SARP Research Proceedings

592033

The following organizations participate in the SARP project:

Bangladesh

BRRI - Bangladesh Rice Research Institute, Joydebpur

P.R. of China

CNRRI - China National Rice Research Institute, Hangzhou, Zhejiang Province

JAU - Jiangxi Agricultural University, Nanchang, Jiangxi Province

ZAU - Zhejiang Agricultural University, Hangzhou, Zhejiang Province

India

CRRI - Central Rice Research Institute, Cuttack, Orissa

DRR - Directorate of Rice Research, Hyderabad

IARI-WTC - Indian Agricultural Research Institute, Water Technology Center, New Delhi

PUAT - G.B. Pant University of Agriculture and Technology, Pantnagar, Uttar Pradesh

TNAU-TNRRI - Tarnil Nadu Agric. Univ., Tamil Nadu Rice Research Institute, Aduthurai, Tamil Nadu

TNAU-WTC - Tamil Nadu Agric. Univ., Water Technology Center, Coimbatore, Tamil Nadu

Indonesia

BORIF - Bogor Research Institute for Food Crops, Bogor

SURIF - Sukamandi Research Institute for Food Crops, Sukamandi, Subang

Korea

CES - Crop Experimental Station, Suweon

Malaysia

MARDI - Malaysian Agric. Research and Development Institute, Kuala Lumpur

UPM - Universiti Pertanian Malaysia, Serdang, Selangor

The Netherlands

AB-DLO - Research Institute for Agrobiology and Soil Fertility, Agric. Res. Department, Wageningen

TPE-WAU - Dept of Theoretical Production Ecology, Wageningen Agricultural University

Philippines

IRRI - International Rice Research Institute, Los Baños

PhilRice - Philippine Rice Research Institute, Muñoz, Nueva Ecija

UPLB - University of the Philippines at Los Baños, College, Laguna

Thailand

KKU - Khon Kaen University, Khon Kaen

SARP Research Proceedings

ORYZA1

An ecophysiological model for irrigated rice production

M.J. Kropff, H.H. van Laar & R.B. Matthews (Editors)

SARP Research Proceedings - September 1994

DLO-Research Institute for Agrobiology and Soil Fertility, Wageningen WAU-Department of Theoretical Production Ecology, Wageningen International Rice Research Institute, Los Baños

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

ORYZA1

ORYZA1 : an ecophysiological model for irrigated rice production / M.J. Kropff ... [et al.] (ed.). - Wageningen : DLO-Research Institute for Agrobiology and Soil Fertility ; Wageningen : WAU-Department of Theoretical Production Ecology ; Los Baños : International Rice Research Institute. - Ill. - (SARP research proceedings) Met lit. opg. ISBN 90-73384-23-0 NUGI 835 Trefw.: systeemanalyse ; rijstbouw / rijstbouw ; Azië.

Cover design: Ernst van Cleef, Wageningen Agricultural University

Printing: Grafisch Service Centrum Van Gils B.V., Wageningen

Preface

This book describes an ecophysiological model for irrigated rice production. The model ORYZA1 has been developed in the SARP project (Simulation and Systems Analysis for Rice Production) which is coordinated by IRRI and Wageningen. It is based on the models SUCROS and MACROS-L1D. This book gives a description of the FST version of the model (Fortran Simulation Translator, see D.W.G. van Kraalingen, C. Rappoldt & H.H. van Laar, Appendix 5 in Goudriaan & van Laar, 1994). The model described is Version 1.3.

The introduction summarizes the history of the development of ORYZA1. Chapter 2 describes the FST version of the model in detail (also a version in Fortran-77 is available). Sections of the model are listed and subsequently a brief explanation is given. You may wish to use the appendices while reading, especially the list of variables. In the text we did not explain all variables to keep it as compact as possible. Chapter 3 describes the procedures for parameterization of the model and Chapter 4 describes the evaluation of the model using data from contrasting growing seasons. The different types of application of the model are described in Chapter 5.

We hope that this model will be of use in your research. We assume that some of you will modify statements in the model or derive new parameters, which can easily be done in the user friendly FST. Please keep us informed of those developments, so that the model can be updated as quickly as possible.

Los Baños, Wageningen, September, 1994 M.J. Kropff¹ H.H. van Laar² R.B. Matthews^{1,3}

Simulation and Systems Analysis for Rice Production (SARP)

¹ International Rice Research Institute (IRRI)

³ Research Institute for Agrobiology and Soil Fertility, Agric. Res. Department (AB-DLO)

² Dept of Theoretical Production Ecology, Wageningen Agricultural University (TPE-WAU)

Contents

1	Introduction	1
2	Description of the model ORYZA1 (Version 1.3)	5
	General structure of the model ORYZA1	5
2.1	Initial conditions	7
2.2	Phenological development of the crop	7
	Calculation of the effective temperature for phenological development	8
	Calculation of phenological development rates	10
	Effect of prolonged periods of low temperature on crop survival	12
2.3	Daily dry matter production	13
2.3.1	Daily rate of gross CO ₂ assimilation of the canopy (DTGA) and light	
	absorption by the canopy (DPARI)	13
	Calculation of daily canopy photosynthesis (TOTASP)	14
	Calculation of instantaneous canopy CO_2 assimilation	18
	Light absorption and CO ₂ assimilation by stems and reproductive organs	23
2.3.2	Maintenance and growth respiration	23
	Maintenance respiration	24
	Growth respiration	25
2.3.3	Daily growth rate from CO ₂ assimilation and respiration rates	26
2.3.4	Dry matter partitioning	26
	Spikelet and grain formation	28
2.3.5	Dry matter production and number of grains and spikelets	32
2.4	Leaf area development	32
	The subroutine SUBLAI	33
2.5	Time and environmental variables	37
2.6	Carbon balance check	39
2.7	Run control	40
2.8	Observed values	40
2.9	Functions and parameters for rice	40
2.10	TERMINAL section	41
3	Model parameterization	43
3.1	Initial conditions	43
3.2	Phenological development of the rice crop	43
3.3	Daily dry matter production	45
3.3.1	Daily rate of canopy gross CO ₂ assimilation and light absorption	
	by the canopy	45
	The light extinction coefficient	45

		CO ₂ assimilation - light response of individual leaves	46
3.3.2	Μ	aintenance respiration	48
3.3.3	G	rowth respiration	49
3.3.4	D	ry matter partitioning	49
		Procedure to calculate the partitioning tables (FLVTB, FSTTB, FSOTB,) 50
		Stem reserves	51
		The relative death rate of the leaves	51
		Number of grains and spikelets	52
3.4	Leaf a	rea development	52
		Procedure to calculate the relative growth rate of	
		leaf area development (RGRL)	53
		Stem area	53
3.5	Enviro	onmental variables	53
3.6	Carbo	n balance check	54
		Observed values	54
4	Evalu	ation of the model ORYZA1	57
5	Appli	cations of the model	61
5.1	Estim	ation of yield potential for a given environment	61
		Input requirements and model settings for estimation yield potential	62
5.2	Extrag	polation of experimental findings to other environments	63
		Input requirements and model settings for extrapolation	63
5.3	Detail	ed physiological analysis of field experiments	63
		Example 1	63
		Example 2	64
		Example 3	64
		Example 4	64
		Input requirements and model settings for detailed data analysis	65
Refere	nces		67
Appen	dix 1	Listing of the model ORYZA1	73
Appen	dix 2	List of variables	91
Appen	dix 3	How to install FST and the FST-shell on IBM compatible PC's	97
Appen	dix 4	Simplified structure of the model ORYZA1	101
Appen	dix 5	Listing of the program DRATES	102
Appen	dix 6	Executing the program DRATES	110

1 Introduction

M.J. Kropff¹ & H.H. van Laar²

- ¹ International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
- ² Department of Theoretical Production Ecology, Wageningen Agricultural University, P.O. Box 430, 6700 AK Wageningen, The Netherlands

The potential yield of a crop is determined only by varietal characteristics and the seasonal pattern of environmental variables such as temperature and radiation. Thus, crop yield potential differs between sites and between years and seasons at a specific site. Maximum rice yields of 10 t ha⁻¹ have been achieved in tropical environments, and yields of up to 15 t ha⁻¹ are possible in more temperate environments such as Australia and China (Yoshida, 1981; R.L. Williams and L. Lewin, personal communication). Crop simulation models can be used to quantify yield potential in different environments. However, these models have to be parameterized and evaluated with data from experiments where yield potential is achieved. The model presented here was parameterized in an IRRI research project (International Rice Research Institute, Los Baños, Philippines) in which two issues were addressed that are related to yield potential in rice: the problem of declining rice yields in long-term experiments and the need for rice plant types with an increased yield potential.

In the 1980s and early 1990s, maximum yields with current varieties were much lower than yields obtained on the IRRI farm in the early 1970s with the first semi-dwarf variety IR8 (7 tha⁻¹ vs 9.5 t ha⁻¹). These current varieties are resistant to major pests and have a much shorter duration than the early modern rice varieties. Because the early modern varieties are susceptible to diseases such as tungro, which cannot be controlled, it is difficult to compare the yield potential of recent and early modern varieties directly. Rice simulation models that were calibrated using the available data sets like MACROS and CERES-Rice, therefore, simulated maximum potential yields of only 8 t ha⁻¹ for Los Baños weather conditions (Herrera-Reves & Penning de Vries, 1989; Penning de Vries, 1991; 1992, U. Singh, personal communication). These simulated yields suggested that yield potential of current varieties is lower than that of IR8, which yielded 9 - 10 t ha-1 in the late 1960s. It was hypothesized that the current low yields at IRRI's farm were partly related to a change in the N supply environment causing low N concentrations in leaf tissue, especially in the grainfilling period resulting in early senescence of leaves and low rates of photosynthesis (Kropff et al., 1994; Cassman et al., 1994). Therefore, a study was initiated in 1991 at IRRI, in which experimentation was integrated with modelling. Field experiments were conducted to quantify the yield potential and determinants of yield potential with improved agronomic management.

In the 1991 wet season (WS) and in the 1992 dry season (DS), IR72 and a new elite line IR58109-113-3-3-2 were grown at IRRI's farm under irrigated conditions. Nitrogen inputs

were 110 kg N ha⁻¹ (WS) and 225 kg N ha⁻¹ (DS). These rates were 30 kg N ha⁻¹ (WS) and 105 kg N ha⁻¹ (DS) higher than the current practice at IRRI, and included a late application at flowering to maintain leaf N status during grainfilling. Dry weights of organs and N concentration of tissue were measured periodically. The ecophysiological growth model INTERCOM (Kropff & van Laar, 1993) was evaluated with the data from both seasons (Kropff et al., 1993).

Total dry matter production and grain yield differed markedly in the WS and DS for both varieties (Table 1.1). Yields were comparable to yields reported in the late 1960s for IR8 (Yoshida, 1981): about 6 t ha⁻¹ in the WS and 9 - 10 t ha⁻¹ in the DS, indicating that the genetic potential of rice had not changed, despite differences in growth duration (IR72 has a growth duration of about 110 days versus 125 days for IR8). The use of a systems approach and modelling was very useful in the project. After the 1991 wet season experiments, the model ORYZA1 was developed and parameterized and used to predict yields and N requirements for a dry season. Using the varietal parameters derived from the 1991 WS experiments (like development rates, dry matter distribution patterns and leaf N concentrations), the model predicted yields of about 8 t ha^{-1} with typical DS weather data (Kropff et al., 1994). If the leaf N concentration measured in the dry season was input to the model, vields of about 9.5 t ha-1 were simulated with the DS weather data. These results demonstrate that differences in weather and crop N status determined yield differences between WS and DS. The need for changes in N management practices to sustain high yields in intensive rice systems was also demonstrated in a long-term intensive rice cropping experiment at IRRI's experimental farm. In the late 1960s and early 1970s, when intensive rice cropping just started at IRRI's experimental farm, 100 kg N ha⁻¹ was sufficient to obtain yields of about 9 t ha-1, whereas 190 kg N ha-1 was needed to obtain these yield levels in 1992. This leads to the conclusion that the increased amount of N fertilizer, needed to obtain these high yields, has to be the result of a reduced soil N supply, because N recovery rates are similar (Cassman et al., 1994, Kropff et al., 1994).

The model ORYZA1 was developed and evaluated based on these data sets and version 1.3 is presented here. The main structure and basic routines are from the Wageningen models for potential production (INTERCOM - Kropff & van Laar, 1993; SUCROS -

Table 1.1. Observed and simulated grain yields (panicle dry weight) for the 1991 wet season and the 1992 dry season with IR72 and a new line elite IR58109-113-3-3-2. After: Kropff et al., 1993.

	1991 Wet Season		1992 Dry Season	
	Observed (kg ha ⁻¹)	Simulated (kg ha ⁻¹)	Observed (kg ha ⁻¹)	Simulated (kg ha ⁻¹)
IR72	5674 <u>+</u> 229	5981	9558 <u>+</u> 288	9372
IR58109-113-3-3-2	6111 <u>+</u> 182	6034	9709 <u>+</u> 242	10024

Spitters et al., 1989; van Laar et al., 1992; MACROS module L1D - Penning de Vries et al., 1989). The differences between the ORYZA1 and the L1D rice model are:

- The model ORYZA1 simulates growth in the seedbed and the effect of transplanting shock on the relevant processes,
- Leaf area development now includes a source- and sink-limited phase,
- Phenological development is now calculated using an optimum curve, which is more realistic,
- Photosynthesis parameters are calculated from leaf N,
- The latest routines for canopy photosynthesis from the SUCROS model are used,
- A new procedure for calculation of spikelet numbers and grain numbers needed for sink limitation was introduced, and
- The effect of CO₂ on photosynthetic processes is included for climate change studies.

The model ORYZA1 can be used as a tool in rice research for different types of studies:

- 1. Detailed physiological analysis of field experiments. It enables interpretation of treatment differences in yield in terms of LAI development, leaf N content, weather conditions and varietal characteristics determining physiological and morphological processes. For this purpose, detailed measurements are required on LAI and leaf N content, preferably throughout the growing season, although a single measurement at flowering can be seen as a minimum data set.
- 2. Extrapolation of experimental findings to other environments. Given the N content of the leaves throughout the growing season and the varietal characteristics, attainable yields can be estimated for other environments (planting date, irradiation, temperature).
- 3. Estimation of yield potential for a given environment (planting date, latitude, radiation, temperature, variety as input) based on the leaf N content of the highest yielding experiments. The leaf N contents measured in the recent IRRI experiments used for model development (see Chapter 4) can be used as a starting point.
- 4. Estimation of the effect of climate change on yield potential.

An important advantage of the current model is that it can be used to simulate realistic yields and to assess the impact of planting date, weather, latitude at measured leaf N contents. This is in contrast to models for potential production, that have a fixed pattern of leaf photosynthesis in time.

2 Description of the model ORYZA1 (Version 1.3)

M.J. Kropff¹, H.H. van Laar², R.B. Matthews^{1,3}, J. Goudriaan² & H.F.M. ten Berge³

with contributions of

J.C. Shin⁴, S. Mohandass⁵, S. Singh⁶, Zhu Defeng⁷, Moon Hee Lee⁴, A. Elings³, B.A.M. Bouman³

- ¹ International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
- ² Department of Theoretical Production Ecology, Wageningen Agricultural University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
- ³ Research Institute for Agrobiology and Soil Fertility (AB-DLO), Bornsesteeg 65, 6700 AA Wageningen, The Netherlands
- ⁴ Crop Experiment Station, Seodundong 209, Suweon, Korea
- ⁵ Tamil Nadu Rice Research Institute, Adutherai, Tamil Nadu 612101, India
- ⁶ Universiti Pertanian Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- ⁷ China National Rice Research Institute, 171 Tiyuchang Road, Hangzhou, 310006 Zhejiang Province, P.R. of China

General structure of the model ORYZA1

The general structure of the model is presented in Figure 2.1. Under favourable growth conditions, light, temperature and varietal characteristics for phenological, morphological and physiological processes are the main factors determining the growth rate of the crop on a specific day. The model follows the daily calculation scheme for the rates of dry matter production of the plant organs, and the rate of phenological development (Figure 2.1). By integrating these rates over time, dry matter production of the crop is simulated throughout the growing season.

The total daily rate of canopy CO_2 assimilation is calculated from the daily incoming radiation, temperature and the leaf area index. The model contains a set of subroutines that calculate the daily rate by integrating instantaneous rates of leaf CO_2 assimilation. The calculation is based on an assumed sinusoidal time course of radiation over the day and the exponential light profile within the canopy. On the basis of the photosynthesis characteristics of single leaves, which depend upon the N concentration, the photosynthesis profile in the canopy is obtained. Integration over the leaf area index of the canopy and over the day gives the daily CO_2 assimilation rate. After subtraction of respiration requirements, the net daily growth rate in kg dry matter per ha per day is obtained. The dry matter produced is partitioned among the various plant organs. The effect of the ambient CO_2 concentration on the photosynthetic parameters was included in this version of the model.

Phenological development rate is tracked in the model as a function of ambient daily

Figure 2.1. A schematic representation of the model ORYZA1. Boxes are state variables, valves are rate variables, circles are intermediate variables. Solid lines are flows of material, dotted lines are flows of information.

average temperature and photoperiod. When the canopy is not yet closed, leaf area increment is calculated from daily average temperature, because carbohydrate production does not limit leaf expansion. When the canopy closes, the increase in leaf area is obtained from the increase in leaf weight. Integration of daily growth rates of the organs and leaf area results in dry weight increment during the growing season.

A simple procedure is used in the model to simulate sink limitation as a result of spikelet sterility at high or low temperatures.

Input requirements of the model are: geographical latitude, daily weather data (radiation, minimum and maximum temperature), plant density, date of crop emergence and transplanting, and parameter values that describe the morpho-physiological characteristics of the plant species. Time step of integration is one day.

The model can be used to analyse experimental data with measured LAI as input as well as with LAI simulated. It is useful to analyse experimental data with LAI as input as a first step, because the carbon balance part of the model is better developed and tested than the morphological part (Kropff, 1990; Spitters et al., 1989; Kropff & Goudriaan, 1989). So, inaccuracy in the simulation of morphological characteristics cannot confound conclusions made in the first analysis if LAI is used as an input. As a second step, LAI can be simulated as well. If no experimental data are available, LAI has to be simulated. In the model, an assumed time course of leaf N content can be used or the actual measured data. For temperate environments, where the seedbed is often covered by a plastic greenhouse, a special procedure can be used to account for the temperature effects.

In this manual, the different subsequent sections of the listing of the FST version of the model will be discussed. FST (FORTRAN Simulation Translator) is a simulation language developed by D.W.G. van Kraalingen and C. Rappoldt (AB-DLO, Wageningen, The Netherlands). This 'preprocessor' generates a Fortran source code, and is described in detail by van Kraalingen et al. (1994). The FST-structure of the model is given in Appendix 4.

2.1 Initial conditions

INITIA	L							
INCON	ZERO	= 0.,	DVSI	=	0.			
INCON	WLVGI	= 0.,	WSTI	=	0.			
INCON	WSOI	= 0.,	WRTI	=	Ο.			
PARAM	SWILAI	= -1.,	SWINLV	=	-1.,	SWITMP	=	-1.
PARAM	SWICOV	= -1.,	SWIDS	=	-1.			

In this section, the initial conditions of the simulation are set. In most integrals where the initial conditions are 0., the variable ZERO is used. The initial development stage and weights of the leaves, stems, storage organs and roots (DVSI, WLVGI, WSTI, WSOI, WRTI) are set to 0. kg ha⁻¹, as the initial weight is not significant compared to final yields. In the model, there is an option to use five switches: one for leaf area development (SWILAI, measured (-1.) or simulated (1.) LAI *vs* time); one for leaf N content in time (SWINLV, measured (-1.) leaf N *vs* daynumber or an assumed leaf N content as a function of development stage (1.)); one for the use of temperature changes (General Circulation Models, GCM) (SWITMP, no change (-1., current climate) or changed (1., future climate)); one for the cover in the seedbed (SWICOV, no cover (-1.), cover (1.)); and one to simulate direct-seeded (1.) or transplanted rice (-1), SWIDS.

2.2 Phenological development of the crop

= INTGRL (DVSI, DVR)

DVS

```
CALL SUBDD (TMAX,TMIN,TBD, TOD,TMD, HU )
CALL PHENOL (DAS,DVS,DVRJ,DVRI,DVRP,DVRR, HU,DAYL,MOPP,PPSE, ...
TS,SHCKD,DOYTR,DOYS, DVR,TSHCKD)
CALL SUBCD (DOY, DOYTR, TAV,TIME, NCOLD)
```

The developmental stage (DVS) of a plant defines its physiological age and is characterized by the formation of the various organs and their appearance. The most important phenological change is the one from the vegetative to the reproductive stage, determining the most important change in dry matter allocation over organs. As many physiological and morphological processes change with the phenological stage of the plant, accurate quantification of phenological development is essential in any simulation model for plant growth. Temperature is the main driving force for developmental changes. However, in photoperiod-sensitive varieties, daylength determines induction of flowering as well. The subroutine SUBDD calculates the daily effective heat units for phenological development (HU), the subroutine PHENOL calculates the development rate DVR (d^{-1}) as a function of the development stage, heat units and daylength, and the subroutine SUBCD calculates the number of days on which it is too cold for rice growth. When the number of subsequent cold days exceeds a given value, the crop dies and the model stops (see Section 2.7).

For many annual species, the developmental stage can be easily described using a dimensionless variable (*D*, DVS) which has the value 0 at emergence, 1 at flowering and 2 at maturity (van Keulen et al., 1982). The developmental stage *D* is the integral of the developmental rate D_r (DVR, (°Cd)⁻¹) over time expressed in degree-days. This developmental rate is the inverse of the period (expressed in °Cd) required for completing a developmental unit (e.g. flowering - maturity).

Calculation of the effective temperature for phenological development

```
SUBROUTINE SUBDD (TMAX, TMIN, TBD, TOD, TMD, HU)
    IMPLICIT REAL (A-Z)
    INTEGER I
    ΤM
          = (TMAX + TMIN)/2.
    \mathbf{TT}
          = 0.
    DO 10 I = 1, 24
         TD = TM + 0.5*ABS(TMAX-TMIN)*COS(0.2618*FLOAT(I-14))
      IF ((TD.GT.TBD) .AND. (TD .LT. TMD)) THEN
         IF (TD.GT.TOD) TD = TOD-(TD-TOD)*(TOD-TBD) / (TMD-TOD)
      TT = TT + (TD-TBD)/24.
      ENDIF
   CONTINUE
10
    HU = TT
    RETURN
    END
```

It has been observed in many crops that the rate of development (i.e. the reciprocal of the duration it takes to complete a certain phenological event, such as the grainfilling phase) is linearly related to the daily mean temperature above a base temperature up to an optimum temperature, beyond which the rate decreases, again linearly, until a maximum temperature is reached (e.g. Kiniry et al., 1991). For temperatures below the base temperature or above the maximum temperature, the rate of development is zero. Three 'cardinal' temperatures can, therefore, be identified: base temperature (T_{base}), the optimum temperature (T_{opt}), and the maximum temperature (T_{high}). For rice, these values are typically 8, 30 and 42 °C, respectively (Gao et al., 1992). This 'bilinear' response is generally observed only when the daily temperatures are constant (e.g. in a controlled environment); if the temperature

Figure 2.2. The response functions of phenological development rate to temperature as used in ORYZA1 version 1.3. Simulations with $T_{\text{base}} = 8 \text{ °C}$, $T_{\text{opt}} = 30 \text{ °C}$ and $T_{\text{max}} = 42.5 \text{ °C}$.

fluctuates between a minimum and a maximum value, as is the case in normal field experiments, the response becomes more curvilinear, particularly near each cardinal temperature. The linear and curvilinear responses are shown in Figure 2.2.

Although this curvilinear response to daily mean temperature can be described by complex exponential equations (e.g. Gao et al., 1992; Yin et al., in prep), the simpler approach used by Matthews & Hunt (1994) in their cassava model was used in ORYZA1. In this approach, it is assumed that the response of development rate to temperature over short time periods, such as one hour, is described by the bilinear model, and that the response to daily mean temperature is achieved by superimposing onto this model a temperature response approximated by a sine function alternating between the daily minimum (T_{min}) and maximum (T_{max}) temperatures (Figure 2.2).

In the model, hourly temperature (T_d) is calculated from T_{min} and T_{max} according to the relation:

$$T_{\rm d} = (T_{\rm min} + T_{\rm max})/2 + (T_{\rm max} - T_{\rm min})\cos(0.2618\ (h - 14))/2 \tag{2.1}$$

where h is the time of day. Hourly increments in heat units (HUH, °Cd h⁻¹) are calculated according to:

$$T_{d} \leq T_{base}, T_{d} \geq T_{high} : HUH = 0$$

$$T_{base} < T_{d} \leq T_{opt} : HUH = (T_{d} - T_{base})/24$$

$$T_{opt} < T_{d} < T_{high} : HUH = [T_{opt} - (T_{d} - T_{opt}) \times (T_{opt} - T_{base})/(T_{high} - T_{opt})]/24$$
(2.2)

where T_{base} is the base temperature, T_{opt} is the optimum temperature and T_{high} is the maximum temperature for phenological development. The daily increment in heat units (°Cd d⁻¹) is then calculated as:

$$HU = \sum_{h=1}^{24} (HUH)$$
(2.3)

In the subroutine PHENOL, the development rate of the crop is calculated, based on development rate constants for the different phenological stages, the effective temperature (HU) and the photoperiod.

```
SUBROUTINE PHENOL (DAS, DVS, DVRJ, DVRI, DVRP, DVRR, HU, DAYL, MOPP, PPSE,

& TS, SHCKD, DOYTR, DOYS,

& DVR, TSHCKD)

IMPLICIT REAL (A-Z)

INTEGER IDAS, ISA

IDAS = INT(DAS)

ISA = INT(DOYTR) - INT(DOYS)

IF (ISA.LT.0) THEN

ISA = ISA + 365

ELSE

ISA = ISA

ENDIF
```

In this first section, the seedling age (ISA) is calculated with a specific procedure to avoid problems when the crop is sown before the end of the year and transplanted in the next year. The seedling age is needed for the calculation of transplanting shock effects on phenological development.

```
IF (DVS.GE.0.
                    .AND. DVS.LT.0.40) DVR = DVRJ \star HU
    IF (DVS.GE.0.40 .AND. DVS.LT.0.65) THEN
        DL = DAYL + 0.9
        IF (DL.LT.MOPP) THEN
            PPFAC = 1.
          ELSE
            PPFAC = 1.-(DL-MOPP) *PPSE
        ENDIF
        PPFAC = MIN(1., MAX(0., PPFAC))
        DVR = DVRI * HU * PPFAC
    ENDIF
    IF (DVS.GE.0.65 .AND. DVS.LT.1.00) DVR = DVRP * HU
    IF (DVS.GE.1.00)
                                       DVR = DVRR * HU
    IF (IDAS.EO.ISA) TSTR = TS
    TSHCKD = SHCKD * TSTR
    IF (IDAS.GT.ISA .AND. TS.LT. (TSTR+TSHCKD)) DVR = 0.
RETURN
END
```

The life cycle of the rice crop is divided into four main phenological phases:

- 1 The basic vegetative phase (BVP), from sowing (DVS=0) to the start of the photoperiod-sensitive phase (DVS=0.4). The development rate constant in this phase is DVRJ.
- 2 Photoperiod-sensitive phase (PSP), from the end of the basic vegetative phase to panicle initiation (DVS=0.65). The development rate constant in this phase is DVRI.
- 3 Panicle formation phase (PFP), from panicle initiation to first flowering (DVS=1). The development rate constant in this phase is DVRP.
- 4 Grainfilling phase (GFP), from first flowering to physiological maturity (DVS=2). The development rate constant in this phase is DVRR.

The photoperiod is calculated from the daylength +0.9 to account for the effect of low radiation levels after sunset and before sunrise.

For each of these four phases there is a variety-specific development rate constant which is the inverse of the temperature sum required to complete a specific phase at the optimum photoperiod. Differences between varieties in the total crop duration are usually due to differences in the duration of the BVP rather than the other phases (Vergara & Chang, 1985). Suboptimal photoperiods, (daylength (DL) smaller than optimum photoperiod (MOPP)), will result in a longer photoperiod sensitive phase (PPFAC<1.). The photoperiod sensitivity of a variety is quantified by the factor PPSE.

In transplanted rice, the situation becomes more complicated because of the transplanting shock, which causes a delay in phenological development. In especially designed experiments, it was found that the delay in phenological development is a function of the age of the seedlings that are transplanted, expressed in degree-days (TSTR). In the model the delay is expressed in degree-days (TSHCKD, °Cd), indicating the period after transplanting during which no development occurs. The procedure is illustrated in Figure 2.3. The model starts at sowing and calculates the developmental rate and state. At transplanting, the transplanting shock is determined from the seedling age expressed in degree-days, using the

Figure 2.3. Procedure for simulation of transplanting shock effect on phenological development. After transplanting, the developmental rate is 0 for a period expressed in degree-days (TSHCKD, °Cd).

Figure 2.4. Relation between the transplanting shock effect on phenological development in rice expressed in a period where no development occurs (TSHCKD in °Cd) and the seedling age at transplanting, also expressed in degree-days. Data are from a wet season 1991 experiment with IR72 at IRRI, Los Baños, Philippines (Torres, Liboon, Kropff & Cassman, IRRI, unpubl.).

parameter SHCKD (degree-day delay per unit of seedling age (°Cd)) (Figure 2.4). For this purpose, the temperature sum (TS) is calculated in the model besides the developmental stage (see Section 2.5).

Effect of prolonged periods of low temperature on crop survival

```
SUBROUTINE SUBCD (DOY, DOYTR, TAV, TIME,
                                             NCOLD)
     IMPLICIT REAL(A-Z)
     SAVE
     IF(DOY.EO.DOYTR) NCOLD=0.
     IF(TAV.LT.12.) THEN
       NCOLD = NCOLD + 1.
     ELSE
       NCOLD = 0.
     ENDIF
     IF (NCOLD.GT.3.) THEN
       WRITE (6,10) NCOLD, TIME
       FORMAT (/, '* * * Number of cold days (<12 C) exceeded 3* * *',/,
10
      ' NCOLD', F8.3, ' at TIME=', F6.1)
    &
       ENDIF
     RETURN
     END
```

This routine was developed to ensure that the crop dies when the number of days on which the average temperature is lower than 12 °C exceeds 3 days. This estimate is based on Horie (personal communication).

2.3 Daily dry matter production

The section in which daily dry matter production is calculated is the core of the model. The following steps can be distinguished and will be described, separately:

- CO₂ assimilation of the canopy,
- Maintenance respiration,
- Daily growth rate of the crop expressed in dry matter by accounting for conversion losses or growth respiration, and
- Dry matter partitioning.

2.3.1 Daily rate of gross CO₂ assimilation of the canopy (DTGA) and light absorption by the canopy (DPARI)

```
CALL TOTASP (DOY, LAT, DTR, SCP, EFF, REDFT, KDF, KNF, ALAI, CO2, NFLV, ...
             DAYL, AMAX, DTGA, DPAR, DPARI)
NFLV
       = INSW(SWINLV, XNFLV, AFGEN(NFLVTB, DVS))
REDFT = AFGEN (REDFTT, TAVD)
CO2EFF = (1, -EXP(-0.00305*CO2))
                                 -0.222))/ ...
         (1.-EXP(-0.00305*CO2REF-0.222))
       = AFGEN (EFFTB, TAVD) * CO2EFF
EFF
KNF
       = AFGEN (KNFTB,
                         DVS)
KDF
       = AFGEN (KDFTB, DVS)
PARCUM = INTGRL (ZERO, DPARI)
PARI1 = (1.-0.06) * DTR * 0.5 * (1.- EXP (-KDF * ALAI))/1.E6
PARCM1 = INTGRL(ZERO, PARI1)
```

In the main program, the extinction coefficients for visible light in the canopy (KDF) and for N distribution in the canopy (KNF) are read from tables as a function of the developmental stage. The leaf N content is read as a function of DVS or daynumber, depending on the value of SWINLV (which has the value 1. if it is a function of DVS, and -1. if it is a function of daynumber for simulation of a specific experiment).

