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1 General	Introduction	

1.1 Background	and	problem	analysis	

Although earliest records date back to ancient Assyrians heating their baths with 

biogas [1], the worldwide (re-)interest in anaerobic conversion processes has only been 

rapidly growing since the last decades, due to the growing concerns on energy scarcity 

and greenhouse gas emissions. Anaerobic digestion combines waste-(water) treatment 

and energy production by converting the chemically bound energy in organic waste 

constituents into energy-rich biogas, a mixture mainly consisting of the most reduced 

and most oxidised forms of carbon, i.e. CH4 and CO2. For example, in the Netherlands, 

about 500 kton per year of organic sanitary waste (faecal matter and urine) is conveyed 

through its sewer system. Assuming 50% of this waste can be anaerobically digested 

to methane, it has a primary energy content of 4-5 PJ (1.3 *109 kWh). A maximum 

primary energy potential of 50-60 PJ is estimated annually if also garden waste, 

livestock manure, slaughterhouse and food industry residues are considered. Although 

this seems marginal compared to the current total natural gas consumption of about 

1500 PJ year-1, it could provide almost 1 million Dutch households with their annual 

gas supply when assuming an average gas consumption of 1800 Nm3 household-1 y-1 

and a calorific value of 36 MJ Nm-3 [2]. Because energy from biogas may also 

represent a crucial component of future renewable energy mixes [2], cost-effective 

technologies are needed to convert this potential into actual energy. 

The characteristics of biogas produced by anaerobic digestion do not meet the 

requirements for injection in existing gas distribution systems and other applications 

[3, 4] as is shown in Table 1-1. For all applications, it should be considered that the 

pressure of the produced gas must exceed the pressure requirement of the appliances 

or the local grid. Thus, feed-in gas pressures in the order of 25 hPa are already 

sufficient for gas stoves and stationary engines [4], whereas for regional gas grids a 

pressure of at least 0.8 MPa is required.  In addition, pressures as high as 20 MPa are 

required to facilitate the desired reduction in storage volume for vehicle fuel. 
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Table 1-1: Overview of required gas upgrading for different applications [3-10] 
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Table 1-1: Overview of required gas upgrading for different applications [3-10] 
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With an increasing CO2/CH4 ratio in the biogas the calorific value decreases, and thus 

removing CO2 seems to be beneficial for all applications. To maintain a constant 

calorific value of the natural gas in the national gas grid as well as in vehicle fuel, 

upper limits of 3-6% CO2 are set. Furthermore, CO2 can pose a risk of corrosion when 

associated with condensation of water due to the formation of carbonic acid. Because 

of the formation of the even more corrosive sulphuric acid, limits for H2S and total S 

are much lower, especially for storage and underground piping systems [4]. Another 

reason to remove H2S  is its toxicity for humans and the potential risk of exposure in 

the case of a leakage in a piping or storage system [11].  

Furthermore, condensation of water adds to the risk of corrosion and causes pressure 

fluctuations in the piping systems and should thus also be prevented. In general this is 

achieved by removing the water to levels below the condensation point, at the 

minimum temperature to which the gas could be exposed. A short introduction  is 

given on basic calculations related to saturated water vapour pressures in paragraph 

1.4.  

The main reason to set restrictions on ammonia concentrations is to prevent the 

formation of NOx upon combustion. Furthermore, the presence of ammonia in the fuel 

gas results in a shorter lifespan of engine oil. And finally, siloxanes, halogenated 

hydrocarbons and phosphines are man-made (toxic) compounds that can end up in the 

biogas via their presence in the organic waste, but in most situations they are only 

present in landfill gas [5, 6]. Although present in trace concentrations siloxanes and 

halogenated compounds could damage combustion equipment due to deposition and 

corrosion, respectively. 

Thus, biogas upgrading units are necessary for injection into the natural gas grid and 

other high-grade applications. External (or downstream) upgrading technologies, like 

membranes, pressure swing adsorption and water scrubbing, require external 

compressors and thus demand external energy input [4], which make them only 

economically feasible at biogas flows > 100 m3 h-1. Consequently, lower biogas flows 

are so far disregarded for biogas upgrading techniques and its potential for high-grade 

use is generally lost. Often this even results in flaring of biogas, losing a useful energy 
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resource. For example, biogas generation from small-scale digesters, mounted in the 

so-called Decentralised Sanitation and Reuse (DeSaR) systems, does not exceed 10 m3 

biogas person-1 y-1. The handling and upgrading of this low amount is a main 

constraint for further development of DeSaR systems [12].  

In this chapter we propose a novel anaerobic digestion concept for the production of 

high-grade biogas from slurries and waste water in just a single step: Autogenerative 

High Pressure Digestion (AHPD). The objective is to digest organic matter under 

autogenerated high pressure to CH4 and CO2 [13, 14]. Henry’s constants for CH4, CO2, 

H2S, and NH3 in water are 0.016, 0.318, 1.150 and 620 mol L-1 MPa-1, respectively 

[15]. From these theoretical constants it can be concluded that CO2 dissolves relatively 

better than CH4 in water at increasing pressures.  

Moreover, it is aimed to produce AHPD-biogas directly at a suitable pressure for high-

grade use. AHPD eventually aims to generate biogas that also meets the quality 

demands for Synthetic Natural Gas (SNG), or in popular words “green gas”. Ideally, 

no additional upgrading technology would be required. Although investments are 

needed to operate anaerobic digestion at high pressure, we expect that with AHPD we 

can develop a cost-effective small-scale technology suitable for decentralised biogas 

production from organic waste. This research explores pressurised digestion systems 

in which the biological autogeneration of pressure is brought about by trapping the 

produced biogas inside the bioreactor.  

In the past some papers, although not many, have been published describing the 

autogeneration of biogas pressure and the in-situ upgrading of biogas. The idea of 

differential solubility at increasing pressure between CH4 and CO2 was for example 

already described in 1991 by Richards and co-workers for energy crop and manure 

digestion. An overview of other relevant references can be found in Table 1-2. 
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Table 1-2: Overview of earlier work on pressurised anaerobic digestion and relevant bioreactor operation 

Digestion conditions Process performance Reference 

pCO2 = 0.00 -0.10 MPa 

T = 55-70 ºC 

Substrate: VFA 

Batch-fed reactor 

Acetoclastic methanogenesis inhibition with 

 increasing pCO2 (0.00, 0.03, 0.06 and 0.10 MPa)  

and T (55, 60, 65 and 70 ºC) 

 

[16] 

P = 0.1 - 0.3 MPa 

T = 35 ºC 

HRT = 3 days 

Substrate = glucose, VFA 

Fixed-film reactor  

(with CO2 stripping) 

With glucose: 

CH4 = 54.1 %; CODremoval = 93.7 % (0.10 MPa) 

CH4 = 59.4 %; CODremoval = 89.6 %  (0.30 MPa) 

With VFA: 

CH4 = 81.0 %; CODremoval = 97.3 %  (0.10 MPa) 

CH4 = 93.2 %; CODremoval = 97.3 %   (0.30 MPa) 

[17] 

P = 0.1- 0.4 MPa 

T = 35-55 ºC 

HRT = 50-20 days 

Substrate = sludge 

At 55 ºC: Decreased NH3 inhibition 

CH4 = 58-65 %; OMremoval = 57 % (0.25- 0.30 MPa) 

SGP = 0.46 m3 kgVSadd
-1 (0.25- 0.30 MPa) 

At 35 ºC: > Instability (0.30- 0.40 MPa) 

[18] 

Pmax = 0.114 MPa  

T = 39 ºC 

HRT = 15 days 

Substrate = swine slurry 

CH4 = 60.9 % 

GPR = 0.85 m3 m-
-3 d-1 

 

[19] 

P = 0.1 - 0.3 MPa 

Theoretical model 

Decreased NH3 inhibition (0.30 MPa) [20] 

Using alkalinity recycling 

loop to produce high quality 

biogas from energy crops 

>98% CH4 [21] 

Pressure temperature 

relationships biological 

growth in a  pressurised 

bioreactor  

Cultivation of marine piezophilic bacteria [22] 

 

Note: AHPD: Autogenerative High Pressure Digestion, GPR: gas production rate, HRT: Hydraulic 

residence time, OM: organic matter, P: Pressure, SGP: Specific gas production, T: Temperature, VFA: 

Volatile fatty acids 

1.2 Anaerobic	digestion	at	atmospheric	pressure	

Because of the relative small amount of data covered in articles on this specific topic, 

the literature overview in this chapter describes basic concepts and theory regarding 

anaerobic digestion, Henry’s law and gas-liquid equilibria, mineral weathering and 
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general pressure effects applied to organisms involved in the anaerobic digestion 

process. 

Generally, anaerobic digestion is regarded as 4 separate microbiological processes; 

hydrolysis, acidogenesis, acetogenesis and methanogenesis. Figure 1-1 shows a 

simplified overview of these stages. Complex organic matter is disintegrated, 

(enzymatically) dissolved and then hydrolyzed to amino acids, sugars and free long 

chain fatty acids by different enzymes excreted by the micro-organisms [23], as is 

depicted in the lower part of Figure 1-1.  

In the next stage these intermediates like amino acids and glucose are converted into 

organic acids, alcohols and hydrogen and CO2. From these organic intermediates 

acetogenic bacteria produce acetate, carbon dioxide and H2. These are subsequently 

converted into H2O, CH4 and CO2 by methanogens [24]. It is noteworthy that the 

digestion of proteins results in the formation of additional NH3 and H2S. 

 
Figure 1-1: Schematic overview of anaerobic digestion in which the dotted lines represent the different 

stages and the arrows indicate the direction of the (bio)chemical conversion 
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All these steps have been thoroughly investigated over the years at atmospheric 

pressure, using a wide range of substrates, ion activities and temperatures. As a result 

many different systems have been developed for the full-scale treatment of waste 

water and organic waste streams, like the Upflow Anaerobic Sludge Blanket (UASB), 

fixed bed and fluidised bed reactor types [25, 26].  

In these systems bioconversions follow thermodynamic equilibria i.e. the Gibbs free 

energy change of a biochemical reaction[27].  The following equations show several 

reactions for methanogenesis, homo-acetogenesis, acetogenesis and acidogenesis of 

carbohydrate based digestion under standard condition (298K, pH 7, 1M reactants, 100 

kPa gas pressure)[27]. ∆G0’ is used to denote the Gibbs free energy potential at above 

mentioned standard conditions. Glucose is an easily degradable compound for many  

organisms and its conversion products (a.o. lactate, ethanol and acetate) are highly 

dependent on the type of organism and the prevailing conditions [28]. The chosen 

representation is a simplified reaction generally used for glycolysis in anaerobic 

digestion.  

Aceticlastic methanogenesis        (Eq. 1-1) 

CH3COO‐	൅	H2O		CH4	൅	HCO3‐		    ΔG0’ = -31 kJ  reaction-1   

Hydrogenotrophic methanogenesis       (Eq. 1-2) 

4H2	൅		HCO3‐	൅		H൅		CH4	൅	3	H2O	    ΔG0’= -135 kJ reaction-1     

Homo-acetogenesis         (Eq. 1-3) 

4H2	൅	HCO3‐	൅	H൅		CH3COO‐	൅	4H2O   ΔG0’= -104.6 kJ reaction-1  

Propionate oxidation         (Eq. 1-4) 

CH3CH2COO‐	൅	3H2O		CH3COO‐	൅HCO3‐	൅	H൅	൅3H2  ΔG0’ = +76.1 kJ reaction-1  

Glycolysis          (Eq. 1-5) 

C6H12O6	൅	4H2O		2CH3COO‐	൅	4H൅	൅	2HCO3‐൅	4H2    ΔG0’ = -216 kJ reaction-1     
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Gibbs free energy calculations can however also be used to predict the feasibility of a 

specific biochemical reaction under non-standard environmental conditions, such as a 

pressurised environment. When taking aceticlastic methanogenesis as an example, the 

Gibbs free energy change under actual conditions (ΔG’) would be defined as: 

,ܩ∆ ൌ ,଴ܩ∆ ൅ ܴܶ	݈݊	 ቀ
௣஼ுర∗ሾு஼ைయ

ష	ሿ

ሾ஺௖షሿ∗ሾுమைሿ
ቁ	      (Eq. 1-6) 

In which ∆G0’ = the Gibbs free energy under standard conditions (298K, pH 7, 1M reactants, 0.1 MPa 

gas pressure), R = gas constant 8.3145 J K-1mol-1, T= temperature in Kelvin (K), pCH4 = gas pressure 

of CH4, [HCO3
-], [Ac-] and [H2O] are the molar concentrations of bicarbonate, acetate and water.  

In principle CH4 can be oxidised by Anaerobic Methane Oxidising Bacteria (AMOB), 

potentially impacting the solubilised CH4/CO2 ratio [28]. Specific growth rates of 

AMOB are however very low, whereas owing to the relatively low solubility of CH4, 

there will be a continuous migration of the produced CH4 under atmospheric pressure 

to the gas phase. CH4 can therefore be considered relatively “inert”, but CO2  is  used 

by a wide variety of  micro-organisms for both catabolic and anabolic reactions. 

Moreover, CO2 can be present in many different forms, i.e. CO2(gas), CO2(aq), 

H2CO3, HCO3
- and CO3

2- in the liquid phase, or fixed as CO3
2- in inorganic precipitates 

like CaCO3. In addition, CO2 also affects the reactor broth pH which subsequently 

affects microbiological growth and activity.  

Hydrolysis of complex organic matter is considered the slowest step at ambient 

temperature conditions [29]. Pressure can theoretically influence the disintegration 

and/or the (enzymatic) dissolution of organic solid matter and the formation of 

monomers via  parameters, like temperature, pH and ion activity [30]. At extreme 

pressures, changes in hydrolysis rates should therefore be anticipated. Additionally, 

accumulation of pCO2 has a direct effect on liquid acidity and thus also affects the 

conditions under which hydrolysis takes place. 

1.3 Henry’s	law,	the	carbonate	equilibrium	and	acid	neutralising	capacity	

From the reaction stoichiometry in equations 1-1 and 1-2 the final total pressure in 

batch digestion can be estimated using the ideal gas law, like it is used to calculate the 
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specific methanogenic activity (SMA) in batch assays as described by Cho et al. 

(2005). Because water is assumed to be non-compressible under the proposed reactor 

conditions the gas volume (Vg) is determined by the liquid volume (Vl) , the total 

reactor volume (Vtot) and the temperature (T). Because under pressurised conditions 

gases will dissolve, as described by Henry’s law, only the non-dissolved gases should 

be included to calculate the final pressure. 

ܲ ൌ ସܪܥ௥ሺ݊ߙ ൅ ଶሻܱܥ݊	 ∗ ܴ ∗ ܶ ∗
௏೗

ሺ௏೟ି௏೗ሻ
      (Eq. 1-7) 

In which P= pressure in 0.1 MPa, r = % of non-dissolved biogas, nCH4 =  CH4 (mol), nCO2 = CO2 

(mol), R = 8.3145 J K-1mol-1, T = temperature in K. 

Henry´s law describes the solubility of gases in dependence to the partial pressure of 

the respective gas. For example, the amount of dissolved CO2 (mol L-1) at a given 

partial pressure is given by  

ሾܪଶܱܥଷሿ ൌ ு஼ைమܭ ∗ ଶܱܥ݌        (Eq. 1-8) 

 For CO2 this constant (KH,C02) at 298 K is 0.318 mol L-1  MPa-1 and for CH4 (KH,CH4) 

this value is 0.016 mol L-1 MPa-1 [15]. So, Henry’s law dictates that when dissolving 

both gases at a similar partial pressure into water, almost 20 times more CO2 will 

dissolve.  

In addition, CH4 behaves “inert” while CO2 reacts with water according to the 

carbonate equilibrium [31].  When dissolved CO2 reacts with water carbonic acid is 

formed. In most cases dissolved CO2 and H2CO3 are taken together and the relation 

with bicarbonate is described by the apparent dissociation constant K1= 10-6.3 (Eq. 1-9), 

whereas (Eq. 1-10) describes the dissociation (K = 10-10.25) of bicarbonate to 

carbonate.  And finally, carbonate may be removed from the liquid by the formation of 

CaCO3 of which the solubility product (Ks) determines the precipitation of CaCO3 

(Eq. 1-11). Although not a topic of this thesis, both H2S and NH3 will dissolve and 

react with water, like CO2.  
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ଵܭ ൌ 	
ሾுశሿ∗ሾு஼ைయ

షሿ

ሾுమ஼ைయ
∗ሿ

         (Eq. 1-9) 

ଶܭ  ൌ 	
ሾுశሿ∗ൣ஼ைయ

మష൧

ሾு஼ைయ
షሿ

         (Eq. 1-10) 

ଶܭ ൌ 	 ሾܽܥଶାሿ ∗ ሾܱܥଷ
ଶିሿ        (Eq. 1-11) 

௪ܭ ൌ 	 ሾܪାሿ ∗ ሾܱିܪሿ        (Eq. 1-12) 

All given reactions determine the overall reactor acidity via equation 1-9, 1-10, 1-11 

and 1-12. The excess of cations in relation to the concentration of strong anions is 

known as the alkalinity or acid neutralizing capacity (ANC) of the water [31, 32]. 

݈݇ܣ ൌ ሾܰܽାሿ ൅ ሾܭାሿ ൅ 2ሾܽܥଶାሿ ൅ 2ሾ݃ܯଶାሿ ൅ ሾܰܪସ
ାሿ 

െሾି݈ܥሿ െ 2ሾܵ ସܱ
ଶିሿ െ 3ሾܲ ସܱ

ଷିሿ       (Eq. 1-13) 

 10ି௣ு ൌ ሾ݈݇ܣሿ െ ሾܱିܪሿ െ 2ሾܱܥଷ
ଶିሿ െ 2ሾܱܥܪଷ

ିሿ െ ሾܸିܣܨሿ  (Eq. 1-14) 

These equations will be used to derive a relationship between the alkalinity, pH and 

pressure under AHPD conditions. In these calculations pH should be kept 

circumneutral  as a boundary condition for effective methanogenesis [25].     

From equation 1-13 and 1-14 it can be derived that carbon dioxide accumulation will 

inevitably result in undesired reactor broth acidification, potentially inhibiting the 

methanogens. In order to remove CO2 and [H+] while continuing the biological 

digestion process, the addition of minerals used for aqueous carbon sequestration, like 

wollastonite (CaSiO3) and olivine (Mg, Fe)2SiO4) were studied in this thesis [33]. 

These minerals have the capacity to scavenge CO2 and [H+] according to equations 1-

15 and 1-16 [34, 35].  

CaSiO3	ሺsሻ	൅	2	H൅	ሺaqሻ		Ca2൅	ሺaqሻ	൅	SiO2	ሺsሻ	൅	H2O	ሺlሻ    (Eq. 1-15) 

Ca2൅	ሺaqሻ	൅	CO32‐		ሺaqሻ		CaCO3	ሺsሻ			 	    (Eq. 1-16) 
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1.4 Water	vapour	and	potential	work		load	

The water vapour equilibrium inside the biogas in AHPD is only temperature 

dependent. In order to calculate the specific saturation water vapour pressure the 

Clausius Clapeyron equation (Equation 1-17) can be used [36].  

 ݈݊ ௘ೞ
௘ೞబ

ൌ ௅

ோೡ
ቀ
ଵ

బ்
െ ଵ

்
ቁ        (Eq. 1-17) 

In which  T is the temperature in K, To is 273K, es is the saturation water vapour pressure in hPa 

eso is the saturation water vapour pressure at temperature To (6.11 hPa), L is the latent heat of 

vapourisation (2.453 × 106 J kg-1), and Rv is the water vapour gas constant (461 J kg-1 K-1). 

To determine the water vapour pressure of the AHPD biogas, it is assumed that biogas 

is 100% saturated at the temperature of the bioreactor. According to the ideal gas law, 

pressure times volume before decompression equals pressure times volume after 

decompression at constant temperature [37], according to Equation 1-18.  

௉భ௏భ

భ்
	ൌ 	 ௉మ௏మ

మ்
         (Eq. 1-18) 

In which P = pressure in MPa, V = volume in m3 and T = Temperature in K 

So, when assuming isothermal1 expansion without the biogas being in contact with the 

water phase, the total water vapour in the biogas remains constant, but the total volume 

increases linearly with decreasing pressure. Hence, the water vapour initially contained 

in the pressurised volume is now diluted over a larger atmospheric volume. Therefore 

the water vapour pressure of the decompressed biogas (esbiogas) at atmospheric pressure 

equals the water vapour pressure of biogas when produced at atmospheric pressure 

(es0) divided by the volume after decompression of the AHPD biogas (Vfinal).  

Rewriting, this results in Equation 1-19. 

݁௦௕௜௢௚௔௦ ൌ
௘ೞ೚	௘

ಽ
ೃೡ

൬
భ
೅బ

ష
భ
೅൰

௏೑೔೙ೌ೗
        (Eq. 1-19) 

                                              
1 Isothermal = at constant temperature 
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For predicting the potential energy (in J) released by decompression of biogas from a 

batch system, isothermal expansion from a finite reactor gas volume into an infinite 

open atmosphere gas volume is considered. This energy can be converted into work 

(Equation 1-20) by assuming that the potential energy is converted into an increase of 

volume.  

By integration of Equation 1-20 and substituting the pressure term for the ideal gas law 

equation 1-21  is obtained:  

ܹ ൌ	ܲ׬		ܸ݀         (Eq. 1-20) 

ܹ ൌ ݊ ∗ ܴ ∗ ܶ ∗ ݈݊ ቀ
௏೑
௏೔
ቁ        (Eq. 1-21) 

In which Vi and Vf are the volume (in L) prior to and after expansion, respectively  

The gas molar quantity (n) is considered stabilised when all substrate has been 

converted and gas liquid equilibrium is reached. Then Vf and Vi can be substituted for 

Pi and Pf  by using Equation 1-18. Now, the potential decompression energy (in J) can 

be calculated from the expanding biogas volume resulting from depressurising the 

compressed biogas using the universal gas constant (R), according to Equation 1-22. 

ܹ ൌ ݊ ∗ ܴ ∗ ܶ ∗ ݈݊ ൬
௉೔
௉೑
൰        (Eq. 1-22) 

In which Pi = operational pressure in MPa Pa, Pf = final or atmospheric pressure in MPa.  

R is the universal gas constant, 8.3145 J K-1 mol-1, n= molar amount of biogas 

 

1.5 Pressure	as	selection	mechanism	for	micro‐organisms	

To be able to classify the micro-organisms according to pressure a P,T,-diagram can 

be used in which both pressure and temperature are related to the organism’s growth 

rate [38]. Based on P and T variations in experiments max is derived. The temperature 

and pressure domain in which an organism shows a maximum growth rate determines 

whether an organism can be classified as piezophilic, piezo-tolerant or piezo-sensitive.  
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Piezophilic refers to the micro-organisms that show optimal growth at pressures 

exceeding 50 MPa at various temperatures. Piezo-tolerant micro-organisms grow 

relatively well at pressures up to 50 MPa, but their growth rate is decreasing with 

further increasing pressures. Piezo-sensitive organisms have highest growth rates at 

low pressures and die or are completely inactivated if pressure exceeds a certain 

maximum. Figure 1-2 graphically presents the various ranges for optimal growth for 

the mentioned bacterial groups. 

 

Figure 1-2: Classification of piezosensitive (black line), piezo-tolerant (grey line) and piezophilic (dotted 

line) micro-organisms (figure adapted from [39]). ‘piezo’ is the substitution for ‘baro’. The vertical line 

indicates the maximum pressure reached in this study. 

Although piezo-tolerance is not widely studied, different organisms also involved in 

anaerobic digestion, have been isolated from deep sea trenches up to a depth of 11000 

m, which equals a pressure of 110 MPa [40, 41]2. The same authors also described an 

experiment in which they isolated Methonopyrus kandleri from a black-smoker at a 

depth of 2000 m, which equals a hydrostatic pressure of 200 bar or 20 MPa. They have  

measured significant methane production from H2 and CO2, as well as from formate 

addition in a cultivated high pressure batch reactor.  

                                              
2 Given the fact that the Mariana Trench is the deepest point of the ocean, the piezophilic limit of life on earth is 

set at 110 MPa.  
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The deepest isolation depth of 3000 meter, listed in the table below, corresponds to a 

pressure of 30 MPa and therefore there is not a pressure barrier for hydrogenotrophic 

methanogens up to these levels. 

Table 1-3: Deep sea methanogens 

 Depth Characteristics (optimum in brackets) 

Substrate  T (C)  pH 

Reference 

Methanocaldococcus 

fervens 

2003 m H2+CO2 48-92 (85) 5.5-7.6 (6.5) [42, 43] 

Methanocaldococcus 

indicus 

2420 m H2+CO2 50-86 (85) 5.5-6.7 (6.5) [44] 

Methanocaldococcus 

infernus 

3000 m H2+CO2 55-91 (85) 5.25-7.0 (6.5) [45] 

Methanocaldococcus 

jannaschii 

2600 m H2+CO2 50-85 (85) 5.2-7.0 (6.0) [46] 

Methanocaldococcus 

vulcanius 

2600 m H2+CO2 49-89 (80) 5.25-7.0 (6.5) [47] 

Methanothermococcus 

okinawensis 

972 m H2+CO2, 

formate 

40-75  

(60–65) 

4.5-8.5 (6-7) [48] 

Methanothermococcus 

thermolithotrophicus 

0.5 m H2+CO2, 

formate 

30-70 (65) 6-8 (7) [49] 

Methanotorris 

 Igneus 

106 m H2+CO2 45-91 (88) 5-7.5 (5.7) [50] 

Methanotorris 

 Formicicus 

2421 m H2+CO2, 

formate 

55–83 (75) 6.0–8.5 (6.7) [40] 

 

In our study on AHPD we studied the piezo-tolerance of inocula originating from 

atmospheric bioreactors. Although hydrogenotrophic methanogenic archaea are 

responsible for methane production [28, 51], for the complete conversion of complex 

organic matter a complex consortium of anaerobic micro-organisms is required. 

Aceticlastic methanogens have a very narrow substrate spectrum and are therefore 

dependent on fermentative and (homo)acetogenic bacteria for the production of 

methanogenic substrates like acetate, formate, methanol and hydrogen from complex 

organic matter [28], as also shown in Figure 1-1. Obviously, the AHPD process can 
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only function if these aceticlastic methanogens, fermentative and acetogenic bacteria 

are similarly piezo-tolerant.  

No references have been found describing the piezo-tolerance of specific AD-related 

fermentative and acetogenic bacteria. Still, because also deep-sea methanogens rely on 

the activity of such micro-organisms, they doubtlessly form part of the food chain in 

the deep sea. Nonetheless, survival rates of human enteric bacteria in simulated deep 

sea conditions with regard to high pressures have been described. Clostridium 

perfringens for example, only showed significant sensitivity for pressures exceeding 

25 MPa, whereas Streptococcus faecali was insensitive to  pressure swings of up to 

100 MPa [52]. Additionally, piezo-tolerant mutants of Lactobacillus sanfranciscensis, 

a species of lactic acid bacterium that gives sourdough bread its characteristic taste, 

could be grown after 100 generations of pressure treatment at 50 MPa or 500 bar [53]. 

Moreover, the extensive studies on inactivation by pressure swings of micro-

organisms in food products have provided us with an overview of parameters affecting 

pressure tolerance of micro-organisms. The type of organisms is of main importance, 

but it also shows that environmental parameters like temperature, pH, water activity, 

nutrient level etc. influence the adaptability of micro-organisms to pressure. Based on 

this, it is hypothesised that next to methanogens fermentative and acetogenic bacteria 

will likely survive under AHPD conditions.  

Table 1-4 lists the effects of pressure on individual organisms. However, the anaerobic 

community is much more than a random collection of individually operating 

organisms [28]. The syntrophic interactions between archaea and bacteria in anaerobic 

digestion are so closely intertwined that Martin and Müller [56] hypothesised that the 

first eukaryote cell evolved from these interactions. Therefore, the pressure-dependent 

response of every single organism, could potentially influence the whole population. 

For example, at the minimum pH2 of 1 Pa that the methanogens can maintain under 

atmospheric conditions, the energetically most difficult biochemical step in propionate 

conversion, i.e. the oxidation of succinate to fumarate, is still endergonic and a 

mechanism of reverse electron transport (RET) is required to provide the required 

metabolic energy [28]. Based on the sensitivity of interspecies electron transfer at 
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atmospheric pressure it is speculated that the  accumulation of gases (like H2, CO2, and 

even CH4) in the liquid phase due to Henry’s law  will decrease the energetic 

feasibility further and will emphasize the role of interspecies electron transfer 

mechanisms for maintaining a balanced degradation. Therefore, in order to assess the 

potential effects of AHPD conditions on the overall degradation of more complex 

substrates, it is very important to study the population dynamics in relation to 

conversion of intermediate compounds.   

Table 1-4: Parameters affecting inactivation of micro-organisms under high pressure conditions 

(summary from [54]and [55]) 

Type factor Factor Description 

Microbial Type of organism  Major differences exist between different phyla, but also 

between different species. Physical properties of the cell wall 

structure, type of active enzymes and shape determine their 

pressure resistance. 

 Growth stage  Organisms in the exponential growth phase are more sensitive to 

pressure then organisms in the stationary growth phase. 

 

 Temperature 

 

Growth at non-optimal temperature can improve pressure 

tolerance. 

Environmental  Water activity A low water activity induces changes inside the organism 

influencing  pressure resistance 

 pH At optimal pH, organisms are more resistant to high pressures. 

 Nutrients Availability of nutrients results in a better piezotolerance. 

 Toxic compounds When exposed to pressure cells are more sensitive to toxic 

compounds like antibiotics and organic acids. 

 Other stressful 

conditions 

Non-optimal pH, oxidative stress, starvation could result micro-

organisms to slow down metabolism and switch to a protective 

mode also increasing piezo-tolerance. 
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1.6 Scope	of	this	thesis	

Chapter 2 demonstrates the feasibility of the AHPD concept, focussing on the limits of 

autogenerative pressure build up and a screening of the impact of elevated pressures 

on methanogenic activity. Standard batch operating procedures are tested in AHPD 

reactors.  

Chapter 3 goes into more detail on the prediction of pressure production and gas 

composition using an equilibrium model, based on Henry’s law and the carbonate 

equilibrium, and verifying this with biological fed-batch AHPD experiments. 

In chapter 4 liquid acidity in AHPD reactors is managed by adding silicate mineral to 

the reactor broth as an alternative to NaOH. Depending on the liquid composition, CO2 

can be scavenged inside the reactor either as [CO3
2-/ HCO3

-] or as CO2 (aq).  

Chapter 5 evaluates the effects on the conversion rates of acetate, propionate and 

butyrate, under conditions where HCO3
- is formed as dominant CO2-species.  

Chapter 6 discusses the effects of increased pCO2 and CO2(aq) on kinetics of glucose 

conversion and population dynamics in a long term experiment with a constant HCO3
-.  

When using complex organic matter at ambient temperature, hydrolysis generally 

limits the rate of monomer degradation and thus the formation of acidifying 

intermediates. Therefore, in chapter 7 we describe the influence of autogenerated 

pressure on the hydrolysis of starch and more importantly on the overall expected 

methane production rates.   

Aim of the synthesis in chapter 8 is to combine concepts and discussion points of 

chapters 2-7 and focus on practical application of AHPD technology and derive ideas 

for future research. Chapter 9 concerns the Dutch summary.  
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2 Feasibility	of	autogeneration	of	biogas	pressure	

 

 

Abstract 

Conventional anaerobic digestion is a widely applied technology to 
produce biogas from organic wastes and residues. The biogas calorific 
value depends on the CH4 content which generally ranges between 55 
and 65%. Biogas upgrading to so-called ‘green gas’ with natural gas 
quality generally proceeds with add-on technologies, applicable only 
for biogas flows > 100 m3 h-1.  In the concept of Autogenerative High 
Pressure Digestion (AHPD), methanogenic biomass builds up biogas 
pressure inside the reactor. Since CO2 has a higher solubility than 
CH4, it will proportion more to the liquid phase at higher pressures. 
Therefore, AHPD biogas is characterised by a measured CH4 content 
reaching equilibrium values between 90-95% at a pressure of 0.30-
9.00 MPa. Moreover, the biogas is calculated to have a dew point <-
10oC after expansion to atmospheric conditions. Ideally, high-quality 
biogas can be directly used for electricity and heat generation or 
injected in a local natural gas distribution net. In the present study, 
using sodium acetate as substrate and anaerobic granular sludge as 
inoculum, batch-fed reactors showed a pressure increase up to 9.00 
MPa; the maximum allowable value for our used reactors. However, 
the specific methanogenic activity (SMA) of the sludge decreased on 
average by 30% compared to digestion at ambient pressure (0.1 MPa). 
These first AHPD findings show that it is a highly promising 
technology for anaerobic digestion and biogas upgrading in a single 
step reactor system.   

 

Keywords 

High-pressure; anaerobic digestion; CO2 solubility; biogas upgrading. 

 

This chapter is based on  

Lindeboom, R.E.F., Fermoso, F.G., Weijma, J., Zagt, K. & Van Lier, 
J.B. Autogenerative high pressure digestion: Anaerobic digestion and 
biogas upgrading in a single step reactor system. Water Science and 
Technology 64, 647-653 (2011). 



Chapter 2: Proof-of-Principle 

27 

 

2.1 Introduction	

In this chapter the feasibility of a novel anaerobic digestion concept for production of 

high-grade biogas in a single step: Autogenerative High Pressure Digestion (AHPD) is 

tested. The objective is to digest organic matter under autogenerated high pressure to 

CH4 and CO2 [13]. Henry’s constants for CH4, CO2, H2S, and NH3  in water are 0.016, 

0.318, 1.15, and 620 mol L-1 MPa-1, respectively [15]. With a higher constant more gas 

dissolves into the liquid phase. Consequently, the CH4 content is expected to increase 

to values comparable to natural gas. Moreover, the biogas should already be at a 

suitable pressure for high-grade use. AHPD eventually aims to generate biogas that 

meets the demands for Synthetic Natural Gas (SNG), or in popular words “green gas”. 

Then, no additional upgrading technology would be required. Although investments 

are needed to operate anaerobic digestion at high pressure, we expect that AHPD is 

cost-effective at small-scales and therefore suitable for decentralised biogas production 

from organic waste. The aim of the work described here is to demonstrate the 

feasibility of this concept focussing on autogenerative pressure build-up and the 

impact of high pressures on methanogenic activity. 

 

2.2 Methods	

2.2.1 Reactor	set‐up	

All experiments were conducted in batch-fed high pressure reactors using different 

working volumes, i.e. 13.5 L, 1.7 L and 0.6 L (Figure 2-1). Safe range of operation for 

the reactors is 0.0-10.0 MPa and 4-125 oC. The 13.5 L reactor was equipped with a pH 

sensor (Bűchi high pressure probe), a pressure sensor (Parker PTD & PTX) and 

temperature sensor (PT100). The 13.5 L reactor set-up is shown in Figure 2-1. The 1.7 

L and 0.6 L reactors were equipped with a pressure sensor. The temperature in these 

reactors was controlled by a water bath.  
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Online monitoring provided data for all experiments on total pressure, pH and 

temperature. A field point module functioned as receiver of data. Data was logged in 

Labview 7.1 (National Instruments). Stirring was provided a magnetically induced 

impeller at 60-500 rpm for the 13.5 L reactor.  

   (a)      (b) 

 

Figure 2-1: (a) Photo of the used reactors (b) Schematic view of  high pressure reactors. The pH sensor 

was not included in chapter 2. 

 

2.2.2 Reactor	operation	

The reactor experiments were performed at different liquid to gas ratios, ranging from 

14:1 to 200:1. These ratios were chosen based on the stoichiometric conversion of 

substrate into biogas and an estimation of the final pressure based on the added amount 

of substrate and the ideal gas law. The reactors were inoculated with different 

concentrations of methanogenic granular sludge obtained from a full-scale UASB 

reactor treating paper mill waste water (pH 7.0, 30°C) at Industriewater Eerbeek 

(Eerbeek, The Netherlands). Macronutrient stock solution (6mL L-1) and trace 

elements stock solution (0.6 mL L-1) were added to the liquid medium (Table 2-1).  

