
Conservation in a crowded place 
Forest and people on Mount Elgon, Uganda

Marieke Sassen
Conservation in a crow

ded place:  forest and people on M
ount Elgon, U

ganda                M
arieke Sassen

C

M

Y

CM

MY

CY

CMY

K

27972-cover-marieke sassenV3_13mmrugdikte -def.pdf   1   1/19/2014   8:54:13 PM

Invitation

 You are cordially invited 
to attend the defense of my

PhD thesis entitled:
 

Conservation in a 
crowded place

Forest and people on 
Mount Elgon, Uganda

 

on February 21st 2014
at 16.00 hrs in the aula of 

Wageningen University
Generaal Foulkesweg 1a

6703 BG Wageningen

The ceremony will be followed 
by a reception, buffet dinner 

and party at
Vreemde Streken
1e Kloostersteeg 3

6701 DL Wageningen

Please confirm your 
attendance for the dinner
before February 14th to

mariekesassen@gmail.com

Marieke Sassen

Paranymphs:
 

Madeleine Florin
mflorin@123mail.org

 

Marcela Quiñones
quinones@sarvision.nl

                             

C

M

Y

CM

MY

CY

CMY

K

27972 - uitnodiging Marieke Sassen -def.pdf   1   1/19/2014   8:34:02 PM





 

 

 

Conservation in a crowded place 

Forest and people on Mount Elgon 

Uganda 

 

 

 

 

 

 

Marieke Sassen  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis committee 

 

Promotor 

Prof. Dr K.E. Giller 

Professor of Plant Production Systems 

Wageningen University 

 

Co-promotor 

Dr D. Sheil 

Associate Professor, Department of Ecology and Natural Resource Management 

Norwegian University of Life Sciences, Ås, Norway 

 

Other members 

Prof. Dr F.J.J.M. Bongers, Wageningen University 

Prof. Dr N.P.R. Anten, Wageningen University 

Dr E. Turnhout, Wageningen University 

Prof. Dr G. Schaab, Karlsruhe University of Applied Sciences, Germany 

 

This research was conducted under the auspices of the C.T. de Wit Graduate School of 

Production Ecology and Resource Conservation.  



 

 

 

Conservation in a crowded place 

Forest and people on Mount Elgon 

Uganda 

 

 

 

 

 

Marieke Sassen 

 

 

 

 

 

Thesis 

submitted in fulfilment of the requirements for the degree of doctor 

at Wageningen University  

by the authority of the Rector Magnificus 

Prof. Dr M.J. Kropff, 

in the presence of the  

Thesis Committee appointed by the Academic Board  

to be defended in public 

on Friday 21 February 2014 

at 4 p.m. in the Aula.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marieke Sassen 

Conservation in a crowded place: forest and people on Mount Elgon, Uganda 

200 pages. 

 

PhD thesis, Wageningen University, Wageningen, NL (2014) 

With references, with summaries in English and Dutch 

 

ISBN: 978-94-6173-784-7  



 

 

Abstract 

 

A growing world population has important consequences for forests. In this study I 

investigate how conflicting goals by different actors under different historical contexts 

impacted the protected area of Mt Elgon, Uganda, and I consider what this means for 

conservation. Mt Elgon is an important water catchment area for Uganda and Kenya with 

important biodiversity values. The forest on Mt Elgon is also a source of agricultural land, 

timber, fuel wood and other forest resources for local communities. In this study I explore 

the factors that influenced local people’s motivations for forest clearing, the impacts of 

local forest use, including as a source of fuelwood, on Mt Elgon, Uganda. I also evaluate 

the use of radar satellite data to estimate above ground biomass on Mt Elgon. Finally I 

discuss the implications for the design of interventions that seek to reconcile the needs of 

local people and forest conservation. 

 

A major wave of deforestation on Mt Elgon, Uganda took place in the 1970s and 1980s 

and by 2009, 25% of the forest on Mt Elgon was lost. However, locally, there were areas of 

recovery. This study demonstrated that agricultural expansion on Mt Elgon cannot simply 

be linked to individual drivers such as population or high crop prices, and these were not 

always associated with increased deforestation. By analysing local variations, I found that 

it is the context (institutional, social, political) under which drivers such as population, 

wealth or commodity prices operate, rather than the drivers per se, that influences 

outcomes for forest cover.  

