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II. Abstract 

In recent years remote sensing has become a very important tool to study and 

monitor many processes. Among them, the analysis of natural vegetation is one of 

the most important ones and it is a field under continuous research. In this study, 

the classification of natural vegetation according to different structural classes is 

needed as a factor to calculate the hydraulic roughness of floodplains. The hydraulic 

roughness is one of the parameters that help calculate the water discharge capacity 

of the river and so it is a crucial parameter for river management. 

The use of altimetry laser scanning data (LiDAR) and hyperspectral imagery (CASI) 

is investigated to classify natural vegetation in a floodplain of the river Waal, known 

as the Millingerwaard, in The Netherlands. The structural information given by the 

LiDAR image was expected to improve the classification results, adding extra 

structural information to the classical ‘spectral analysis approach’. 

A methodology to fuse and classify the CASI and LiDAR images was developed. The 

LiDAR image was analyzed and transformed in such a way that structural  

information could be extracted in the form of grid maps and fused with the CASI 

image. The Maximum Likelihood classifier was used to classify the single and fused 

images. Error matrices were derived to compare and to analyze differences.  

Decision Tree analysis was also tried as an alternative method to classify the fused 

image. 

The fusion of CASI and LiDAR images improved the overall accuracy of the 

classification (from 55.60% to 63.52%) compared to the classification using spectral 

information only. Also important conclusions concerning the information added by 

the LiDAR image were drawn from the results. At the end a list of recommendations 

that can be useful for further research in this field is given. 

This study was intended to give the first steps into the promising idea of integrating 

hyperspectral and laser altimetry information. Further research should be done in 

this direction to explore the enormous possibilities that these two data sets can offer 

for remote sensing analysis. 

 

 

Keywords: Laser altimetry, LiDAR, hyperspectral, CASI, image fusion, floodplains, 

natural vegetation, structural classes, Maximum Likelihood, Decision Tree analysis. 
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1 Introduction 

1.1 Background 

Napoleon described The Netherlands as “nothing more than a silty delta formed 

from the great rivers of the empire”. This idea is not far from reality if we consider 

that the land consists to a large extent of sediments deposited by the Meuse and the 

Rhine over de millennia (RIZA, 1999). 

This means that people living near the Netherlands’ great rivers have always had to 

be alert to danger. Down through the centuries people have built and made dikes 

higher to protect from floods. Nevertheless the idea of raising the dikes further is no 

longer seen as appropriate. 

The dikes were a solution, but they led to the narrowing of the river floodplains and 

to the accumulation of sediments on the riverbed through the years. Thus, increasing 

continuously the height of the dikes is a ‘vicious circle’ that leads to higher ground 

levels of the floodplains and larger inundation depths, as well as more damage when 

a dike should burst. 

The new water management policy is creating more space for the rivers, making a 

more flexible system that can cope with floods. At the same time, those spaces offer 

unique opportunities for nature development and this is also one of the important 

points of the new policies. 

However, nature development must not compromise flood protection. For example, 

large areas of floodplain forest increase flow resistance, raising the risk of flood in 

the land behind the dikes. 

A compromise between flood protection and nature development is the central pillar 

of the new water management policy for the important rivers in the Netherlands. 

 

To achieve this, the river management requires a constant updating of the 

vegetation mapping in the floodplains since vegetation plays a very important role in 

discharge capacity of the river. So many efforts are being done to find a way to 

monitor vegetation changes at different scales in a fast and accurate way. Remote 

sensing techniques may provide the appropriate tools for this. 
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The use of multispectral imagery (CASI) and Laser Altimetry (LiDAR) is expected to 

be of good use to classify vegetation in the floodplains and is being investigated for 

this purpose. 

 

The study area where the study is carried out is a part of a floodplain known as the 

Millingerwaard, near the river Rhine, of approximately 1 km2. The central coordinates 

of the study area are 196.75, 431.5 (Dutch coordinate system). If the results 

obtained are satisfactory, the method could be extended to larger areas. 

 

Fig. 1:  Study area 

 

1.2 Problem definition 

Traditional classification of vegetation based only on spectral information has shown 

some limits. Conventional passive sensors produce only two-dimensional (x and y) 

images, which cannot fully represent the complex 3-dimensional structure of, for 

instance, vegetation (Lefsky et al., 2002) 
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The classification we perform in this study is based on the physical structure of the 

vegetation since this information is to be used for the calculation of the hydraulic 

roughness1.  

The combination of CASI (spectral information of pixels) and LiDAR (height 

information of points) is expected to improve the result of the classification because 

they could complement each other. 

However, the combination of the two images can bring some difficulties due to the 

respective different kind of data and hence the information they provide. 

Considering that the LiDAR image consists only in points (x, y and z coordinates), 

one of the main challenges of this study is to transform these points into an image 

that can be used to discriminate vegetation classes. 

Once this problem is overcome, the last step would be to find a straightforward 

approach to combine both images. 

 

1.3 Objectives 

The main goal of this research is to perform a classification of vegetation (according 

to structural classes) combining the CASI and the LiDAR images. 

For this purpose the following objectives have been set: 

- Develop a methodology to extract as much information as possible from the LiDAR 

image trying different statistical approaches. 

- Develop a methodology to combine (fuse) the CASI and the LiDAR images in the 

same classification procedure.  

- To assess the accuracy of the different approaches (single and fused images) with 

the help of ground truth data. 

- Try different types of classification methods: Maximum likelihood and classification 

tree analysis for the fused image. 

                                           
1 Hydraulic roughness is an index very difficult to calculate. It depends on many different 
factors like vegetation height, density and stem diameter, but also on pattern distribution of 
the vegetation clusters or angle of the clusters according to current direction, among others 
(Asselman, 2001). The calculation of all those parameters is beyond the scope of this study, 
which would include a much deeper and broader study, including complicated spatial 
statistics analysis techniques and the support of much more complete and detailed ground 
truth information. However, since the discrimination of the different vegetation structural 
classes is one of the most important parameters in determining the hydraulic roughness, this 
objective will be aimed at in this study.  
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1.4 Research questions 

 

This research is mainly expected to answer the following questions: 

• Which extra-information do we get with the fusion of the two datasets? 

• Which statistical methods and searching area sizes are more 

appropriate to discriminate features from the LIDAR images? 

• Which approach gives the best classification accuracy for our study case? 

 

1.5 Set-up of the report 

From this point on, the report is organized as follows: Chapter 2 involves three 

parts, the first gives an overview about data fusion levels, then the main 

characteristics of the two data sets that are used for this study, the CASI and the 

LiDAR images, are described and finally there is a description of different 

approaches to fuse both images. Chapter 3 describes and explains the materials and 

the methodology developed for this study. In Chapter 4 the results of the research 

are shown and discussed. The report ends with the final conclusions and a list of 

recommendations for further studies (Chapter 5). 



 

 

5

2 Fusion of CASI & LiDAR 

This chapter starts with a brief overview about the concept of data fusion and the 

different levels at which data fusion can take place. This is followed by a more or 

less detailed description of the characteristics and possibilities of the two types of 

datasets used for this study, the hyperspectral imagery (CASI) and the laser 

scanning (LiDAR). After the description of the two datasets, a review of the different 

approaches found to fuse CASI and LiDAR data is addressed. The literature found 

about this specific subject is not abundant, mainly because the application of LiDAR 

has been used vastly for different studies only in the last few years. Also the regular 

use of hyperspectral sensors like CASI is relatively recent, so it is not strange that 

there is not much done till now on the fusion of hyperspectral and laser scanning 

data. 

However, the idea of integrating these two sensors is quite promising, even more 

since the two sensors can be complementary to each other, providing each one of 

them exclusive information that can lead to a better discrimination of the ground 

features under investigation. 

 

2.1 Data fusion 

During the last years data fusion has become an important issue in remote sensing 

image analysis. Image analysts can benefit from the fact that different sources and 

kind of images can give more and higher quality information than one single data 

source. 

From this idea we could say that the overall goal of data fusion (although there is a 

great controversy about this concept) is to obtain “interpretations of a higher quality 

when compared to interpretations derived from a subset of information sources’ 

(Hahn and Baltsavias, 1998). 

This definition emphasizes on the quality, although the exact definition of quality 

depends upon the application. 

A more simple definition and straightforward definition is “image fusion is the 

combination of two or more different images to form a new image by using certain 

algorithm” (Pohl and Van Genderen, 1998). 

In the case of image classification fusion of different sources would aim to improve 

the visual interpretability or class discrimination. 
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Image fusion can take place at three different levels: pixel, attribute/feature and 

decision level. The selection of the level depends on the type of data and the output 

required (Muhammad, 2002). 

 

 

Fig. 2:  Fusion levels. From left to right: Pixel, feature/attribute and decision 

levels 

 

2.1.1 Signal/pixel level 

The fusion at pixel level takes place before the features are extracted from the 

images. It can be said that it is a fusion at ‘raw’ level. This level of fusion is utilized 

in the case that the measurements are commensurate or sufficiently correlated. This 

level of fusion is mainly used for earth observation system’s raw data. 

The main characteristics of fusion at pixel level are: 

• Minimum information loss 

• Decision making consists of interaction between users and data sets 

• Fusion of only similar and complementary data sensors 

• Measurement driven process 

• The context information might be non-existent to determine the link of an 

identified entity with a real world. 

 

2.1.2 Attribute/feature level 

Fusion at attribute or feature level requires first the extraction of the representative 

features from each image. Then the information coming from these features is 

fused. The main characteristics of feature level fusion are:  

• Large dimensions of feature vector  
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• Decision making consists of interactions between users and feature data 

• Allow the fusion of data from non-similar sources 

• Evidence-driven process 

• Allow general level of uncertainty 

This level of fusion is mostly used to derive secondary data like vegetation indices, 

texture, slope, land cover, aspect. 