Furthermore, different concentrations of sodium acetate trihydrate (NaCH3COO. 

3H2O) were added as substrate. An overview of all experiments is shown in Table 2-2.  
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Table 2-1: Macronutrient stock and trace element stock solution 

Macronutrients (6ml  L-1) Trace elements (0.6 ml L-1) 

Compound Concentration 

(g L-1) 

Compound Concentration  

(g L-1) 

NaKHPO4 27 FeCl3·4 H2O 2 

MgSO4·7 H2O 9 MnCl2·4 H2O 0.5 

NH4Cl 170 ZnCl2 50 

CaCl2·2 H2O 8 (NH4)6Mo7O24·4 H2O 90 

  NiCl2·6 H2O 50 

  CoCl2·6 H2O 2 

  CuCl2·2 H2O 30 

  HBO3 50 

  Na2SeO3·5 H2O 100 

  EDTA 1 

*additionally 0.1 g L-1 yeast was added 

2.2.3  Analyses	

Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were determined 

according to Standard Methods [57], prior to bioreactor inoculation.  

Gas composition was determined by taking biogas samples at the end of each run. A 

two valve system, with a sampling port in between, connected to the high pressure 

reactor  was used to decompress the biogas during sampling. The two valve system 

was flushed and 100μl gas samples were taken perpendicular to the flow direction by 

means of a gas syringe with sample-lock. Afterwards biogas was analysed at 

atmospheric pressure by means of gas chromatography (Fisons Instruments GC 8430). 

The gas sample was directed over two different columns. One was equipped with 

Molsieve (Alltech 13940) 30m, having a diameter of 0.53mm and the other with 

PoraBond Q (Varian 7354) 25m, having a diameter of 0.53mm. In the columns the 

gases were separated, using 0.4 MPa of helium pressure as the carrier gas.  
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Detection took place by a thermal conductivity detector. Furthermore, the oven, 

injection port and detector were operated at 53, 110 and 99oC, respectively.  

The specific methanogenic activity (SMA) was determined by pressure increase 

following the protocol of Zandvoort, Osuna, Geerts, Lettinga and Lens [58]. The 

online pressure sensor in the high pressure reactor allowed us to record pressure build-

up continuously. Based on the total pressure and the gas composition, the partial 

pressures for CH4 and CO2 were derived. By using the ideal gas law, the total molar 

production of CH4 was calculated. 

To perform the SMA tests at atmospheric pressure, 1 L  batch bottles were filled with  

500 mL of liquid medium. The liquid medium contained 1 g COD L-1 and similar 

concentrations of macronutrients and trace elements solution as described above. 

Inoculum (2g VSS L-1) was taken from the high pressure reactors after decompression. 

The gas phase was flushed with N2 prior to the start of the experiments. Subsequently, 

the bottles were connected to an online pressure transducer and monitor (Pressdaq 2.0 

and Pressdaq 2.0 software). Total gas phase of the bottle was determined by 

subtracting the liquid volume from the total volume of the bottle. Then like for the 

high pressure experiments molar CH4 production was calculated using the ideal gas 

law and the data on pressure increase. 

Liquid samples were taken from the reactor medium after each experiment. Sampling 

during operation was not possible without interfering in the on-going experiment. 

Samples were centrifuged at 10,000 rpm for 5 minutes and subsequently diluted by 

adding 0.5 ml 3% of formic acid to the 0.5 mL centrifuged sample. VFA was 

afterwards determined by a gas chromotograph (Hewlet Packard 5890 series II) with a 

flame ionisation detector (FID). A glass column (2m x 6mm x 2mm) with a 10% 

Fluorad 431 coating on Supelco-port (mesh 100-120) was used. Further operating 

conditions were the FID was operated at 280 oC; Oven temperature was 130 0C and 

injection temperature was 200 oC. The carrier gas was nitrogen saturated with formic 

acid. 
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2.3 Results	

2.3.1 Autogenerative	High	Microbiological	Pressure	Production	

Microbiological pressure generation was achieved in 9 fed-batch experiments using 

various gas and liquid volumes. In 8 out of 9 reactor experiments more pressure build-

up was achieved than the 0.8 MPa which is required for injection in the natural gas 

grid (Table 2-2).  

Table 2-2: Overview of proof-of-principle experiments 

Exp. 

Nr. 

Reactor  

volume  

(L) 

Gas  

Volume 

(L)  

Acetate  

 

(g COD  L-1)  

P range  

Initial     Final 

(MPa) 

Final gas  

composition * 

%CH4 %CO2   %N2 

Time 

 

(h) 

1 0.55  0.04 1 0.3 0.8 91 1 8 30  

2 0.55  0.04 1 3.2 3.6 94 1 4 35  

3 0.55 0.04 1 1.2 1.4 Leakage 25  

4 1.68 0.04 3 0.0 2.33 94 3 2 160 

5 1.68 0.04 5 0.0 2.2 89 6 2 60 

6 1.68 0.01 14 0.0 5.8 96 2 1 96 

7 1.68 0.01 14 0.0 9.0 n.a. 170 

8 13.5 0.10 7 0.0 2.6 94 3 2 40 

9 13.5 0.10 14 0.0 2.4 n.a. 40 

* all gas measurements have a 2% error margin 

In experiment 7, pressure build-up even continued up to 9.0 MPa (Figure 2-2). The 

final pressure is obviously determined by the amount of added substrate, the degree of 

stoichiometric conversion, and the chosen head space gas volume (liquid to gas ratio). 

The time required to reach the final pressure was less than a week in all experiments. 

The produced biogas in the head space reached CH4 concentrations between 89 and 

96%. The CO2-content was below 6% in all experiments.  

A linear increase in pressure between 0.0 and 9.0 MPa was observed in experiment 7 

(Table 2-2 and Figure 2-2) over a period of one week. Afterwards the experiment had 

to be terminated to ensure biological pressure production would not damage the 
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equipment. Clearly, a 100-fold increase in pressure seemed not to have detrimentally 

harmed the methanogenic inoculum cultivated in an atmospheric UASB reactor for 

waste water treatment. Likely, the biomass can resist even higher pressures, because 

biogas production did not significantly level off near 9.0 MPa.   

 

Figure 2-2: Gradual pressure build-up in experiment 7 up to 9 MPa 

2.3.2 SMA	under	high	pressure	conditions	

SMA tests done with the granular sludge inoculum revealed an SMA of 0.6 gCOD-

CH4 g
-1 VSS  d-1 at atmospheric pressure (Figure 2-3a). When the SMA was measured 

with an initial pressure of 0.3 MPa by adding a mixture of CO2 5% and CH4 95% to 

the head space, a moderate decrease in SMA to about 0.4 gCOD-CH4 g
-1 VSS  was 

observed (Figure 2-3b). A third experiment was performed in which the reactor was 

pressurised up to 3.2MPa, using a similar gas composition (CO2 5% and CH4 95%). 

The observed SMA at 3.2MPa was in the same range as the SMA performed at 0.3 

MPa (Figure 2-3b,c). 
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(a)     (b)    (c) 

 

Figure 2-3: Overview of methanogenic activity at pressures (a) atmospheric, (b) 0.3 MPa and (c) 3.2 MPa 

2.3.3 The	influence	of	pressure	and/or	decompression	

The impact of high pressures on the standardised SMA at atmospheric pressure was 

determined by assessing the standardised SMA after sludge exposure to high 

pressures. Results showed that an exposure to 1.6 MPa at 303K for 4 days, apparently 

had no effect since SMA test values of the inoculum and the SMA values after 

pressurised conditions were equal (Figure 2-3a and Figure 2-4a). The SMA value with 

the inoculum exposed to 5.8 MPa showed an unexpectedly high biogas yield in an 

SMA performed after decompression. More biogas was generated than expected based 

on the stoichiometric conversion of the added substrate (Figure 2-4b). Interestingly, in 

the liquid phase of the reactor at 5.8 MPa, propionate, butyrate and valerate were 

measured with values of 272 mg L-1, 280 mg L-1 and 163 mg L-1, respectively. 

Possibly, the increased soluble COD / VFAs was the result of lysis of bacterial and/or 

archaeal cells resulting from the sudden compression and decompression, but this 

could not be confirmed. Similar results have been obtained with sludge exposed to 9.0 

MPa (data not shown). After being exposed to the high pressures, the granular 

structure was completely disrupted and visually, the sludge made an emulsified 

impression. Sludge exposed to 5.8 and 9.0 MPa appeared more viscous than sludge 

exposed to lower pressure, i.e. 0.8 and 1.6 MPa.  
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    (a)      (b) 

 
Figure 2-4: Overview of the specific methanogenic activity assays at atmospheric pressure (in g COD-CH4 

g-1 VSS  day-1) of sludge exposed to (a) 1.6 MPa, (b) 5.8 MPa (both presented in duplicate). 

2.4 Discussion	

To our knowledge no experiments have been reported in which the anaerobic digestion 

was used for the autogeneration of up to 9.0 MPa of pressure. The results presented in 

this study demonstrate that anaerobic granular sludge from a conventional waste water 

treatment plant can autogenerate a higher pressure than required for injecting biogas 

into the regional or local gas grid. This additional pressure could be used for direct 

mechanical work, e.g. in the AHPD process (pumping, membrane pressure, etc.) 

without the need for electrical equipment and electricity supply. It can be expected that 

use of the pressure for mechanical work is more efficient than via methane conversion 

into electrical energy and then back into mechanical energy, which only has an overall 

efficiency of 25-35%. 

When comparing the gas composition results to the requirements for gas grid injection, 

it has been demonstrated that in-situ biogas upgrading is technically feasible, because 

the CO2-content of the biogas was suitable for injection into the Dutch regional gas 

grid (<6% CO2 required). The organic substrate in our experiments neither contained 

nitrogen nor sulphur. In practice, complex waste water may contain a high content of 

these elements, resulting in H2S an NH3 in the biogas, although levels are generally 

much lower than for CO2. Based on the higher Henry’s constants for both H2S and 

NH3 the in-situ biogas upgrading mechanism is expected to reduce the gas 
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concentration of both gases proportionally more than for CO2. Further study is needed 

to find out if the strict limitations for these gases, which are -much lower than for CO2, 

can be achieved at high autogenerated biogas pressure.  

Based on the headspace composition and the total pressure a CODCH4 balance was 

made.   The CODCH4 retrieved in all high pressure experiments (Table 2-2) was only 

between 60-80% of the COD added as acetate. In experiments 6 and 7, 14g COD L-1 

was added and a similar final pressure was expected.  Experiment 6 however resulted 

in an end-value of 5.8 MPa, whereas experiment 7 ended at 9.0 MPa when the 

experiment was terminated for safety reasons. In several experiments CH4 was 

detected outside of the reactor, indicating that at higher pressures reactors started 

leaking and the procedure for sealing the reactor was not sufficiently effective. Based 

on the Henry’s constant of CH4, it is hypothesised that significant quantities of the 

produced CH4 were dissolved in the liquid.  

Pressure sensitivity of bacteria involved in the anaerobic digestion process and the 

impact of increased pressure and pressure swings on the methanogenic activity have 

hardly been reported in literature. Still, methanogens have been studied and isolated 

from deep sea trenches where the pressure can be as high as 110 MPa [40, 41]. Takai 

et al.[40] isolated and cultivated the thermophilic piezophilic Methanopyrus kandleri. 

in a batch reactor at 40.0 MPa. However, it concerned hydrogenotrophic methanogens 

while aceticlastic methanogens were not studied. Based on these results it is concluded 

that increased pressure has no detrimental effect on the SMA of acetotrophic 

methanogenic sludge. To our best knowledge that has not been shown previously.  

The observed disrupted granular structures and the emulsified liquid broth, combined 

with the increased level of propionate, butyrate and valerate gave rise to an analogy 

with the presence of toxic compounds and/or sudden temperature increases beyond the 

respective range, which also resulted in increased levels of VFA in the liquid medium 

[59, 60].  

Physical pressure was not the only possible stress factor for the biomass. With pressure 

also gaseous and dissolved CO2 accumulated. The total inorganic carbon in the 1.68L 
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reactor was for instance estimated to be 0.36 mol. Additionally, a relatively high 

concentration of 5g Na+ L-1 was present and the stirring mechanism required for CSTR 

conditions induced a high shear in the 13.5 L reactor. Notably, in the 5.8 MPa 

experiment the sludge was in the system for 96 hours. After being released from the 

system, the granule structure was completely disrupted. It is yet unclear to what extent 

the increased pressure is responsible as the sole stress factor causing an increased level 

of VFA and EPS. Further experimental studies are required to understand the 

limitations between micro-organisms in an AHPD reactor with an increasing pCO2 and 

a high shear.  

2.5 Concluding	remarks	

We found that anaerobic micro-organisms are able to digest acetate in high pressure 

reactors and can build up a pressure of to 9.0 MPa through biogas production. In 

addition, the produced biogas was of very high quality, consisting of over 90% CH4 

and below 6% CO2. It was also observed that less CH4 was produced than was 

expected based on reaction stoichiometry. Whether this was the result of leakage, CH4 

dissolution due to Henry’s law or because of biological changes, could not be 

determined. The measured rate of COD-conversion (SMA) decreased from 0.6 gCOD-

CH4 g
-1 VSS d-1 to 0.4 gCOD g-1 VSS d-1 at 0.3 and 3.1 MPa. After decompression, 

propionate, butyrate and valerate were found in significant concentrations. It could not 

be determined if it was caused by the compression, decompression, the high stirring 

speed or the exposure to elevated free sodium concentrations, because all parameters 

changed while operating the reactor at higher pressure. Literature about piezophilic 

micro-organisms showed that operating pressures (up to 9.0 MPa) were in the range 

where most piezo-sensitive and piezo-tolerant species can still survive. So, even 

though decay of specific microbes had surely resulted from the pressure build-up, both 

experimental results and literature showed that pressures applied in this study are 

unlikely to have a detrimental effect on acetotrophic conversions in general. Therefore, 

it is concluded that AHPD has great potential for making external gas upgrading 

equipment obsolete.  
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3 Biogas‐speciation	in	a	pressure	digester		up	to	2.0	MPa	

 

 

Abstract  

In the experiments presented in chapter 2 micro-organisms 
autogenerated biogas pressures up to 9.0 MPa with >90% CH4-content 
in a single reactor. The less than 10% CO2-content was thought to be 
the result from proportionally more CO2 dissolution relative to CH4 at 
increasing pressure, according to Henry’s law. However, at 9.0 MPa 
of total pressure Henry’s law also predicted the dissolution of 81% of 
produced CH4, which is a potential loss. Therefore, in the present 
research it was studied whether CO2 could be selectively retained in 
solution at moderately high pressures up to 2.0 MPa, aiming to 
minimise methane dissolution. Experiments were performed in an 8L 
closed fed-batch pressure digester fed with acetate as the substrate. 
CH4 distribution over gas and liquid phase behaved according to 
Henry’s law, but the CO2-content of the biogas was lower than 
expected with only 1-2 % at pH 7. By varying the ratio Acid 
Neutralising Capacity (ANC) over Total Inorganic Carbon 
(TICproduced) of the substrate between 0 and 1 the biogas CO2-content 
could be controlled independently of pressure. However, by 
decreasing the ANC relative to the TICproduced CO2 accumulation in the 
aqueous medium caused acidification to pH 5. Remarkably, acetic 
acid was still converted into CH4 at a rate comparable to neutral 
conditions.  

 

Keywords 

Autogenerative High Pressure Digestion; CO2-sorbing effect, 
carbonate-equilibrium, 2.0 MPa, gas partitioning 
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production by selective CO2 retention at autogenerated biogas 
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3.1 Introduction	

Biogas upgrading is generally performed outside the anaerobic reactor system and 

requires investments in external compressors, pumps, membranes and gas treatment 

equipment [4].  Nevertheless, an in-situ CH4-enrichment method was described by 

Hayes [17] in which CH4-rich biogas was produced by integrating a CO2-air stripper 

and a deoxygenation reactor into a liquid recycle loop. Based on this principle the CH4 

content rose from 82 % at atmospheric pressure to over 93% at an overpressure of 0.22 

MPa. Similar experimental results have been obtained by Richards, Herndon, Jewell, 

Cummings and White [61] and O'Keefe, Brigmon and Chynoweth [62], but the system 

was difficult to operate (Table 1-2). 

Conventionally, anaerobic digestion is performed close to atmospheric pressure 

resulting in an equilibrium CO2 content of the biogas of typically 30-40%, depending 

on reactor alkalinity. In chapter 2 it was however demonstrated that unadapted 

methanogenic biomass can autogenerate 9.0 MPa biogas pressure with >95% CH4  by 

the conversion of acetate into CH4 and CO2 which is far above the level required for 

local grid injection. CO2 is 20 times more soluble than CH4, with Henry’s constants for 

CO2 and CH4 of 0.31 and 0.016 mol L-1 MPa -1 at 30 °C,  respectively [15]. Thus, at 

increasing biogas pressure the equilibrium CO2 content of the biogas was expected to 

decrease and this was confirmed.  

In practice however CO2 and CH4 partial pressures may deviate from equilibrium due 

to mass transfer limitations [63]. In addition, at increasing pCO2 carbonic acid will be 

formed, possibly resulting in a pH drop to below pH 7 which would inhibit the 

anaerobic digestion process. The apparent dissociation constant of carbonic acid 6.36 

is generally used, but it should be realised that this constant also comprises the K-

values for the hydration and the dehydration reactions of carbon dioxide [64]. Aim of 

this chapter is therefore to study CO2-speciation in more detail. 

Furthermore, it should be realised that at 9.0 MPa and a liquid/gas ratio of 167:1 the 

theoretical dissolution of CH4 is over 80% of CH4produced,. Therefore, this chapter 

focussed on more moderate pressures not exceeding 2.0 MPa overpressure in a single-
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stage bioreactor fed with acetate-rich synthetic waste water. Additional experiments 

were carried out to elucidate the role of CO2 mass transfer on pH-stability. Results 

from 4 experimental series were compared with model-based predictions using 

Henry’s law and the carbonate equilibrium.  

 

3.2 Materials	and	Methods	

3.2.1 Reactor	setup	

One pressure reactor of 8L of total volume was used (Parr Instruments, model 910908, 

The Netherlands). The gas phase was manually controlled at ~1.5L. This gas phase 

volume was chosen to ensure foaming due to degassing would not clog gas valves. 

 

Figure 3-1: Photo of the used reactor 

The reactors depicted in Figure 3-1 have been designed for operation up to 6.80 MPa 

in a temperature range of -10°C to 350°C. Schematically, the set-up was identical to 

the set-up presented in Figure 2-1b. To seal the reactors, bolts in the head were 
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tightened with a torque wrench supplying a torque of 33.86 Nm according to the 

supplier’s specifications. On top of the reactor a stainless steel liquid charging pipette 

(250 mL) was placed vertically for forcing substrate into the reactor with N2-pressure 

against the pressure gradient. The temperature in the reactor was controlled at 30°C for 

all experiments by a water bath (Julabo MP). Online monitoring was used to obtain 

data on total pressure (Ashcroft A-series 1000 PSI), temperature (PT100) and pH 

(Bűchi Labortechnick AG, Flawil, Switzerland high pressure pH probes) Compact 

field point modules (cFP1804 and cFP-CB1) functioned as data receivers to log and 

store data via Labview 7.1 (National Instruments Corporation, USA) on the PC. 

Magnetic stirring was performed by two six bladed impellers attached to a central 

stirrer shaft (Parr Instruments, type A709HC, The Netherlands) operating at 150 rpm 

for all experiments. 

3.2.2 Start	up	and	operation		

Experiments I-1 to I-4 were used to assess mass transfer of CO2 from gas to 

demineralised water. For experiment I-1 the reactor was pressurised with 50% CH4 

and 50% CO2 at an initial pressure of 0.5 MPa, and demineralised water was used as 

liquid medium. The added CO2 corresponds to 0.15 mol total inorganic carbon. 

Dissolution of both gases was monitored online by registering pressure decrease and 

pH. Once pressure had stabilised, the gas composition was determined by GC. From 

these data, the measured pressure decrease was used as an approximation of the 

expected dissolution flux based on Fick’s law. Afterwards, proceeding to experiment 

I-2, 0.05 mol NaOH was added, in order to neutralise 1/3 of the added CO2. Hereafter, 

in experiment I-3 and I-4, the procedure was repeated, meanwhile increasing total 

added NaOH to 0.1 mol and 0.15 mol, respectively.  

For experiments II, III and IV, the reactor was inoculated with a mixture of 6.25L of 

basal medium and 256 g wet anaerobic granular sludge (6.1 gVSS L-1), with a 

diameter of 1-4 mm from a full-scale UASB reactor treating paper mill waste water 

(pH 7.0, 30°C) at Industriewater Eerbeek (Eerbeek, The Netherlands). Endogenic 

activity of fresh inoculum was determined at an average of 0.1 mmol CH4 g
-1VSS d-1 

or 64 mg CH4-COD g-1VSS   d-1. Alkalinity of the sludge was determined at 2.3 meq g-
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1 VSS. The basal medium consisted of demineralised water to which macronutrient 

and trace element stock solution were added according Table 2-1. 

A week before it was used for inoculation, the sludge was reactivated with 8 mM 

acetate. The reactors were flushed with N2 gas (100 % N2) prior to the start of each 

experiment to remove oxygen.  

Experiments II-1 to II-4 were performed to assess mass transfer of CO2 from gas to 

liquid medium that also contained biomass. Experiments II-1, II-2, II-3 and II-4 were 

performed in a similar manner as experiments I-1 to I-4.  

Experiments III-1 to III-3 aimed to assess the effect of elevated autogenerated pressure 

on methanogenic activity and gas composition. In each of the experiments III-1, III-2 

and III-3, 0.33 mol sodium acetate trihydrate was dissolved in 67 mL demineralised 

water and added via the liquid charging pipette. Inside the inoculated reactor the 

highly concentrated substrate solution was diluted in the medium solution to 0.05 mol 

L-1. Prior to experiment III-2 and III-3 67 mL of liquid volume was removed to 

maintain a total liquid volume 6.5 L, meanwhile retaining N2, CH4 and CO2 in the gas 

phase of the reactor. In the first 48 hours of experiment III-1 the stirring speed was 

unintendedly set at 60 rpm, afterwards it was set to 150 rpm. 

Experiment IV was performed to demonstrate the effect of feeding non-buffered 

substrate. Prior to the start of experiment IV, 0.33 mol of sodium acetate trihydrate 

was digested, but all pressure exceeding 0.20 MPa was released directly. By 

depressurising to atmospheric conditions CO2 was removed and after equilibrium was 

reached the medium contained a 0.05 mol NaHCO3 L
-1 buffer. Afterwards, in each of 

the experiments IV-1, IV-2 and IV-3 0.16 mol non-buffered acetic acid was added in a 

similar way as described for experiments III-1 to III-3. An overview of all experiments 

is given in Table 3-1.  
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Table 3-1: Overview of CO2-speciation experiments 

Exp. nr. Inoculum 

(gVSS L-1) 

Substrate ANC  

(eq) 

TIC  

(eq) 

Prange  

(MPa)* 

pH 

I-1      0  0     0.15           0.50-0.28      4.7 

I-2   0.05  0.15   0.28-0.26   6.3  

I-3          0.10 0.15 0.26-0.23 7.2 

I-4   0.15 0.15 0.23-0.22 9.2 

II-1 6.1  0 0.15 0.50-0.28 5.4 

II-2       0.05  0.15 0.28-0.26 5.9 

II-3       0.10 0.15 0.26-0.25  6.1 

II-4            0.15 0.15 0.25-0.23 7.0 

III-1       6.1 Sodium acetate 0.33 0.33 0.10-0.68 7.0 

III-2         0.66  0.66      0.68-1.44 6.8   

III-3   0.99 0.99 1.44-2.10 6.9 

IV-1       6.1 Acetic acid 0.33 0.49       0.10-0.57 5.7           

IV-2         0.33   0.65 0.57-1.00 4.7 

IV-3**   0.33 0.81 1.00-1.34 4.5 

*absolute range; not corrected for N2 and sampling 

**steady-state not reached due to observed leakage 

3.2.3 Analyses	

Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were determined 

according to [57].  

Biogas composition. A stainless steel tube, connected to the high pressure reactor, with 

valves at both ends, was used to take biogas samples, as shown in Figure 3-1. Samples 

were taken in duplicate as described in chapter 2. Biogas composition was analysed at 

atmospheric pressure by means of gas chromatography (Fisons Instruments GC 8430) 

like shown in chapter 2. 
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The specific methanogenic activity (SMA) was calculated from the pressure increase 

and the biogas composition following the protocol of [60]. By using the ideal gas law, 

the total molar production of CH4 was calculated.  

Liquid samples from the reactor were immediately injected into N2-flushed closed 100 

mL bottles, for determination of dissolved CO2 and CH4 in the liquid broth. Before use 

the  pressure in the bottles was lowered to 0.05 MPa. The amount of liquid sample was 

determined by weighing. Gas composition was determined by GC after adjustment to 

atmospheric pressure with N2. Measured values were corrected for the dissolved CO2 

and CH4 in the sample bottle by calculating the gas partitioning based on Henry’s law.  

Thereafter, bottles were opened and the total liquid content of the bottle were titrated 

with 0.1 M HCl in an automatic titrator (Schott, Mainz, Germany) for assessing the 

acid neutralising capacity (ANC) or alkalinity in meq L-1. The [HCO3
-] was calculated 

by subtracting NaKHPO4 present in the medium and measured VFA concentration. 

This method was validated by injecting 2 ml 37% HCl into the closed sample bottle 

followed by measuring pressure and gas composition. The ANC present in the 

inoculum- was determined by titrating 0.1 M HCl to 5 g of wet sludge dissolved in 10 

mL of demi-water.  

Calculation of gas/liquid distribution of CO2 and CH4 was calculated using the 

carbonate equilibrium equations and Henry’s law[65]. For CO2, Henry’s constant 

(KHCO2) at 25oC is 0.318 mol L-1 MPa-1 and for CH4 (KHCH4) this is 0.016 mol L-1 MPa-

1 [15]. These values are applicable in the whole pressure range used in our experiments 

and are valid for the ionic strength of the solution, according to the experimental data 

provided by [66] and [67]. Henry’s constants and the dissociation constants were 

corrected for temperature with van ‘t Hoff’s equation [37]. The pKa of H2CO3 was 

corrected in non-iterative manner for ion activity using the Davies equation, based on 

added substrate, and ranged over the experiments between 6.08-6.35.  
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Charge balance.  

The acid neutralising capacity of the liquid reactor content is now modified from 

equation 1-14: 

ሾANC‐ሿ	൅	ሾH൅ሿ	ൌ	ሾOA‐ሿ൅ሾHCO3‐ሿ൅2ሾCO32‐ሿ൅ሾOH‐ሿ		   (Eq. 3-1) 

In which [OA-] represents the concentration of dissociated organic acids  

In the expected pH range (6-8) [CO3
2-], [OH-] and [H+] are negligible compared to the 

molar substrate concentration. Therefore, equation 3-1 can be simplified to: 

ሾANC‐ሿ	ൌ	ሾOA‐ሿ൅ሾHCO3‐ሿ	       (Eq. 3-2) 

Now, the charge balance for the most common ions in solution should be adapted from 

equation 1-13:  

2ሾCa2൅ሿ൅2ሾMg2൅ሿ൅ሾNa൅ሿ൅ሾK൅ሿ൅ሾNH4൅ሿ	

‐ሾCl‐ሿ‐2ሾSO42‐ሿ‐3ሾPO43‐ሿ‐ሾANC‐ሿ	൅	..		ൌ	0      (Eq. 3-3) 

However, in these specific experiments the charge due to ions in the basal medium 

was negligible compared to charge of the added substrate. Also, the basal medium 

contained a negligible amount of [ANC-]. Therefore, the charge balance was 

simplified by combining equation 3-2 and 3-3: 

ሾNa൅ሿ	ൌ	ሾANC‐ሿ         (Eq. 3-4) 

Combination of Equation 3-2 and 3-4 with acetate as the only present organic acid 

gives: 

[Na+] = [Acetate-] + [HCO3
-]       (Eq. 3-5) 

After full conversion of sodium acetate (equation 1-1) the ANC equals [HCO3
-]. To 

verify full acetate conversion, separate liquid samples were centrifuged, volatile fatty 
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acids (VFA) were analysed by a gas chromatograph (Hewlett Packard 5890 series II) 

equipped with a flame ionisation detector as described in detail in chapter 2.  

The total inorganic carbon (TIC) balance, as a function of ANC and pH, was formed 

by combining equation 3-5 with the carbonate equilibrium (equations 1-8 to 1-12) and 

ideal gas law (equation 1-7).  

TIC	ൌ		HCO3‐		൅						CO2ሺdissሻ		 	൅		CO2	ሺgasሻ		    (Eq. 3-6) 

or 

 ܶ ܥܫ ൌ ሺܥܰܣሻ ൅	
ሺ஺ே஼ሻ∗	ଵ଴ష೛ಹ

௄భ
൅

ሺ஺ே஼ሻ∗ଵ଴ష೛ಹ	௏೒
௄భ௄ಹ಴ೀమ௏೗∗ோ∗்

  

In which ANC is given in meq L-1, K1 = 10-pKa , KHco2 = 10-6.55 mol L-1  Pa-1, Vl = liquid volume in L, 

Vg = gas volume in L, T = 303 K and R = 8.3145 103 L Pa K-1 mol-1.   

Likewise, the CH4-balance was constructed (equation 3-7) and used to calculate biogas 

composition and pressure.  

 ܶ ସܪܥ ൌ ସܪܥ݌ ∗ 	ቀ
௏೒
ோ∗்

൅ ு஼ுరܭ ∗ ௟ܸቁ      (Eq. 3-7) 

In which KHch4=10-7.84 mol L-1  Pa-1 

3.3 Results		 	

3.3.1 Experiment	I	and	II:	Mass	transfer	experiments	

Figure 3-2 shows the pressure decrease in time for experiments I-1, I-3, II-1 and II-3. 

Experiment I-1 and II-1 showed an identical pressure pattern, indicating that the 

presence of inoculum did not affect the mass transfer rate from gas to liquid. Results of 

Experiments I-3 and II-3 also showed an identical pressure pattern. Both experiments 

I-1 and II-1 revealed that after a 4 hr, the calculated equilibrium pressure was reached.  

 In experiment I-3 and II-3 CH4 and >80% CO2 already were in equilibrium at the start 

of the experiment and only a relatively small pressure drop was expected due to pH 

increase and additional formation of HCO3
-. In both experiments calculated 

equilibrium pressure was reached within 4 hr.  
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Figure 3-2: Pressure drop resulting from mass transfer of biogas into demineralised water without 

inoculum and ANC in Exp I-1 (grey line), with inoculum without ANC in Exp II-1 (black line), without 

inoculum after 2nd ANC addition in Exp I-3 (grey dotted line) and with inoculum after 2nd ANC addition 

in Exp II-3 (black dotted line). Theoretical equilibrium values of Exp I-1 & II-1, and Exp I-3 and II-3 are 

indicated by grey and black intermittent line, respectively. 

As soon as a stable pressure was obtained, gas samples were taken to study the 

composition of the gas phase. After recalculation, measured gaseous CH4 values for 

both sets of experiments (I-1 to I-4 and II-1 to II-4) were 0.22 MPa, or 0.13 mol. These 

values are in accordance with model predictions using Equation 8 and confirmed that 

Henry’s law applied for CH4 under experimental conditions. As demonstrated in 

Figure 3-3a, biogas composition, assuming a 1:1 CH4:CO2 production, showed a linear 

relationship with the ANC/TIC ratio for all mass transfer experiments. This indicated 

that the ANC/TIC ratio can be used to predict CO2-content of the biogas when acetate 

is the sole substrate. When looking at these results more closely it was noticed (data 

not shown) that pH required a similar time lapse to reach a stable phase, with a change 

of less than 0.01 pH unit/hour. And therefore from Figure 3-3b it can be observed that 

the pH and CO2-speciation of the inoculum-free experiments matched the model 

equilibrium predictions, but that this was not the case for the inoculated experiment 

series II. Since measured CO2-speciation corresponded to a higher theoretical pH than 

the experimentally measured pH, we describe this as an apparent “CO2-sorbing” 

effect.  
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   ( a )      ( b ) 

 

Figure 3-3: (a) produced CH4-content exp I and II (◊) and III (x), CO2-content exp I and II (□) and III (Δ) 

as a function of ANC/TIC ratio using a total molar CH4:CO2 ratio of 1:1 (stoichiometric ratio for acetate) 

and (b) experiment I (○), II (◊) and theoretical CO2 gas-content (- - -) versus pH 

 

3.3.2 Experiment	III:	Acetate	conversion	at	a	ANC/TIC	ratio	of	1		

Figure 3-4 presents the total pressure, pH and %CO2 for experiments III-1, III-2 and 

III-3. The subsequent additions of 0.33 mol of sodium acetate trihydrate led to an 

observed pH-drop to 6.5, which is attributed to the increase of ion activity, resulting 

from the highly concentrated sodium acetate addition. At the end of the experiment 

series II, the total overpressure was 2.0 MPa of which 0.54 MPa was due to N2 

injected together with the 3 substrate additions. After full digestion of acetate, partial 

CH4 pressures were 0.49, 0.97 and 1.45 MPa or 0.29, 0.58 and 0.86 mol CH4 for 

experiments III-1, III-2 and III-3, respectively. These values were close to the 

calculated molar CH4-values of 0.29, 0.59 and 0.88 mol. At the end of phase III, 17 

mmol CH4dissolved L
-1 was expected based on equation 3-7 for the total liquid content. 

Because 16 mmol L-1 was measured, these results showed that distribution of methane 

behaved according to Henry’s law. It should be noticed that these values correspond to 

a dissolution of 11% of CH4produced at a pCH4 of 1.48 MPa.  

In percentage, CO2 amounted to only 1.8, 1.0 and 1.0% in the produced biogas with 

values corresponding to 6, 6 and 7 mmol gaseous CO2 for  III-1, III-2 and III-3, 
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respectively. At the respective measured pH-values, 6.95, 6.77 and 6.90 much higher 

total molar gaseous CO2 of 17, 50 and 37 mol were expected based on Henry’s law. In 

experiment III-3, 39 mmol H2CO3 and 1000 mmol HCO3
- were measured at pH 6.9, 

whereas values of 240 mmol H2CO3 and 806 mmol HCO3
- were expected based on the 

model calculations. Nevertheless, in Figure 3-3a it can also be seen that the resulting 3 

biogas compositions for experimental series III all match the biogas composition and 

pH of experiment II-4, which also had an ANC over TICproduced ratio of 1. And even 

though the pH was lower in experiment III, the biogas composition was also similar to 

experiment I-4, again having the same ANC/TICproduced. 

For experiment III-1 and III-2, average SMA was estimated between 0.25 and 

0.4gCOD-CH4 gVSS-1 d-1 or 4-7 mmol gaseous CH4 gVSS-1 d-1. In experiment III-3 

the SMA was estimated between 2-5 mmol gaseous CH4 gVSS-1 d-1. The production 

rate of gaseous carbon dioxide in these three experiments was estimated to be less than 

0.2 mmol gVSS-1 d-1. 

 

Figure 3-4: Autogenerated pressure in MPa (black ) and pH development (grey) of experiment III-1, III-2 

and III-3 at ANC/TIC = 1. The sharp increase in pressure at the start is caused by nitrogen used for the 

pressurised feeds of sodium acetate solution. 
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3.3.3 Experiment	IV:	Acetate	conversion	at	low	ANC/TIC‐ratios	

Figure 3-5 shows the biological pressure generation at low ANC/TIC ratio. The initial 

ANC was provided by converting 0.33 mol sodium acetate to sodium bicarbonate prior 

to experiment IV-1 after which the reactor was flushed with N2 to remove gaseous 

CH4 and CO2. In experiment IV-1, 0.16 mol acetic acid was added due to which the 

reactor pH dropped from 6.7 to 5.7. This pH drop shifted the bicarbonate/Henry 

equilibrium to CO2(gas) resulting in a total pressure increase to 0.24 MPa after 2 

hours. Then, a gradual total pressure increase was observed up to 0.45 MPa over the 

next 22 hours, while pH initially dropped further to 5.5 and gradually recovered to 5.7 

and biogas consisted of 16% CO2 and 84% CH4. As a consequence of the presence of 

HCO3
- at the beginning of experiment IV, the CH4:TIC ratio in the reactor was 1:2.   