 

I found that local forest uses strongly influenced forest structure, even where people had 

a collaborative management agreement with the park authorities. The type of resources 

collected varied with the land use systems around the park: small stem-harvesting 

affected regeneration in areas where people grew crops that require supports such as 

bananas and climbing beans, and seedlings were almost absent where in-forest cattle 

grazing was important. Studying the characteristics and impacts of fuelwood harvesting 

revealed high levels of fuelwood collection and depletion of dead wood on the edge of the 

park. Human impacts affected highly preferred and used tree species. Allowing the 

collection of fuelwood or other non-timber products creates opportunities for more 

destructive activities such as timber harvesting or charcoal making. On the other hand it 

helps to improve relations between local people and park staff, which this study showed 



helps limit agricultural encroachment. I also found indications that trees on people’s own 

land can provide alternative sources of fuel.  

 

Mt Elgon has a history of conservation and development projects in an attempt to better 

reconcile local livelihood improvement and forest conservation. The most recent include 

pilot REDD+ schemes both inside and outside the protected area. Such schemes need 

consistent biomass estimations. I used a cost-effective field method for direct basal area 

estimation that yielded consistent estimates of above ground biomass (AGB), which 

reached above 800Mg/ ha on Mt Elgon’s northern slopes. Radar (ALOS PALSAR) data 

produced realistic classifications of the different vegetation types. However, using radar 

backscatter values in combination with field estimated AGB data to produce a biomass 

map had limited success. This was likely linked to the sampling strategy and topography.  

 

Our study showed that simple theoretical models based on single drivers of deforestation 

cannot explain local variation, nor can simple models that lead to “simplified institutional 

prescriptions” lead to sustainable solutions, as they do not reflect complex local social and 

ecological realities. This has important implications for the design of more locally adapted 

and ecologically and socially sustainable management arrangements on Mt Elgon and 

elsewhere. These are necessary because current practices appear to lead to forest 

degradation and resource depletion. Building trust between stakeholders and developing 

alternative resources are vital to support more sustainable forest management. Both 

international conservation actors, as well as forest management authorities need to 

recognise that incentives that influence people’s motivation for action vary locally and can 

therefore not be designed globally. 

 

Key words: tropical forest, conservation management, local livelihoods, forest cover 

change, disturbance, fuelwood, forest structure, species richness, biomass, Mount Elgon 
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1.1. Background 

1.1.1. Drivers of forest change 

At the global scale, the need to provide food and energy for a growing world population is 

leading to changes in land use with important consequences for remaining forest areas 

(Lambin and Meyfroidt 2011). At regional or national scales, poor and land-hungry farmers 

are considered the main threat to forest conservation. Population and poverty seemingly 

increase dependence on and the need for forest land and resources (Uusivuori et al. 2002, 

Lung and Schaab 2010), although in frontier areas with fewer people, farmers also expand 

into forests because they lack the resources to intensify (Angelsen and Kaimowitz 2001). 

However, it is generally not just population pressure and poverty that drive forest loss, but 

rather the interaction at the global to local level of various political and socio-economic 

contexts and forces (Angelsen and Kaimowitz 1999, Lambin et al. 2001, Geist and Lambin 

2002, Carr et al. 2005).  

 

Important questions are debated on global agendas, such as: Will intensifying agricultural 

production lead to decreased deforestation (the Borlaug hypothesis) or will the opposite 

occur and at which scales? What is the influence of global commodity markets on land 

use? and, What are the trade-offs between increased human welfare and ecosystem 

services1?. Most studies focus on forest loss, whereas in some places forest is expanding 

or regenerating (Fairhead and Leach 1996, Rudel 1998, Rudel et al. 2005). Secondary or 

degraded forests are important for conservation because of their extent and their 

proximity to remaining old growth forests (Wright 2005, Wright and Muller-Landau 2006, 

Chazdon et al. 2009). Factors that lead to regeneration are just as important as those 

leading to deforestation and can help understand how to prevent further forest loss. Also, 

most focus so far has been on loss of forest cover, whereas forest degradation is often 

more extensive, especially in protected areas. But forest disturbance is harder to measure 

than outright deforestation. The role of protected forests and the impacts of these forces 

on conserving the products and services they provide locally need to be clarified. Low cost 

methods are needed that can help improve monitoring of impacts in places where 

financial resources for conservation are limited.  

 

1.1.2. Conservation and local people: changing paradigms 

The dominant paradigm concerning most protected areas in the world still emphasizes the 

importance of ‘untouched nature’ (Philips 2003, Borgerhoff Mulder and Coppolillo 2005). 