The initial light use efficiency of a single leaf (ε , EFF (kg CO₂ ha⁻¹ h⁻¹ / J m⁻² s⁻¹)) is read from a table as a function of average daytime temperature (TAVD) and is multiplied by a factor that accounts for the effect of CO₂. For the effect of CO₂ the relationship derived by Jansen (1990) from data by Akita (1980) and van Diepen et al. (1987) was used:

 $\varepsilon = \varepsilon_{340 \text{ ppm}} (1 - \exp(-0.00305 \text{ CO}_2 - 0.222))/(1 - \exp(-0.00305 \times 340 - 0.222))$ (2.4)

This relationship (Eqn 2.4) gives very similar results to the theoretical relationship derived by Goudriaan & van Laar (1994). The maximum rate of CO₂ assimilation of a leaf (AMAX, kg CO₂ ha⁻¹ h⁻¹) is calculated from the N content of the leaves and a reduction factor that accounts for the effect of the average daytime temperature (TAVD) on AMAX in the subroutine ASSIMP which is called in TOTASP. Leaf N and as a result AMAX follow an exponential profile in the canopy (determined by KNF).

The calculation procedure for the daily rate of crop CO_2 assimilation is schematically represented in Figure 2.5. In the main program, the subroutine TOTASP is called, which calls the subroutine ASTRO. ASTRO calculates the daylength and the integral of the sine of the solar elevation over the day. TOTASP calls on specified moments of the day the subroutine ASSIMP, that computes instantaneous canopy CO_2 assimilation and this rate is integrated over the day in TOTASP. The subroutine TOTASP needs as inputs the day of the year (DOY), the latitude of the site (LAT), the daily total radiation (DTR) and a series of parameter values, which are defined in the parameter section.

In this section, the cumulative absorbed radiation is calculated from a detailed calculation of absorbed radiation (PARCUM) in the subroutine TOTASP, and in the main program a simple procedure (PARCM1) is included as well.

Calculation of daily canopy photosynthesis (TOTASP)

CALL ASTRO (DOY, LAT, SC, DS0, SINLD, COSLD, DAYL, DSINB, DSINBE)

In TOTASP, first the subroutine ASTRO is called which calculates daylength (DAYL), some intermediate variables for the calculation of the sine of the solar elevation (SINB) and the integral of SINB.

```
*---- (SUBROUTINE ASTRO)
*----Declination of the sun as function of daynumber (DOY)
           ~ -ASIN (SIN (23.45*RAD)*COS (2.*PI*(DOY+10.)/365.))
     DEC
*----SINLD, COSLD and AOB are intermediate variables
     SINLD = SIN (RAD*LAT)*SIN (DEC)
     COSLD = COS (RAD*LAT)*COS (DEC)
     AOB = SINLD/COSLD
*----Daylength (DAYL)
     DAYL = 12.0*(1.+2.*ASIN (AOB)/PI)
     DSINB = 3600.*(DAYL*SINLD+24.*COSLD*SQRT (1.-AOB*AOB)/PI)
     DSINBE = 3600.*(DAYL*(SINLD+0.4*(SINLD*SINLD+COSLD*COSLD*0.5))
          +12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT (1.-AOB*AOB)/PI)
    £
*-----Solar constant (SC) and daily extraterrestrial radiation (DSO)
     SC = 1370.*(1.+0.033*COS (2.*PI*DOY/365.))
     DS0 = SC*DSINB
```

These calculations involve some empirical relationships that calculate from the daynumber and latitude the daylength and the integral of the sine of the solar angle (SINB). First the declination is calculated from the daynumber. Then the intermediate variables SINLD and COSLD are calculated to make the other equations more simple. Daylength is calculated and

Figure 2.5. Schematic representation of the calculation procedure for daily rates of canopy CO_2 assimilation in the subroutine TOTASP, which calls the subroutines ASTRO and ASSIMP.

two versions of the integral of the sine of the solar elevation: the first (DSINB) is the straightforward integral of SINB, that can be used for the calculation of daily total extraterrestrial radiation (DS0) and the second one (DSINBE) is a modified integral for radiation at the earth surface, that takes into account the effect of the daily course in atmospheric transmission. Transmission is lower near the margins of the day because of haze in the morning and clouds in the afternoon. Besides that, the path length of the solar radiation in the atmosphere is longer (Spitters et al., 1986). DSINBE is used to calculate the actual radiation at a specific time of the day (see later). The solar constant is calculated as a function of the daynumber, because the distance between earth and sun is not constant over the year.

```
*----Assimilation set to 0 and three different times of the day (HOUR)
      DTGA = 0.
      DO 10 I1=1, IGAUSS
*-----At the specified HOUR, radiation is computed and used
*
        to compute assimilation
        HOUR = 12.0 + DAYL \times 0.5 \times XGAUSS(II)
        (calculation of instantaneous assimilation (FGROS)
*
         at the selected hour)
*-----Integration of assimilation rate to a daily total (DTGA)
        DTGA = DTGA + FGROS * WGAUSS(I1)
        DPAR = DPAR+PAR*WGAUSS(I1)
        DPARI= DPARI+PARINT*WGAUSS(I1)
 10
        CONTINUE
        DTGA = DTGA * DAYL
        DPAR = DPAR * DAYL * 3600./1.E6
        DPARI = DPARI * DAYL * 3600./1.E6
```

In TOTASP, the integration loop is started for the calculation of daily rates of CO_2 assimilation (DTGA) and incoming and intercepted photosynthetically active radiation (DPAR and DPARI, resp.) from instantaneous rates of canopy assimilation (FGROS) and incoming and intercepted radiation (DPAR and DPARI), using Gaussian integration (Goudriaan, 1986). Another way of doing this could be by using a short time step (10 minutes - 1 hour) and using the usual rectangular integration method, but the Gaussian procedure gives very accurate estimates through only three calculations a day. In the three-point Gaussian integration method, the integral of a function is calculated by selecting three x-values (here: x is time of the day). For these values the y-values (here: canopy CO_2 assimilation and radiation intercepted) are calculated and a weighted average y-value is derived by using defined weights. The three points (XGAUSS) have to be (i) at 0.5 of the integration interval, (ii) at $(0.5 + \text{SQRT}(0.15)) \times$ the interval (=0.887298) and (*iii*) at (0.5-SQRT(0.15)) \times the interval (=0.112702). Because radiation is homogeneously distributed over the day according to the sine of the solar elevation, the weighted average CO_2 assimilation rate is calculated for half a day only. For each of the three selected hours, a different weighting factor (WGAUSS) for the calculated assimilation is used, to obtain the weighted average rate of CO_2 assimilation (kg CO₂ ha⁻¹ h⁻¹). Multiplying by the daylength results in the total daily rate of CO₂ assimilation.

```
*-----Sine of solar elevation
SINB = MAX (0., SINLD+COSLD*COS (2.*PI*(HOUR+12.)/24.))
PAR = 0.5*DTR*SINB*(1.+0.4*SINB)/DSINBE
```

The SINB at the specified hour is calculated first. Measured or estimated daily total solar irradiation (wavelength 300 - 3000 nm) is input for the model. Only half of this incoming radiation is photosynthetically active (*PAR*, Photosynthetically Active Radiation, wavelength 400 - 700 nm). This visible fraction, generally called 'light', is used in the calculation procedure of the CO₂ assimilation rate of the canopy. The instantaneous incoming photosynthetically active radiation is calculated from the daily total radiation by multiplying the total daily radiation with the ratio of the actual effective SINB (SINB× (1+ $0.4 \times SINB$)) and the integral of the effective SINB (DSINBE).

```
*-----Diffuse light fraction (FRDF) from atmospheric
* transmission (ATMTR)
ATMTR = PAR/(0.5*SC*SINB)
IF (ATMTR.LE.0.22) THEN
FRDF = 1.
ELSE IF (ATMTR.GT.0.22 .AND. ATMTR.LE.0.35) THEN
FRDF = 1.-6.4*(ATMTR-0.22)**2
ELSE
FRDF = 1.47-1.66*ATMTR
END IF
FRDF = MAX (FRDF, 0.15+0.85*(1.-EXP (-0.1/SINB)))
*-----Diffuse PAR (PARDF) and direct PAR (PARDR)
PARDF = PAR * FRDF
PARDR = PAR - PARDF
```

A distinction is made between diffuse skylight (PARDF), with incidence under various angles, and direct sunlight with an angle of incidence equal to the solar angle (PARDR). It is important to distinguish these fluxes because of the large difference in illumination intensity between shaded leaves (receiving only diffuse radiation) and sunlit leaves (receiving both direct and diffuse radiation) and the non-linear CO₂ assimilation-light response of single leaves. The diffuse flux is the result of the scattering of sun rays by clouds, aerosols and gases in the atmosphere. The proportion of diffuse light (Fdif in Figure 2.5) in the total incident light flux (FRDF) depends on the status of the atmosphere, i.e. cloudiness, concentration of aerosols. This fraction is calculated from the atmospheric transmission (ATMTR) using an empirical function. This relationship is based on data from different meteorological stations from a wide range of latitudes and longitudes and is described in the IF statement block (Spitters et al., 1986). The atmospheric transmission is the ratio between actual irradiance (Sg.d in Figure 2.5, measured J m⁻² s⁻¹) and the quantity that would have reached the earth's surface in the absence of an atmosphere $(S_{0,d} \text{ in Figure 2.5})$. The theoretical radiation flux (PAR) at the earth surface, assuming 100% atmospheric transmission, can be calculated from the solar constant (SC), which is the radiation flux perpendicular to the sun rays, and the sine of the solar elevation (β), which changes during the day ($0.5 \times SC \times SINB$). The fluxes of direct and diffuse PAR are calculated from the fraction diffuse radiation.

Calculation of instantaneous canopy CO2 assimilation

```
CALL ASSIMP (SCP, EFF, REDFT, KDF, KNF, LAI, SINB, PARDR, PARDF, 
& NFLV, CO2, AMAX, FGROS, PARINT)
```

In the subroutine ASSIMP, the instantaneous rate of CO_2 assimilation of the canopy is calculated from the incoming fluxes of diffuse and direct PAR, SINB, LAI, and several parameters.

```
*-----(SUBROUTINE ASSIMP)
*-----reflection of horizontal and spherical leaf angle distribution
    SQV = SQRT(1.-SCP)
    REFH = (1.-SQV)/(1.+SQV)
    REFS = REFH*2./(1.+2.*SINB)
*-----extinction coeff. for direct radiation and total direct flux
    CLUSTF = KDF / (0.8*SQV)
    KBL = (0.5/SINB) * CLUSTF
    KDRT = KBL * SQV
*-----calculate relative effect of CO2 level on AMAX
    CO2AMX = 49.57/34.26 * (1.-EXP(-0.208*(CO2-60.)/49.57))
    CO2AMX = MAX(0., CO2AMX)
```

First the reflection coefficient is calculated. Incoming radiation is partly reflected by the canopy. The reflection coefficient of a green leaf canopy with a random spherical leaf angle distribution (ρ , REFS), which indicates the fraction of the downward radiation flux that is reflected by the whole canopy, equals (Goudriaan, 1977):

$$\rho = \left[(1 - \sqrt{(1 - \sigma)}) / (1 + \sqrt{(1 - \sigma)}) \right] \cdot \left[2 / (1 + 2 \sin \beta) \right]$$
(2.5)

in which σ represents the scattering coefficient fraction (transmission and reflection) of single leaves for visible radiation ($\sigma = 0.2$; SCP) (Goudriaan, cited by Spitters, 1986). A fraction $(1 - \rho)$ of the incoming visible radiation can be absorbed by the canopy.

Radiation fluxes attenuate exponentially within a canopy with increasing leaf area from the top downwards:

$$I_{\rm L} = (1 - \rho) I_0 \exp(-k L)$$
(2.6)

where

- I_L is the net *PAR* flux at depth L in the canopy (with an LAI of L above that point) (J m^{-2} soil s⁻¹),
- I_0 is the flux of visible radiation at the top of the canopy (J m⁻² soil s⁻¹),
- L the cumulative leaf are index (counted from the top of the canopy downwards) (m^2 leaf m^{-2} soil),
- ρ the reflection coefficient of the canopy (-), and
- k the extinction coefficient for PAR (-).

The diffuse and the direct flux have different extinction coefficients, which causes different light profiles within the canopy for diffuse and direct radiation.

Therefore, three different radiation fluxes are distinguished: (*i*) the diffuse flux (with extinction coefficient k_{df} (KDF), (*ii*) the total direct flux (with extinction coefficient $k_{dr,t}$) (KDRT) and (*iii*) the direct component of direct light (with extinction coefficient $k_{dr,bl}$ (KBL) with *bl* for black since direct radiation becomes diffuse as soon as the sun ray is partly absorbed, partly scattered by a leaf). Thus the total flux equals i + ii.

For a spherical leaf angle distribution (homogeneous, random), KDF equals:

$$k_{\rm df,s} = 0.8 \,\sqrt{(1-\sigma)}$$
 (2.7)

which is about 0.71 (Goudriaan, 1977). However, in many situations like in rice, the leaf angle distribution is not spherical. In rice, the leaves are clustered (especially in the beginning as a result of planting on hills), and have a very vertical orientation. Other leaf angle distributions can be accounted for by a procedure described by Goudriaan (1986), which calculates k_{df} based on the frequency distribution of leaves with angles in three classes (0 - 30°, 30 - 60° and 60 - 90°). In the model, however, this is accounted for by using the cluster factor (*Cf*, CLUSTF) which is the measured KDF (K_{df,m}), relative to the theoretical one, for a spherical leaf angle distribution:

$$Cf = k_{\rm df,m} / (0.8 \sqrt{(1-\sigma)})$$
(2.8)

The direct component $k_{dr,bl}$ (KBL) can be calculated as (Goudriaan, 1977):

$$k_{\rm dr,bl} = 0.5 \ Cf \ / \sin \beta \tag{2.9}$$

 $k_{dr,t}$ (KDRT) can be calculated as (Goudriaan, 1977):

$$k_{\rm dr,t} = k_{\rm dr,bl} \sqrt{(1-\sigma)} \tag{2.10}$$

 $k_{df,m}$ is the measured extinction coefficient under diffuse sky conditions being input in the model.

Figure 2.6. The relationship between the maximum rate of leaf photosynthesis at 1 g N m⁻² and external CO₂ concentration during rice growth (data from Weerakoon, Olszyk and Ingram, IRRI/EPA). For the effect of CO_2 on A_m the following relationship was derived by Kropff et al. (in prep., Figure 2.6)

```
A_{\rm m} = A_{\rm m, 340 \ ppm} (49.57/34.26 \ (1 - \exp(-0.208 \ ({\rm CO}_2 - 60)/49.57)))
                                                                      (2.11)
*---- (SUBROUTINE ASSIMP)
*-----Selection of depth of canopy, can. assimilation is set to zero
      FGROS = 0.
      DO 10 I1=1, IGAUSS
          LAIC = LAI * XGAUSS(I1)
       < calculation of FGL, the CO2 assimilation rate at the selected
         depths (LAIC) in the canopy(kg CO2/ha leaf/h),
         to be discussed later >
*-----Integration of local assimilation rate to canopy
         assimilation (FGROS)
         FGROS = FGROS + FGL * WGAUSS(I1)
          PARINT = PARINT + IABS * WGAUSS(I1)
10
      CONTINUE
      FGROS = FGROS * LAI
      PARINT = PARINT * LAI
```

Again a Gaussian integration procedure is used to calculate the momentaneous rate of canopy CO_2 assimilation and absorbed radiation by integration of the rates of leaf CO_2 assimilation and absorbed radiation over the canopy LAI (FGROS and PARINT). Three selected depths in the canopy are chosen (see above) at which the amount of absorbed radiation and leaf CO_2 assimilation is calculated. By using the weights, the weighted average rate of leaf CO_2 assimilation is simulated and total assimilation (FGROS) is easily obtained by multiplication with the total LAI.

```
*----- (SUBROUTINE ASSIMP)
*------calculate leaf nitrogen for each layer,
* based on exponential distribution
IF (LAI.GT.0.01 .AND. KNF.GT.0.) THEN
SLNI = NFLV * LAI * KNF * EXP(-KNF*LAIC)/(1.-EXP(-KNF*LAI))
ELSE
SLNI = NFLV
ENDIF
*-----calculate actual photosynthesis from SLN, CO2 and temp.
IF (SLNI .GE. 0.5) THEN
* according to Shaobing Peng (IRRI, unpublished data):
AMAX = 9.5 + (22. * SLNI) * REDFT * CO2AMX
ELSE
```

```
AMAX = MAX(0., (68.33 * (SLNI-0.2) * REDFT * CO2AMX))
ENDIF
```

The maximum rate of CO₂ assimilation of a leaf (A_m , kg CO₂ ha⁻¹ h⁻¹) is calculated from the N content of the leaves and the average daytime temperature. Because N content in the leaves is higher in the top leaves, these absorb most radiation, the N profile in the canopy is taken into account. From observations it was found that the N profile of N follows an exponential function with LAI counted from the top of the canopy with an extinction coefficient of about 0.4 around flowering (such as for radiation see Eqn 2.6). The relationship between leaf photosynthesis and specific leaf nitrogen (SLN) is based on recent measurements on IR72 at IRRI (Peng et al., unpublished). For SLN levels below 0.5 g m⁻², a relationship is used based on the assumption that A_m is 0 when SLN is 0.2.

```
*----- (SUBROUTINE ASSIMP)
*-----Absorbed fluxes per unit leaf area: diffuse flux, total
* direct flux, direct component of direct flux.
VISDF = (1.-REFH)*PARDF*KDF *EXP (-KDF *LAIC)
VIST = (1.-REFS)*PARDR*KDRT *EXP (-KDRT *LAIC)
VISD = (1.-SCP) *PARDR*KBL *EXP (-KBL *LAIC)
```

The light absorbed at a depth L (LAIC) in the canopy $(I_{a,L})$ is obtained by taking the derivative of Eqn 2.6 with respect to the cumulative leaf area index:

$$I_{a,L} = - dI_L / dL = k (1 - \rho) I_0 \exp(-kL)$$
(2.12)

If expressed for the different light components: the absorbed fluxes for the different components per unit leaf area at depth L in the canopy are:

$$I_{a,df} = -dI_{df,L} / dL = k_{df} (1 - \rho) I_{0,df} \exp(-k_{df} L_L)$$
(2.13)

$$I_{a,dr,t} = - dI_{dr,t,L} / dL = k_{dr,t} (1 - \rho) I_{0,dr} \exp(-k_{dr,t} L_L)$$
(2.14)

$$I_{a,dr,dr} = - dI_{dr,dr,L} / dL = k_{dr,dr} (1 - \rho) I_{0,dr} \exp(-k_{dr,dr} L_L)$$
(2.15)

where

 $I_{a,df}$ is the absorbed flux of diffuse radiation (VISDF, J m⁻² leaf s⁻¹), $I_{a,dr,t}$ the absorbed flux of total direct radiation (VIST, J m⁻² leaf s⁻¹), and $I_{a,dr,dr}$ the absorbed flux of the direct component of direct radiation (VISD, J m⁻² leaf s⁻¹).

```
*-----absorbed flux (J/m2/s) for shaded leaves and assimilation
* of shaded leaves
VISSHD = VISDF + VIST - VISD
IF (AMAX.GT.0.) THEN
FGRSH = AMAX * (1.-EXP(-VISSHD*EFF/AMAX))
ELSE
FGRSH = 0.
ENDIF
```

The total absorbed flux for shaded leaves (J m⁻² leaf s⁻¹) equals:

 $I_{a,sh} = I_{a,df} + (I_{a,dr,t} - I_{a,dr,dr})$

```
*----(SUBROUTINE ASSIMP)
*-----direct flux absorbed by leaves perpendicular on direct beam
         and assimilation of sunlit leaf area
         VISPP = (1.-SCP) * PARDR / SINB
         FGRSUN = 0.
         DO 20 12=1, IGAUSS
            VISSUN = VISSHD + VISPP * XGAUSS(12)
            IF (AMAX.GT.0.) THEN
               FGRS = AMAX * (1.-EXP(-VISSUN*EFF/AMAX))
            ELSE
               FGRS = 0.
            ENDIF
            FGRSUN = FGRSUN + FGRS * WGAUSS(12)
            IASUN = IASUN + VISSUN * WGAUSS(I2)
20
         CONTINUE
```

For sunlit leaves the situation is more complicated. They absorb the flux that shaded leaves absorb plus the direct component of the direct flux. However, the direct flux intensity differs for leaves with different orientation. The amount of the direct component of the direct flux absorbed by leaves perpendicular to the radiation beams equals:

 $I_{a,dr,dr} = (1 - \sigma) I_{0,dr} / \sin \beta$ (2.17)

 $I_{a,dr,dr}$ is the direct component of incoming *PAR*. The amount of absorbed direct radiation by leaves depends on the sine of incidence at the leaf surfaces. Therefore, for sunlit leaves, CO₂ assimilation rates have to be calculated separately for leaves with different angles and integrated over all leaf angles. This, again is done by Gaussian integration of CO₂ assimilation rates over the leaf angles (Goudriaan, 1986). Here, a spherical leaf angle distribution is assumed. A similar procedure is followed to calculate the absorbed radiation fluxes.

*---- (SUBROUTINE ASSIMP)
FGRSH = AMAX * (1.-EXP(-VISSHD*EFF/AMAX))
FGRS = AMAX * (1.-EXP(-VISSUN*EFF/AMAX))

The CO₂ assimilation-light response of individual leaves follows a saturation type of function, characterized by the initial slope (the initial light use efficiency) and the asymptote (A_m) and is described by the negative exponential function (Goudriaan, 1982):

$$A_{\rm L} = A_{\rm m} \left(1 - \exp(-\varepsilon I_{\rm a} / A_{\rm m}) \right) \tag{2.18}$$

where

 A_L is the gross assimilation rate (FGRS or FGRSH, kg CO2 ha⁻¹ leaf h⁻¹), A_m the gross assimilation rate at light saturation (AMAX, kg CO2 ha⁻¹ leaf h⁻¹), ε the initial light use efficiency (EFF, kg CO2 ha⁻¹ leaf h⁻¹ / (J m⁻² leaf s⁻¹)), and I_a is the amount of absorbed radiation (VISSHD or VISSUN, J m⁻² leaf s⁻¹).22

FSLLA = CLUSTF * EXP(-KBL*LAIC)
FGL = FSLLA * FGRSUN + (1. - FSLLA) * FGRSH
IABS = FSLLA * IASUN + (1.-FSLLA) VISSHD

From the absorbed light intensity at depth L, the assimilation rate at that specific canopy height is calculated for shaded and sunlit leaves separately with Eqn 2.18.

The assimilation rate per unit leaf area at a specific height in the canopy (FGL) is the sum of the assimilation rates of sunlit and shaded leaves, taking into account the proportion of sunlit and shaded leaf area at that depth in the canopy. The fraction sunlit leaf area (f_{sl}) equals the fraction of the direct radiation reaching that layer:

$$f_{\rm sl} = Cf \cdot \exp(-k_{\rm dr,bl} \cdot L_{\rm L}) \tag{2.19}$$

where

 $k_{dr,bl}$ is the extinction coefficient for the direct component of direct radiation (KBL), *Cf* is the cluster factor (CLUSTF), and *L*_L the leaf area index above depth *L* (LAIC).

Light absorption and CO₂ assimilation by stems and reproductive organs

In most models, for canopy CO₂ assimilation, only light absorption by leaves is accounted for, although stems and reproductive organs like panicles absorb a substantial amount of radiation. In rice, for example, Stem (or sheath) Area Index (*SAI*) may be as high as 1.5 m² stem m⁻² ground and the Flower (Panicle) Area Index (*FAI*, m² flower m⁻² ground) may be as high as 0.9 (M.J. Kropff and K.G. Cassman, IRRI, unpublished data). The model accounts for CO₂ assimilation of the stem, by adding 50% of the green stem area (SAI) to the LAI, because sheaths are less photosynthetically active than leaves. See section on leaf area development for further information (Section 2.4).

2.3.2 Maintenance and growth respiration

The assimilated CO_2 is converted into carbohydrates (CH₂O) in the CO₂ assimilation process. The energy for this reduction process is provided by the absorbed light. The overall chemical reaction of this complex process is:

or in a simplified form:

light

$$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{CH}_2\mathrm{O} + \mathrm{O}_2$$

From this reaction it follows that for every kg of CO_2 taken up, 30/44 kg of CH_2O is formed; the numerical values representing the molecular weights of CH_2O and CO_2 , respectively. Part of the carbohydrates produced in this process are respired to provide the energy

for maintaining the existing biostructures. This process is characterized in the model as maintenance respiration. The remaining carbohydrates are converted into structural plant dry matter. The losses in weight as a result of this conversion are characterized as growth respiration.

Maintenance respiration

MNDVS	= WLVG/NOTNUL(WLVG+WLVD)
RMCR	= (WLVG*MAINLV + WST*MAINST +
	WSO *MAINSO + WRT*MAINRT) * TEFF * MNDVS
TEFF	= Q10**((TAV-TREF)/10.)

Maintenance respiration provides the energy for living organisms to maintain their biochemical and physiological status. Through the reaction which is the reverse of CO_2 reduction in CO_2 assimilation, the radiation energy which was fixed in the photosynthetic process in a chemical form is released in a suitable form (ATP and NADPH):

 $CH_2O + O_2 ---> CO_2 + H_2O + energy$

This process consumes roughly 15 - 30% of the carbohydrates produced by a crop in a growing season (Penning de Vries et al., 1989), which indicates the importance of accurate quantification of this process in the model. However, the process is poorly understood at the biochemical level and simple empirical approaches are inaccurate since it is impossible to measure maintenance respiration in the way it is defined (Penning de Vries et al., 1989; Amthor, 1984). The best way to quantify maintenance respiration is to measure the CO_2 production rate of plant tissue in the dark. The approach taken in the model is based on theoretical considerations, empirical studies and studies in which the carbon balance in the model was evaluated using crop growth and canopy CO_2 assimilation data.

Three components of maintenance respiration can be distinguished at the cellular level: maintenance of concentration differences of ions across membranes, maintenance of proteins and a component related to the metabolic activity of the tissue (Penning de Vries, 1975). Maintenance respiration can thus be estimated from mineral and protein concentrations and metabolic activity as presented by de Wit et al. (1978). In the model, we use an adapted version of the simple approach developed by Penning de Vries & van Laar (1982), in which maintenance requirements are approximately proportional to the dry weights of the plant organs to be maintained:

$$R_{m,r} = mc_{1v} W_{1v} + mc_{st} W_{st} + mc_{rt} W_{rt} + mc_{so} W_{so}$$
(2.20)

in which

- $R_{m,r}$ is the maintenance respiration rate at the reference temperature (25 °C) in kg CH₂O ha⁻¹ d⁻¹ (RMCR at 25 °C),
- W_{lv} , W_{st} , W_{rt} and W_{so} are the weights of the leaves, stems, roots and storage organs (WLVG, WST etc., kg dry matter ha⁻¹) respectively, and

 mc_{1v} , mc_{st} , mc_{rt} and mc_{so} are the maintenance coefficients for leaves, stems, roots and storage organs, respectively (MAINLV etc., CH₂O kg⁻¹ DM d⁻¹).

The maintenance coefficients (kg CH₂O kg⁻¹ dry matter d⁻¹) have different values for the different organs because of large differences in nitrogen contents. Standard values for maintenance coefficients are 0.03 for leaves, 0.015 for stems and 0.01 for roots (Spitters et al., 1989). For tropical crops, like rice, lower values are used: 0.02 for the leaves and 0.01 for the other plant organs (Penning de Vries et al., 1989). In the model, for mc_{so} a coefficient of 0.003 is used, which accounts for the small fraction of active tissue in the storage organs. Maintenance respiration can also be approached by using the coefficient for stem tissue for the active part (non-stored material) only.

The effect of temperature on maintenance respiration is simulated assuming a Q_{10} of 2 (doubling at every 10 °C increase) (Penning de Vries et al., 1989):

$$R_{\rm m} = R_{\rm m,r} \cdot 2^{(T_{\rm av} - T_{\rm r})/10}$$
(2.21)

where

 $R_{\rm m}$ is the actual rate of maintenance respiration (RMCR, kg CH₂O ha⁻¹ d⁻¹),

 T_{av} is the average daily temperature (TAV, °C), and

 $T_{\rm r}$ is the reference temperature (TREF, °C).

To account for the metabolic effect, a special reduction factor is introduced in the model which accounts for the reduction in metabolic activity when the crop ages (MNDVS) (the NOTNUL statement is included to avoid division by zero, at emergence). When nitrogen content is simulated in the model, this factor can be related to the N content (van Keulen & Seligman, 1987). In the current model, the total rate of maintenance respiration is assumed to be proportional to the fraction of green leaves and basically accounts for the decrease in N content of the leaves. This procedure for calculating the effect of age on maintenance respiration was used in the SUCROS model (Spitters et al., 1989) and was based on studies in which measured crop growth and canopy CO_2 assimilation data were analysed using a simple simulation model (Louwerse et al., 1990; C.J.T. Spitters, CABO, unpubl. data).

Growth respiration

The carbohydrates in excess of the maintenance costs are available for conversion into structural plant material. In the process of conversion, CO_2 and H_2O are released as scraps from the cut and paste process in biosynthesis. Following the reactions in the biochemical pathways of the synthesis of dry matter compounds (carbohydrates, lipids, proteins, organic acids and lignin from glucose (CH₂O)), Penning de Vries et al. (1974) derived the assimilate requirements for the different compounds. From the composition of the dry matter, the assimilate requirements for the formation of new tissue can be calculated. Typical values for leaves, stems, roots and storage organs (CGR...) have been presented by Penning de Vries et al. (1989). The average carbohydrate requirements for the whole crop (CRGCR) is calculated by weighting the coefficients with the fraction of dry matter allocation over the organs (FLV, FST etc.).

2.3.3 Daily growth rate from CO2 assimilation and respiration rates

The daily growth rate (G_p , kg dry matter ha⁻¹ d⁻¹) is calculated as follows:

$$G_{\rm p} = (A_{\rm d} \cdot (30/44) - R_{\rm m} + R_{\rm t}) / Q \tag{2.22}$$

. . .

where

 A_d is the daily rate of gross CO₂ assimilation (DTGA, kg CO₂ ha⁻¹ d⁻¹),

 $R_{\rm m}$ the maintenance respiration costs (RMCR, kg CH₂O ha⁻¹ d⁻¹),

 R_t the amount of available stem reserves for growth (kg CH₂O ha⁻¹ d⁻¹), and

Q the assimilate requirement for dry matter production, (kg CH₂O kg⁻¹ dry matter).

The amount of stem reserves (LSTR) is multiplied by LRSTR (=0.947) to account for 5.3% losses when reserves are allocated (Penning de Vries et al., 1989). These reserves are expressed in CH₂O by multiplying by the fraction carbon in the stem reserves (FCSTR) and the molecular weight of CH₂O and C (30./12.) to convert the carbon into assimilates that are available for new growth (dry matter production).