Then experiment IV-2 started with an additional substrate addition of 0.16 mol acetic 

acid which caused a pH drop to 4.7. Despite this low pH, substrate conversion 

continued and all acetate was converted, resulting in a total pressure of 0.9MPa, 

whereas the pH remained at 4.7. The final pCH4 and pCO2 were 0.56 and 0.13 MPa 

respectively, corresponding to 81% CH4 and 19% CO2 with correction for N2.  

Afterwards, experiment IV-3 was started with again an additional feeding of 0.16 mol 

acetic acid.  At a pressure of 124 kPa a leakage was detected due to which the 

experiment ended before final samples could be taken. Nonetheless, pCH4 in 

experiment IV had further increased to 0.68 MPa.  

Experiment IV showed that the pH-drop caused by the decreasing ANC/TICproduced 

ratio was not as detrimental to the process as expected, since in three consecutive 

additions of acetic acid CH4-production continued with pH between 5.5 and 4.5. For 

experiments IV-1 and IV-2 average rates were estimated between 2.5-3.5 mmol CH4 

VSS-1d-1. Nonetheless, the combined pH drop and the change in molar ratio in the total 

reactor between CH4 and CO2 showed that under these conditions the CO2 in the 

biogas will increase to values above 6%, the maximum level for grid injection. 
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Figure 3-5: Autogenerated pressure (MPa = black ) and pH development (grey) from acetic acid digestion 

starting with an ANC of 0.33 eq and a TIC increasing from 0.33 with 0.16  in each of the experiments IV-

1, IV-2 and IV-3. 

3.4 Discussion	

Our results show that methane distribution over gas and liquid phase in AHPD reactors 

follows Henry’s law. We expect that increasing operating pressures will result in 

proportionally more CH4-dissolution. CH4 dissolution in general is undesired, because 

it reduces the quantity of easily recoverable high quality biogas and requires additional 

CH4 collection when decompressing the effluent. This should be considered in the 

design of an AHPD process.  

However, experiments also showed that increasing the ANC/TICproduced ratio resulted 

in increased formation of [HCO3
-] in the liquid phase and thereby a decreased CO2-

content in the gas phase from 20% to below 2% at ANC/TICproduced of  0 and 1 for 

acetate, respectively. Our findings have important implications for further 

development of the AHPD technology, since it means that the CO2 content of biogas 

can be controlled at relatively low to moderate pressures by ANC addition, while 

keeping pH circumneutral. Thus, methane dissolution can be reduced and reactor costs 

can be diminished. This opens perspectives for developing low-cost reactor systems 
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that can be used for producing high-quality biogas for grid injection from waste 

streams in decentralised settings, provided low-cost ANC is available.  

In this work it has been assessed how the conversion of synthetic acetate waste water 

could influence biogas composition under AHPD conditions. This is of course an 

idealised setting and for real waste waters it should be taken into account that (a) the 

conversion of more complex organic matter will influence the stoichiometric 

production of CH4 and CO2 as dictated by the COD/TOC-ratio, following CH4% = 

18.75 x COD/TOC (assuming all CO2 and CH4 in the biogas), as described by Van 

Lier, Mahmoud and Zeeman [24]. On top of that (b), the actual CH4/CO2 ratio will be 

determined by the presence of alternative electron acceptors [24].  And (c) as is 

demonstrated in this work the ratio ANC/TICproduced determines the chemical CO2 

binding to the reactor broth, and this ratio is also substrate/waste water dependent. For 

neutralised propionate and butyrate for example, the ratio ANC/TICproduced equals 0.8 

and 0.67 respectively. For glucose and triglycerides this ratio is 0. Anaerobic 

conversion of N-containing compounds like proteins and amino acids will generate 

NH4
+ cations, thus increasing ANC. So, for N-containing compounds, the  

ANC/TICproduced ratio will also be determined by the ratio of N/Ctotal [68].  

The importance of the ANC/TICproduced ratio is further stressed by the fact that the 

carbonate speciation predicted a substrate ANC requirement of 0.82 eq per mol 

TICproduced to maintain pH 7. At lower ANC/TICproduced ratios, pH was theoretically 

expected to decrease to values below 5 and this was confirmed by experiments I, II 

and IV. In general, pH-values below 6 are reported to have an inhibiting effect on 

methanogenesis, often due to the accumulation of volatile fatty acids [24]. 

Remarkably, experiment IV showed continued methane production, between 2.5 and 

3.5 mmol g-1 VSS d-1, at an estimated ANC ratio between 0.40 and 0.67 with pH 

dropping below 5. Fukuzaki, Nishio and Nagai [69] reported for example a 50% 

inhibitory value of undissociated acetic acid of 4 mM at pH 6, whereas values in 

experiment IV corresponded to 7.8, 16.5 and 17.8 mM undissociated acetic acid. 

Taconi, Zappi, Todd French and Brown [70] reported acetate-based methanogenic 

activity at an initial pH of 4.5, but during their experiment pH increased to pH 7. Low 
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pH methanogenesis has also been reported for acidic peat bog environments, but is 

attributed to hydrogenotrophic methane formation [71-73]. Furthermore, striking low 

reactor pH values of 4.2 were reported when digesting non-VFA substrates, such as 

methanol [74], provided that VFA/acetate was not produced as intermediate. The 

observed acetate conversion at low pH offers opportunities to operate AHPD at a 

lower pH, reducing or perhaps eliminating the need for investments for ANC recovery, 

recycling, and/or addition.  

On top of the unexpected methane formation at low pH, inoculated experiments II and 

III showed an apparent “CO2-sorbing” effect, due to which pH 6.9 was measured, 

whereas actual CO2-speciation corresponded to a theoretical pH 8.1 at ANC/TICproduced 

ratio of 1. Apparently, the presence of active inoculum resulted in a deviation from 

pH-based predictions on CO2-speciation. On one hand, the exact mechanisms 

underlying the low pH digestion of acetate and the observed disagreement between 

CO2-speciation and pH in inoculated experiments are not yet elucidated. On the other 

hand, it is obvious that a simple modelling approach without having a detailed 

knowledge on the presence of unknown precipitates, proteins and organic acids in 

complex biological systems can result in under- or overestimation of CO2-speciation 

and its dissociation constant based on pH and temperature [63]. In the below section 

we have identified three possible mechanisms which could give direction for further 

experimental work and incorporation of biological complexity into the modelling of 

CO2-speciation. These are (a) monovalent and divalent free cations naturally present in 

the methanogenic biomass (b) mass transfer and reaction limitations resulting from the 

biochemical matrix and (c) enzymatic catalysis.  

Titration of the used inoculum rendered 2.3 meq g-1 VSS of inoculum-associated 

ANC. For the total reactor this would contribute 94 meq, which is 9.4% of added ANC 

via the substrate. ANC in close association with the micro-organisms could also 

provide a locally elevated pH, due to which acetic acid could be converted even at low 

bulk pH, as is also proposed by Williams and Crawford [73]. The inoculum used in 

our experiments was known to be rich in Ca2+ [75], possibly explaining the inoculum 

bound ANC. The divalent cations in the inoculum, could also exchange with 
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monovalent cations in the liquid phase [75] and thereby increase the effect of ion 

pairing, especially under pressurised conditions. Due to ion pairing of carbonate and 

calcium ions, the apparent pKa of carbonic acid could be lowered according to 

Whitfield [76] and result in relatively more HCO3
- formation at lower pH.  Also, 

digestion of N-containing compounds generates NH4
+, contributing to ANC build-up. 

Even though in our system ammonia was not present in the added substrate, Batstone 

and Keller [77] analysed 4 anaerobic sludges for protein content and found a minimum 

content of 0.14 g protein g-1 VSS. Therefore, endogenic respiration of the sludge mass 

will likely result in a further build-up of NH4
+ linked ANC. Additionally, the presence 

of proteins and pressurised CO2 could also provide an apparent “CO2-sorbing” effect, 

by forming carbamate ions onto the amine groups of proteins in the presence of 

cations, this compound having a lower pKa than carbon dioxide [64]. Carbamate is 

also investigated as alternative method for CO2-sequestration by for example McCann, 

Phan, Fernandes and Maeder [78] and is described as the first step of carbon fixation 

via the Rubisco-enzyme in many autotrophic organisms [79]. 

Secondly, Farajzadeh, Barati, Delil, Bruining and Zitha [80] concluded, based on their 

study with the surfactant sodium dodecyl sulphate, that the physical properties of the 

liquid can limit CO2 mass transfer substantially, likely leading to pH gradients in the 

liquid. Such pH-gradients also occur due to limitations in proton transfer in granular 

agglomerates and biofilms of anaerobic micro-organisms of mixed reactor systems 

[81]. Initially granular sludge was added and after the experiments we visually 

observed an increased liquid viscosity in the inoculated experiments and because pH 

was measured in the upper part of the reactor, local pH gradients could not be 

excluded. Also, if gaseous micro CO2 bubbles are trapped in remaining granules and 

cannot migrate upwards to the head space the pH would be influenced directly, but this 

CO2 would not have to be measured until after decompression and titration. Therefore, 

the influence of ‘biologically initiated’ mass transfer limitations, even at a stirring 

speed of 150 rpm, cannot be excluded even though mass transfer results indicate that 

equilibrium had been reached. 
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Thirdly, the enzyme carbonic anhydrase is known to regulate the hydration and 

dehydration of CO2 or HCO3
- in many methanogenic microbes [82]. Because CO2 is 

not only an end product, but also an essential compound for autotrophic growth of 

micro-organisms, it can be speculated that micro-organisms can actively influence the 

CO2-speciation in and around their cells, possibly resulting in significant changes and 

retardation of the physical-chemical equilibrium of the bulk solution in AHPD 

systems. Ongoing experiments are focussing on elucidating these phenomena and are 

researching the biological consequences of elevated pCO2 in anaerobic digestion 

technology.  
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4 The	 effect	 of	 cation	 requirement	 on	 Volatile	 Fatty	 Acid	

conversion	at	elevated	biogas	pressures	

 

 

Abstract 

This work studied the anaerobic conversion of neutralised volatile 
fatty acids (VFA) into biogas under Autogenerative High Pressure 
Digestion (AHPD) conditions. The effects of the operating conditions 
on the biogas quality, and the substrate utilisation rates were evaluated 
using 3 AHPD reactors (0.6 L); feeding a concentration of acetate and 
VFA (1-10 g COD L-1) corresponding to an expected pressure 
increase of 0.10-2.00 MPa. The biogas composition improved with 
pressure up to 0.45 MPa (>93% CH4), and stabilised at 1.0 and 2.0 
MPa. Both, acetotrophic and hydrogenotrophic methanogenic activity 
was observed. Substrate utilisation rates of 0.2, 0.1 and 0.1 gCOD 
CH4 g-1 VSS d-1 for acetate, propionate and butyrate were found to 
decrease by up to 50% with increasing final pressure. Most likely 
increased Na+-requirement to achieve CO2 sequestration at higher 
pressure rather than end-product inhibition was responsible.  

  

Keywords 

Anaerobic digestion; Biogas upgrading; Pressure; Substrate inhibition; 
ANC-requirement 
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4.1 Introduction	

Hansson [16] described the influence of end product limitation by CH4 and CO2 at 

relatively low partial pressures up to 0.1 MPa for aceticlastic methanogenesis (Table 

1-2). Inhibition due to pCO2 exceeding 10 kPa was considered significant and resulted 

in 30 % reduction in CH4 yield at a pressure of 0.1 MPa pCO2; but no data was 

presented at higher pCO2. The impact of elevated CH4 partial pressure was considered 

negligible. Kapp [18] reported a biogas composition of 61 % CH4 from sludge at 

thermophilic pressurised conditions (0.2-0.3 MPa), while operation at mesophilic 

temperature was unstable (Table 1-2). Decreased NH3 inhibition at 0.3 MPa was 

confirmed by modelling pressure effects on anaerobic digestion [20]. 

From these studies, it becomes clear that improved biogas composition can be 

obtained, but might come at the cost of end product inhibition and process instabilities 

at pressures not exceeding 0.4 MPa. However, the results presented in chapter 2 

indicated a drop in the specific methanogenic activity (SMA) of only 30 % at pressures 

up to 9.0 MPa. It should be noticed that pCH4 increased up to 8.8 MPa, but pCO2 

remained fairly constant with a maximum of 0.2 MPa. 

These results are in accordance with the study on end product inhibition by Hansson 

[16]. Unlike CH4, CO2 should be considered both an intermediate and end product in 

anaerobic digestion, since it is both produced and consumed in various relevant 

reactions. Therefore, the aim of this study was to evaluate the effect of autogenerated 

biogas pressure (0.1-2.0 MPa) on the kinetics of volatile fatty acids (VFA) conversion 

into CH4 and CO2. To do so, 10 high pressure experiments were performed in 3 AHPD 

reactors from which the effect of autogeneration of biogas pressure (0.1-2.0 MPa) was 

evaluated. 

4.2 Material	and	methods	

4.2.1 Biomass		

The granular sludge used as inoculum was obtained from a full-scale mesophilic 

Expanded Granular Sludge Bed (EGSB) treating fruit processing waste water (pH 7.0, 
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30°C) at FrieslandCampina Riedel B.V. (Ede, The Netherlands). Wet sludge was 

obtained through a 0.5 mm sieve. After sieving, average total suspended solids (TSS) 

and volatile suspended solids (VSS) contents were 96 and 90 g L-1, respectively. The 

pH was 6.5 and alkalinity measured 5 meq kg-1 VSS. 

4.2.2 Experimental	set‐up	

All experiments were conducted in 3 batch-fed AHPD pressure reactors, with a similar 

setup as shown in Figure 2-1B (Parr 910908, Moline, USA). These were closed 

stainless steel vessels with a total volume of 0.6 L. The impeller velocity was set at 60 

rpm. The temperature (30 ºC) was controlled with a water bath (Julabo, Seelbach, 

Germany). All reactors were equipped with temperature, pH and pressure sensors 

connected to a field point module for data acquisition; on-line measurements were 

displayed in a computer with the software Labview 7.1 (National Instruments, Austin, 

USA).  

4.2.3 Batch	experiments	

The effect of pressure was evaluated in 10 batch experiments in the AHPD vessels, 

which are summarised in Table 4-1. The experiments were carried out with either 

acetate (C2) as substrate or with a mixture of volatile fatty acids (VFA) in the 

following proportions (expressed as chemical oxygen demand (COD): acetate (50%), 

propionate (25 %) and butyrate (25 %). These substrates were fed as sodium acetate 

trihydrate (CH3COONa·3H2O) or as solutions of propionic acid and butyric acid 

neutralised to pH 7 with NaOH. In all cases, the liquid and gas volumes were 0.5 L 

and 0.1 L, respectively. Initial substrate concentrations ranged between 1 and 10 g 

COD L-1 (1, 2.5, 5 and 10 in Table 4-1). Assuming 100 % COD conversion, these 

values correspond to expected pressure (90 % CH4 / 10 % CO2) increases ranging from 

0.1 to 2.0 MPa (P1, P5, P10 and P20 in Table 4-1). One of the experiments (P10) was 

repeated, to assess the variability of the results between experimental runs. To 

compare the results, 2 ambient pressure batch experiments were performed having the 

same liquid composition, but operated with a larger head space. 
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Each experiment was started by filling the reactors with 0.5 L of solution containing 

the substrate VFA (1-10 g COD L-1), the corresponding amount of granular sludge to 

get a substrate/biomass ratio of 0.5 g COD g-1 VSS , macronutrients, trace elements  

and yeast (Table 2-1).The reactors were then flushed with nitrogen gas (99.9 % N2) 

and sealed. Process evolution was followed by on-line monitoring of pressure, pH and 

temperature, and daily measurement of gas composition. Liquid samples were 

periodically taken to analyse VFA contents in the liquid phase. 

Endogenic sludge respiration in absence of added substrate was measured at 

atmospheric pressure in the AHPD vessels during 5 days. Methane production in all 

experiments was corrected for this endogenic respiration. 

Table 4-1: Overview of volatile fatty acid experiments 

Experiment Trial Substrate 

(g COD L-1) 

Substrate/incoculum 

(g VSS L-1) 

High Pressure Acetate (C2): 

100 % Acetate (NaCH3COO·3 H2O) 

P1 

P5 

P10 

P20 

1 

2.5 

5 

10 

2 

5 

10 

20 

Reference Pressure Acetate P0 1 2 

High Pressure VFA (C2-C4): 

50 % COD Acetate (NaCH3COO·3 H2O) 

25 % COD Propionate 

25 % COD Butyrate  

P1 

P5 

P10 

P20 

1 

2.5 

5 

10 

2 

5 

10 

20 

Reference Pressure VFA P0 1 2 

 

The specific methanogenic activity (SMA) was determined by pressure increase 

following the method of calculation of Zandvoort, Osuna, Geerts, Lettinga and Lens 

[58]. The online pressure sensor in the high pressure reactor allowed us to follow 

pressure increase every minute. Based on the total pressure and the gas composition, 

the partial pressures for CH4 and CO2 were derived. Sufficient sample to measure 

dissolved CH4 without influencing an experiment could only be retrieved from the 

liquid phase after decompression at the end of each experiment. By using the ideal gas 

law, the total molar production of CH4 was calculated based on the method described 
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in chapter 3 values were corrected for proportionally higher solubility at increasing 

pressures during the experiment.  

4.2.4 Analytical	methods	

TSS, VSS, pH and alkalinity were determined according to Standard Methods [57]. 

Gas composition (CH4, CO2, N2, O2) was determined by gas chromatography 

(Shimadzu GC-2010, Kyoto, Japan). The gas sample was directed over the same two 

columns described in chapter 2.  

Hydrogen was measured with a HP 5890A gas Chromatograph (Hewlett Packard 

5890A, Palo Alto, USA).  100 mL of gas-sample was directed over a molsieve column 

(30m x 0.53mm x 0.25mm), using argon as carrier gas.  The oven temperature, 

injection port and TCD were 40˚C, 110˚C and 150˚C, respectively.  

Volatile Fatty Acids samples were prepared and analysed as described in chapter 2. 

4.3 	Results	and	discussion	

4.3.1 Autogeneration	of	biogas	pressure	

Pressure build-up resulting from biogas generation during batch experiments with 

acetate and VFA mixtures is shown in Figure 4-1 a and b. The rate of pressure build-

up increased from experiment P1 to P20. However, the time for complete CODVFA 

conversion into CODCH4 increased for P1 to P20 from 2 to 7 days, indicating lower 

overall conversion rates had been obtained at higher loading rates.  

With acetate, the COD-balance based on recoveries from the gas phase were only 

between 66 and 74 % for P1, P5, P10 and P20. With VFA, the recoveries from the gas 

phase were between 67 - 82 %. For all P5-P20 experiments, 3 ± 1 mmol COD more 

CH4 was present in the liquid phase than theoretically expected. Visual comparison 

between pressurised (up to 0.5 MPa) and atmospheric pressure glass bottles learnt that 

a part of the formed gas bubbles were attached to the partially disrupted granules, 

neither being part of the gas phase nor being dissolved in the liquid phase. After 
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including the end-measurement of the dissolved CH4, retrieved COD-values increased 

to 85-95 % for all experiments.  

 (a) 

 

(b) 

 

Figure 4-1: Pressure build-up in batch experiments with a concentration of (a) acetate and (b) VFA 

(acetate, propionate and butyrate) for experiments P1 (black line), P5 (- - -), P10 and P10rep (grey line) 

and P20 (black dotted line). Notice that P10 was replicated to assess the variability between experiments. 
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The highest pressure (1.72 MPa) using acetate was obtained in the P20 experiment, 

followed by P10 (0.87 MPa), P5 (0.47 MPa) and P1 (0.24 MPa). With VFA, the 

highest pressure was obtained with P20 (1.78 MPa), followed by P10 (0.90 MPa ), P5 

(0.45 MPa) and P1 (0.26 MPa). The pressure build-up in this study is the highest ever 

reported in the literature [17-19], except for, the results presented in chapter 2 and 3 

(Table1-2). 

 

4.3.2 Biogas	composition	

A main goal of the AHPD concept is to produce and upgrade biogas to the quality of 

highly demanding applications in a single step reactor system. In this study the CH4 

content of the gas phase always exceeded 91 % (Figure 4-2) and the CO2 content 

varied between 5 - 9 %. This showed that direct injection into the Dutch natural gas 

grid, based on the regulation for CH4 and CO2, is theoretically feasible [83]. The 

acetate digestions had an average content of 94 ± 1% CH4; and the VFA digestions 93 

± 1% CH4. The remainder gas consisted of CO2. Ambient pressure experiments gave 

biogas compositions of on average 90 and 88 % CH4 content at an end pH~8 when 

using acetate and VFA as substrate, respectively. From Figure 4-2 it can be seen that 

biogas composition is initially improving up till 0.5 MPa, whereas between 1.0 and 2.0 

MPa biogas composition seems no longer affected by pressure. 

(a) 
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(b) 

 

 
(c) 

 

Figure 4-2: Overview of CH4 (grey) and CO2 (black) composition for different experiments (a) acetate (b) 

VFA (acetate, propionate and butyrate) and (c) HCO3
- concentration of acetate (grey) and mix VFA 

(black) experiments. 

The CH4 content in biogas is in accordance with the findings in chapter 2 and 3 with 

89-96 % CH4. Hayes [17] obtained 93 % CH4 in a fixed-film reactor with CO2 

stripping at 0.3 MPa when VFA were used as substrate and 59 % CH4 when glucose 

was used instead. With complex substrates like activated sludge and swine slurry, 58-

65 % CH4 was observed at 0.1-0.4 MPa [18, 19].  

From the Buswell equation the molar ratio of CH4 to CO2 was calculated for both 

substrates (acetate and VFA). The ratio CH4: CO2 is 1:1 for acetate, 1.625:1.375 for 

propionate and 2.5:1.5 for butyrate. From the final biogas composition the original 

stoichiometry is no longer visible due to the higher solubility of CO2. Figure 4-2c 
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shows that lower concentrations of HCO3
- were formed in the liquid phase to sequester 

CO2 in the VFA experiments than in the acetate experiments. This clearly indicated 

that Henry’s law and the carbonate equilibrium can be used to control the biogas 

quality dependent on quantity and oxidation state of the added substrate.  

These findings correspond to our earlier findings in which we showed that CO2-

content of the biogas is dependent on the ratio between Acid Neutralising Capacity 

(ANC) and Total Inorganic Carbon ratio. Thus, by using more reduced substrates than 

acetate the ANC requirement can be significantly reduced, without compromising on 

the biogas quality. 

4.3.3 Acetate,	propionate	and	butyrate	conversion		

Within the range of 0.2 to 1.8 MPa almost complete conversion of the substrate 

CODVFA into CODCH4 was obtained, as indicated by COD mass balances between 85-

95 % without taking biological growth into account. The SMA decreased from 

atmospheric pressure by 18 % for P5 and by 56 % for P20 in the acetate experiment; 

while it was not reduced P5 and by 46 % for P20 in the VFA experiment. When 

comparing Figure 4-3a and b, the actual SMA of the elevated pressure experiments 

was significantly underestimated when using only gas phase measurements, according 

to standard SMA procedures [84]. By correcting the SMA for the rate of increase of 

dissolved CH4 observed maximum SMA values increased by ~10-20 %. The values 

could not be corrected properly for the underestimation of CH4-production based on 

the retrieved liquid CH4 bubbles in the end measurement. It is worth mentioning that 

the SMA decrease may also be attributed to another required modification of the SMA 

protocol [84], since increased concentrations of substrate and inoculum with respect to 

the standard conditions were needed to increase the pressure build-up in treatments P5-

P20.  

Likewise, for both propionate and butyrate, a decreasing specific substrate utilisation 

rate with final pressure was measured from the liquid concentrations. Propionate rates 

were  0.10, 0.10, 0.06, 0.05, 0.05 gCODCH4 g
-1 VSS d-1 and butyrate rates were 0.10, 

0.09, 0.06, 0.05 and 0.05 for experiments P0, P1, P5, P10 and P20, respectively. This 
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is a maximum reduction in rates of about ~50 %. For comparison, overall acetate 

degradation rates were found to be 0.23, 0.23, 0.19, 0.17 and 0.11 gCOD g-1 VSS d-1 

for P0. P1, P5, P10 and P20. Estimated Ks and Ki parameters for propionate inhibition 

from continuous flow reactors show wide variation, but generally are in the order of 20 

mg L-1 and 20 mg HPr L -1 [85]. Given the fact that the inoculum was taken from a 

continuous-flow reactor, with very low bulk VFA concentrations, 250 mg COD L -1 

could already have been sufficient to exceed the bulk concentration for which the 

maximum substrate utilisation rate can be found.  Another possibility, is that the 

inoculum contained a relatively large inactive fraction of inactive volatile suspended 

solids and a minor fraction of active micro-organisms. 

Generally, butyrate is converted into acetate (and hydrogen) and then via acetotrophic 

methanogenesis into CH4 and CO2. Propionate is generally converted into acetate,  H2 

and HCO3
- [86, 87]. Latter intermediates act as substrate for either hydrogenotrophic 

methanogens or homoacetogenic bacteria, impacting  the pathway towards CH4 via 

competition on hydrogen and bicarbonate [88]. Figure 4-4 shows that  independent of 

the desired end pressure, the CH4 production rate in the experiment with VFA always 

exceeded the CH4-production rate of the acetate experiments. Like CH4 and CO2, also 

hydrogen may accumulate in a AHPD reactor. However,  hydrogen partial pressure 

could not be detected above the detection limit of 60 Pa. Clearly a hydrogen 

consuming population was present and interspecies hydrogen transfer took place [28]. 

Based on thermodynamic and kinetic parameters reported by Kotsyurbenko [51] and 

Conrad and Wetter [87], it is considered unlikely that homoacetogens can outcompete 

hydrogenotrophic methanogens below a pH2 of 60 Pa.  Moreover, if hydrogen would 

have been used for the production of acetate, all CH4 should have been produced by 

acetotrophic methanogens. Since it is assumed that the initial population was of equal 

size, equal CH4 -production rates as observed for the acetate experiments were 

expected. Thus, it can be concluded that hydrogenotrophic methanogens are capable of 

increasing the overall methanogenic activity for VFA conversion under AHPD 

conditions. 
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(a) 

 

(b) 

 

Figure 4-3: Gaseous CH4 production rate (excluding dissolved CH4) for experiments P5 (black line), P10 

(grey line) and P20 (black dotted line)  for (a) the acetate experiments and (b) the VFA-mixture 

experiments. 
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Figure 4-4: Maximum measured specific methanogenic activity (SMA) during batch experiments against 

the Sodium: Potassium  ratio with VFA (◊) and acetate (∆) 

4.3.4 Inhibitory	effects		

Acetate, propionate and butyrate all showed decreased substrate utilisation rates with 

increasing final pressure. For propionate and butyrate, hydrogen accumulation would 

be a logical explanation for decreased conversion rates at higher pressures. Because H2 

was not detected above the detection limit of 30 ppm or 60 Pa at a total pressure of 2.0 

MPa, inhibition by H2 is unlikely. Especially, because both butyrate and propionate 

showed an equal reduction in conversion rates, and according to the thermodynamics 

butyrate conversion is significantly less sensitive to hydrogen accumulation. On the 

other hand, 60 Pa is well over the inhibiting values reported for the syntrophic 

conversion of propionate[28]. And thus the role of hydrogen accumulation in the 

observed reduced rates of propionate and butyrate can not be excluded completely.  

Based on Hansson [16] it can also be speculated that accumulating pCO2 could cause 

an end-product inhibition in the conversion of acetate and propionate. But since CO2 is 

not involved in the butyrate pathway, end-product inhibition cannot  explain the 

decreased butyrate conversion rates.  Furthermore, in all the experiments the gas phase 

was flushed with pN2 and thus initial pCO2 was 0.00 MPa and then increased to a 

maximum of 0.10 MPa in the P20 experiment. Also, as can be observed from the SMA 
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over time in Figure 4-3b, the very constant nature of the inhibition from the beginning 

until the end of the experiment makes it more plausible that the lower rates were 

caused by inhibition from the liquid phase. Although an inhibitory effect of the VFA-

concentration is likely at the chosen concentrations, an increase of SMA was expected 

to be clearly visible because of  substrate and VFA depletion. Likewise, the very stable 

rate in the acetate experiment is difficult to explain if inhibition would have been 

solely caused by VFA (Figure 4-3). However, concomittant with the substrate 

concentrations also the sodium concentrations increased with increasing final pressure 

with maximum values of 2.7 and 3.5 g L-1 in the P20 experiment for VFA and acetate, 

respectively. In various researches these values are close to the reported 50 % 

inhibition value due to toxicity of Na+ [89-91]. However, other studies showed much 

higher tolerance for Na+ [90, 92, 93]. It should be realised that our inoculum was not 

used to high sodium levels in the full-scale treatment plant; it was mainly selected 

because it was naturally poor in mineral precipitates. Furthermore, potassium 

phosphate was minimised to a relatively low concentration of 1 mmol NaKHPO4
- L-1 

to prevent phosphate from influencing the carbonate equilibrium. Because it was the 

only source of potassium, and by keeping the medium constant, the ratio between Na+ 

:K+ was increased substantially with estimated final pressure by Na-acetate, propionate 

and butyrate additions. With an increasing Na+ :K+  -ratio  of 16, 38, 78 and 160 for 

respectively P1, P5, P10 and P20 dissapearance of the antagonistic effect as seems 

plausible [89, 90]. By plotting the maximum SMA versus the Na:K ratio this 

hypothesis is further supported with a R2 >0.95 (Figure 4-3). The rates in the VFA 

experiments were affected less compared to acetate as sole substrate, which could be 

related to the lower Na+/K+ ratio i.e. 12, 29, 58 and 120, for P1, P5, P10 and P20, 

respectively,.  Therefore, we postulate that the substrate and especially the required 

cations have influenced AHPD conversion rates in batch more than end-product 

inhibition.   

4.3.5 Practical	applicability	

Obviously, in practice AHPD would have to be used to treat more complex organic 

waste streams than synthetic VFA-based (waste-)water. Based on complex substrates 
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however, an initial hydrogen fermentation in a two-stage approach[94] might provide a 

practical opportunity to control VFA and hydrogen input into a second “high pressure” 

methanogenic phase. Likewise, major cations, NH4
+, K+, Mg2+, Ca2+, Na+,  will be 

naturally present in real waste waters. If present in insufficient quantity, selecting a 

cation mixture that takes the synergistic and antagonistic effects of individual cations 

into account is advised. One could choose mafic silicate minerals as is decribed in 

chapter 5, but the work of Michalska, Miazek, Krzystek and Ledakowicz [95] shows 

furthermore that addition of  Fe2+/Fe3+ could not only serve as an alternative cation 

source, but could improve the hydrolysis of more complex lignocellulosic material like 

Sorghum, Sida or Miscanthus in the presence of hydrogen peroxide. Therefore, in 

order to increase the overall biogas production or quality, combinations of different 

novel anaerobic digestion approaches are required [96]. 

 

4.4 Concluding	remarks	

Under Autogenerative High Pressure Digestion conditions, both acetotrophic and 

hydrogenotrophic activity was observed. Maximum conversion rates up to a pressure 

of 2.0 MPa decreased by approximately 50% for acetate, propionate and butyrate. 

Because the observed inhibition occurred already from the beginning of each 

experiment at relatively low pressures with increasing substrate concentrations, end 

product inhibition in this early stage of the batch is considered unlikely. Owing to 

substrate neutralisation, Na+/K+ ratios also strongly increased with increasing pressure. 

Reduced SMA values are therefore attributed to substrate inhibition and cation 

requirement rather than to accumulated pressure and end-product inhibition.  
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5 Silicate	minerals	for	CO2	scavenging	in	pressure	digesters	

 

 

Abstract 

Accumulation of CO2 and fatty acids resulting from digestion of 
glucose under Autogenerative High Pressure conditions may result in 
pH 3-5, which is unsuitable for high-rate methanogenic processes. 
Therefore, the use of wollastonite, olivine and anorthosite, with 
measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and 
Na0.7Ca1K0.1Mg0.1Fe0.15 Al3.1Si4O24, was studied to scavenge CO2 
during batch AHPD of glucose. Depending on the glucose to mineral 
ratio the pH increased to 6.0-7.5. Experiments with wollastonite 
showed that Ca2+-leaching was caused by volatile fatty acid (VFA) 
production during glucose digestion. At 0.10, 0.30 and 0.90 MPa, the 
CH4-content reached 74 %, 86 % and 88 %, respectively, which 
indicated CO2 scavenging. Fixation of produced CO2 by CaCO3 
precipitation in the sludge was confirmed by Fourier Transferred-
InfraRed, Combined Field-emission Scanning Electron Microscopy-
Energy-dispersive X-ray spectroscopy and Thermo-gravimetric 
Analysis-Mass Spectroscopy. 

 

Keywords 

acid neutralising capacity, anaerobic digestion, biogas upgrading, 
mineral carbonation, high pressure, weathering. 
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5.1 Introduction	

As reported by the International Energy Agency [4], corrosion, condensation of water 

and reduced calorific value are main reasons why H2S, NH3, CO2 and H2O should be 

removed in order to use biogas as a substitute for natural gas. The biogas composition 

depends on the average oxidation state of the carbonaceous substrate, as well as the 

degree of substrate pre-acidification and the presence of alternative electron acceptors, 

such as  SO4
2- and NO3

- [24, 97]. Due to fluctuations in waste water composition, 

biogas composition can strongly vary over time and robust upgrading systems are 

required, adjusted to these quality fluctuations. Conventional methods such as pressure 

swing adsorption or gas-selective membranes can be used, but these are only cost-

effective at biogas flows above 100 m3 h-1 [9].  

In previous chapters, autogenerative high pressure digestion (AHPD) was studied to 

produce high quality pressurised biogas in a single reactor system by integrating 

biogas upgrading and storage into an anaerobic digester. By sealing the gas phase the 

produced biogas auto generated biogas pressures up to 9.0 MPa and can be used 

directly (1) to separate CO2 and CH4 based on Henry’s constants of 0.31 mol L-1 MPa-1 

and 0.016 mol L-1 MPa -1,(2) to dry the biogas based on the Clausius Clapeyron 

equation and (3) to exclude membrane pumps in AnMBR setups (chapter 3).  In 

practice, CH4 losses up to 20 % have been reported for external upgrading, transport 

and storage of biogas altogether [98]. Therefore, on top of offering the above 

mentioned advantages, AHPD could also reduce potential losses during transport, 

storage and upgrading of biogas, because production, upgrading and storage are 

performed in a single step bioreactor.  

Although 9.0 MPa biogas pressure can be produced, reactor costs and CH4-dissolution 

would offset all potential benefits. However, experiments performed at moderate 

pressures (~0.5-1.0 MPa), thereby reducing reactor costs and CH4-dissolution to a 

minimum, showed that the potential benefits could be maintained (chapters 3, 4 and 

5) . However, under these economically more attractive conditions  control of the 

carbonate equilibrium and acid neutralising capacity (ANC) is a prerequisite to 
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maintain a proper pH for digestion (chapter 3). Conventional industrially produced 

bulk-chemicals like sodium hydroxide (NaOH), sodium carbonate (Na2CO3) or 

quicklime (CaO) could provide the required ANC. However, these are produced by the 

energy-intensive chloralkali, solvay and CaCO3 thermal decomposition processes, 

respectively. Combined with the required transport, and safety requirements, this 

potentially offsets the environmental benefits of local biogas upgrading in remote 

areas. Lackner, Wendt, Butt, Joyce and Sharp [99] and Schuiling and Krijgsman [100] 

explored natural minerals for their potential for CO2 sequestration in industrial 

processes. Moreover, for minerals such as wollastonite (CaSiO3) and olivine 

(Mg1.8Fe0.2SiO4) and large alkaline waste streams such as steel slags, cost estimates for 

the total mineral carbonation process are 50-100€/ ton avoided CO2 [101, 102].  Based 

on the current market price and assuming 100% reactivity however, one could expect 

400-700€/ton CO2 avoided for NaOH and Na2CO3 and 50 – 150 € / ton avoided for 

CaO [103]. Although quicklime, has a comparable current market price to silicate 

minerals, the thermal decomposition of CaCO3 intrinsically emits 1 mol of CO2 per 

mol of CaO on top of the heat demand of > 850oC [104] .  