                                                           
1
 These include global environmental services provided by forests such as water catchment values etc and local products and 

services to forest dependent people. 
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Management is geared towards the preservation of wildlife and the attraction of tourists, 

at the exclusion of local people who often depend on these areas for their livelihoods 

(WRI 2005). Not unexpectedly this can lead to conflict (Hough 1988, Balmford et al. 2001). 

In Africa, the ‘fortress conservation’ model (Brockington 2002) fitted well with the 

administration style of the colonial powers and subsequent post-colonial governments, 

concentrating the control of natural resources in the hands of the central administration 

(Philips 2003). Colonial powers created reserves and parks in vast areas of forest and 

savanna considered to be untouched pristine lands, without consideration of historical 

local land uses (Adams and McShane 1996, Chatty and Colchester 2002). Historically many 

conservationists have seen people and the local use of natural resources as incompatible 

with conservation (e.g. Oates 1999, Terborgh 1999, Locke and Dearden 2005).  

 

Local people are often those most affected by forest degradation or conversion and 

restrictions on forest use impact their livelihoods, but their views and priorities frequently 

remain unheard by decision makers (Sharpe 1998, Lawrence et al. 2000, Sheil et al. 2006). 

However, over the past decades, thinking on protected areas has changed towards a more 

socially equitable and integrated paradigm where protected areas also have social and 

economic objectives and are managed by a wider range of actors, including local 

communities (Philips 2003). Protected areas are seen as part of a wider socio-ecological 

system, with various land uses and functions, subject to various external pressures and 

influences (Sayer and Campbell 2004).  

 

1.1.3. New approaches to forest management and conservation 

Approaches that integrate conservation and development goals, support sustainable use 

and devolved forest management have emerged as alternatives or as complementary to 

strict conservation (Wells and McShane 2004, Lele et al. 2010). The underlying assumption 

being that devolving forest management to local communities will provide incentives for 

more sustainable forest use (Agrawal et al. 2008). Several global meta-analyses of 

published case-studies show evidence that forests managed by local communities are 

equally or more effective at maintaining forest cover than those under stricter protected 

area regimes (Persha et al. 2011, Porter-Bolland et al. 2011). However, conservation and 

development and community forest management projects often have pre-determined 

conservation goals – e.g. boundaries are not usually negotiable (Sharpe 1998), and 

insufficient powers are often transferred to local institutions (Ribot 2002). 

Decentralization of forest management may also lead to resource capture by local elites if 

effective supporting institutions are not in place (Larson and Soto 2008, Persha et al. 

2011).  



Chapter 1 

4 

There has been extensive research on the effectiveness of protected areas (e.g. Bruner et 

al. 2001, Struhsaker et al. 2005, Hayes 2006, Laurance et al. 2012), and a number of 

assessments have been conducted on the outcomes of conservation projects on 

conservation and neighbouring communities (e.g. Plumptre et al. 2004, Fisher et al. 2005, 

West et al. 2006, Sayer et al. 2007). But in practice win-win solutions are rare (Chan et al. 

2007, McShane et al.) and more evidence is needed on the conditions that lead to 

successes or failures for both people and conservation. 

 

1.1.4. Finding a balance 

The consensus concerning the need to integrate local people into conservation 

management emerges alongside the increasing pressures on natural resources that arise 

from the rapid increase in population. A balance needs to be found. To maintain the 

resources that local people use as well as those that conservationists and other actors 

value, ways need to be found in which multiple and sometimes conflicting uses or values 

of natural resources can be combined or negotiated (Kaimowitz and Sheil 2007, McShane 

et al. 2011, Sayer et al. 2013). Even when there is no outright clearing, most tropical 

forests, even those in protected areas, are influenced by human activity (Olupot et al. 

2009, MacKenzie et al. 2012). But there is a lack of understanding on the drivers for forest 

clearing and regrowth under different political and socio-economic contexts.  

 

Overall, conservation related interventions, including the establishment of protected 

areas, the development of non-timber forest products, tourism and other alternative 

sources of income to local communities, as well as collaborative management 

arrangements, have failed to take the complexity and dynamics of underlying contexts and 

drivers of forest change sufficiently into account as well as the importance of these in 

influencing local people’s decisions (Putz and Romero 2012).  