 

2.1.3 Decision level 

When the fusion takes place at decision level, the attributes of the entities under 

investigation have already been identified before fusing the information (by 

classification of the images). 

The information extracted from the individual images is combined using some prior 

probabilities based on the understanding of the features that are being analyzed. 

This fusion level is usually applied to complex structured data like environmental 

processes. 

The main characteristics of this fusion level are:  

• Complex data sets can be fused 

• Knowledge process based on decisions and criteria constraints 

• Allow the fusion of non-similar sources 

• Model driven process 

• Allow different abstraction levels in space and time. 

 

2.2 Multispectral image (CASI) 

One of the most recent breakthroughs in remote sensing has been the development 

of hyperspectral sensors and the software to analyze the resulting image data. 

Hyperspectral airborne sensors are being used for multiple disciplines with great 

success, combining some of the better characteristics of aerial photography and 

satellite imagery with the analytical potential of a spectrometer   

(http://www.itres.com/docs/casi2.html) 

 

 

 

 

http://www.itres.com/docs/casi2.html
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Fig. 3:  The concept of hyperspectral imagery. Image measurements are made at 

many narrow contiguous wavelength bands 

 

Hyperspectral sensors are one type of a remote sensing instrument that can collect 

several hundred spectral bands of data at a high-spatial resolution. These sensors 

are generally airborne sensors. Data are collected at contiguous, narrow band 

wavelengths for a specifically-defined portion of the electromagnetic spectrum. 

 

The Compact Airborne Spectrographic Imager (CASI) has been in commercial 

production since 1989. This hyperspectral sensor detects a vast array of narrow 

spectral bands in the visible and infrared wavelengths, using along-track scanning. 

The spectral range covered by the 288 channels is between 0.4 and 0.9 µm. Each 

band covers a wavelength range of 0.018 µm. While the spatial resolution depends 

on the altitude of the aircraft, the spectral bands measured and the bandwidths 

used are all programmable to meet the user's specifications and requirements. 

However, only a maximum of 15 bands can be used in each measurement. For that 

reason this sensor is also referred to as ‘multispectral’. 

 

Hyperspectral sensors, such as this, can be important sources of diagnostic 

information about a specific target's absorption and reflection characteristics, in 

effect providing a spectral "fingerprint". 
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Traditionally, the sensor has been used to identify and map geologic features, such 

as mineral deposits (Shang et al., 1999). However, there are many other applications 

of these data. Some of these applications include:  

 

• Mapping and classification of wetland vegetation (Von Hansen and Sties, 2000) 

• Delineate and classification of plant communities (Kurnatowska, 1998)  

• Identifying specific agricultural crops (Protz et al., 1999) 

• Mapping bathymetry in near-shore environments (Smith et al., 2000) 

• Coastal wetland mapping (Shang et al., 1998) 

• Identifying forest structure and composition (Gong et al., 1995) 

• Identifying soil parameters like soil moisture, organic matter, iron oxide, particle 

size and soil color (Skidmore at al., 1997). 

 

Thus, due to the capability of measurements of the reflected radiation at a series of 

narrow and contiguous wavelength bands, CASI (and other hyperspectral sensors) 

provides the potential for more accurate and detailed information than other types 

of remotely sensed data.  

 

2.3 Airborne Laser Scanning (ALS) 

The development of the airborne laser scanning goes back to the 1970s and 1980s 

with an early NASA system and other attempts in the USA and Canada (Ackermann, 

1999). Then, thanks to the solution that the DGPS provided for the positioning 

problem, high accuracy performance became feasible and the application of this 

system became rapidly more and more in extended use. 

The Airborne Laser Scanners (ALS) are also called LiDAR (Light Detection And 

Ranging) or LADAR (Laser Detection and Ranging), referring to the fact that the 

light used by these devices is a laser. 

 

2.3.1 Principles of laser scanning 

The scanning system measures the distance between the sensor and the spot on the 

ground that is illuminated. For each shot that goes from the transmitter and comes 

back to the optical receiver, the spatial vector from the laser platform to the point of 

reflection is calculated. 
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This calculation is based on the measurement of the time that the laser beam takes 

to go from the scanner, hit the ground object and return to the sensor. Basically, the 

traveling  time (tL) of the laser bean would be: 

c
RtL 2=  

where R is the distance between the scanner and the ground object and c is the 

speed of light. So the distance from the sensor to the ground object can be derived 

as follows: 

LtcR ⋅=
2
1

 

However, the laser scanner measures only the vector from the airborne platform to 

the ground. So, a ground reference is necessitated if we want to transform these 

coordinates into ground coordinates. For this purpose, the laser scanner system must 

be supported by a POS (Position Orientation System). The laser scanners have a 

potential accuracy of better than  0,1 m (Wehr and Lohr, 1999), so the ground 

support system should allow at least the same. This can be achieved only by an 

integrated POS consisting of a DGPS and an IMU (Inertial Measurement Unit). So, 

collecting the laser measurements requires a perfect synchronization of all these 

three systems: laser scanner, DGPS and IMU. 

 

 

Fig. 4:  Typical airborne laser scanning system (From Wehr and Lohr, 1999) 
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The laser operates at frequencies that can vary from 800 till 1600 nm. This is an 

important factor to take into consideration because different materials have different 

reflectivities depending on the wavelength. The reflectivity will determine then the 

maximum range of the system (according to minimum percentage of reflection that 

the receiver can register). So, depending on the type of feature that we would like to 

study, the wavelength of the laser could be a factor to take into consideration.  

Based on the backscattering properties of the targets, different scanning systems 

have been developed than can be used for several purposes. For instance the 

SHOALS system, that is used for bathymetry measurements, can register altitudes of 

the water surface and water floor at the same time. This is achieved combining two 

wavelengths: Infrared, which reflects on the water surface, and blue-green, which 

penetrates the water and reflects on the bottom. In this way depths up to 50 meters 

(in clear water) can be measured. 

  

The intensity reflected by the object can also be registered by some scanner 

systems. This information can be used as a ‘mocromatic’ band that can add 

information to the laser image. For example, Asselman (2001) used the intensity 

records for reconstruction of vegetation patterns in a floodplain. This is an important 

feature to take into consideration if we consider the ‘blindness’ of the laser image 

about the capture and identification of objects. This concept of blindness means that 

the information given by the laser image is only structural and necessitates additional 

image information in order to have a better understanding of the features under 

study. This information can be provided by the measurement of the intensity of the 

laser signal (as mentioned before) or by the combination with a different data set, 

like multi or hyperspectral imagery. 

In fact, efforts are being put in integrating two sensors in the same platform sharing 

the same POS. In this way the geometrical match between the two data sets would 

be the best. The next step would be an automatic merging of the information in such 

a way that the two images would be completely integrated. This complete integration 

could mean a complete revolution in remote sensing analysis (Ackermann, 1999). 

 

The spatial resolution of the laser scanning is one of the most important 

characteristics of this system. The density of the laser points can range from one 

point per 20 m2 up to 20 points per square meter. This density depends principally 

on the balance between the type of scanner (scan frequency and repetition rate) and 
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the flying speed and the altitude of the aircraft. The geometric sampling pattern on 

the ground is predetermined by the setting of the sensor, although the 3-D structure 

of the terrain has some influence. 

 

The footprint size (diameter of the laser beam when it hits the surface) is another 

variable of this system. It depends on the type of sensor (aperture angle of the 

transmitter) and on the flying altitude. The size of the footprint can vary and 

depends on the purpose. Some systems use large footprint systems like the SLICER 

(Means et al., 1998) or LVIS (Blair et al., 1999), which use footprint sizes of up to 30 

meters diameter. Other systems utilize small footprints, like the ALTM sensors with 

footprint sizes of 15-30 cm diameter.  

 

The laser pulse, after hitting a morphologically complex surface such as a vegetation 

canopy, will be a complex combination of different responses returned from 

numerous distances. 

The type of information collected from this return signal distinguishes two broad 

categories of sensors discrete-return and waveform-recording devices (Lefsky 

et al., 2002). 

 

The discrete-return devices measure either one or a small number of heights, 

normally first and/or last significant returns. These systems usually work with a small 

footprint size (15-30 cm) and at a very high pulse rate, allowing a very high spatial 

resolution, and densities up to several points per square meter. Discrete-return 

systems are preferred for detailed mapping of the ground and generation of accurate 

DTM’s (Flood and Gutelius, 1997). 

 

Waveform-recording devices record the whole time-varying intensity of the 

returned energy for each laser pulse, from the first to the last return. These systems 

have the advantage of being able to characterize canopy structure over large areas. 

These devices normally work with a large footprint size and are capable of collecting 

more information on canopy structure than the discrete-return devices. Several 

studies have been carried out with this type of sensor to estimate vegetation 

characterization (Means et al., 1999; Blair et al., 1999). Moreover, only waveform 

recording will be collected globally from space in the near future (Lefsky et al., 

2002). 
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The waveform-recording devices are used mostly for research purposes, although 

they are not as widely in use as the discrete-return LiDAR systems (small footprint & 

high pulse rate), which are nowadays used vastly for commercial purposes. The 

availability of data of the latter is larger. Hence, this overview about the LiDAR 

applications and properties will focus more on the use of small footprint-discrete 

return devices.   

 

In figure 5, the principles of discrete and waveform-recording systems are described 

(from Lefsky et al., 2002). 

 

 

Fig. 5:  Conceptual differences between waveform and discrete-return devices 

 

In the case of a regular surface, like ground, the return of the pulse is unique, but 

when it hits irregular objects like vegetation, the return signal will be multiple. As 

mentioned before, some systems can record multiple responses. Among this type of 
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sensor, the most common are the scanners that are able to register the first and 

the last pulse for each height point. As a result of that, two different heights in one 

point gives an indication of the presence of a penetrable object, such as a tree. This 

very important information can be used to discriminate features on the ground. A 

unique response would reveal the presence of a solid object, like ground or a flat 

roof of a building, whereas two different heights would show a penetrable object like 

a tree. 