2.3.4 Dry matter partitioning

FSH	= AFGEN (FSHTB, DVS)
FRT	= AFGEN (FRTTB, DVS)
FLV	= AFGEN (FLVTB, DVS)
FST	= AFGEN (FSTTB, DVS)
FSO	= AFGEN (FSOTB, DVS)
LLV	= WLVG * AFGEN (DRLVT, DVS)
LSTR	= INSW (DVS-1., 0., WSTR / TCLSTR)

The total daily produced dry matter is partitioned among the various groups of plant organs (leaves, stems, storage organs and roots) according to partitioning coefficients (pc, kg dry matter organ kg⁻¹ dry matter crop) defined as a function of the phenological development stage (D):

$$pc_{\mathbf{k}} = \mathbf{f}\left(D\right) \tag{2.23}$$

The death or loss rate of the leaves (LLV) is calculated using a relative death rate of leaf weight (DRLVT), which is a function of DVS. The loss rate of stem reserves (LSTR) starts at flowering and is simulated by dividing the weight by a time coefficient (the inverse of the relative loss rate, TCLSTR).

```
CALL SUBRTS (DOY,
                       DOYTR, GCR , FRT,
                                            FSH , FLV, LLV , FST, ...
                 FSTR,
                       LSTR , WLVG, WSTR , WSTS, WRT, NPLH ,NH ,...
                 NPLSB, DELT,
                        GSTR, RWLVG, GRT,
                                            RWSTR,GST,
                 GLV.
                                                                 . . .
                 RWLVG1, GRT1, RWSTR1, GST1)
*---- (SUBROUTINE SUBRTS)
      IF (DOY.EO.DOYTR) THEN
            PLTR = NPLH*NH/NPLSB
        ELSE
           PLTR = 1.
      ENDIF
          RWLVG1 = (WLVG * (1. -PLTR))/DELT
                 = (WSTS \star (1. -PLTR))/DELT
          GST1
          RWSTR1 = (WSTR * (1. -PLTR))/DELT
         · GRT1
                 = (WRT * (1. -PLTR))/DELT
      GRT
             = GCR * FRT
                                            - GRT1
      GLV
             = GCR * FSH * FLV
                                            - RWLVG1
      RWLVG = GLV - LLV
      GST
             = GCR * FSH * FST * (1.-FSTR) - GST1
      GSTR
             = GCR * FSH * FST * FSTR
                                            - RWSTR1
      RWSTR = GSTR - LSTR
```

The growth rates of the different organs is calculated in the subroutine SUBRTS. First the growth rates at the day of transplanting are calculated, to account for the reduction in plant density. The dry matter is first distributed over shoot and root (FSH and FRT) and then the shoot fraction is divided between stems, leaves and storage organs (FSH × FLV, etc.). The growth rate of plant organ group k ($G_{p,k}$) is thus obtained by multiplying the total potential growth rate (G_p , Eqn 2.22, GCR) by the fraction allocated to that organ group k (pc_k):

$$G_{\mathbf{p},\mathbf{k}} = pc_{\mathbf{k}} G_{\mathbf{p}} \tag{2.24}$$

The growth rate of structural stem material is multiplied by (1.–FSTR) as the fraction allocated to the stem FST is based on total stem weight. The growth rate of the stem reserves pool (GSTR) is calculated in a similar way from FSTR. Spikelet and grain formation

```
CALL SUBGRN (GCR ,FSH,FSO ,DOY,DOYS, DOYTR,DVS,WRR,FWRR, ...
SPGF,TAV,TMAX,NSP,TIME, GRAINF,GSO,GGR,GNSP,GNGR)
```

The subroutine SUBGRN calculates the formation rate of spikelets and grains (GNSP and GNGR) and the fertility of spikelets as a function of temperature around flowering. The spikelet fertility routine was developed by Horie et al. (1992).

```
*---- (SUBROUTINE SUBGRN)
      LOGICAL GRAINS
      SAVE
      GRAINF = 1.
      IF (DOY.EQ.DOYS) GRAINS = .FALSE.
      GSO = GCR*FSH*FSO
      IF (DVS.GT.1.) THEN
          GGR = GSO
      ELSE
          GGR = 0.
      ENDIF
      IF (GRAINS) THEN
         IF (WRR .GT. PWRR) GRAINF = -1.
         IF (GRAINF.LT.0.) THEN
           WRITE (6,10) GRAINF, TIME
           FORMAT (/,' *** Sink limitation before DVS=2 !!!! ***,/,
10
           ' GRAINF', F8.3, ' at TIME=', F6.1)
     ŵ
         ENDIF
      ENDIF
```

When DVS is greater than 1. the grainfilling process is initiated. This procedure assumes that the non-grain components of the panicle are formed before DVS=1. (first flowering). When the maximum possible grain weight will (PWRR, see Section 2.3.5) be exceeded, the model stops and send a message that the sink is limiting.

```
DVSPI = 0.65
DVSF = 1.
IF ((DVS.GE.DVSPI) .AND. (DVS.LE.DVSF)) THEN
GNSP = GCR * SPGF
ELSE
GNSP = 0.
ENDIF
```

In grain crops, the carbohydrate production in the grainfilling period can be higher than the storage capacity of the grains, which is determined by the number of grains per m^2 and the maximum growth rate of the grains. This may result in the accumulation of assimilates in the leaves causing reduced rates of CO₂ assimilation through a feedback mechanism (Barnett &

Pearce, 1983). This can be very important in rice when it is grown in extreme environments as both low and high temperatures before flowering can induce spikelet sterility which results in a low sink capacity (Yoshida, 1981).

In wheat, it has been found that the size of the spike at flowering is proportional to the number of grains that are formed (Fischer, 1985), and that spike size is closely correlated with the amount of growth of the crop during the spike formation period. The amount of growth over this period depends both on the duration of the period, which is influenced by temperature, and the crop growth rate, which is influenced by temperature and radiation. Similar relationships have been found in rice (Yoshida & Parao, 1976) and were used by Islam & Morison (1992) relating rice yields in Bangladesh to the 'photothermal quotient' (Q), the ratio of solar radiation in the 30 days prior to flowering to the mean temperature over the same period minus a base temperature.

In experiments at IRRI, we have found a good relationship between the total crop growth over the period from panicle initiation to first flowering and the number of spikelets at flowering (Figure 2.7). This relationship holds across the wet and dry seasons, for levels of nitrogen application ranging from 0 to 285 kg ha⁻¹, from planting densities ranging from 25 to 125 plants m⁻², and for severe drought stress. A similar relationship is also found at the tiller level, so that the number of spikelets per tiller can be explained by the growth of each tiller during the period in which the panicle for that tiller is formed. The effects of solar radiation, temperature, nitrogen, competition, and water, on spikelet formation, therefore, seem to be able to be integrated by their effects on crop growth over the panicle formation period. We have called the slope of this relationship the spikelet formation factor (γ). For a given variety, the relationship is remarkably consistent, although there do appear to be differences between varieties. For IR72, for example, γ has a value of about 65 spikelets g⁻¹ total dry matter, but ranges between about 45 and 70 spikelets g⁻¹ in a number of varieties used in experiments at IRRI.

Figure 2.7. The relationship between spikelet numbers m^{-2} and crop growth between PI and flowering (data from Kropff, Cassman, Torres and Liboon (symbols \bullet , \Box) and S. Peng (\blacksquare) IRRI, cultivar IR72).

In the model, the amount of growth from panicle initiation (defined as DVS = 0.65) to first flowering (defined as DVS = 1.0) is tracked, and the number of spikelets (S) is calculated as the product of this growth and γ , i.e.

$$S_{i} = \sum_{i=P}^{F} (G_{i} \cdot \gamma)$$
(2.25)

where P and F are the dates of panicle initiation and first flowering, respectively, and G_i is increment in crop weight on day *i*. Thus, at flowering, a certain number of spikelets have been produced, which determines the maximum yield (Y_{max} , kg ha⁻¹) that can be achieved:

$$Y_{\max} = S_{\rm f} \bullet G_{\max} \bullet 10^4 \tag{2.26}$$

where S_f is the number of spikelets at flowering (spikelets m⁻²), and G_{max} is the grain size (mg grain⁻¹), assumed to be constant for a variety (Yoshida, 1981). The actual grain yield (Y, kg ha⁻¹) depends on the amount of assimilates produced in the period from flowering to maturity (defined as DVS = 2.0) plus any translocated assimilates from stem reserves, provided Y does not exceed Y_{max} , i.e.

$$Y = \sum_{i=F}^{M} (G_i + T_i) \qquad Y \le Y_{\max}$$
(2.27)

where F and M are the dates of flowering and maturity, respectively, and G_i and T_i are the increment in crop weight, and the amount of assimilates translocated, respectively, on day *i*. The model terminates the simulation when either $Y = Y_{max}$ or when maturity is reached (DVS = 2.0), whichever occurs first.

```
*---- (SUBROUTINE SUBGRN)
* Grain formation from spikelets (GNGR)
      IF (DOY.EQ.DOYTR) COLDTT = 0.
      IF (DOY.EQ.DOYTR) TFERT = 0.
      IF (DOY.EQ.DOYTR) NTFERT = 0.
      IF ((DVS.GE.0.75) .AND. (DVS.LE.1.2)) THEN
                = MAX(0., 22.-TAV)
         CTT
         COLDTT = COLDTT + CTT
         ENDIF
      IF ((DVS.GE.0.96) .AND. (DVS.LE.1.2)) THEN
        TFERT = TFERT + TMAX
        NTFERT = NTFERT + 1.
      ENDIF
      IF ((DVS.GE.1.2) .AND.(.NOT. GRAINS)) THEN
         GRAINS = .TRUE.
         SF1
               = 1. - (4.6+0.054 \times COLDTT \times 1.56) / 100.
         SF1
               = MIN(1., MAX(0.,SF1))
         TFERT = TFERT/(NTFERT)
```
```
SF2 = 1./(1.+EXP(0.853*(TFERT-36.6)))
SF2 = MIN(1., MAX(0.,SF2))
SPFERT = MIN(SF1, SF2)
GNGR = NSP*SPFERT
ELSE
GNGR = 0.
ENDIF
```

This section calculates the spikelet fertility according to Horie et al. (1992). Using the 'cooling degree-day' concept (Uchijima, 1976), the relation between daily mean temperature (T_i) and the percentage sterility may be approximated by the equation that calculates SPF1 (Figure 2.8). The cooling degree-days (Q_t) are calculated as follows:

$$Q_{\rm t} = \sum (22 - T_{\rm i}) \tag{2.28}$$

The summation of Eqn 2.28 is done for the period of highest sensitivity of the rice panicle to cool temperatures $(0.75 \le \text{DVS} \le 1.2)$.

Figure 2.8. Relation between cooling degree-days and percentage spikelet (δ) sterility of 'Eiko' rice between booting and flowering stages (Horie, 1988).

Figure 2.9. Relation between average daily maximum temperature during the flowering period and spikelet fertility in 'Akihikari' rice acclimated to different CO_2 concentrations (Horie, 1993).

Rice spikelets are also sensitive to high temperature, particularly at anthesis. Damage to the pollen occurs when the temperature at flowering is above approximately 35 °C (Satake & Yoshida, 1978; Matsui & Horie, 1992). Figure 2.9 represents the relationship between the fraction of fertile spikelets and the average daily maximum temperature over the flowering period ($0.96 \le DVS \le 1.22$) for Akihikari rice grown in a temperature gradient tunnel (Horie, 1993) with elevated and ambient CO₂ concentrations. Figure 2.9 indicates that CO₂ concentration has no effect on the temperature and fertility relationship. The relation shown in Figure 2.9 may be approximated by

$$1 - \gamma = 1 - 1/(1 + \exp(0.853 (T_{\rm M} - 36.6)))$$
(2.29)

where $T_{\rm M}$ is the average daily maximum temperature during the flowering period. Daily maximum temperature is employed to account for rice spikelets usually flowering during the daytime. Actual spikelet sterility is calculated as the minimum of that due to cool temperature and that due to high temperature (Eqn 2.29).

2.3.5 Dry matter production and number of grains and spikelets

WLVG	= INTGRL (WLVGI, RWLVG)
WLVD	= INTGRL (ZERO , LLV)
WSTS	= INTGRL (WSTI , GST)
WSTR	= INTGRL (ZERO , RWSTR)
WSO	= INTGRL (WSOI, GSO)
WRT	= INTGRL (WRTI, GRT)
WST	= WSTS + WSTR
WAGT	= WLVG + WST + WSO + WLVD
WAG	= WLVG + WST + WSO
WRR	= INTGRL (ZERO, GGR)
WRR14	= 1.14 * WRR
NGR	= INTGRL (ZERO, GNGR)
NSP	= INTGRL (ZERO, GNSP)
PWRR	= NGR * WGRMX

Total dry weights of the plant organs are obtained by integrating their daily growth rates over time. This approach to dry matter partitioning can be improved by introducing effects of other factors that determine partitioning patterns like the water and nutrient status of the crop (van Keulen & Seligman, 1987). The model simulates a pool of reserves in the stems ((WSTR) which are translocated to the grains after flowering.

2.4 Leaf area development

```
CALL SUBDD (TMAX,TMIN,TBLV,30.,42., HULV)
CALL SUBLAI(SWIDS,SWILAI,DAS,DOYS,DOYTR,LAPE, RGRL, TSLV, ...
NPLSB, WLVG, SLA, NH, NPLH, SHCKL, DVS, ...
```

	LAISIM, TSHCKL)
LAI	= INSW (SWILAI, XLAI, LAISIM)
SSGA	= AFGEN(SSGATB, DVS)
SAI	= SSGA * WST
SLA	= AFGEN(SLATB , DVS)
XLAI	= AFGEN(XLAITB, DOY)
ALAI	= LAI + 0.5 * SAI

As discussed in the description of the subroutine ASSIMP, 50% of the green stem area index (SAI) is added to the leaf area index (LAI), because of lower photosynthetic activity. The SAI is calculated from the stem dry weight, using the SSGA (specific green stem area) which was estimated in experiments. After flowering, the SSGA is reduced because of death of sheath tissue (SSGA as a function of the development stage).

In the model, the measured leaf area index (XLAI, ha ha⁻¹) can be used (SWILAI=-1.), or the LAI can be simulated (LAISIM, SWILAI=1.).

The green leaf area of plants determines the amount of absorbed light and thus CO_2 assimilation. In early versions of the model (Penning de Vries et al., 1989), leaf area development was assumed to be only determined by the amount of carbohydrates available for leaf growth. Leaf area was calculated from leaf dry matter using the Specific Leaf Area (SLA, m² leaf kg⁻¹ leaf). This caused strong overestimations of LAI by the model. The variability in SLA is caused by the fact that leaf expansion is mainly temperature driven in the early stages of crop growth when the leaves do not shade each other and leaf area development is not limited by the amount of available assimilates (Horie et al., 1979). Light intensity determines the rate of CO_2 assimilation and hence the supply of assimilates to the leaves, whereas temperature affects the rates of cell division and expansion.

The subroutine SUBLAI

```
SUBROUTINE SUBLAI (SWIDS, SWILAI, DAS, DOYS, DOYTR, LAPE, RGRL, TSLV,
                    NPLSB, WLVG, SLA, NH, NPLH, SHCKL, DVS,
&
                   LAISIM, TSHCKL)
æ
IMPLICIT REAL (A-Z)
 INTEGER IDAS, ISA
 SAVE
 IDAS = INT(DAS)
 IF (SWIDS.LT.0.) THEN
   ISA = INT (DOYTR) - INT (DOYS)
   IF (ISA.LT.0) THEN
       ISA = ISA + 365
     ELSE
       ISA = ISA
   ENDIF
```

```
LAIEXS = 0.
  WLVEXS = 0.
       IF (IDAS.LT.ISA) THEN
          IF (LAISIM.LT.1.) THEN
             LAPI = LAPE * (EXP(RGRL*TSLV))
             LAISIM = LAPI * NPLSB
             WLVEXS = WLVG
             LAIEXS = LAISIM
          ELSE
             LAISIM = SLA* (WLVG-WLVEXS) + LAIEXS
          ENDIF
       ELSE
          IF (IDAS.EQ.ISA) THEN
             LAII = LAISIM * NH * NPLH / NPLSB
             TSLVTR = TSLV
             TSHCKL = SHCKL * TSLVTR
          ENDIF
          IF (TSLV.LT. (TSLVTR+TSHCKL)) THEN
             LAISIM = LAII
          ELSE
             IF ((LAISIM.LT.1.0) .AND. (DVS.LT.1.0)) THEN
                LAISIM = LAII*(EXP(RGRL*(TSLV-TSLVTR-TSHCKL)))
                WLVEXP = WLVG
                LAIEXP = LAISIM
             ELSE
                LAISIM = LAIEXP+SLA* (WLVG-WLVEXP)
             ENDIF
          ENDIF
       ENDIF
     ENDIF
IF (SWIDS.GT.0.) THEN
   IF (IDAS.EO.O.) LAISIM = NPLSB * LAPE
      IF (LAISIM.LT.1.) THEN
          LAPI = LAPE * (EXP(RGRL*TSLV))
          LAISIM = LAPI * NPLSB
          WLVEXS = WLVG
          LAIEXS = LAISIM
      ELSE
          LAISIM = SLA * (WLVG-WLVEXS) + LAIEXS
      ENDIF
ENDIF
IF (SWILAI.LT.0.) LAISIM = 0.
RETURN
END
```


Figure 2.10. The relation between the natural logarithm of leaf area of free growing directseeded young rice plants and the temperature sum (°Cd). Data are from a wet season 1991 experiment with IR72 at IRRI, Los Baños, Philippines (Torres, Liboon, Kropff & Cassman, IRRI, unpublished).

The LAI is simulated in the subroutine SUBLAI. It contains two sections, one for transplanted rice and one for direct-seeded rice. For the different phases, different sections were introduced.

For a closed canopy, the LAI is calculated from the leaf dry weight using the SLA. When the canopy is not closed the plants grow exponentially as a function of the temperature sum TSLV (Figure 2.10):

$$LAI_{ts} = N L_{p,0} \exp(R_1 ts)$$
 (2.30)

where

 LAI_{ts} is the leaf area index (m² leaf m⁻² ground) at a specific temperature sum (*ts*, TSLV, °Cd) after emergence,

N the number of plants per m²,

 $L_{p,0}$ the initial leaf area per plant at seedling emergence (LAPE, m² plant⁻¹), and

 R_1 the relative leaf area growth rate (RGRL, (°Cd)⁻¹).

The temperature sum ts is calculated using the same procedure to calculate heat units as for phenological development. The exponential phase ends when the portion of assimilates allocated to non-leaf tissue sharply increases, or when mutual shading becomes substantial. As a yardstick for these events, one can use LAI = 1.0 as the end of the exponential growth period, when leaves start to overlap. This can easily be checked by plotting ln(LAI) versus ts and determining the LAI up to which growth is linear (Figure 2.10). In transplanted rice, LAI development in the seedbed is simulated in the same way.

On the date of transplanting the seedling age in degree-days (TSLV, °Cd) is calculated (TSLVTR). Based on this seedling age the duration of the transplanting shock (no LAI growth) in degree-days is calculated (TSHCKL) (Figures 2.11A and B). After the transplanting shock period, growth is exponential again when LAI<1., and when LAI exceeds 1 the SLA concept is used. In case of direct-seeded rice, the procedure is the same as in the seedbed.

To account for leaf senescence, a relative leaf death rate is defined, being a function of the development stage. In the model, the relative death rate of the leaves is applied to the leaf weight to calculate the weight loss of the leaves (LLV). The reduction in leaf area is calculated from the loss of leaf weight using the specific leaf area (SLA).

Figure 2.11A. The relation between the natural logarithm of leaf area of free growing directseeded and transplanted (at 12 days and 21 days after emergence) young rice plants and temperature sum (°Cd). Data are from a wet season 1991 experiment with IR72 at IRRI, Los Baños, Philippines (Torres, Liboon, Kropff & Cassman, IRRI, unpublished).

Figure 2.11B. Relation between the transplanting shock effect on leaf area development in rice expressed as a period where no growth occurs (TSHCKL, °Cd) and the seedling age at transplanting, also expressed in degreedays. Data are from a wet season 1991 experiment with IR72 at IRRI, Los Baños, Philippines (Torres, Liboon, Kropff & Cassman, IRRI, unpublished).

2.5 Time and environmental variables

```
WEATHER WTRDIR='C:\WEATHER\', CNTR='PHIL', ISTN=1, IYEAR=1992
*
  Reading weather data:
         Daily global radiation
                                       J/m2/d
*
  RDD
  TMMN
         Daily minimum temperature
                                       degree C
*
  TMMX
         Daily maximum temperature
                                       degree C
  VP
         Vapour pressure
                                       kPa
*
  WN
         Wind speed
                                       m/s
*
         Precipitation
  RAIN
                                       mm
*
  LAT
         Latitude of the side
                                       degree
*
  DOY
         Day of year
                                        đ
      TMAXC = INSW (SWITMP, 0., AFGEN(TMCTB, DOY))
      TMINC = INSW (SWITMP, 0., TMAXC)
      CALL COVER (SWICOV, DAS, DOYTR, DOYS, TMPCOV)
             = INTGRL (ZERO, RDAS)
      DAS
      RDAS
             = 1.
      TAV
            = (TMIN + TMAX)/2.
      TAVD = (TMAX + TAV) / 2.
      TS
            = INTGRL (ZERO, HU )
      TSLV = INTGRL (ZERO, HULV)
      DTR
            = RDD
      TMIN = TMMN + TMINC
      TMAX = TMMX + TMAXC + TMPCOV
```

```
* Station Name: IRWE0001
                 : Climate Unit, IRRI
                                                             -99.000: nil value
    Author
                       : International Rice Research Institute
    Source
                        : This file is extracted from CLICOM database
    Comments
    Longitude: 121 15 E Latitude: 14 11 N Altitude: 21 m
    Column
                    Daily Value
                    Station number
       1
         2
                    Year
         3
                   Day
                                                     KJ m-2 d-1
                    Irradiation
                                                       oC
         5
                   min temperature
*
         6
                   max temperature
                                                                oC
         7
                   early morning vp
                                                             kPa
         8
                   mean wind speed
                                                            m s-1
         9
                   precipitation
                                                          mm d-1
       ----
                                               ------
121.25 14.18 21 0.00 0.00
   1 1991
                       9683. 23.6 28.4
                                                    2.82
                1
                                                                           2.1

        1
        1991
        1
        1903.
        20.5
        20.5
        20.5
        20.5

        1
        1991
        2
        14867.
        23.7
        30.5
        2.85

        1
        1991
        3
        10187.
        21.6
        28.5
        2.45

        1
        1991
        4
        19294.
        21.3
        30.1
        2.47

        1
        1991
        5
        19546.
        20.6
        31.0
        2.60

                                                              1.6
                                                                          .0
                                                                 1.6
                                                                            .0
                                                                2.2
                                                                          .0
                                                                 1.1
                                                                             .0
   1 1991 6
                       9431. 21.0 28.0 2.46
                                                                          2.0
                                                                1.7
```

Figure 2.12. The content of file PHIL1.991, the weather file for Los Baños, Philippines, Station 1, Year 1991. Check whether your weather data have the same units. Note: radiation is expressed in KJ m⁻² d⁻¹ and will be (in the model) automatically converted into J m⁻² d⁻¹.

	a _A	b _A
Cold and temperate zones	0.18	0.55
Dry tropical zones	0.25	0.45
Humid tropical zones	0.29	0.45

Table 2.1. Indicative values for the empirical constants a_A and b_A in the Ångström formula, in relation to latitude used by the Food and Agriculture Organization, FAO. Source: Frère and Popov, 1979.

The weather file has a strict format and the data have specified units (see header of the weather data file, Figure 2.12). The first letters of the weather file indicate the name of the country, the following digit indicates the station number in the country, and as extension, the year is given e.g. 1991 is 991. So, if the weather file is called MALA5.993 (Malaysia, Station no 5 (self-chosen number) and year 1993), you have to give the following information in the WEATHER statement to identify the file and the directory where the file is located:

```
WEATHER WTRDIR='C:\WEATHER\', CNTR='MALA', ISTN=5, IYEAR=1993
```

If only sunshine hours are available, the radiation can be calculated from the Ångström formula:

(2.31)

 $S_{g} = S_{0} \cdot (a_{A} + b_{A} \cdot (n_{s}/N_{s}))$

where

 S_0 is the theoretical amount of global radiation without an atmosphere,

 a_A an empirical constant (see Table 2.1),

 b_A an empirical constant (see Table 2.1), and

 n_s/N_s the ratio between the amount of bright sunshine hours (n_s) and the maximum amount of sunshine hours (N_s) .

The values of S_0 and N_s can be calculated using the procedures given in Section 2.3.1 (DS0 and daylength), which are calculated in the subroutine ASTRO.

For climate change studies, daily maximum and minimum temperatures can be altered by using the function TMCTB, which defines the temperature change as a function of time (TMAXC, TMINC), and the parameter SWITMP has to be set at 1.

CALL COVER (SWICOV, DAS, DOYTR, DOYS, TMPCOV)

If a plastic cover is used in the seedbed, like in Japan, the maximum temperature is raised by 9 °C based on preliminary observations by Horie (pers. comm.). The parameter SWICOV has to be set at 1 in case of use of a cover, otherwise SWICOV=-1.

```
CALL SUBCBC (CKCIN, CKCFL, TIME,
                                 CBCHK)
CKCIN = (WLVG+WLVD-WLVGI)*FCLV
                                        +
                                               . . .
         (WSTS-WSTI) *FCST + WSTR*FCSTR +
                                               . . .
         (WRT -WRTI)*FCRT + WSO *FCSO
CKCFL = TNASS * (12./44.)
CTRANS = RWLVG1*FCLV + GST1*FCST +
                                               . . .
         RWSTR1*FCSTR + GRT1*FCRT
TNASS = INTGRL(ZERO, RTNASS)
RTNASS = ((DTGA*30./44. - RMCR)*44./30.) - RGCR -
                                                    . . .
           (CTRANS*44./12.)
RGCR
       = (GRT + GRT1) *CO2RT + (GLV + RWLVG1)*CO2LV + ...
         (GST +GST1)
                      *CO2ST + GSO*CO2SO
         (GSTR+RWSTR1) *CO2STR
                                                    + ...
         (1.-LRSTR)*LSTR*FCSTR*44./12.
CO2RT = 44./12. * (CRGRT *12./30. - FCRT)
CO2LV = 44./12. * (CRGLV *12./30. - FCLV)
CO2ST = 44./12. * (CRGST *12./30. - FCST)
CO2STR = 44./12. * (CRGSTR*12./30. - FCSTR)
CO2SO = 44./12. * (CRGSO *12./30. - FCSO)
```

The model contains a carbon balance check, to be sure that total net assimilated carbon (CKCFL) exactly equals the carbon fixed in dry matter and the carbon lost as a result of growth and maintenance respiration (CKCIN). The model gives an error message (in the subroutine CBCHK) if the amount of carbon not accounted for is more than 0.1% of the total assimilated carbon. Of course, in a good model the difference between CKCIN and CKCFL has to be 0.

CKCIN is calculated by multiplying all weight integrals by the fraction carbon in dry matter (from: Penning de Vries et al., 1989). Total net assimilated carbon is calculated from the gross CO_2 assimilation (DTGA) and the carbon losses as a result of maintenance respiration (RMCR) and growth respiration (RGCR). Carbon losses as a result of losses through growth respiration are calculated from the dry matter growth rates multiplied by the CO_2 production factor (Penning de Vries et al., 1989). This CO_2 production factor is calculated from the assimilate requirements of an organ (CRG..) and the fraction carbon in the dry matter produced. The numbers indicate the ratio's of the molecular weights of carbon (12), CO_2 (44) and CH_2O (30), e.g.:

CO2RT = 44./12. * (CRGRT *12./30. - FCRT)

in dimension analysis:

 $CO_2 = \frac{CO_2}{C} \times \left(\frac{CH_2O}{DM} \times \frac{C}{CH_2O} - \frac{C}{DM}\right) = CO_2 \text{ per unit of DM produced.}$

The part of the stem reserves is complex, because during the translocation process, losses of 5.3% are accounted for in the model. Those losses are quantified in the calculation of RGCR.

2.7 Run control

```
FINISH DVS
                   > 2.
FINISH NCOLD
                   > 3.
FINISH GRAINF
                   < 0.
TIMER STTIME
                   = 4., FINTIM = 300., DELT = 1., PRDEL = 5.
TRANSLATION_GENERAL DRIVER='EUDRIV'
           DOY, DVS, TS, TSLV, XLAI, LAI, ALAI, LAISIM, NFLV, XNFLV,
PRINT
                                                                    . . .
           GST, GLV, GSO, GSTR, GRT, WRT, WLVG, XWLVG, WLVD, XWLVD,
                                                                    . . .
           WST, XWST, WSO, XWPA, WAG, XWTDM, TSHCKD, TSHCKL, WGR, DTGA, ...
           AMAX, CBCHK, DPAR, DPARI, NGCR
```

In the model, several finish conditions have been defined (e.g. FINISH DVS > 2). In the FST timer statement, the start day of simulation is given, the finish time of simulation (FINTIM), the time step of integration (DELT which has to be 1!!, because of the semi-analytical integration of CO₂ assimilation in the TOTASP routine). PRDEL indicates the time interval at which output is generated. The PRINT statement indicates which variables can be used for graphical output to your screen, and will be send to the output file RES.DAT.

FST has a rerun facility, which enables the model to conduct multiple runs. Before the STOP statement and between two END statements, new parameter values can be given for another run (treatment or so).

2.8 Observed values

XWLVG	= AFGEN(XWLVGT,	DOY)
XWLVD	= AFGEN(XWLVDT,	DOY)
XWST	= AFGEN(XWSTTB,	DOY)
XWPA	= AFGEN(XWPATB,	DOY)
XWTDM	= AFGEN (XWTDMT,	DOY) - XWLVD
XWT	= AFGEN (XWTDMT,	DOY)
XNFLV	= AFGEN (XNFLVT,	DOY)

In this section the observed values of the organ weights and the specific leaf nitrogen (XNFLV) are specified to allow model comparison.

2.9 Functions and parameters for rice

The functions and parameters for rice are specified in Section 9 in the model. Many of these values are general for rice, some are variety specific. This section will be discussed in Chapter 3.

2.10 **TERMINAL** section

```
TERMINAL

WGR = WRR/NOTNUL(NGR)

END

PARAM SWILAI=1.

END

STOP

(SUBROUTINES ....)
```

In the TERMINAL section of an FST program variables are calculated only once at the end of a simulation run, this section is optional. Hereafter, the possibility is given to make use of the RERUN facility. After the STOP statement the subroutines are invoked.

3 Model parameterization

M.J. Kropff¹, H.H. van Laar², R.B. Matthews^{1,3}, R.O. Torres¹, S. Peng¹ & K.G. Cassman¹

- ¹ International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
- ² Department of Theoretical Production Ecology, Wageningen Agricultural University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
- ³ Research Institute for Agrobiology and Soil Fertility (AB-DLO), Bornsesteeg 65, 6700 AA Wageningen, The Netherlands

This chapter describes how values for the key parameters that are used in the model have been derived. Most parameter values can be used in a general sense for rice, some are variety specific. In the applications chapter we discuss which parameters have to be (re)estimated for specific applications.

The parameters given in this chapter are based on one of the representative yield potential experiments conducted at IRRI in 1992 in the dry season (Kropff et al., 1993).

3.1 Initial conditions

The initial conditions have been discussed in Chapter 2.

3.2 Phenological development of the rice crop

```
* Section 2:

PARAM TBD = 8., TOD = 30., TMD = 42.

PARAM DVRJ = 0.000773

PARAM DVRI = 0.000758

PARAM DVRP = 0.000784

PARAM DVRR = 0.001784

PARAM MOPP = 11.50

PARAM PPSE = 0.0
```

```
PARAM SHCKD = 0.4
PARAM DOYS = 4.
PARAM DOYTR = 16.
```

For rice, the dimensionless scale for development was used. From experimental data the development rate (DVR, (°Cd)⁻¹) can be calculated as the inverse of the number of heat units between two phenological events. The values for the cardinal temperatures (TBD, TOD and TMD) have been estimated based on Gao et al., 1992; Summerfield et al., 1992; and unpublished data from Yin et al. and Ingram et al. (IRRI). Four parameters have to be estimated for the effect of temperature in the different stages:

- DVRJ for the basic vegetative phase (BVP), from sowing (DVS=0) to the start of the photoperiod-sensitive phase (DVS=0.4).
- DVRI for the photoperiod-sensitive phase (PSP), from end of the basic vegetative phase to panicle initiation (DVS=0.65). DVRI is the development rate at optimum photoperiod.
- DVRP for the panicle formation phase (PFP), from panicle initiation to first flowering (DVS=1).
- DVRR for the grainfilling phase (GFP), from first flowering to physiological maturity (DVS=2).

The variety-specific development rate constant is the inverse of the temperature sum required to complete a specific phase at the optimum photoperiod. Differences between varieties in the total crop duration are usually due to differences in the duration of the BVP (DVRJ) rather than the other phases (Vergara & Chang, 1985).

The photoperiod sensitivity of a variety is indicated with the parameters MOPP (optimum photoperiod) and PPSE, which indicates the decrease in the developmental rate at photoperiods higher than the optimum during the photoperiod sensitive phase (PSP). Most IR varieties are very slightly photoperiod sensitive and therefore the parameter PPSE is set to 0.