So, assuming reactions rates are compatible with anaerobic digestion rates, a wide 

range of alternatives can be selected for adding ANC in AHPD, but also in 

conventional anaerobic digestion, nitrogen removal, desulfurisation and 

bioelectrochemical systems [105]. The rate and degree to which silicate minerals react 

is dependent on the mineral stability[65].  This is a function of, amongst others, the 

cation to silicate ratio and the mineral structure (mainly characterised by the Si:O 

ratio). Wollastonite carbonation is an exothermic process with ΔHr of -87 kJ/mol [106, 

107], not requiring external heat input.  Silicate minerals (like wollastonite, CaSiO3) 

that are exposed to acid react according to the reaction equations described earlier:  

CaSiO3	ሺsሻ	൅	2	H൅	ሺaqሻ	Ca2൅	ሺaqሻ	൅	SiO2	ሺsሻ	൅	H2O    (Eq. 1-15) 

 

The required H+ in this reaction could be provided by undissociated fatty acids, 

produced for example during typical anaerobic glucose digestion [27].   
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C6H12O6	ሺsሻ	൅	2H2O		2	CH3COO‐	൅	2H൅	൅	4H2	൅	2CO2    (Eq. 1-5) 

Due to the  H+ consuming reaction, accumulating fatty acids may dissociate, 

meanwhile maintaining an optimal pH (6-8) for methanogens in AHPD reactors. 

Besides, an increasing pH also shifts the carbonate equilibrium towards HCO3
- and 

CO3
2-, possibly resulting in the precipitation of secondary carbonates.   

Ca2൅	ሺaqሻ	൅	CO32‐	ሺaqሻ		CaCO3	ሺsሻ			     (Eq. 1-16) 

So, on top of HCO3
- formation a mechanism to store produced CO2 as solids is 

introduced. In AHPD, this is particularly relevant at lower ratios between ANC and 

produced CO2 when the calorific value of the produced biogas is becoming diluted as 

was shown in chapter 3.  

From a perspective of CO2-valorisation, it is noteworthy that calcium carbonate can 

precipitate in 6 different forms, all having different characteristics.  Amorphous 

calcium carbonate (ACC),  hexahydrate calcium carbonate (HCC), monohydrate 

calcium carbonate (MCC) and the polymorphs vaterite, aragonite and calcite have 

respective pKsp values at 25oC of 6.28, 6.59, 7.15, 7.91 ± 0.02, 8.34 ± 0.02 and 8.48 ± 

0.02 [108]. It is therefore essential to realise, that bacteria and archaea induce 

precipitation by altering intra- and extracellular conditions and can thus influence the 

type of calcium carbonate formation.  

The influence of anaerobic digestion conditions on CaCO3 precipitation at atmospheric 

pressure is already widely studied [75, 109-111]. Deviations from pKsp of calcite and 

aragonite in water have been reported as a consequence of the complex biological 

liquid composition [111, 112]. The sole presence of PO4
3- is reported to alter the pKsp 

from 8.4 to 6.5 due to inhibition of calcite formation from amorphous calcium 

carbonate [111].  

The aim of this chapter is to demonstrate the feasibility of using various silicate 

minerals, wollastonite (W), olivine (O) and anorthosite (A) for buffering the reactor 

pH in autogenerative high pressure digestion. Additionally, dissolution of wollastonite 
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under AHPD conditions was studied, thereby focussing on the secondary precipitation 

of CaCO3, the role of fatty acid intermediates and the CO2 content of the biogas.  

 

5.2 Materials	and	methods	

5.2.1 Reactors	

For AHPD experiments three pressure vessels with a total volume of 0.6 L were used 

(Parr 910908, Moline, USA). The volume of the liquid phase was manually controlled 

at 0.5 L. The reactors were equipped with a heating cylinder (Julabo MP, Seelbach, 

Germany), an online pressure sensor (Ashcroft A-series 1000 PSI, Stratford USA), a 

high-pressure pH probe (Prosense serial nr. 34002/002, Oosterhout, The Netherlands), 

a PT-100 temperature sensor, similar to the set-up as described in chapter 3. Compact 

field point modules (cFP1804 and cFP-CB1, National Instruments, Austin, USA) 

functioned as receivers of data. Data was logged in Labview 7.1 (National 

Instruments, Austin, USA). Mixing was provided at 60 rpm by two three-bladed 

impellors attached to a central shaft. Temperature was maintained at 30 ºC. Glass 

bottles were used as batch reactors for atmospheric reference experiments to acquire 

insights in the end pH with and without minerals. The liquid volume was set at 0.05 L. 

pH was monitored by taking liquid samples followed by measurement with a pH 

electrode. Batch experiments were carried out in a 30oC controlled room and centrally 

shaken.  

5.2.2 Operation		

The reactors were inoculated with various concentrations of anaerobic granular sludge 

from a full-scale expanded granular sludge bed reactor treating waste water from a 

fruit-juice processing industry (FrieslandCampina Riedel B.V., Ede, The Netherlands). 

Liquid medium with trace elements and macronutrient solution was provided in 

concentrations as described in Table 2-1. An overview of the experiments including 

substrate concentration, mineral type and concentration, sludge concentration and 

targeted final pressure is presented in Table 5-1. 



Chapter 5: CO2-scavenging Minerals 

79 

 

Table 5-1: Overview of silicate mineral experiments. 

Exp. 
nr.  

Mineral 
type* 

Weight 

  

(g L-1) 

Glucose  

 

(gCOD L-1) 

Sludge 

  

(gVSS L-1) 

Liquid 

Volume 

(L) 

Gas 

Volume 

(L) 

Target  

pressure 

(MPa) 

1 A 
B 
C 
D 

W 5.0 0.0 
2.5 
5.0  
10.0 
 

0.5 0.05 - None 

2 A 
B 
C 
D 

O 5.0 0.0 
2.5 
5.0  
10.0 
 

0.5 0.05 - None 

3 A 
B 
C 
D 
E 

A 5.0 
 
 
 
4.0 

0.0  
2.5  
5.0   
10.0 
1.0 
  

0.5 
 
 
 
20.0  

0.05 
 
 
 
0.5 

- None 

4 A 
B 
C 
D 

 - 0.0 
1.0 
2.5 
5.0 
 

0.5 
2.0 
0.5 
0.5 

0.25 - None 

5  W 0.92 1.0 2 0.50 0.67 ~0.1 

6#  W 0.92 1.0 2 0.50 0.10 0.2-0.4 

 7#  W 4.56 5.0 10 0.50 0.10 0.9-1.1 

* W=wollastonite, O=olivine and A=anorthosite # wide target pressure range due to uncertainty on CO2 
sequestration 

Experiments 1 to 3 aimed to clarify the effect of the cation to silicate ratio of different 

minerals (W, O, A) on the pH under increasing biological acidifying conditions. Thus, 

experiments 1-3 A, B, C and D were fed with 0, 2.5, 5.0 and 10.0 g COD glucose L-1, 

respectively. In experiments 1-3 only low amounts of sludge (0.5 g VSS L-1) were 

used in order to minimize the impact of the sludge on the pH. Equal amounts of the 

minerals wollastonite (Casiflux G20 Ankerpoort BV, The Netherlands), olivine 

(Greensand, B.V., The Netherlands) and anorthosite (crude rock, Nordic Mining, 

Norway) were added (5 g L-1). Anorthosite (NaxCayAl2Si2O8) was grinded and sieved 

to acquire powder with a particle size (volume based mean ~20 μm) like the particle 

size of wollastonite (CaSiO3) and olivine (Mg1.8Fe0.2SiO4). However, based on the 



 

80 

 

relatively low Ca2+ or Mg2+ to silicate ratio in anorthosite, and the observed lower 

reactivity, it was decided to perform experiment 3E using 4.0 g anorthosite L-1 and 1.0 

g COD glucose L-1. Experiments 4 (A, B, C and D) were performed as a reference 

without mineral addition, using concentrations of 0.0, 1.0, 2.5 and 5.0 g COD glucose 

L-1. 

Experiments 5 to 7 aimed to acquire more detailed insights into the leaching and 

secondary calcium carbonate precipitation mechanisms. The initial amount of 

wollastonite was stoichiometrically sufficient to neutralise (according to equation 1-

15) 3 eq H+ per mol of glucose.  Experiments 5 and 6 were operated at equal 

conditions, but to alter the pressure increase a gas volume of 0.67 and 0.1 L were used, 

respectively. Experiment 7 was supplemented with 5.0 g COD glucose L-1, 10 g VSS 

L-1 and 4.56 g CaSiO3 L
-1 to reach a pressure around 1.0 MPa. 

5.2.3 Analyses	

Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were determined 

according to Standard Methods 2540 [57].  

Gas sampling and CH4 and CO2 analysis was done as described previously. The 

biogas composition was corrected for flush gas (N2) and water vapour and showed a 

standard deviation of less than 2%. Hydrogen was measured with a HP 5890A gas 

Chromatograph (Hewlett Packard 5890A, Palo Alto, USA).  100 mL of gas-sample 

was directed over a Molsieve column (30m x 0.53mm x 0.25mm), using argon as 

carrier gas.  The oven temperature, injection port and TCD were 40˚C, 110˚C and 

150˚C, respectively.  

The specific methanogenic activity (SMA) was determined by the pressure increase 

following the calculation method described in chapter 2. From online total pressure 

measurements and the gas composition, the partial pressures for CH4 and CO2 were 

derived. Afterwards, by using the ideal gas law, the total molar production of CH4 was 

calculated. 
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VFA samples were taken from the reactor daily. VFA were determined by means of a 

gas chromotograph (Hewlett Packard 5890 series II, Palo Alto, USA) with a flame 

ionisation detector. Sample preparation and the GC method were the same as 

described in chapter 3. 

Dissolved Calcium was analysed with a Varian Vista-MPX (Varian, Australia) 

simultaneous inductively coupled plasma atomic emission spectroscopy (ICP-AES) 

system based on Standard Method 3120-B [57].  

Particle size distribution was measured by laser diffraction analysis (Coulter LS230, 

Beckham Coulter, USA). 

Samples for Field Emission Scanning Electron Microscopy analysis were centrifuged 

for 10 minutes at 5,000 rpm. Hereafter, supernatant was replaced by a 2.5 % 

glutaraldehyde solution for fixation during 1 hour. Afterwards samples were dried in a 

series of ethanol 50-75-90-95-100 % and then transferred to 100 % acetone. The 

samples were fixed to a brass sample holder with carbon adhesive tabs. Samples were 

coated by graphite sputtering. The Field Emission Scanning Electron Microscope 

(FESEM) (Fei Magellan, Hillsboro, USA) was connected to an Oxford INCA EDX 

(Oxford Instruments, Abingdon, UK) and operated between 10 and 20 kV. Scattered 

electrons and back scattered electrons were detected both in-lens and “under” lens at a 

distance of 15 mm. 

For Thermogravimetric-Mass Spectroscopy analysis (TGA-MS) and Fourier 

Transformed-Infra Red scans (FTIR) solid samples from bioreactors were prepared by 

centrifugation for 5 min at 10,000 rpm. The supernatant was removed and the pellet 

was dried for 2 days in a desiccator. TGA-MS analyses were performed as described 

by Huijgen, Witkamp and Comans [34] using a thermal gravimetrical analysis system 

(Mettler-Toledo TGA/DTA 851e) coupled with a mass spectrometer (Pfeiffer, 

Thermostar). Around 20 mg of solid sample was put in aluminum oxide ceramic cups 

and heated under an air atmosphere at 40 oC min-1 from 25 to 1000 oC, while the 

evolved gas was analysed for CO2 and H2O by the MS. Two samples were prepared 

and analysed according to the above mentioned protocol: inoculum biomass (sludge 
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without added mineral) and a sample taken from the bioreactor at the end of 

experiment 7 (after 300 hours). An additional wollastonite sample was analysed as a 

reference; after drying in a desiccator centrifugation was not required. 

For obtaining FT-IR spectra of the solid samples a Varian Scimitar 1000 FT-IR 

spectrometer (Varian, Australia) equipped with a DTSG-detector was used. The 

measurement resolution was set at 4−650 cm−1 for attenuated total reflectance (ATR). 

In total 64 scans were made. ATR was performed on a PIKE MIRacle ATR (Pike 

Technologies, Madison, USA) equipped with a diamond w/ZnSe lens single reflection 

plate. The sample chamber was purged by N2 gas for 10 min before scanning was 

started. In the infrared spectrum, different bonds give peaks at specific wavelengths 

[113, 114]. A reference biological sample and a calcite sample were analysed. The 

attenuated infrared spectrum of wollastonite was obtained from RRUFF [115]. In the 

sample of experiment 4 the normalised peaks for the biological sample and 

wollastonite were deducted from the total sample profile. This processed profile was 

compared with the obtained calcium carbonate profile. 

Particle surface area was measured by means of BET-analyses.  Prior to the analysis 

samples were degassed for 2 hours with helium at 300oC in a Smartprep 065 

(Micromeritics, Norcross, USA).  The BET-analysis was afterwards performed on a 

TriStar 3000 (Micromeritics,  Norcross, USA) using nitrogen at a temperature of -

196oC.  Data was acquired and analysed using TriStar software v 6.04. A linear fit to 

the BET-model had to have a correlation-coefficient of 0.9999. Samples were 

measured in triplicate. 

5.3 Results	

5.3.1 Characterisation	of	wollastonite,	anorthosite	and	olivine	

Table 5-2 shows the average elemental composition and particle morphology of the 

silicate minerals as determined by FESEM EDX mapping, and the mean particle size 

based on volume (%). It can be observed that wollastonite (W) samples only contained 

calcium and silicates, while olivine (O) and anorthosite (A) samples additionally 

contained magnesium, iron, nickel, potassium and aluminum.   
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Table 5-2: Overview of used mineral samples. 

Mineral Name EDX mean measured 
composition* 

Mean 
Particle Size 
(µm) 

Particle 
Morphology 

Particle surface 
area (m2 /g) 

Wollastonite CaSi1.05O3.4 18 Needle, well 
defined 

1.8009 ± 0.0062 

Olivine Mg2Fe0.2Ni0.01Si1.2O5.3 23 Rough 
undefined 

6.2859 ± 0.0255 

Anorthosite Na0.7Ca1K0.1Mg0.1 

Fe0.15Al3.1Si4O24 

21 Rough 
undefined 

1.0413 ± 0.0027 

 

	

5.3.2 Buffering	potential	of	silicates	during	digestion	of	glucose	

The silicates wollastonite, anorthosite and olivine were tested for their buffering 

potential during glucose based biological acidification in experiments 1-4 (Table 5-3).  

Table 5-3: Overview of final pH for the digestion of glucose in the presence of various minerals 

Substrate 

(gCOD L-1) 

Experiment 1  

Wollastonite 

Experiment  2  

Olivine 

Experiment 3  

Anorthosite 

Experiment 4  

No mineral  

0.0 8.5 8.1 7.9 7.7 

1.0   6.4 4.6 

2.5 7.8 7.3 4.3 4.2 

5.0 7.2 5.0 3.9 3.8 

10.0 5.5 4.8 3.4  

 

The initial pH (7.6) in the liquid remained stable in the blank experiment without any 

glucose and mineral addition (experiment 4 A). Upon the addition of 1.0, 2.5 and 5.0 g 

COD glucose L-1, the pH dropped to 4.6, 4.4 and 3.8 ± 0.15 at the end of experiments 

4 B, 4 C and 4 D, respectively. For addition of 5.0 g wollastonite L-1 (experiments 1 A, 

B, C and D), pH values of 8.5, 7.8, 7.2 and 5.5 ± 0.15 were found for 0.0, 2.5, 5.0 and 

10.0 g COD glucose L-1, respectively. For addition of 5.0 g olivine L-1 (experiments 2 

A, B, C and D), these values were 8.1, 7.3, 5.0 and 4.8 ± 0.15. With 5.0 g anorthosite 
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L-1 (experiments 3 A, B, C and D), pH showed values of 7.9, 4.3, 3.9 and 3.4 ± 0.15. 

However, upon the addition of 4.0 g anorthosite L-1 and 1.0 g COD glucose L-1 

(experiment 3 E), the pH stabilised at 6.4 ± 0.15. 

5.3.3 Reactivity	of	wollastonite	during	AHPD	of	glucose	

In order to elucidate the role and fate of added calcium silicates during AHPD of 

glucose, wollastonite (with calcium as only earth alkaline metal) was selected as 

model compound for further experiments (Table 5-1, experiments 5-7). Figure 5-1a 

shows the dissolved Ca2+ concentration during AHPD-experiments on glucose, with 

wollastonite reaching final pressures of 0.10 MPa (experiment 5), 0.30 MPa 

(experiment 6) and 1.00 MPa (experiment 7). Calcium contributed maximally 5, 7, and 

32 meq L-1 to the charge balance of the reactor medium for experiments 5, 6 and 7, 

respectively. This corresponded to the dissolution of at least 68 %, 50 % and 42 % of 

the calcium in the added wollastonite.  The standard deviation was 10% of the total 

value in meq L-1. The pH reached minimum values of 5.5, 5.2 and 5.1 between 24 and 

48 hours and an equilibrium pH at 6.8, 6.4, and 6.4, respectively (Figure 5-1b).  

Furthermore, at atmospheric digestion (experiment 5) and at AHPD up to 0.3 MPa 

(experiment 6) the VFA concentrations remained below 2 meq L-1 (Figure 5-1b), 

whereas in experiment 7 acetate and propionate measured a maximum concentration 

of 4 and 25 meq L-1, respectively (Figure 5-1 e and f). Butyrate, valerate and caproate 

were near or below detection limit for all experiments.  
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 (a) (b) 

 

   (c) (d) 

 

 (e) (f) 

 

Figure 5-1: Dissolved calcium (a),  pH (b), total VFA (c) against time for experiments 5 (black line), 6 

(grey line) and 7 (grey dotted line), leaching rate (d) plotted against pH  (□), profile of propionate (e) and 

acetate (f) concentrations for experiments 5, 6 and 7. 
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The decrease in pH in experiment 7 and the fatty acids formation peaks (Figure 5-1b 

and c) appear as expected simultaneously. But more importantly the fatty acid peak 

coincides with the Ca2+ leaching or acid consumption peak of wollastonite (Figure 

5-1a). It must be realised that the increase of specific surface area and the pH are 

important parameters for increasing the reaction rate [106, 116]. As described in Table 

5-2, the average wollastonite surface area was 1.8 m2 g-1. Based on this surface area 

maximum dissolution rates of 3.4*10-12, 3.9*10-12, 4.0*10-12 mol cm-2 s-1 were 

calculated for day 1.  On day 2 average rates dropped to 5.0* 10-13, 1.1*10-12 and 1.2 *-

12 mol cm-2 s-1 in experiments 5, 6 and 7, respectively. By plotting these against pH an 

exponential curve is obtained (Figure 5-1d). For the purpose of anaerobic reactor 

design and the comparison with existing literature mineral leaching rates have been 

expressed in mmol g-1 d-1 and in mol cm-2 s-1. 

5.3.4 Effect	of	wollastonite	on	biogas	production	and	quality	

Figure 5-2 shows the results on pressure autogeneration, CO2 content in biogas and 

cumulative methane production for experiments 5 to 7. Figure 5-2a shows that the total 

pressure increase was 0.02, 0.20, and 0.88 MPa for experiments 5, 6, and 7, 

respectively.  

The cumulative CH4 production based on gas phase measurements, after correcting for 

dissolved CH4 and sampling losses is then shown in Figure 5-2c. 85, 85 and 90 % of 

COD could be retrieved as CH4 in experiments 5, 6 and 7, respectively.  In all cases, 

produced acetate and propionate were consumed completely at the end of the 

experiment; indicating full conversion of glucose (Figure 5-1 e and f).   

After 30 hours, the biogas contained 55, 53 and 36 % of CO2 for experiments 5, 6 and 

7, respectively. Over time, the CO2 content of the biogas (Figure 5-2c) decreased and 

stabilised around 26, 14 and 13 ± 2 % for experiments 5, 6 and 7, respectively. The 

remainder produced biogas consisted of 74, 86 and 88± 2 % CH4. Hydrogen was not 

detected in the biogas (detection limit of 30 ppm). The highest measured specific 

methanogenic activity (Figure 5-2d) was 0.13, 0.12 and 0.08 g COD CH4 g
-1VSS d-1 

for experiment 5, 6, and 7 respectively. 
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(a) (b) 

 

(c) (d) 

 

Figure 5-2: Pressure (a), cumulative CH4 (b) CO2-content (c) and measured specific methanogenic activity 

corrected for theoretical dissolution (d) for experiments 5 (black ), 6 (grey) and 7 (grey dotted) 

5.3.5 Precipitation	products	

FESEM-EDX, FT-IR and TGA-MS analysis were used to identify secondary calcium 

precipitates in the remaining solids after AHPD on glucose in the presence of 

wollastonite. Figure 5-3 shows an electron image of unreacted wollastonite, together 

with a layered image of a wollastonite control sample (Figure 5-3b) and reacted 

wollastonite from experiment 7 (Figure 5-3c). In the reacted sample, many particles 

with silicon but without calcium were present, in contrast to the control sample. 
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 (a) (b) (c) 

 

Figure 5-3: Electron image of unreacted wollastonite sample (a) and colored mapping of unreacted 

wollastonite sample (b) and reacted wollastonite sample from experiment 7 (c), with presence of calcium 

depicted in green and silicon in red. 

The weight ratio (Table 5-4) based on various chosen spectrum areas, like shown in 

Figure 5-3a, further supports this conclusion. It was in average 0.59 for unreacted 

sample, similar to the theoretical molar weight distribution, and decreased to an 

average of 0.28 for the reacted sample. This indicated dissolution of calcium from 

wollastonite. No separate crystals with calcium but without silicate were found. 

Nonetheless, the presence of CaCO3 was detected by TGA-MS analysis (Figure 5-4).  

Table 5-4: Weight ratios of samples shown in Figure 5-3 combined with theoretical weight distribution of 

CaSiO3 

Unreacted  CaSiO3 Reacted CaSiO3 
(Figure 5-3c) 

Theoretical weight distribution 0.59   

Sample 1 (Figure 5-3a) 0.60 Total map  0.28 

Sample 2 (not shown) 0.59 Area 1 0.16 

Area 1 (Figure 5-3b) 0.60 Area 2 0.11 

Area 3 0.31 

Area 4 0.37 

Area 5 0.46 

Area 6 0.12 

Area 7 0.37 
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Calcium carbonate and other metal carbonates decompose in the temperature range 

between 600oC and 900oC to CaO and CO2 [104]. For the inoculum biomass (sludge) 

sample no CO2 was liberated above 600oC (Figure 5-4c), thus it contained no calcium 

carbonate. Although, the wollastonite control sample released traces of CO2 above 

600oC, we assume that all initially present carbonates would have been dissolved at the 

beginning of experiment 7; the acidic non-saturated conditions with regard to Ca2+ 

CO3
-. Thus, the CO2 liberation in the area between 600-650oC indicated the presence 

of newly formed carbonate minerals (Figure 5-4c). 

 (a) 

 

 (b) (c) 

 
Figure 5-4: Relative weight loss against temperature (a), temperature related H2O detection in outflow to 

mass spectrometer (b) and temperature related CO2 detection  in  outflow to mass spectrometer (7) from a 

sample of experiment 7 (grey), inoculum (dotted grey line) and control wollastonite sample (black) 
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Furthermore, FT-IR spectra of experiment 7 showed distinct peaks at 711, 872, 1070 

and 1405 cm-1, a pattern comparable to the reference profiles of aragonite and calcite 

(Figure 5-5). Thus, FT-IR measurements verified that secondary carbonate 

precipitation (Equation 1-16) indeed functioned as a solid CO2 sink. 

 

Figure 5-5: Absorbance of Infrared wavelengths of reactor sludge from experiment 7 (upper part of 

graph) and normalised absorbance of infrared wavelengths of reactor sludge after correction for 

wollastonite and inoculum spectrum. Calcium carbonate related peaks are indicated by grey arrows and 

amorphous silica related peaks are indicated by black arrows. 

5.4 Discussion	

5.4.1 Effect	on	biogas	composition	

Stoichiometrically, 1 mole of CH4 is expected per mol of produced CO2 for anaerobic 

glucose conversion. Therefore, glucose or other carbohydrates digestion generally 

result in a 50-60% CH4 content taking the higher solubility of CO2 compared to CH4 in 

water into account [24]. The CH4 content of the biogas was about 60 % CH4 in 

pressurised experiments on glucose and operated at pH 7 up till 0.3 MPa [17]. Due the 

addition of silicate minerals, like wollastonite, olivine and anorthosite, biogas 
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contained already above 70 % CH4 at atmospheric pressure (data for olivine and 

anorthosite are not shown). Under AHPD conditions, biogas quality improved to 86 ± 

2 % CH4 at 3 and 88 ± 2 % CH4 at 1.0 MPa of biogas pressure. Thus, the H+ 

consuming mechanism of silicate minerals (Equation 1-15) is an effective alternative 

to NaOH and sequesters CO2 as HCO3
- and CaCO3 by keeping the pH above 6.3, and 

enabled full conversion of non-buffered glucose into CH4. 

5.4.2 Reaction	rates		

The estimated Ca2+ leaching rates in mmol g-1 d-1 observed for wollastonite in this 

work are in the same order of magnitude as the aerobic biological leaching rates 

described by Pokrovsky, Shirokova, Bénézeth, Schott and Golubev [116] in mol cm-2 

s-1. Still, these biological rates are 15-30 times slower than the physicochemical CO2 

sequestration rates presented in the literature [106, 117-119]. It is noteworthy, that in 

physicochemical CO2 sequestration, high temperatures (usually >150 oC) are used to 

increase the leaching rate to match with large scale CO2 production from combustion 

processes. Therefore, it may be speculated that under thermophilic conditions (55-70 

°C) also higher leaching and sequestration rates could be obtained. Despite the 

moderate Ca 2+ leaching,  it was observed that also the VFA production at 1.0 MPa and 

30oC occurred at a relatively slow rate of 15 meq L-1 d-1 during the first 2 days.  So, 

although much slower than physicochemical leaching, a maximum leaching rate of 7 

mmol Ca2+ g-1 d-1 from needle shaped wollastonite would still be sufficient to buffer 

anaerobic glucose acidification at the applied slug doses. Continuous methanogenic 

reactor systems generally will be operated at neutral pH and low and constant fatty 

acid concentrations. Based on the relationship between leaching rate and pH retrieved 

in Figure 5-1d it can also be anticipated that under these conditions leaching rates 

would be significantly lower than the rates observed in this study. So, the mineral 

would remain intact inside the reactor for long periods of time and will only react in 

case of a pH drop. VFA accumulation is a general operational problem observed in 

anaerobic digestion and fast responses are required to prevent pH upsets. Due to the 

rate of increase of the leaching rate at lower pH observed in this study, dosing silicate 
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minerals would also provide a self-regulating low maintenance pH safeguard against 

fatty acid accumulation for conventional digesters.  

However, compared to the 0.1 and 0.3 MPa AHPD experiments on glucose with 

wollastonite, the 1.0 MPa experiment showed a 50 % reduction in SMA value 

reaching 0.05 g COD g-1 VSS  d-1 and a peak value of 2.8 g COD or 25 meq-

propionate L-1 (Figure 5-1e). In the other experiments the propionate concentration 

never exceeded 0.15 g COD-propionate L-1. The SMA drop might partially be ascribed 

to inhibition, since at pH 6.5 and a concentration of 0.241 g COD L-1, propionate 

causes 50 % inhibition of the SMA [120]. Propionate accumulation could be caused by 

the relatively low pH as it is reported that propionate oxidizers require a pH above 6.8 

to perform optimally [121]. Therefore, although acidification below pH 6 is prevented 

by silicate mineral addition, the possible inhibitory impact of accumulating VFA 

inhibition and inhibition of syntrophic propionate conversion under these conditions 

still poses a great challenge.  

5.4.3 Effect	of	precipitation	on	digestate		

The required addition of at least 1 g of mineral per g of COD-substrate will result in a 

larger solids fraction in the digestate streams if this concept is applied in practice. To 

prevent extra discharge costs, creation of added value products by mineral weathering 

is important. Therefore, three main research topics are identified, that could exhibit 

influence on the additionally produced solids: 1) type of calcium carbonate 

precipitation, 2) the role of silica and 3) the presence of additional trace- and macro 

elements. 

By comparing the specific solubility products found in the bioreactor medium with the 

pKsp of the polymorphs, the type of carbonate precipitation can be predicted [108]. 

Based on measured pH, VFA, HCO3
- and Ca2+ concentrations, the solubility products 

(K) were 8.8 and 8.9 and calcium carbonate precipitation was not expected for 

experiments 5 and 6. In experiment 7, Ca2+ dissolution showed a maximum after 48 

hours and dropped afterwards simultaneously with VFA converted into HCO3
- and 

CH4 (Figure 5-1 and 5-2).  
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Based on the Ca2+ concentration, biogas composition, pH and pressure measurements, 

the estimated pKsp ranged from 7.8 to 8.3 between 48 and 144 hours. The pKsp based 

on titration and measured evading CO2 that reached 14.5 ± 1 mmol CO2 L
-1 after 200 

hours was around 8.1, between the pKsp of vaterite and aragonite. On the other hand, 

the peak at 711 cm-1 in the FT-IR spectrum refers to the presence of the crystalline 

polymorphs like calcite or aragonite [122]. The absence of a peak at 744 cm-1 excludes 

the presence of significant quantities of vaterite [123]. Likewise, the peak at 1405 cm-1 

indicates calcite, but the shoulder at 1480 cm-1 indicates aragonite or ACC. So, based 

on the pKsp 7.8 after 48 hours, just below the pKsp 7.9, it can be postulated initially 

vaterite precipitated. Gradually, by ripening it transformed into aragonite and calcite, 

measured in the final sample by FT-IR.  

The role of silica influencing the nature of the produced digestate is rather unknown. 

Kellermeier, Melero-García, Glaab, Klein, Drechsler, Rachel, García-Ruiz and Kunz 

[124] studied how dissolved silica concentrations of 0-2000 ppm could be used to 

stabilise ACC nanoparticles in physicochemical systems by sheathing them with SiO2. 

With distinct peaks at 780 and 1038 cm-1, we also expect amorphous silica in our 

samples [113, 114, 124]. This, combined with our FESEM EDX results, makes the 

formation of a composite of calcium carbonate and an amorphous silica-matrix, likely. 

Because this could have major implications for the type of by-product produced, 

further research into the role of silica in AHPD secondary carbonate precipitation is 

required. 

Finally, the quantified chemical composition of olivine and anorthosite showed 

significant concentrations of different metals like iron, nickel, aluminum in olivine and 

anorthosite. From a scientific point of view, these additional elements could introduce 

unknown side-effects, making it more difficult to interpret the results. Aluminum 

could for example by metal hydrolysis produce additional H+[65]. Likewise, iron could 

also give rise to metal hydrolysis, but also to a changed oxidation state in the liquid 

resulting in increased iron metabolism [24]. Furthermore, release of nickel could also 

influence the reactor conditions. Nickel is reported to chemically catalyze hydrogen 

evolution in geothermal vents [125]. Besides nickel is known to form the reactive core 
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of many metallo-enzymes present in anaerobic micro-organisms [126-128]. Despite 

the potential benefits, nickel and aluminum have also been reported toxic to 

methanogens [129, 130]. Furthermore, the reference anorthosite showed relatively 

higher oxygen content. This could be an indication of weathering prior to the 

experiment. On the one hand, this obviously introduces scientific uncertainty. But on 

the other hand, natural weathering of anorthosite results in the formation of kaolinite, 

gibbsite and ca-montmorillonite [131]. These are known constituents of alluvial fertile 

soil, and therefore possibly creating the desired added value from a practical point of 

view for the enrichment of the digestate with silicate minerals. 

5.5 Concluding	remarks	

As a result of the weathering reaction wollastonite, olivine and anorthosite provided a 

self-regulating pH buffer, due to higher leaching rates at lower pH, to avoid pH drop 

caused by fatty acid and CO2 production during high pressure anaerobic digestion of 

glucose. In this way, the methane content of the biogas could be increased to levels as 

high as 88 ± 2 %. Because of the required ratio of approximately 1 g CaSiO3 : 1 g 

COD-glucose, pH buffering by means of silicate minerals could result in a an 

accumulation of inactive solids in the digestate streams and the sludge. This could 

result in a lower volumetric biomass concentration and reduced overall biological 

conversion rates when the solid retention time is larger than the hydraulic retention 

time. Future research should therefore focus on the separation of the mineral fraction 

and the active sludge and address the secondary precipitation mechanisms of calcium 

carbonate polymorphs, the binding role of silica and the addition of other elements via 

the use of olivine or anorthosite.  

It goes beyond the purpose of this work to include a full cost evaluation for the AHPD 

technology, but our work did show that a leaching degree of at least 68%, comparable 

to the values of chemical mineral carbonation [101, 102], was achieved at 30oC and a 

biologically produced pCO2 of 0.1-0.2 MPa and ~ 1.0 MPa of total pressure. 

Furthermore, produced CO2 could partially be stored as HCO3
- instead of CO3

2- 

thereby reducing the required amount of mineral. These findings therefore further 
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support that the estimated biotechnological sequestration costs could decrease from € 

102/ton CO2 avoided  to € 40/ ton CO2 avoided [105]. Conventional waste water 

treatment systems however do not require investment in a high pressure reactor system 

and this could increase the sequestration costs significantly. It is therefore highly 

important that this work showed that only 0.3- 1.0 MPa of autogenerated pressure 

were sufficient to achieve high biogas quality without the need of conventional 

industrial ANC sources. 
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6 Piezo‐tolerant	 natural	 gas‐producing	 microbes	 under	

accumulating	pCO2		

 

 

Abstract 

Autogeneration of biogas pressure was previously shown to improve 
biogas composition to biogenic natural gas (BNG) quality. In this 
study, biogas pressure (<2.0 MPa) was batch-wise autogenerated over 
a year at 303K, resulting in a population dominated by Methanosaeta 
concilii, Methanobacterium formicicum and Mb. beijingense and 
Kosmotoga-like (31%), Propioniferax-like (25%) and Treponema-like 
(12%) micro-organisms. Remarkably, related micro-organisms have 
also been isolated from gas, oil or abandoned coal bed reservoirs. 
After prolonged pressure operation, pCO2 was found to play a key role 
in the balance between propionate accumulation and CH4 production.  
Alongside the Propioniferax-like organism, a putative propionate 
producer increased its dominance. Complementary experiments 
showed that propionate utilisation rates decreased linearly by over 
90% to 2.2 mg gVSadded

-1 d-1  as a consequence of elevating pCO2 from 
0.1 to 0.5 MPa. Neither Gibbs free energy and pH2, nor pH could 
sufficiently explain this,  but the effects could be attributed to 
reversible CO2-toxicity.  