 

Such understanding is vital in the context of payments for environmental services (PES) 

schemes such as the planned implementation of the Reduced Emissions from 

Deforestation and Forest Degradation in Developing Countries (REDD+2) policy mechanism 

under the United Nations Framework Convention on Climate Change (UNFCCC). Payments 

made under such schemes could, in principle, provide additional incentives for forest 

conservation and the restoration of degraded forests. But technical and institutional 

challenges need to be addressed: how to set reference emission levels in degraded forest 

                                                           
2
 “REDD+ goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of 

forests and enhancement of forest carbon stocks” (UN-REDD Programme http://www.un-

redd.org/AboutREDD/tabid/102614/Default.aspx)  
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used by people and monitor change? And how to resolve questions of rights over land and 

resources and the dilemmas in common pool resource management? (Chhatre and 

Agrawal 2009, Reynolds 2012). Such dilemmas are no different in REDD+ projects than in 

other projects based-on collaborative management of forest resources (Dietz et al. 2003, 

Reynolds 2012). In particular when forests are owned by the state, such as in the case of 

most protected areas, local communities who are involved in collaborative management 

schemes may feel little ownership over the resource, leading to overuse and degradation 

(Chhatre and Agrawal 2009). I further discuss this in light of my results in section 6.3. 

 

 

Figure 1.1. Interactions between processes, policy and drivers of resource use, local responses and 

outcomes for forest conservation (modified from Giller et al. 2008).  

 

1.1.5. Understanding interactions and contexts 

Perceived benefits, weighed against costs incurred through access or institutional barriers, 

largely determine people’s use of and impact on that resource (Schweik 2000, Lynam et al. 

2004, Norgrove and Hulme 2006). The outcomes of these interactions are reflected in the 

state of the environment and in the products and services it provides and may vary across 

scales (VanWey et al. 2005, Hersperger et al. 2010). More local studies are needed to 

understand how human and biophysical factors interact in time and space, for which 

outcomes: i.e. what the impacts are of competing demands on forest land and resources. 

Contexts under which such interactions take place include global and national level 

political and economic processes, institutional frameworks governing access to resources, 
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the values of stakeholders and the ecology of the resources (Figure 1.1). Tools such as 

remote sensing in combination with field-based research can help to improve the 

understanding of interactions and ultimately inform management decisions (Nagendra et 

al. 2003, Ostrom and Nagendra 2006, Southworth et al. 2006).  

 

Mount Elgon (henceforth Mt Elgon), on the border of Kenya and Uganda provides a 

relevant case to study these interactions. Mt Elgon has a history of protection under 

various more or less exclusionary management regimes, numerous boundary demarcation 

exercises and growing pressure exercised by high population densities (up to 1000p.km-2). 

The protected area has known forest loss due to widespread encroachment but in some 

places forest has also recovered over time (Otte 1991, van Heist 1994, Norgrove and 

Hulme 2006, Soini 2007). Information on forest degradation due to local uses or past 

logging is limited and largely anecdotal. On the Kenyan side a study of the impacts of 

logging on forest structure and species was conducted in the early 2000s (Hitimana et al. 

2004). The whole area – including the Kenyan side - has experienced historical conflicts 

over resource access and use (Norgrove and Hulme 2006, MERECP 2007). Multiple 

conservation and development related projects have been tested since the 1990s and 

REDD+ related schemes that include both local livelihoods and conservation objectives 

have been piloted since 2010 (UWA 2000, LVBC 2009).  

 

1.2. Mt Elgon 

1.2.1. Biophysical characteristics 

Mt Elgon is a solitary extinct volcano straddling the Uganda-Kenya border (4321m). It is 

located between 0o52’ and 1o25’N, and between 34o14’ and 34o44’E. Mt Elgon is the 

oldest of the large East African volcanoes, probably of Tertiary origin (Davies 1952). The 

last major eruption probably took place about 12 million years ago, with smaller ones up 

to 2 million years ago. Hot springs can still be found in the caldera. Mt Elgon is a shield 

volcano, with an overall gentle slope of around 4°. However, the lower slopes in the west 

and north form a characteristic stepped topography with spectacular cliffs sometimes 

more than 300m high. A 20 km long ridge over 2000 m high reaches out to the west 

(Figure 2.1 in Chapter 2) (Dale 1940). Mt Elgon’s caldera is around 8 km across, making it 

one of the largest calderas in the world (Davies 1952). Average annual rainfall is between 

1200 and 2000 mm, varying with elevation and side of the mountain (Dale 1940, Soini 

