

Wireless Sensor Networks for Deficit Irrigation Management

Jos Balendonck, Jochen Hemming, Bart van Tuijl (Wageningen UR)
Luca Incrocci, Alberto Pardossi (University of Pisa)
Paolo Marzialetti (Cespevi, Pistoia)

International Conference on Agricultural Engineering

Hersonissos, Crete – Greece, 23-25 June 2008

Outline

- Deficit Irrigation
- Setup of the Flow-Aid system
- Wireless Sensor Networks demands
- Experimental setup
- Results
- Conclusions
- Current on-going work

Full (over) irrigation ...

... in cases of high (fresh) water availability

- Used water amounts depend on availability
- Leaching or run-off of water and nutrients

We need precise control of soil water

Deficit Irrigation ...

...if water availability and irrigation water quality is low

- Use of marginal water resources
- Yield losses and crop damages (EC rises)

We need precise control of soil water and EC

Objectives of FLOW-AID project

- Efficient use of fresh water resources
- Rational use of nutrients and marginal water resources
- Affordable and Simple Farm-level Irrigation Tools
 - Decision Support System (software)
 - Tools to determine amount and source of water (hardware)

Decision Support System (Local)

- Annual Planning
 - Farm Zoning
 - Crop Planning
- Day to day planning
 - Short-term Water Availability
 - Weather Forecasts
 - Plant Status (Crop Model)
 - Allocate water (amount) and
 - Nutrients (source and mixture)
 - Irrigation Scheduler
 - Set (remote) Irrigation Controllers

N. Sigrimis (OP600):
Wireless Sensor Networks and Decision Support for Irrigation Scheduling

Irrigation Controllers (Remote and Wireless)

- Irrigation – Fertigation
 - Individual Farm Zones
 - Stand-alone operation
 - Parameterized
- Activation On/Off
 - Timed
 - Sensor controlled
 - Model based (f.i. ET)
 - Multiple valves (water sources)

Wireless Networks: Why ?

- Precision Irrigation needs a high spatial and temporal density of information
 - Multiple Zones (different soils and crops)
 - Multiple Sensors (inner plot variability)

- Wireless Advantages
 - No cabling (interference with soil treatments)
 - Easy installation and handling (labor costs)

Wireless Networks: Why ?

- Precision Irrigation needs a high spatial and temporal density of information
 - Multiple Zones (different soils and crops)
 - Multiple Sensors (plot variability)
- Wireless Advantages
 - No cabling (interference with soil treatments)
 - Easy installation and handling (labor costs)
- BUT we need: Robustness and Low Costs

Wireless Network Configuration Types

- Star type
 - Nodes have direct communication

Wireless Network Configuration Types

- Star type
 - Nodes have direct communication
- MESH
 - Nodes have indirect communication (hopping)

Wireless Network Configuration Types

- Star type
 - Nodes have direct communication
- MESH
 - Nodes have indirect communication (hopping)
- Hybrid
 - Controllers use a Mesh (hopping)
 - Sensor Nodes communicate directly to Controller Nodes (Star)

Requirements for different Farming Systems

	Open field	Greenhouses	Container crops
Farm size	10 - 100 ha	1 - 10 ha	
Irrigation unit size	3000 m ²	300 m ²	
Spatial sensor resolution	10 / ha	100 / ha	1/100 m ² = 100 / ha
Range	100 - 500 m	10 m - 50 m	
Sample frequency	6 hours (down to 15 m.)	1 hour (down to 1 minute)	

Wireless System Demands

- Communication Robustness: < 5% data loss
- Range: 10-500m (using hopping)
- Maintenance free operation: 4-8 months
- Outdoor Usefulness: All weather conditions
- Connectivity: easy connection to PC/internet
- Low Cost: a user price preferably around € 100

Sensor Node Design

- Mini TX/RX + analog interface
TNODE: Texas Instruments CC1000,
866MHz, 1.5 mW at 17.8 mA (lowest!)
SOWNET Technologies BV, NL

Sensor Node Design

SM200 Volumetric Water Content
DeltaT-Devices, UK

Test location (Italy)

- Experimental Station CeSpeVi, Pistoia, Tuscany
- Nursery stock production
- Container plants (drip/sprinkler, peat-pumice)
- Irrigation unit size: approx. 1200 m²
- Irrigation target: zero-drain
- Dual water irrigation: Cleaned Waste Water and Fresh Water

Experimental layout (Hybrid)

Remote Access via Internet

Screenshot of a Windows desktop showing remote access via LogMeIn and the SOWNet Sensor GUI v3.1a application.

LogMeIn status window: This computer is being remote controlled by USER-90FD55E3D8\LogMeInRemoteUser from kokosnoot.wur.nl.

SOWNet Sensor GUI v3.1a application window:

- Repeater Table:**

Node ID	Last Activity	Status	Battery voltage (V)
200	10 Jun 2008 14:02	connected	3.10
201	10 Jun 2008 14:04	connected	3.05
202	10 Jun 2008 14:05	connected	3.01
- Sensor Table:**

Node ID	Last Activity	Status	Sensor voltage (V)	Interval setting (min)	Battery voltage (V)	Comment
1	10 Jun 2008 14:01	connected	0.262	15	3.640	
3	10 Jun 2008 14:01	connected	0.292	15	3.695	
4	10 Jun 2008 14:01	connected	0.392	15	3.800	
6	10 Jun 2008 14:01	connected	0.605	15	3.610	
7	10 Jun 2008 14:01	connected	0.662	15	3.595	
8	10 Jun 2008 13:52	connected	0.270	15	5.115	
10	10 Jun 2008 14:05	connected	1.215	1	3.545	
11	10 Jun 2008 14:01	connected	0.515	15	3.565	
- Control buttons at the bottom:
 - COM1 dropdown
 - Interval: 15 minutes
 - Clear Repeaters button
 - Clear Sensors button
 - Disconnect button
 - Update button
- SOWNet technologies logo

Results of SM200 readings

Number of Lost Data Packets

Signal Strength versus Relative Humidity

Conclusion

- Communication Robustness
 - Bad (5 -100% data loss)
- Range
 - ~ 10m
- Battery Lifetime
 - ~ 4.5 months, 15 min. frequency
- Outdoor use
 - Battery failure due to direct radiation (heating)
 - Humidity: small effects
- Connectivity
 - Good
- Cost Price
 - High: ~ €300 (sensor, batteries)

Recommendations

- Higher power
- External antenna
- Alignment of antennas
- Double housing (radiation shield)
- Batteries away from antenna
- Explore solar panel (Crossbow: Eko Pro series)
- Watermark (cheap, granular matric sensor)

Redesign of Wireless Sensor Node

Range Performance Test (Line of Sight)

Performance of 8 new nodes

Field test

Crossbow Eko Pro series

Solar Panel
Watermark Sensor

SowNet Technologies

Radiation Shield

SO FAR SO GOOD
AFTER 1 MONTH OPERATION
Range: 60m
Internal Temperatures: OK

eKoView - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Back Favorites Go

Address <http://87.22.177.176:9080/web/index.html#historySessionId=1213099678583&mwAppPageWindowPageIndex=0&mwHomeWindowPageIndex=0>

Welcome, flowaid!

Gateway | Help | Refresh | Sign out

eKoVIEW Crossbow

Sensors Chart Configure Network

Map Dashboard Alerts

Map Panel

Unpositioned Host (0)

Network Alert Sensor None

Save Upload

Node 0

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

EC Project no. 036958 (FP6)

UNIVERSITÀ DI PISA

jos.balendonck@wur.nl www.flow-aid.eu