Studying the kind of response in areas covered by vegetation, characterization of 

vegetation types can be carried out based on the structure of the plants. 

 

One of the most important applications of ALS is the generation of Digital Terrain 

Models (DTM) in conditions where other systems like photogrammetry or ground 

surveying find some difficulties, for instance in terrain with vegetation cover, coastal 

areas or wetlands (Ackermann, 1999). This is due to the ability of the laser beam to 

penetrate the canopy and hit the ground. This potential was the original motivation 

to study laser systems for the generation of DTM’s. 

Discrete-return devices with high point density are actually in use for the generation 

of DTM’s and the number of firms providing this service has increased largely in the 

last years. 

The accuracy obtained with the DTM’s generated from LiDAR and the support of a 

POS is very high, and usually ranges from 15-20 cm in height accuracy and from 0.3-

1 meter in planimetric accuracy (Baltsavias, 1999). 

Although the complete cost of a LiDAR survey is important, the ratio ‘price/high 

accuracy point’ that laser scanning offers is quite low compared to other systems of 

generating DTM’s (http://www.optech.on.ca/). 

 

For all these characteristics, the ALS systems are considered as a powerful source of 

remotely sensed information and still a lot of effort is being put to extract more 

information from these data sets. 

 

 

http://www.optech.on.ca/
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2.3.2 Applications and special characteristics of the ALS 

Since the beginning of the use of the ALS systems several fields have received 

benefit from the special properties of this sensor. The most important fields in which 

this technique has been utilized are: 

 

• Generation of accurate DTM’s (http://www.optech.on.ca/) 

• Estimation of individual canopy height (Nilsson, 1996)  

• Characterization of canopy structure (Lefsky et al., 1999)  

• Determination of volume of timber (Naesset, 1997) 

• Bathymetry surveying (Irish et al., 2000) 

• 3D modeling of urban areas and extraction of urban features (Alharthy and 

Bethel, 2002) 

• Land cover classification (Song et al., 2002) 

• River flood modeling (Cobby et al., 2001). 

 

The most important characteristics of the ALS system can be summarized as follows: 

 

- High-resolution, up to several height points per square meter. 

- High-accuracy digital elevation data. Depending on the sensor, up to 10-15 cm 

in height and 30 cm planimetric.  

- Unaffected by poor contrast - Some areas such as mud flats or beaches have 

poor optical contrast making photogrammetry difficult or impossible. 

- Independent of lighting conditions – Since it is an active sensor system, it is 

not affected by lighting conditions. Acquisition can take place with overcast sky and 

at night, as long as there are no clouds between the aircraft and the ground. 

- Range measurements independent of target composition:  Bright targets 

such as sand or snow give the same range as dark targets such as asphalt.  

- Vegetation penetration - Ground elevations can be obtained even in dense 

forest cover due to the ability of penetrating the canopy. 

- Ranges to trees and to the ground beneath in a single pass -   

Simultaneous first- and last-pulse capability in the same flight pass. 

- Whole profile signal registration - For the study of vegetation structure, in the 

case of the large-footprint waveform devices. 

- High Data Rate - A laser scanner can acquire up to 83,000 individually height 

points per second.   

http://www.optech.on.ca/
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- Fast processing of DTM generation, which can be performed entirely 

automatically within a short time after acquisition, since all data is digital. 

 

The main disadvantages of the system are: 

 

- Blindness about the capture and identification of objects which leads to modeling 

assumptions in the data processing. There is no certainty that a laser point belongs 

to a certain object, for example that the last pulse registered for one point comes 

from a ground hit. This problem can be overcome partially with the addition of extra 

information like the recording of the reflectivity of the laser signal or the 

combination with other data sets.  

- Storage and manipulation difficulties due to the large size of the datasets.  This 

drawback is expected to be overcome with the quick improvement of the hardware 

and software, which will lead to the possibility of manipulating more and more 

volume of data. 

 

2.4 Fusion approaches of CASI and LiDAR 

There is not much literature about the fusion of hyperspectral and LiDAR data. The 

two techniques are still under investigation and the fusion of those two data sets is 

still not widely used. This study focuses on vegetation classification. 

Depending also on the aims or the purposes of the classification, the approaches 

should vary.  

After literature review, two approaches were found that could help to make the first 

steps for the fusion of LiDAR and CASI. 

First, an analysis of how information can be extracted from ALS data and then a 

description of two approaches to combine this information with CASI is given. 

 

2.4.1 First step: Texture Analysis of the LiDAR 

Texture represents local variations in the spatial domain and determines the overall 

visual smoothness or coarseness of image features (Lillesand and Kiefer, 2000). 

 

The local variation of the LiDAR data can be used to analyze the data. The texture 

as expression of local variation is used by the human eye to distinguish different 



 

 

objects, although it is not easy to establish an objective model to describe this 

intuitive concept (see figure 6). The texture can be defined by means of different 

statistical parameters or with more complex techniques, analyzing more deeply the 

spatial variability patterns of each class with the use of variograms (Miranda et al., 

1998). 

Analyzing the texture is, in fact, not a new approach. It is not exclusive for altimetry 

and it has been used with radar and traditional imagery data. Haack and Bechdol 

(2000) examined the utility of radar to locate areas of natural vegetation using 

measures of the texture of the image by means of several statistical approaches. 

Chica-Olmo and Abarca-Hernandez (2000) improved classification in lithological 

studies by adding texture information as extra layers to a Landstat-5 TM image. In 

that study, a ‘pixel- based’ variogram analysis was carried out to obtain different 

extra ‘texture bands’.   

Texture has also been analyzed in LiDAR images. Maas (1999) analyzed the texture 

of the LiDAR data to automatically detect different features types in urban areas.  
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regular grid by means of interpolation techniques (Hill et al., 2002), and then 

analyze the texture using filters that calculate different statistical parameters  (Maas, 

1999). However, Axelsson (1999) recommended that all processing of LiDAR data 

should be done without sampling firstly the data into a regular grid, because during 

this process there is a loss of information. This research tries to avoid this problem 

by using the raw LiDAR data to derive the statistics. 

 

An other important source of information to analyze texture (and unique of this 

system) is the multiple return sign for each point that many laser scanning systems 

can provide (first-last return or waveform scanners). The analysis of this data can be 

used together as extra information for texture analysis.  

 

Once the texture is transformed into values, it can be assigned to pixels, and this 

information is then utilized as a ‘texture’ band for further analysis. 

 

2.4.2 Pixel level 

Maas (1999) and Liapis et al. (1997) used the texture of a LiDAR image as ‘bands’ in 

the Maximum Likelihood Classifier. Based on the principles of this classification 

technique it is possible to add different ‘texture bands’ to this classifier. The same 

procedure could be applied to other classifiers like neural networks or decision tree 

analysis. 

At this point of the analysis it would be feasible to incorporate extra spectral 

information from other sensors, like CASI or other sensors. The combination of these 

two completely different sources of data can be a revolution in remote sensing 

analysis. 

 

The main advantage of this approach is the fast calculation and the simplicity of the 

procedure. Once the texture information of the LiDAR image is transformed into pixel 

values with the same spatial resolution as the CASI image, the only thing we have to 

do is to input all the different layers into the classifier.  

At this point we should take into consideration that the scale of the two data sets has 

to be the same when we use Maximum Likelihood Classification. Here, the point of 

controversy is whether two completely different types of information (reflectance and 

texture or altimetry) can be set into the same scale. However, assuming that the 
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texture information of each class can behave as a normal distributed variable, it 

should not be a problem to incorporate texture bands into the Maximum Likelihood 

classifier. 

In any case, this controversy could be overcome with the use of classifiers that do 

not need rescaling of the data, like the classification tree analysis, that can work with 

multiple bands independently of the scale and even with categorical variables. 

 

 The main disadvantage of the pixel level approach is the lack of information 

concerning the classification decisions made by the classifier. A deep understanding 

of the functioning is needed to understand which is the influence of the different 

bands in the classification. However, some classifiers like the neural networks and 

the decision tree analysis, provide information about the weight of each band in the 

classification procedure. Though, even with this information, mixing all these bands 

at pixel level is still a rather ‘black box’ approach, which gives little information about 

the classification procedure. 

 

2.4.3 Feature level classification 

In this case, the first step would be the same as the one explained in the previous 

section. The texture and other measurements must be derived firstly from the LiDAR 

image. Afterwards, instead of inputting all the obtained layers plus the CASI layers 

into one classifier, the classification would be carried out following different steps. 

Based on expert knowledge or on empirical approaches, the best layers to classify 

each class can be determined and used to classify and mask step by step the 

different classes. Maybe with an example it can be explained clearer.  

Let’s assume that we use LiDAR and CASI to classify four types of cover types: bare 

soil, grass, bushes and forest. Based on previous knowledge, we could assume that 

the CASI will distinguish better than the LiDAR between grass and bare soil because 

the spectral signature is quite different, whereas LiDAR would find problems to 

discriminate those two classes. However, when the classes bush and forest have to 

be classified, the LiDAR could be a better solution to discriminate them because the 

physical structure of the two classes is different. Thus, in this case we could use first 

CASI to classify and mask out the bare soil and the grass from the rest of the image. 

Later on, only the LiDAR would be used to classify the other two classes, bushes and 

forest. 
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The main advantage is that in this way we avoid the ‘black box effect’ of the 

classifiers and moreover we avoid the noisy information that some layers, which are 

confusing to discriminate some classes, can cause. The effect of the noisy layers and 

the confusion they can produce in the classification is not clear for some classifiers. 

 

On the other hand, this method is not as straightforward as the pixel level approach 

and moreover it requires expert knowledge in order to select  the classes that will be 

discriminated with each image.  
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3 Materials and research methodology 

This chapter describes the materials used and the methodology developed to 

combine the CASI and the LiDAR images and perform the final classification.  