2007). Numerous streams come off the mountain, originating in the caldera and increasing 

in volume on their way downslope, feeding into the Turkwell and Lake Turkana system, 

the Lake Victoria Basin, Lake Kyoga and the Nile Basin (IUCN 2005).  
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The vegetation of Mt Elgon can be stratified into broadly three zones, although they are 

not strictly elevational zones: an afroalpine and ericaceous zone, an afromontane forest 

zone (below about 3200 m) and an afromontane rainforest zone (Dale 1940, Hedberg 

1951, Langdale-Brown et al. 1964, van Heist 1994). The afroalpine and ericaceous zone - 

also called moorland and heath zone - is composed of bogs, shrub- and grasslands that are 

rich in (endemic) shrubs and herbs (including the endemic Lobelia elgonensis, Alchemilla 

elgonensis and Senecio elgonensis) (Dale 1940). Philippia spp. thickets and woodlands 

form the transition to afromontane forest communities. Frequent fires have affected 

vegetation structure and composition in these areas (Hamilton and Perrott 1981, Beck et 

al. 1987, Wesche et al. 2000). The afromontane forest zone is characterised by higher 

elevation forest types and bamboo forest (Arundinaria alpina), but patches of dominant 

species occur next to each other (e.g. Hagenia abyssinica, Cornus volkensii or Podocarpus 

milianjianus) (Dale 1940, Hamilton and Perrott 1981). Of the lower elevation afromontane 

rainforest (e.g. Aningeria adolfi-friedericii and Strombosia Schefflerii.) only small and 

patchy areas remain on the edges of the protected area in the south and on the western 

ridge (van Heist 1994).  

 

1.2.1. Conservation values 

About 1464 vascular plant species have been identified for Mt Elgon, of which 43 are 

regional endemics and 39 only recorded from Mt Elgon (MUIENR and NMK 2005). Mt 

Elgon hosts 120 species of mammals, representing 12 out of 13 orders of mammals 

recorded for Africa. IUCN has listed 37 faunal species on Mt Elgon as "globally threatened” 

of which nine are endemic (IUCN 2005). Mt Elgon is considered one of the richer forests in 

terms of bird species, including some with a limited range (Davenport et al. 1996). 

Previous studies found indications that forest specialist birds are being negatively affected 

by human disturbance (Katende and et al. 1990, Project Elgon 1997a). 

 

Mt Elgon derives most of its biodiversity importance from species that are rare or have 

limited distributions in Uganda and in East Africa (Table 1.1), notably in the higher 

elevation moorlands (Howard 1991, Davenport et al. 1996, MUIENR and NMK 2005). Mt 

Elgon was ranked among the top 20 most important forests in Uganda in terms of overall 

biodiversity importance, and number 6 in terms of species rarity value (Howard et al. 

2000). Mt Elgon is also part of the East African Mountains and contributes to preserving 

the biodiversity characteristic of these ecosystems. A number of studies have described 

Mt Elgon’s vegetation in general, listing species or studying altitudinal zonation (e.g. Dale 

1940, Langdale-Brown et al. 1964, Tweedie 1976, Hamilton and Perrott 1981), but there 
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seem to be a lack of information on species distributions (a study, including specimen 

collection, was conducted in 1993 but the data was never fully published).  

 

Table 1.1. Biodiversity importance of five indicator taxa surveyed in Mt Elgon. Adapted from 

Davenport et al. (1996). 

 

Trees and 

shrubs Birds 

Small 

mammals Butterflies Large moths 

No. of known forest species 

for Mt Elgon 
273 296 30 171 71 

No. of restricted-range 

species (known from ≤ 5 

Ugandan forests) 

50 40 6 17 10 

No of regional endemics - 0 1 1 1 

No of species recorded by 

Davenport et al. 1996) 
254 163 20 115 67 

Species diversity ** ** ** ** * 

Species conservation value **** *** *** *** **** 

Star ratings indicate values relative to the other 64 Ugandan forests investigated by Davenport et al. (1996): 

**** top 10% of sites; *** top 11-25% of sites; ** mid-ranking 26-74% of sites; * bottom 25% of sites. 

Regional endemics refer to species restricted to Uganda, the Albertine Rift and/or the Somali-Masaai region. 

 

Mt Elgon is an important water catchment area for several million people in the 

surrounding districts in Uganda and Kenya (Dale 1940, UWA 2000, Akotsi and Gachanja 

2004). The high intensity land use around the mountain and significant impacts of local 

uses make the forest on Mt Elgon vulnerable to degradation, especially in terms of water 

catchment. Erosion due to deforestation upstream may have important impacts further 

downstream although this would need to be further assessed. Due to high rainfall and 

typical soil properties and stratification, many slopes on Mt Elgon are naturally unstable, 

even on relatively gentle slopes. However, deforestation and slope excavation e.g. for 

house-building were found to be major preparatory factors for landslides on Mt Elgon. 

Small landslides have been reported for over a century but major landslides with 

numerous casualties occurred in 1933, 1964, 1970, 1997, 20103 and 20124 (Knapen et al. 