 

Keywords 

Population dynamics; propionate accumulation; CO2-toxicity; Gibbs 
free energy; archaea and bacteria; autogenerative high pressure 
digestion 

 

 

This chapter is based on 

Lindeboom, R.E.F.1, Shin, S.G.1, Weijma, J., van Lier J.B., & Plugge, 
C., Piezo-tolerant natural gas-producing microbes under accumulating 
pCO2, in preparation 

1 Both first author. 
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6.1 Introduction	

Natural gas is a non-renewable fossil fuel formed over thousands of years. Currently, 

shale, coal bed, biogas and clathrates are highlighted to replace the declining resources 

in traditional natural gas fields[9, 132-134]. It is confirmed by isotope measurements 

that natural gas was partially produced by thermogenic cracking or from biogenic 

degradation of organic matter by micro-organisms [135, 136], but the microbial 

pathways involved and the time scale in which these gas fields were formed are more 

demanding to study.   Biogas from anaerobic digesters consists of the same key 

components CH4, CO2, H2S and H2O and is produced from organic matter by mixed 

culture microbial fermentation. Moreover, autogenerated biogas pressures up to 9.0 

MPa were produced in chapter 2 and the combination of substrate, the water charge 

balance composition and presence of alkaline earth metal precipitates were shown to 

directly correlate with biogas quality (chapter 5). This indicates that the microbial 

communities, active in anaerobic digesters today could have been responsible for the 

formation of ancient biogenic natural gas fields. Various researchers have isolated 

methanogenic archaea, such as Methanobacterium formicicum and Methanosaeta 

concilli from high pressure subsurface gas and oil reservoirs[137, 138]. From this 

perspective, actual  insights in the microbial pathways and population dynamics under 

autogenerated pressurised biogenic gas conditions are fascinating, not only from a 

technological point of view, but additionally offer us insight into the origin of the 

biogenic natural gas which is estimated to contribute for about 20% to the total natural 

gas resources available today[135].  

In order to produce biogas with natural gas quality directly in a bioreactor, CO2 and 

H2S have to remain dissolved in the water phase. Especially, the accumulation of CO2 

in the water matrix water is critical because its inhibitory effect at elevated 

concentrations that is known from food preservation [139, 140]. CO2 also delays 

growth of pathogens and interferes in the intracellular metabolic pathways[141]. CO2 

can serve as electron acceptor in microbial metabolism (both anabolism and 

catabolism), but is also an intermediate or an end-product in fermentations. The 

tolerance and (adaptive) responses of micro-organisms towards increased CO2 will 
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thus be different. Although the effect of pCO2 on individual anaerobic micro-

organisms has not been quantified, a 30% end-product inhibition on anaerobic 

digestion of sodium acetate was found under a pCO2 of 0.1 MPa by Hansson and 

Molin [16]  and 9.0 MPa biogas pressure (described in chapter 2). As far as the authors 

are aware of, the fundamental mechanism underlying these discoveries were not 

studied before.  

6.2 Materials	and	Methods	

6.2.1 Experimental	setup	8L	and	0.6L	reactor	

The 8 L AHPD reactor setup (Parr Instruments, model 910908, The Netherlands) as 

described in chapter 3 was used for this study. All experiments were kept at 30°C 

using a water bath (Julabo MP). Total pressure (Ashcroft A-series 1000 PSI), 

temperature (PT100) and pH (Bűchi Labortechnick AG, Flawil, Switzerland high 

pressure pH probes) were measured online and data were logged with Compact field 

point modules (cFP1804 and cFP-CB1) and stored with Labview 7.1 (National 

Instruments Corporation, USA) in the PC. The 0.6 L reactor contained Prosense high 

pressure pH probes (Prosense serial nr. 34002/002).  Two six-bladed impellers 

attached to a central stirrer shaft (Parr Instruments, type A709HC, The Netherlands) 

were used to stir the reactors continuously at 150 rpm for the 8L reactor and 60 rpm 

for the 0.6L reactor. 

6.2.2 Experiment	I:		Pressure	cultivation	of	the	micro‐organisms	

To examine the full anaerobic conversion of glucose, the 8L reactor was filled with 6.5 

L of liquid, leaving  a 1.5 L gas phase. Mesophilic anaerobic granular sludge of a fruit 

juice waste water processing EGSB (FrieslandCampina, Riedel, Ede, The Netherlands) 

was used as inoculum at a starting concentration of 2 g VSS L-1. Liquid medium with 

trace elements and macro-nutrient solution was provided in concentrations as 

previously described (Table 2-1).  The feed solution was then prepared by dissolving 

substrate, either solid sodium acetate or glucose, into 50 ml of liquid medium and fed 

as soon as substrate was depleted. This volume was chosen to maintain a constant 

liquid volume inside the pressure reactor, because 50 ml of reactor fluid was removed 
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during each phase for sampling . Additionally, a Schott titrator (end pH 4.1) was used 

to determine the quantity of solid NaHCO3 that had to be dissolved in the feed solution 

in order to keep the Acid Neutralising Capacity (ANC) of the reactor constant at 150 

meq L-1.  Liquid and gas samples were taken regularly.  

6.2.3 Experiment	II	and	III:	Propionate	degradation	in	small	reactors	

Propionate degradation kinetics under different pCO2 conditions (0.0, 0.1, 0.3, and 0.5 

MPa ) was determined using batch cultures (experimental series II) at a temperature of 

30 ± 1oC (table 6-1). The batch incubation at elevated pCO2 (0.3 and 0.5 MPa) was 

conducted in 0.6 L pressure-resistant bioreactors with 0.2 L liquid volume (chapter 4) 

and the unpressurised incubation in 0.125 L serum bottles with 0.05 L liquid volume. 

The seed sludge, 10.8 ± 0.3 g VS L-1, was taken from the pressurised digester (1.0 

MPa) fed with glucose. The synthetic medium was prepared (Table 2-1) and 

stoichiometric amounts of propionate (250 mg L-1 at time 0) were added. pH was 

adjusted to 7.0 with 15% HCl. The batch incubation started after mixing 20% (v/v) 

seed sludge and 80% (v/v) medium and replacing headspace with 0.10 +/- 0.01 MPa 

(pN2), 0.10 +/-0.1, 0.30 +/-0.01, and 0.50 +/-0.02 MPa pCO2 for experiments II-1, II-2, 

II-3 and II-4, respectively. Additional CO2 was injected when necessary in the initial 

period of CO2 dissolution.  

Liquid samples were periodically taken from the cultures to measure VFA 

concentrations. When propionate was depleted, gas composition was measured with 

GC to calculate stoichiometric conversion to CH4. Propionate concentrations were 

plotted to calculate the lag periods and propionate degradation rates using the modified 

Gompertz model (Eq. 6-1) [142]. 

y ൌ A	exp	 ቄെexp ቂ
୰౩ౣ౗౮∙ୣ୶୮	ሺଵሻ

୅
ሺλ െ tሻ ൅ 1ቃቅ     (Eq. 6-1) 

where A is the maximum value of propionate (near to the initial concentration), rsmax maximum 

substrate utilisation rate (mg L-1 d-1), and λ lag time. 

Additional duplicate experiments (experiment III) with 1g VS L-1 pressure cultivated 

sludge, the same inoculum as used in experimental series II, were performed to 
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determine whether observed effects were pH or pCO2 related (Table 6-1). 1.2 g 

propionate L-1 was fed to observe the overall conversion rates under different 

conditions. Experiment III-1 was operated at pH 8 and flushed with N2 and controlled 

at 0.1 MPa. Experiment III-2 was operated at pH 8 with 50% CH4 and 50% CO2 at 0.1 

MPa. The headspace of experiment III-3 was flushed with N2 (0.1 MPa) and a pH was 

lowered to 6.3 by titrating the sludge with 0.1M HCl prior to the start of the 

experiment. Experiment III-4 was kept at pH 6.3 by pressurising the headspace of the 

reactor with 50% CH4 / 50% CO2 to a maximum of 1.2 MPa.  

6.2.4 Analytical	methods	

A limited amount of biogas samples were taken in order to minimize the biogas losses 

for each substrate addition. Therefore, biogas samples were taken during the 

experiments, but at least as soon as pressure stabilised and analysed at atmospheric 

pressure by means of GC (chapter 4). All reported biogas compositions in this work 

were corrected for flush gas (N2) and water vapour and showed a standard deviation of 

less than 2%. VFA were determined by gas chromatography (Hewlett Packard 5890 

series II, Palo Alto, USA) with a flame ionisation detector. The protocol as described 

in chapter 2 was used for preparation and analysis of the samples.  

In order to determine a large spectrum of liquid intermediates (i.e. fatty acids, organic 

acids and alcohols), liquid samples were centrifuged at 10000 rcf and the supernatant 

of the sample was 1.1-4.0 times diluted with concentrated H2SO4 solution to a vial 

concentration of 0.2 M, a value chosen to exceed the sample buffering capacity of 150 

mM HCO3
-. Samples were via an autosampler eluted with 1.25 mM H2SO4, injected 

and pumped at a flow rate of 0.6 ml min-1 with a HPLC pump (Dionex High Precision 

model 480) separated on an Alltech OA-1000 column (length=300 mm, internal 

diameter =6.5 mm) at 60oC and 6.0-6.5 MPa and detected by means of refractive 

index.  

Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) of the inoculum 

were determined using standard methods [57]. Due to the suspended nature of the 
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sludge, reactor samples were determined without first filtrating them and should 

therefore be interpreted as Total Solids (TS) and Volatile Solids (VS). 

Samples for Field Emission Scanning Electron Microscopy (FeSEM) were centrifuged 

for 10 minutes at 4,300 rcf. Hereafter, supernatant was replaced by a 2.5% 

glutaraldehyde solution for fixation during 1 hour at 4oC. Afterwards samples were 

dehydrated in a series of ethanol 50-75-90-95-100% and then transferred to acetone. 

To prevent the samples from shrinking due to removing the acetone in air, supercritical 

carbon freeze drying procedure as described in [92] was used. Afterwards the samples 

were glued to a brass sample holder by using iridium glue. Then samples were sputter-

coated with iridium. The Field Emission Scanning Electron Microscope (Fei Magellan 

FESEM) was connected to an Oxford Aztec EDX and operated between 2 kV and 6.3 

pA current. Scattered Electrons were detected by Through Lens Detection (TLD) at a 

Working Distance of 1.9 and 5.1 mm. 

6.2.5 DNA	extraction	and	amplification	

Samples withdrawn from the reactor were centrifuged at 10,000 relative centrifugal 

force (rcf) for 5 min and stored at –20 °C before extraction. Total genomic DNA was 

extracted using FastDNA Spin kit for soil (MP Biomedicals, Santa Ana, CA). The 

extracted DNA was quantified and checked for purity with a Nanodrop 

spectrophotometer (Nanodrop Technologies, Wilmington, DE). The 16S rRNA genes 

were amplified using Phire Hot Start DNA polymerase (Thermo Fisher Scientific, 

Vantaa, Finland). Primer pairs GC-ARC344f/519r [143] and GC-968f /1401r [144] 

were used to specifically amplify the archaeal and bacterial 16S rRNA genes, 

respectively. The PCR mixture of 50 L contained 400 nM of each primer, 200 M of 

each dNTP, and 50 ng of template DNA. PCR was performed according to the 

following thermocycling protocol: pre-denaturation at 98 oC for 2 min; 35 cycles of 

denaturation at 98 oC for 10s, annealing at 56 oC for 10s, and elongation at 72 oC for 

20s (archaea) or 30s (bacteria); post-elongation at 72 oC for 10 min. PCR product size 

was confirmed by electrophoresis in 1% (w/v) agarose gels stained with SYBR Safe 

(Invitrogen, Carlsbad, CA). 
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For cloning, nearly full-length 16S rRNA gene fragments, amplified with primers 109f 

and 1492r (Archaea) or 4f and 1492r (Bacteria) were obtained using , the same PCR 

protocol as described above.  

6.2.6 DGGE	

DGGE analysis of the amplicons was conducted on 8% (w/v) polyacrylamide gels 

with denaturant gradients of 40–60% and 30–60% for archaeal and bacterial 

communities, respectively, where 100% was defined as 7 M urea with 40% (v/v) 

formamide. Electrophoresis was performed using a D-Code system (Bio-Rad, 

Hercules, CA) in 0.5× TAE buffer at 60 oC and 85 V for 16 h. During the first 10 min 

of the electrophoresis, a voltage of 200 V was applied. The band patterns of the 

resulting gels were visualised by silver staining [145]. 

6.2.7 Clone	library	and	phylogenetic	analysis	

Clone libraries of 16S rRNA genes were constructed to identify dominant microbial 

species. Two (A, L) and three (F, L, and U) DNA samples were chosen for archaeal 

and bacterial analyses, respectively, to maximize likelihood of including clones related 

to prominent DGGE bands. Nearly full-length 16S rRNA gene fragments were cloned 

into pGEM-T easy vector (Promega, Madison, WI) and transformed into Escherichia 

coli DH5α. White colonies were sent for sequencing with the primers SP6 and T7 to 

GATC Biotech (Konstanz, Germany). All overlapping reads were trimmed of vector 

sequence and bad quality sequences and were assembled into contiguous reads using 

DNAMAN software (Lynnon Biosoft, Quebec, Canada). Possible chimeras were 

removed using the Greengenes Bellerophon Chimera check [146]. All sequences were 

grouped into operational taxonomic units (OTUs) by constructing a similarity matrix 

with ClustalX 2.1 [147]. Phylogenetic trees were constructed using neighbor-joining 

method using MEGA software [148]. Hierarchical classification of the 16S rRNA gene 

sequences was assisted by Classifier from the Ribosomal Database Project [149]. The 

nucleotide sequences reported in this study have been deposited under GenBank 

accession numbers KJ206630-KJ206896. Additional DGGE analyses were conducted 

to crosslink band patterns with identified clones. At least one clone from each OTU 
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was used as template for amplification using above mentioned method. For bacterial 

clones, a nested PCR approach with SP6 and T7 primers was employed to exclude the 

amplification of the host 16S rRNA gene. The migration of clonal amplicons was 

directly compared to that of different bands on denaturing gradient gels. 

6.2.8 Thermodynamic	calculations	

Both pCO2 and HCO3
- are commonly used for Gibbs free energy calculations[87, 150]. 

Because of the changes in CO2-speciation due to reactor operation, ∆Gr
’’ values for 

CO2(g), CO2(aq) and HCO3
-   were calculated for each relevant reaction at the specific 

conditions according to  Thauer, Jungermann and Decker [27], which is explained in 

chapter 1. 

6.3 Results	

6.3.1 Reactor	operational	profile		

During one year, mesophilic anaerobic granular sludge from an expanded granular 

sludge bed (EGSB) reactor processing fruit juice waste water (Friesland Campina, 

Riedel, Ede, The Netherlands) was cultivated under autogenerated pressure in an 8 L 

autoclave. The overall cultivation has been divided into 6 separate periods: 1) 

adaptation to a sodium concentration of 3.5 g Na+ L-1 2) adaptation to autogenerated 

pressure conditions on glucose, 3) pressure operation A on glucose, 4) pressure 

operation B on glucose, 5) reactor recovery and 6) pressure operation C, on glucose 

(table 6-1). 

In previous experiments (chapter 4) it was found that methanogenic activity from 

acetate of the inoculum sludge was particularly sensitive to elevated sodium levels. 

Therefore sodium acetate was fed in 10 portions to allow adaptation of the slow 

growing, acetotrophic population to increasing sodium concentrations (experiment 0-1 

to 0-10, Table 6-1). Although this procedure surely had an  effect on population 

dynamics, glucose was deliberately not fed in this non-pressurised stage of the 

experiment.  A relatively low number of the fast growing hydrogen, fatty acid and 

glucose metabolising organisms at the start of period 2, would then decrease the 
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required time for significant changes to occur in the population dynamics, when 

glucose was fed.  

Table 6-1: overview of fed-batch pressure cultivation experiments 

Exp. Period Days* Pstart 

(MPa) 

VS 

(g L-1)

Substrate 

Type (gCOD reactor-1) 

DNA 

sample

Experiment I      

-0 
Inoculum 

     
A 

0-1 

Till 

1)  Sodium adaptation -110 0.10 2.0 

- 

NaAc 

- 

6.4 

- 

B 

till 

0-10 -14 0.10 2.9 NaAc 6.4 H 

I-1 2)  Glucose and 

pressure adaptation 

0-7 0.10 2.9 Glucose 7.2 I 

I-2 7-14 0.27  Glucose 7.2  

I-3 14-21 0.60 4.0 Glucose 7.2 J 

I-4 21-56 0.10  Glucose 14.4  

I-5 56-63 0.65 3.8 Glucose 7.2 K 

I-6 3) High pressure 

operation- A 

63-70 0.10 4.0 Glucose 14.4 L 

I-7 70-77 0.60 4.7 Glucose 14.4 N 

I-8 77-84 0.90 5.5 Glucose 14.4 O 

I-9 84-93 1.22 6.3 Glucose 14.5 P 

I-10 93-107 1.68 7.1 Glucose 14.4 Q 

I-11 4) High pressure 

operation- B 

107-114 0.10 2.0 Glucose 14.4 R 

I-12 114-128 0.62 4.0 Glucose 14.4 S 

I-13 128-135 0.88 5.0 Glucose 7.2 T 

I-14#  135-149 1.06 3.6 gluc + HAc 14.4 U 

I-15# 5) Reactor Recovery 149-157 0.10  gluc + HAc  7.2 V 

I-16# 157-169 0.10  HAc + H2
** 3.6 +1  

I-17 6) High pressure 

operation- C 

169-176 0.10  Glucose 7.2  

I-18 176-183 0.35  Glucose 7.2 W 

I-19 183-192 0.64  Glucose 14.4 X 

I-20 

I-21 

I-22 

7) Hydrogen 

Addition 

248-257 

257-261 

261- 268 

0.10 

0.30 

0.36 

 Glucose 

H2 

H2 

14.4 

2.7** 

4.0 ** 

 

Y 

Z 
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Experiment II and III Type of 

pressure 

    pH 

II-1 

II-2 

II-3 

II-4 

Propionate degradation 

using pressure 

cultivated sludge 

under manually added 

pCO2
**** 

pCO2 

pCO2 

pCO2 

pCO2 

0.00  

0.10  

0.30 

0.50 

2.2 

2.2 

2.2 

2.2 

Propionate 

Propionate 

Propionate 

Propionate 

0.25 

0.25 

0.25 

0.25 

 

III-1 

III-2 

III-3 

III-4 

Propionate degradation 

pH and pCO2 using 

pressure cultivated 

sludge**** 

pN2 

pCO2 

pN2 

pCO2 

0.10 

0.05 

0.10 

<0.60 

1.0 

1.0 

1.0 

1.0 

Propionate 

Propionate 

Propionate 

Propionate 

1.8 

1.8 

1.8 

1.8 

8.0 

8.0 

6.3 

6.3 

*medium addition and total sampling liquid were equal to keep 1.5 L gas phase constant ** in MPa # HAc = 

undissociated acetic acid was added to keep ANC constant, but directly dissociated due to excess HCO3
- 

 

During the experiment CH4-content fluctuated between 70-90% (Figure 6-1) and 

showed a pattern similar to pH. After 100 days however, when the propionate started 

accumulating, CH4-content dropped to <70%. The most important reactor parameters, 

pressure, pH, pCH4, CO2-speciation and fatty acid composition have been depicted in 

Figure 6-2, a, b, c and d.  

 

 

Figure 6-1: Biogas CH4 (◊) and CO2 (□)composition and pH (Δ) over time 
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During period 2 (Day 0-56), acetate and propionate were produced from glucose at 

concentrations below 300 mg COD L-1 (Figure 6-2b) and converted instantaneously, 

resulting in a maximum volumetric CH4 production of 400 mgCOD L-1 d-1 (data not 

shown).  

In period 3 (Day 63-93) average volumetric CH4 production rates increased to 600-700 

mgCOD L-1 d-1. However, after the autogenerated pressure reached 1,8 MPa  with a 

pCO2 of 0.44MPa (Figure 6-2c), CH4 production rates decreased to 400-500 mgCOD 

L-1 d-1, until the final pressure of 2 MPa was succesfully obtained, while propionate 

concentrations remained below 100 mgCOD L-1. Nevertheless, feeding of experiment 

I-11 was postponed until day 107, due to an observed reduction in methanogenic 

activity.  

After decreasing to atmospheric pressure (day 107), pressure autogeneration was 

repeated in period 4 (Day 107-135)). From day 107 to day 115 CH4 production rates 

were 400-500 mgCOD L-1 d-1. From day 115 however, at a respective pCO2 of 0.10 

MPa, CH4-production rates dropped further to 100-200 mgCOD L-1 d-1 and stabilised 

while pCO2 increased to 0.25 MPa.  Concomitantly, propionate accumulated to 1300 

mg COD L-1 and calculated pCO2 no longer corresponded to measured pCO2.  

Period 5 (Day 149-157) started at day 149, pressure was released to facilitate 

conversion of accumulated propionate, while adding 550 and 550 mgCOD L-1 of 

acetate and glucose, respectively. This initially led to an  increase in propionate up to 

800 mgCOD L-1 and then from Day 154 on, a decline of propionate with an estimated 

conversion rate of 120 ± 10 mgCOD L-1 d-1 occured. On day 157, 550 mgCOD L-1 of 

acetate was fed and the headspace was flushed with hydrogen (resulting in 0.10 MPa 

pH2). While acetate and H2 were converted into biogas by the acetotrophic and 

hydrogenotrophic methanogens, propionate degradation was inhibited initially at a 

concentration of 330 mgCOD L-1, but subsequently decreased to 40 mgCOD L-1.  

Then, in period 6 (Day 169- 192) on day 169 a third autogeneration of biogas pressure 

was started.  Glucose was provided in 2 subsequent loads of 1100 mgCOD L-1, 

producing a pressure of 0.59 MPa ( on day 182). Propionate was again the dominant 
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VFA, but concentrations never exceeded 300 mgCOD L-1. However, upon bringing the 

COD to the original level of 2200 mgCOD glucose L-1, propionate accumulated to 800 

mgCOD L-1. At a  pressure of 0.84 MPa (on day 192) the experiment was terminated. 

From that point onwards the reactor was fed as soon as substrate and propionate was 

fully converted in order to facilitate recovery, but total pressure was not allowed to 

accumulate over 0.50 MPa. 

 (a) 

 

(b) 

 

(c) 
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(d) 

 

Figure 6-2: Results of fed-batch reactor operation; (a) Pressure (──) and pH (- -), (b) acetate (◊) and 

propionate (□), (c) pCH4 (∆), calculated pCO2 (□) and measured pCO2 (◦)and (d) HCO3
- (*) and         

calculated dissolved CO2 (◊) and H2CO3 (∆) profiles 

In period 7 (day  I-20, 21 and 22) the growth and activity of the hydrogenotrophic 

methanogens was stimulated. These methanogens can act as syntrophic partner of the 

propionate oxidising bacteria, thereby enhancing propionate conversion. After initially 

adding glucose (2200 gCOD L-1), which resulted in propionate accumulation, the 

hydrogen partial pressure in the reactor was increased in two subsequent stages to 0.27 

and 0.40 MPa, (Figure 6-3a). This caused a slight increase in pH, due to CO2-

consumption (Figure 6-3a). Although the system remained pressurised with pH2, 

propionate conversion resumed (Figure 6-3b) and was converted into acetate (800 

mgCOD L-1) and biogas (0.15 MPa). This indicated that despite the earlier observed 

propionate accumulation, the presence of an active homoacetogenic and/or 

hydrogenotrophic population was confirmed. 

(a)       (b) 

 

Figure 6-3:( a) Pressure (black)  and pH (grey) profile for experiments I-20, 21 and 22 with hydrogen 

additions (arrows)  and (b) related propionate (grey) and acetate (black) concentrations 
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6.3.2 Thermodynamic	feasibility	

During the experiment the involved biological conversions (Table 6-2) had to be 

performed under accumulating gaseous end-products and or intermediates. Therefore, 

Gibbs free energy calculations were used to acquire more insight in the 

thermodynamic feasibility associated to end-product inhibition. It should however be 

emphasised that Figure 6-2 c and d showed that HCO3
- remained practically constant 

at 150 mmol L-1, but pCO2 and CO2 (aq) fluctuated depending on the converted 

amount of substrate up to 0.50 MPa  and up to 135 mmol L-1, respectively. Therefore, 

Table 6-2 shows standard and actual conditions for the 3 main speciated forms of CO2. 

The feasibility of aceticlastic methanogenesis can simply be analysed by including 

pressurised CH4 up to 2.00 MPa, because due to the charge balance requirements 

HCO3
- should be produced. In line with previous results (chapter 2 and 3) 

accumulation from 0.07 (atmospheric) up to 2.00 Pa CH4 decreases the ΔGr of 

aceticlastic methanogenesis from -27.3 to -16.9 kJ reaction-1.  Therefore this is not 

expected to significantly inhibit CH4 formation under the actual reactor conditions.  

Likewise,  hydrogenotrophic methanogenesis (Table 6-2 reaction 2) is unlikely to be 

affected by pCH4 up to 2.00 MPa, since even at 1 Pa pH2 ΔGr only decreases from  

– 21.3 to – 13.8 kJ reaction-1 using HCO3
- (ΔGr

b and ΔGr
c). It is noteworthy that values 

become slightly less favourable (reaction 2 a and b) when using elevated values for 

CO2(g) or CO2 (aq).  At atmospheric digester conditions (30 kPa  pCO2 and 1 Pa pH2 ) 

ΔGr
b  would only be +18.2 kJ reaction-1 whereas at 0.50 MPa pCO2 and 1 Pa  pH2, ΔGr 

of homoacetogenesis becomes +4.2 kJ reaction-1. So, although increased pCO2 has a 

positive effect on the thermodynamic favourability of  homoacetogenesis, a slight 

elevation of pH2 is required to make significant differences.  

The ΔGr of propionate degradation changes from -16.9 to -9.9 kJ mol-1, by elevating 

pCO2 from 0.03 to 0.50 MPa at an assumed pH2 of 1 Pa. This value is slightly higher 

than the 9.3 kJ mol-1 calculated by using a HCO3
- based reaction equation (4c).  By 

elevating pH2 to 60 Pa, the propionate oxidation certainly becomes unfavourable. In 

terms of the overall glucose reaction, it can be seen that although elevation of CO2 in 
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any form makes the reactions less favourable. The largest effect should however only 

be expected when changing the pH2 (ΔGr
d).  

 

Table 6-2: Gibbs free energy calculations of relevant reactions combined with CO2-speciation.  
Based on ΔGf

0  [27]   

Eq. Reaction Equation ΔGr
0’ a ΔGr

c ΔGr
d ΔGr

b 

kJ reaction-1 

1* acetate- + H2O  ==>  CH4 + HCO3
- -31.0 -27.3 -18.6 -16.9 

2a** 4H2 + CO2 (g)  ==>  CH4 + 2H2O -130.8 -14.5 -13.2 -53.8 

2b** 4H2 + CO2(aq)  ==>  CH4 + 2H2O -139.2 -14.3 -12.9 -53.5 

2c** 4H2 + HCO3
- + H+ ==>  CH4 + 3H2O -135.6 -21.3 -13.8 -54.4 

3a 4H2 + 2CO2 (g)   ==>  acetate- +  H+  + 2H2 -95.1 +18.2 +4.2 -36.3 

3b 4H2 + 2CO2 (aq)  ==>  acetate- +  H+  + 2H2O -111.8 +18.8 +4.8 -35.8 

3c 4H2 + 2HCO3
-
 + H+ ==>  acetate- +  4H2O -104.6 +3.0 +3.0 -37.5 

4a propionate- + 2H2O ==>  acetate- + 3H2 + CO2(g) +71.8 -16.9 -9.9 +20.5 

4b propionate- + 2H2O ==>  acetate- + 3H2 + CO2(aq) +80.1 -17.2 -10.2 +20.2 

4c propionate- + 3H2O ==>  acetate- + 3H2 + HCO3
- + H+ +76.5 -9.3 -9.3 +21.1 

5a C6H12O6 + 2H2O  ==>  2 acetate- + 2H+ + 4H2 + 2CO2(g) -215.9 -338.4 -324.4 -283.8 

5b C6H12O6 + 2H2O  ==> 2acetate- + 2H+ + 4H2 + 2CO2(aq) -199.3 -338.9 -325.0 -284.4 

5c C6H12O6 + 4H2O ==>  2 acetate- + 4H+ + 4H2 + 2HCO3
-  -206.5 -323.2 -323.2 -282.6 

ΔGr
0’a at 250C, pH 7 and 0.10 MPa pressure and 1 molar of all aquatic species; ΔGr

 b at 250C 0.01 M aquatic 

species, 0.15M HCO3
-, pH= 6.2 and a pCO2=30 kPa  and pH2= 1 Pa ; c ΔGr at 250C 0.01 M aquatic species, 

0.15M HCO3
-, pH= pKa = 6.2 and a pCO2= 0.50 MPa  and pH2 =1 Pa;  ΔGr

 d at 250C 0.01 M aquatic species, 

0.15M HCO3
-, pH= pKa = 6.2 and a pCO2= 0.50 MPa  and pH2 =60 Pa; *pCH4 in ΔGr

0’a, ΔGrb, ΔGrc and ΔGrd is 

0.10, 0.07, 1.00 and 2.00 MPa  respectively, **pCH4 in ΔGr
0’a, ΔGrb, ΔGrc and ΔGrd is 0.10, 0.07, 1.00 and 1.00 

MPa  respectively. 

 

6.3.3 Population	dynamics	

Figure 6-4 shows FESEM micrographs of coccus-(A) and rod-shaped (C), filamentous 

(B), and spiral (D) micro-organisms in a representative sample from the reactor 
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biomass after completing the experiment. The sizes varied between 0.5-1.0 µm 

diameter for the coccus-shaped organisms, up to a width x length of  0.5 x 6 µm and 

80 nm x 30 µm for the rod-shaped organisms and filamentous organisms, respectively. 

The spiral organism had a width of 150 nm and a length of 8-10 µm. Furthermore, 

organisms with different cell surface characteristics were present, from apparently 

smooth (B) to the presence of tubular pores (E). 

 

Figure 6-4: FESEM micrographs from representative reactor samples of coccus (A), filamentous (B), and 

rod (C)-shaped (left) and spiral (D) organisms (middle). Smooth and tubular pore (E) cell-surfaces are 

magnified on the right. 

DGGE was performed to characterize the microbial community structure in the 

pressurised bioreactor (Figure 6-5 and Figure 6-6). Both archaeal and bacterial DGGE 

profiles showed continuous shifts according to temporal changes; bacteria exhibited 

more diverse and dynamic shifts than archaea. Neighbour-joining trees showing the 

phylogenetic identities of the representative clones from archaeal and bacterial OTUs 

were constructed (Figure 6-6 and 6-8). In order to construct phylogenetic trees, clone 

libraries were constructed to provide sequence information of major microbial species. 

Two archaeal clone libraries, sample A, the inoculum (26 clones) and sample L (27), 

and three bacterial clone libraries, sample F (53 clones), sample L (42), and sample U 

(59), were generated. The archaeal clones were grouped into 5 original taxonomic 

units (OTUs), whereas the bacterial clones were classified into 30 OTUs. The five 

archaeal OTUs were closely (>98%) related to Methanosaeta concilii, Methanosarcina 

acetivorans, Methanoregula boonei, Methanobacterium beijingense, and 

Methanobacterium formicicum, respectively (Figure 6-6). 

 

B E 
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A
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The Msa. concilii-like clones constituted the major population in both inoculum 

(16/26, 62%) and R4.6 (22/27, 81%) libraries. These putative acetate-utilising clones 

appeared at the same positions as bands 1–3 (Figure 6-5); accordingly, bands 1 and 2 

were the most prominent bands in all lanes. The two OTUs related to Msr. acetivorans 

and Mr. boonei were only present in the inoculum library. The OTU related to Mtb. 

beijingense was present in both methanogenic clone libraries. Clones related to these 

OTUs migrated to the same positions as bands 5 and 6, indicating that the relative 

abundance of these species decreased with time. The Mtb. formicicum-like clones, in 

contrast, were only detected in sample L (3/27, 11%) and not in the inoculum sample 

(A). Still, band 4 was visible from the inoculum DGGE profile (Figure 6-5), which 

faded and became prominent from sample F onwards, implying that the Mtb. 

formicicum-related archaeon was one of the dominant hydrogen-utilising methanogens 

under pressure. 

 

 

Figure 6-5: Archaeal DGGE profiles of the 16S rRNA gene fragments. Numbered bands indicate the 

positions identical to the migration of clone samples closely related to (1–3) Methanosaeta concilii, (4) 

Methanobacterium formicicum, (5) Methanoregula boonei and/or Methanosarcina acetivorans, and (6) 

Methanoregula boonei and/or Methanobacterium formicicum. 
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Figure 6-6: Neighbour-joining tree illustrating the phylogenetic identities of the archaeal 16S rRNA gene 

fragments obtained from clone samples. Clone counts of each OTU are given in brackets; the first and the 

second numbers indicate the counts derived from inoculum and R4.6, respectively. Numbers at nodes are 

bootstrap values derived from 100 analyses. 

The thirty bacterial OTUs were affiliated to nine phyla: Firmicutes, Thermotogae, 

Synergistetes, Actinobacteria, Spirochaetes, Lentisphaerae, Verrucomicrobia, 

Proteobacteria, and Bacteroidetes (Figure 6-8). Among these, 15 OTUs matched to 12 

bands with identical mobility on DGGE (Figure 6-7).  

Band 1, the matching clone of which was deeply related within Synergistaceae, 

appeared at the point when the substrate was changed from acetate to glucose (Figure 

6-7). This  emphasised that this switch in substrate had influenced the microbial 

community and should be taken into account when analysing the data.  
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Bands 2, 3, and 4, whose intensities increased and decreased with time, showed the 

same migration on DGGE to clones closely related to Bacteroidales and/or Victivallis, 

Clostridium quinii and/or Clostridia. For band 3, in the DGGE profile no distinction 

could be made between the Bacteroidales and Victivallis, belonging to the phylum 

Lentisphaerae, because both appeared at the same position.  

The position of band 5 on DGGE was identical to that of Syntrophobacter 

fumaroxidans-like clone (99% sequence identity), a propionate oxidizer. The fact that 

this band was relatively weak and appeared during period 2, matched the results of the 

clone library, because only one related clone was counted in sample U. However, this 

band was also observed in later samples in P3, and P4.   

Band 6 was linked to a Treponema-like OTU; this genus consists of many member 

species including the homo-acetogenic T. primitia [151]. It appeared at the end of P1 

and remained relatively stable throughout the later periods. In accordance with the 

emergence of band 6 which was absent in the inoculum, the related clones were only 

detected from sample F (5/42, 12%) and sample U (7/59, 12%) libraries. A 

Kosmotoga-affiliated clone constituted 7% (3/42) and 31% (18/59) of the clone counts 

of sample L and sample U libraries, respectively. Considered together with the 

visualisation of band 7 from the end of period 2, this Kosmotoga-related phylotype 

seems to have developed as one of the dominant bacterial species.  

Band 8, identified as a Propionibacteriaceae-like organism, was present from the 

reactor start up, but decreased its intensity from period 3 onwards.  

Band 9 was prominent in the inoculum and the acetate-fed lanes, but gradually lost its 

intensity afterwards (Figure 6-7). This band is linked to a group of clones closely 

related to Brachymonas denitrificans, a denitrifying bacterium[152]. This OTU 

accounted for 36% (19/53) population of the sample F library but none of the other 

two libraries, supporting the observation from band patterns.  

The propionate producing Propioniferax-like species (band 10) was only retrieved in 

the clone library of sample U with 25% of the total counts (15 of 59 clones). This fact, 

together with the high intensity of band 10 shown from sample S (day 112) onwards 
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showed that this organisms had a significant role in the observed propionate 

accumulation.  

It is also noteworthy that band 11, which was identified as a Petrimonas-related clone, 

increased in intensity during the period of pressure operation (P2), but showed 

diminished intensity after pressures decreased to below 1.0 MPa.  

Band 12, related to Succiniclasticum, appeared at the end of P2, but decreased in 

intensity from P4 onwards (Figure 6-7). 

 

 

Figure 6-7: Bacterial DGGE profiles of the 16S rRNA gene fragments. Numbered bands indicate the 

positions identical to the migration of clone samples closely related to (1) Synergistaceae, (2) Bacteroidales, 

(3) Bacteroidales and/or Victivallis, (4) Clostridium quinii and/or Clostridia, (5) Syntrophobacter 

fumaroxidans, (6) Treponema, (7) Kosmotoga, (8) Propionibacteriaceae, (9) Brachymonas denitrificans 

and/or Tessaracoccus, (10) Propioniferax, (11) Petrimonas, and (12) Succiniclasticum. 
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Figure 6-8: Neighbour-joining tree illustrating the phylogenetic identities of the bacterial 16S rRNA gene 

fragments obtained from clone samples. Clone counts of each OTU are given in brackets; numbers in 

series indicate the counts derived from SR46, R4.6, and R4.14, respectively.  

