
all algorithms yielded reasonable results, although the amount of validation that is 
required differed strongly between the algorithms.  
 
Especially the Jackson and Wen algorithms contain many components that have to be 
carefully selected and validated, which makes it difficult to apply at a global scale. 
For example, one has to decide at which frequencies and polarization the brightness 
temperature is measured. In general, the lower the frequency, the larger the sensitivity 
to soil moisture content. In populated areas however, radio traffic interfering with the 
low-frequency radiation causes considerable problems, making it necessary to attempt 
to retrieve soil moisture using higher frequencies.  A second choice that has to be 
made is the selection of the dielectric mixing model. In this study only two have been 
used, but there are more possibilities and each of them has its advantages and 
limitations: the Wang-Schmugge model for example is only valid for L and C-band 
retrievals, while the Hallikainen model is valid for other frequencies but consists of a 
rather simplistic empirical approach, where the effects of porosity and temperature are 
neglected.  
 
Thirdly, vegetation relationships have to be set up. Often ancillary data is provided in 
the form of vegetation indices such as NDVI or EVI. There are several possible 
relations between the index and VWC: in this study, a set of linear equations is used 
(Equation 7), but there are also examples of quadratic functions (Jackson et al., 1999). 
Also the choice which index to use is important: in the Mongolian dataset NDVI 
(averaged over 10 years) and real-time EVI have been evaluated; even though EVI 
was only available at six days,  retrievals using EVI yielded significantly better 
results. Even when VWC is directly presented as ancillary data, such as in the 
SMEX02 dataset, the problem of selecting a proper value for b remains, which has a 
very large influence in areas with a dense vegetation cover. Another parameter for 
which a value has to be selected, the h parameter, has a smaller influence because it is 
associated with the (rather large) incidence angle as is given by Equation 8. In the 
Wen algorithm less ancillary datasets are necessary, but there is a large amount of 
other parameters involved that have to be set, concerning the derivation of vegetation 
conditions from TB-values (or assuming constant conditions as was done in this study) 
and accounting for the differences that occur because TB-values of different 
frequencies are used. A factor that makes this algorithm more complicated is the fact 
that every parameter setting effects both VSM and TS results, causing the necessity for 
a very extensive optimalization. 
 
Apart from the problems mentioned above, there are also site related problems: in the 
SMEX02 area there is for example a dense vegetation cover with a VWC of about 2 
kg m-2, causing considerable problems in the retrieval. In Mongolia, there was the 
problem of the high amount of rocks in the soil, affecting dielectric properties of the 
soil. Thus, the datasets used here did not provide optimal conditions for soil moisture 
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retrieval, but they did provide very different conditions under which a retrieval 
algorithm should be able to retrieve when applied to a global scale.                                                   
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6  Conclusions & Recommendations 
 
In this concluding chapter, the questions that were formulated in Chapter 1 are 
answered and some recommendations for future research are made.  
 
Is it possible to provide reliable estimations of soil moisture content using the 
algorithms proposed in this study?  
When validated for a specific area and frequencies all three algorithms can provide 
reasonable results with standard errors of estimation of a bit less than or equal to 5 %.  
The amount of validation that is required, however, differs significantly per algorithm.  
 
Which of the algorithms provides the most reliable results?  
Although the de Jeu and Wen algorithms in this study yield reasonable results, the 
estimated VSM values fluctuate more in time, and do not react to changes in 
vegetation cover, resulting in higher overall errors compared to the Jackson algorithm. 
The only input for the de Jeu and Wen algorithms consists of satellite brightness 
temperature, while the Jackson algorithm makes use of vegetation information as 
well. Therefore the Jackson algorithm responds to vegetation changes as well, causing 
the rapid fluctuations occuring in the de Jeu algorithm to be smoothened, resulting in 
a better accordance with observed data. Especially in areas and time periods where 
vegetation cover changes significantly, such as in the SMEX02 dataset, ancillary data 
appears to be a necessity. Without that, observations and estimations can differ 
significantly. Besides, when comparing the results of different datasets and orbits for 
each algorithm, it appears that for the Jackson algorithm these differences are by far 
smallest. Especially in the SMEX02 dataset, there were large differences between 
ascending and descending orbits for de Jeu and Wen algorithms. This indicates a 
bigger robustness for the Jackson algorithm: when validated properly this algorithm is 
capable of providing equally reliable results in different conditions, while the de Jeu 
algorithm is hard to validate and the Wen algorithm requires a validation that is too 
complicated.   
 