The parameter SHCKD indicates the delay in flowering (°Cd) per °Cd of seedling age due to the transplanting shock. The date of sowing (DOYS) and transplanting (DOYTR) are specified here because they are first used in this section.

An interactive program (DRATES, see Appendices 5 and 6) has been developed to calculate the rates of development in the vegetative stage (sowing to flowering) and in the reproductive phase (flowering to physiological maturity). The program asks for dates of seeding, transplanting, panicle initiation (if available), flowering, and physiological maturity. Weather data have to be provided in the standard AB/TPE Weather System format (see Section 2.5 and van Kraalingen et al., 1991). The program DRATES produces an output file (DVS.DAT) which gives estimates of the parameter values for DVRJ, DVRI, DVRP and DVRR, and also the development stages for user-specified days (e.g. sampling dates) during the season. Special care has to be taken with the date of physiological maturity, as that event is difficult to observe visually.

3.3 Daily dry matter production

3.3.1 Daily rate of canopy gross CO_2 assimilation and light absorption by the canopy

```
* Section 3.1:
PARAM SCP = 0.2
PARAM CO2REF = 340.
PARAM CO2 = 340.
FUNCTION NFLVTB = 0.00,0.54, 0.16,0.54, 0.33,1.53, 0.65,1.22, ...
0.79,1.56, 1.00,1.29, 1.46,1.37, 2.04,0.83
FUNCTION REDFTT = -10.,0., 10.,0., 20.,1., 37.,1., 43.,0.
FUNCTION EFFTB = 10.,0.54, 40.,0.36
FUNCTION EFFTB = 0.,0.4, 0.65,0.4, 1.,0.6, 2.1,0.6
FUNCTION KNFTB = 0.,0.4, 2.1,0.4
```

The scattering coefficient (SCP) has the standard value of 0.2, indicating that 20% of the radiation is reflected or transmitted by a single leaf (Goudriaan, cited by Spitters, 1986). This coefficient is used to calculate the extinction coefficients for the different types of radiation. The ambient CO_2 concentrations have been set at 340 ppm. For the evaluation of climate change scenarios the actual CO_2 concentration has to be changed (CO_2).

The average specific leaf N content of the canopy is specified as a function of DVS (NFLVTB). The values used in the model were derived from the 1992 DS experiment with IR72 at high N levels, and can be used for estimates of yield potential. If a specific experiment is analysed by the model, the actual specific leaf N has to be selected using the switch SWINLV.

The function REDFTT quantifies the effect of daytime average temperature on the maximum rate of leaf photosynthesis (after Penning de Vries et al., 1989).

The light extinction coefficient

Values for k_{df} range from 0.4 - 0.7 for monocotyledons (erectophile) and 0.65 - 1.0 for dicotyledons (Monteith, 1969). For rice a value of 0.4 is used until the canopy closes and 0.6 for a closed canopy. This accounts for the clustering of leaves by planting on hills and the very erect stature of the leaves at early stages.

The extinction coefficient k_{df} has to be measured under an overcast sky. Direct radiation has to be avoided as the solar elevation determines the extinction coefficient for direct radiation (Eqn 2.9) (in the morning all direct radiation will be absorbed and scattered in the top layer because of the path length, whereas at noon, direct radiation will penetrate further in the canopy). If measurements have to be taken at a clear sky, a board can be used to shade the light measurement instrument. Otherwise, the average extinction coefficient over the day has to be calculated or the value has to be corrected for the solar elevation. Light extinction can be measured by comparing radiation intensity above and below the canopy using a lightbar (generally a 1 m long tube with PAR (Photosynthetically Active Radiation) light sensors built in). From the LAI and the measured light extinction, the extinction coefficient k_{df} can be calculated using Eqn 2.6. When global radiation is measured, k_{df} for PAR will be about 2/3 of the k calculated for global radiation, because absorption of near infrared radiation by the canopy is less efficient.

An important factor that may confound interpretation of measurements is the light absorption by other organs than leaves. This is accounted for in the model by specifically calculating light absorption by stems and storage organs. In calculating k_{df} of leaves from measurements, this effect should be accounted for.

The current model only accounts for the effective stem area. However, detailed models for light absorption of other organs are available (Kropff & van Laar, 1993). When measuring light extinction in the field, k_{df} of the leaves will be severely overestimated by light absorption of other organs than leaves if the light absorption is related to leaf area only. One option is to include the area of other organs in the calculation; the other option is to remove the flowers and then the leaves after the first light measurements and repeat the light measurements.

CO₂ assimilation-light response of individual leaves

In the model, canopy CO₂ assimilation is calculated on basis of the CO₂ assimilation-light response of individual leaves. This response follows a saturation type of function, characterized by the initial slope (the initial light use efficiency (ε , kg CO₂ ha⁻¹ leaf h⁻¹ / (J m⁻² leaf s⁻¹)) and the asymptote (A_m , (AMAX) kg CO₂ ha⁻¹ leaf h⁻¹) (Eqn 2.18, Figure 3.1).

The initial light use efficiency (ε , EFF) is calculated based on a linear relation with temperature: 0.54 at 10 °C - 0.36 at 40 °C kg CO₂ ha⁻¹ leaf h⁻¹ / (J m⁻² leaf s⁻¹). These values are based on data of Ehleringer & Pearcy (1983). They did not observe main differences between C₃ species. In C₃ species, ε decreases slightly with increasing temperature as the affinity of the carboxylating enzyme Rubisco for O₂ increases compared to CO₂. In C₄

Figure 3.1. The CO_2 assimilation - light response curve of single leaves calculated for three N concentration levels.

Figure 3.2. The relationship between the maximum rate of CO_2 assimilation of single leaves and the leaf N concentration on a per area basis (g m⁻²). Dashed line is after van Keulen & Seligman (1987), the solid line above 0.5 g m⁻² is based on data of Peng et al. (unpublished, IRRI).

species, ε is independent of temperature as these plants have no photo-respiration (which is the reduction CO₂ assimilation by oxygenation of the carboxylating enzyme). This value is assumed not to be affected by the leaf N concentration, as light is the limiting factor in the process.

The light saturated rate of leaf CO_2 assimilation (A_m , AMAX) however, varies considerably, mainly as a function of leaf age and the actual environmental conditions to which the leaf has been exposed in the past. It is also influenced by genotype and plant species. A_m varies between 10 - 50 kg CO₂ ha⁻¹ leaf h⁻¹ for C₃ species and between 10 - 90 kg CO₂ ha⁻¹ leaf h⁻¹ for C₄ species, depending on leaf N concentration and temperature (Goudriaan, 1982; van Keulen & Seligman, 1987). A good approximation is to relate A_m to N concentration expressed per leaf area unit because that determines the amount of chlorophyll per unit area. For the relationship between leaf N concentration and the maximum rate of CO₂ assimilation, a combination of two linear relationships is used which is based on data from Peng et al. (IRRI, unpublished data) for leaf N concentrations higher than 0.5 g m^{-2} for which data were available, and the estimate of a base N concentration of 0.2 g m⁻². The relationship is slightly different from the relationship given by van Keulen & Seligman (1987) and Penning de Vries et al., 1990) (Figure 3.2). This relationship explains the decrease in $A_{\rm m}$ later in the growing season when the N concentration in the leaves decreases. Data from phytotron-grown plants generally do not represent photosynthetic characteristics of field-grown plants as the leaves have grown in different environmental conditions, causing differences in SLA and percentage N. If the N concentration is expressed on a per unit of leaf area basis, however, the relationship will be more general. However, the difference between the relationship derived by van Keulen & Seligman (1987) and the data derived by Peng (IRRI) show that more fundamental insight is needed in the relationship between N in the leaf, the amount of Rubisco and the maximum rate of leaf photosynthesis.

Figure 3.3. Distribution of LAI (A) and the leaf N concentration (B) over height of the canopy of the new line in the wet season of 1991 for three N application treatments at 12 days after flowering.

The N profile in the canopy follows an exponential pattern (Figure 3.3). In the model, this is accounted for by using an extinction coefficient KNF which is specified as a function of developmental stage. The value of 0.4 was based on preliminary measurements in field experiments at IRRI during grainfilling. More data are required to derive this relationship for a wide range of conditions.

3.3.2 Maintenance respiration

```
* Section 3.2:

PARAM MAINLV = 0.02, MAINST = 0.015

PARAM MAINSO = 0.003, MAINRT = 0.01

PARAM Q10 = 2., TREF = 25.
```

The maintenance requirements are more or less proportional to the biomass to be maintained; For rice leaves, stems and roots, values of 0.02, 0.015 and 0.010 kg CH₂O kg⁻¹ dry matter d^{-1} , respectively, are used for rice (Penning de Vries et al., 1989). For storage organs the value can be approximated by calculating maintenance respiration for the active tissue only, representing the envelope of the stored material like the hull in rice, as the biomass stored is biochemically stable and does not require maintenance. For rice we assumed that a percentage of the biomass is inactive which resulted in a low coefficient (0.003). Maintenance requirements decrease with the metabolic activity of the plant. In the model, this is accounted for by assuming plant maintenance respiration to be proportional to the fraction of the accumulated leaf weight that is still green (Spitters et al., 1989).

```
* Section 3.3:

PARAM CRGLV = 1.326, CRGST = 1.326

PARAM CRGSO = 1.462, CRGRT = 1.326

PARAM CRGSTR = 1.11

PARAM LRSTR = 0.947
```

The primary assimilates in excess of the maintenance cost are converted into structural plant material. The amount of structural dry matter produced per unit of available carbohydrates depends on the chemical composition of the dry matter formed. Typical values of the glucose requirements (CR... or Q (see Eqn 2.22)) for various groups of compounds were derived on the basis of their chemical composition by Penning de Vries & van Laar (1982, modified by Penning de Vries et al. (1989)).

3.3.4 Dry matter partitioning

```
* Section 3.4:
FUNCTION FSHTB = 0.0,0.50, 0.43,0.75, 1.0,1.0, 2.1,1.
FUNCTION FRTTB = 0.0,0.50, 0.43,0.25, 1.0,0.0, 2.1,0.
FUNCTION FLVTB = 0.000,0.545, 0.080,0.545, 0.245,0.559,
                                                            . . .
                  0.490,0.542, 0.720,0.422, 0.895,0.053,
                                                            . . .
                  1.230,0.000, 1.730,0. , 2.1 ,0.
FUNCTION FSTTB = 0.000,0.455, 0.080,0.455, 0.245,0.441,
                  0.490,0.458, 0.720,0.578, 0.895,0.517,
                                                            . . .
                  1.230,0.000, 1.730,0. , 2.1 ,0.
FUNCTION FSOTE = 0.000, 0.000, 0.720, 0.000, 0.895, 0.430,
                                                            . . .
                  1.230,1.000, 1.730,1.0 , 2.1 ,1.
PARAM NPLH
             = 5.
PARAM NH
             = 25.
PARAM NPLSE = 1000.
```

In the model, the total daily dry matter increment is partitioned to the various plant organ groups according to fractions that are a function of the development stage. These fractions are derived by analysing the fractions of new dry matter production allocated to the plant organs between two subsequent harvests. Important detail is that for stems and leaves the decrease in dry weight cannot be accounted for, so after reaching the maximum weight, this maximum value is used for partitioning calculations when dead leaves are not measured. The relationships used in the model are given in Figure 3.4. The dry matter distribution patterns in the various experiments corresponded well with each other, indicating small seasonal and varietal effects.

Figure 3.4. Dynamic distribution pattern of dry matter over leaves, stems and panicles for IR72 and the new line (IR58109-113-3-3-2) from experiments in the wet season (WS) of 1991 and the dry season (DS) of 1992 (three N applications).

Procedure to calculate the partitioning tables (FLVTB, FSTTB, FSOTB)

- 1 Run the program DRATES (see Appendix 6), to calculate DVS for the sampling dates.
- 2 Make a table including sampling date, development stage (DVS), weight of leaves (WLV), stem (WST), panicles (WPA), totals and difference in weight between two harvests (dGrowth). It is important to use the maximum weight after flowering (*) when the weight decreases, because the model accounts for such decreases in a different way.

Sampling date (d)	DVS	WLV (kg ha ⁻¹)	WST (kg ha ⁻¹)	WPA (kg ha ⁻¹)	Total (kg ha ⁻¹)	dGrowth (kg ha ⁻¹)
100	0.8	2000	4000	0	6000	
120	1.0	2500	6000	1000	9500	3500
140	1.2	2500*	6000*	3000	11500	2000
160	1.4	2500*	6000*	5000	13500	2000

In this example, after flowering (DVS = 1) there is no increase in leaves and stem.

3 Calculate the mean DVS for the periods between two harvests and divide the increase in weight per organ by the total increase in weight for the different periods.

DVS	FLV	FST	FSO
0.9	500/3500 = 0.14	2000/3500 = 0.57	1000/3500 = 0.29
1.1	0/2000 = 0.	0/2000 = 0.	2000/2000 = 1.
1.3	0/2000 = 0.	0/2000 = 0.	2000/2000 = 1.

4 Write these fractions in the partitioning tables. The value of 0.5 is estimated here based on other experiments used for the standard parameters.

FUNCTION FLVTB = 0.,0.5,0.9,0.14,1.1,0.,2.1,0.FUNCTION FSTTB = 0.,0.5,0.9,0.57,1.1,0.,2.1,0.FUNCTION FSOTB = 0.,0.0,0.9,0.29,1.1,1.,2.1,1.

Stem reserves

PARAM FSTR = 0.20 PARAM TCLSTR = 10.

The fraction of stem reserves (FSTR) can be calculated by the difference between maximum stem weight (at flowering) and the stem weight at final harvest divided by maximum stem weight:

e.g. (5000 - 4000) / 5000 = 0.20 for the following function for the observed stem weight: FUNCTION XWSTTB = 4.,0., 16.,5., 34.,109., 58.,1577., ... 68.,2902., 83.,5000., 97.,4373., 114.,4000.

This is a relatively rough method, but it gives a first estimate of the net allocation of the stem reserves. Direct measurements of stem reserves and their allocation did not yet lead to quantitative insight in this process. The value of FSTR varies with the N level of the crop (Table 3.1). The time coefficient for stem reserves allocation (TCLSTR) was estimated at 10 days.

The relative death rate of the leaves

FUNCTION DRLVT = 0.0,0., 0.60,0., 1.,0.015, 1.6,0.025, 2.1,0.05

The relative death rate of the leaves (RDR (given as a function of DVS in DRLVT), d^{-1}) was calculated in a simplified way from experimental data. For the time interval between two samplings, the relative death rate can be calculated as follows, starting at the time where the leaf dry matter is highest:

$$RDR = (\ln W_t - \ln W_{t+dt}) / dt$$
(3.1)

in which t is expressed in days. Using the developmental rate program (DRATES), the development stages at the sampling dates is calculated. To relate the relative death rate to the development stage, the calculated relative death rate is assumed to be the rate at the average development stage between the samplings.

The plant density is defined by the number of hills per m^2 (NH) and the number of plants per hill (NPLH). In the seedbed the plant density is defined by NPLSB.

Year	N appl. (kg ha ⁻¹)	IR5809 (%)	IR72 (%)
1992	0	32	39
	180	43	19
	225	38	13
1991	0	48	36
	80	49	23
	110	38	19

Table 3.1. Values of the fraction of carbohydrates used for non-structural stem reserves in the stem (FSTR), as determined by the reduction in stem weight.

Number of grains and spikelets

* Section 3.5: PARAM SPGF = 64900. PARAM WGRMX = 0.0000249

The spikelet growth formation factor (SPGF) was derived as the slope of the relationship between spikelet number m^{-2} and the growth of the crop between PI and flowering (Figure 2.7). WGRMX is the maximum individual grain weight (kg grain⁻¹).

The parameters for the calculation of spikelet fertility as a function of temperature are included in the program, subroutine SUBGRN.

3.4 Leaf area development

```
* Section 4:
PARAM TELV = 8.
PARAM LAPE = 0.0001
PARAM RGRL = 0.0080
PARAM SHCKL = 0.25
FUNCTION SEGATE = 0.0,0.0003, 0.9,0.0003, 2.1,0.
FUNCTION XLAITE = 4.,0.00, 16.,0.03, 34.,0.46, 58.,5.22, ...
68.,5.97, 83.,5.88, 97.,4.82, 114.,2.45
FUNCTION SLATE = 0.00,0.0045, 0.16,0.0045, 0.33,0.0033, 0.65,0.0028,...
0.79,0.0021, 1.00,0.0019, 1.46,0.0017, 2.04,0.0017
```

In the early phases, leaf area growth proceeds more or less exponential, the relative growth rate being approximately linearly related to temperature (Eqn 2.30). When leaf area per plant is plotted on a logarithmic scale versus the temperature sum after emergence, a more or less linear relationship is, therefore, obtained (see Figure 2.10). The slope measures the relative

leaf area growth rate (R_1 (RGRL), (°Cd)⁻¹) and the intercept the apparent leaf area at emergence. In Figure 2.11 the relationships are given for direct-seeded and transplanted rice, showing that the transplanting shock only causes a delay (TSHCKL), but does not affect the slope. The value of 0.008 for RGRL was derived from high N experiments at IRRI (Los Baños, Philippines). For low N treatments, values of 0.005 were measured. A procedure to estimate leaf expansion in relationship to N uptake has to be developed.

Procedure to calculate the relative growth rate of leaf area development (RGRL)

The value of RGRL can best be estimated from the slope of the relationship between ln(LAI) and the temperature sum. When only a limited number of measurements is available the following equation can be used:

$$RGRL = \frac{\ln(\text{leaf area})_{t2} - \ln(\text{leaf area})_{t1}}{\Delta(\text{degree-days})}$$
(3.2)

Example:

The temperature sum can be obtained from the program DRATES (see Appendix 6). The RGRL should be calculated from LAIs in the exponential growth phase (so, LAI<1):

Sampling (nr)	LAI (m ² m ⁻²)	ln(LAI)	TSUM (°Cd)	
 t1	0.02	-3.9	0	
t2	0.05	-3.0	100	
t3	0.12	-2.1	200	

RGRL(t2-t1) = (-3.0 - (-3.9)) / 100 = 0.009 (°Cd)⁻¹ or RGRL(t3-t2) = (-3.0 - (-2.1)) / 100 = 0.009 or RGRL(t3-t1) = (-2.1 - (-3.9)) / 200 = 0.009

Stem area

The table SSGATB gives the specific green stem area as a function of developmental stage (DVS), and XLAITB gives the observed LAI as a function of daynumber (DOY). This table is experiment specific for model comparison.

After the exponential phase leaf area growth is simulated by multiplying the leaf dry weight by the specific leaf area (SLA, m² leaf kg⁻¹ leaf). SLA is plotted in Figure 3.5 as a function of the development stage expressed in degree-days for several experiments.

3.5 Environmental variables

```
* Section 5:
FUNCTION TMCTB = 1.,0., 366.,0.
```


Figure 3.5. Relation between the specific leaf area (SLA, ha leaf kg⁻¹) and development stage (DVS) for two seasons (WS1991 and DS1992) and two varieties (IR72 and IR58109-113-3-3-2) at 0 N and high N applications.

The table TMCTB can be used in the analysis of climate change scenarios when the temperature change is given as a function of daynumber of year (DOY).

3.6 Carbon balance check

```
* Section 6:

PARAM FCLV = 0.419, FCST = 0.431

PARAM FCRT = 0.431, FCSO = 0.487

PARAM FCSTR = 0.444
```

The parameters used in Section 6 give the fraction of carbon in dry matter for the different organs (after Penning de Vries et al., 1989).

```
Observed values
```

```
* Section 8:
FUNCTION XWLVGT =
                               16.,6.,
                                            34.,138.,
                                                         58.,1874., ...
                   4.,0.,
                               83.,3030.,
                                            97.,2828., 114.,1432.
                   68.,2840.,
                               16.,5.,
                                            34.,109.,
                                                         58.,1577., ...
                    4.,0.,
FUNCTION XWSTTB =
                   68.,2902.,
                               83.,4771.,
                                            97.,4373., 114.,4243.
                               16.,0.,
                                            34.,0.,
                                                         58.,47.,
FUNCTION XWLVDT =
                    4.,0.,
                                                                     . . .
                               83.,660.,
                                            97.,1448., 114.,2269.
                   68.,234.,
                    4.,0.,
                               16.,0.,
                                            34.,0.,
                                                         58.,0.0,
FUNCTION XWPATB =
                                                                     . . .
                                            97.,5932., 114.,9843.
                               83.,1558.,
                   68.,0.,
                    4.,0.,
                               16.,11.,
                                            34.,247.,
                                                        58.,3498., ...
FUNCTION XWTDMT =
```

68.,5976., 83.,10019., 97.,14580.,114.,17787. FUNCTION XNFLVT = 4.,0.54, 16.,0.54, 34.,1.53, 58.,1.22, ... 68.,1.56, 83.,1.29, 97.,1.37, 114.,0.83

The tables starting with x give observed data as a function of daynumber to enable comparison of observed and simulated results. In the standard run, the values for the 1992 DS experiment are used.

4 Evaluation of the model ORYZA1

M.J. Kropff¹, K.G. Cassman¹, H.H. van Laar², R.O. Torres¹, S.P. Liboon¹, R.L. Williams³ & T. Horie⁴

- ¹ International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
- ² Department of Theoretical Production Ecology, Wageningen Agricultural University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
- ³ NSW Agriculture, Yanco Agricultural Institute, Yanco 2703, Australia
- ⁴ Department of Agronomy, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan

The current version of the model (Version 1.3, April 1994) was evaluated using 24 data sets collected at IRRI's experimental farm in the 1991 and 1992 wet season (WS) and the 1992 dry season (DS). These experiments were set up to study yield potential in current varieties. The data sets were from three seasons, several varieties that were grown at different N levels. The treatments were as follows:

WS 1991:		Varieties: IR72, IR58109-113-3-3-2
	0	kg N ha ⁻¹
	80	kg N ha ⁻¹ (2 splits before panicle initiation (PI))
	110	kg N ha ⁻¹ (2 splits before PI and 30 kg N ha ⁻¹ at flowering).
DS 1992:		Varieties: IR72, IR58109-113-3-3-2
	0	kg N ha ⁻¹
	180	kg N ha ⁻¹ (2 splits before PI)
	225	kg N ha ⁻¹ (2 splits before PI and 45 kg N ha ⁻¹ at flowering).
WS 1992:		Varieties: IR72, IR58185-23-3-3-1, IR64616H
	30	kg N ha ⁻¹ (at flowering)
	110	kg N ha ⁻¹ (80 basal and 30 at flowering)
	110	kg N ha ⁻¹ (40 kg basal and mid-tillering, and 30 at flowering).
	110	kg N ha ⁻¹ (26.7 at basal, mid-tillering and PI, and 30 at flowering).

The crops were grown at the IRRI experimental farm in Los Baños, Laguna, Philippines. Twelve-days-old seedlings grown in trays were used. Treatments were laid out in four replicates in a split plot design with N treatment as the main plots and varieties as subplots. At the major phenological stages and in between, 12 - 14 hills were sampled and analysed for LAI and dry weights of the organs.

The yields obtained at the highest N levels were among the best yields of IR8 in wet and dry seasons in the early 1970s at IRRI's farm. Highest rice yields of IR72 (released in 1987) were about 6 and 9.5 t ha⁻¹, in the wet seasons and the dry seasons, respectively, in a tropical environment with good agronomic management.

Besides the planting date, seeding date and weather data several variety and treatment specific inputs were used:

- Leaf N concentration as a function of time, by N treatment.
- The development rate coefficients by variety.
- The fraction of stem reserves FSTR per variety.
- For the RGRL one value (0.005) was used for all 0 N treatments and another for all other treatments (0.008).

All other coefficients and model inputs were the same for all runs (Figure 4.1). Total biomass as well as panicle dry matter was simulated accurately by the model.

The model explained more than 90% of the considerable variation in observed data on biomass and yield. The results indicate that the model can satisfactorily explain differences in biomass production and yield across N treatments, varieties and environments, given these inputs.

The ORYZA1 model was further evaluated with data from the 1991 WS and the 1992 DS experiments at IRRI and data from Japan and Australia where yield potential is quite different from the tropics as a result of differences in temperature and radiation levels. For the IRRI experiments, the highest N treatments of IR72 were selected (see earlier in this chapter).

For Japan, data from a yield potential experiment conducted by Karoda et al. (unpublished data) with the japonica variety Nipponbare in Kyoto was used. The crop was sown in 1987 on April 10 and harvested on September 10. The yield was 6.8 t ha⁻¹, which is close to the maximum yields observed in similar environments in Japan (T. Horie, unpublished data).

For Australia, data from the 1991/1992 season experiment in Yanco were used (R.L. Williams, unpublished data). The rice variety YRL39 was grown at different N levels, up to 320 kg N ha⁻¹ and different splits were applied. The crop was sown on October 21 in 1991 and harvested on April 24 1992 at the Yanco Agricultural Institute, Yanco, Australia. The highest reported yield was 14.7 t ha⁻¹ at 320 kg N. Yields of around 14 t ha⁻¹ have been regularly observed in the Riverina area, surrounding Yanco.

In this multilocation test, values for IR72 were used for all parameters except for the phenology parameters. They were adapted in such a way that the dates of flowering were simulated accurately. For the time course of leaf N, the data from the 1992 DS experiment were used for all simulations, because such data were not available for the Yanco experiment and to make sure that this would be a real extrapolation.

Measured total biomass ranged from 11.5 to 28.9 t ha⁻¹ and yield from 5.7 to 14.7 t ha⁻¹ (panicle dry weight) in the different environments. Lowest yields were obtained in the tropical wet season at IRRI and highest yields in Yanco, Australia. The model simulated the wide range in total biomass accumulation, maximum LAI and yield (expressed as panicle dry weight) quite accurately (Table 4.1). However, the yield in the WS at IRRI was overestimated, because the high leaf N content of the DS was used. When the model was run with the measured leaf N content, the results were very close (6.3 t ha⁻¹) to the

Figure 4.1. Observed versus simulated yield (A) and total biomass (B) at maturity (kg ha⁻¹) of different varieties at different N application levels, see text.

observed. The differences in the duration of the grainfilling period were simulated quite well, although precise comparisons cannot be made because the observations are based on visual interpretations in the field.

The differences in yield potential can be easily understood from the environmental characteristics. The average temperature, which determines the duration of the growth phases was quite different among the environments. In both the wet and dry season at IRRI, the average temperature was about 27 - 28 °C in both the vegetative and grainfilling phase. In Japan, the temperature in the vegetative phase was 23 °C and in the grainfilling phase 26 °C. In Yanco, Australia, the average temperature was 21 °C in the vegetative phase and 23 °C in the grainfilling phase. Radiation levels were highest in Yanco and lowest in Japan (Table 4.1). These results suggest that the combination of temperature and radiation can explain the differences in yield potential. In Yanco, low temperature results in a long duration of grainfilling and the high radiation level in a high growth rate per day resulting in high yields. In Kyoto, the radiation level is very low, but the grainfilling duration is intermediate. In the tropics, the duration is short as a result of the high temperature, but the high radiation in the dry season enables a higher yield than in the wet season.

The light use efficiency was calculated based on the calculated amount of absorbed radiation (model run with observed LAI as input) and observed total biomass accumulation. These results show that the light use efficiency at high radiation levels is lower, but also that the temperature affects the light use efficiency as well. Apparently, the model accounts for these differences in the light use efficiency and a model with a fixed light use efficiency cannot be used across environments. The light use efficiency values in Table 4.1 are based on model results based on the same parameter values for all environments. An aspect that has to be checked in more detail is the varietal differences in characteristics such as the extinction coefficient. Williams et al. (unpublished data) found very low values for the extinction

IRRI WS	Japan	IRRI DS	Yanco
IR72	Nipponbare	IR72	YRL39
11.5 (0.6)	12.8 (0.5)	17.8 (0.6)	28.9 (1.1)
11.5	13.2	15.4	27.3
5.7 (0.2)	7.8 (0.5)	9.8 (0.2)	14.7 (0.6)
7.26	7.41	9.49	14.3
4.3 (0.4)	5.3 (0.7)	6.0 (0.5)	14.0 (1.0)
4.9	8.9	6.4	12.8
109	153	110	159
30	41	30	43
29	32	30	39
28.1	23.3	26.0	21.3
27.7	25.6	27.9	22.9
15.2	16.3	17.4	22.9
18.9	13.5	21.9	22.6
189	195	278	413
215	301	371	747
2.8	2.6	2.7	2.5
	IRRI WS IR72 11.5 (0.6) 11.5 5.7 (0.2) 7.26 4.3 (0.4) 4.9 109 30 29 28.1 27.7 15.2 18.9 189 215 2.8	IRRI WS Japan IR72 Nipponbare 11.5 12.8 (0.5) 11.5 13.2 5.7 (0.2) 7.8 (0.5) 7.26 7.41 4.3 (0.4) 5.3 (0.7) 4.9 8.9 109 153 30 41 29 32 28.1 23.3 27.7 25.6 15.2 16.3 18.9 13.5 189 195 215 301 2.8 2.6	IRRI WS Japan IRRI DS IR72 Nipponbare IR72 11.5 (0.6) 12.8 (0.5) 17.8 (0.6) 11.5 13.2 15.4 5.7 (0.2) 7.8 (0.5) 9.8 (0.2) 7.26 7.41 9.49 4.3 (0.4) 5.3 (0.7) 6.0 (0.5) 4.9 8.9 6.4 109 153 110 30 41 30 29 32 30 28.1 23.3 26.0 27.7 25.6 27.9 15.2 16.3 17.4 18.9 13.5 21.9 189 195 278 215 301 371 2.8 2.6 2.7

Table 4.1. Observed and simulated crop characteristics for field experiments on yield potential in rice in different environments (SE between brackets).

coefficient of YRL30, a rice variety that has rolled leaves during most of the growing season. If lower values for the extinction coefficient would be used, the absorbed amount of radiation would be lower and thus the light use efficiency higher.

The results suggest that the differences in yield potential as measured in Japan, IRRI and Australia are mainly due to the environmental differences and less to genetic differences. However, the varieties will definitely differ in their ability to overcome specific stresses such as low temperature stress in Yanco and specific diseases in the tropics. More detailed analyses using the same varieties will be useful to further enhance the capacity of the models to predict yield potential in untested environments. These results indicate that the current model for rice yield potential can be used to estimate yield potential in different environments. This is an essential step in determining the yield gap between potential yield and actual research station or farmers yield.

5 Applications of the model

M.J. Kropff¹ & H.H. van Laar²

- ¹ International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
- ² Department of Theoretical Production Ecology, Wageningen Agricultural University,
 P.O. Box 430, 6700 AK Wageningen, The Netherlands

Several applications of the model already have been indicated in the previous chapters (e.g. input requirements). It can be used as a tool for

- (i) Prediction of yield potential of a variety in a particular environment as defined by radiation and temperature during the growing season. This is an essential step in defining the yield gap in farmers fields.
- (ii) Extrapolation of experimental results to other environments.
- (iii) Detailed analysis of data from field experiments.
- (iv) The analysis of physiological requirements for increased yield potential.
- (v) The estimation of the effect of climatic change on rice yield potential.

The model can also be used as a framework in studies that focus on specific agronomic problems. In such studies, (sub)model development is integrated with experimental work. Often new quantitative physiological insight in processes that are not yet included is required and the model may help to guide the direction of the physiological research.

Several applications will be indicated in more detail. The input requirements of the model depend on the type of application of the model and will be indicated as well.

5.1 Estimation of yield potential for a given environment

Yield potential in a given environment (planting date, latitude, radiation, temperature, variety as input) can be simulated by ORYZA1. This can be very useful in exploring the needs for changes in (N) management to obtain potential yields. An example is the work conducted at IRRI to explore options to obtain potential yields.