2006, Mugagga 2011). In recent years Mt Elgon has developed a 40-kilometre crack with a 

width of between 30 to 35 cm, leading to fears of further casualties5. The Ugandan 

National Environment Regulations for Mountainous and Hilly Areas Management 

established strict regulations, that for example prohibit cultivation of slopes steeper than 

                                                           
3
 http://www.bbc.co.uk/news/world-africa-18595913 

4
 http://www.reuters.com/article/2012/06/25/us-uganda-landlside-idUSBRE85O0MZ20120625 

5
 http://www.ipsnews.net/2012/07/overpopulation-on-ugandas-mount-elgon-kills-hundreds/ 



General introduction 

9 

15% but such rules are unrealistic is such densely populated areas (Kajura, 2001 in Knapen 

et al. 2006).  

 

Mt Elgon also has important cultural values for the people living on its slopes. Values vary 

a little according to the ethnic group. The Bagisu and Sabiny have different histories in 

relation to the mountain that are reflected in the values they attribute to it. For the Bagisu 

Mt Elgon has significance in relation to the origin of mankind, and in relation to traditional 

circumcision ceremonies (UWA 2000 and local informants). The Sabiny recognise special 

sites for rituals and ceremonies. Both ethnic groups reportedly have ancient burial sites on 

the mountain, inside what is now the national park. Ancient rock paintings have been 

found in various caves (Wright 1961 cited in Weatherby 1965). 

 

1.2.3. Land use and forest management 

The forests and higher elevation areas of Mt Elgon on the Ugandan side of the mountain 

are protected by a national park. In Kenya, there is a national park, a forest reserve and a 

national reserve. Nevertheless, these areas are an important source of natural products 

for a large proportion of the people living in their vicinity. They also have cultural and 

religious significance as they host traditional sites (e.g. for circumcision) and ancestors’ 

graves (Scott 1994a, Scott 1998). Monetary benefits from tourism are limited and 

dependence on the forest for subsistence is likely to remain in the long term (Scott 1998). 

Poverty is widespread (40-70% of people are below the poverty line in Kenya, 30-40% in 

Uganda (Soini 2007). The cropping systems are diverse. Depending on the area, cash crops 

include coffee, tea, pyrethrum, sunflowers, maize, cotton, fruits and vegetables (Kayiso 

1993). Livestock rearing is important. In 1990, between 40 and 60% of households owned 

cattle (Kayiso 1993).  

 

In this study I focus on the Ugandan side of Mt Elgon. A more detailed description of the 

population and land use around the park in Uganda is given in Chapter 2, as well as a 

detailed history of its management. Initially a Forest Reserve, Mt Elgon became a National 

Park in 1993 (Chapter 2). Projects trying to address both conservation and development 

have been implemented in both Kenya (MEICDP6, MERECP7) and Uganda (MECDP8, 

MERECP) since the late 1980s (UWA 2000, LVBC 2009). In Uganda the policy framework 

allows for community participation in management and benefit sharing (Vedeld et al. 

2005). After two pilot agreements in 1996, collaborative management arrangements were 

                                                           
6
 Mount Elgon Integrated Conservation and Development Project (1998-2001?) 

7
 Mount Elgon Regional Ecosystem Conservation project (includes both countries) (2005-2009) 

8
 Mount Elgon Conservation and Development Project (1990-2002) 
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set-up with about 30 parishes (Hinchley et al. 1998, Scott 1998, Kato and Okumu 2006). In 

2011, 66 agreements varying from boundary management agreements, to resource use 

and beekeeping agreements were in place in 36 parishes (UWA, unpublished data). 

 

The implementing institutions for conservation in Uganda are the Uganda Wildlife 

Authority (UWA) and the National Forest Authority (NFA). The International Conservation 

Union (IUCN) is the main international conservation organization that influences the 

conservation and development agenda through its projects, in collaboration with research 

organizations such as the World Agroforestry Center (ICRAF). MERECP, implemented by 

the Lake Victoria Basin Commission (LVBC), aims to establish Mt Elgon as transboundary 

protected area including both the Ugandan and Kenyan sides. This process is largely driven 

by international conservation actors and donors including IUCN and the Norwegian 

Agency for International Development (NORAD) (details in Petursson 2011). In Uganda the 

FACE Foundation, together with UWA ran a carbon offsetting project that helped restore 

parts of the previously encroached areas of the park by replanting native species. The 

project was controversial from a human rights point of view because in some areas it led 

to the forceful eviction of people who had settled inside the official park boundary (see 

Lang and Byakola 2006 and ensuing discussions in the press). In these areas most planted 

trees were later destroyed whereas in others they were left to regenerate (see Chapter2). 