The approach followed for this study was a straightforward one, since the river 

manager was demanding a direct method to classify vegetation in the floodplains, 

thus fusion at pixel level was chosen. As explained in the previous chapter, to 

achieve this, the texture and other measurements must be derived from the LiDAR 

image, before fusing with the CASI and performing the classification. 

In our case the first inconvenience we had to overcome was that the two images, 

CASI and LiDAR give a completely different type of information: spectral response 

and 3D structure, respectively. Moreover, the CASI provides information for pixels in 

a continuous grid, whereas LiDAR provides point wise information in an irregular 

pattern. All procedures are described in this chapter.  

In the flowchart of figure 7 the methodology is shown. It aims to explain in general 

terms the most important steps followed.  
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Fig. 7:  Methodology of the current study 
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3.1 Ground truth 

As mentioned in the introductory chapter, the aim of this research was to classify 

vegetation according to structural classes. The ground truth of this research is based 

on a study in the same area carried out by two students of Wageningen University. 

The vegetation classes were chosen according to their physical structure.  

In the original study 24 ecological classes were defined based on ecological 

communities (classes) in the floodplain. These 24 classes were regrouped in 7 

classes, which were defined in relation to their influence on hydraulic roughness. 

 

A total of 334 plots were available for classification and accuracy assessment, 

representing 8 classes. The ground truth plots of the class 8 (forest) were obtained 

by visual interpretation of the LiDAR image, in which the forest is clearly 

represented. 

The ground truth plots of classes 1 to 7 were approximately 3x3 meters and for 

each plot an exhaustive analysis of the existing vegetation types was done. From 

this study, the structural classes were derived and assigned to each plot. 

The structural distribution of the vegetation classes (except for class 8 –forest) is 

shown in the appendices in detail. However, for better understanding of this chapter 

and the results and conclusions, a brief description of the 8 classes can be 

summarized as follows: 

 

Class 1: Sandy bare soil, with a unique spectral response. 

From class 2 to 6: Different plant communities, aggregated according to their 

structural class, gradually increasing their height from class 2 until class 6. 

Class 7: Small community of tall bushes. 

Class 8: Large forested area, spectrally and mainly structurally very different to 

the rest of the classes.     

 

Figure 8 shows the approximate average vegetation height of each one of the eight 

classes. 
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Fig. 8:  Average height per class 

 

Half of the plots of each of the 24 subclasses (subsequently of the 8 classes)  was 

used for training and the other half was used for the accuracy assessment. The 

selection of the plots for training and accuracy assessment was made randomly 

within each class. 

 

3.2 Preprocessing of the images 

3.2.1 CASI 

The Compact Airborne Spectrographic Imager (CASI) is an airborne hyperspectral 

sensor of 288 narrow bands of 1.8 nm of interval, between 400 and 915 nm. For 

this study 10 bands were available: 

 

Band Wavelength (nm) Colour 
1 437 – 447 Blue 
2 549 – 559 Green 
3 615 – 625 Red 
4 671 – 680 Red 
5 681 – 689 Red 
6 695 – 705 Red 
7 729 – 739 Near-IR 
8 757 – 767 Near-IR 
9 860 – 867 Near-IR 
10 880 – 890 Near-IR 

Table 1: CASI spectral bands 
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The image was taken on 15th Augustus 2001. The spatial resolution of the CASI 

image was 2 x 2 m per pixel.  

 

The image did not need atmospheric correction since we were not using 

multitemporal analysis and only performing image classification. Thus the image was 

almost ready for its analysis. Two images, which covered the whole study area, 

were overlapped and mosaiced together. Then an AOI was used to mask the study 

area (figure 9). 

 

 

 

Fig. 9:  Study area, the Millingerwaard.  
  CASI image: composite true color bands 1, 2, 3 (blue, green, red)  
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3.2.1.1 Principal component analysis (PCA) 

In order to reduce the dimensionality of the CASI image and avoid possible 

redundant information coming from correlated bands, a Principal Components 

technique was applied to the CASI image. Principal components analysis basically 

creates different bands as linear combinations of the original bands. The principal 

components are generated in such a way that the first one expresses the maximum 

variance, whereas the rest account for less and less variability. Normally most of the 

total variability is concentrated in the first 3 or 4 principal components. That means 

an effective way of reducing the dimensionality of the dataset, which can increase 

the computational efficiency of the classification process (Lillesand and Kiefer, 2000) 

The principal component analysis was performed and the first four PC were merged 

in a new image that was used for further analysis. The first four principal 

components explained 99.96 percent of the total variance (table 2). 

 

Principal 
component 

% of the total 
variance 

pc1 94.07% 

pc2 5.73% 

pc3 0.12% 

pc4 0.04% 

total 99.96% 

Table 2: Variance percentage of each principal component 

 

3.2.2 LiDAR 

The LiDAR image was provided in the form of an ASCII file with xyz coordinates. It 

had to be transformed into an ArcInfo® point coverage, so that the manipulation 

with the existing software was possible.  The spatial pattern of the LiDAR points was 

semi-regularly distributed with a density of about 1 point per square meter. 

However, the point density was not constant. This fact will be analyzed further on in 

this chapter. Only first-return pulses were available for this study. 

 

The date of the flight was the 12th October 2001. The type of scanner was the 

ALTM 2033, developed by Optech (www.optech.on.ca). The most important 

specifications of the flight surveying were:  
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• Flight altitude: about 800 m 

• Repetition rate of the laser pulse: 33 kHz 

• Scan frequency of the mirror: 30 Hz 

• Scan angle: 19 degree. 

 

During the surveying, three terrestrial measured reference fields were used to 

estimate the LiDAR error. In each of these ground control fields about 100 terrestrial 

measured points were lying. The result was: 

• Height error: approx. 15 cm 

• Planimetric error: approx. 50 cm. 

 

3.2.2.1 LiDAR pre-processing 

As mentioned before, the spatial resolution of the two images has to be the same. 

For that reason, the first logical approach was to bring the spatial resolution of the 

LiDAR into the CASI’s, which is 2 x 2 meters/pixel.  

Since the information that the LiDAR image gives contains only xyz coordinate 

points, the image had to be transformed so it can be analyzed at pixel level. In this 

case what can be analyzed is the spatial variation of the height of the points by 

means of statistical parameters. This information is very useful because it reflects 

information about the structure of the vegetation. 

 

Several methods to achieve this were considered. One was the transformation of the 

irregular LiDAR points into a regular grid by means of interpolation techniques and 

then utilize filters to calculate different spatial parameters (Maas, 1999; Hill, 2002). 

This method was discarded because, as mentioned in chapter 2.4.1, the 

interpolation previous to the analysis of the texture creates height assumptions 

which leads to a loss of information, which is very important for vegetation studies.  

Another approach was to overlay a regular net over the LiDAR points and derive 

statistics with the points that fall within each cell of the net. This method, suggested 

by John Stuiver (personal communication), was also not taken into consideration 

because of the lack of flexibility and the difficult processes that it required.  So, after 

analyzing ‘pros and contras’ of the different approaches, we decided to follow a 

method that uses the height of the original LiDAR points to derive statistics and 

apply the result to an output pixel, which size is also predefined by the user. 
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Points that fall within the
searching area 

Pixel at which the
statistical calculation will
be assigned. 

Searching area (circle) 

This procedure was carried out by means of the ArcInfo® command ‘pointstats’.  

 

This method utilizes the height of the original LiDAR points that fall within a 

predefined search area to derive statistical parameters, which will be assigned to an 

output pixel, which size is also defined by the user. In this way a grid with texture 

values is generated for each statistical parameter. In figure 10 this procedure is 

explained. 

 

Fig. 10:  ‘Pointstats’ calculation 

 

This method is also very flexible because it gives us the possibility of calculating 

different statistical parameters and try different search areas for the LiDAR points 

very easily. The main advantage is that the statistics are derived from the raw LiDAR 

data and so there is no loss of information during the intermediate transformations. 

The search area is defined by its shape and extension around each output pixel and 

it is another variable that can be analyzed. 

 

A model developed in Arisflow® allowed the calculation of many statistical 

parameters. Several options were chosen in order to find out which LiDAR approach 

would produce the best classification. An understanding of the vegetation 

characteristics and how the statistics are calculated from the LiDAR points is needed 

before trying the different options. Later in this chapter the different approaches to 

generate LiDAR images will be explained in detail. 

 



 

 

The density of the LiDAR points was also analyzed. Some patterns that might affect 

the analysis were found. There are different point densities in different stripes (flight 

paths) and they change alternatively. Whereas the stripes in one flight direction have 

a density of approximately 6 points per pixel of 2x2 meters, the other direction has a 

density of 3 pixels in the same area. Thus, the density of the LiDAR points in one 

direction is approximately the double of that in the other direction. 
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points was situated, usually on the ground or on the top of the trees. The height 

values of the points forming those clusters were very similar among them.  

 

 

 

 

 

 

Fig. 12:  Image error produced by high point 
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MEDIAN - the median z value. 

The output value of the pixel is the median of the z values within the search area.  

 

According to our knowledge, these parameters could add some information that 

helped to discriminate the different classes according to their physical structure. 

 

3.2.2.3 Image generation 

The next approaches were chosen for the LiDAR image in order to see which one 

gave the best accuracy. The size of the output pixel was set always at 2 meters, the 

same as CASI: 

a) Search area circle 2m radius, 6 bands (min, mean, range, median, std, max) 

b) Search area circle 4m radius, 6 bands (min, mean, range, median, std, max). 

 

Other options were tried, like using a search area of the same size as the output 

pixel (square of 2x2 meters), but the analysis of the grid image showed many ‘no-

data’ points in the forest and also the number of points to derive statistics was very 

low. Other options like bigger search areas produced too smooth maps where the 

details were lost and thus were not considered for this study. 