The first version of the model was evaluated during January 1992 with data from an experiment conducted in the 1991 Wet Season (WS) that was designed to obtain yield potential at the IRRI farm. That version of the model was used to assess the attainable yield of IR72 and the new line under dry season conditions in Los Baños (Table 5.1). Weather data were used from 1987. With similar N concentrations in the leaves as measured in the wet season, yields of 7.0 and 8.2 t ha⁻¹ were simulated. Only with a higher N concentration in the leaves, yields of up to 9.3 t ha⁻¹ were simulated. These results were later confirmed by the 1992 Dry Season experimental data where leaf N was significantly higher than in the 1991 WS. Another example is the prediction of potential yields of 15 t ha⁻¹ in the Australian rice

		cv. IR72	2	New Line	
		Yield	Total duration	Yield	Total duration
		(t ha ⁻¹)	(d)	(t ha-1)	(d)
Ol	bserved:				
W	et Season 1991	5.7	94	6.1	108
Sù	nulation results:				
1	Wet season 1991	5.6	94	6.3	109
2	Dry season 1987	7.0	100	8.2	118
3	As 2 + N conc. 20% higher	7.9	100	9.3	118

Table 5.1. Observed and simulated yields (t ha^{-1}) of IR72 and a new line for the 1991 Wet Season (IRRI, Los Baños, Philippines) and simulated effect of a change in season and higher leaf N content. Source: Kropff et al., 1994.

growing environment (Yanco), which matched very recent experimental yields.

An important input is the time course of the leaf N content which is can be taken from the highest yielding experiment of which data are available. The recently conducted experiments at IRRI can be used for that purpose.

Input requirements and model settings for estimation yield potential (the switches SWILAI and SWINLV are set to -1)

A set of physiological and morphological characteristics has to be used. Most parameters are not variety specific according to our current knowledge (see Chapter 3). The parameters for which we found genetic variations are:

- The development rate constants for the different phases: DVRJ, DVRI, DVRP, DVRR. Most variation is found in the parameter DVRJ. The values of these parameters can be estimated using the program DRATES, based on weather data and dates of the key phenological stages. The photoperiod sensitivity parameter PPSE has to be estimated from photoperiod experiments or multilocation experiments. Tools to estimate this parameter from multilocation experiments are in development.
- The fraction of stem reserves that is effectively reallocated (FSTR) is, however, dependent on the N level (Table 3.1) which should be taken into account in detailed analyses. The dry matter distribution pattern is quite similar for most semi-dwarf high yielding varieties (Figure 3.4).

With these sets of characteristics the variety has been defined. If the standard parameter values are used, the yield potential of IR72 is estimated, which is a standard modern HYV.

The input requirements for such predictions are:

DOYSDate of seedingDOYTRDate of transplanting (equals date of seeding for direct-seeded rice)NPLSBNumber of plants per m² in seedbed (roughly)NHNumber of hills per m²NPLHNumber of plants per hillDaily radiation as function of the day of year,Maximum daily temperature as function of the day of year, andMinimum daily temperature as function of the day of year.

For simulation of yield potential, the relative growth rate of leaf area (RGRL, ($^{\circ}Cd$)⁻¹) has been set at 0.008. A reference time course of N content in the leaves has to be chosen. For simulation of yield potential, the N concentration in leaves of our highest yielding experiment available can be chosen (e.g. IR72, 1992DS, 225 kg N):

FUNCTION XNFLVT = 4.,0.578, 16.,0.578, 34.,1.531, 58.,1.028,... 68.,1.557, 84.,1.286, 97.,1.373, 114.,0.834

5.2 Extrapolation of experimental findings to other environments

Given the N content of the leaves measured throughout the growing season in a specific experiment and the varietal characteristics, attainable yields can be estimated for other environments (planting date, irradiation, temperature).

Input requirements and model settings for extrapolation

Same as in (Section 5.1) but now the leaf N content of the leaves from the experiment has to be used (as a function of development stage, SWINLV=1), as well as an adapted RGRL. Of course, dates and weather data for the new environment have to be included. E.g. for IR72, 1992DS, 225 kg N, the N content in the leaves versus development stage was found to be:

FUNCTION NFLVTB = 0.0,0.578, 0.152,0.578, 0.336,1.531, 0.653,1.028,... 0.787,1.557, 1.011,1.286, 1.431,1.373, 2.011,0.834

5.3 Detailed physiological analysis of field experiments

If detailed measurements on LAI and leaf N content are conducted throughout the growing season, the model can be used for physiological interpretation of treatment effects in terms of differences in LAI development, leaf N content, weather conditions and varietal characteristics.

Example 1

In an air fumigation study, the effect of enhanced SO_2 on yield of *Vicia faba* was analysed. A detailed submodel for the effect of SO_2 on photosynthesis was developed and coupled to

a basic model such as ORYZA1. The experimental data from three years were analysed by the model by first evaluating/calibrating the model to the control treatments. The measured LAI was input to the model. Then, the LAI of the fumigated treatment was input to the model. In a next step, the effect of SO_2 on photosynthesis was included. It was found that the yield difference was mainly explained by differences in LAI, as a result of accelerated senescence in the fumigated plots. As a result of this quantitative analysis, further research focused on leaf senescence instead of photosynthesis (Kropff, 1990). Similar studies have been conducted for the effect of blast on rice (Bastiaans, 1993).

Example 2

In experiments on yield potential at IRRI, it was predicted based on wet season data (yield potential of 6 t ha⁻¹) that with 20% higher N in the leaves yields of up to 9.3 t ha⁻¹ would be feasible with current varieties (Kropff et al., 1994). In several other countries similar questions can be asked. In Indonesia, for example, wet season yields are often higher than dry season yields. Daradjat & Fagi (1991) used the MACROS L1D model to predict potential yields in the wet and dry season in Indonesia. It appeared that the yield potential is very similar in both seasons. With the current model, such studies can be conducted with realistic measured leaf N concentrations, so that simulated yields for those seasons are realistic.

Example 3

For breeding purposes, it would be useful to characterize the traits that cause differences in yield potential. From detailed field experiments with several varieties, it can be analysed why varieties have a different yield potential.

Example 4

Increasing the yield plateau in rice and the impact of global climate change. The physiological characteristics needed to develop new rice varieties with an increased yield potential have been determined using models in several studies (Penning de Vries, 1991; Dingkuhn et al., 1991; Kropff et al., 1994). Because large changes in photosynthetic efficiency and respiration costs are not to be expected, increased yield potential must come from increased allocation of stem reserves, from a prolonged grainfilling period, from an increased growth rate during grainfilling or from a combination of these sources. Penning de Vries (1991), Dingkuhn et al. (1991) and Kropff et al. (1994) emphasized the lengthening of grainfilling duration as the main option to increase the yield plateau. To achieve 15 t ha⁻¹, 38 days of effective grainfilling would be needed. The yield potential of a rice variety at higher latitudes is greater than in the tropics for the same reason. The grainfilling period is extended as a result of lower average temperature. The ecophysiological model indeed predicts an increase in rice yield potential for Los Baños of 2 t ha⁻¹ with a reduction of mean temperature by 3 °C.

A temperature increase of 1 °C and a CO_2 rise of 50 ppm can be expected based on predictions made by Global Circulation Models for the year 2020. The effects of these climate changes were quantified by the simulation model. In the model, temperature affects the rate of photosynthesis, the respiration rate and the rate of phenological development. CO_2 only affects the rate of photosynthesis. The model predicted a yield reduction of 8 - 9% for both varieties in both the DS and the WS as a result of a temperature increase of 1 °C. Increased CO_2 partly reversed this effect resulting in yield reductions of only 3%. A 5% reduction in radiation level resulted in a yield reduction of about 3%. Penning de Vries (1992) simulated yield effects of increased temperatures, assuming that temperature does not affect growth duration. That was based on the assumption that farmers will select varieties with a longer grainfilling duration to compensate for these effects. In preliminary experiments, however, we found large genetic variation in the length of the grainfilling period when expressed on a single panicle basis, but not on a whole crop basis. Research on this aspect of grainfilling duration will have to be intensified.

Input requirements and model settings for detailed data analysis

If detailed experimental data are available, several measured data can be used as input based on the insight of the researcher. Most frequently, LAI will be used as input, Leaf N, phenological parameters, fraction of allocatable stem reserves, RGRL and SLA. The model can then be used to analyse the reasons for differences in yield between treatments.

References

- Akita, S., 1980. Studies on the differences in photosynthesis and photorespiration among crops. II. The differential responses of photosynthesis, photorespiration and dry matter production to carbon dioxide concentration among species. Bulletin of the National Institute of Agricultural Sciences, (Series D) 31, 59-94.
- Amthor, J.S., 1984. The role of maintenance respiration in plant growth. Plant, Cell and Environment, 7, 561-569.
- Angus, J.F., R.B. Cunningham, M.W. Moncur & D.H. Mackenzie, 1981. Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research, 3, 365-378.
- Barnett, K.H. & R.B. Pearce, 1983. Source-sink ratio alteration and its effect on physiological parameters in maize. Crop Science, 23, 294-299.
- Bastiaans, L., 1993. Understanding yield reduction in rice due to leaf blast. PhD thesis, Wageningen Agricultural University, ISBN 90-5485-166-X, 127 pp.
- Carberry, P.S., 1991. Tests of leaf-area development in CERES-Maize: a correction. Field Crops Research, 27, 159-167.
- Cassman, K.G., M.J. Kropff & Yan Zhende, 1994. A conceptual framework for nitrogen management of irrigated rice in high yield environments. In: Proceedings of the 1992 International Rice Research Conference, IRRI (in press).
- Chu Chang Chi, P.M. Ludford, J.L. Ozbun & R.D. Sweet, 1978. Effects of temperature and competition on the establishment of redwood pigweed and common *Chenopodium album* (L.). Crop Science, 18, 308-311.
- Clark, E.A. & R.S. Loomis, 1978. Dynamics of leaf growth and development in sugar beets. Journal of the Amer. Soc. of Sugar beet Technologists, 20, 97-113.
- Daradjat, A.A. & A.M. Fagi, 1991. Effect of seasonal variation in weather on crop potential of rice cultivar IR36 in the north coastal region of West Java. In: Simulation and systems analysis for rice production (SARP). Eds F.W.T. Penning de Vries, H.H. van Laar & M.J. Kropff, Pudoc, Wageningen, pp. 79-84.
- Diepen, C.A. van, H. van Keulen, F.W.T. Penning de Vries, I.G.A.M. Noy & J. Goudriaan, 1987. Simulated variability of wheat and rice yields in current weather conditions and in future weather when ambient CO₂ had doubled. Simulation Report CABO-TT 14, CABO, Wageningen, The Netherlands, 40 pp.
- Dingkuhn, M., F.W.T. Penning de Vries, S.K. De Datta & H.H. van Laar, 1991, Concept for a new plant type for direct seeded flooded tropical rice. In: Direct Seeded Flooded Rice in the Tropics. Selected papers from the International Rice Research Conference, 27-31 August 1990, Seoul, Korea. International Rice Research Institute, Los Baños, Philippines, pp. 17-38.
- Ehleringer, J. & R.W. Pearcy, 1983. Variation in quantum yield for CO₂ uptake among C₃ and C₄ plants. Plant Physiology, 73, 555-559.

- Fischer, R.A., 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. J. Agric. Sci. (Camb.), 105, 447-461.
- Frère, M. & G.F. Popov, 1979. Agrometeorological crop monitoring and forecasting. Plant Production and Protection Paper 17, FAO, Rome, 64 pp.
- Gao L.Z., Z.Q. Jin, Y. Huang, & L.Z. Zhang, 1992. Rice clock model a computer model to simulate rice development. Agricultural and Forest Meteorology, 60, 1-16.
- Goudriaan, J., 1977. Crop micrometeorology: a simulation study. Simulation Monographs, Pudoc, Wageningen, 257 pp.
- Goudriaan, J., 1982. Some techniques in dynamic simulation. In: Simulation of plant growth and crop production. Eds F.W.T. Penning de Vries & H.H. van Laar, Simulation Monographs, Pudoc, Wageningen, pp. 66-84.
- Goudriaan, J., 1986. A simple and fast numerical method for the computation of daily totals of canopy photosynthesis. Agricultural and Forest Meteorology, 43, 251-255.
- Goudriaan, J., 1988. The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agricultural and Forest Meteorology, 43, 155-169.
- Goudriaan, J. & H.H. van Laar, 1994. Modelling potential crop growth processes. Kluwer Academic Publishers, Dordrecht, The Netherlands (forthcoming).
- Herrera-Reyes, C.G. & F.W.T. Penning de Vries, 1989. Evaluation of a model for simulating the potential production. Philipp. J. Crop Sci., 14(1), 21-32.
- Horie, T., 1988. The effects of climatic variations on agriculture in Japan 5. The effects on rice yields in Hokkaido. In: The impact of climatic variations on agriculture. Vol. 1: Assessments in cool temperature and cold regions. Eds M.L. Parry, T.L. Carter & N.T. Konijn, Kluwer Academic Publishers, Dordrecht, pp. 809-826.
- Horie, T., 1993. Predicting the effects of climatic variation and effect of CO₂ on rice yield in Japan. J. Agr. Meteor. (Tokyo), 48, 567-574.
- Horie, T. & H. Nakagawa, 1990. Modelling and prediction of development process in rice. I. Structure and method of parameter estimation of a model for simulating developmental process toward heading. Japan Journal Crop Sci., 59(4), 687-695.
- Horie, T., C.T. de Wit, J. Goudriaan & J. Bensink, 1979. A formal template for the development of cucumber in its vegetative stage. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C, Volume 82(4), 433-479.
- Horie, T., M. Yajima & H. Nakagawa, 1992. Yield forecasting. Agricultural Systems, 40, 211-236.
- Islam, M.S. & J.I.L. Morison, 1992. Influence of solar radiation and temperature on irrigated rice grain yield in Bangladesh. Field Crops Research, 30, 13-28.
- Jansen, D.M., 1990. Potential rice yields in future weather conditions in different parts of Asia. Neth. J. Agric. Sci., 38, 661-680.
- Keulen, H. van, F.W.T. Penning de Vries & E.M. Drees, 1982. A summary model for crop growth. In: Simulation of plant growth and crop production. Eds F.W.T. Penning de Vries & H.H. van Laar, Simulation Monographs, Pudoc, Wageningen, pp. 87-97.
- Keulen, H. van & N.G. Seligman, 1987. Simulation of water use, nitrogen and growth of a

spring wheat crop. Simulation Monographs, Pudoc, Wageningen, 310 pp.

- Kiniry J.R., W.D. Rosenthal, B.S. Jackson & G. Hoogenboom, 1991. Predicting leaf development of crop plants. In: Predicting Crop Phenology. Ed. T. Hodges, CRC Press, Boca Raton, FA, USA, pp. 29-42.
- Koster, P.B., P. Raats & J. Jorritsma, 1983. The effect of some agronomical factors on the respiration of sugar beet. IRS Mededeling nr. 6.
- Kraalingen, D.W.G. van, W. Stol, P.W.J. Uithol & M.G.M. Verbeek, 1991. User manual of CABO/TPE Weather System. CABO-TPE Report, June 1991. Centre for Agrobiological Research, P.O. Box 14, 6700 AA Wageningen, the Netherlands, 28 pp.
- Kraalingen, D.W.G., C. Rappoldt & H.H. van Laar, 1994. The Fortran Simulation Translator (FST, a simulation language. In: Modelling potential crop growth processes.
 J. Goudriaan & H.H. van Laar, Kluwer Academic Publishers, Dordrecht, pp. 217-228. (forthcoming)
- Kropff, M.J., 1988. Modelling the effects of weeds on crop production. Weed Research, 28, 465-471.
- Kropff, M.J., 1990. The effects of long-term open-air fumigation with SO₂ on a field crop of broad bean (*Vicia faba* L.). III. Quantitative analysis of damage components. New Phytologist, 115, 357-365.
- Kropff, M.J. & J. Goudriaan, 1989. Modelling short-term effects of sulphur dioxide. 3. Effects of SO₂ on photosynthesis of leaf canopies. Netherlands Journal of Plant Pathology, 95, 265-280.
- Kropff, M.J. & C.J.T. Spitters, 1992. An eco-physiological model for interspecific competition, applied to the influence of *Chenopodium album* L. on sugar beet. I. Model description and parameterization. Weed Research, 32(6), 437-450.
- Kropff, M.J. & H.H. van Laar (Eds), 1993. Modelling crop-weed interactions. CAB-International, Wallingford and International Rice Research Institute, Los Baños, 274 pp.
- Kropff, M.J., K.G. Cassman, F.W.T. Penning de Vries & H.H. van Laar, 1993. Increasing the yield plateau in rice and the role of global climate change. Journal of Agricultural Meteorology, 48, 795-798.
- Kropff, M.J., K.G. Cassman & H.H. van Laar, 1994. Quantitative understanding of the irrigated rice eco- system for increased yield potential. In: Proceedings of the 1992 International Rice Research Conference, IRRI (in press).
- Laar, H.H. van, J. Goudriaan & H. van Keulen (Eds), 1992. Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat). CABO-TT Simulation Reports 27, Centre for Agrobiological Research, Wageningen, 72 pp.
- Louwerse, W., L. Sibma & J. van Kleef, 1990. Crop photosynthesis, respiration and dry matter production of maize. Neth. Journal Agric. Sci., 38, 95-108.
- Matsui, T. & T. Horie, 1992. Effect of elevated CO₂ and high temperature on growth and yield of rice. 2. Sensitive period and pollen germination rate in high temperature sterility of rice spikelets at flowering. Japanese. J. Crop Sci. 61, (extra issue 1), 148-149.

Matthews, R.B. & L.A. Hunt, 1994. A model describing the growth of cassava (Manihot
esculenta L. Crantz). Field Crops Research 36(1), 69-84.

- Miglietta, F., 1989. Effect of photoperiod and temperature on leaf initiation rates in wheat (*Triticum* spp.). Field Crops Research, 21, 121-130.
- Miglietta, F., 1991a. Simulation of wheat ontogenesis. I. Appearance of main stem leaves in the field. Climate Research, 1, 145-150.
- Miglietta, F., 1991b. Simulation of wheat ontogenesis. II. Predicting dates of ear emergence and main stem final leaf number. Climate Research, 1, 151-160.
- Milford, G.F.J. & J. Riley, 1980. The effects of temperature on leaf growth of sugar beet varieties. Annals of Applied Botany, 94, 431-443.
- Monsi, M. & T. Saeki, 1953. Ueber den Lichtfaktor in den Pflanzengesellschaften und sein Bedeuting für die Stoffproduktion. Japanese Journal of Botany, 14, 22 pp.
- Monteith, J.L., 1969. Light interception and radiative exchange in crop stands. In: Physiological aspects of crop yield. Eds J.D. Eastin, F.A. Haskins, C.Y. Sullivan & C.H.M. van Bavel, American Society of Agronomy, Crop Science Soc. of America, Madison, Wisconsin, U.S.A., pp. 89-111.
- Muchow, R.C. & P.S. Carberry, 1989. Environmental control of phenology and leaf growth of maize in a semiarid tropical environment. Field Crops Research, 20, 221-236.
- Ng, E. & R.S. Loomis, 1984. Simulation of growth and yield of the potato crop. Simulation Monographs, Pudoc, Wageningen, 147 pp.
- Oorschot, J.P.L. & P.H. van Leeuwen, 1984. Comparison of photosynthetic capacity between intact leaves of triazine resistant and -susceptible biotypes of six weed species. Zeitschrift f
 ür Naturforschung, 39, 440-442.
- Pearcy, R.W., N. Tumosa & K. Williams, 1981. Relationships between growth, photosynthesis and competitive interactions for a C₃ and C₄ plant. Oecologia (Berl.), 48, 371-376.
- Penning de Vries, F.W.T., 1975. The costs of maintenance processes in plant cells. Annals of Botany, 39, 77-92.
- Penning de Vries, F.W.T., 1991. Improving yields: designing and testing VHYVs. In: Systems Simulation at IRRI. Eds F.W.T. Penning de Vries, M.J. Kropff, P.S. Teng & G.J.D. Kirk. IRRI Research Paper Series, Number 151, 13-19.
- Penning de Vries, F.W.T., 1992. Rice production and climate change. In: Systems approaches for agricultural development. Eds F.W.T. Penning de Vries, P.S. Teng & K. Metselaar. Kluwer Academic Publishers, Dordrecht/Boston/London and the International Rice Research Institute, Los Baños, pp. 175-189.
- Penning de Vries, F.W.T. & H.H. van Laar (Eds), 1982. Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, 308 pp.
- Penning de Vries, F.W.T., A.H.M. Brunsting & H.H. van Laar, 1974. Products, requirements and efficiency of biosynthesis: a quantitative approach. Journal of Theoretical Biology, 45, 339-377.
- Penning de Vries, F.W.T., H.H. van Laar & M.C.M. Chardon, 1983. Bioenergetics of growth of seeds, fruits, and storage organs. In: Potential productivity of field crops

under different environments. Int. Rice Research Institute, Los Baños, pp. 37-59.

- Penning de Vries, F.W.T., D.M. Jansen, H.F.M. ten Berge & A. Bakema, 1989. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs, Pudoc, Wageningen and IRRI, Los Baños, 271 pp.
- Penning de Vries, F.W.T., H. van Keulen & J.C. Alagos, 1990. Nitrogen redistribution and potential production in rice. In: Proceedings of the International Congress of Plant Physiology, 15-20 February 1988, New Delhi, India. Eds S.K. Sinha, P.V. Sane, S.C. Bhargava & P.K. Agrawal, Volume 1, InPrint Exclusives, S-402, Greater Kailash-II, New Delhi, pp. 513-520.
- Satake, T. & S. Yoshida, 1978. High temperature-induced sterility in Indica rice at flowering. Japanese J. Crop Sci., 47, 6-17.
- Spitters, C.J.T., 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. II. Calculations of canopy photosynthesis. Agricultural and Forest Meteorology, 38, 231-242.
- Spitters, C.J.T. & R. Aerts, 1983. Simulation of competition for light and water in cropweed associations. Aspects of Applied Biology, 4, 467-484.
- Spitters, C.J.T., H.A.J.M. Toussaint & J. Goudriaan, 1986. Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. I. Components of incoming radiation. Agricultural and Forest Meteorology, 38, 217-229.
- Spitters, C.J.T., H. van Keulen & D.W.G. van Kraalingen, 1989. A simple and universal crop growth simulator: SUCROS87. In: Simulation and systems management in crop protection. Eds R. Rabbinge, S.A. Ward & H.H. van Laar. Simulation Monographs, Pudoc, Wageningen, pp. 147-181.
- Summerfield, R.J., S.T. Collinson, R.H. Ellis, E.H. Roberts & F.W.T. Penning de Vries, 1992. Photothermal responses of flowering in rice (*Oryza sativa*). Annals of Botany, 69, 101-112.
- Uchijima, T., 1976. Some aspects of relation between low air temperature and sterile spikelets in rice plants. J. Agric. Meteorol., 31, 199-202.
- Vergara, B.S. & T.T. Chang, 1985. The flowering response of the rice plant to photoperiod. A review of the literature. International Rice Research Institute, Los Baños, Philippines, 61 pp.
- Weir, A.H., P.L. Bragg, J.R. Porter & J.H. Rayner, 1984. A winter crop simulation model without water or nutrient limitations. J. of Agricultural Science, 102, 371-382.
- Wit, C.T. de, J. Goudriaan, H.H. van Laar, F.W.T. Penning de Vries, R. Rabbinge, H. van Keulen, L. Sibma & C. de Jonge, 1978. Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs, Pudoc, Wageningen, 141 pp.
- Yoshida, S., 1981. Fundamentals of rice crop science. International Rice Research Institute, P. O. Box 933, 1099 Manila, Philippines, 269 pp.
- Yoshida, S. & F.T. Parao, 1976. Climatic influence on yield and yield components of lowland rice in the tropics. In: Climate and Rice, International Rice Research Institute, Los Baños, Philippines, pp. 471-494.

Appendix 1 Listing of the model ORYZA1

```
DEFINE CALL COVER (INPUT, INPUT, INPUT, INPUT,
                                                       OUTPUTY
DEFINE_CALL SUBDD (INPUT, INPUT, INPUT, INPUT, INPUT,
                                                       OUTPUT)
DEFINE_CALL SUBCD (INPUT, INPUT, INPUT, INPUT,
                                                       OUTPUTI
DEFINE CALL SUBCBC(INPUT, INPUT, INPUT,
                                                       OUTPUT)
DEFINE_CALL PHENOL (INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ...
                    INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ...
                    OUTPUT, OUTPUT)
DEFINE_CALL TOTASP(INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ...
                    INPUT, INPUT, INPUT,
                    OUTPUT, OUTPUT, OUTPUT, OUTPUT, OUTPUT)
DEFINE_CALL SUBLAI (INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ...
                    INPUT, INPUT, INPUT, INPUT, INPUT, INPUT,
                    OUTPUT, OUTPUT)
DEFINE_CALL SUBGRN (INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ....
                    INPUT, INPUT, INPUT, INPUT, INPUT, INPUT,
                                                                   . . .
                    OUTPUT, OUTPUT, OUTPUT, OUTPUT, OUTPUT)
DEFINE_CALL SUBRTS (INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ...
                    INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, INPUT, ...
                    INPUT, INPUT, OUTPUT, OUTPUT, OUTPUT, ...,
                    OUTPUT, OUTPUT, OUTPUT, OUTPUT, OUTPUT, OUTPUT)
       _____
                             ORYZA1
                     A Model for Rice Production
                            April 1994
                         FST-Version 1.3
* International Rice Research Institute (IRRI), P.O. Box 933,
 1099 Manila, The Philippines
* Department of Theoretical Production Ecology (TPE-WAU),
* Wageningen Agricultural University, P.O. Box 430, 6700 AK Wageningen,*
* The Netherlands
* Research Institute for Agrobiology and Soil Fertility (AB-DLO),
 Agricultural Research Department, P.O. Box 14, 6700 AA Wageningen,
 The Netherlands
* This model is based on the following models:
 - INTERCOM by Kropff, M.J. et al., 1993. In: Modelling crop-weed
                  interactions. CAB, Wallingford, pp. 201-246.
* - MACROS-L1D by Penning de Vries F.W.T. et al., 1989. Simulation of
                  ecophysiological processes of growth in several
                  annual crops. Simulation Monographs 29, Pudoc,
                  Wageningen and IRRI, Los Banos, 271 pp.
 - SUCROS
               by Laar, H.H. van, J. Goudriaan & H. van Keulen, 1992.
                  Simulation of crop growth for potential and water-
                   limited production situations. Simulation Reports 27,*
                  CABO-TPE, Wageningen, The Netherlands, 72 pp.
************
*** 1
        Initial Conditions
INITIAL
```

```
* Switch for leaf area development:
* SWILAI=-1. (LAI measured vs time); SWILAI=1. (LAI is simulated)
PARAM SWILAI
               = -1.
* Switch for Leaf Nitrogen:
* SWINLV=-1 (NLV measured vs time); SWINLV=1. (NLV measured vs DVS)
PARAM SWINLV
                = -1.
* Switch for GCMs:
* SWITMP=-1. (no temperature change); SWITMP=1. (temperature change)
PARAM SWITMP
             ≠ -1.
* Switch for seedbed cover:
* SWICOV=-1 (no cover); SWICOV=1. (cover is used)
PARAM SWICOV
               = -1.
* Switch for direct-seeding:
* SWIDS=-1. (=transplanted); SWIDS=1. (=direct seeded).
PARAM SWIDS
                = -1.
DYNAMIC
*** 2.
         Phenological Development
        CALL SUBDD (TMAX, TMIN, TBD, TOD, TMD, HU )
        CALL PHENOL (DVS, DAS, DVRJ, DVRI, DVRP, DVRR, HU, DAYL, MOPP, PPSE, ...
                     TS, SHCKD, DOYTR, DOYS, DVR, TSHCKD)
        CALL SUBCD (DOY, DOYTR, TAV, TIME, NCOLD)
       DVS = INTGRL (DVSI, DVR)
*** 3.
         Daily Dry Matter Production
*** 3.1
        Daily Gross Canopy CO2 Assimilation
        CALL TOTASP (DOY, LAT, DTR, SCP, EFF, REDFT, KDF, KNF, ALAI, CO2, NFLV, ...
                     DAYL, AMAX, DTGA, DPAR, DPARI)
        NFLV
              = INSW(SWINLV, XNFLV, AFGEN(NFLVTB, DVS))
       REDFT = AFGEN (REDFTT, TAVD)
       CO2EFF = (1.-EXP(-0.00305*CO2))
                                      -0.222))/ ...
                 (1.-EXP(-0.00305*CO2REF-0.222))
       EFF
              = AFGEN (EFFTB, TAVD) * CO2EFF
       KNF = AFGEN (KNFTB, DVS)
       KDF
              = AFGEN (KDFTB, DVS)
       PARCUM = INTGRL(ZERO, DPARI)
        PARI1 = (1.-0.06)*DTR*0.5*(1.-EXP(-KDF*ALAI))/ 1.E6
       PARCM1 = INTGRL(ZERO, PARI1)
*** 3.2 Maintenance and Growth Respiration
       MNDVS = WLVG/NOTNUL(WLVG+WLVD)
       RMCR
              = (WLVG*MAINLV + WST*MAINST + ...
                 WSO *MAINSO + WRT*MAINRT) * TEFF * MNDVS
       TEFF
              = Q10**((TAV-TREF)/10.)
       CRGCR = FSH*(CRGLV*FLV + CRGST *FST *(1.-FSTR) + ...
                                  CRGSTR*FSTR*FST + ...
                      CRGSO*FSO) + CRGRT *FRT
*** 3.3 Daily Growth Rate from CO2 Assimilation and Respiration Rates
             = ((DTGA*30./44.) - RMCR +
       GCR
                                                           . . .
                 (LSTR*LRSTR*FCSTR*30./12.))/CRGCR
       NGCR
              = GCR - LSTR * LRSTR * FCSTR * 30./12.
```