Numbers at nodes are bootstrap values derived from 100 analyses. 
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6.3.4 Propionate	kinetics	

The combined reactor operation and population dynamics study revealed important 

changes in the propionate degradation kinetics with concomitant dissolved CO2 

concentrations. Therefore, propionate conversion was examined under 0.0, 0.1, 0.3, 

and 0.5 MPa pCO2 conditions (figure 6-9a and b). The initial propionate dose was 

completely utilised during the batch test. Kinetic parameters derived from modified 

Gompertz model[153, 154] are listed in table 6-3. The maximum degradation rate 

(rsmax) decreased and the lag period (λ) increased with higher pCO2, indicating that an 

elevated CO2 exhibits detrimental effects on anaerobic propionate catabolism. 

Especially, the 0.5 MPa trial showed significant reduction (93.4%) of the maximum 

utilisation rate compared to the 0.0 MPa trial. Besides propionate, acetate was the only 

VFA detected in this experiment. Acetate profiles of the 0.5 MPa trial are represented 

in figure 6-9b. Acetate levelled up to 68 mgCOD L-1 during the lag period, and 

maintained at low levels during the entire active propionate degradation period. The 

average molar ratio of CH4 produced to the propionate dose fed was 2.0. Since this is 

only 12% higher than the theoretically expected CH4, it is expected to be from 

endogenic respiration. By plotting the calculated substrate conversion rates against the 

substrate concentration, Monod curves have been estimated, showing the strong 

pressure related effect (figure 6-9c). Maximum relative growth rates showed a linear 

relationship with both pCO2 and [H+] (figure 6-9d). 

Table 6-3: Kinetic parameters derived from the propionate oxidation experiment. All p values are < 10-4. 

 Parameter pCO2 (MPa) 

pH 

0.00  

7.8 

0.10 

7.1 

0.30 

6.3 

0.50 

6.1 

A (mg L-1) 283 283 266 258 

λ (d) 2.8 3.4 3.8 16.8 
rsmax  (mg L-1 d-1) 72.8 58.5 35.5 4.8 
reactor rsmax (mg COD L-1 d-1)◊ 546 441.5 268 36 
specific rsmax (mg g VSadded

-1 d-1) 30.3 24.4 16.5 2.2 
Relative µmax (%)* 100 80.5 54.5 7.3 
A = initial substrate concentration in mg L-1; λ = lag phase in days *calculated by assuming constant Yield-coefficient in 

different experiments ◊ given 5 times dilution of reactor sludge concentration 
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(a)                                       (b) 

 

 

        (c)          (d) 

       
Figure 6-9: (a) Propionate degradation profiles under different pCO2 conditions with 0.00 MPa  (ᇞ); 0.10 

MPa (▲); 0.20 MPa (+) and  0.30 MPa (○). Acetate (□) and propionate () profiles in mg L-1 (b) of 0.50 

MPa trial are shown for representation. Dashed lines represent curve fittings using modified Gompertz 

model. (c) Estimated Monod curves for propionate degradation based on low substrate concentrations 

derived from the experimental data (d) linear retrieved relationship between [H+]/pCO2 and rsmax. 

 

From Figure 6-10, it can be observed that independent of pH 1200 mg L-1 propionate 

was degraded in all experiments within 6 days. Yet, the elevated pCO2 experiment 

(III-4) still had 600 mg L-1 propionate left after 7 days. Although these results require 

further elaboration, the decreasing propionate conversion cannot be explained by 

decreasing pH alone (Table 6-3).  
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Figure 6-10: Degradation of propionate in time at 0.10 MPa pN2, and pH ~8 (Δ) 0.10 MPa  pN2 and pH 6.3 

(□), 50  kPa  pCO2 and pH ~8 (◊) and, 0.60 MPa pCO2 and pH 6.2 (x) 

6.4 Discussion		

6.4.1 Shifts	in	population	dynamics	

It was found that over time and concomitantly with increasing pCO2 a shift occurred 

from acetate to propionate as main accumulating intermediate from glucose 

degradation. A Kosmotoga-affiliated clone constituted 7% (3/42) and 31% (18/59) of 

the clone counts of the L and U libraries, respectively. Considered together with the 

first visualisation of band 7 near the end of period 2, this Kosmotoga-related organism 

seems to have developed as one of the dominant bacterial species under the pressure 

conditions of period 3, where acetate was the main intermediate. However, its relative 

band intensity decreased from day 112 onwards, when more propionate was found as 

intermediate. The only mesophilic member of this genus, K. olearia, was isolated from 

oil production fluid produced at an oil platform in the North Sea and is characterised 

by an outer sheath-like structure or ‘toga’ and is a known acetate and hydrogen 

producer [155]. Clostridium quinii and Petrimonas sulfuriphila, the only characterised 

species of the genus Petrimonas, are both sugar-utilising organisms producing acetate 

and hydrogen as common products[156, 157]. The genus Victivallis includes only one 

isolated species, V. vadensis, which could convert glucose to acetate and H2 in a 

syntrophic co-culture with hydrogen-utilising methanogens [158].  
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Besides acetate producers also propionate producers were found in the clone libraries. 

The genus Succiniclasticum includes its sole member, S. ruminis, which is known to 

convert succinate to propionate[159]. Propionibacteriaceae are well recognised for a 

sub-lineage Propionibacteria spp. which produces propionate via the Wood-

Werkmann cycle in anaerobic digesters[160]. However, conditions showed to be 

unfavourable for these organisms, since band 8 (Figure 6-7) faded from day 64 

onwards (P3). Besides, no clones were counted in samples L and U. In contrast, 

conditions favoured the growth of a propionate producing Propioniferax-like organism 

(band 10; Figure 6-7). The abundance of these organisms, as evidenced by the clone 

counts and band prominence from day 112, suggests that the presence of this organism 

was strongly related to the accumulation of propionate under the tested conditions. 

Strikingly, the increase in band intensity (Figure 6-7) of the Propioniferax-like 

organism is accompanied by the decrease in band intensity of the Kosmotoga- like 

organism (band 7: Figure 6-7). Apparently, both organisms compete for glucose under 

the given conditions. Before drawing any conclusions however, both acetate and 

propionate oxidation should be discussed.  

With regard to acetate degradation, it can be observed that under the initial acetate 

feeding, a Msr. acetivorans-like organism became prominent. However, after 

switching to glucose digestion it progressively disappeared until the highest pressures 

of this study were obtained. The Msa. concilii-like species appeared to be the most 

abundant archaeon throughout the further operation. The kinetic competition for 

acetate utilisation between Methanosaeta and Methanosarcina spp. is well 

documented in the literature[161, 162]. In an acetate-fed batch incubation harboring 

the two genera, the r-strategist3 Methanosarcina typically outcompetes the K-

strategist3 Methanosaeta given that the initial acetate concentration is high (> 120 

mgCOD L-1). In period 2 onwards, intermediate acetate concentrations maintained 

below 120 mgCOD L-1, except within 1-3 days after feeding glucose. From the end of 

                                              
3 Commonly used definitions in population dynamics; K-strategists invest relatively a lot in maintenance and 

reproduction of fewer off-spring, whereas r-strategist invest mainly in producing as much off-spring as possible 

to deal with changing environments 
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period 3 (sample L), intermediate acetate concentrations never exceeded 100 mgCOD 

L-1 when excluding the peaks caused by acetate addition between days 150-170. 

Because clone counts of the Kosmotoga-like organism increased from 7 to 31 % in 

samples L and U respectively, it is expected that both acetate production and 

consumption were well balanced.  

Like acetate, propionate is a significant intermediate in the anaerobic food chain 

comprising 6–35% of the carbon balance under atmospheric conditions[163]. Elevated 

levels of propionate, are often regarded as a sign of digester instability due to its 

toxicity[164] and thermodynamically unfavourable reaction nature[120, 165]. 

Although propionate oxidation seemed to occur readily up till a pressure of 2.0 MPa 

and pH 6.1 (P3) with concentrations below 400 mgCOD L-1, detrimental accumulation 

of propionate, coinciding with significantly decreased CH4-production rates, occurred 

in P4 and P6 experiments. The Syntrophobacter fumaroxidans-like clone (99% 

sequence identity) was counted only once in sample U and its related band 5 was weak 

in intensity.  Nevertheless, it should be realised that these culture-independent 

methods, DGGE and clone library analyses, do not support direct evidence on the 

population size or activity, and are subject to PCR bias[166]. So, employment of 

additional techniques, such as fluorescence in situ hybridisation, radiography, and 

polyomics approaches, would provide multi-dimensional insights to further elucidate 

population dynamics.  Another possibility is that another organism was responsible for 

propionate oxidation. Clone AHPD_bac_14 for example, may have been involved in 

propionate oxidation, because it showed highest similarity (99%) to a clone 

(EU888825) retrieved from a propionate fed anaerobic reactor [167].  

Data from reactor operation in P4, P5 and P6 showed stable or increasing propionate 

concentrations directly after glucose feeding and could, besides increased propionate 

production, indicate decreased propionate consumption. However, propionate 

degradation rates at least up to 250-300 mgCOD L-1 d-1 were also observed in P4 and 

P5 about four days after glucose was fed. It was therefore confirmed that an active 

propionate degrading community was still present, although it could not prevent 

propionate accumulation. In addition, the microbial diversity analysis confirmed the 
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continued presence of a stable hydrogen consuming population. Next to the 

hydrogenotrophic methanogens, Mtb. formicicum and Mtb. beijingense, the presence 

of a Treponema-like bacterium was shown. This genus consists of many member 

species including the hydrogen consuming homo-acetogenic T. primitia [151]. 

Furthermore, H2 was never detected above the detection limit of 60 Pa in the gas 

phase, but as calculations (Table 6-2) show this pH2 could already inhibit propionate 

oxidation. Nevertheless, propionate was oxidised in P7 (exp I-21, 22) under elevated 

pH2 of 0.27 and 0.40 MPa (Figure 6-3). Under the even higher pH2, this is only 

feasible with an active syntrophic community keeping pH2 in the proximity of 

propionate oxidising organisms low and is comparable to the  thermophilic propionate 

conversion kinetics observed  by Van Lier, Grolle, Frijters, Stams and Lettinga [165]. 

This allows us to exclude the possibility that the mixing profile had disturbed the 

granular structure providing the required proximity for interspecies hydrogen transfer. 

It can however not be excluded that temporary increases in pH2 as small as 1 Pa 

resulting from rapid glucose degradation could have reduced the thermodynamic 

favourability of syntrophic propionate oxidation, temporarily resulting in lower 

propionate oxidation rates.  

6.4.2 Thermodynamics	and	CO2‐	toxicity	

Despite the fact that the inoculum for experiment II was taken from the 8L reactor at a 

pCO2 exceeding 0.30 MPa, experiment II showed that the specific propionate 

oxidation rate had linearly reduced with increasing pCO2 from 30.3 to 2.2 mg g-1 VS d-

1 (Table 6-3). Both values are within the 0.9 to 500 mg g-1 VSS  d-1 range for specific 

propionate degradation activity described in previous studies [168-172]. The 2.2 mg g-

1 VS d-1 at 0.50 MPa pCO2 is similar to the values obtained from extremely high solids 

digestion (65% or 75% moisture content)[170]. Likewise, in experiments I-14 

propionate degraded (after glucose was consumed) at an estimated rate of ~ 60 mg 

COD L-1 d-1 at a pCO2  of 0.25 MPa and estimated CO2(aq) of 110 mmol L-1. 

Afterwards, in experiment I-15 and 16 when pCO2 was below 0.1 MPa, propionate 

degraded at an estimated rate of 120 mg COD L-1 d-1. Although, this suggest  a 

reversible inhibition caused by CO2 accumulation, Figure 6-9b leaves no doubt that it 
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also concerns a pH-related effect, especially because it is also  known from literature 

that pH drops from 6.8 to 6.2 can  inhibit propionate degradation significantly [121]. It 

is however remarkable that the HCl induced pH drop did not inhibit the conversions 

significantly and therefore results suggest that the observed reversible inhibition 

should be related to the pH-based speciation of CO2 .  

On one hand (Table 6-2 reaction 4a and Figure 6-3) actual autogenerated pCO2 (of 

0.03 up to 0.50 MPa) is unfavourable for the thermodynamic feasibility of propionate 

oxidation ΔGr from -16.9 to -9.9 kJ mol-1.   On the other hand it also provides excess 

electron acceptor, thereby increasing the ΔGr of the hydrogenotrophic and 

homoacetogenic pathway at 1 10-5 pH2 from -14.5 and +18.2 to -21.5 and +4.3 kJ 

reaction-1, respectively. This slightly improves the conditions for interspecies 

hydrogen transfer and thereby enhances propionate degradation again. Generally, an 

energy quotum of -20kJ mol-1, corresponding to 1/3 ATP, is needed to sustain life 

[27], but the continuous production of CH4 up to 9.0 MPa (chapter 2) would 

thermodynamically not have been possible with a ΔGr of -13.1 kJ mol-1. Changes in 

free energy could theoretically also affect kinetics and thereby cause the observed 

phenomena [173, 174], but we consider it unlikely that these minor changes with a 

positive feedback-loop could have caused a >90% decrease in observed propionate 

oxidation rates, in a linear manner. Actually, many sources in literature [139-141, 150, 

175, 176] show clear evidence that CO2 rather than only being an substrate, 

intermediate and end-product in free energy calculations, results in a pH effect. Becker 

[176] even reported stronger effects of carbonic acid than could be explained from 

[H+] alone. From the data in Figure 6-10, it can indeed be observed that correction of 

pH to 6.3 by HCl compared to reaching this pH by pCO2, resulted in only limited 

inhibition, giving rise to speculate on a combined pH-pCO2 inhibition mechanism. At 

increasing pCO2 and decreasing pH, CO2 potentially binds to the amine groups of 

proteins, forming carbamino-proteins, thereby potentially deactivating an enzyme. 

This would then require investment in maintenance to prevent their inactivation, 

especially, at reducing pH closer to the pKa (~5.5) of some known carbamino-

proteins, other than hemoglobin [177]. The formation of carbamino-proteins, was also 
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reported to cause reversible sol-gel interactions in the protoplasm of single cell 

organisms of for example Nitella clavata[175].  However, rapid or excessive increase 

in pCO2, caused irreversible damage to the cell structure [140]. Rajagopal, Werner and 

Hotchkiss [139] concluded that gram-positive bacteria are more resistant towards 

elevated pCO2, than gram-negative bacteria. A thick peptidoglycan cell wall, offers a 

better barrier to prevent CO2 diffusion into the protoplasma, than an open 

lipopolysaccharide membrane combined with a thin peptidoglycan inner membrane. 

Additionally, the gram-positive Propioniferax-like organism was renamed from 

Propionibacterium innocuum to Propioniferax innocua, because of the exceptional 

cell wall structure.[178]  

Likewise, the Kosmotoga-like organism sets itself aside from other putative acetate 

producers, by being closely related to the only mesophilic member of the 

Thermotogales, characterised by an additional protective outer envelope[179]. 

Although being different in composition, the thicker cell wall of archaea probably also 

offers more protection. It seems that the micro-organisms in the AHPD reactor have 

structural adaptations to survive high pressure and high CO2 conditions. More 

fundamental research is needed to further study this phenomenon.  

 

6.5 Concluding	remarks	

This study showed that the methanogens Msa. concilii and Mtb. formicicum, were 

proven to thrive on autogenerative conditions and capable of generating 2.0 MPa of 

biogas pressure (with 80% CH4) from glucose. The DGGE and clone library results 

also indicated that a Propioniferax-like organism, a Kosmotoga-like organism, and a 

Treponema-like organism became the dominant bacterial species under AHPD 

conditions. Although the organism responsible for propionate oxidation could not be 

identified, propionate conversion rates, and thus overall CH4-production rates, were 

inhibited by 0-90% by the accumulated pCO2 and could not be explained by the 

relatively small changes in ΔGr.  So, the piezo-tolerant organisms were strongly 

influenced by the operating conditions. This allows us to speculate that pCO2 can also 
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be actively used to steer population dynamics and conversion kinetics by using its 

reversible toxicity.  

Additionally, similar to the autogeneration found in AHPD reactors, the microbial 

community responsible for the production of biogenic natural gas from gas, oil or coal 

bed reservoirs at a pressure of 10.0-30.0 MPa with an average CO2-content of 0-8% 

[8] is also exposed to elevated pCO2.  Additionally, the closest neighbours to the 

identified archaea and bacteria include piezo-tolerant and piezophilic organisms 

sourced from deep-sea, gas, oil and coalbed reservoirs[137, 138, 180]. Therefore, the 

increased understanding on the effect of pCO2 on the population dynamics and 

conversion rates in AHPD obtained in this study, also provide valuable insight into the 

origin and population dynamics of the biogenic natural gas our society relies on today. 
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7 Gelatinisation	and	saccharification	as	rate	limiting	steps	in	

autogenerative	high	pressure	starch	hydrolysis. 

 

 

Abstract 

Hydrolysis is generally regarded as the rate-limiting step in the 
anaerobic digestion of complex organic matter, governing the VFA 
production rate for subsequent conversion to methane.  In this chapter 
starch hydrolysis rates in AHPD systems are studied in order to assess 
potential risks for VFA accumulation when digesting non-hydrolysed 
matter under pressure conditions. Under the anticipated practical 
moderate pressure conditions at 30oC, experimental CH4-content of 
the biogas improved from 49 to 73 ± 2 % at atmospheric and elevated 
pressure, respectively. Furthermore, no significant effect of pressure 
on the hydrolysis was found. Like under atmospheric pressure, 
gelatinisation was the rate-limiting step for particulate starch (0.05 d-1) 
and saccharification for gelatinised starch (0.1 d-1). Because no effect 
was observed on starch, an effect on the hydrolysis rate of more 
complex organic matter like (ligno-)cellulose is also not anticipated. 
When digesting complex organic matter in general it is therefore also 
expected that higher biogas qualities can be achieved in AHPD 
systems with overall methane production rates similar to conventional 
digestion. 
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CO2 accumulation; 2.0 MPa; particulate and gelatinised starch; 
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7.1 Introduction	

Using acetate as the substrate autogenerated biogas pressures, between 0.5 and 9.0 

MPa, containing > 95 % methane, were attained in chapters 2, 3 and 4. Owing to 

increased CO2 solubility however, increased operational pressures may result in VFA 

accumulation, low reactor pH and deterioration of the digestion process. This was 

particularly relevant for experiments presented in chapters 5 and 6 with easily 

degradable substrates, such as monomeric sugars. Most anaerobic digestion processes 

for wastes and slurries are however fed with complex particulate organic matter 

consisting of (ligno-) cellulose, lipids and proteins. The aim of this chapter is to define 

the rate-limiting steps under anticipated practical AHPD conditions and thereby assess 

the risk of VFA accumulation for more complex substrates. 

The first-order empirical hydrolysis model[29], shows that hydrolysis of complex 

particulate organic matter is the rate-limiting step at atmospheric pressure and ambient 

temperature [181, 182]  and therefore reduces the risk of VFA accumulation. 

Carbohydrate hydrolysis typically only results in the formation of monomeric 

sugars[183], for which the subsequent conversion in AHPD reactors could result in a 

pH drop as shown in chapter 3 and 5. Within the group of carbohydrates, first-order 

empirical hydrolysis constants observed for starch generally are significantly higher 

than for (ligno-)cellulose [182]. Therefore, it is postulated that if fatty acid 

accumulation can be prevented with starch as a model compound, it should certainly 

be possible to prevent fatty acid accumulation with (ligno-) cellulose.    

Multiple authors demonstrated that the particle surface area available for enzyme 

binding is generally determining the overall hydrolysis rate[181, 184, 185]. 

Gelatinisation, i.e. the conversion of crystalline starch into amorphous starch by 

inclusion of water molecules in the crystal lattice, is the mechanism that enlarges the 

physical contact area and subsequently increases the hydrolysis rates of starch and 

cellulose[181, 182, 186-188].  Amorphous starch is then dissolved in a much faster 

enzymatic step, in which dextrin and oligosaccharides are formed, i.e. the liquefaction. 
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In the last step of the hydrolysis, saccharification, dissolved oligosaccharides are then 

converted into monosaccharides by an also relatively fast enzymatic reaction [186].   

Pressure treated starches were found more susceptible to α-amylase degradation than 

non-pressure treated starches and therefore pressure can theoretically be used, besides 

temperature, to increase the enzyme binding capacity of the starch [189]. Nevertheless, 

pressures between 100.0 and 600.0 MPa at 29 oC with a 15 minute exposure time were 

required to significantly enhance the gelatinisation degree of particulate starch [190]. 

These pressures are however way above the operational pressure of an AHPD system. 

Likewise, structural changes in enzymes resulting from compression or decompression 

of intermolecular cavities are theoretically possible [30, 191], but in order to increase 

the α-amylase activity of B. licheniformis significantly a pressure of over 10.0 MPa 

was required [192, 193]. Nevertheless, Francisco and Sivik [194] found that chemical 

effects of dissolved CO2 improved the degree of gelatinisation by 10-15% after 20 

minutes exposure by using a relatively low pressure of 8.0 MPa pCO2 at 46oC. A pCO2 

of 0.1-1.0 MPa can already significantly decrease pH depending on the buffering 

capacity (chapter 3 and 5). So, this may influence the gelatinisation, enzyme-substrate 

binding, and enzyme denaturation by strong interdependent relations between ionic 

strength, salt effect, pH, temperature and substrate characteristics according to the 

theory described by Morild [30].  Consequently, despite the fact that operational 

pressure and temperatures in AHPD systems can be characterised as still moderate, 

some impact of dissolved CO2 concentrations up to 150 mmol L-1 (at 0.5 MPa ) 

combined with a hydraulic retention time in the order of days, instead of minutes, may 

be anticipated.  

This work describes two series of duplicate experiments. The first series of 

experiments aims to clarify the influence of physical pressures up to 2.0 MPa on 

enzyme-based hydrolysis rates of gelatinised starch using a non-adapted mixed 

anaerobic culture.  

The second experimental series aims to determine whether particulate starch 

hydrolysis remains the rate-limiting step under AHPD conditions (up to 2.0 MPa and 

30 oC), with little risk of VFA accumulation. 
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7.2 Materials	&	Methods	

7.2.1 Experimental	setups		

The 1st set of experiments was performed in three 0.6 L AHPD reactors as described in 

more detail in chapter 4. For the 2nd set of experiments, an 8 L AHPD reactor setup 

(Parr Instruments, model 910908, Moline, USA) was used as described in chapter 3.   

All setups were controlled at 30°C by a water bath (Julabo MP, Seelbach, Germany). 

Total pressure (Ashcroft A-series 1000 PSI, Stratford, USA), temperature (PT100) and 

pH were measured online and data was logged with Compact field point modules 

(cFP1804 and cFP-CB1) and stored with Labview 7.1 (National Instruments 

Corporation, Austin, USA) on the PC. The 0.6 L setups contained Prosense high 

pressure pH probes (Prosense serial nr. 34002/002, Oosterhout, The Netherlands) and 

the 8 L setup contained Bűchi high pressure probes (Bűchi Labortechnick AG, Flawil, 

Switzerland).  Two six bladed impellers  with a 9.8 cm diameter attached to a central 

stirrer shaft (Parr Instruments, type A709HC, Moline, USA) were used to stir the 

reactors continuously at 150 rpm for the 8 L reactor. Two 4 bladed impellers with a 3.5 

cm diameter were used to stir the 0.6 L reactor at 60 rpm (Parr Instruments, type 

A837HC, Moline, USA) . Additionally, a calibrated milligascounter (Ritter, MGC-1 

V3.0, Bochum, Germany) was connected to the gas phase of the pressure vessel to 

monitor volumetric gas production for experiment 8. In experiments 1, 5 and 7 a glass 

water lock was filled with water to allow produced gas to escape. 

 

7.2.2 Start	up	and	operation	of	AHPD	reactors	

7.2.2.1 Experimental	I:	the	physical	role	of	pressure	

Liquefaction and saccharification were performed under elevated N2 pressures to 

provide reference experiments (experiment 1-6) for the 2nd experimental series. To do 

so, 0.6 L reactors were inoculated with 75 g wet anaerobic granular sludge (~13.5 g 

VSS L-1) in exp. 1-4, and 25 g of fresh inoculum (~4.5 g VSS L-1) in exp. 5 and 6 from 

a full-scale expanded granular sludge bed (EGSB) reactor treating waste water from a 
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fruit-juice processing factory (Riedel Friesland Campina, Ede, The Netherlands). This 

sludge is referred to as Riedel sludge. Granular starch was gelatinised in boiling water, 

cooled down to 30 oC and then added to the reactors at a final concentration of 3.64 g 

L-1 or 4.3 g COD L-1.  Experiments 1-4 were fed on 3 consecutive days at a N2- 

pressure of 0.1, 0.5, 1.0 and 2.0 MPa, respectively. 24 hours after each substrate 

addition, the sludge was settled and the supernatant was removed in order to reduce 

the VFA concentration and possible pH decrease. The sludge was then fed with fresh 

substrate and liquid medium. Due to reusing the inoculum in subsequent experiments 

1-4, potentially the sludge adapted or increased in concentration over time, introducing 

uncertainty when comparing between experiments 1-4. In order to reduce this 

uncertainty in sludge effects over time experiments 5 and 6 were operated 

simultaneously at atmospheric pressure and 2.0 MPa of nitrogen pressure, 

respectively. Furthermore, the experimental period for intermediate measurements was 

prolonged by inoculating experiments 5 and 6, with three times less sludge.  As a 

result the increased substrate-inoculum ratio gave additional insights in the sludge 

specific conversion rates.  

 

7.2.2.2 Experiment	II:	Starch	conversion	under	actual	AHPD	conditions	

In order to study starch hydrolysis under actual AHPD conditions, the 8L-reactor was 

fed with 3.2 g L-1 particulate starch (Merck amylodextrin 9005-84-9) for experiment 7, 

8 and 9. The starch granules had a median particle size of 35 µm as determined by 

particle size distribution measurement using laser diffraction analysis (Coulter LS230, 

Beckham Coulter, USA) using a method described elsewhere [195]. For experiment 10 

starch granules were gelatinised in 50 mL boiling water, which was left to cool to 30 
oC, before it was added to the reactor. The inoculum consisted of 6 L (~ 4 g VSS L-1) 

of suspended AHPD adapted biomass cultivated on fed batch glucose feedings for over 

1 year. The reactor was then filled to a total liquid volume of 6.5 L by adding 0.5 L 

concentrated nutrient medium (Table 2-1). 

.  
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Table 7-1: overview of starch hydrolysis experiments 

Name* Substrate 

 

(mmol L-1) 

Pressure 

range 

(MPa) 

Gas 

type 

Substrate 

type 

Inoculum 

Type 

 

Concentration

(gVSS L-1) 

Exp. 1 22.5 0.1 N2 Gelatinised EGSB granular 

inoculum 

13.5 

Exp. 2 22.5 0.5 N2 Gelatinised From Exp. 1 13.5 

Exp. 3 22.5 1.0 N2 Gelatinised From Exp. 2 13.5 

Exp. 4 22.5 2.0 N2 Gelatinised From Exp. 3 13.5 

Exp. 5 22.5 0.1 N2 Gelatinised EGSB granular 

inoculum 

4.5 

Exp. 6 22.5 2.0 N2 Gelatinised EGSB granular 

inoculum 

4.5 

Exp. 7 20 0.1 CH4/CO2 Particulate Glucose grown, 

Pressure adapted 

** 

4.0 

Exp. 8 20 0.1-0.5 CH4/CO2 Particulate ** 4.0 

Exp. 9 20 1.0-1.5 CH4/CO2 Particulate ** 4.0 

Exp. 10 20 1.0-1.5 CH4/CO2 Gelatinised From granular 

experiments 

4.0 

*All experiments were performed in duplicate ** order of duplicate experiments 7, 8 and 9 was 0.1, 0.1-0.5, 1.0-

1.5, 0.1-0.5, 0.1, 1.0-1.5 MPa. 

To study starch degradation at elevated pressure in experiments 9 and 10, the reactor 

was started at atmospheric pressure and then manually pressurised by using a mixture 

of 50% CO2 and 50% CH4 to 1.6 MPa. Afterwards during 6 hours, additional gas 

samples were taken to correct the CH4 production for dissolution of the manually 

added CH4 and CO2. 

7.2.3 Analytical	methods	

Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were determined 

according to Standard Methods [57].  
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Gas composition was determined by taking biogas samples at the end of each run and 

analysing them by gas chromatography as previously described (chapter 4). Biogas 

composition was corrected for flush gas (N2) and water vapour. To calculate the 

hydrolysis rate constants for experiments 7-10, it was assumed that 180 g of starch 

could produce 3 moles of CH4 and by this a maximum CH4 production for each 

experiment was calculated. Subsequently, the cumulative CH4 in time was subtracted 

from the maximum CH4-production for each data point in time. Then the remaining 

CH4 production potential was assumed to represent the remaining starch, because 

methane production was limited by starch hydrolysis and data showed intermediate 

glucose and VFA conversion were much faster. Finally, an exponential function was 

plotted through the calculated data points to determine the first order hydrolysis 

constant. Differences in first order hydrolysis constants resulting from minor 

temperature fluctuations of ± 1oC for experiments 7, 8, 9 and 10 and ± 3oC for the 

duplicate of experiment 8 were corrected with Arrhenius to 30oC experiments using an 

Ea= 64 kJ mol-1 as described in Veeken, Kalyuzhnyi, Scharff and Hamelers [185]. 

VFA were determined by gas chromatography (Hewlett Packard 5890 series II, Palo 

Alto, USA) as described in chapter 2 and 3. Additionally, maltotriose, maltose, 

glucose, succinic acid, lactic acid, formic acid and ethanol were measured by High 

Performance Liquid Chromatography (HPLC). Samples were prepared by 

centrifugation at 9,300 rcf. Supernatant was diluted and acidified with concentrated 

H2SO4 solution to pH < 3. Acidified samples were pumped, using 1.25 mM H2SO4 as 

eluent at a flow rate of 0.6 mL min-1 with a HPLC pump (Dionex High Precision 

model 480) through an Alltech OA-1000 column (length=300 mm, internal diameter 

=6.5 mm, partnr. 9064) at 60oC and 6.0-6.5 MPa and measured by means of an 

refractive index (RI) detector (Shodex RI, Showa Denko KK, Kawasaki, Japan).  

Gelatinised starch was measured by a photometric cuvet test (Dr. Lange LCK 357) 

using the manufacturer protocol. 

The molecular weight distribution of hydrolyzed starch samples was measured by 

high-performance size-exclusion chromatography (HPSEC) on a Dionex Ultimate 

3000 system (Dionex, Sunnyvale, CA) equipped with a set of four TSK-Gel super AW 



Chapter 7: Pressure Hydrolysis 

137 

 

columns (Tosoh Bioscience, Tokyo, Japan) in series, guard column (6 x 40 mm), and 

separation columns 4000, 3000, and 2500 (6 x 150 mm). Elution took place at 400C 

with filtered aqueous 0.2 M sodium nitrate at a flow rate of 0.6 mL min-1 followed by 

refractive index detection (Shodex RI, Showa Denko K.K., Kawasaki, Japan). 

The oligosaccharides composition, i.e. maltose to maltohexaose, was determined in 

more detail by High Performance Anion Exchange Chromatography (HPAEC) using 

an ICS-3000 Ion Chromatography HPLC system equipped with a CarboPac PA-1 

column (2  250 mm) in combination with a CarboPac PA guard column (2  25 mm) 

and a pulsed electrochemical detector in pulsed amperometric detection mode 

(Dionex, Sunnyvale, USA). Dextrins, higher oligosaccharides and CH4 were not 

quantified in exp.1- 4 and therefore the mass balance could not be closed entirely in 

these experiments. A flow rate of 0.3 mL min-1 was used and the column was 

equilibrated with 100 mM NaOH. The following gradient of sodium acetate in 100 

mM NaOH was used: 0-0.5 min at 0 M; 0.540 min at 00.1 M; 4060 min at 0.10.4 

M; 6075 min at 0.41.0 M; 7580 min at 1 M. Samples were taken from the liquid 

sampling port of the reactor and centrifuged at 9,300 rcf for 5 minutes, then the 

supernatant was pipetted into a HPLC vials and diluted 5 times with demi-water. 

Glucose, malto-oligosaccharides, and dextrin (Sigma Aldrich) were used as standards 

for identification. 

Light microscope images of starch particles were made with a Nikon eclipse E400 

(Nikon, Japan), using different Nikon lenses, CFI plan fluor DLL 40x with phase 

condenser annulus 2 or CFI plan fluor DLL 100x with a phase condenser annulus 3. A 

Nikon C-SP 754535 polarisation filter was used to obtain the polarised light images, 

using the same lenses with bright field annulus. Photographs were recorded with a 

Nikon Digital Sight Camera DS 5M connected to Nikon eclipse software in a PC.  

Samples for Field Emission Scanning Electron Microscopy (FESEM) were centrifuged 

for 10 minutes at 4,651 rcf. Hereafter, supernatant was replaced by a 2.5% 

glutaraldehyde solution for fixation during 1 hour (at 4oC ). Afterwards samples were 

dried in a series of ethanol 50-75-90-95-100% and then transferred to acetone. To 
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prevent the samples from shrinking due to removing the acetone in air, supercritical 

carbon freeze drying procedure as described in [92] was used. Afterwards samples 

were glued to a brass sample holder using iridium glue. Then samples were sputter-

coated with iridium. The Field Emission Scanning Electron Microscope (Fei Magellan 

FESEM) was connected to an Oxford Aztec EDX and operated at 2 kV and a 6.3 pA 

current. Scattered Electrons were detected by Through Lens Detection (TLD) at a 

Working Distance of 1.9 and 5.1 mm. 

7.3 Results		

7.3.1 The	physical	effect	of	pressure	on	enzyme‐based	kinetics	

Experiments 1-4 were performed to acquire insight in the potential roles of physical 

pressure on the enzyme-based liquefaction and saccharification with unadapted Riedel 

inoculum using gelatinised starch. Figure 7-1 and table 7-2 reveal that the estimated 

1st-order liquefaction constants for experiment 1, 2, 3 and 4 were 7.2, 8.8, 10.4 and 9.2 

h-1, respectively. So, the physical effect of pressure up to 2.0 MPa was marginal.  

 

Figure 7-1: Overview of starch degradation rates for exp. 1 under 0.1 MPa pN2   (□ ), exp. 2 under 0.5 

MPa pN2  (o), exp. 3 under 1.0 MPa pN2 (x) and exp. 4 under 2.0 MPa pN2 (+) using 13.5 g VSS L-1  and 

exp. 5 under 0.1 MPa pN2 (◊) and exp. 6 under 2.0 MPa pN2 (Δ) using 4.5 g VSS L-1 

Experiments 5 and 6 showed an average liquefaction rate constant of 2.7 and 3.0 h-1. It 

is noteworthy, that the threefold decrease in inoculum concentration from 75 g wet 
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sludge L-1 to 25 g wet sludge L-1 also resulted in a threefold decrease in rate constant. 

So, despite the physical pressure up to 2.0 MPa the enzyme and biomass concentration 

were rate-limiting for gelatinised starch, similar to conventional digestion processes 

[183].  

Table 7-2: Overview of experimental results for starch degradation under AHPD conditions 

 Name Estimated     

rate equation 

 

 R² Rate-limiting step      pH Biogas composition 

CH4 

%  

pCO2 

(MPa) 

 Exp. 1 22.5e-7.2t 0.9966 Saccharification 7.0 ± 0.2 - - 

 Exp. 2 22.5e-8.8t 0.9905 Saccharification 7.0 ± 0.2 - - 

 Exp. 3 22.5e-10.4t 0.9832 Saccharification 7.0 ± 0.2 - - 

 Exp. 4 22.5e-9.2t 0.9228 Saccharification 7.0 ± 0.2 - - 

 Exp. 5 22.5e-2.7t 0.9818 Biomass 
concentration 

7.0 ± 0.2 - - 

 Exp. 6 22.5e-3.1t 0.9519 Biomass 
concentration 

7.0 ± 0.2 - - 

 Exp. 7 20e-0.002t 0.9848 Gelatinisation 7.3 ± 0.1 49 0.05 

 Exp. 8 20e-0.002t 0.9967 Gelatinisation 6.6 ± 0.1 73 0.10-0.20 

 Exp. 9 20e-0.002t 0.9963 Gelatinisation 6.3 ± 0.1 73 0.40-0.80 

 Exp. 10 20e-0.004t 0.999 Saccharification 6.2 ± 0.1 72 0.40-0.80 

t is expressed in hours 

Profiles of the liquefaction products, i.e. maltose up to maltohexaose, and the 

saccharification product glucose for experiments 1, 2, 3 and 4 are shown in Figure 7-2. 