 

3.2.3 DEM 

Creating a DEM was necessary in order to avoid the errors of assuming that all the 

differences of height measures correspond only to variation on vegetation. An 

accurate DEM was generated using the same LiDAR points. Assuming that many 

LiDAR beams hit the ground or very low vegetation (like grass), a DEM can be 

derived using the minimum z value within a certain search area. The bigger the 

search area, the higher is the possibility that one point falls on the ground, but the 

worse is the spatial resolution and accuracy of the DEM. Thus, a balance between 

spatial resolution and reliability that the DEM comes from ground hit points had to 

be found.  

This problem could be avoided if we had used ‘last-return’ pulses, because then the 

possibility that one point falls on the ground is much higher and the DEM can be 

much more accurate, but this data was not available for this study. 

Rectangular search areas of 2x2, 4x4, 6x6 and 8x8 meters were tried.  
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  original LiDAR points        min value assigned to each        DEM 2x2m after   
             pixel. DEM of 6x6m.       interpolation 

Fig. 13:  DEM generation 

 

The best result was given by the 6x6 meters DEM, considering the amount of 

ground hits and the resolution obtained. In any case, a few points of the 6x6 DEM 

were clearly not ‘ground-hit’ points and were corrected manually according to the 

height value of the surrounding pixels.   

The DEM was resampled at 2x2 meters using the ‘cubic convolution’ interpolator. In 

this way the DEM had the same spatial resolution as the LiDAR and CASI images 

and at the same time a kind of interpolation (smoothing) was produced (figure 13). 

 

The DEM was subtracted from the maps where absolute values were represented. 

Thus, the DEM was subtracted from the ‘min’, ‘max’, ‘median’ and ‘mean’ maps, and 

not from the ‘range’ and ‘standard deviation’ maps, since they already show relative 

values, and subtracting the DEM has no significance. 

In this way the height information of the LiDAR maps comes only from variation in 

vegetation height and the effect of the relief is avoided (figure 14). 
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 original ‘MEAN’ map             ‘MEAN – DEM’ map  
(vegetation + ground information)        (vegetation information only) 
 
Fig. 14:  Subtraction of the DEM 

 

3.2.4 Change of spatial resolution 

As mentioned at the beginning of this chapter, the size of the ground truth plots was 

approximately 3x3 meters. The pixel size of the CASI and the LiDAR (after 

preprocessing) images is 2x2 meters. When gathering the spectral signatures a 

problem of defining which pixels should be taken is found. At least one part of 

almost every pixel falling within a plot falls out of the ground truth area. Because of 

this, a decision of which pixels to take or not to take has to be done, which implies 

possible mistakes. 

To overcome this problem, the spatial resolution of all the images was changed to 

0.5x0.5 meters. In this way, each pixel was divided into 16 small pixels keeping their 

original value. 

This procedure allowed gathering only the ‘parts’ of the original 2x2 meters pixels 

that fell inside the plots and avoided the subjective procedure of choosing which 

pixels must be considered for the training set. 

Another advantage of changing the spatial resolution is that when the LiDAR and 

CASI images are stacked, the shift due to the different coordinate origin is partially 

avoided. In the case of stacking two images with pixel size of 2 x 2 m, the shift 

could be up to 1 meter. However, in our case when we stack the two images with a 

pixel size of half a meter, the maximum error due to a shift would be only 25 cm. 
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Taking into consideration the small size of our ground truth plots (3 x 3 m), this is a 

factor to be taken into consideration.  

 

3.3 Image fusion 

As mentioned in the introductory chapter, image fusion can take place at 3 different 

levels: pixel, feature and decision level. 

The first approach in our research was the ‘pixel level’, since our first aim was to 

find the most straightforward method to fuse both images. 

The images that were going to be fused were the ones that produced the best 

classification accuracy independently. Thus, the classification of the CASI and the 

LiDAR images separately was performed previous to deciding which images were 

going to be fused. 

The CASI and LiDAR images that showed the best classification results were finally 

stacked and the classification of the fused images was carried out. 

 

3.4 Classification 

Once the problem of extracting the structural information from the LiDAR image and 

bringing it to the same spatial resolution as the CASI was solved, the next step was 

to choose a classification method. The maximum likelihood classification (MLC) and 

the classification tree were used for this study. The MLC is a proven and robust 

method which could give us a straightforward approach to classify and compare the 

different generated images. The classification tree analysis was chosen as an 

alternative to this classical classification approach. It also could add important 

information about the weight of each layer in the classification procedure. A brief 

description of these two classifiers follows this introduction about classification. 

 

3.4.1 Maximum Likelihood Classifier (MLC) 

Maximum likelihood classification is the most common supervised classification 

method. As a parametric classifier, the MLC algorithm relies on each training sample 

being represented by a Gaussian probability density function, completely described 

by the mean vector and variance-covariance matrix, using all available spectral 

bands. Given these parameters, it is possible to compute the statistical probability of 
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a pixel vector being a member of each spectral class (Thomas et al. 1987). In 

supervised classification, this information is derived from the training samples, which 

are assumed to be normally distributed within each class. 

The ML classifier only calculates probabilities, so although it is used in most of the 

cases to analyze spectral response, other types of information can be used if the 

normal distribution condition is fulfilled. In our case we can make this assumption. 

In fact this is not the first time that MLC is used to classify texture: (Liapis et al. 

1997; Maas, 1999). Following this criterium, the textural bands of the LiDAR image 

can be used with this classifier in the same way as the spectral bands of the CASI. 

 

Although the textural bands can be input into the classifier, we have to consider that 

the data range of the two datasets, CASI and LiDAR, is very different. Thus, a 

rearrangement of the data scales had to be done before classification. All the CASI 

and LiDAR bands were stretched, using the mean minus 2 times the standard 

deviation and the mean plus 2 times the standard deviation as minimum and 

maximum values of the new scale. This is a typical stretching method which utilizes 

95.44% of the values and discards the extreme minimum and maximum values 

(figure 15). The new scale for all the bands was the same as the CASI (16 bits, so 

between 0 and 65536). 

 

 

Fig. 15:  Normal distribution and stretching at 2 times STD 
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3.4.2 Classification tree (CART analysis) 

A classification tree analysis approach employs tree structured rules displayed in the 

form of a binary tree. The rules are determined by binary recursive partitioning in 

which each node of the tree is recursively split until the maximum number of nodes 

is reached (Cairns, 2001). Classification trees use a set of independent variables to 

predict class memberships. The method uses a deviance measure, the likelihood 

ratio statistic, to compare all possible splits of the data to find the one split that 

maximizes the dissimilarity among the resulting subsets (Hansen et al., 1996). So, 

classification produces a tree through a process of yes/no questions generating 

descendent nodes. Some nodes are terminal, meaning that a final classification is 

reached, while other nodes continue to be split until terminal nodes are reached.  

The software used to perform the classification tree analysis was CART® 

(Classification And Regression Trees) (Breiman et al., 1984). 

The CART® analysis consists of four basic steps (Lewis, 2000). The first step consists 

of tree building, during which a tree is built using recursive splitting of nodes. Each 

resulting node is assigned a predicted class, based on the distribution of classes in 

the learning dataset. The second step consists of stopping the tree building process. 

At this point a tree that fulfills the conditions derived from the learning dataset is 

created. The third step consists of tree “pruning,” cutting off lower level splits that 

contribute little to the overall accuracy , which results in the creation of a sequence 

of simpler trees. The fourth step consists of optimal tree selection, during which the 

tree that fits the information in the learning dataset is selected from among the 

sequence of pruned trees. 

The most important characteristic of this method is that for each node a threshold 

value is created that can be easily interpreted, which gives important information to 

understand the classification procedure. Moreover, the thresholds are generated 

without assumptions of normality or continuity of the variables, thus non-parametric 

and categorical variables can be included in the classification, being the best 

characteristic of this classification method. 

The CART analysis requires the setting of the priors (probability of occurrence of 

each class) before starting the analysis. In this case the priors were set according to 

the classified fused image with the MLC. The same training data set used for MLC 

was used for generating the rules of the decision tree analysis. The program 

generated a big tree with multiple nodes (described in the results with more detail) 
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that was input into the knowledge engineer of Erdas Imagine®. In this module it is 

possible to input all the rules that define each terminal node of the tree and perform 

a classification based on such rules. In this way the classification of the final fused 

image (CASI + LiDAR) was performed and the classified map was obtained, so it 

could be compared with the result of the ML classification. 

 

3.5 Accuracy comparisons  

One of the aims of this research was to compare the classification accuracy of the 

CASI, LiDAR and fused images and see if there was any improvement in the 

classification when using both images together. The next approaches were tried to 

compare the different combinations before the final image was obtained by the 

fusion of the best results coming from the CASI and the LiDAR separately. 

 

- From the CASI image: 

1. - CASI (10 bands) 

2. - PCA (1st, 2nd, 3rd and 4th principal components) 

 

From the LiDAR image: 

3. - LiDAR (search area circle 2 meters radius, min, mean, range, std, median, max) 

4. - LiDAR (search area circle 4 meters radius, min, mean, range, std, median, max) 

 

After classifying and assessing the accuracy of the first 4 images, the best result was 

chosen to be fused. 

The layers of the CASI image and the ones of the LiDAR image were stacked 

together and the classification was performed for the fused image. 

The images were classified with the Maximum Likelihood Classifier, following the 

same procedure and using the same training and accuracy assessment points, thus 

the randomly chosen points utilized for each procedure did not produce any bias in 

the final result. 