,

*** 3.4 Growth Rates of Plant Organs FSH = AFGEN (FSHTB, DVS) FRT = AFGEN (FRTTB, DVS) FLV = AFGEN (FLVTB, DVS) = AFGEN (FSTTB, DVS) FST = AFGEN (FSOTB, DVS) FSO . LLV = WLVG * AFGEN (DRLVT, DVS) LSTR = INSW (DVS-1., 0., WSTR / TCLSTR) CALL SUBRTS (DOY, DOYTR, GCR , FRT, FSH , FLV, LLV , FST, ... FSTR, LSTR , WLVG, WSTR , WSTS, WRT, NPLH ,NH ,... NPLSB, DELT, . . . GLV, GSTR, RWLVG, GRT, RWSTR, GST, . . . RWLVG1,GRT1, RWSTR1,GST1) CALL SUBGRN (GCR , FSH, FSO , DOY, DOYS, DOYTR, DVS, WRR, PWRR, . . . SPGF, TAV, TMAX, NSP, TIME, GRAINF, GSO, GGR, GNSP, GNGR) *** 3.5 Dry Matter Production and Number of Grains and Spikelets = INTGRL (WLVGI, RWLVG) WING WLVD = INTGRL (ZERO , LLV) WSTS = INTGRL (WSTI , GST) WSTR = INTGRL (ZERO , RWSTR) = INTGRL (WSOI, GSO) WSO = INTGRL (WRTI, WRT GRT) WST = WSTS + WSTR WAGT = WLVG + WST + WSO + WLVD = WLVG + WST + WSO WAG WRR = INTGRL (ZERO, GGR) WRR14 = 1.14 * WRR NGR = INTGRL (ZERO, GNGR) NSP = INTGRL (ZERO, GNSP) PWRR = NGR * WGRMX *** 4. Leaf Area Development CALL SUBDD (TMAX, TMIN, TBLV, 30., 42., HULV) CALL SUBLAI(SWIDS, SWILAI, DAS, DOYS, DOYTR, LAPE, RGRL, TSLV, ... NPLSB, WLVG, SLA, NH, NPLH, SHCKL, DVS, ... LAISIM, TSHCKL) LAI = INSW (SWILAI, XLAI, LAISIM) SSGA = AFGEN(SSGATB, DVS) = SSGA * WST SAI SLA = AFGEN(SLATE, DVS) XLAI = AFGEN(XLAITB, DOY) ALAI = LAI + $0.5 \times SAI$ *** 5. Time and Environmental Variables WEATHER WTRDIR='C:\WEATHER\', CNTR='PHIL', ISTN=1, IYEAR=1992 * Reading weather data from the weather file: * Note: The radiation will be multiplied by 1000 to get J/m2/d!!! Daily global radiation J/m2/d * RDD Daily global laurenture * TMMN degree C degree C * TMMX Daily maximum temperature * VP Vapour pressure kPa * WN Wind speed m/s * RAIN Precipitation mm * Latitude of the site LAT degree DOY Day of year = TIME đ TMAXC = INSW (SWITMP, 0., AFGEN(TMCTB, DOY)) TMINC = INSW (SWITMP, 0., TMAXC)

```
CALL COVER (SWICOV, DAS, DOYTR, DOYS, TMPCOV)
       DAS
            = INTGRL (ZERO, RDAS)
       RDAS
             = 1.
       TAV
             = (TMIN + TMAX)/2.
       TAVD = (TMAX + TAV) / 2,
       TS
             = INTGRL (ZERO, HU )
       TSLV
            = INTGRL (ZERO, HULV)
            = RDD
= TMMN + TMINC
       DTR
       TMIN
            = TMMX + TMAXC + TMPCOV
       TMAX
*** 6.
        Carbon Balance Check
       CALL SUBCBC (CKCIN, CKCFL, TIME, CBCHK)
       CKCIN = (WLVG+WLVD-WLVGI)*FCLV +
                                                ...
                (WSTS-WSTI)*FCST + WSTR*FCSTR +
                                                 . . .
                (WRT -WRTI)*FCRT + WSO *FCSO
       CKCFL = TNASS * (12./44.)
       CTRANS = RWLVG1*FCLV + GST1*FCST +
                                                 . . .
               RWSTR1*FCSTR + GRT1*FCRT
       TNASS = INTGRL(ZERO, RTNASS)
       RTNASS = ((DTGA*30./44. - RMCR)*44./30.) - RGCR - ...
                 (CTRANS*44./12.)
       RGCR
            = (GRT +GRT1) *CO2RT + (GLV+RWLVG1)*CO2LV + ...
               (GST +GST1) *CO2ST + GSO*CO2SO
                                                      + ...
               (GSTR+RWSTR1) *CO2STR
                                                      + ...
                (1.-LRSTR)*LSTR*FCSTR*44./12.
       CO2RT = 44./12. * (CRGRT *12./30, - FCRT)
       CO2LV = 44./12. * (CRGLV *12./30. - FCLV)
       CO2ST = 44./12. * (CRGST *12./30. - FCST)
       CO2STR = 44./12. * (CRGSTR*12./30. - FCSTR)
       CO2SO = 44./12. * (CRGSO *12./30. - FCSO)
*** 7.
        Run Control
FINISH DVS
              > 2.
               > 3.
FINISH NCOLD
             < 0.
= 4., FINTIM = 300., DELT = 1., PRDEL = 5.
FINISH GRAINF
TIMER STTIME
TRANSLATION_GENERAL DRIVER='EUDRIV'
PRINT
         DOY, DVS, TS, TSLV, XLAI, LAI, ALAI, LAISIM, NFLV, XNFLV,
                                                         . . .
          GST, GLV, GSO, GSTR, GRT, WRT, WLVG, XWLVG, WLVD, XWLVD,
                                                         . . .
          WST, XWST, WSO, XWPA, WAG, XWTDM, WAGT, XWT,
                                                         . . .
          TSHCKD, TSHCKL, WGR, DTGA, WRR14, NGR, DTR,
                                                          . . .
          AMAX, CBCHK, DPAR, DPARI, PARCUM, PARCM1, PARI1, NGCR
*** 8.
        Observed Values
       XWLVG = AFGEN(XWLVGT, DOY)
       XWLVD = AFGEN(XWLVDT, DOY)
       XWST
             = AFGEN(XWSTTB, DOY)
            = AFGEN (XWPATE, DOY)
       XWPA
       XWTDM = AFGEN(XWTDMT, DOY) - XWLVD
       XWT = AFGEN (XWTDMT, DOY)
       XNFLV = AFGEN(XNFLVT, DOY)
*** 9.
        Functions and Parameters for Rice
******
* Experimental data: Parameters and Functions from: IRRI/APPA, 1992 *
* Oryza sativa cv.IR72, IRRI, Dry Season (M10) at 225 kg N
**********
```

*

```
* Section 2:
                      TOD
                              = 30., TMD = 42.
PARAM TBD
            = 8.,
            = 0.000773
PARAM DVRJ
PARAM DVRI
              = 0.000758
             = 0.000784
PARAM DVRP
PARAM DVRR
              = 0.001784
             = 11.50
PARAM MOPP
PARAM PPSE
            = 0 0
PARAM SHCKD = 0.4
PARAM DOYS = 4.
PARAM DOYTR = 16.
* Section 3.1:
PARAM SCP
             = 0.2
PARAM CO2REF = 340.
PARAM CO2 = 340.
FUNCTION NFLVTB = 0.00, 0.54, 0.16, 0.54, 0.33, 1.53, 0.65, 1.22, \ldots
                    0.79,1.56, 1.00,1.29, 1.46,1.37, 2.04,0.83
FUNCTION REDFTT = -10.,0., 10.,0., 20.,1., 37.,1., 43.,0.
FUNCTION EFFTB = 10.,0.54, 40.,0.36
FUNCTION KDFTB = 0.,0.4, 0.65,0.4, 1.,0.6, 2.1,0.6
FUNCTION KNFTB = 0.,0.4, 2.1,0.4
* Section 3.2:
PARAM MAINLV = 0.02, MAINST = 0.015
PARAM MAINSO = 0.003, MAINRT = 0.01
PARAM Q10
            = 2.,
                       TREF = 25.
* Section 3.3:
PARAM CRGLV = 1.326, CRGST = 1.326
PARAM CRGSO = 1.462, CRGRT = 1.326
PARAM CRGSTR = 1.11
PARAM LRSTR = 0.947
* Section 3.4:
FUNCTION FSHTB = 0.0,0.50, 0.43,0.75, 1.0,1.0 , 2.1,1.
FUNCTION FRTTB = 0.0,0.50, 0.43,0.25, 1.0,0.0, 2.1,0.
FUNCTION FLVTB = 0.000,0.545, 0.080,0.545, 0.245,0.559,
                                                              . . .
                    0.490,0.542, 0.720,0.422, 0.895,0.053,
                                                               . . .
                    1.230,0.000, 1.730,0. , 2.1 ,0.
FUNCTION FSTTB = 0.000,0.455, 0.080,0.455, 0.245,0.441,
                                                               . . .
                   0.490,0.458, 0.720,0.578, 0.895,0.517,
                                                               ...
                   1.230,0.000, 1.730,0. , 2.1 ,0.
FUNCTION FSOTE = 0.000,0.000, 0.720,0.000, 0.895,0.430,
                   1.230,1.000, 1.730,1.0 , 2.1 ,1.
PARAM NPLH
            = 5.
             = 25.
PARAM NH
PARAM NPLSB = 1000.
PARAM FSTR = 0.20
PARAM TCLSTR \approx 10.
FUNCTION DRLVT = 0.0,0., 0.60,0., 1.,0.015, 1.6,0.025, 2.1,0.05
* Section 3.5:
PARAM SPGF = 64900.
PARAM WGRMX = 0.0000249
* Section 4:
PARAM TBLV = 8.
PARAM LAPE = 0.0001
PARAM RGRL = 0.0080
PARAM SHCKL
             = 0.25
FUNCTION SSGATB = 0.0,0.0003, 0.9,0.0003, 2.1,0.
FUNCTION XLAITB = 4.,0.00, 16.,0.03, 34.,0.46, 58.,5.22,
68.,5.97, 83.,5.88, 97.,4.82, 114.,2.45
                                                      58.,5.22, ...
FUNCTION SLATE = 0.00, 0.0045, 0.16, 0.0045, 0.33, 0.0033, 0.65, 0.0028, \dots
                    0.79,0.0021, 1.00,0.0019, 1.46,0.0017, 2.04,0.0017
```

```
* Section 5:
FUNCTION TMCTB = 1., 0., 366., 0.
* Section 6:
             = 0.419, FCST ≈ 0.431
PARAM FCLV
PARAM FCRT = 0.431, FCSO ≈ 0.487
PARAM FCSTR = 0.444
* Section 8:
FUNCTION XWLVGT = 4.0.
                                16.,6.,
                                              34.,138., 58.,1874., ...
                     68.,2840., 83.,3030., 97.,2828., 114.,1432.
FUNCTION XWSTTB = 4.,0., 16.,5., 34.,109., 58.,1577., ...
                     68.,2902., 83.,4771., 97.,4373., 114.,4243.

      FUNCTION XWLVDT =
      4.,0.,
      16.,0.,
      34.,0.,
      58.,47.,
      ...

      68.,234.,
      83.,660.,
      97.,1448.,
      114.,2269.

      FUNCTION XWPATB =
      4.,0.,
      16.,0.,
      34.,0.,
      58.,0.0,
      ...

      68.,0.,
      83.,1558.,
      97.,5932.,
      114.,9843.

      FUNCTION XWTDMT =
      4.,0.,
      16.,11.,
      34.,247.,
      58.,3498.,
      ...

                     68.,5976., 83.,10019., 97.,14580.,114.,17787.
FUNCTION XNFLVT = 4.,0.54, 16.,0.54, 34.,1.53, 58.,1.22, ...
                     68.,1.56, 83.,1.29, 97.,1.37, 114.,0.83
TERMINAL
       WGR
               = WRR/NOTNUL(NGR)
END
* Rerun LAI is simulated:
PARAM SWILAI = 1.
END
* Rerun observed LAI, and direct-seeded (no transplanting!):
PARAM SWILAI = -1., SWIDS = 1.
PARAM DVRJ = 0.000661
PARAM DVR1 = 0.000758
PARAM DVRP = 0.000795
PARAM DVRR = 0.001784
PARAM NPLH = 500.
PARAM NH
              = 1.
PARAM NPLSB = 500.
PARAM DOYTR = 4.
END
* Rerun direct-seeded and LAI simulated:
PARAM SWILAI=1.
END
STOP
*_____
* SUBROUTINE COVER
*
 Purpose : In this subroutine a temperature correction is made
              in case a plastic cover is used in the seedbed.
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
* name type meaning
                                                                 units class *
*
                                                                        ---- *
           -----
                                                                  ----
*
   SWICOV R4 Switch in case a cover is used in seedbed
                                                                               *
                                                                 -
                                                                          I
                                                                               *
   DAS
           R4 Days after sowing
                                                                   -
                                                                          I
           R4 Day of transplanting
   DOVTR
                                                                   đ
                                                                          I
                                                                               *
   DOYS R4 Day of sowing d
TMPCOV R4 Temperature correction if a cover is used -
                                                                               *
*
                                                                          Ι
                                                                               *
                                                                          0
*_____
      SUBROUTINE COVER (SWICOV, DAS, DOYTR, DOYS,
                           TMPCOV)
       IMPLICIT REAL (A-Z)
       INTEGER IDAS, ISA
       SAVE
       IDAS = INT(DAS)
```

```
ISA = INT (DOYTR) - INT (DOYS)
      IF (ISA.LT.0) THEN
         ISA = ISA + 365
       ELSE
         ISA = ISA
      ENDIF
      IF (IDAS.LT.ISA .AND. SWICOV.GT.0.) THEN
       TMPCOV=9.5
      ELSE
       TMPCOV=0.
      ENDIE
      RETURN
      END
*_____*
   SUBROUTINE SUBCBC
*
   Purpose: This subroutine checks the Crop Carbon Balance
           and stops the simulation if the difference between
           CKCIN and CKCFL exceeds 0.1 %
*
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
*
  name type meaning
                                                    units class *
*
                                                          ---- *
   ----
         -----
                                                    _ _ _ _ _
*
   CKCIN
        R4 Accumulated C in the crop
                                                    kg C/ha I
   CKCFL R4 Sum of integrated C fluxes
                                                    kg C/ha I
         R4 Time of simulation
  TIME
                                                    đ
                                                           ሞ
  \texttt{CBCHK} \qquad \texttt{R4} \quad \texttt{Carbon balance check, relative value to}
             the sums of CKIN and CKCFL
                                                           0
*_____
     SUBROUTINE SUBCBC(CKCIN, CKCFL, TIME, CBCHK)
     IMPLICIT REAL (A-Z)
     SAVE
      CBCHK = 2.0*(CKCIN~CKCFL)/(CKCIN+CKCFL+1.E-10)
      IF (ABS(CBCHK).GT.0.001) THEN
       WRITE (6,10) CBCHK, CKCIN, CKCFL, TIME
       FORMAT (/,'* * *Error in Carbon Balance, please check* * *',/,
 10
     & 'CBCHK=',F8.3,', CKCIN=',F8.2,', CKCFL=',F8.2,' at TIME=',F6.1)
       STOP
     ENDIF
     RETURN
     END
*-----
  SUBROUTINE SUBDD
*
  Purpose: This subroutine calculates the daily amount of heat units
           for calculation of the phenological development rate and
           early leaf area growth.
  FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time)
  name type meaning
                                                   units class *
*
  ----
        ---- -----
                                                    _ _ _ _ _
                                                         ----
        R4 Daily maximum temperature
R4 Daily minimum temperature
*
  TMAX
                                                     oC
                                                           Ι
  TMIN R4
*
                                                     oC
                                                           Т
            Base temperature for development
  TBD
                                                     oC
                                                          I
        R4
  TOD R4 Optimum temperature for development
                                                    oC
                                                          I
                                                               *
  TMD R4 Maximum temperature for development
                                                               *
                                                    oC
                                                          I
* HU
                                                               *
       R4 Heat units
                                                     oC
                                                           0
*_____
      SUBROUTINE SUBDD (TMAX, TMIN, TBD, TOD, TMD, HU)
     IMPLICIT REAL (A-Z)
     INTEGER I
     SAVE
```

```
TM
           = (TMAX + TMIN)/2.
     тт
         = 0.
     DO 10 I = 1, 24
           TD = TM + 0.5*ABS(TMAX-TMIN)*COS(0.2618*FLOAT(I-14))
        IF ((TD.GT.TBD) .AND. (TD .LT. TMD)) THEN
          IF (TD.GT.TOD) TD = TOD-(TD-TOD)*(TOD-TBD) / (TMD-TOD)
        TT = TT + (TD-TBD)/24.
       ENDIE
  10 CONTINUE
     HU = TT
     RETURN
     END
*____*
* SUBROUTINE SUBCD
*
  Purpose: This subroutine calculates number of days below a certain
                                                                 *
           average temperature (TAV), which is used to terminate the *
           simulation after a maximum number of cold days the crop
                                                                 *
           can survive.
*
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
*
                                                     units class *
  name type meaning
*
  ----
        -----
                                                      ----- ----- *
* DOY R4 Day of year
                                                       đ
                                                            T
                                                                 *
*
                                                                 *
  DOYTR R4 Day of transplanting
                                                       d
                                                            τ
  TAVR4Average daily temperatureTIMER4Time of simulation
                                                                 *
*
                                                            I
                                                       oC

    TIME R4 Time of simulation
    NCOLD R4 Number of cold days

                                                       d
                                                             T
                                                                 *
                                                                 *
                                                       -
                                                             0
*-----*
     SUBROUTINE SUBCD (DOY, DOYTR, TAV, TIME, NCOLD)
     IMPLICIT REAL(A-Z)
     SAVE
     IF (DOY.EQ.DOYTR) NCOLD=0.
     IF(TAV.LT.12.) THEN
        NCOLD = NCOLD + 1.
     ELSE
       NCOLD = 0.
     ENDIF
       IF (NCOLD.GT.3.) THEN
       WRITE (6,10) NCOLD, TIME
      FORMAT (/,'* * *Number of cold days (<12 C) exceeded 3* * *',/,
10
    & ' NCOLD', F8.3, ' at TIME=', F6.1)
       ENDIF
     RETURN
     END
```

```
_____
*
  SUBROUTINE PHENOL
*
  Purpose: This subroutine calculates the rate of phenological
*
           development of the crop based on photoperiod and
           temperature.
*
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
*
  name
        type meaning
                                                     units class *
                                                     ----- *
*
  ----
         ----
  DVS
        R4 Development stage of the crop
                                                           т
*
  DAS R4 Days after sowing
                                                      no
                                                            I
                                                                .
*
  DVRJ R4 Development rate, juvenile phase
                                                      1/oCd I
*
  DVRI R4 Development rate, photoperiod-sensitive phase1/oCd I
                                                     1/oCd I
*
  DVRP R4 Development rate, PI phase
*
  DVRR R4 Development rate, reproductive phase
                                                      1/oCd I
oCd/d I
  HU R4 Heat units
DAYL R4 Day length
*
             Heat units
*
                                                      h
                                                            τ
  MOPP R4 Maximum optimum photoperiod
*
                                                            Т
                                                     h
  PPSE R4 Photoperiod sensitivity
*
                                                     1/h I
* TS
                                                     oCd I
                                                                *
       R4 Temperature sum
*
  SHCKD R4 Delay parameter in phenology
                                                   oCd/oCd I
*
  DOYTR R4 Transplanting date, day of year
                                                    d I
  DOYS R4 Sowing date, day of year
*
                                                     d
                                                            Ι
                                                      1/d
*
  DVR
        R4
             Development rate of the crop
                                                            0
                                                                *
            Transpl. shock for phenol. development
*
  TSHCKD R4
                                                      oCd
                                                            0
******
     SUBROUTINE PHENOL (DVS, DAS, DVRJ, DVRI, DVRP, DVRR, HU, DAYL, MOPP, PPSE,
    £
                       TS, SHCKD, DOYTR, DOYS,
    æ
                      DVR, TSHCKD)
     IMPLICIT REAL (A-Z)
     INTEGER IDAS, ISA
     SAVE
     IDAS = INT(DAS)
     ISA = INT(DOYTR) - INT(DOYS)
     IF (ISA.LT.0) THEN
        ISA = ISA + 365
       ELSE
        ISA = ISA
     ENDIF
         IF (DVS.GE.0.
                       AND. DVS.LT.0.40) DVR = DVRJ * HU
         IF (DVS.GE.0.40 .AND. DVS.LT.0.65) THEN
            DL = DAYL + 0.9
            IF (DL.LT.MOPP) THEN
               PPFAC = 1.
              ELSE
                PPFAC = 1.-(DL-MOPP)*PPSE
            ENDIF
            PPFAC = MIN(1., MAX(0., PPFAC))
            DVR
                = DVRI * HU * PPFAC
        ENDIF
         IF (DVS.GE.0.65 .AND. DVS.LT.1.00) DVR = DVRF * HU
                                        DVR = DVRR * HU
         IF (DVS.GE.1.00)
         IF (IDAS.EQ.ISA) TSTR
                             = T$
         TSHCKD = SHCKD * TSTR
         IF (IDAS.GT.ISA .AND. TS.LT.(TSTR+TSHCKD)) DVR = 0.
     RETURN
```

```
END
```

```
SUBROUTINE SUBRTS
   Purpose: This subroutine calculates the growth rates of the organs. *
            At the day of transplanting it calculates the weight
            losses per area as a result of the change in plant density *
            when plants are removed from the seedbed and planted in
           the field.
*
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
  name
        type meaning
                                                       units class *
                                                             ---- *
   ----
         ---- -----
                                                       ----
         R4 Day of year
*
  DOY
                                                        d
                                                              т
   DOYTR R4 Date of transplanting, daynumber GCR R4 Growth crop rate
*
                                                        d
                                                               τ
*
              Growth crop rate
                                                        kg/ha/d I
  FRT
*
             Fraction dry matter allocated to roots
         R4
                                                        - I
         R4 Fraction dry matter allocated to the shoot -
*
  FSH
                                                              ï
*
  FLV R4 Fraction shoot dry matter allocated to leaves-
                                                              I
*
  LLV R4 Loss rate of leaves
                                                       kg/ha/d I
*
  FST R4 Fraction shoot-DM allocated to the stems
                                                                   *
                                                        - T
*
  FSTR R4 Fraction CH2O allocated to stem reserves
                                                       kg/ha/d I
  LSTR R4
WLVG R4
*
              Loss rate of stem reserves
                                                        kg/ha/d I
*
              Weight of green leaves
                                                        kg/ha
                                                               Ι
  WSTR R4 Weight of stem reserves
                                                        kg/ha
                                                               Ι
*
  WSTS R4 Weight of structural stems
                                                       kg/ha I
*
  WRT
        R4 Weight of the roots
                                                       kg/ha I
                                                                   ÷
*
  NPLH R4 Number of plants per hill
                                                       pl/hill I
                                                                   *
*
                                                        oCd I
  NH
        R4 Number of hills
*
  NPLSB R4 Number of plants in seedbed
                                                       p1/m2
                                                               Ι
*
  DELT R4 Time step of integr
GLV R4 Growth rate leaves
             Time step of integration
                                                        d
                                                               т
                                                       kg/ha/d 0
*
  GLV
  GSTR R4 Growth rate stem reserves
                                                      kg/ha/d O
*
  RWLVG R4 Net growth rate of green leaves
                                                      kg/ha/d 0
*
  GRT R4 Growth rate of roots
                                                       kg/ha/d O
  RWSTR R4 Net growth rate of stem reserves
                                                      kg/ha/d O
  GST R4 Growth rate of structural stems
                                                      kg/ha/d 0
*
*
  RWLVG1 R4
             RWLVG at transplanting
                                                      kg/ha/d
                                                              0
  GRT1 R4
             GRT at transplanting
                                                       kg/ha/d
                                                              0
  RWSTR1 R4 RWSTR at transplanting
                                                      kg/ha/d O
  GST1 R4 GST at transplanting
                                                      kg/ha/d O
*_____
      SUBROUTINE SUBRTS (DOY, DOYTR, GCR, FRT, FSH, FLV, LLV, FST, FSTR, LSTR,
    £
                 WLVG, WSTR, WSTS, WRT, NPLH, NH, NPLSB, DELT,
     £
                 GLV, GSTR, RWLVG, GRT, RWSTR, GST,
                 RWLVG1, GRT1, RWSTR1, GST1)
     Ę,
     IMPLICIT REAL (A-Z)
     SAVE
       IF (DOY.EQ.DOYTR) THEN
           PLTR = NPLH*NH/NPLSB
        ELSE
          PLTR = 1.
      ENDIE
           RWLVG1 = (WLVG * (1. -PLTR))/DELT
          GST1 = (WSTS * (1. -PLTR))/DELT
          RWSTR1 = (WSTR * (1. -PLTR))/DELT
          GRT1 = (WRT * (1. -PLTR))/DELT
           = GCR * FRT
      GRT
                                         - GRT1
            = GCR * FSH * FLV
      GLV
                                         - RWLVG1
      RWLVG = GLV - LLV
      GST = GCR * FSH * FST * (1.-FSTR) - GST1
            = GCR * FSH * FST * FSTR - RWSTR1
      GSTR
      RWSTR = GSTR - LSTR
      RETURN
      END
```

```
_____
   SUBROUTINE SUBGRN
   Purpose: This subroutine calculates spikelet formation rate and
            spikelet fertility as affected by low and high temperature
            and the grain growth rate. Spikelet sterility component
           is according to Horie et al., 1992.
   FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
   name
        type meaning
                                                     units class *
   _ _ _ _
         -----
                                                      ____
                                                           ---- *
   GCR R4 Growth crop rate
                                                      kg/ha/d I
   FSH R4 Fraction dry matter allocated to the shoot
                                                       - I
   FSO R4 Fraction shoot DM allocated to storage organs -
                                                                 *
                                                            I
                                                            т
  DOY
        R4 Day of year
                                                       d
                                                            I
*
   DOYTR R4 Date of transplanting, daynumber
                                                       d
*
  DVS R4
WRR R4
             Development stage of the crop
                                                        -
                                                             Ι
             Weight of rough rice
                                                      kg/ha
                                                             I
  PWRR R4
                                                      kg/ha
            Potential weight of rough rice
                                                             Ι
*
  SPGF R4 Spikelet growth factor
                                                     no/kg
                                                             Ŧ
*
  TAV R4 Average daily temperature
                                                      oC
                                                             Ι
                                                                 *
*
  TMAX R4 Daily maximum temperature
                                                       oC
                                                            Ι
*
  NSP
        R4 Number of spikelets
                                                       no I
  TIME R4
                                                       đ
*
             Time of simulation
                                                             т
  GRAINF R4
             Sink limitation factor
                                                        -
                                                             0
  GSO R4 Growth rate of storage organs
                                                     kg/ha/d 0
        R4 Rate of increase in grain weight
                                                    kg/ha/d O
  GGR
  GNSP R4 Rate of increase in spikelet number
                                                    no/ha/d O
* GNGR R4 Rate of increase in grain number
                                                    no/ha/d O
                                                                 *
*_____
      SUBROUTINE SUBGRN (GCR, FSH, FSO, DOY, DOYS, DOYTR, DVS, WRR, PWRR,
                      SPGF, TAV, TMAX, NSP, TIME,
     £
                      GRAINF, GSO, GGR, GNSP, GNGR)
     &
     IMPLICIT REAL(A-Z)
     LOGICAL GRAINS
     SAVE
     GRAINE = 1
     IF (DOY.EQ.DOYS) GRAINS = .FALSE.
     GSO = GCR * FSH * FSO
     IF (DVS.GT.0.95) THEN
        GGR = GSO
     ELSE
         GGR \neq 0.
     ENDIF
     IF (GRAINS) THEN
         IF (WRR .GT. PWRR) GRAINF = -1.
       IF (GRAINF.LT.0.) THEN
         WRITE (6,10) GRAINF, TIME
10
         FORMAT (/,' * * * Sink limitation before DVS=2 !!!! * * *',/,
         ' GRAINF', F8.3, ' at TIME=', F6.1)
     &
       ENDIF
     ENDIF
* Grain formation
     DVSPI = 0.65
     DVSF = 1.
     IF ((DVS.GE.DVSPI) .AND. (DVS.LE.DVSF)) THEN
        GNSP = GCR * SPGF
     ELSE
        GNSP = 0.
     ENDIF
* Grain formation from spikelets (GNGR)
     IF (DOY.EQ.DOYTR) COLDTT = 0.
     IF (DOY.EQ.DOYTR) TFERT = 0.
```

```
IF (DOY, EQ, DOYTR) NTFERT = 0.
      IF ((DVS.GE.0.75) .AND. (DVS.LE.1.2)) THEN
         CTT = MAX(0., 22.-TAV)
        COLDTT = COLDTT + CTT
        ENDIE
      IF ((DVS.GE.0.96) .AND. (DVS.LE.1.2)) THEN
         TFERT = TFERT + TMAX
        NTFERT = NTFERT + 1.
      ENDIF
      IF ((DVS.GE.1.2) .AND.(.NOT. GRAINS)) THEN
        GRAINS = .TRUE.
         SF1 = 1. - (4.6+0.054*COLDTT**1.56)/100.
        SF1
               = MIN(1., MAX(0., SF1))
         TFERT = TFERT/(NTFERT)
        SF2
               = 1./(1.+EXP(0.853*(TFERT-36.6)))
             = MIN(1., MAX(0., SF2))
        SF2
        SPFERT = MIN(SF1, SF2)
        GNGR = NSP*SPFERT
     ELSE
        GNGR = 0.
     ENDIF
     RETURN
     END
* SUBROUTINE SUBLAI
  Purpose: This subroutine calculates the leaf area index of the
           crop in the seedbed and after transplanting in the field.
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
                                                      units class *
  name type meaning
  ____
         -----
*
  SWIDS R4 Switch for direct-seeding or transplanting
                                                      -
                                                             I
                                                                  *
*
                                                                  *
                                                              I
  SWILAI R4 Switch for simulated or measured LAI
                                                       -
  DAS R4 Days after sowing
                                                                  *
                                                             Ι
                                                       đ
                                                              I
  DOYS
         R4 Sowing date, daynumber of year
                                                       d
                                                                  *
  DOYTR R4 Day of transplanting
                                                       d
                                                                 *
                                                               r
         R4 Leaf area of the plant at emergence
  LAPE
                                                       m2
                                                               Ι
 RGRL R4 Relative growth rate for leaf development 1/(oCd)
                                                              Т
        R4 Temperature sum for leaf development
*
  TSLV
                                                      oC
                                                              I
*
 NPLSB R4 Number of plants in seedbed
                                                     pl/m2
                                                              Ι
                                                                 *
*
                                                     kg/ha
                                                              Ι
                                                                 *
  WLVG R4 Weight of the green leaves

    SLA
    R4
    Specific leaf area

    NH
    R4
    Number of hills

    NPLH
    R4
    Number of plants per hill

*
                                                                 *
                                                     ha/kg
                                                              Ι
*
                                                     hills/m2 I
                                                                 *
                                                     pl/hill
                                                               Ι
                                                                  *
  SHCKL R4 Delay parameter in development
                                                     oCd/oCd I *
*
 DVS
        R4 Development stage
                                                               I *
                                                      -
*
 LAISIM R4 Simulated leaf area index
                                                               o *
                                                     ha/ha
* TSHCKL R4 Transpl. shock for leaf area development oCd 0 *
*_____*
      SUBROUTINE SUBLAI(SWIDS, SWILAI, DAS, DOYS, DOYTR, LAPE, RGRL, TSLV,
                      NPLSB, WLVG, SLA, NH, NPLH, SHCKL, DVS
    &
                      LAISIM, TSHCKL)
    £
     IMPLICIT REAL (A-Z)
     INTEGER IDAS, ISA
     SAVE
     IDAS = INT(DAS)
     IF (SWIDS.LT.0.) THEN
       ISA = INT(DOYTR) - INT(DOYS)
       IF (ISA.LT.0) THEN
          ISA = ISA + 365
         ELSE
          ISA = ISA
       ENDIE
```

84

```
LAIEXS = 0.
  WLVEXS = 0.
        IF (IDAS.LT.ISA) THEN
           IF (LAISIM.LT.1.) THEN
              LAPI = LAPE * (EXP(RGRL*TSLV))
LAISIM = LAPI * NPLSB
              WLVEXS = WLVG
              LAIEXS = LAISIM
           ELSE
               LAISIM = SLA*(WLVG-WLVEXS)+LAIEXS
           ENDIF
       ELSE
           IF (IDAS.EQ.ISA) THEN
              LAII = LAISIM * NH * NPLH / NPLSB
              TSLVTR = TSLV
              TSHCKL = SHCKL * TSLVTR
           ENDIF
           IF (TSLV.LT. (TSLVTR+TSHCKL)) THEN
              LAISIM = LAII
           ELSE
               IF ((LAISIM.LT.1.0) .AND. (DVS.LT.1.0)) THEN
                  LAISIM = LAII*(EXP(RGRL*(TSLV-TSLVTR-TSHCKL)))
                 WLVEXP = WLVG
                 LAIEXP = LAISIM
              ELSE
                 LAISIM = LAIEXP+SLA*(WLVG-WLVEXP)
              ENDIF
           ENDIF
       ENDIF
     ENDIF
IF (SWIDS.GT.0.) THEN
   IF (IDAS,EQ.0.) LAISIM = NPLSB * LAPE
      IF (LAISIM.LT.1.) THEN
           LAPI = LAPE * (EXP(RGRL*TSLV))
           LAISIM = LAPI * NPLSB
          WLVEXS = WLVG
          LAIEXS = LAISIM
      ELSE
           LAISIM = SLA * (WLVG-WLVEXS) + LAIEXS
      ENDIF
ENDIF
IF (SWILAI.LT.O.) LAISIM = 0.
RETURN
END
```

```
    SUBROUTINE ASTRO

٠
 Purpose: This subroutine calculates astronomic daylength,
*
           diurnal radiation characteristics such as the daily
           integral of sine of solar elevation and solar constant.
*
*
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
*
                                                     units class *
  name type meaning
       -----
                                                     ---- *
  _ _ _ _
                                                       -
* DOY
        R4 Daynumber (Jan 1st = 1)
                                                             T *
* LAT
        R4 Latitude of the site
                                                     degrees I
                                                     J m-2 s-1 O
  SC R4 Solar constant
DS0 R4 Daily extrater
  DS0 R4 Daily extraterrestrial radiation
SINLD R4 Seasonal offset of sine of solar height
                                                     J m-2 d-1 O
                                                              0
 COSLD R4 Amplitude of sine of solar height
                                                       _
                                                             0
                                                     h
         R4 Astronomic daylength (base = 0 degrees)
* DAYL
                                                             0
                                                                 *
* DSINB R4 Daily total of sine of solar height
                                                             o *
                                                      s
  DSINBE R4 Daily total of effective solar height
                                                      5
                                                             o *
* FATAL ERROR CHECKS (execution terminated, message)
* condition: LAT > 67, LAT < -67</p>
*____*
     SUBROUTINE ASTRO (DOY, LAT,
    & SC , DS0, SINLD, COSLD, DAYL, DSINB, DSINBE)
     IMPLICIT REAL (A-Z)
     SAVE
*----PI and conversion factor from degrees to radians
     PI = 3.141592654
         = PI/180.
     RAD
*----check on input range of parameters
     IF (LAT.GT.67.) STOP 'ERROR IN ASTRO: LAT> 67'
      IF (LAT.LT.-67.) STOP 'ERROR IN ASTRO: LAT>-67'
*----declination of the sun as function of daynumber (DOY)
      DEC = -ASIN (SIN (23.45*RAD)*COS (2.*PI*(DOY+10.)/365.))
*----SINLD, COSLD and AOB are intermediate variables
      SINLD = SIN (RAD*LAT)*SIN (DEC)
     COSLD = COS (RAD*LAT)*COS (DEC)
     AOB = SINLD/COSLD
*----daylength (DAYL)
     DAYL = 12.0*(1.+2.*ASIN (AOB)/PI)
      DSINB = 3600.*(DAYL*SINLD+24.*COSLD*SQRT (1.-AOB*AOB)/PI)
      DSINBE = 3600.*(DAYL*(SINLD+0.4*(SINLD*SINLD+COSLD*COSLD*0.5))+
              12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT (1.-AOB*AOB)/PI)
    £
*----solar constant (SC) and daily extraterrestrial radiation (DS0)
     SC = 1370.*(1.+0.033*COS (2.*PI*DOY/365.))
     DS0 = SC*DSINB
     RETURN
     END
```