Which of the proposed algorithms is most suitable for application at a global scale?  
It can be said that ancillary data makes it more difficult to apply an algorithm like the 
Jackson algorithm at a global scale: proper datasets with a resolution that is high 
enough are not always available, and the kind of dataset to be used can differ per area. 
In addition, the parameters that are often associated with ancillary data (e.g. b) can 
differ per area. Although the Wen algorithm does not use much ancillary data it 
contains a lot of area- and frequency dependent parameters which makes it difficult to 
apply globally as well. An algorithm like the de Jeu algorithm, which does not need 
much ancillary data and contains hardly any area- or frequency dependent parameters 
is much easier to apply globally.  
 
Are the datasets that are used suitable for validation and evaluation of the three 
algorithms?  
As was already mentioned, in the research area in Mongolia vegetation was very 
sparse but the soil contained many rocks, which affects the sensitivity of microwave 
radiation to soil moisture content. On the other hand, in the SMEX02 area a very 
dense vegetation was present, especially during the latter part of the retrieval period 
causing problems in the retrieval. In the Mongolian dataset the measuring devices 
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measured at depths that were deeper than the sensing depth of the microwave 
radiation, which is also causing an error between estimated and observed values. 
Concluding, the datasets used here did not provide optimal conditions, but they did 
provide very different conditions in terms of soil and vegetation. Since the goal is to 
apply the algorithms to a global scale and since optimal conditions are sparse the 
combination of these datasets provided a good test case for the algorithms.  
 
Finally, some recommendations for future research are made. As is already mentioned 
many different soil moisture retrieval algorithms have been proposed, of which only 
three were compared in this study. In future research other algorithms can be taken 
into account as well. Since ancillary data can be very important for reliable retrievals, 
existing datasets containing soil texture, NDVI or VWC can be improved or newly 
created with a global coverage and a high resolution. Another aspect that can be and is 
constantly improved is the satellite sensor; at the moment the most promising passive 
microwave sensor is AMSR-E, but more sophisticated sensors are currently being 
developed, providing higher spatial resolution and lower frequency (e.g. L-band). It 
will be a great challenge to develop reliable, global scale retrieval algorithms for new 
satellites. Also, since the eventual goal is to obtain global estimations of soil moisture 
content, algorithms should be evaluated under a variety of conditions and in many 
different areas, because when an algorithm works for a dataset, that is not a guarantee 
it will work in other cases as well.  
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Appendix A Data quality check 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure A.1: Obs. VSM versus TB 6 and 10 GHz, ascending and descending orbits for the first 6 
obervation points. 
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Figure A.2: Obs. VSM versus TB 6 and 10 GHz, ascending and descending orbits for the latter 6 
obervation points.
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Figure A.3: Average TB 6 H, TB 10 H and Observed Soil moisture over time, ascending orbits.
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Figure A.4: Average TB 6 H, TB 10 H and Observed Soil moisture over time, descending orbits. 
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Figure A.5: Relationship between emissivity (ratio of brightness temperature TB and surface 
temperature TS), and observed soil moisture content for ascending and descending orbits. 
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Figure A.6: Observed soil temperature at 3 cm depth and TB at 6 GHz H/V in time, for ascending 
and descending orbits.
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Figure A.7: Comparison of spatial patterns between match-up dataset and original AMSR 
footprint data. 
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Appendix B  Pictures of the research areas 
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Figure B.1: Pictures near all twelve of the observation sites in the Mongolia study area.
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Figure B.2: One of the 12 observation stations (top) and impression of the landscape (bottom) in 
the Mongolian study area. 
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Figure B.3: Landscape in Iowa (SMEX02) soy crop (upper) and corn crop (lower). 
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Appendix C Derivation of ancillary datasets for SMEX02  
 
To begin, this analysis requires that TM bands needed to be atmospherically corrected 
prior to any analysis.  This topic is covered in the NDVI/NDWI dataset discussion and 
will be assumed to be accurate for the purposes of VWC calculation. 
 
Regional Calibration 
 
Preliminary Regional VWC maps were generated in a similar manner to the 
Watershed, with some key exceptions.  Three sets of scenes were available for the IA 
Region during the experiment, June 23, July 1, and July 17.  The two scenes for each 
day were mosaiked together and regional maps of NDWI were generated.  From these 
NDWI maps, VWC maps were generated using the same relationships that were 
developed in the WC region. From these three scenes, a linear interpolation was 
developed for the entire study period.  To verify the accuracy of this preliminary 
interpolation method, the WC sampling sites  
were revisited and statistics were recalculated. 
 