 

Normalization of the users and overall accuracies  

One of our objectives was to compare classification accuracies of different 

classifications. The number of ground truth points of each class used for the 

accuracy assessment have a direct influence on the users and overall accuracies if 
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the number of test points are not kept proportionally to the area of each class. For 

instance, one class easy to distinguish (for instance water) that has a small area in 

the classified image would bias the users and overall accuracies if the number of test 

points were not proportional among the different classes. Just increasing the 

number of test points in that class would increase the overall accuracy and users 

accuracy of that class, which would make no sense. Hence, the number of testing 

points for each class should be proportional to the area of each particular class, as 

shown in figure 16. 

However, in most of the cases we do not know the area of each class before starting 

the analysis. In this case, a good approach would be to rearrange the number of 

test points in the error matrix according to the area that each class has in the 

classified image. This procedure is also not error-free because the normalization of 

the error matrix would come from areas of the classified image, which indeed is not 

perfect. However, it is better than not taking this factor into consideration at all. 

So in this way, all the users and overall accuracies were normalized according to the 

number of test points available for each class and their respective area in the 

classified image. 

 

 

Fig. 16:  The number of testing points should be kept proportional to the area of 

each class. In the figure 1, the class A is overestimated and would affect the 

overall and the users accuracy of that class. The figure 2 shows the ideal testing 

points sampling scheme. This ideal situation is approached (a posteriori) by the 

normalization of the error matrices. 



 

 

39

4 Results and discussion 

4.1 Rastering of the LiDAR data 

As described in section 3.2.2 regular grids of 2x2 m were created from the LiDAR 

data. Grid cell values consisted of height statistics (section 3.2.2.2) derived by 

considering different search areas around the cell center (figure 10)  

 

        
mean (square 2x2m)        mean(circle 2m radius)     mean(circle 4m radius) 
 

   

 

     
STD (square 2x2m)        STD(circle 2m radius)     STD(circle 4m radius) 
 

Fig. 17:  Comparison between different ‘search areas’ for the LiDAR image 

 

Figure 17 represents different LiDAR images of the same area: a small, partially 

forested part of the study area of about 80 x 80 meters. The features that are 

delineated correspond to trees. The image with a square search area of 2x2 meters 

produced a scattered result compared to the other two, where the features are more 

distinguishable. Another aspect to point out is that the bigger the search area, the 

smoother is the result, but also part of the detail is lost. It is easy to reason that 

increasing the search area too much would produce a very smooth image, from 

which no information could be extracted. What is important is the local variation of 

height; so in theory, the smaller the search area the more accurate the result. 

However, this hypothesis would be correct only if the density of LiDAR points was 
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very high. In our case, one point per square meter was not enough to derive reliable 

statistics in small search areas. That is why the map coming from a search area of 2 

x 2 meters shows poor results in this study. On the other hand, the problem of using 

larger search areas (in order to have more points to derive statistics) is that the 

calculations would come from height values which lay very far from the pixel we are 

trying to assign a texture value to, which introduces an error of assumption. 

Moreover, also the scale of the study should be taken into consideration when we 

choose the size of the output pixel and the search area. 

 

Another important aspect is the different range of texture values that the different 

classes show. The texture values of the class 8 (forest)  are much higher than those 

in the rest of the classes, in the order of 50 to 100 times bigger. This means that for 

the whole image, when scaled  between the minimum and the maximum, the result 

is an almost complete visual homogenization of the classes from 1 to 7 (because of 

their low texture values compared to the class forest). This fact gives the impression 

of a lack of ability of the LiDAR image to discriminate features between the low 

vegetation classes. However, rescaling the texture values within the low vegetation 

classes will show that even small differences in vegetation height are visible (and 

thus analyzable) in the LiDAR composite. This can be seen in figure 18. 

 

 

   

 

 
composite range, std, mean (R G B)     composite range, std, mean (R G B) 
original image          after histogram equalization  
 

Fig. 18:  Visualization of the ‘hidden’ information of the LiDAR image 
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4.2 LiDAR ML classification results  

As mentioned in the methodology, the Maximum Likelihood Classifier was used to 

classify the LiDAR images. A total of 170 ground truth plots were used as training 

data-set and 164 as testing.  The plots were selected randomly. As stated before, 

the LiDAR images with circular search areas of 2 and 4 meters radius were 

used for further analysis. 

The result of the classification is shown in table 3. 

 

 LiDAR 2m radius LiDAR 4m radius 

 Users accuracy 
normalized 

Producers 
accuracy 

Users accuracy 
normalized 

Producers 
accuracy 

Class 1 31.78% 54.55% 26.64% 72.73% 

Class 2 13.31% 57.89% 0.00% 0.00% 

Class 3 7.23% 11.54% 10.63% 15.38% 

Class 4 22.82% 23.26% 22.89% 39.53% 

Class 5 9.52% 5.26% 23.88% 15.79% 

Class 6 0.00% 0.00% 84.76% 13.64% 

Class 7 6.78% 50.00% 44.94% 100.00% 

Class 8 100.00% 90.00% 99.07% 100.00% 

 

 LiDAR  
2m radius 

LiDAR  
4m radius 

Overall accuracy 30.67% 35.58% 

Overall normalized accuracy 33.68% 43.36% 

Table 3: Classification accuracy comparison between LiDAR 2m and 

LiDAR4m 

 

The LiDAR image coming from a circular search area of 4 meters radius (LiDAR 

4m_radius) showed the best overall accuracy. Also the producers and users 

accuracy was better in almost all the classes, especially in classes 7 and 8, which are 

the ones with the clearest structural pattern. According to this result, this image was 

chosen to be fused with the CASI image. 

 

The most important remark about the results of the classification of the LiDAR image 

is that LiDAR was able to classify the classes 7 and 8 quite well. The rest of the 

classes appeared rather mixed, including the class 1 (sandy bare soil). 
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The problems of the LiDAR image to classify the class number one comes from the 

low accuracy of the DEM and the slope of the terrain in that class. When a DEM, 

which comes from an initial resolution of 6 x 6 meters is subtracted from the 2x2 m 

pixels height values of the LiDAR image, the result in steep zones is a ‘stepwise’ 

pattern perpendicular to the slope, which makes confusion with height values 

coming from vegetation. Moreover, large search areas in steep zones produce also 

values of relative height that can be confused with differences of vegetation height. 

This problem would be solved with a more accurate DEM or with a higher LiDAR 

point density, which would allow smaller search areas.  

The LiDAR was not able to discriminate properly the rest of the classes, from 2 to 6, 

most probably because those classes do not show evident differences in their 

structure. 

As a final remark we can say that the size of the search area showed a clear 

influence on the result of the classification. 

 

4.3 CASI ML classification results 

The CASI image was classified using the same ground truth points and testing points 

for the classification accuracy. Figure 19 shows the spectral signature of the 8 

classes in the CASI image. We can see that the spectral signatures of class 1 and 8 

are clearly distinct to the rest, whereas the rest (from 2 to 7) appear rather 

overlapped. This was reflected in the classification results.  

 

 

Fig. 19:  Spectral signatures of CASI 
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The PCA was also performed and the obtained image (section 3.2.1.1) was 

classified. In this case also class 1 and 8 appear clearly distinct whereas de rest are 

quite mixed (figure 20). 

The results were compared to those of the CASI. We can see the results in the 

accuracy reports in table 4. 

 

 

Fig. 20:  Spectral signatures of PCA 

 

 CASI PCA 

 Users accuracy 
normalized 

Producers 
accuracy 

Users accuracy 
normalized 

Producers 
accuracy 

Class 1 86.9% 100.00% 91.67% 100.00% 

Class 2 33.6% 31.58% 21.43% 15.79% 

Class 3 58.58% 42.31% 28.57% 23.08% 

Class 4 41.0% 46.51% 68.75% 51.16% 

Class 5 49.4% 68.42% 57.14% 42.11% 

Class 6 52.7% 54.55% 30.95% 59.09% 

Class 7 24.9% 33.33% 0.00% 0.00% 

Class 8 97.3% 95.00% 100.00% 100.00% 

 

 CASI PCA 
Overall accuracy 57.06% 51.23% 

Overall normalized accuracy 55.60% 53.46% 

Table 4: Classification accuracy comparison between the original CASI bands 

and the first 4 principal components (PCA) 
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Neither CASI nor PCA were able to clearly discriminate classes from 2 to 7. 

Moreover, the  PCA did not show any improvement of the classification. Thus, 

according to the classification results, the original CASI image was chosen to be 

fused with the LiDAR. 

 

4.4 ML classification results after fusion of CASI and LiDAR 
data 

Once the LiDAR image was transformed into a regular grid with textural information, 

the different layers coming from the LiDAR were stacked together with those from 

the CASI, creating a new image containing all the bands. 

The result of this fusion can be better understood in the figure 21, where we can 

see a composite image made from two bands of the CASI (blue and green) and the 

band max of the LiDAR (red). Zooming into the image, we can even appreciate how 

the trees are enhanced by the LiDAR band (max), whereas the shadows of the trees 

are delineated by the CASI bands. 

 

      

 

Fig. 21:  Fused image of CASI + LiDAR. Composite RGB (max, green, blue) 

 

This is just an example to show that the information of CASI and LiDAR was 

integrated into the same image and therefore can be visualized and analysed 

simultaneously. 
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All the CASI and LiDAR bands were stretched (section 3.4.1) and the image was 

classified using the same ground truth points and the results compared to those 

coming from the CASI and the LiDAR alone. 

In table 5, the overall accuracies of the different classifications are shown, including 

the two of the LiDAR, CASI and PCA described already before. 

 

Image Overall 
accuracy 

Overall normalized 
accuracy 

LiDAR 2m_circle 30.67% 33.68% 

LiDAR 4m_circle 35.58% 43.36% 

CASI (10 bands) 57.06% 55.60% 

PCA (1 – 4 principal component) 51.23% 53.46% 

FUSED (CASI + (LiDAR 4m_circle) 56.44% 63.52% 
 

Table 5: Overall accuracies of the different classifications. 