_____ SUBROUTINE TOTASP Purpose: This subroutine calculates daily total potential gross assimilation (DTGA) by performing a Gaussian integration over time. At three different times of the day. radiation is computed and used to determine assimilation whereafter integration takes place. FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) . type meaning units class * name ----* R4 Davnumber (Januarv 1 = 1) DOV τ**Γ** R4 Latitude of the site degrees I T.A T R4 Daily total of global radiation 4 DTR J/m2/d T + R4 Scattering coefficient of leaves for visible SCP radiation (PAR) т EFF R4 Initial light use efficiency kg CO2/J/ I * ha/h m2 s REDFT R4 Reduction factor, temp. effect on AMAX . т + Extinction coefficient for diffuse light . KDF R4 _ Т R4 Extinction coefficient, N profile in canopy KNF т R4 Apparent leaf area index (incl. stem area) ha/ha LAI Ŧ R4 Ambient CO2 concentration CO2 ppm т + NFLV R4 Nitrogen fraction in the leaves q/m2 т DAYL R4 Astronomic daylength (base = 0 degrees) h 0 * AMAX R4 Assimilation rate at light saturation kg/ha/h O DTGA R4 Daily total gross Assimilation DPAR R4 Daily incoming PAR DPARI R4 Intercepted DPAR kg/ha/d O MJ/m2/d 0 MJ/m2/d0 SUBROUTINES and FUNCTIONS called : ASTRO, ASSIMP *..... SUBROUTINE TOTASP (DOY, LAT, DTR, SCP, EFF, REDFT, KDF, KNF, LAI, CO2, NFLV, æ DAYL, AMAX, DTGA, DPAR, DPARI) £ IMPLICIT REAL(A-Z) REAL XGAUSS(3), WGAUSS(3) INTEGER I1, IGAUSS SAVE DATA IGAUSS /3/ DATA XGAUSS /0.112702, 0.500000, 0.887298/ DATA WGAUSS /0.277778, 0.444444, 0.277778/ PI = 3.141592654 CALL ASTRO(DOY, LAT, SC, DS0, SINLD, COSLD, DAYL, DSINB, DSINBE) *----assimilation set to zero and three different times of the day (HOUR) DTGA = 0.DPAR = 0. DPARI = 0. DO 10 I1=1, IGAUSS *----at the specified HOUR, radiation is computed and used to compute ٠ assimilation HOUR = 12.0 + DAYL * 0.5 * XGAUSS(I1)*----sine of solar elevation SINB = MAX (0., SINLD+COSLD*COS (2.*PI*(HOUR+12.)/24.)) *----diffuse light fraction (FRDF) from atmospheric transmission (ATMTR) PAR = 0.5*DTR*SINB*(1.+0.4*SINB)/DSINBE ATMTR = PAR/(0.5*SC*SINB)

```
IF (ATMTR.LE.0.22) THEN
         FRDF = 1.
       ELSE IF (ATMTR.GT.0.22 .AND. ATMTR.LE.0.35) THEN
         FRDF = 1.-6.4*(ATMTR-0.22)**2
      ELSE
         FRDF = 1.47-1.66*ATMTR
      ENDIF
       FRDF = MAX (FRDF, 0.15+0.85*(1.-EXP (-0.1/SINB)))
*-----diffuse PAR (PARDF) and direct PAR (PARDR)
      PARDF = PAR * FRDF
      PARDR = PAR - PARDF
       CALL ASSIMP (SCP, EFF, REDFT, KDF, KNF, LAI, SINB, PARDR, PARDF, NFLV, CO2,
                    AMAX, FGROS, PARINT)
     £
*-----integration of assimilation rate to a daily total (DTGA)
      DTGA = DTGA + FGROS * WGAUSS(I1)
DPAR = DPAR + PAR * WGAUSS(I1)
      DPARI = DPARI + PARINT * WGAUSS(I1)
10
      CONTINUE
      DTGA = DTGA * DAYL
*----calculation of daily incident PAR and intercepted PAR (MJ/m2/d)
      DPAR = DPAR * DAYL * 3600/1.E6
      DPARI = DPARI * DAYL * 3600/1.E6
      RETURN
      END
                     _____
* SUBROUTINE ASSIMP
  Purpose: This subroutine performs a Gaussian integration over
            depth of canopy by selecting three different LAI's and
            computing potential assimilation at these LAI levels. The *
*
             integrated variable is FGROS. The routine accounts for
            an exponential profile of leaf N in the canopy and
            includes the effect of CO2 concentration.
  FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
  name type meaning
                                                            units class *
*
   ----
          ----
                                                            ____ _
*
   SCP R4 Scattering coefficient of leaves for visible
              radiation (PAR)
                                                                      I
                                                          kg CO2/J/ I
*
  EFF
         R4 Initial light use efficiency
                                                           ha/h m2 s
*
  REDFT R4 Reduction factor, temp. effect on AMAX
                                                              -
                                                                      Ι
          R4 Extinction coefficient for diffuse light
  KDF
                                                                      I
          R4 Extinction coefficient, N profile in canopy
  KNF
                                                            _
                                                                     Т
  LAI
         R4 Apparent leaf area index (incl. stem area) ha/ha I
  SINB
          R4 Sine of solar height
                                                                     Т
                                                              -

        PARDR
        R4
        Instantaneous flux of direct radiation (PAR) W/m2

        PARDF
        R4
        Instantaneous flux of diffuse radiation(PAR) W/m2

        NFLV
        R4
        Nitrogen fraction in the leaves
        g/m2

*
                                                                     Т
  PARDF
*
                                                                     I
* NFLV
                                                            g/m2
                                                                      1
         R4 Ambient CO2 concentration
  C02
                                                             ppm
                                                                     I
*
  AMAX R4 Assimilation rate at light saturation
                                                         kg/ha/h
                                                                     0
*
 FGROS R4 Instantaneous assimilation rate of
                                                          kg CO2/
              whole canopy
                                                          ha soil/h O *
                                                          J/m2/s 0 *
* PARINT R4 Intercepted PAR
              *----
     SUBROUTINE ASSIMP (SCP, EFF, REDFT, KDF, KNF, LAI,
                         SINB, PARDR, PARDF, NFLV, CO2,
     S.
                         AMAX, FGROS, PARINT)
     a
      IMPLICIT REAL(A-Z)
      REAL XGAUSS(3), WGAUSS(3)
```

```
INTEGER I1, I2, IGAUSS
      SAVE
*----Gauss weights for three point Gauss
       DATA IGAUSS /3/
       DATA XGAUSS /0.112702, 0.500000, 0.887298/
       DATA WGAUSS /0.277778, 0.444444, 0.277778/
*----reflection of horizontal and spherical leaf angle distribution
       SQV = SQRT(1.-SCP)
       REFH = (1.-SQV) / (1.+SQV)
       REFS = REFH*2./(1.+2.*SINB)
*----extinction coefficient for direct radiation and total direct flux
      CLUSTF = KDF / (0.8 * SOV)
           = (0.5/SINB) * CLUSTF
      KBL
      KDRT = KBL * SQV
*----calculate relative effect of CO2 level on AMAX
       CO2AMX = 49.57/34.26 * (1.-EXP(-0.208*(CO2-60.)/49.57))
      CO2AMX = MAX(0., CO2AMX)
*----selection of depth of canopy, canopy assimilation is set to zero
      FGROS = 0.
      PARINT = 0.
      DO 10 I1=1, IGAUSS
      LAIC = LAI * XGAUSS(I1)
*-----calculate leaf nitrogen for each layer,
*
         based on exponential distribution
          IF (LAI.GT.0.01 .AND. KNF.GT.0.) THEN
              SLNI = NFLV * LAI * KNF * EXP(-KNF*LAIC)/(1.-EXP(-KNF*LAI))
         ELSE
             SLNI = NFLV
         ENDIF
*-----calculate actual photosynthesis from SLN, CO2 and temperature
٠
         calculation of AMAX according to van Keulen & Seligman (1987):
*
         AMAX = 32.4 * (SLNI-0.2) * REDFT * CO2AMX
         IF (SLNI .GE. 0.5) THEN
            according to Shaobing Peng (IRRI, unpublished data):
             AMAX = 9.5 + (22. * SLNI) * REDFT * CO2AMX
         ELSE
             AMAX = MAX(0., 68.33 * (SLNI-0.2) * REDFT * CO2AMX)
         ENDIF
*-----absorbed fluxes per unit leaf area: diffuse flux, total direct
         flux, direct component of direct flux.
         VISDF = (1.-REFH)*PARDF*KDF *EXP (-KDF *LAIC)
         VIST = (1.-REFS)*PARDR*KDRT *EXP (-KDRT *LAIC)
VISD = (1.-SCP) *PARDR*KBL *EXP (-KBL *LAIC)
*-----absorbed flux (J/M2 leaf/s) for shaded leaves and assimilation of
         shaded leaves
         VISSHD = VISDF + VIST - VISD
         IF (AMAX.GT.0.) THEN
           FGRSH = AMAX * (1.-EXP(-VISSHD*EFF/AMAX))
         ELSE
           FGRSH = 0.
         ENDIF
*-----direct flux absorbed by leaves perpendicular on direct beam and
         assimilation of sunlit leaf area
         VISPP = (1.-SCP) * PARDR / SINB
         FGRSUN = 0.
         IASUN = 0.
```

```
DO 20 I2=1, IGAUSS
            VISSUN = VISSHD + VISPP * XGAUSS(12)
            IF (AMAX.GT.0.) THEN
               FGRS = AMAX * (1.-EXP(-VISSUN*EFF/AMAX))
            ELSE
              FGRS = 0.
           ENDIF
            FGRSUN = FGRSUN + FGRS * WGAUSS(12)
            IASUN = IASUN + VISSUN * WGAUSS(I2)
20
         CONTINUE
*-----fraction sunlit leaf area (FSLLA) and local assimilation
*
        rate (FGL)
         FSLLA = CLUSTF * EXP(-KBL*LAIC)
         FGL = FSLLA * FGRSUN + (1.-FSLLA) * FGRSH
         IABS = FSLLA * IASUN + (1.-FSLLA) * VISSHD
*-----integration of local assimilation rate to canopy
.
         assimilation (FGROS)
         FGROS = FGROS + FGL * WGAUSS(I1)
         PARINT = PARINT + IABS * WGAUSS(I1)
   CONTINUE
10
     FGROS = FGROS * LAI
*----calculation of intercepted PAR (PARINT, J/m2/s)
      PARINT = PARINT * LAI
     RETURN
     END
```

Appendix 2 List of variables

Name	Description	Units	
ALAI	Apparent leaf area index (including stem area)	ha ha-1	
AMAX	Actual CO2 assimilation rate at light saturation for individual leaves	kg CO ₂ ha ⁻¹ leaf h ⁻¹	
	at a specific height in the canopy (Subroutine ASSIMP)		
AOB	Internediate variable	•	
ASIN	Arcsine function (intrinsic FORTRAN function)	-	
ASSIMP	Subroutine to calculate FGROS	-	
ASTRO	Subroutine to compute e.g. daylength	-	
ATMTR	Atmospheric transmission coefficient	-	
СВСНК	Difference between carbon added to the crop since initialization and the		
	net total of integrated carbon fluxes, relative to their sum	-	
CKCIN	Carbon in the crop accumulated since simulation started	kg C ha ⁻¹	
CKCFL	Sum of integrated carbon fluxes into and out of the crop	kg C ha⁻I	
CLUSTF	Cluster factor	-	
COLDTT	Accumulated cold degree-days	∘Cd	
COS	Cosine function (intrinsic FORTRAN function)		
COSLD	Intermediate variable in calculating solar height	-	
CO2	Ambient CO ₂ concentration	ppm	
CO2EFF	Relative effect of CO ₂ on initial light use efficiency (EFF)	-	
CO2LV	CO ₂ production factor for growth of leaves	kg CO ₂ kg ⁻¹ DM	
CO2AMX	Relative effect of CO ₂ on AMAX		
CO2REF	Reference level of atmospheric CO ₂ (340 ppm)	ppm	
CO2RT	CO ₂ production factor for growth of roots	kg CO ₂ kg ⁻¹ DM	
CO2SO	CO ₂ production factor for growth of storage organs	kg CO ₂ kg ⁻¹ DM	
CO2ST	CO ₂ production factor for growth of stems	kg CO ₂ kg ⁻¹ DM	
CO2STR	CO ₂ production factor for growth of stem reserves	kg CO ₂ kg ⁻¹ DM	
CRGCR	Carbohydrate (CH ₂ O) requirement for dry matter production	kg CH ₂ O kg ⁻¹ DM	
CRGLV	Carbohydrate requirement for leaf dry matter production	kg CH ₂ O kg ⁻¹ DM leaf	
CRGRT	Carbohydrate requirement for root dry matter production	kg CH ₂ O kg ⁻¹ DM root	
CRGSO	Carbohydrate requirement for stor. organ dry matter production	kg CH ₂ O kg ⁻¹ DM stor.organ	
CRGST	Carbohydrate requirement for stem dry matter production	kg CH ₂ O kg ⁻¹ DM stem	
CRGSTR	Carbohydrate requirement for stem reserves production	kg CH ₂ O kg ⁻¹ DM	
CTRANS	Carbon losses at transplanting	kg C ha ⁻¹	
DAS	Days after seeding	d .	
DAYL	Daylength	h	
DEC	Declination of the sun	radians	
DELT	Time interval of integration (reserved name)	d	
DL	Photoperiodic daylength	h	
DOY	Daynumber since 1 January (day of year) (reserved variable name)	-	
DOYS	Seeding date, daynumber of year	-	
DOYTR	Transplanting date, daynumber of year	-	
DPAR	Daily incoming PAR	MJ m ⁻² d ⁻¹	
DPARI	The amount of PAR absorbed on a day by the canopy, calculated in a		
	detailed way based on integration of light absorbed by single leaves over		
	the LAI and over the day	MJ m ⁻² d ⁻¹	
DRLVT	Table for leaf death coefficient as function of DVS	d-1, -	
DS0	Daily extraterrestrial radiation	J m ⁻² d ⁻¹	
DSINB	Integral of SINB over the day	s d-1	
DSINBE	As DSINB, but with a correction for lower atmospheric transmission		
	at lower solar elevations	s d ⁻¹	

DTGA	Daily total gross CO ₂ assimilation of the crop	kg CO ₂ ha ⁻¹ soil d ⁻¹
DTR	Daily total global radiation	J m ⁻² d ⁻¹
DVR	Development rate of the crop	d-1
DVRI	Development rate during photoperiod-sensitive phase	(°Cd)-I
DVRJ	Development rate during juvenile phase	(°Cd)-1
DVRP	Development rate during panicle development phase	(°Cd)-1
DVRR	Development rate in the reproductive phase (post-anthesis)	(°Cd)-1
DVS	Development stage of the crop	-
DVSI	Initial value of development stage of the crop	
DVSPI	Development stage at panicle initiation	-
DVSF	Development stage at flowering	-
EFF	Initial light use efficiency for individual leaves	kg CO ₂ ha ⁻¹ leaf h ⁻¹
EFFTB	Table of EFF as a function of temperature	(J m ⁻² leaf s ⁻¹) ⁻¹ EFF, ⁰C
FCLV	Mass fraction carbon in the leaves	kg C kg ⁻¹ DM
FCRT	Mass fraction carbon in the roots	kg C kg ⁻¹ DM
FCSO	Mass fraction carbon in the storage organs	kg C kg−¹ DM
FCST	Mass fraction carbon in the stems	kg C kg− ¹ DM
FCSTR	Mass fraction carbon in the stem reserves	kg C kg ⁻¹ DM
FGL	CO ₂ assimilation rate at a specific depth in the canopy	kg CO ₂ ha ⁻¹ leaf h ⁻¹
FGRAIN	Fraction grain in the panicle	-
FGROS	Instantaneous canopy CO ₂ assimilation	kg CO ₂ ha ⁻¹ soil h ⁻¹
FGRS	Intermediate variable for calculation of assimilation of sunlit leaves	•
FGRSH	CO ₂ assimilation rate at one depth in the canopy for shaded leaves	kg CO ₂ ha ⁻¹ leaf h ⁻¹
FGRSUN	CO ₂ assimilation rate at one depth in the canopy for sunlit leaves	kg CO ₂ ha ⁻¹ leaf h ⁻¹
FINTIM	Finish time, period of simulation (reserved name)	d
FLV	Fraction of shoot dry matter allocated to leaves	-
FLVTB	Table of FLV as function of DVS	-, -
FRDF	Fraction diffuse in incoming radiation	-
FRT	Fraction of total dry matter allocated to roots	•
FRTTB	Table of FRT as function of DVS	-, -
FSH	Fraction of total dry matter allocated to shoots	-
FSHTB	Table of FSH as function of DVS	- , -
FSLLA	Fraction of sunlit leaf area	•
FSO	Fraction of shoot dry matter allocated to storage organs	-
FSOTB	Table of FSO as function of DVS	-, -
FST	Fraction of shoot dry matter allocated to stems	-
FSTTB	Table of FST as function of DVS	-, -
FSTR	Fraction carbohydrates allocated to the stems, that is stored as reserves	•
GCM	General Circulation Model	-
GCR	Gross growth rate of crop dry matter, including translocation	kg DM ha−1 soil d−1
GGR	Rate of increase in grain weight	kg DM ha ⁻¹ soil d ⁻¹
GLV	Dry matter growth rate of leaves	kg DM ha ⁻¹ soil d ⁻¹
GNSP	Rate of increase in spikelet number	number ha ⁻¹ soil d ⁻¹
GNGR	Daily increment in grain number	number ha ⁻¹ soil d ⁻¹
GRAINF	Sink limitation factor	-
GRAINS	Fortran logical function whether grains are formed	Boolean
GRT	Dry matter growth rate of roots kg DM ha ⁻¹ soil d ⁻¹	
GRTI	Reduction in root weight per unit area during transplanting	
	from seedbed to field	kg DM ha−l soil
GSO	Dry matter growth rate of storage organs	kg DM ha ⁻¹ soil d ⁻¹

.

GST GST1	Dry matter growth rate of stems Reduction in stem weight per unit area during transplanting	kg DM ha ⁻¹ soil d ⁻¹
0511	from seedbad to field	ka DM ba-l soil
CSTR	Dry motter growth rate of the stem reserves	kg DM ha∸l soit d−l
GOIN	Dry matter growth fate of the stem reserves	kg Divi na 1 son u 1
HOUR	Selected hour during the day	h
HU	Daily heat units effective for phenological development	። (የርđ) đ - 1
HULV	Daily heat units effective for leaf area development	(°Cd) d ⁻¹
		(00) 0
0	Do-loop counter	-
[2	Do-loop counter	-
IDAS	Integer value of days after sowing	d
IGAUSS	Do-loop counter	-
ISA	Integer value for seedling age	d
KBL	Extinction coefficient for direct component of direct PAR flux	ha soil ha ⁻¹ leaf
KDF	Extinction coefficient for leaves	ha soil ha ⁻¹ leaf
KDFTB	Table of KDF as function of development stage (DVS)	-, -
KDRT	Extinction coefficient for total direct PAR flux	ha soil ha-i leaf
KNF	Extinction coefficient of nitrogen profile in the canopy	-
KNFT	Table of KNF as function of development stage (DVS)	-, -
LADE	Last and have not along at appartance	m² plant-l
LAD	Leaf area per plant at chicigence	m ² plant ⁻¹
LAU	Total area index (leaves + steme)	ha leaf ha-l coil
	Leaf area index above selected beight in canopy	ha leaf ha-l soil
LAIC	Leaf area index at end of exponential leaf area growth phase	ha leaf ha-l soil
LAIEAF	Leaf area index at end of exponential leaf area growth phase in seedbed	ha leaf ha~l soil
LAILAS	Initial leaf area index at translanting	ha leaf harl soil
LAISIM	Simulated last orac index	ha leaf ha-l soil
LAISIN	I stitude of the weather station (reserved variable name from WEATHER)	degrees
	Latitude of the weather station (reserved variable name from wERTHER)	ka leaf ha-l d-l
LLV	Exaction $(1 - 5.3\%)$ of allocated stem reserves that is available for growth	kg Ical lla 🖓 U
LEADIN	(5.3% loss due to membrane passages)	
TTP 1	Loss rate of stem reserves	- ka stem res harl d-l
LOIN		kg stem les. na - u -
MAINLV	Maintenance respiration coefficient of leaves	kg CH ₂ O kg ⁻¹ DM d ⁻¹
MAINRT	Maintenance respiration coefficient of roots	kg CH ₂ O kg ⁻¹ DM d ⁻¹
MAINSO	Maintenance respiration coefficient of storage organs	kg CH ₂ O kg ⁻¹ DM d ⁻¹
MAINST	Maintenance respiration coefficient of stems	kg CH ₂ O kg ⁻¹ DM d ⁻¹
MNDVS	Factor accounting for effect of DVS on maintenance respiration	
MOPP	Maximum optimum photoperiod	h
NCOLD	Number of sold data	
NULL	Number of cold days	a hillo ma?
NELV	Number of nills	nills m ⁻²
NEL V	Table of NUT V or function of development store (DVC)	g in mire lear
NCCD	Not growth rate of grop dry matter including terral section	- ka DM ha-l asil d-1
NGUK	Net growin rate of crop dry matter, including translocation	kg DIVI na + son a=1
	Number of grains	number na ⁻
NDI CD	Number of plants per film	plants min *
NCD	Number of mikalets	plants III ~
NTEEDT	Number of days for TEEDT	A
NIFERI	INUMOCI OF UZYS IOF I FER I	u

PAR	Instantaneous flux of photosynthetically active radiation	J m ^{−2} soil s ^{−1}
PARCUM	Cumulative amount of radiation absorbed by the canopy based on the	
	detailed calculation of daily absorbed radiation	MJ m ^{−2}
PARCMI	Cumulative amount of radiation absorbed by the canopy based on the	
	simple calculation of daily absorbed radiation	MJ m ^{−2}
PARDF	Instantaneous diffuse flux of incoming PAR	J m ⁻² soil s ⁻¹
PARDR	Instantaneous direct flux of incoming PAR	J m ⁻² soil s ⁻¹
PARI 1	Amount of PAR absorbed on a day by the canopy, calculated by	
	a single equation using Beer's law	MJ m ⁻² soil d ⁻¹
PARINT	Intercepted PAR	J m ⁻² soil s ⁻¹
PHENOL	Subroutine to determine the phenology of the crop	-
Pl	Ratio of circumference to diameter of circle	-
PLTR	Intermediate variable for change in plant density at transplanting	-
PPFAC	Factor determining photoperiod sensitivity	-
PPSE	Photoperiod sensitivity	h-1
PRDEL	Time interval for tabular printed output (reserved name)	d
PWRR	Potential weight of rough rice (WRR)	kg ha ⁻¹
	.	
Q10	Factor accounting for increase of maintenance respiration with	-
	a 10 °C rise temperature	
RAD	Factor to convert degrees to radians	radians degree-1
RAIN	Precipitation (reserved weather variable name)	mm
RDAS	Rate to calculate days after seeding	d-i
RDD	Daily global radiation (reserved weather variable name)	J m ⁻² d ⁻¹
REDFT	Factor accounting for effect of temperature on AMAX	-
REDFTT	Table of REDFT as function of temperature	-, °C
REFH	Reflection coefficient for diffuse PAR	-
REFS	Reflection coefficient for direct PAR	-
RGCR	Growth respiration rate of the crop	kg CO ₂ ha ⁻¹ d ⁻¹
RGRL	Relative growth rate of leaf area during exponential growth	(°Cd)-1
RMCR	Maintenance respiration rate of the crop	kg CH ₂ O ha ⁻¹ d ⁻¹
RTNASS	Net rate for integration the total net CO_2 assimilation	kg CO ₂ ha ⁻¹ d ⁻¹
RWLVG	Net growth rate of increase in DM of leaves	kg DM ha ⁻¹ soil d ⁻¹
RWLVG1	Reduction in net leaf weight per unit area during transplanting	5
	from seedbed to field	kg DM ha ⁻¹ soil
RWSTR	Net growth rate of increase in DM of the stem reserves	kg DM ha ⁻¹ soil d ⁻¹
RWSTR1	Reduction in net stem reserves weight per unit area during	0
	transplanting from seedbed to field	kg DM ha-1 soil
6 4 1	Stern and I day	h - h l
SAL	Stem area index	ra ra
SC SC	Solar constant, corrected for varying distances between sun-earth	J m-2 8 1
SCP	Scattering coefficient of leaves for PAR	-
511	Spikelet tertility due to low temperatures	
SF2	Spikelet tertility due to high temperatures	-
SHCKD	Parameter indicating relation between seeding age and delay in	
ellow!	phenological development	
SHUKE	Parameter indicating relation between seeding age and delay in	0Cd (0C-1)-1
CINI	scar area development	יכם (יכם)־י
SIND	Sing function (munistic POK I KAN (Unction)	•
SIND SIND	Sine of solar devation	-
SINLD	nacinculate valiable in calculating solar decinitation	- balaafka-llaaf
งมณา การการก	Spould leaf alea Table of SLA as function of DVS	na icai kgʻileal
JLAID	TADIE OF BLA AS INFOLION OF DY 3	-

SNLI	Specific Leaf N at the top of the canopy	kg N ha-1 leaf
SPFERT	Spikelet fertility	-
SPGF	Spikelet growth factor	number kg-1
SQV	Intermediate variable in calculation of reflection coefficient	-
SSGA	Specific green stem area	ha kg ⁻¹ stem
SSGATB	Table of SSGA as function of DVS	-, -
STTIME	Start time of simulation (reserved variable name)	d
SUBCBC	Subroutine for carbon balance check	•
SUBCD	Subroutine to calculate number of cold days	-
SUBDD	Subroutine to calculate daily amounts of heat units	-
SUBGRN	Subroutine to calculate grain growth rate and grain formation rate	-
SUBLAI	Subroutine to calculate the simulated leaf area index	-
SUBRTS	Subroutine to calculate growth rates	-
SWICOV	Switch for temperature correction when cover is used in seedbed	-
SWIDS	Switch for direct-seeded or transplanted rice	-
SWILAI	Switch to use as input in the model measured (-1) or simulated (1) LAI	-
SWINLV	Switch to use as input in the model NFLV vs DVS (-1) or vs DOY (1)	•
SWITMP	Switch to use GCM (General Circulation Model) temperature correction	-
TAV	Daily average temperature	۰C
TAVD	Daily average daytime temperature	°C
TBD	Base temperature for development	°C
TBLV	Base temperature for juvenile leaf area growth	٥C
TCLSTR	Time coefficient for loss of stem reserves	d-I
TEFF	Factor accounting for effect of temperature on maintenance respiration	-
TFERT	Accumulated temperature for high temperature effect on spikelet fertility	۹C
TIME	Time in simulation (reserved variable name)	d
TMAX	Daily maximum temperature	۰C
TMAXC	Correction to maximum temperature (GCM)	°C
TMAXT	Table daily maximum temperature as function of day of the year	°C, d
ТМСТВ	Table for GCM (General Circulation Model) temperature correction	°C, month
TMD	Maximum temperature for development	۰C
TMIN	Daily minimum temperature	۰C
TMINC	Correction to minimum temperature (GCM)	°C
TMINT	Table daily minimum temperature as function of day of the year	°C, d
TMLV	Maximum temperature for leaf area development	°C
TMMN	Daily minimum temperature (reserved weather variable name)	٥C
TMMX	Daily maximum temperature (reserved weather variable name)	°C
TNASS	Total net CO ₂ assimilation	kg CO ₂ ha ⁻¹
TOD	Optimum temperature for development	٥C
TOTASP	Subroutine to calculate potential gross CO2 assimilation of the crop	-
TREF	Reference temperature	۰C
TS	Temperature sum for phenological development	⁰Cd
TSHCKD	Transplanting shock for phenological development	∘Cd
TSHCKL	Transplanting shock for leaf area development	∘Cd
TSLV	Temperature sum for leaf area development	⁰Cd
TSLVTR	Temperature sum for leaf area development at tranplanting	∘Cd
TSTR	Temperature sum for phenological development at tranplanting	∘Cd
VISD	Absorbed direct component of direct flux ner unit leaf area (at denth LAIC)	J m ⁻² leaf s ^{−J}
VISDF	Absorbed diffuse flux per unit leaf area (at depth LAIC)	J m ⁻² leaf s ⁻¹
VISPP	Absorbed light flux by leaves perpendicular on direct beam	J m ⁻² leaf s ⁻¹
VISSHD	Total absorbed flux for shaded leaves per unit leaf area (at depth LAIC)	J m ⁻² leaf s ⁻¹
VISSUN	Total absorbed flux for sunlit leaves in one of three Gauss point classes	J m ⁻² leaf s ⁻¹

VIST	Absorbed total direct flux per unit leaf area (at depth LAIC)	J m ⁻² leaf s ⁻¹
VP	Vapour pressure (reserved weather variable name)	kPa
	• •	
WAG	Total above-ground dry matter	kg DM ha-1
WCR	Total biomass (crop)	kg DM ha ⁻¹
WEATHER	Routine from TTUTIL library, call to read external weather data files	•
WGAUSS	Array containing weights to be assigned to Gauss points	-
WGR	Individual grain weight	kg grain ^{−1}
WGRMX	Maximum individual grain weight	kg grain-l
WLVD	Dry weight of dead leaves	kg ha-l
WLVEXP	Weight of leaves at end of exponential leaf growth phase	kg ha ⁻¹
WLVEXS	Weight of leaves at end of exponential leaf growth phase in seedbed	kg ha−1
WLVG	Dry weight of green leaves	kg ha-1
WLVGI	Initial dry weight of the leaves	kg ha ⁻¹
WN	Wind speed (reserved weather variable name)	m s-1
WRR	Dry weight rough rice (final yield)	kg ha-I
WRR14	Dry weight rough rice (14% moisture)	kg ha-1
WRT	Dry weight of the roots	kg ha-l
WRTI	Initial dry weight of the roots	kg ha-1
wso	Dry weight of storage organs	kg ha-1
WSOI	Initial dry weight of storage organs	kg ha ⁻¹
WST	Dry weight of the stems	kg ha-1
WSTI	Initial dry weight of the stems	kg ha-ł
WSTR	Dry weight of stems reserves	kg ha-1
WSTS	Dry weight of structural stems	kg ha ⁻¹
XGAUSS	Array containing Gauss points	-
XLAI	Observed values of LAI	ha ha-1
XLAITB	Table of XLAI as function of day of year	-
XNFLV	Observed values of NFLV	g N m ⁻² leaf
XNFLVT	Table of XNFLV as function of day of year	-
XSLA	Observed values of specific leaf area	ha leaf kg ⁻ⁱ leaf
XSLATB	Table of XSLA as function of day of year	
XWLVD	Observed values of WLVD	kg ha−l
XWLVDT	Table of XWLVD as function of day of year	-
XWLVG	Observed values of WLVG	kg ha− ¹
XWLVGT	Table of XWLVG as function of day of year	-
XWPA	Observed values of WSO	kg ha−l
XWPATB	Table of XWPA af function of day of year	
XWST	Observed values of WST	kg ha ⁻¹
XWSTTB	Table of XWST as function of day of year	-
XWTDM	Observed values of WAG	kg ha− ¹
XWIDMT	Table of XWTDM as function of day of year	-
ZERO	Initial zero condition for integrals	-
	-	

~

Appendix 3 How to install FST and the FST-Shell on IBM compatible PC's

3.1 Requirements for running the Fortran Simulation Translator (FST)

The following requirements should be met if you want to make full use of FST.