Other conservation and/or people oriented NGOs include the World Rainforest Movement 

(WRM), Climate and Development Initiatives Uganda, Action Aid Uganda. 

 

1.2.4. Previous research 

A number of studies describe institutional and socio-economic processes on Mt Elgon, 

particularly in Uganda. They found that numerous boundary demarcations, corruption in 

the land allocation process of resettlement schemes, and evictions of people from the 

park have fuelled conflicts between local people and protected area management, which 

amplified illegal use of forest resources and land (e.g. Himmelfarb 2006, Lang and Byakola 

2006, Norgrove and Hulme 2006). Collaborative management approaches were found to 

be promising, also to improve relations between park management and local 

communities, but suffering from a number of problems including weaknesses in local 

management institutions, a lack of ownership and problems of monitoring and local rule 

enforcement (White and Hinchley 2001, Sletten 2004, Kato and Okumu 2006). Various 

student projects have found that local communities surrounding the park are highly reliant 

on park resources for their livelihoods, in particular as safety nets, and that the change in 

management regime from forest reserve to national park reduced their access to forest 

resources (Jewsbury 2001, Katto 2004, Namugwanya 2004, Gosalamang et al. 2008). 
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Petursson (2011) found that, considering the institutional complexities on both sides of 

the mountain, establishing a transboundary protected area management regime on Mt 

Elgon would increase the marginalisation of local community interests and rights.  

 

Only a few studies measured human impacts on forest resources. One study reports the 

impacts of bamboo harvesting (Scott 1994b), one the impacts of grazing and former 

cultivation on plant communities (Reed and Clokie 2000) and others the impacts of grazing 

and former settlement on birds and small-mammal populations (Project Elgon 1996, 

1997a, b, Reed and Clokie 2000). The latter five studies were restricted to one area to the 

north of the mountain, with a history of grazing within the forest. In the early 1990’s Scott 

(1994a) made an assessment of the use of park resources by local communities (Uganda) 

including profiles per parish for 6 neighbouring parishes. She determined that the 

extraction of most non-timber forest products on the Ugandan side of Mt Elgon was likely 

sustainable at the time of her study, but that there were risks of depletion associated with 

increased commercialisation of timber products (Scott 1994b, Scott 1998). Forest cover 

change and its drivers were assessed on the Ugandan side in the 1990s (Otte 1991, van 

Heist 1994) and on the Kenyan side in the late 2000s (Petursson et al. 2012), but these 

studies did not seek to explain local variation.  

 

1.3. Study objectives and approach 

I based this project and my methodological approach on the DEED (Describe, Explain, 

Explore and Design) framework of the Competing Claims on Natural Resources 

programme of Wageningen University (Giller et al. 2008). I sought to describe and explain 

the dynamics between various larger scale processes (governance, policy, management, 

socio-economic drivers), their influence on local motivations for forest use and the 

impacts thereof on local forest cover and conservation in Mt Elgon (Figure 1.1). I then 

explore the implications of my findings in light of existing theories on human-environment 

interactions, the global discussion on drivers of forest change, and the role of local access 

to forest resources. Finally, I consider how this affects the design of current and future 

interventions or management options such as collaborative management, alternative 

resources projects or PES schemes related to REDD+. The research also contributed to a 

project by the Centre for International Forestry Research (CIFOR) and the World 

Agroforestry Centre (ICRAF) to integrate improved livelihoods and biodiversity 

conservation goals in tropical landscape mosaics. 

 

I aimed to assess how conflicting goals by different actors (conservationists, local 

communities, politicians etc.) led to various outcomes for the forest on Mt Elgon, Uganda 
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under different historical contexts and what this means for long term conservation efforts. 

I also aimed to explore the factors that influence local people’s motivations to respect 

rules and regulations (Chapter 2), their use of forest resources (Chapter 3), their 

dependence on the forest as a source of fuelwood and the impacts thereof on forest 

conservation (Chapter 4). I explore the use of simple field methods in combination with 

radar remote sensing technology for mapping and monitoring carbon stocks on Mt Elgon 

in REDD+ projects (Chapter 5). 