 

Looking at the overall accuracy, the classification results of the fused image is 

almost the same as those of the CASI data. On the other hand, the normalized 

overall accuracies showed an improvement for the fused image (table 8). However, 

these values have to be studied more carefully before drawing definite conclusions.  

An analysis of the error matrix is needed to see the influence of the fusion of the 

two images on the final results. At this point it must be said that the large number 

of layers used for the analysis, the redundancy and/or contradiction that some 

layers could add at the classification process, might have an influence on the final 

classification, which cannot be analyzed with this classification method. Is the ML 

classifier able to leave aside the information of ‘noisy layers’ and use only the 

important ones? This is one of the drawbacks of the ML classifications. There is no a 

posteriori information that could help us to understand the influence of each layer 

better during the classification procedure. 

Despite that problem, we can draw some important conclusions from the error 

matrices (appendixes D to H). 

- Class 1 is well classified in all the images, except for the LiDAR alone. In this case 

the most important characteristic of this class is the complete unique spectral 

response, which makes it easily classified by the CASI image. The spectral signature 

of each class can be seen also in figure 19. 
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- Class 8 (forest) is perfectly classified by the LiDAR, fused and PCA images. In this 

case not only the spectral response, but also the structure is unique of this class. 

- The rest of the classes are often misclassified. They all show a similar spectral 

response and also have a not very distinguishable physical structure. However, there 

is an important observation to be made. 

 

LiDAR and the fused images classify class 7 better, which has a distinct structure but 

not a distinct spectral response, whereas the CASI and the derived PCA images are 

not that effective to discriminate this class. 

 

Another important remark is that although we cannot find out the weight of each 

image (CASI and LiDAR) in the ML classification procedure, it is clear from the 

analysis of the error matrix (appendix E) that the fusion of the two images produced 

an homogenization of the classification. This means that the distribution of the 

wrongly classified plots among the other classes is more homogeneous in the fused 

image. Taking into consideration that we are talking about structural classes ordered 

by height (from 1, the lowest, to 8, the highest), the homogenization can be 

considered as an improvement.  

 

For example, let’s assume that one plot belonging to class 7 is classified as class 2 in 

the CASI image, but as class 6 in the fused image. According to the overall 

accuracies, both classifications are mistaken, but considering that class 7 is more 

‘similar’ to class 6 than to class 2 (see figure 8), we could conclude that the fused 

image classified ‘better’ (or at least less wrongly) than the CASI in that case. This 

effect can be appreciated in the next schematic error matrices (figure 20). Green 

represents correct classifications, red wrong classifications and light blue ‘not 

misclassified’. To make it clearer, let’s say that a perfectly classified image would be 

represented by a green diagonal with only blue cells in the rest of the table. In this 

scheme, the values are not shown, it is only an idea of the ‘homogenization’ of the 

classification. 
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CASI              FUSED (CASI + LiDAR) 

Fig. 22:  Schematic error matrices. Values are not shown, only the concept of 

homogenization, which is shown by the distance of the mistakes to the central 

diagonal. The homogenization of the mistakes is better in the FUSED images 

 

Summarizing, the fusion of the two images produced an improvement of the overall 

accuracy (from 55.60% to 63.52%). This improvement has to be analyzed 

carefully, because we could see that the non-proportional distribution of the testing 

points in the sampling scheme had a strong influence on the final results.  

However, the effect of the LiDAR was clear in the fused image, producing, as 

explained before, a more homogeneous classification of the different structural 

vegetation classes, closer to our aim. This means that the structural information 

added by the LiDAR image was effectively used by the ML classifier and helped to 

discriminate the different structural classes. 

 

4.5 Results of Decision Tree classification 

As mentioned in the methodology chapter, a different approach used to analyze the 

fused image was the decision tree classification (CART analysis). The results are 

similar to those of the ML classifier, and show the existing spectral and structural 

mix of the classes from 2 to 6, while on the contrary the producers and users 

accuracy of the classes 1 and 8 are 100% (table 8). 

One important aspect of this classification method is that the program generates its 

own classification thresholds for each class combining information from different 

bands. The range value of the bands does not need to be normalized or rescaled. 

Moreover, after the classification, a rank of importance of each band for the 
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classification procedure is given, which can be very valuable to understand the 

weight of each layer during the classification procedure.  This information is missing 

with the ML classifier. 

Another option to gain extra information about the variable importance is analyzing 

the structure of the tree visually, which can help to understand better the 

classification process (figure 23). We can see which variables play a role in the first 

splits, normally the most important ones. In our case, the final tree presented 315 

terminal nodes. Each one of these nodes is a decision rule for a fixed class, 

determined by a combination of threshold values of different layers. Taking a look at 

our tree, we can draw some conclusions. 

 

 

Fig. 23:  Structure of the decision tree generated by CART 

 

The classes 1 and 8 were defined with only a few nodes, whereas the rest of the 

classes were classified with multiple nodes, sometimes differentiated by very narrow 

threshold values. This fact confirms the already mentioned problem of the mixing of 

classes from the class 2 to 7. While the CART analysis can identify classes 1 and 8 

with a few nodes, it cannot do the same with the rest of the classes and has to 

create multiple nodes to generate the rules for discriminating the rest of the classes, 

which ends up creating a huge and confusing tree which is not able to classify 

properly the mixed classes. In table 6, the number of terminal nodes generated by 

CART to define each class is shown. It is derived from the tree shown in figure 23. 

 

Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 
Number 
terminal 
nodes 

4 54 74 71 45 55 10 2 

Table 6: Classification tree: Number of terminal nodes generated per class 
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As mentioned in the methodology, another important characteristic of the decision 

tree analysis is the possibility of analyzing the weight of each layer in the 

classification. Table 7 was generated by the CART analysis, and shows the variable 

importance ranking during the generation of the tree. 

 

Variable Score  
C6 100.00 |||||||||||||||||||||||||||||||||||||||||| 
LMAX_16 85.11 |||||||||||||||||||||||||||||||||||| 
LSTD_13 84.52 ||||||||||||||||||||||||||||||||||| 
LRANG_12 84.44 ||||||||||||||||||||||||||||||||||| 
LMEAN_15 82.69 ||||||||||||||||||||||||||||||||||| 
LMED_14 77.73 |||||||||||||||||||||||||||||||| 
C4 53.82 |||||||||||||||||||||| 
C5 53.51 |||||||||||||||||||||| 
C1 44.04 |||||||||||||||||| 
C3 42.21 ||||||||||||||||| 
C2 40.57 |||||||||||||||| 
C9 26.35 |||||||||| 
C10 25.58 |||||||||| 
C7 21.83 |||||||| 
C8 21.56 |||||||| 
LMIN_11 3.16  

Table 7: Variable importance of each band 

 

However, the analysis of the variable importance ranking of the CART analysis is 

very complicated because it comes from this specific tree and because the way it is 

generated and interpreted is not clear. Other trees with similar accuracies could 

have been generated and could have produced different variable importance 

rankings.  

 

Hence, despite these conclusions, the use of CART analysis requires a thorough 

study and this test was only a first approach to this promising classification 

methodology. The possibilities that the CART analysis can offer in the field of the 

fusion of CASI and LiDAR are open for further studies. 

 

In table 8 the accuracy reports of the fused images classified with decision tree 

analysis and  Maximum Likelihood are compared.  
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 Maximum Likelihood Decision tree (CART analysis) 

 Users accuracy 
Normalized 

Producers 
accuracy 

Users accuracy 
normalized 

Producers 
accuracy 

Class 1 100.00% 100.00% 100.00% 100.00% 

Class 2 22.55% 21.05% 30.85% 36.84% 

Class 3 39.90% 61.54% 22.62% 26.92% 

Class 4 46.41% 53.49% 38.74% 67.44% 

Class 5 48.31% 63.16% 35.56% 26.32% 

Class 6 91.26% 22.73% 25.27% 13.64% 

Class 7 100.00% 66.67% 45.07% 33.33% 

Class 8 100.00% 100.00% 100.00% 100.00% 

 

 Maximum 
Likelihood 

Decision tree  
(CART analysis) 

Overall accuracy 56.44% 50.92% 

Overall normalized accuracy 63.52% 53.65% 

 

Table 8: Classification accuracies comparison between MLC and decision tree 

analysis for the fused image. 
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5 Conclusions and Recommendations 

5.1 Conclusions 

After the results have been obtained and discussed, it is time to look back and draw 

conclusions about this study. The main objective of this thesis was to perform a 

vegetation classification (according to structural classes) combining CASI and LiDAR 

images. This objective was fulfilled. A classification of the vegetation in the 

floodplain of the river Rhine in The Netherlands, using the CASI and the LiDAR 

datasets together was done. To achieve this, first a methodology to extract 

information from the LiDAR image was successfully developed. The grid maps 

coming from statistical calculations of LiDAR height points were useful to 

discriminate different structural classes. The use of the original LiDAR points for 

deriving the statistical calculations and generate the grid maps was an improvement, 

compared to other methods. Moreover, trying different search areas to extract 

information showed that this is an important factor to take into consideration when 

analyzing the LiDAR dataset. 

The fusion of the CASI and LiDAR datasets was possible by means of the 

rasterization of the LiDAR image. The classification of the fused image showed an 

improvement, not only on overall accuracy but also on homogenization of the errors, 

compared to the classification based on spectral information only (from 55.60% to 

63.52%). This fact supported the hypothesis that the LiDAR image would help in 

classifying structural patterns. Moreover, the ML classifier was able to use in an 

effective way the information coming from the two datasets.   