- MS-DOS 5.0 or higher.
- Availability of Microsoft Fortran v 5.1 compiler (installation of the compiler will be explained below).
- A minimum of 640k RAM memory.
- 4 Mb free hard disk space, when Microsoft Fortran is not yet installed, 2 Mb when installed.
- A 80286 or higher processor.
- A EGA or VGA screen.
- A 3.5" floppy drive.
- A mathematical coprocessor is not required but will speed up calculations considerably.

1.2 Contents of the disk

The disk you received is a 3.5" high density disk and has been formatted for IBM-PC's and compatibles. If you are working on another machine and have no way to transfer the source files to your machine, please send a request to obtain the programs in another disk format (do not forget to specify your hardware configuration), for address see below.

The FST disk contains the FST translator and FST link libraries, a user-friendly interface (FST-Shell) to the FST translator and several utility programs to be used in conjunction with the translator and the shell. The contents of the floppy disk is described in the table below:

Directory	File	Contents of the file
A:\SYS\FST	FST.EXE	FST translator program
	FSTS.EXE	Shell to the FST translator
	FSTS.INI	Initialization file describing which editor and lister
		FSTS should be use
	FSTREC.EXE	Program to recover output after run time error
	Q.EXE	Q editor, (shareware!)
	LIST.COM	Lister, to look at files, (shareware!);
	TTSELECT.EXE	Program to generate graphs on the screen
	HELVB.FON	Font definition file for TTSELECT
	README.TXT	Text file containing version information

DRIVERS.LIB	DRIVERS object library
TTUTIL.LIB	TTUTIL 3.3 object library
WEATHER.LIB	WEATHER version 4 object library
FST.BAT	Batch file to start translator when working from the
	command line
FSTS.BAT	Batch file to start the FST-Shell
AUTOEXEC.ADD	File to be added to AUTOEXEC. BAT file
Several FST files	Example files that can be run with FST or FSTS
	DRIVERS.LIB TTUTIL.LIB WEATHER.LIB FST.BAT FSTS.BAT AUTOEXEC.ADD Several FST files

As will be explained in more detail below, the FST translator can be used in two different ways, through the FST Shell (FSTS) or from the MS-DOS command line. The installation procedure below describes the installation of both methods.

1.3 General installation of FST and Microsoft FORTRAN 5.1 on IBM-compatibles

This section explains the installation of FST and the installation of MS FORTRAN 5.1.

- Install the compiler in the directory C:\SYS\F77 on your hard disk. Make sure you have also installed the compiler's library on the directory C:\SYS\F77 as follows: large memory model, floating point emulator, no C and no MS FORTRAN 3.30 compatibility. This library will have the name: LLIBFORE.LIB. The following files should at least be available on the C:\SYS\F77 directory: FL.DEF, F1.ERR, F23.ERR, FL.ERR, F1.EXE, F2.EXE, F3.EXE, F3S.EXE, FL.EXE, LINK.EXE, LLIBFORE.LIB, FL.MSG.
- 2) Create the directory C:\TMP if this directory does not yet exist (used by the compiler to store temporary files):

```
C: <Enter>
CD \ <Enter>
MD TMP <Enter>
```

 Copy the object library files from the A:\SYS\F77 directory to the compilers directory on C: by:

```
COPY A:\SYS\F77\*.* C:\SYS\F77\*.* <Enter>
```

4) Create the directory C:\SYS\FST and copy files from the A:\SYS\FST directory to the C:\SYS\FST directory by:

```
C: <Enter>
CD \SYS <Enter>
MD FST <Enter>
COPY A:\SYS\FST\*.* C:\SYS\FST\*.* <Enter>
```

5) Copy the A:\FST.BAT and A:\FSTS.BAT files to a directory that is in the 'path'. The FST.BAT and FSTS.BAT files are the ones that actually start the FST translator (FST.BAT) or the FST-Shell (FSTS.BAT). An alternative method is to put them in the

directory where you will be doing your work.

COPY A:*.BAT <directory> <Enter>

- 6) Add to the end of your C:\AUTOEXEC.BAT file the contents of the A:\AUTOEXEC.ADD file. This file contains several environment variables necessary for running FST and FSTS.
- 7) Restart your PC. If somewhere during startup of the PC you get the message "Out of environment space", most likely the above mentioned environment variables will not have been defined and consequently you cannot run FST or FSTS. To solve this problem you should increase the size of the environment at startup. To do this, edit the C:\CONFIG.SYS file and look for a line starting with "SHELL=". (If this line is not available see your MS-DOS manual on how to introduce one). The size of the environment is specified on this line by the switch /E:<number>.
- If no /E:<number> switch exist on this line, type at the end of the line /E:512 (this increases the environment from the default value of 256 bytes to 512 bytes).
- If there is already a /E:<number> switch, increase the specified value with 128.

Restart your PC.

N.B. After this installation the FST-Shell will use the Q-editor (shareware) for program editing and LIST (shareware) for listing files that need only to be shown. By modi-fying the C:\SYS\FST\FSTS.INI file you can change this and use the editor of your own choice.

Using the FST-Shell to run FST programs

Starting the FST-Shell should be possible after successful installation by typing:

FSTS <Enter>

Before the FST-Shell shows all kinds of dialogs it will first check the existence of required files and environment variable settings. If no error messages appear, a dialog will appear asking you for the name of the FST file you want to work with. (Cursor, Home and End keys can be used here to fill in this field). Type <Enter> when the file name is correct. The next screen shows a vertical list of different command you can give to the FST-Shell. These commands pertain to the model name you have just typed in. Some commands have a high-lighted character and some have not. The commands without a highlighted character are not yet available because you have not yet run a model. The highlighted characters indicate the key to type to carry out that command. Also shown on the screen is the FSTS-Shell version and the name of the FST model.

The meanings of the different keys are:

- 'E' Starts the Q-editor to make modifications to the model (relevant commands of the Qeditor are shown by pressing F1).
- 'R' Translates, compiles, links and runs the model if the model source is newer than the model executable, this is most often the case. Otherwise only the executable version of the model is run again.
- 'L' Lists an FST translation report of the model (relevant commands of the lister are shown by pressing <Alt>H).
- 'O' Lists the output file of the finished model (relevant commands of the lister are shown by pressing <Alt>H).
- 'G' Starts the graphing program, type in two or more of the names shown on the screen, (instructions for this program are shown on the screen)
- 'F' Gives access to viewing/editing/printing of several important files.
- 'C' To change the name of the model.
- 'D' Jumps to DOS, but leaving the FST-Shell active.
- 'A' Shows an 'About' text.
- 'X' Exits from the FST-Shell.

The usual way to work with this shell is to use 'E' to make modifications to the model, then run the model by pressing 'R'. If translation errors occur, use 'L' to find out what is wrong in the model. If the model has been actually executed, use 'O' to study the tabular output or 'G' to study the graphical output.

Note that example programs are available on the floppy in the A:\EXAMPLES directory. You are advised to run these models first, to verify the installation procedure.

D.W.G. van Kraalingen Research Institute for Agrobiology and Soil Fertility (AB-DLO), P.O. Box 14, 6700 AK Wageningen, The Netherlands

i.

Appendix 4 Simplified structure of the model ORYZA1

Appendix 5 Listing of the program DRATES

```
******************
*
     DRATES Version April 1994
*
     A program to calculate development rates used in ORYZA1
*
     Simulation and Systems Analysis for Rice Production (SARP)
*
     International Rice Research Institute (IRRI, Los Banos)
     Theoretical Production Ecology (TPE-WAU, Wageningen)
     Research Institute for Agrobiology and Soil Fertility (AB-DLO)
                                                                 *
     Program runs with TIMER of TTUTIL 3.1 library
     Version May 1993, runs for leap years
                                                                 *
     February 1994, adapted: Assuming no photoperiod sensitivity
**************
     PROGRAM DRATES
      IMPLICIT REAL (A-Z)
      INTEGER ISTN, ISTAT, IDAY, IYR
      INTEGER IYRS, IDOYS, IYRTR, IDOYTR, IYRF, IDOYF, IYRM, IDOYM
      INTEGER IDOYPI, IYRPI
      INTEGER IHYR(20), IHDAY(20), IDAS, I,NS, ILEN, IL, IDGS
      CHARACTER COUNTR*6, WTRDIR*80, CHOICE*1, Q*1, TMP*80, WSTAT*7
      LOGICAL TERMNL, OUTPUT
     DATA IHYR /20*1993/, IHDAY /20*1/
     define separator character in WRITE statements
*
     Q = CHAR (9)
     Initial defaults
     TBD = 8.
     TMD
           = 42.
     TOD = 30.
     WTRDIR = 'C:\WEATHER\'
     COUNTR = 'PHIL'
     ISTN = 1
IDOYS = 4
     IYRS = 1993
     IDOYTR = 20
     IYRTR = 1993
     IDOYPI = 45
     IYRPI = 1993
     IDOYF = 80
           = 1993
     TYRE
     IDOYM = 110
           = 1993
     IYRM
     DELT
           = 1.
     PRDEL = DELT
     NS
           = 3
     MOPP = 11.50
     PPSE
           = 0.
     CALL FOPENS (40, 'DVS.DAT', 'NEW', 'UNK')
    Reads
10
    CONTINUE
     get general information
     CALL ENTDRE ('Base temperature', TBD, TBD)
```

CALL ENTDRE ('Max. temperature for development', TMD, TMD) CALL ENTDRE ('Opt. temperature for development', TOD, TOD) CALL ENTDCH ('Directory with weather data', WTRDIR, WTRDIR) CALL ENTDCH ('Country', COUNTR, COUNTR) CALL ENTDIN ('Station number', ISTN, ISTN) * get sowing data WRITE (*.*) ' ' CALL ENTDIN ('Sowing date (Day Of Year, DOY)', IDOYS, IDOYS) CALL ENTDIN ('Sowing year', IYRS, IYRS) * get transplanting data WRITE (*,*) ' ' WRTTE (*. '(A)') & ' If direct seeded Transplanting date equals Seeding date' CALL ENTDIN ('Transplanting date (Day Of Year, DOY)', IDOYTR, IDOYTR) \$ CALL ENTDIN ('Transplanting year', IYRTR, IYRTR) * get PI data WRITE (*,*) ' ' WRITE (* '(A)') & ' If PI date is not available type 0 ' CALL ENTDIN ('PI date (Day Of Year, DOY)', IDOYPI, IDOYPI) CALL ENTDIN ('PI year', IYRPI, IYRPI) * get flowering data WRITE (*.*) ' ' CALL ENTDIN ('Flowering date (Day Of Year, DOY)', IDOYF, IDOYF) CALL ENTDIN ('Flowering year', IYRF, IYRF) * get maturity data WRITE (*,*) ' ' CALL ENTDIN ('Physiological maturity date (Day Of Year)', IDOYM, IDOYM) £ CALL ENTDIN ('Maturity year', IYRM, IYRM) * get sampling data WRITE (*,*) '' CALL ENTDIN ('Number of sampling dates', NS, NS) DO 20 I=1.NS WRITE (TMP, '(A, I2)') 'Enter sampling date no.', I IL = ILEN (TMP)CALL ENTDIN (TMP(1:IL), IHDAY(I), IHDAY(I)) WRITE (TMP, '(A, I2)') 'Enter sampling year no.', I IL = ILEN (TMP)CALL ENTDIN (TMP(1:IL), IHYR(I), IHYR(I)) 20 CONTINUE WRITE (40, '(1X, A6, 2(A, A6), A, A4)') 'IYRS',Q,'ISTN',Q,'COUNTR',Q,'TBD' æ WRITE (40, '(1X, 16, A, 16, 3A, F4.2, /)') δc IYRS, Q, ISTN, Q, COUNTR, Q, TBD Determining developmental rates initialize timer information calculate number of days in growing season IDGS = 0DO 25 I=IYRS,IYRM-1 IF (MOD(1,4).NE.0) THEN * normal year IDGS = IDGS+365ELSE

```
leap year
              IDGS = IDGS+366
          END IF
25
       CONTINUE
       IDGS = IDGS-IDOYS+IDOYM
       FINTIM = REAL (IDGS)
      IYR = IYRS
       CALL TIMER (1, REAL (IDOYS), DELT, PRDEL, FINTIM, IYR,
                     TIME, DAY, IDAY, TERMNL, OUTPUT)
      Æ
      TS = 0.
      HU = 0.
      TERMNL = .FALSE.
30
      IF (.NOT.TERMNL) THEN
          TS = TS + HU * DELT
          CALL STINFO (1111, WTRDIR, ' ', COUNTR, ISTN, IYR,
     £
                         ISTAT, LONG, LAT, ALT, A, B)
           CALL WEATHR (IDAY, ISTAT, RAD, TMIN, TMAX, VAPOUR, WIND, RAIN)
          WRITE (WSTAT, '(17)') ISTAT
           IF (WSTAT(3:3).EQ.'4'.OR.WSTAT(4:4).EQ.'4'.AND.
               IDAY.EQ.366) THEN
     &
              CALL WEATHR (365, ISTAT, RAD, TMIN, TMAX, VAPOUR, WIND, RAIN)
          END IF
          CALL SUBDD (TMAX, TMIN, TBD, TOD, TMD, HU)
          IF (IDAY.EQ.IDOYTR.AND.IYR.EQ.IYRTR) TSTR = TS
          IF (IDAY.EQ.IDOYF .AND.IYR.EQ.IYRF) TSF = TS
          \texttt{IF} \quad (\texttt{IDAY},\texttt{EQ},\texttt{IDOYM} \ ,\texttt{AND},\texttt{IYR},\texttt{EQ},\texttt{IYRM}) \quad \texttt{TSM} \quad \approx \ \texttt{TS}
          IF (IDAY.EQ.IDOYPI.AND.IYR.EQ.IYRPI) TSPI = TS
          CALL TIMER (2, REAL (IDOYS), DELT, PRDEL, FINTIM, IYR,
                        TIME, DAY, IDAY, TERMNL, OUTPUT)
     ñ
      GOTO 30
      END IF
      SHCKD = 0.4
      TSHCKD = SHCKD*TSTR
       IF(IDOYPI.EQ.0) THEN
          DVRJ = 0.40/(TSF-330.-440.-TSHCKD)
          DVRI = (0.65 - 0.40)/330.
          DVRP = (1.-0.65)/440.
      ELSE
          DVRJ = 0.40/(TSPI-330.-TSHCKD)
          DVRI = (0.65 - 0.40) / 330.
          DVRP = (1.-0.65) / (TSF-TSPI)
      ENDIF
      DVRR = 1./(TSM-TSF)
      WRITE ( *, '(A, F7.6)') ' DVRJ = ', DVRJ
      WRITE (40, '(A, F7.6)') ' DVRJ = ', DVRJ
                                ' DVRI = ', DVRI
      WRITE ( *, '(A, F7.6)')
                                ' DVRI
      WRITE (40, '(A, F7.6)')
                                         = ', DVRI
      WRITE ( *, '(A, F7.6)')
                                ' DVRP
                                         = ', DVRP
      WRITE (40, '(A, F7.6)')
                                ' DVRP
                                         = ', DVRP
                                ' DVRR = ', DVRR
      WRITE ( *, '(A, F7.6)')
      WRITE (40, '(A, F7.6)') ' DVRR = ', DVRR
      WRITE ( *, '(A, F7.1)') ' TSTR = ', TSTR
```

٠

```
WRITE (40, '(A, F7.1)') ' TSTR = ', TSTR
       WRITE ( *, '(A, F7.1)') ' TSF = ', TSF
       WRITE (40, '(A, F7.1)') ' TSF = ', TSF
       WRITE ( *, '(A, F7.1,/)')' TSM
                                      = ', TSM
       WRITE (40, '(A, F7.1, /)')' TSM
                                       = ', TSM
       WRITE (*, '(1X, A, 2(A, A5), 3(A, A6))')
               'YEAR',Q,'DOY',Q,'DAS',Q,'DVS',Q,'DVR',Q,'TS'
      &
       WRITE (40, '(1X, A, 2(A, A5), 3(A, A6))')
               'YEAR',Q, 'DOY',Q, 'DAS',Q, 'DVS',Q, 'DVR',Q, 'TS'
      &
      Calculation of development stages
       reset timer
      IYR = IYRS
      CALL TIMER (1, REAL (IDOYS), DELT, PRDEL, FINTIM, IYR,
                    TIME, DAY, IDAY, TERMNL, OUTPUT)
     æ
      DVR = 0.
      DVS = 0.
      TS = 0.
      HU = 0.
      TERMNL = .FALSE.
40
      IF (.NOT.TERMNL) THEN
         TS = TS +HU *DELT
         DVS = DVS+DVR*DELT
          CALL STINFO (1111, WTRDIR, ' ', COUNTR, ISTN, IYR,
     £
                        ISTAT, LONG, LAT, ALT, A, B)
          CALL WEATHR (IDAY, ISTAT, RAD, TMIN, TMAX, VAPOUR, WIND, RAIN)
          WRITE (WSTAT, '(17)') ISTAT
          IF (WSTAT(3:3).EQ.'4'.OR.WSTAT(4:4).EQ.'4'.AND.
              IDAY.EQ.366) THEN
     £
              CALL WEATHR (365, ISTAT, RAD, TMIN, TMAX, VAPOUR, WIND, RAIN)
         END IF
           CALL SUBDD (TMAX, TMIN, TBD, TOD, TMD, HU)
          CALL ASTRO (DOY, LAT,
     £
                        SC , DSO, SINLD, COSLD, DAYL, DSINB, DSINBE)
           IF (DVS.GE.0. . . AND. DVS.LT.0.40) DVR = DVRJ * HU
           IF (DVS.GE.0.40 .AND. DVS.LT.0.65) THEN
               DL = DAYL + 0.9
               IF (DL.LT.MOPP) THEN
                  PPFAC = 1.
               ELSE
                   PPFAC = 1.-(DL-MOPP)*PPSE
              ENDIE
               PPFAC = MIN(1., MAX(0., PPFAC))
                    = DVRI * HU * PPFAC
               DVR
          ENDIE
          IF (DVS.GE.0.65 .AND. DVS.LT.1.00) DVR = DVRP * HU
          IF (DVS.GE.1.00)
                                               DVR = DVRR * HU
           IF (IDAY.GT.IDOYTR.AND.IYR.GE.IYRTR.AND.
                  TS.LT. (TSTR+TSHCKD))
     Æ
                                              DVR = 0.
         IDAS = NINT (TIME)
         DO 50 I=1,NS
             IF (IDAY, EO, IHDAY(I), AND, IYR, EQ, IHYR(I)) THEN
                WRITE (*, '(3(15,A), F6.2, A, F6.4, A, F6.1)')
     £
                  IYR, Q, IDAY, Q, IDAS, Q, DVS, Q, DVR, Q, TS
                WRITE (40, '(3(15, A), F6.2, A, F6.4, A, F6.1)')
```

```
IYR, Q, IDAY, Q, IDAS, Q, DVS, Q, DVR, Q, TS
     δc
           END IF
50
        CONTINUE
         CALL TIMER (2, REAL (IDOYS), DELT, PRDEL, FINTIM, IYR,
     æ
                    TIME, DAY, IDAY, TERMNL, OUTPUT)
      GOTO 40
      END IF
      CALL ENTDCH ('Again (Y/N) ? ','Y', CHOICE)
      IF (CHOICE.EQ.'Y'.OR.CHOICE.EQ.'Y') GO TO 10
      STOP
      END
                SUBROUTINE SUBDD(TMAX,TMIN,TBD,TOD,TMD, HU)
      IMPLICIT REAL (A-Z)
     INTEGER I
     SAVE
          = (TMAX + TMIN)/2.
     TM
     ТΤ
           = 0.
     DO 10 I = 1, 24
           TD = TM + 0.5*ABS(TMAX-TMIN)*COS(0.2618*FLOAT(I-14))
        IF ((TD.GT.TBD) .AND. (TD .LT. TMD)) THEN
          IF (TD.GT.TOD) TD = TOD-(TD-TOD)*(TOD-TBD) / (TMD-TOD)
        TT = TT + (TD-TBD)/24.
       ENDIF
  10 CONTINUE
     HU = TT
     RETURN
     END
*-----
     SUBROUTINE ASTRO (DOY, LAT,
     &
         SC , DS0, SINLD, COSLD, DAYL, DSINB, DSINBE)
     IMPLICIT REAL (A-Z)
     SAVE
*----PI and conversion factor from degrees to radians
     PI = 3.141592654
     RAD
          = PI/180.
*----check on input range of parameters
     IF (LAT.GT.67.) STOP 'ERROR IN ASTRO: LAT> 67'
      IF (LAT.LT.-67.) STOP 'ERROR IN ASTRO: LAT>-67'
*----declination of the sun as function of daynumber (DOY)
      DEC = -ASIN (SIN (23.45*RAD)*COS (2.*PI*(DOY+10.)/365.))
*----SINLD, COSLD and AOB are intermediate variables
      SINLD = SIN (RAD*LAT)*SIN (DEC)
      COSLD = COS (RAD*LAT)*COS (DEC)
     AOB = SINLD/COSLD
*----daylength (DAYL)
     DAYL = 12.0*(1.+2.*ASIN (AOB)/PI)
      DSINB = 3600.*(DAYL*SINLD+24.*COSLD*SQRT (1.-AOB*AOB)/PI)
      DSINBE = 3600.*(DAYL*(SINLD+0.4*(SINLD*SINLD+COSLD*COSLD*0.5))+
     Se .
               12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT (1.-AOB*AOB)/PI)
```
```
*----solar constant (SC) and daily extraterrestrial radiation (DS0)
      SC = 1370,*(1,+0.033*COS (2,*PI*DOY/365.))
      DS0 = SC*DSINB
      RETURN
      FND
*_____
      SUBROUTINE TIMER (ITASK, DAYB, DELT, PRDEL , FINTIM, IYEAR,
                        TIME , DAY , IDAY, TERMNL, OUTPUT)
     s.
      This subroutine updates TIME and related variables
      each time it is called with ITASK=2. It will set TERMNL to
      .TRUE, if FINTIM is reached. OUTPUT is flagged when TIME is a
      multiple of PRDEL. When PRDEL=0, no output is flagged !
      When IYEAR < 1500, IYEAR will not be increased because in that
      case climate data are used.
      The routine should be initialized first by a call
      with ITASK=1. The first six arguments will then be made local.
      Leap years are handled correctly.
*
      ITASK - task the routine should carry out (either 1 or 2)
                                                                    Т
      DAYB
             - start day of simulation
               (1 <= DAY <= 365, 366 in leap years, leap years are
               not flagged when IYEAR < 1500
                                                )
                                                                    Т
*
      DELT
             - time step of simulation (multiple of 1 or
*
              1/DELT = integer e.g. 0.25,1/3,0.5,1,2,3)
                                                                    Ι
*
      PRDEL - time between successive outputs (must be zero, equal
              to DELT or multiple of DELT)
                                                                    Т
*
      FINTIM - finish time of simulation (counted from start of
              simulation !)
                                                                    т
*
      IYEAR - start year with ITASK=1 and current year with
              ITASK=2, not updated when IYEAR < 1500
                                                                   1/0
*
      TIME
             - time from start of simulation (always starts at zero) O
*
      DAY
            - day number (REAL) of year=IYEAR
                                                                    0
*
            - day number (INTEGER) of year=IYEAR
      IDAY
                                                                    0
*
      TERMNL - flag that indicates if FINTIM has been reached
                                                                    0
*
      OUTPUT - flag that indicates if TIME is a multiple of PRDEL
                                                                    0
*
*
      Examples:
*
      The call:
      CALL TIMER (1 , DAYB, DELT, PRDEL , FINTIM, IYEAR,
*
*
                 TIME , DAY , IDAY, TERMNL, OUTPUT)
*
      initializes the TIMER, TIME is set to zero, DAY and IDAY are set
*
      to DAYB, TERMNL is set .false. and OUTPUT set to .true. (unless
*
      the value of PRDEL is zero)
*
      With the call:
*
                       , DAYB, DELT, PRDEL , FINTIM, IYEAR,
     CALL TIMER (2
*
                 TIME , DAY , IDAY, TERMNL, OUTPUT)
*
      the first time step is made, IYEAR and all variables on the second
*
      line are updated. Repeated time steps are made by calls with
*
      ITASK = 2, untill FINTIM is reached, TERMNL will then be set to
*
      .true.
*
      Subroutines and/or functions called:
      - from library TTUTIL: ERROR
      Author: Daniel van Kraalingen
     Date : April 1992
     TTUTIL Version 3.11
      formal parameters
      INTEGER ITASK, IYEAR, IDAY
      REAL DAYB, DELT, PRDEL, FINTIM, TIME, DAY
      LOGICAL TERMNL, OUTPUT
```

```
**
      local variables
       INTEGER I, ITOLD, ICOUNT, IT, IS, IFINT, IPRINT, ILDAY, ILYEAR
      REAL LOELT, LTIME, TINY, R1
      PARAMETER (TINY=5.E-5)
      LOGICAL PROUT
      SAVE
      DATA ITOLD /4/
      IF (ITASK.EO.1) THEN
*
         test values
         IF (DELT.LE.0.) CALL ERROR ('TIMER', 'DELT <= 0')
         IF (PRDEL.LT.0.) THEN
             CALL ERROR ('TIMER', 'PRDEL <= 0')
          ELSE IF (PRDEL.EQ.0.) THEN
*
            suppress output when prde1 = 0
            PROUT = , FALSE,
         ELSE
            PROUT = .TRUE.
         END IF
          IF (FINTIM.LT.0.) CALL ERROR ('TIMER', 'FINTIM < 0')
          IF (IYEAR,LT.1000 ,OR. IYEAR,GT.2100)
     å
            CALL ERROR ('TIMER', 'IYEAR < 1000 or IYEAR > 2100')
          IF (DAYB.LT.(1.-TINY) .OR. DAYB.GT.(365.+TINY))
            CALL ERROR ('TIMER', 'DAYB < 1 or > 365')
     £
          IF (DELT.GT.0. . AND. DELT.LT.1.) THEN
            R1 = 1./DELT
            IT = NINT (1, /DELT)
            IS = 1
         ELSE IF (DELT.GT.1.) THEN
           R1 = DELT
            IT = 1
            IS = NINT (DELT)
         ELSE
            R1 = 1.
            IT = 1
            IS = 1
         END IF
*
         check multiples
         IF (ABS (R1-NINT (R1/1.)).GT.TINY) CALL ERROR
            ('TIMER', 'DELT incorrect')
     &
         IF (PROUT, AND, ABS (PRDEL-DELT*NINT (PRDEL/DELT)).GT, TINY)
     æ
            CALL ERROR ('TIMER', 'PRDEL not a multiple of DELT')
         IF (ABS (DAYB-NINT (DAYB/1.)).GT.TINY) CALL ERROR
            ('TIMER', 'DAYB not an integer value')
     £
         IF (ABS (FINTIM-DELT*NINT (FINTIM/DELT)).GT.TINY) CALL ERROR
            ('TIMER', 'FINTIM not a multiple of DELT')
     8
         IF (PROUT) IPRINT = NINT (PRDEL/DELT)
         IFINT = NINT (FINTIM/DELT)
         ICOUNT = 0
         assign to local variables
         LTIME = 0.
         LDELT = DELT
         ILDAY = NINT (DAYB)
         ILYEAR = IYEAR
         global variables
         TIME = 0.
         IDAY = ILDAY
         DAY = FLOAT (ILDAY)
         TERMNL = .FALSE.
```

*

*

```
IF (PROUT) THEN
        OUTPUT = .TRUE.
    ELSE
       OUTPUT = .FALSE.
    END IF
  ELSE IF (ITASK.EQ.2) THEN
     IF (ITOLD.EQ.4) CALL ERROR ('TIMER', 'initialization required')
     IF (TIME.NE.LTIME) CALL ERROR
        ('TIMER', 'TIME was changed illegally')
£
     IF (IDAY.NE.ILDAY) CALL ERROR
&
        ('TIMER', 'ILDAY was changed illegally')
     IF (ICOUNT.LT.IFINT.AND..NOT.TERMNL) THEN
        ICOUNT = ICOUNT+1
        LTIME = FLOAT (ICOUNT)*LDELT
        IF (MOD (ICOUNT, IT).EQ.0) THEN
          DO 10 I=1,IS
              ILDAY = ILDAY+1
              IF (ILDAY.EQ.366) THEN
                 IF (ILYEAR.LT.1500) THEN
                    ILDAY = 1
                 ELSE
                    IF (MOD (ILYEAR, 4).NE.0) THEN
                       ILDAY = 1
                       ILYEAR = ILYEAR+1
                    END IF
                 END IF
              ELSE IF (ILDAY.EQ.367) THEN
                 ILYEAR = ILYEAR+1
                 ILDAY = 1
             END IF
          CONTINUE
       END IF
       OUTPUT = .FALSE.
       IF (PROUT) THEN
           IF (MOD(ICOUNT, IPRINT).EQ.0.OR.ICOUNT.GE.IFINT)
£
               OUTPUT = .TRUE.
       END IF
       TIME = LTIME
       IDAY = ILDAY
       DAY = FLOAT (ILDAY) + MOD (LTIME, 1.)
       IYEAR = ILYEAR
    ELSE
       TERMNL = .TRUE.
       IF (PROUT) OUTPUT = .TRUE.
    END IF
 ELSE
    CALL ERROR ('TIMER', 'wrong ITASK')
 END IF
 ITOLD = ITASK
 RETURN
 END
```

10

Appendix 6 Executing the program DRATES

C:\USR\DRATES> DRATES

File DVS DAT already exists Overwrite (Y/N) [N]: Y Base temperature [8]: Max. temperature for development [42]: Opt. temperature for development [30]: Directory with weather data [C:\WEATHER\]: Country [PHIL]: Station number [1]; Sowing date (Day Of Year, DOY) [4]: 4 Sowing year [1993]: 1992 If direct seeded Transplanting date equals Seeding date Transplanting date (Day Of Year, DOY) [20]: 20 Transplanting year [1993]: 1992 If PI date is not available type 0 PI date (Day Of Year, DOY) [45]: 40 PI year [1993]: 1992 Flowering date (Day Of Year, DOY) [80]: 75 Flowering year [1993]: 1992 Physiological maturity date (Day Of Year) [110]: 105 Maturity year [1993]: 1992 Number of sampling dates [3]: 4 Enter sampling date no. 1 [1]: 20 Enter sampling year no. 1 [1993]: 1992 Enter sampling date no. 2 [1]: 40 Enter sampling year no. 2 [1993]: 1992 Enter sampling date no. 3 [1]: 75 Enter sampling year no. 3 [1993]: 1992 Enter sampling date no. 4 [1]: 105 Enter sampling year no. 4 [1993]: 1992

The default input data are given between square brackets, when using the input data in the example, the following file (DVS.DAT) is generated:

IYRS		ISTN	COUNTR	TBD		
1992		1	PHIL	8.00		
DVRJ	=	.0022	16			
DVRI	=	.0007	58			
DVRP	=	.0005	73			
DVRR	Ŧ	.0018	34			
TSTR	=	268	.0			
TSF	=	1228	1.3			
TSM	=	1773	.5			
YEAR		DOY	DAS	DVS	DVR	TS
1992		20	16	.48	.0128	268.0
1992		40	36	.66	.0101	617.8
1992		75	71	1.01	.0333	1228.3
1992		105	101	2.01	.0336	1773.5