Total:  Bias: -0.1883 rmse: 0.5381   R2: 0.9150 
Corn:    Bias: -0.2619   rmse: 0.6501 
Soy:  Bias: -0.0497 rmse: 0.1965 
 
The high Corn bias can be explained by the inability to interpolate during the later 
stages of the study period, when there was a precipitation event and rapid growth.  
This fact coupled with the tendency for NDWI to saturation at approximately 0.5 
kg/m2 results in the poor fit of this data. 
 
A primary reason for the preliminary nature of this data is the presence of clouds on 
7/17/02 which potentially influenced VWC readings for that area.  Future datasets will 
provide a better remedy for this issue.  
 
Procedures for Landcover Classification for SMEX02 area: 
 

1) Collected Ground truth throughout the SMEX02 site on two separate trips ( 
June and July ) 

 
2) Ground truth was converted to AOI’s and 1/3 of each class were set aside for 

verification purposes  
 

3) Landsat TM data for three dates: May 14th, July 1st, July 17th were collected 
and imported to ERDAS for Path 26/Row 31.  This path/row covered most of 
SMEX02 .  In addition, the southern portion of Path 26/Row 30 was added to 
complete the entire area. 

 
4) The May 14th and July 17th images were referenced to the July 1st image.  

 
5) The study area was split into two pieces due to clouds.  The North and South 

areas were cloud free on all three dates, while the center portion ( 
approximately at equal latitude with the City of Ames ) was  cloud covered on 
July 17th. 
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6) Bands 3,4,5,7 were extracted for each date. 

 
7) For the North-South area, a 12 band image was created and for the Middle 

area an 8 band image was created. 
 

8) Training classifications within AOI’s used ISODATA reiterations.  Means 
were initialized along diagonal axis and standard deviations were set to one.  
Maximum iterations were set to 24, convergence thresholds were set to .990 

 
9) Signatures based on AOI’s were combined into one large signature file for 

each area and used within supervised classification.  The supervised 
classification used the non-parametric rule of parallelepiped and the 
parametric rule of Mahalanobis distance.    In the process of optimizing the 
classification, other variations were used for the supervised classification but 
this was found to be the best. 

 
10)  The two areas (north-south and middle) were joined together.  In the areas 

where the two areas overlapped the following conditions were applied. If the 
middle was alfalfa the merged was alfalfa. If the middle was corn and the 
north-south was not soybean, the merged version was corn. If the middle was 
corn and the north-south was soybean, the merged image was soybean. If the 
middle area was grass the merged was grass.  If the middle area was trees, 
urban or water the merged version was whatever the north-south classification 
had been. If the middle was soybean and the north-south was grass, the 
merged was grass. Lastly if the middle was soybean and the north-south was 
not grass, the merged was soybean. 

 
11)  Accuracies were calculated using the AOI’s that had not been used in the 

classification process. 
 
The table is as follows: 
 
Final mergeGround
Image Alfalfa Corn Grass Soybean Trees Urban Water Total Accuracy
Alfalfa 66 3 20 1 90 73.33333
Corn 12 19291 209 379 17 10 19918 96.85209
Grass 50 97 472 93 104 4 46 866 54.50346
Soybean 136 66 63 14429 14 14 1 14723 98.00312
Trees 18 100 45 72 77 63 375 20.53333
Urban 3 2 7 20 1 2 0 35 5.714286
Water 7 5 1 6 56 75 74.66
Total 285 19563 804 15014 220 20 176 Total Accuracy
Accuracy 23.15789 98.60962 58.70647 96.10364 35 10 31.81818 36082 95.319

667

 
 

 
Corn and soybean accuracies are quite good.   However due to the large sample size 
of the corn and soybeans accuracies in other land features are not as good.   Small 
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misclassifications in the soybean or corn areas, can create larger inaccuracies in other 
classes.   
 
Accuracies to the right of the chart are based on the image being the correct class for 
the the ground truth.  For example, of 90 classified alfalfa pixels 66 of them are in the 
ground truth for alfalfa, for 73% accuracy.   The accuracy at the bottom of the chart is 
the ground truth being compared to the image.  For  example of the 285 pixels that 
were deemed to be alfalfa on the ground only 66 of them were classified to be alfalfa, 
while 136 of them were classified as soybean.     
 