  

However, the results of the classification revealed a problem of definition of the 

different structural classes. The merging of ecological communities into structural 

classes failed to some extent, since none of the approaches was able to clearly 

discriminate from class 2 to 6. The inclusion of the LiDAR only made possible to 

improve the classification of class 7, which has a fairly distinguishable structural 

pattern. The conclusion about this failure is that classes from 2 to 6 had similar 

structural and spectral pattern and so were not classified correctly. So we would not 

say that the CASI and LiDAR were not capable to classify properly, but quite the 

opposite they were able to show evidences about the overlapping of those classes. 
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About the use of a different classification approach, the decision tree classification, 

we can conclude that the results were worse than those of the ML classifier. On the 

other hand, the classification was useful to confirm the same class mixing problem 

and,  moreover, important information about the different layers of CASI and LiDAR 

was generated. However, the complexity of the CART outputs did not permit a 

thorough analysis of all the possibilities that this classification method offers and so, 

the use of decision tree analysis for analyzing LiDAR and CASI data remains open for 

further analysis. 

 

5.2 Recommendations 

During the development of this research we faced and solved many problems. The 

experience acquired allows us to give some recommendations that can be used for 

further studies concerning the fusion of multispectral and laser scanning data or 

other similar studies. 

 

The design of the sampling scheme should always be based on the purpose of the 

study. Basing the definition of our classes on a previous study that had not as 

purpose the analyzing of structural classes, yielded a problem in that the information 

did not match our needs. In our case, more homogeneous classes and also bigger 

sampling areas would have improved the final classification. 

Since we were trying to classify vegetation, the use of multitemporal data could 

also help to discriminate between classes that could show differences in a certain 

time of the year. 

Regrouping of the structural classes into 4 is recommended. The four classes could 

be merged as follows: bare soil or grass, low-medium vegetation, medium-high 

vegetation (bushes) and forest. These four classes could be reasonably well 

classified with the available datasets and could be of help for the river manager. 

 

Concerning the LiDAR, several aspects could improve the quantity and quality of the 

information that this data sources can offer. 

If possible, increasing the point density of the LiDAR image can help to use 

smaller search areas and consequently yield a higher accuracy and more reliable 

statistics. 
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The use of different search areas for each the statistical parameter could also 

improve the extraction of information from the LiDAR image. 

Search areas should have the size of the output pixel only if there are enough points 

to derive reliable statistics. 

The better understanding of the characteristics of the vegetation classes under 

study can help to chose the right statistical parameters to analyze and even avoid 

the redundancy given by correlated parameters. 

For vegetation studies like this one, the use of the first and last pulse 

simultaneously is crucial and can give very valuable information, allowing taking 

decisions almost at point level. The possibility of generating a very reliable DTM, 

avoiding any influence of the relieve and focusing only on vegetation can produce 

significant improvements. 

The use of spatial statistical techniques, like variogram analysis at pixel level can 

increase the amount of information extracted from the LiDAR image. Some patterns 

that are not seen with simple statistical parameters can become clear with a 

thorough spatial statistical analysis. 

 

Concerning the fusion phase, although the method developed in this study was the 

most straightforward possible, other approaches are also valid. As explained in 

chapter 2.4.3, feature level classification, using the LiDAR and CASI separately, 

to differentiate different classes step by step can be a good approach. We could take 

advantage of the special capabilities of each data set without interference of the 

others during the classification. 
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7 Appendixes 

Appendix A: Classified images LiDAR 2m and LiDAR 4m 

 

 



 

 

60

Appendix B: Classified images CASI and PCA 

 

 



 

 

61

Appendix C: Classified images Fused MLC and Fused Decision Tree 

 



 

 

 

Appendix D 

 

Error Matrix LiDAR 2m circle - - - Overall normalized accuracy:  33.68 % 

 

Appendix E 

Error Matrix LiDAR 4m circle - - - Overall normalized accuracy: 43.36 % 

 

 

 

  Class 1    Class 2    Class 3 Class 4   Class 5   Class 6   Class 7 Class 8 norm. user accuracy producer accuracy
Class 1 6 5 7 13 3 4 0 0 31.78% 54.55%
Class 2 2 11 9 16 9 4 0 0 13.31% 57.89%
Class 3 2 1 3 1 0 4 0 0 7.23% 11.54%
Class 4 0 2 2 10 3 4 0 0 22.82% 23.26%
Class 5 1 0 5 3 1 3 1 0 8.95% 5.26%
Class 6 0 0 0 0 1 0 1 1 0.00% 0.00%
 Class 7 0 0 0 0 2 3 1 1 6.78% 33.33%
 Class 8 0 0 0 0 0 0 0 18 100.00% 90.00%

  Class 1    Class 2    Class 3 Class 4   Class 5   Class 6   Class 7 Class 8 norm. user accuracy producer accuracy
Class 1 8 10 8 21 4 8 0 0 26.64% 72.73%
Class 2 0 0 1 0 1 1 0 0 0.00% 0.00%
Class 3 0 2 4 1 3 3 0 0 10.63% 15.38%
Class 4 1 6 6 17 7 4 0 0 22.89% 39.53%
Class 5 2 1 4 4 3 2 0 0 23.88% 15.79%
Class 6 0 0 0 0 1 3 0 0 84.76% 13.64%
Class 7 0 0 2 0 0 1 3 0 44.94% 100.00%
Class 8 0 0 1 0 0 0 0 20 99.07% 100.00%



 

 

 

Appendix F 

 

Error Matrix CASI - - - Overall normalized accuracy:  55.60 % 

 

Appendix G 

Error Matrix PCA - - - Overall normalized accuracy:  53.46 % 

 

 

 

  Class 1    Class 2    Class 3   Class 4   Class 5   Class 6   Class 7    Class 8 norm. user accuracy producer accuracy
Class 1 11 0 0 1 0 0 1 0 86.90% 100.00%
Class 2 0 6 3 9 2 1 0 0 33.63% 31.58%
Class 3 0 2 11 9 0 0 0 0 58.58% 42.31%
Class 4 0 2 3 20 0 2 0 1 41.04% 46.51%
Class 5 0 2 5 2 13 5 0 0 49.40% 68.42%
Class 6 0 5 3 2 2 12 1 0 52.76% 54.55%
Class 7 0 2 1 0 1 2 1 0 24.90% 33.33%
Class 8 0 0 0 0 1 0 0 19 97.33% 95.00%

  class 1    Class 2    Class 3   Class 4   Class 5   Class 6   Class 7    Class 8 norm. user accuracy producer accuracy
Class 1 11 0 0 1 0 0 0 0 91.67% 100.00%
Class 2 0 3 2 6 0 3 1 0 21.43% 15.79%
Class 3 0 1 6 10 3 1 0 0 28.57% 23.08%
Class 4 0 4 5 22 1 0 0 0 68.75% 51.16%
Class 5 0 1 3 1 8 1 0 0 57.14% 42.11%
Class 6 0 9 9 3 6 13 2 0 30.95% 59.09%
Class 7 0 1 1 0 1 4 0 0 0.00% 0.00%
Class 8 0 0 0 0 0 0 0 20 100.00% 100.00%



 

 

 

Appendix H 

 

Error Matrix FUSED (Maximum Likelihood Classification) - - - Overall normalized accuracy:  63.52 % 

 

Appendix I 

Error Matrix FUSED (Decision Tree Classification, CART analysis) - - - Overall normalized accuracy: 53.65 % 

 

 

 

  Class 1    Class 2    Class 3 Class 4   Class 5   Class 6   Class 7    Class 8 norm. user accuracy producer accuracy
Class 1 11 0 0 0 0 0 0 0 100.00% 100.00%
Class 2 0 4 3 8 2 2 0 0 22.55% 21.05%
Class 3 0 4 16 10 2 4 0 0 39.90% 61.54%
Class 4 0 5 4 23 3 2 0 0 46.41% 53.49%
Class 5 0 6 3 2 12 9 0 0 48.31% 63.16%
Class 6 0 0 0 0 0 5 1 0 91.26% 22.73%
Class 7 0 0 0 0 0 0 2 0 100.00% 66.67%
Class 8 0 0 0 0 0 0 0 20 100.00% 100.00%

  Class 1    Class 2    Class 3 Class 4   Class 5   Class 6   Class 7    Class 8 norm. user accuracy producer accuracy
Class 1 11 0 0 0 0 0 0 0 100.00% 100.00%
Class 2 0 7 5 7 4 2 0 0 30.85% 36.84%
Class 3 0 1 7 7 5 7 2 0 22.62% 26.92%
Class 4 0 6 9 29 0 2 0 0 38.74% 67.44%
Class 5 0 2 2 0 5 7 0 0 35.56% 26.32%
Class 6 0 3 2 0 4 3 0 0 25.27% 13.64%
Class 7 0 0 1 0 1 1 1 0 45.07% 33.33%
Class 8 0 0 0 0 0 0 0 20 100.00% 100.00%


	Acknowledgements
	Abstract
	List of figures
	List of tables
	List of acronyms
	I
	Introduction
	Background
	Problem definition
	Objectives
	Research questions
	Set-up of the report

	Fusion of CASI & LiDAR
	Data fusion
	Signal/pixel level
	Attribute/feature level
	Decision level

	Multispectral image (CASI)
	Airborne Laser Scanning (ALS)
	Principles of laser scanning
	Applications and special characteristics of the ALS

	Fusion approaches of CASI and LiDAR
	First step: Texture Analysis of the LiDAR
	Pixel level
	Feature level classification


	Materials and research methodology
	Ground truth
	Preprocessing of the images
	CASI
	Principal component analysis (PCA)

	LiDAR
	LiDAR pre-processing
	Statistical parameters
	Image generation

	DEM
	Change of spatial resolution

	Image fusion
	Classification
	Maximum Likelihood Classifier (MLC)
	Classification tree (CART analysis)

	Accuracy comparisons

	Results and discussion
	Rastering of the LiDAR data
	LiDAR ML classification results
	CASI ML classification results
	ML classification results after fusion of CASI and LiDAR data
	Results of Decision Tree classification

	Conclusions and Recommendations
	Conclusions
	Recommendations

	References
	Appendixes