Results indicated that the effect of pressure on type of intermediates formed was 

limited, despite the slightly elevated maltose concentrations at 2.0 MPa. Glucose 

concentrations remained stable and were comparable for pressurised and atmospheric 

experiments i.e. 0.5 ± 0.05 mmol L-1 over the first 6 hours.  For higher 

oligosaccharides, i.e. maltopentaose and maltohexaose, a typical first order hydrolysis 

rate equation fitted the data points at concentrations below 0.5 and 0.3 mmol L-1. 

Besides, concentrations of maltopentaose and maltohexaose in experiments 3 and 4, 
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i.e. 1.0 and 2.0 MPa, respectively, were significantly lower than in experiment 1 which 

was performed under atmospheric pressure.  

(a)     (b) 

 
 (c)     (d) 

 
 (e)      (f) 

 
Figure 7-2:  Liquefaction and saccharification product profile of experiments 1 (●), 2(◊) 3 (Δ) and 4 (x) 

over time (a) glucose, (b) maltose (c) maltotriose, (d) maltotetraose, (e) maltopentaose and (f) 

maltohexaose 
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However, because experiments 2, 3 and 4 were performed with the sludge from 

experiment 1, observed differences could not solely be attributed to differences in 

pressure.  Maltotetraose showed an initial peak concentration of 0.8 ± 0.05 mmol L-1 

and a gradual decline in concentration afterwards. Maltotriose was present in a 

constant concentration of 1.0 ± 0.05 mmol L-1 and started decreasing in concentration 

after 4 hours. Maltose, in contrast to the other measured oligosaccharides, reached a 

significantly higher maximum concentration of 1.5 to 2.2 ± 0.05 mmol L-1 after 3 

hours and afterwards declined in concentration. The elevated molar concentration of 

maltose, maltotriose and maltotetraose compared to the molar concentration profile of 

glucose and especially the presence of a distinct concentration peak in the maltose 

profile showed that saccharification was the overall rate-limiting step.   

The molecular size distribution as measured by high performance size exclusion 

chromatography for experiments 1-4 showed relatively low concentrations of 180 Da 

compounds compared to molecules of 360 and 540 Da and further supported these 

findings(figure 7-3).  

 

Figure 7-3: Overview of molecular size division of reference starch (green) and after 1 hour hydrolysis 

under a pN2 head space of  0.1 MPa (black), 0.5 MPa (blue), 1.0 MPa (pink) and 2.0 MPa (brown) of 

experiments 1, 2, 3 and 4, respectively.    

7.3.2 Starch	conversion	under	actual	AHPD	conditions	

With increasing pressure, the final pH decreased from 7.3 at atmospheric pressure to 

6.6 at 0.5 MPa, 6.3 and 6.2 at 1.5 MPa (Table 7-2) for experiments 7, 8, 9 and 10, 

respectively. Despite the lower pH, the biogas composition significantly improved 
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from experiment 7 to experiment 8, 9 and 10, with a maximum CH4-content of 49, 73, 

73 and 72 ± 2 %, respectively (Table 7-2). Therefore, it can be concluded that from the 

perspective of biogas quality AHPD operation was beneficial. However, the 

cumulative methane production and the methane production rate were similar for all 

pressures applied (Figure 7-4a exp.7, 8 and 9).  

(a)          (b) 

 
Figure 7-4: Overview of (a) cumulative CH4  production and (b) converted into cumulative starch 

degradation with (□) experiment 7, (◊) experiment 8, (x) experiment 9 and (∆) experiment 10.  

Both the CH4 production rate and cumulative amount were significantly higher with 

gelatinised starch compared to granular starch. Although CH4 production potential was 

assumed equal for gelatinised and particulate starch, it was later confirmed that 

crystalline starch was present after 8 days of pressure operation (Figure 7-6). This 

strongly indicated a poor biodegradability of at least a part of the dosed particulate 

starch. Figure 7-4b shows the estimated starch concentration against time and in Table 

7-2 the estimated hydrolysis rate constants for experiments 7, 8 and 9 showed a 

practically equal value of 0.002 ± 0.0005 h-1, or 0.05 d-1. This coincided with a 

maximum  measured  methanogenic activity of 0.13 g COD-CH4 g
-1 VSS d-1, based on 

the original inoculum concentration. Overall these values are also comparable to 

reported cellulose degradation rates [182]. However, for experiment 10 the overall 

CH4-production rate had doubled to 0.1 d-1 by using gelatinised instead of particulate 

starch. Consequently also the maximum measured methanogenic activity had doubled 

to 0.27 g COD-CH4 g
-1 VSS d-1. 
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The time-profile of intermediate compounds also showed a clear distinction between 

particulate (Figure 7-5a and c) and gelatinised starch (Figure 7-5b and d).  

          (a)       (b) 

 
          (c)         (d) 

 
Figure 7-5: Maximum observed acetate (◊), propionate (*), succinate (o) (a and b), glucose (Δ), maltose (□) 

and maltotriose (x) (c and d) concentrations between 1.0-1.5 MPa and pH~6.3 when feeding 20 mmol L-1 

of particulate starch in experiment 9 (a and c) and gelatinised starch in experiment 10 (b and d).  

In experiment 9 intermediate VFA remained < 0.25 mmol L-1, whereas for the 

gelatinised starch (experiment 10), acetate, propionate and succinate concentrations all 

exceeded 1 mmol L-1 within 96 hours after starting the experiment. Glucose 

concentrations were below 0.1 mmol L-1 in experiment 9, but showed accumulation up 

to 2 mmol L-1 in experiment 10. Maltose and maltotriose were present in average 

concentrations below 0.5 mmol L-1 in both experiments, but maltose showed a peak 

value at the start of the experiment 10 of 2.5 mmol L-1, respectively. Thus, similar to 

the results presented for gelatinised starch under a pN2-atmopshere, saccharification 
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was the rate-limiting step. Despite of intermediate organic acid concentrations being 

higher, these were readily metabolised, overall resulting in a doubled CH4-production 

rate. However, although additions of 20 mmol L-1 of gelatinised starch did not result in 

VFA accumulation, higher slug additions will generate more oligosaccharides and thus 

glucose per unit of time, assuming the biomass concentration is not rate-limiting like 

in experiments 5 and 6. This could depending on the maximum rate of saccharification 

and methanogenic activity potentially result in similar VFA accumulation as described 

in chapter 6. 

  
In Figure 7-6 it was found by light microscopy that the crystalline nature of starch 

particles did not disappear over a period of 8 days. The Maltese cross, the typical sign 

of crystalline starch [196] can be observed in the polarised light images. It was also 

noticed that similar size and crystalline structure of particles was found after 0, 4 (not 

shown) and 8 days. For samples present for longer term inside the reactor visually 

significantly fewer particles with the Maltese cross could be found. Additionally, the 

surfaces of unreacted and reacted starch granule are shown in Figure 7-6e and f.  The 

particle diameter was similar, whereas the initially smooth surface of the starch 

granule became porous and micro-organisms can be seen penetrating into the granules 

after 4 days of exposure to the reactor environment.  
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(a)      (b) 

  
(c)      (d) 

  
 (e)      (f) 

  

Figure 7-6: Representative starch microscope images after (a, b) 0, (c, d) 8 days (reacted with I2) with (a 

and c)  polarised light  (b, d)  phase contrast light.  Starch Granule surface structure (e) reference and (f) 

exposed to reactor conditions for 4 days 
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7.4 Discussion	

In the current work it was found that pressure up to 2.0 MPa and mesophilic conditions 

had at most only a marginal influence on starch conversion rates. Conversion rates 

were apparently determined by the particle structure for particulate starch and by 

biomass concentration for gelatinised starch. Both were similar to atmospheric 

conditions.  

Consequently, it can be concluded that the overall starch hydrolysis rates in an AHPD 

process might well be comparable to conventional anaerobic digestion. Based on our 

results the biogas quality significantly improved from atmospheric 49 ± 2% CH4 and 

51 ± 2% CO2 up to maximum of 73 ± 2% CH4 and 27 ± 2% CO2 at 0.5 MPa. At 

pressures exceeding 0.5 MPa, no further improvement of biogas composition was 

obtained. Furthermore, due to the rate-limitations posed by hydrolysis results showed 

that fatty acids did not accumulate and did not reduce [HCO3
-]/CO2 ratio, keeping the 

pH stable. Under similar conditions using glucose as substrate, propionate 

accumulation was observed due to elevated pCO2 in chapter 6. This means that acid 

neutralising capacity based pH-control strategies in chapter 3 are of less importance 

with particulate substrates. No direct effect of pressure up to 2.0 MPa was observed in 

this work and based on literature pressure does have the potential to influence the three 

main steps, gelatinisation, liquefaction and saccharification required for starch 

hydrolysis [30, 194, 197, 198]. 

7.4.1 Gelatinisation	

Our results show that physical pressures up to 1.6 MPa are insufficient to physically 

enhance gelatinisation and also no indirect effect of CO2 was observed. This is in line 

with other work, in which significant physical effects of pressure were not found 

below 100 MPa [30, 190, 194, 198, 199]. From our results however, gelatinisation of 

particulate starch was the slowest step of the overall CH4 production under the 

imposed conditions, with an overall conversion rate of 0.05 d-1.  

In line with the hydrolysis mechanisms described by Oates [200]  Figure 7-6 visually 

showed that starch particles digested in the reactor for several days increased in 
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surface area, by becoming porous. Further increase in particle surface area could then 

be obtained by using moderate pCO2 to force dissolved CO2 into porous starch 

granules [201]. Once inside the granule, due to a change in the carbonate equilibrium 

by decompression, temperature or pH change, conditions similar to CO2 or steam 

explosion [202] could be obtained, disrupting the particle structure. As a consequence, 

the increased particle surface area could then result in higher overall CH4 production.  

It should be noticed  however, that this may be harmful for the micro-organisms and 

could affect subsequent digestion stages.   

7.4.2 Enzyme‐based	hydrolysis	

Our results show that with gelatinised substrates, saccharification, i.e. the conversion 

of maltose and maltotriose to glucose was the rate-limiting step with pressures up to 2 

MPa. Physical pressure was therefore not found to have significant influence in this 

pressure range, which is in line with literature [193]. Although it was only the aim of 

the experiments to define the rate-limiting steps under anticipated AHPD conditions, it 

is noteworthy that different (thermophilic) archaeal and bacterial enzymes involved in 

starch hydrolysis have different pH optima, ranging from pH 2.0 - 9.0 [203-205]. 

Moreover, the α-amylase and pullulanase isolated from a single organism, Thermotoga 

maritima (MSB8), had pH optima of 7.0 and 6.0, respectively [206]. In this 

perspective it is highly interesting that in the used pressure-adapted inoculum (chapter 

6) a Kosmotoga-like organism dominated the bacterial population and the genome of 

the versatile bacterium Kosmotoga olearia contains both α-amylase and pullulanase 

coding genes [207]. Furthermore, pullulanase is required for converting side-branched 

chains (amylopectin) into amylose, making it available for the relatively faster α-

amylase enzyme [208]. Operating an AHPD reactor at pH 6, near the pKa of HCO3
-, 

may thus optimize pullulanase activity, thereby converting more amylopectin into 

amylose. Additionally, increase of 22% and 43% in alpha-amylase and protease 

excretion was reported for a mixed culture cultivated under increased pCO2 [209]. 

Therefore, it would be interesting to study the effect of pCO2 on organisms cultivated 

in AHPD to determine whether enzyme-based hydrolysis rates can be optimised. 
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It should however be emphasised that addition of 20 mmol gelatinised starch L-1 

resulted in a short period in which elevated VFA concentrations were present. As a 

consequence, enhancing the liquefaction or saccharification rate in AHPD without 

simultaneously enhancing methanogenic activity may result in acidification and 

reactor upsets, especially at more concentrated periodical substrate additions. 

 

7.4.3 Outlook:	pressurised	hydrolysis	of	different	complex	organic	material	

This study was carried out with specific model substrates, i.e. particulate starch and 

gelatinised starch. Extrapolation of these results to more complex organic material is 

desirable, but not straightforward due to the different nature of proteins, lipids and 

carbohydrates. The most straightforward extrapolation can be made for carbohydrates. 

For cellulose in particular, literature showed that cellulose degradation in the deep sea 

also required a gelatinisation step to dissolve the substrate [197]. In line with the more 

complex molecular structure however, even higher pressures than reported for starch 

were required to enhance gelatinisation. So, based on the even more complex 

molecular structure of lignocellulose, we consider it unlikely that degradation can be 

enhanced by applying moderate AHPD conditions. Despite the fact that, lipids and 

proteins also require a physicochemical dissolution step to make the substrate 

accessible for hydrolytic enzymes, the liquid surface interaction is too different to 

make a good extrapolation based on the results obtained with starch. Therefore, 

additional studies are required. With regard to the effect of pressure on enzyme based 

hydrolysis we found that, like in atmospheric digestion, biomass concentration is 

determining the slowest step, i.e. the saccharification rate. No evidence was found 

under the imposed AHPD conditions that the hydrolytic activity of the biomass was 

affected on the short term. This study therefore shows no indication that this will be 

different for lipid or protein hydrolysis.  
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7.5 Concluding	remarks	

Under the anticipated moderate pressure conditions at 30oC no effect of pressure on 

the hydrolysis was found. Like under atmospheric pressure, gelatinisation was the rate-

limiting step for particulate starch and saccharification for gelatinised starch and thus 

the overall methane production rates in AHPD are expected to be similar to 

conventional digestion. Additionally, it was found that the rate-limitation set by the 

hydrolysis, reduced the risk of acidification in AHPD by keeping intermediate VFA 

concentrations relatively low. Because the biogas quality was improved significantly 

from 49 to 73 % CH4 at 0.5 MPa and remained stable at higher pressures, AHPD 

operation is considered beneficial for the overall digestion of starch and potentially for 

more complex organic material in general.  
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8 Summary,			general	discussion	and	outlook	

8.1 Summary	and	general	discussion		

8.1.1 Anaerobic	treatment	for	waste	stabilisation	and	energy	recovery	

The widespread use of household digesters in India and China proofs that the potential 

of biogas production from organic matter has been applied for centuries. With the 

development of high rate anaerobic reactor systems in the 70’s and 80’s, anaerobic 

digestion (AD) became an alternative to aerobic waste water treatment for stabilising 

organically polluted waste waters. Under temperate climate conditions, such as in the 

Netherlands, full scale high rate anaerobic waste water treatment is generally only 

applied for industrial waste water streams that are rich in organic matter. With regard 

to domestic or municipal waste water AD is, thus far, restricted to warm climates[210]. 

In addition, anaerobic treatment is largely applied for the digestion of primary and 

secondary sludge, stabilisation of pig and cow manure, and digestion of agricultural 

and agro-industrial wastes [211]. In the Netherlands, direct anaerobic sewage 

treatment is not applied, because the organic fraction in municipal waste water is too 

diluted and temperatures are too low for effective treatment. Moreover, considering 

the C/N ratio in our domestic sewage, anaerobic pre-treatment would also impact the 

biological nutrient removal capacity of our sewage treatment plants, which are 

designed on conventional nitrogen removal, using nitrification-denitrification. 

Provided alternative approaches for N removal or N recovery are available, anaerobic 

stabilisation of sanitary waste waters under Dutch conditions is only possible when 

sewage waters are up-concentrated or when the produced black waters, i.e. human 

excreta and urine, are separately collected by e.g. applying vacuum sewer systems for 

slurry conveyance [12]. Digestion experiments performed with concentrated black 

water indicated that conversion of all produced biogas in combined heat and power 

(CHP) systems could result in a total energy production of 140 MJ p-1 y-1 of which 56 

MJ p-1 y-1 as electricity and 84 MJ p-1 y-1 as additional heat.  Furthermore, it is 

estimated that by addition of solid kitchen refuse, this amount could be doubled[212]. 

However, the relatively low quality of the produced biogas limits the use of biogas in 
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particularly the decentralised applications, where generated biogas flows are below 

100 m3 h-1. In fact, existing external biogas upgrading technologies are only 

economically feasible at larger scale [8, 9]. This thesis focusses on in-situ biogas 

upgrading by making use of the differences in gas solubility between CH4 and CO2 as 

described by Henry’s law, resulting in higher CH4 concentrations in the produced 

biogas at high pressures compared to atmospheric digestion systems. The digestion 

process is denominated as Autogenerative High Pressure Digestion (AHPD). 

8.1.2 Anaerobic	digestion	at	elevated	pressure	

Conventional atmospheric anaerobic digestion is studied worldwide, but there is 

limited and only scattered literature available on pressurised digestion [18, 21, 41, 62]. 

Based on the available literature and the work performed in this thesis, the graphical 

presentation used in the introduction was adjusted (Figure 8-1).  

 

Figure 8-1: Overview of anaerobic digestion updated with topics discussed in this thesis on autogenerative 

high pressure digestion (in bold). Other features of the figure are explained in Fig. 1.1 (chapter 1) 
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Figure 8-1 also includes in-situ biogas upgrading as a separate stage. Furthermore, the 

topics that have been studied in this thesis and that were all related to the carbohydrate 

and volatile fatty acid digestion are depicted in black.  

Experimental results showing a total pressure in the digester of 9.0 MPa and a CH4-

content exceeding 95%, illustrate the bio-technical feasibility of the AHPD process. In 

addition, the very low H2O content of the in-situ compressed biogas, as calculated 

from the Clausius Clapeyron equation (Eq. 1-17)  [36], is a big advantage when gas 

grid injection is considered. 

As discussed in chapter 3 however, it must be realised that also CH4 follows Henry’s 

law and will dissolve to a large extent in the pressurised liquid. Figure 8-2 therefore 

shows the autogenerated pCH4 potential at various COD concentrations and the 

relative CH4 dissolution (as % of total production) versus the liquid to total volume 

ratio during batch digestion of the substrate.  

(a)       (b) 

 

Figure 8-2: (a) theoretical autogenerated pCH4 potential (MPa) for 3 g COD L-1 (), 10 g COD L-1 (□), 20g 

COD L-1 (Δ) and (b) % dissolved CH4 of total (x), against liquid :total volume- ratio, assuming a 1 L batch 

reactor. 

To reach a pCH4 of 2.0 MPa using 3 g COD L-1, a Vl:Vtot ratio of 0.97 is required and 

because the dissolved CH4 is dependent on the Vl:Vtot ratio it can be found in Figure 

8-2b that dissolved CH4 amounts 58% of total produced CH4. However, if this 

pressure is obtained with 10 or 20 g COD L-1 the required Vl:Vtot ratio decreases to 
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0.81 and 0.60 and as a consequence the relative CH4-dissolution decreases to ~14 and 

6% of total produced CH4 in a batch digestion, respectively. If overpressure valves in 

batch setups would be set below the autogenerated pressure potential, CH4-dissolution 

would follow the operational pressure and not the Vl:Vtot ratio and could therefore be 

reduced significantly.  

Obviously, in continuous flow systems the biodegradable COD concentration 

determines the maximum pCH4 that can be reached in an AHPD system. 

The chemical energy potential of CH4 under standard conditions is 890 kJ mol-1 [37], 

but additionally the autogenerated biogas contains a mechanical energy potential that 

is dependent on prevailing pressure and can be harvested by allowing the biogas to 

decompress. In batch digestion, by increasing the Vl:Vtot ratio different end pressures 

can be obtained upon digestion of a specific amount of substrate (Figure 8-2a). 

However, the potential decompression energy that can be converted into actual work 

by isothermally decompressing biogas from 0.50 and 10.0 MPa  to atmospheric 

pressure increases only from 4 to 12 kJ per mol biogas according to Equation 1-22.  

Given the increasing dissolution and potential CH4–losses via the effluent at elevated 

pressure, the benefits of operating at high pressure from an overall energy efficiency 

point of view should be considered carefully. Moreover, the extent to which the 

chemical energy of the dissolved CH4 can be utilised without further upgrading will 

depend on the CH4 –content of the biogas released by decompressing the effluent. It is 

however noteworthy that during decompression only  CO2 and CH4 are released and 

NaHCO3
 is kept in solution due to the charge balance. So, assume one would produce 

3 mol CH4 and 3 mol Total Inorganic Carbon by digestion of glucose. If initially 2 out 

of 3 mol of Total Inorganic Carbon (TIC) would be captured as NaHCO3/CaCO3 by 

ANC addition the remaining biogas that obeys Henry’s law would consist of 3 mol 

CH4 and 1 mol CO2. When by autogeneration of biogas pressure 50% of CH4, 1.5 mol, 

would dissolve, one could still produce at least an atmospheric quality biogas (60% 

CH4 and 40% CO2) from the decompressed effluent. Additionally, chapters 2, 3, and 4,  

showed that a CH4-content exceeding 90% could be obtained at  pressures of about 

only 0.5 MPa when feeding neutralised VFA, thereby  minimising the dissolved CH4. 
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As described above, the dissolved CH4 can be easily quantified in the AHPD process. 

And because the whole process occurs in a single step reactor, CH4-losses can be 

easily prevented, whereas for conventional digesters using external gas upgrading,  

CH4-losses are often not reported and may add up to 20% of produced CH4 [98].  

8.1.3 Managing	liquid	acidity	in	AHPD	processes	

Given the difference in Henry’s constants of 0.016 and 0.31 mol L-1 MPa-1 [15] for 

CH4 and CO2, respectively, it should be emphasized that high quality biogas at low 

pressure is only feasible by controlling CO2-speciation via the total Acid Neutralising 

Capacity (ANC) of the digester liquid. The ANC or alkalinity can be defined as the 

excess charge of all cations minus the charge of all anions, e.g. Na+, K+ , Ca2+ , Mg2+ 

and/or  NH4
+ minus Cl-, SO4

2-, NO3
2- and dissociated organic acids [68]. The 

remaining gap in charge is then balanced by the formation of HCO3
-. Theoretically, 

this means that for waste water in which the ANC to TIC production-ratio is 1:1, all 

CO2 will dissociate to HCO3
-. Our experimental results in chapter 3 show that with an 

ANC to TIC-ratio of 1:3 the pCO2 will increase, resulting in lower CH4 concentrations 

in the biogas and a drop in pH to 5 or lower. The remarkable continuation of CH4-

production, at the low bulk pH caused by CO2-induced acidification in chapter 3, was 

attributed to the presence of alkaline precipitates in the inoculum, which were 

speculated to cause a pH-gradient around and in the bacterial aggregates. The observed 

phenomenon would however, deserve further attention in future studies, because the 

reactor was well mixed and aggregates’ sizes were low. 

On one hand, increased ANC is beneficial for the biogas quality and pH, and elevated 

substrate concentrations have a higher pressure potential. On the other hand, literature 

shows that elevated cation concentrations and high volatile fatty acid concentrations 

could also inhibit CH4-production rates [91]. Chapter 4 therefore focussed on the 

conversion of COD concentrations between 1 and 10 g L-1 of sodium-neutralised 

acetate and a mixture of acetate, propionate and butyrate. By working at a constant 

Vl:Vtot ratio this resulted in final pressures of 0.1, 0.3, 0.5, 1.0, and 2.0 MPa at 30 oC in 

the batch digester. A maximum CH4-content of the produced biogas of 95% and 94% 

was achieved at 0.5 MPa in experiments using sodium acetate and mixture of VFAs as 



Chapter 8: Summary and General discussion 

 

 

157

the substrate, respectively. No further increase in the biogas CH4 content was observed 

with increasing final pressure. Following Buswell’s equation [24], the cation 

requirement was decreased from 0.36 g Na+ per g COD L-1 for acetate to 0.28 g Na+ 

per g COD L-1 for mixed VFA as a consequence of the higher COD/TOC ratio of 

propionate and butyrate.   

In many practical situations however, the ANC in the waste water will most likely be 

insufficient to sequester CO2 inside the reactor as HCO3
- and will therefore lead to a 

reduced pH, rendering in-situ CO2 removal difficult. Although in chapter 3 we showed 

that granular inoculum could also provide ANC “to bind CO2 or buffer H+ ” in the 

form of precipitates, carboxylic groups or amine groups of proteins, this CO2-sink is 

highly dependent on the type and quantity of suspended solids inside a waste stream 

and requires further research. In case of a consistent ANC shortage during a 

continuously fed AHPD process, continuous dosage of caustic (NaOH), is regarded as 

a technically feasible solution, but both energy-intensive and costly. In chapter 5, in-

situ mineral weathering and secondary carbonation of naturally occurring mafic 

silicate minerals is proposed as a low-cost energy-efficient alternative to conventional 

caustic dosage. The envisaged natural mineral weathering and secondary carbonation 

is based on reaction equations 1-5, 1-15 and 1-16 [34]. 

It was experimentally verified that wollastonite, olivine and anorthosite could 

substitute caustic dosage during glucose digestion under non-pressurised conditions. A 

more detailed study on the CO2-sequestration mechanism showed that 1 g wollastonite 

per 1 g glucose-COD provided sufficient ANC to prevent a pH drop to 4 and produce 

76, 86 and 88 ±2% CH4 at a pressure of 1, 0.3 and 1.0 MPa, respectively. Furthermore, 

the leaching rate of Ca2+ correlated with the pH and fatty acid formation. Secondary 

precipitation in the form of CaCO3 provided the desired long term CO2-storage 

mechanism. Results indicated that at least 1 g mineral per gram of converted non-

acidified COD should be added to the digester. The addition of minerals is considered 

advantageous if the sludge or digestate can be used as soil enhancer. However, these 

additions are a disadvantage when the sludge has to be deposited in a landfill or burnt.  
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Although the CH4 content in the biogas reached 88 ± 2% in the 1.0 MPa experiment, 

the specific methanogenic activity was fairly low, i.e. about 0.15 g COD.g-1 VSS.d-1 

and was associated with temporary propionate accumulation. It was speculated that 

this propionate accumulation was related to increasing pCO2 and relatively low pH in 

the early stages of the batch experiment.  

8.1.4 AHPD	 reactor	 conditions	 impacting	 bioconversions	 of	 acidified	

substrates	

In the feasibility study (chapter 2) it was found that methanogenic conversion rates of 

sodium acetate were affected by a maximum of 30% up to a total pressure of 9.0 MPa 

when using inoculum from a UASB treating paper factory waste water (Industriewater 

Eerbeek, The Netherlands). In chapter 4, the methanogenic conversion rates on acetate 

decreased from 0.23 g COD.g-1 VSS.d-1 to 0.11 g COD.g-1 VSS.d-1 and on mixed VFA 

from 0.29 g COD.g-1 VSS.d-1 to 0.16 g COD.g-1 VSS.d-1 for experiments designed to 

reach final pressures of 0.1 and 2.0 MPa, respectively. Counter intuitively, this 

reduction in conversion rates showed not to be related to end product inhibition and 

pressure, but to the increasing sodium and substrate concentrations required to reach 

the high pressures at a constant Vl:Vtot ratio.   Although initial VFA concentrations 

were exceeding reported inhibition values at pH 7 [69, 84, 91, 213], a decreased 

inhibition and thus increased methane production rates were expected towards the end 

of each experiment, due the biomass yield linked to the conversion of fatty acids to 

HCO3
-. Against expectation however, the conversion rates remained relatively constant 

over time. Sodium concentrations increased with final pressure, but remained constant 

throughout each substrate conversion experiment. The  maximum concentrations of 

2.8 and 3.5 g Na+ L-1 can be considered low compared to the sodium concentrations 

used in high salinity studies [75, 214]. Nevertheless, the used inoculum 

(FrieslandCampina Riedel Ede, The Netherlands) was retrieved from a saline-poor 

environment, and was selected for its low inorganic solids content and was not given 

time to adapt. Moreover, the Na+/K+ ratio increased due to substrate addition from 12 

to 160 and from 16 to 120 in the acetate and mixed VFA experiment, respectively. 

These results are in line with the results obtained by [75, 90], showing a 50% activity 
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inhibition between 3-16 g Na+ L-1, depending on possible occurrence of the 

antagonistic effects of the nutrients in the medium. Consequently, it was concluded 

that, although the reduction in methane production rates could have concerned a short-

term effect, cation requirement and substrate inhibition are as important or more 

important than end product inhibition for AHPD batch reactors using acidified 

substrates. 

8.1.5 AHPD	reactor	conditions	impacting	bioconversions	of	glucose	

During operation of the AHPD reactors on sodium acetate, propionate and butyrate 

(chapters 2,3 and 4) the ANC/TIC ratio was kept such that practically all produced 

CO2 could be chemically bound as HCO3
- and pCO2 remained relatively low, keeping 

pH circumneutral. For example, even in the 9.0 MPa experiment the pCO2 in the gas 

phase did not exceed 0.1 MPa. According to the carbonate equilibrium and the 

prevailing CO2 solubility, significant quantities of dissolved CO2 will be stored in the 

liquid especially when the pCO2 increases and the pH subsequently decreases. In 

practice, this situation occurs when feeding non-acidified substrates, like glucose, 

under limited ANC-conditions. Because in the same pH range H2CO3
* can diffuse 

through charged membranes and can donate H+, whereas HCO3
- cannot, it was 

expected that pressurised biogas conditions would impact the bioconversions 

significantly, due to the presence of significant amounts of H2CO3
*.  

Therefore, to study the effect of gradually increasing the pCO2 on reactor kinetics and 

population dynamics, a long-term fed-batch pressurised glucose digestion experiment 

was commenced, in which ANC and thus HCO3
- was controlled at 150 ± 10 meq L-1. 

In the first 100 days of the experiment, glucose conversion resulted in a modest VFA 

accumulation and a pH drop to 6.1 at an autogenerated pressure of 2.0 MPa. The 

CH4/CO2 ratio in the biogas changed from the theoretical stoichiometric production of 

50% CH4 and 50% CO2 to about 80% CH4 and 20% CO2.  Bacterial community 

analyses showed that at this moment, the bacterial population was dominated by a 

putative acetate-producing Kosmotoga-like organism. However, from this point 

onward a putative propionate-producing Propioniferax-like organism increased in 

dominance.  With the increasing dominance of this organism, reaching 25% of the 
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bacterial populations, propionate concomitantly started to accumulate inside the 

reactor and significantly reduced the biogas production rate, but also decreased the 

CH4-content of the biogas by over 10%.  Meanwhile, the DGGE and clone library 

profiles suggested that a stable methanogenic population was present, dominated by 

Methanosaeta concilii-, Methanobacterium formicicum- and Methanobacterium 

beijingense-like organisms. Therefore, the decreased methanogenic rates were 

attributed to a shift in the bacterial population and a shift in the produced intermediate 

substrates from mainly acetate, a methanogenic substrate, to relatively more 

propionate, a bacterial acetogenic substrate. By accumulation of propionate, which 

generally is converted into acetate, the methanogenic substrate availability is 

decreased and this will therefore indirectly influence the methanogenic community.  

Propionate accumulation is often attributed to end-product inhibition by pH2 formation 

[28]. For instantaneous propionate oxidation adequate interspecies electron transfer is 

considered essential [28]. A close proximity of hydrogen consuming organisms is a 

prerequisite for decreasing the local pH2 (below 1 Pa) and improving the 

thermodynamic feasibility of the conversion, allowing the thermodynamic energy gain 

to be shared by transport of reducing equivalents [28]. Strikingly, propionate and H2 

were readily converted under a manually added pH2 up to 0.40 MPa , whereas H2 was 

not detected above the detection limit of 60 Pa throughout the earlier experiments. 

Additionally, the constructed archaeal clone library consisted of 19 % 

hydrogenotrophic methanogenic clones after pressure operation and an excess of 

electron acceptors was present in the form of accumulating CO2. Therefore, it is 

hypothesised that not hydrogen but accumulating CO2 caused the decrease in 

propionate oxidation rates. In literature [215] pCO2 is described to cause end-product 

inhibition in the anaerobic digestion of glucose, butyrate, propionate and acetate. In 

order to verify this hypothesis, propionate degradation was tested up to 0.5 MPa pCO2 

using the same cultivated sludge. A linear reciprocal relation between pCO2 and 

estimated relative growth rate was found.  At pCO2= 0.5 MPa, a reduction over 90% in 

propionate conversion rates was observed compared to the 0.1 MPa pCO2-experiment. 

The Gibbs free energy change (ΔGr) however, only improved marginally from -9.9 to -
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13.9 kJ per mol propionate converted when decreasing the pCO2 from 0.5 MPa to 0.1 

MPa bar and assuming a pH2 of 1 Pa.  Interestingly, other authors found that pCO2 

under the examined pressure range is reversibly toxic and can be used to induce 

narcosis by the ability to diffuse into the protoplasm of many different organisms and 

bind to enzymes and proteins [139, 140, 176]. For anaerobic digestion specifically no 

references on this topic were found. Interestingly, it would also offer a plausible 

explanation for the observed dominance of bacterial species with highly developed 

outer cell-membrane structures, i.e. Kosmotoga- and Propioniferax-like organisms and 

the fact that the methanogenic Archaea seemed relatively unaffected.  

8.1.6 AHPD	reactor	conditions	impacting	bioconversions	of	starch	

Generally, when using complex substrates instead of glucose at ambient temperature 

and atmospheric pressure, hydrolysis is the rate-limiting step and retarded hydrolysis 

reduces the risk of fatty acid accumulation [97, 181]. Although pCO2 enhanced 

hydrolysis at pressures of 7.0-8.0 MPa[199], total pressures exceeding 100.0 MPa are 

required to enhance the hydrolysis under mesophilic conditions[30, 190, 193]. 

Therefore it was postulated and tested in chapter 7 that under AHPD conditions 

hydrolysis would remain the rate-limiting step using particulate and gelatinised starch 

as model compounds. 

Like under atmospheric mesophilic conditions, saccharification of gelatinised starch 

showed to be the rate-limiting step. The concentration of added inoculum determined 

the saccharification rate [183] and was not significantly affected by pressures up to 2.0 

MPa N2. Likewise, gelatinisation remained the rate-limiting step under AHPD 

conditions for particulate starch. Moreover, limited VFA accumulation was observed 

and glucose concentrations remained below 100 mg L-1. Additionally, the biogas 

composition was significantly improved, from 49% CH4 under atmospheric conditions 

to a maximum of 73% CH4 under AHPD conditions.  
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8.1.7 Short	summary		

The most important results have been summarised in Table 8-1. 