12) Lastly, the classified image was registered to the road network provide by the 
Iowa Department of transportation.   The road network was converted into an 
image where each road was 60 meters wide.  This image was embedded onto 
the classified image to remove the speckle along the roadways and to improve 
the aesthetic quality of the image. 
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Appendix D Dielectric mixing models 
 
The Wang-Schmugge model    
      
In the Wang-Schmugge (Wang and Schmugge, 1980) model the dielectric constant ε 
of a soil-water mixture is described as: 
 

rax PP εεθεθε ⋅−+⋅−+⋅= )1()( ,     tθθ ≤  
 (D.1) 
 
with 
 

γ
θ
θεεεε ⋅⋅−+=

t
iwix )(        

 (D.2) 
and 
 

rawtxt PP εεθεθθεθε ⋅−+⋅−+⋅−+⋅= )1()()( ,   tθθ >  
 (D.3) 
 
with 
 

γεεεε ⋅−+= )( iwix         
 (D.4) 
 
Where θ is the volumetric water content [m3 m-3] of the soil, P the porosity  of the dry 
soil (total volume occupied by pores per unit volume of soil), γ is an empirical 
parameter and θt is the transition moisture [m3 m-3]. εa, εw, and εi, in sequential order, 
are the dielectric constants of air, water, rock and ice. εx stands for the dielectric 
constant of initially absorbed water. The transition moisture is defined as the moisture 
content at which the free water phase begins to dominate the soil system and can be 
described as: 
 

165.049.0 +⋅= WPtθ        
 (D.5) 
 
Where WP is the wilting point of soil in [m3 m-3]. When WP is unknown but there is 
information about the particle size distribution of the soil, WP can be redetermined as: 
 

CLAYSANDWP ⋅+⋅−= 00478.000064.006774.0     
 (D.6) 
 
Where SAND and CLAY are the sand and clay contents in percent of dry weight of a 
soil. γ can be estimated by: 
 

481.057.0 +⋅= WPγ         
 (D.7) 
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the complex dielectric constants for ice (εi), solid rock (εr) and air (εa) are 3.2+0.1i, 
5.5+0.2i and 1+0i, respectively. The dielectric constant for water (εw) is given by the 
Debye equation: 
 

iftw

ww
ww )2(1

0

⋅⋅⋅+
−

+= ∞
∞ π

εε
εε        

 (D.8) 
 
Where εw∞ is the high frequency limit of the dielectric constant of pure water (≈ 4.9), 
εw0 is the static dielectric constant of pure water, tw the relaxation time of pure water 
in seconds, and f is the electromagnetic frequency in Hz. Equation D.8 can be divided 
in a real and an imaginary part. The real part is defined by Ulaby et al. (1986): 
 

2
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)2(1
'

ftw

ww
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∞ π
εε

εε        

 (D.9) 
 
and the imaginary part as: 
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 (D.10) 
 
The static dielectric constant of pure water is given as: 
 

35

24
0

)15.273(10075.1

)15.273(10295.6)15.273(4147.0045.88

−⋅⋅

+−⋅⋅+−⋅−=
−

−

T

TTwε   

 (D.11) 
 
where T is the effective temperature of the emitting layer in Kelvin. The relaxation 
time of pure water is: 
 

316214

1210

)15.273(10096.5)15.273(10938.6

)15.273(10824.3101109.12

−⋅⋅−−⋅⋅

+−⋅⋅−⋅=
−−

−−

TT

Ttwπ
   

 (D.12) 
 
 
 
The Hallikainen model 
 
Using an extensive database of measurements for different soil textures and 
frequencies, Hallikainen et al. (1985) developed empirical functions that take into 
account both factors.  
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c
cabb

2
)'(42 ε

θ
−−+−

=        

 (D.13) 
 
Where θ is the soil moisture content and ε’ is the real part of the dielectric constant of 
the soil-water mixture. a, b and c are described as: 
 
 
 
 
 

)()( 210 CLAYaSANDaaa ++=       
 (D.14) 

)()( 210 CLAYbSANDbbb ++=       
 (D.15) 

)()( 210 CLAYcSANDccc ++=       
 (D.16) 
 
where SAND and CLAY are the percentages of sand and clay in the soil. The 
coefficients a0…c2 were derived by fitting to experimental data at specific 
frequencies and some values are summerized in Table D.1. 
 
Table D.1: Coefficients for the real part of the dielectric constant from Hallikainen et al. (1985) 

Frequency 
[GHz] a0 a1 a2 b0 b1 b2 c0 c1 c2

1.4 2.862 -0.012 0.001 3.803 0.462 -0.341 119.006 -0.5 0.633 
6 1.993 0.002 0.015 38.06 -0.176 -0.633 10.72 1.256 1.522 
10 2.502 -0.003 -0.003 10.101 0.221 -0.004 77.482 -0.061 -0.135 
18 1.912 0.007 0.021 29.123 -0.19 -0.545 6.96 0.822 1.195 
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