Table 8-1: Summary of most important results per thesis chapter 

Chapter / Stage Substrate Aim Result (at 303 K) 

2 Methanogenesis Na-acetate 

Autogeneration 
potential 

Exceeding 9.0 MPa  

Biogas quality Exceeding 99% CH4 

Methanogenic activity 30% reduction in SMA   

3 
Methanogenesis 

(up to 2.0 MPa) 

Na-acetate  

 

Mass transfer reactor Gas liquid equilibrium within 4 
h 

CH4 dissolution  Follows Henry’s law 

CO2 dissolution  ANC to TIC ratio determines 
CO2 speciation 

Acetic acid 

<1 ANC to TIC ratios CH4 content decreases to 80%  

SMA at low pH Marginally decreased below pH 
5 

4 
Acetogenesis 

(up to 2.0 MPa) 

Na-acetate 

 

Acetate-conversion & 
CH4 production rate  

0.11 to 0.23 g COD g-1 VSS. d-1  

Cation requirement & 
biogas quality 

0.36 g Na+ g COD L-1 for ~95% 
CH4 

MixVFA  

(Acetate, 
propionate & 
butyrate) 

Max. CH4 production 
rate 

0.30 g COD g-1 VSS. d-1 

Propionate & Butyrate 
conversion rate  

0.05 to 0.10 g COD g-1 VSS. d-1  

Cation requirement & 
biogas quality 

0.28 g Na+ g COD L-1 for ~94% 
CH4 

General 
Methanogenic activity Substrate induced 10-50% 

inhibition 

5 
Acidogenesis 

(up to 1.0 MPa) 
Glucose 

Buffering pH by  

silicate minerals  

Wollastonite (Most effective) 

Olivine (Effective) 

Anorthosite (Suitable) 

Ca2+ leaching rates 
wollastonite  

Dependent on pH and particle 
size  

CO2 Sequestration 
wollastonite 

As H2CO3, Ca(HCO3
-)2 and 

some CaCO3  

CH4-content biogas  86 and 88% CH4 at 0.3 and 1.0 
MPa  
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6 
Acidogenesis 

(up to 2.0 MPa) 

Glucose  

  

Autogeneration at 150 
meq L-1 ANC 

Feasible up to 2.0 MPa with 75- 
80% CH4 

Operational problems Recurring propionate 
accumulation  

Dominant archaea Methanosaeta concilii-, Mtb. 
formicicum- & Mtb. beijingense-
like organisms 

Dominant bacteria Kosmotoga-, Propioniferax-like 
and Treponema-like organisms  

Propionate  

H2 (max 0.4 MPa) Improving propionate 
conversion indirectly 

CO2 (max 0.5 MPa) Inhibiting propionate conversion 
by toxicity 

7 
Hydrolysis 

(up to 2.0 MPa) 

Dissolved starch  

Pressure effect  No effects <1.0 MPa pCO2 or 
2.0 MPa pTotal  

Rate-limitation Saccharification  

(maltose) 

Particulate 
starch  

Pressure effect Not significant, effects at 
pressures 

 >100 MPa  

Rate-limitation Gelatinisation  (particle surface) 

 

 General 

Biogas quality  50% CH4 (atmospheric) 

>70% CH4 at  0.5, 1.0 and 1.5 

MPa  

  Operation Reduced risk VFA accumulation 
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8.2 Outlook	

8.2.1 Mesophilic	high‐quality	biogas	production	and	use	

AHPD was introduced as a potentially feasible alternative for decentralised biogas 

upgrading. Flaring of biogas, because it has a too low quality or too low quantity to 

use and/or it is too complex or too expensive to upgrade the quality by external 

equipment, is the second worst option after releasing the biogas directly into the 

atmosphere. This thesis shows that low volume flows of biogas can be upgraded for 

further use by in-situ methane enrichment in AHPD reactor systems without having to 

invest in external biogas upgrading equipment. Although this work shows that it is 

theoretically and technically feasible to produce natural gas-like biogas, it also shows 

that for achieving the desired biogas quality, the digestion process is associated with 

more complex operation than for atmospheric digestion and it is expected that 

pressurised reactor systems will be more costly in terms of required investment. 

Therefore, biogas upgrading by AHPD or any other technique should be carefully 

assessed on overall energy balances for different situations that include all potential 

applications to ensure biogas is used in the most energy-efficient way. To highlight 

this, a decision making tree has been incorporated in  that could be used as a guideline 

for further studying the benefits of AHPD in different scenarios.    

When deciding on implementing AHPD technology, it is important to consider 

whether the theoretical biogas production exceeds your private gas (heating) demand. 

If it does exceed your private heating demand, upgrading the biogas allows for many 

high quality applications.  Nevertheless, it could occur that the substrate is too diluted, 

or too oxidised, and/or the ANC is too low to increase the AHPD-biogas to a quality 

suitable for direct injection into the gas grid. Especially the requirement of costly 

caustic dosage could increase operational costs significantly, if no local alkaline 

resources are present to sequester CO2, or no cheap electron donors are available that 

could reduce CO2. It should, however, be noticed that digestion of concentrated 

sludges and slurries, i.e. >20 gTS L-1, will consume much less caustic owing to their 

relatively high ammonium production upon digestion [26]. Despite the relatively dry 
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nature of the AHPD biogas, it is essential to ensure that the dew point is sufficiently 

low to ensure that water vapour will not condensate and damage expensive machinery 

or gas pipelines. Likewise, the equipment or grid injection specifications for H2S, 

halogenated compounds and siloxanes and other trace pollutant should be compared to 

the actual acquired biogas quality to decide on the benefits of additional upgrading [9]. 

However, these compounds have not been studied in this thesis, and further studies to 

determine the effect of AHPD on trace gas pollutants, like H2S, NH3, siloxanes and 

halogenated compounds are still required.  

In many situations, the local (bio-) gas demand for low quality applications, such as 

cooking, gas heaters and stationary engines, may exceed the potential biogas supply by 

decentralised digestion of local resources, like black water and kitchen waste [2]. In 

these situations, using biogas directly on-site for low quality applications seems most 

logical, to reduce the dependence on external energy sources [3-10]. Nevertheless, the 

low quality applications would likely still benefit from increasing the calorific value 

and lowering the water vapour inside the biogas at moderate pressures (<1.0 MPa).  

In the mentioned decentralised applications, maximised COD concentrations will 

generate biogas flows of interest. The COD-concentration of black water without 

kitchen waste, for example, varies between 2 and 8 g COD L-1 depending on the type 

of sanitation [212]. Although operation up to 2.0 MPa is feasible (1.9 MPa pCH4 and 

0.1 MPa pCO2) for all these concentrations, relative CH4-dissolution would reduce 

from 97% of total produced CH4 at 2g COD L-1 to 25% of total produced CH4 at 8 

gCOD L-1. At an operational pressure of 1.0 MPa these values would reduce to 52 and 

13 % respectively. Furthermore, based on [216, 217] it is estimated that  black water 

for example contains about 0.18 g Na+-equivalents per g COD  (including NH4
+).  

 

 

 

 

 

 

 

Figure 8-3: Decision tree diagram on the required degree of upgrading in AHPD (this thesis and [9])
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Given the values for cation requirement of 0.36 g Na+-equivalents per g COD (chapter 

4) an additional amount of 0.18 g Na+-equivalents would be required to sequestrate all 

CO2 as HCO3
-, when assuming an average carbon oxidation state of  ‘0’, equal to 

acetate or glucose. With a more reduced carbon oxidation state, like the acetate 

propionate and butyrate mixture (2:1:1) only 0.1 g Na+ per g COD would be needed 

and with co-digestion of lipids, ethanol, or hydrogen, cation requirement can be 

reduced to a minimum. However, when neither ANC nor reduced co-substrates are 

locally available,  a CO2 content of 20% could already be achieved by applying 

modest pressures of 0.3-1.0 MPa if the substrate contains  0.17 g Na+ per g COD. 

Additionally, this would reduce water vapour content, and therefore, increase the 

lower heating value further. This could then improve CHP performance or enhance 

short-term storage possibilities without any additional biogas upgrading step.   

8.2.2 Operating	AHPD	at	different	temperature		

This work shows the effect of pressure in the mesophilic temperature range. AHPD 

applications in a different temperature range (psychrophilic or thermophilic) may give 

different results.  Under thermophilic conditions for example, the effect of pressure on 

gelatinisation and enzyme activity becomes stronger with increasing temperature, 

potentially enhancing the dissolution of particulate matter [30]. With regard to CO2, 

thermophilic conditions (55oC) will result in a lower solubility due to a reduced 

Henry’s constant, as can be calculated with van ‘t Hoffs equation [37]. However, the 

lower CO2 solubility will not immediately result in a poorer biogas quality, because 

also the CH4 and calcium carbonate solubility are decreasing with increasing 

temperature [65]. Furthermore, due to the relatively low solubility of CO2 at increased 

temperatures, the observed CO2-induced inhibition might be less pronounced. Based 

on the results of Huijgen and Comans [106], leaching of cations from silicate minerals 

is a process which is also known to accelerate with increasing temperature, and 

additionally, temperature enhances CaCO3 precipitation rates. And finally, 

Kosmotoga-like bacteria, active and dominant in our reactors, are reported to have an 

extraordinarily wide temperature range in which growth is sustained, including both 

mesophilic and thermophilic conditions [179]. For the Propioniferax-like organisms 
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and for the observed methanogenic population this cannot a priori be predicted, 

because like in the work of van Lier [218] a shift towards a thermophilic methanogenic 

community is expected. Although this can be associated with temporary VFA 

accumulation [60], Kapp [18] reported a more stable thermophilic pressurised 

operation due to reduced pH and therefore reduced ammonia toxicity. In contrast, 

operation at 4oC would decrease the conversion rates, but maximize CO2 and CH4 

solubility. Altogether a very interesting part of research that still remains completely 

unexplored.   

8.2.3 Towards	continuous	reactor	setups	

All the experiments in this thesis were performed in batch or fed-batch reactors 

systems. The observed overall conversion rates were relatively low, possibly resulting 

in large pressurised reactors that would be required for full scale operation. From this 

perspective,  development of high rate biomass retention systems like UASB-type 

AHPD systems with high specific volumetric conversion rates, could be of interest. 

Compact AHPD systems could significantly reduce capital investment costs. 

Potentially, biomass retention in AHPD could for example be achieved by operating a 

pressurised AnMBR or a pressurised granulation process. It should however be 

stressed that for continuous AHPD reactors especially valves and pumps and an 

automated process control require attention, since the reactor pressurizes both gas and 

liquid flow by itself.   

8.2.4 Application	of	AHPD	reactors	for	non‐methane	fermentations	

Methane is often regarded as the final electron deposit for the anaerobic digestion of 

organic waste streams, because it is relatively inert and migrates to the gas phase. 

Alternatively, anaerobic fermentation could be applied to produce intermediate 

dissolved products like VFA [219]   The results presented in chapter 6 showed that 

pressure could affect the kinetics of mixed culture fermentations and may result in 

selective production of propionate due to CO2-induced inhibition. Interestingly, 

literature showed that diffusion of CO2 into the cell protoplasm could pause cell 

metabolism completely by reversibly deactivating different amine groups of enzymes 
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by formation of carbamino-proteins [140, 176]. Moreover, the toxicity effect depends 

on type of cell wall structure, on type of enzymes and proteins and on the CO2-

transport and utilisation mechanisms inside the cell and therefore each organism 

should theoretically respond differently to different pCO2-levels [140]. Summarising, 

it is interesting to investigate whether CO2 narcosis can be used as an additional 

environmental parameter, besides for example, pH, oxygen, temperature and salinity to 

increase the selectivity of undefined mixed culture fermentations. 

Another interesting feature of AHPD reactors is that high concentrations of methane 

can be achieved in the liquid phase. By doing so, CH4 might become an intermediate 

for anaerobic methane oxidising bacteria, thereby opening up possibilities to store 

electrons in CH4 and reusing them for other purposes [220]. Furthermore, despite the 

toxicity of CO, elevated solubility of gases in AHPD reactor systems could also be an 

advantage for synthesis gas fermentations, since these are generally limited by gas-

liquid mass transfer [221, 222]. Altogether, these examples of non-methane 

fermentations clearly demonstrate that application of AHPD could offer many 

advantages for a much broader range of biotechnological applications. 
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9 Nederlandse	Samenvatting	en	algemene	discussie	

9.1.1 Anaerobe	behandeling	voor	stabilisatie	van	afval	en	bio‐energie	

De miljoenen huishoudvergisters in India en China bewijzen dat de productie van 

biogas uit organisch afval al eeuwen toegepast wordt. Pas met de ontwikkeling van de 

high-rate vergistingssystemen in de jaren 70 en 80 werd anaerobe vergisting een 

serieus alternatief voor aerobe waterzuivering. In gematigde klimaatzones, zoals in 

Nederland, worden 'high-rate' systemen vrijwel alleen toegepast voor geconcentreerd 

industrieel afvalwater. Voor huishoudelijk en municipaal afvalwater is  dit beperkt tot 

warmere klimaatzones [210]. Anaerobe zuivering is echter een gangbare technologie 

voor het behandelen primair en secundair zuiveringsslib, stabilisatie van koeien en 

varkensmest en vergisting van organisch huishoudelijk, agrarisch en industrieel afval 

[211]. In Nederland wordt directe anaerobe behandeling van het afvalwater niet 

toegepast, omdat de concentratie van het organisch afval in het afvalwater en de 

temperatuur te laag zijn voor effectieve behandeling. Bovendien, met het oog op de 

C/N ratio in het municipale afvalwater, zou anaerobe behandeling teveel invloed 

uitoefenen op de conventionele nutriëntenverwijdering van de huidige 

waterzuiveringen. Als alternatieve N-verwijdering beschikbaar is, zal anaerobe 

behandeling van rioolwater in Nederland, alleen een serieuze optie zijn als het water 

geconcentreerd of gescheiden wordt ingezameld met vacuümsystemen[12].  

De anaerobe omzetting van het organisch afval van zwart water in decentrale sanitatie-

concepten in combinatie met een biogas aangedreven warmte-kracht koppeling kan 

circa 140 MJ p-1 j-1 op leveren, waarvan circa 56 MJ p-1 j-1 en 84 p-1 j-1 als 

respectievelijk elektriciteit en warmte [212]. Bij toevoeging van organisch keukenafval 

kan deze opbrengst mogelijk verdubbeld worden [212]. Daarbovenop beperkt de lage 

kwaliteit van het biogas het gebruik op decentrale schaal, kleiner dan 100 m3 u-1, 

vanwege de kosten voor externe opwaardering[9]. Dit proefschrift richt zich op het in-

situ opwaarderen van biogas door gebruik te maken van de verbeterde oplosbaarheid 

van CO2 ten opzichte van CH4, volgens de wet van Henry. De hier onderzochte 

technologie is bekend onder de noemer “Autogeneratieve hogedruk vergisting”. 
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9.1.2 Anaerobe	vergisting	bij	verhoogde	druk		

Conventionele atmosferische vergisting wordt wereldwijd bestudeerd, maar omtrent 

drukvergisting is slechts zeer beperkte literatuur te vinden[17, 18, 61, 62]. Op basis 

van de beschikbare literatuur en het onderzoek beschreven in dit proefschrift is de 

schematische figuur uit de introductie aangepast in figuur 8.1. Deze figuur bevat de in-

situ biogasopwaardering als een extra fase. Verder zijn de onderwerpen gerelateerd 

aan  koolhydraten en vetzuurvergisting, die in deze thesis onderzocht zijn, vetgedrukt. 

 

Experimentele resultaten laten zien dat het biologisch en technisch haalbaar is om een 

biogas druk van 90 bar met een methaangehalte van meer dan 95% op te bouwen. 

Bovendien is onder druk geproduceerd biogas relatief droog, zoals uit de Clausius 

Clapeyron vergelijking (1-17) berekend kan worden en dit is een groot voordeel voor 

gasnetinjectie.  Zoals besproken in hoofdstuk 3, volgt CH4 de wet van Henry en lost 

dus ook op onder druk. Figuur 8.2  laat zien welke druk er opgebouwd kan worden met 

verschillende substraat concentraties en de relatieve hoeveelheid CH4 die er onder de 

gegeven condities oplost (als % van de totale CH4 productie) bij gegeven 

verhoudingen tussen het totaal, het gas en het vloeistofvolume. 

 

Om met een CZV concentratie van 3g CZV L-1 een p CH4 van 20 bar op te bouwen 

moet het de verhouding tussen vloeistof en totaal volume 0,97 zijn zoals uit figuur 8-

2a afgelezen kan worden. Uit figuur 8-2b blijkt dan dat er onder deze condities 58% 

van de totaal geproduceerde CH4 dan opgelost is. Als deze druk bereikt moet worden 

met 10 of 20 gCZV L-1, daalt de benodigde volume verhouding naar respectievelijk 

0,81 en 0,60 en daarmee de opgeloste hoeveelheid CH4 naar 14 en 6% in 

batchvergisting.  Door gebruik te maken van overdrukventielen kan de opgeloste 

hoeveelheid methaan gestuurd worden op basis van de ingestelde operationele druk in 

batch systemen. In continue systemen wordt de maximale biogas druk vooral bepaald 

door de toegevoerde substraat concentratie. 
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De chemische potentiaal van CH4 bedraagt 890 kJ mol-1 onder standaard condities 

(37), maar het biogas bevat additionele mechanische energie, die afhankelijk is van de 

heersende druk. Deze energie kan geoogst worden doormiddel van decompressie van 

het biogas. In batch vergisting kan met verschillende Vl:Vtot verhoudingen bij 

verschillende substraat-concentraties een verschillende druk opgebouwd worden. 

Hierdoor kan er bij een druk van 5 tot 100 bar, 4 tot 12 kJ mol-1 aan additionele 

energie worden teruggewonnen als het biogas bij gelijkblijvende temperatuur tot 

atmosferische druk kan expanderen. Omdat het opereren bij verhoogde druk ook leidt 

tot meer opgelost CH4, moet er een weloverwogen worden op welke druk er gewerkt 

wordt vanuit energetisch perspectief. Het is daarbij belangrijk om te overwegen dat de 

bruikbaarheid van de opgeloste CH4 en dus de chemische energie afhankelijk is van 

het CH4-gehalte van het biogas. Tijdens het ontspannen van het biogas zullen CO2 en 

CH4  vrijkomen, maar blijft de HCO3
-  vrijwel geheel in oplossing als gevolg van de 

ladingsbalans. Als we aannemen dat er 3 mol CO2 en 3 mol CH4 uit 1 mol glucose 

geproduceerd worden bij vergisting en 2 mol CO2 als bicarbonaat opgeslagen kan 

worden door toevoeging van base, bestaat het gas dat de wet van Henry volgt uit 3 mol 

CH4 en 1 mol CO2. Als  we dan druk opbouwen totdat er 50% van de geproduceerde 

CH4 opgelost (1,5 mol) is, zal het biogas dat na ontspanning vrijkomt minimaal gelijk 

zijn aan atmosferische biogas kwaliteit (60% CH4 en 40% CO2).  Omdat uit de 

resultaten in hoofdstuk 2, 3 en 4 blijkt dat er slechts 5 bar nodig is om een CH4-gehalte 

van boven de 90% te bereiken als er gebufferde vetzuur-oplossing wordt vergist. Op 

deze wijze kunnen potentiele verliezen door oplossing van CH4 makkelijk in kaart 

worden gebracht en voorkomen worden, omdat het hele proces in 1 gesloten reactor 

omgeving gebeurd. In tegenstelling, worden de CH4 verliezen voor atmosferische 

vergisters vaak uberhaupt niet in kaart gebracht terwijl de verliezen op kunnen lopen 

tot 20% van de geproduceerde CH4 [98]. 

9.1.3 Controleren	van	verzuring	in	AHPD	processen	

Gegeven de verschillen in de constants van Henry van 0.016 en 0.31 mol L-1 MPa-1 

[15] voor  CH4 en  CO2 moet het benadrukt worden dat hoge kwaliteit biogas bij lage 

druk alleen bereikt kan worden door het toevoegen van Zuur Neutraliserende 
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Capaciteit (ZNC) De ZNC of alkaliteit kan gedefinieerd worden als het ladingsverschil 

tussen alle kationen en anionen opgelost in een vloeistof zoals bijvoorbeeld Na+, K+ , 

Ca2+ , Mg2+ en  NH4
+ min Cl-, SO4

2-, NO3
2- en gedissocieerde vetzuren  [68]. Het 

ladingsverschil wordt dan opgeheven door de vorming van  HCO3
- uit water en CO2. 

Theoretisch, betekent dit voor al het afvalwater waarin er evenveel ZNC als totale 

anorganische koolstof (TAK) aanwezig is, alle CO2 zich in de vorm van HCO3
- 

bevindt. Onze resultaten in hoofdstuk 3 geven aan dat met een ZNC tot TAK ratio van 

1: 3, slechts 1/3 van de totale CO2 in de vorm van HCO3
- aanwezig is, waardoor er 

relatief meer CO2 in de gasfase terecht komt, de partiële CO2-druk oploopt en de pH 

van de vloeistof tot beneden de 5 daalt. Gezien deze lage pH in de bulk vloeistof is het 

opmerkelijk dat de methaan productie door ging. Het is de verwachting dat zich in het 

gebruikte korrelslib basische neerslag (o.a. CaCO3) bevond, wat een tijdelijke veilige 

pH-zone rondom de micro-organismen heeft gecreëerd. Toch verdient het fenomeen 

verder onderzoek omdat de reactor goed geroerd en de korrels relatief klein waren.   

Aan de ene kant heeft een hoge ZNC voordelen voor de biogas kwaliteit, de pH en 

vertalen hoge substraat concentraties zich in een hoog drukpotentiaal. Aan de andere 

kant, blijkt uit de literatuur dat hoge kation concentraties en hoge vluchtige vetzuur 

concentraties (zoals azijnzuur, propionzuur en boterzuur) tot inhibitie van de 

methaanproductie snelheid leiden, doordat deze componenten toxisch zijn voor micro-

organismen in hogere concentraties [91]. Hoofdstuk  4 richtte zich daarom op hogere 

substraat concentraties van 1 tot 10 g L-1 natrium acetaat of een mix van natrium 

acetaat, propionaat en butyraat. Bij het werken met een constante Vl:Vtot resulteerde dit 

in opgebouwde biogasdrukken van  1, 3, 5, 10, en  20 bar bij  30 oC in de batch 

vergister. Het gemeten maximum CH4-gehalte van het geproduceerde biogas was  95% 

en  94% bij 5 bar voor natrium acetaat en de mix van VFA’s. Met toenemende druk is 

er geen verdere verbetering van het CH4-gehalte gemeten. Met de Buswell vergelijking 

[24] is vervolgens uitgerekend dat het benodigde cation-gehalte daalde van  0.36 g 

Na+-equivalenten per g CZV L-1 voor natrium acetaat naar  0.28 g Na+ per g CZV L-1 

voor de vetzuurmix als gevolg van de gunstigere chemische samenstelling voor 

vergisting van  propion- en boterzuur.   
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In veel praktische situaties zal er onvoldoende ZNC in het afvalwater aanwezig zijn 

om alle CO2 via de lading in de vloeistof te kunnen houden als HCO3
-, waardoor in-situ 

CO2 verwijdering moeilijk wordt. Omdat we in hoofdstuk 3 zagen dat korrelslib op 

basis van aanwezige anorganische precipitaten of eiwitten CO2 kon binden of zuur kon 

bufferen moeten we de zwevende stof in afvalwater beter bestuderen alvorens AHPD 

toe te passen.  Als er een consistent tekort aan ZNC optreedt bij een continu hogedruk 

gistingsproces is natronloog of soda dosering een technisch haalbare maar energetisch 

en economisch dure oplossing  Daarom hebben we in hoofdstuk 5 naar goedkopere 

alternatieven gezocht en werd het doseren van verschillende typen natuurlijke 

silicaatmineralen voorgesteld. Het beoogde proces is gebaseerd op de chemische 

reacties beschreven in figuur 1-5, 1-15 en 1-16 [34].  

Het is experimenteel geverifieerd dat  wollastoniet, olivijn en  anorthosiet, natronloog 

dosering kunnen vervangen voor glucose vergisting onder niet-druk condities. Een 

meer gedetailleerde studie van het CO2-sequestratiemechanisme  laat zien dat  1 g 

wollastoniet per 1 g glucose-CZV, voldoende ZNC bevatte om een pH val naar pH 4 te 

voorkomen en  76, 86 en 88 ±2% CH4 bij een druk van  1, 3 and 10 bar . Verder, 

kwam de  snelheid waarmee  Ca2+ uit het mineraal loogde overeen met de pH en 

vetzuurvorming. Secundaire precipitatie in de vorm van CaCO3 gaf het gewenste lange 

termijn CO2 opslagmechanisme. Resultaten geven aan dat er minimaal  1 g mineraal 

per gram CZV omgezet niet-verzuurd substraat nodig is. Het toevoegen van mineralen 

is een voordeel als het slib gebruikt kan worden als bodemverbeteraar, maar een 

nadeel als het slib te vervuild is en verbrand of gestort moet worden. Alhoewel het 

CH4-gehalte  in het  biogas  88 ± 2% was in het 10 bar experiment, was de specifieke 

methanogene activiteit relatief laag, circa 0.15 g CZV.g-1 VSS.d-1 en deze ging 

gepaard met tijdelijke propionaat ophoping. Er wordt gespeculeerd dat de propionaat 

ophoping gerelateerd was aan de oplopende pCO2 en relatief lage pH.   
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9.1.4 Effecten	 AHPD	 reactor	 condities	 op	 bioconversie	 van	 verzuurd	

substraat	

In de haalbaarheidsstudie uitgevoerd in hoofdstuk 2 hebben we gevonden dat de 

methanogene omzettingssnelheden van natrium acetaat afnamen met een maximum 

van 30% bij drukken tot 90 bar toen er gebruik werd gemaakt van het inoculum van 

een UASB reactor die afvalwater van de papierindustrie behandeld (Industriewater 

Eerbeek, Nederland). In hoofdstuk  4 daalden de methanogene omzettingssnelheden op 

basis van acetaat van  0.23 g CZV.g-1 VSS.d-1 naar 0.11 g CZV.g-1 VSS.d-1 en op basis 

van de vetzuur mix van  0.29 g CZV.g-1 VSS.d-1 tot 0.16 g CZV.g-1 VSS.d-1 voor de 

experimenten gericht op een einddruk van respectievelijk 1 en 20 bar. Contra-intuïtief, 

bleek deze verlaagde omzettingssnelheid echter niet gerelateerd aan eindproduct-

inhibitie, maar aan de oplopende natrium en substraat concentraties, die benodigd 

waren om de hogere druk te bereiken bij de constante Vl:Vtot ratio. Alhoewel de 

initiële vetzuurconcentraties gerapporteerde inhibitiewaardes uit de literatuur 

overschreden bij een pH 7 [69, 84, 91, 213], verwachtten we een verlaagde inhibitie en 

dus verhoging van de methaanproductiesnelheid richting het einde van elk experiment  

door de groei van biomassa gelinked aan de omzetting van vetzuren in HCO3
-. Tegen 

verwachting, bleven de omzettingsnelheden relatief constant over de tijd.  De natrium 

concentratie nam toe met gewenste einddruk, maar bleef constant tijdens de 

afzonderlijke experimenten. De maximale concentraties van  2.8 en  3.5 g Na+ L-1 

kunnen als laag beschouwd worden in vergelijking met studies bij hoge zoutgehaltes 

[75, 214]. Het gebruikte inoculum was echter afkomstig uit een zoutarme omgeving 

(EGSB, FrieslandCampina Riedel Ede, The Netherlands), en was specifiek 

geselecteerd vanwege de lage concentraties anorganische precipitaten en was geen tijd 

gegeven om aan te passen. Bovendien steeg de  Na+/K+ ratio door substraat additie van 

12  tot 160 en van  16 tot 120 in respectievelijk het acetaat en vetzuur mix experiment. 

Deze resultaten liggen in lijn met resultaten in de literatuur  [75, 90], die een  50% 

inhibitie van activiteit laten zien tussen 3-16 g Na+ L-1, afhankelijk van de 

verhoudingen tussen nutriënten in het gevoede medium.  Mogelijk betrof de verlaagde 

methaanproductiessnelheid een tijdelijk effect, maar zelfs dan zijn kation 
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benodigdheden en substraat inhibitie net zo belangrijk of nog belangrijker dan 

eindproductinhibitie voor AHPD batch reactoren gevoed met verzuurde substraten. 

9.1.5 Effecten	AHPD	reactor	condities	op	de	bioconversie		van	glucose	

In praktische situaties zal er voor substraten zoals glucose onvoldoende HCO3
- 

gevormd kunnen worden om alle CO2 te binden, waardoor er onder druk condities 

opgeloste CO2 ontstaat.  H2CO3
* kan door geladen membranen heen diffunderen en H+ 

doneren, terwijl HCO3
- dit niet kan. Het lag daarom in de lijn der verwachting dat 

biogasdruk de bioconversie significant zou kunnen beïnvloeden als er veel H2CO3
* 

gevormd zou worden.  

Om dit te kunnen bestuderen is de drukbatchreactor lange termijn als wekelijk gevoed 

met glucose, terwijl de HCO3
- gecontroleerd werd via de ZNC op 150 ± 10 meq L-1. 

Tijdens de 1e 100 dagen werd de glucose relatief eenvoudig omgezet in CH4, trad er 

beperkte vetzuuraccumulatie op in de periode na een voeding en daalde de pH tot 6.1, 

terwijl de druk opliep tot 20 bar. De biogassamenstelling was 80% CH4 en 20% CO2, 

terwijl de stoichiometrisch biogas productie op basis van glucose 50% CH4  en 50% 

CO2 bedraagt.   De populatiedynamica analyses lieten zien dat de bacteriele populatie 

op dit moment gedomineerd werd door de acetaat-producerende  Kosmotoga-achtige 

organismen. Vanaf dit moment verkregen de Propioniferax-achtige organismen ook 

een dominante rol, en van deze organismen wordt over het algemeen aangenomen dat 

zij propionaat produceren. Gelijktijdig met de toenemende dominatie begon propionaat 

op te hopen,  nam de biogas productiesnelheid significant af en ging het CH4-gehalte 

van het biogas om lag met circa 10%. De DGGE and clone library profielen gaven 

echter aan dat er een stabiele methanogene populatie aanwezig was, die werd 

gedomineerd  Methanosaeta concilii-, Methanobacterium formicicum- and 

Methanobacterium beijingense-achtige  organismen. Om deze reden, werden de 

afgenomen methaanproductiesnelheden toegeschreven aan de verschuiving van acetaat 

naar propionaat als belangrijkste tussenprodukt. 

Propionaat accumulatie wordt vaak toegeschreven aan oplopende pH2 [28] limitatie in 

de  “interspecies hydrogen transfer” door bijvoorbeeld toenemende afstand tussen 
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micro-organismen. Verbazingwekkend genoeg werden H2 en propionaat tegelijkertijd 

geconsumeerd bij een verhoogde pH2tot circa 40 bar, terwijl H2 eerder niet 

gedetecteerd was beneden de detectielimiet van 60 Pa. Bovendien bestond 19% van de 

archaeal clone library uit waterstofconsumerende methanogenen en was er overmaat 

aan elektronacceptor aanwezig in de vorm CO2. We postuleren daarom dat niet 

waterstof maar CO2, verantwoordelijk was voor de afnemende propionaat-oxidatie 

snelheid, zoals ook beschreven in de literatuur [215]. Om dit te toetsen werd 

propionaat-degradatie in afzonderlijke drukexperimenten afgebroken onder oplopende 

pCO2 tot 5 bar. Hier werd een lineaire relatie gevonden tussen  pCO2 en geschatte 

relatieve groeisnelheid. Bij een pCO2= 5.0 bar werd een afname van 90% in de 

omzettingssnelheid van propionaat waargenomen in vergelijking tot de 1 bar pCO2-

experimenten. De verandering in Gibbs vrije energie  (ΔGr) was echter beperkt tot      -

9.9 to -13.9 kJ per mol propionaat bij afnemende pCO2 van  5 bar tot 1 bar en een 

constante  pH2 of 1 Pa.  Interessant genoeg vonden andere auteurs een reversibele CO2 

toxiciteit gekoppeld aan CO2 geïnduceerde narcose door diffusie in het protoplasma en 

de reversibele binding van CO2 met eiwitten en enzymen [139, 140, 176]. Specifiek 

voor anaerobe vergisting is dit bij ons weten nooit eerder gerapporteerd.  

9.1.6 Effecten	AHPD	reactor	condities	op	de		bioconversie	van	zetmeel	

Over het algemeen genomen is de omzetting van complex organisch materiaal de 

snelheidsbepalende stap bij omgevingstemperatuur en atmosferische druk en verlaagt 

dit het  risico op vetzuur accumulatie [97, 181]. Alhoewel  een pCO2 van 70-80 bar de 

hydrolyse kan verbeteren [199], is er totaal druk nodig van over de 1000 bar om onder 

mesofiele condities bij gebruik van chemisch inerte gassen [30, 190, 193]. Daarom 

was het de verwachting dat hydrolyse in AHPD systemen nog steeds de 

snelheidsbepalende stap zou blijven. In hoofdstuk 7 is dit getoetst met onopgelost 

zetmeelpoeder en met gegelatiniseerd zetmeel. De snelheid van omzetting van 

opgelost zetmeel naar suikers werd niet significant beïnvloed door drukken tot 20 bar 

pN2. En ook voor het oplossen/gelatiniseren van zetmeelpoeder werd geen significant 

drukeffect gevonden. Er werd vrijwel geen vetzuur-accumulatie waargenomen en de 
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glucose concentratie bleef beneden 100 mg L-1. De kwaliteit van het biogas verbeterde 

van 49% CH4 onder atmosferische condities naar 73% CH4 onder druk condities.  

9.1.7 Het	gebruik	en	de	mesofiele	productie	van	hoge	kwaliteit	biogas		

AHPD werd geïntroduceerd als een mogelijk alternatief decentrale opwaardering van 

biogas. Dit werk laat zien dat het opwaarderen van biogas in de bioreactor technisch 

haalbaar is, maar dat de bedrijfsvoering complexer zal worden. Eveneens moet er 

rekening gehouden worden met hogere investeringskosten in de bioreactor, waardoor 

er altijd een afweging gemaakt moet worden omtrent de economische haalbaarheid 

van AHPD in een bepaalde situatie. Het effect van drukvergisting op componenten 

zoals H2S en NH3 is nog niet bestudeerd, maar verdient gezien de potentiele effecten 

op verbrandingsapparatuur zeker de aandacht. 

Verder zal het in decentrale systemen vaak voorkomen dat de biogasproductie kleiner 

is dan de lokale vraag voor laagwaardige applicaties zoals koken. In deze gevallen zal 

het niet direct lonen om het biogas op te waarderen tot aardgaskwaliteit om het 

vervolgens direct te verbranden. Dat neemt echter niet weg dat deze laagwaardige 

applicaties ook baat hebben bij het sturen van de gaskwaliteit (met name CH4 en H2O) 

en via de bedrijfsvoering van een drukvergister. Hierbij moet er wel in acht genomen 

worden dat er gezocht moet worden naar goedkope drukreactoren, om hiermee de 

investeringskosten te verlagen. In alle gevallen is het dan ook relevant om na te gaan 

in hoeverre ZNC lokaal beschikbaar is en of het mogelijk is om gereduceerde 

substraten zoals vetten, ethanol of waterstof co te vergisten om daarmee het 

methaangehalte van het biogas verhoogd kan worden bij slechts kleine drukverhoging. 
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List	of	Abbreviations		
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GC  - GasChromatography 
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FESEM   - Field Emission Scanning Electron Microscope 
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HPSEC - High-Performance Size-Exclusion Chromatography 

TIC  - Total Inorganic Carbon 

TGA  - ThermoGravimetric Analysis 

FTIR  - Fourier Transferred Infrared 
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CHP   - Combined Heat and Power 

Rpm  - Rounds per minute 

Rcf  - Relative centrifugal force 

Nomenclature	and	definitions	

Vl  - Liquid volume (L) 

Vg  - Gas volume(L) 

R  - Universal gas constant , 8.3145 J K-1mol-1 

P  - Pressure (MPa or Pa) 

W  - Workload (J) 
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ΔG0’  - Gibbs free energy under standard conditions, 298 K and 1 atm 

T  - Temperature (K) 

n  - Gas molar quantity (mol) 

KHco2  - Henry’s constant for CO2 

KHch4  - Henry’s constant for CH4 

K1  - Dissociation constant HCO3
- 

K2  - Dissociation constant CO3
2- 

Kw  - Dissociation constant water 

Ks  - Solubility product CaCO3 

Alk  - Alkalinity 

ANC  - Acid neutralising capacity 

es    - The saturation water vapour pressure in hPa 

eso   - The saturation water vapour pressure at  To (6.11 hPa) 

L   - The latent heat of vapourisation (2.453 × 106 J kg-1)  

Rv   - The water vapour gas constant (461 J kg-1 K-1) 
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αr  -Coefficient to include dissolved gas fraction (%) 

µ  -Bacterial growth rate (d-1) 

SMA  -Specific methanogenic activity (g COD g-1 VSS d-1) 

VS  -Volatile solids 

VSS  -Volatile suspended solids 

TS  -Total solids 

Ppm   -Parts per million 

A  -Propionate concentrations 

rsmax   -Maximum substrate utilisation rate (mg L-1 d-1)  

λ  -Lag time 
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