 

The goal of this study was to draw lessons for and contribute to the wider debate on 

conservation and development (Minteer and Miller 2011), as well as provide empirical 

evidence for human-environment interaction theories beyond simple models of 

population and poverty (Lambin et al. 2001). The analysis was conducted both for the 

whole of Mount Elgon in Uganda, including the historical larger scale contexts and 

influences that have taken place, and at the local scale, where different types of livelihood 

strategies and access to resources are assumed to have different impacts on these 

resources. The analysis of changes in forest cover and of the impacts of local uses on 

forest structure and diversity in relation to changing institutional and socio-economic 

contexts contributes to the understanding of these relations. It then provides a basis for 

the exploration of future options and scenarios for more ecologically and socially 

sustainable management arrangements. I also explore implications of my findings for the 

potential role of PES schemes such as REDD+ in degraded, human impacted forests under 

pressure. 

 

Institutional, socio-economic and field data were linked to remote sensing and GIS in 

order to investigate the interactions between forest cover, changing contexts, local 

livelihoods and impacts on forest structure and diversity (Liverman et al. 1998, Fox et al. 

2003). The specific objectives of the study were to: 

1. Understand what affected forest conservation outcomes locally, and to unravel 

the success of conservation strategies under different political, institutional and 

socio-economic contexts. 

2. Examine how long-term use by local neighbouring communities has influenced 

forest structure and diversity using field plots on transects into the park, in four 

sites.  

3. Characterise and assess the effects of fuelwood collection and other practices on 

the availability and distribution of dead wood in field plots into the park in four 

sites.  
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4. Assess the above ground biomass and carbon content of the degraded and less 

degraded forest in Mt Elgon National Park. 

5. Reflect on the implications of these results for forest conservation on Mt Elgon as 

well as in other places with high population densities around protected areas and 

with major competing claims on land and resources between conservation and 

local livelihood goals. 

 

In Chapter 2 I analyse the causes of local forest cover loss and recovery on Mt Elgon, 

Uganda. I created a series of four forest cover maps from multi-date satellite image 

classification of Landsat images between 1973 and 2009. Forest cover and forest cover 

change was then linked to regional to local historical contexts, population data, socio-

economic and livelihoods information acquired in 14 villages with different livelihood 

types and histories and from interviews with the protected area management authorities 

(UWA).  

 

In Chapter 3 I examine how local scale variation in human impacts influenced forest 

structure and tree species richness on Mt Elgon. For this, I assessed basal area (BA), stem 

density, diameter at breast height (dbh) and indicators of human activity (e.g. signs of fire, 

tree-cutting, grazing etc.) in 343 plots on transects into the park in four study sites.  

 

In Chapter 4 I study the characteristics and impacts of firewood collection. I interviewed 

192 households on firewood use and collection and on tree planting. Additionally I 

surveyed dead wood species and availability using line 48m intercept methods in 81 of the 

343 plots described in Chapter 3. I link species preferences for firewood, volumes of dead 

wood and basal area of standing trees for those species to evaluate depletion in each site.  

 

In Chapter 5 I assess the above ground biomass (AGB) on Mt Elgon. I explore the use of 

field-derived AGB data in combination with satellite L-band synthetic aperture radar 

backscatter data (ALOS PALSAR) to monitor the impact of forest degradation on biomass 

in relation to planned local REDD+ schemes. I also explore the potential of direct basal 

area estimations as an effective field method to assess carbon stocks.  

 

Lastly, Chapter 6 discusses the complexity of human impacts on forest conservation in a 

densely populated environment under changing contexts of policy and governance. In this 

chapter I reflect on the impacts that the competing claims on land and resources between 

conservation actors and local communities have had over time on Mt Elgon. I discuss the 

findings presented in the previous chapters in light of existing theories on human-
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environment interactions and what this means for the design of more locally appropriate 

and inclusive approaches to forest management, for the importance of alternative 

resources and the potential of “new” interventions. I discuss the lessons that these offer 

to the wider conservation and development debate. 
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Abstract 

Protected forests are sometimes encroached by surrounding communities. But patterns of 

such cover change can vary even within one given setting – understanding these 

complexities can offer insights into the effective maintenance of forest cover. Using 

satellite image analyses together with historical information, population census data and 

interviews with local informants, we analysed the drivers of forest cover change in three 

periods between 1973 and 2009 on Mt Elgon, Uganda. More than 25% of the forest cover 

of the Mt Elgon Forest Reserve/National Park was lost in 35 years. In periods when law 

enforcement was weaker, forest clearing was greatest in areas combining a dense 

population and people who had become relatively wealthy from coffee production. Once 

stronger law enforcement was re-established forest recovered in most places. 

Collaborative management agreements between communities and the park authorities 

were associated with better forest recovery, but deforestation continued in other areas 

with persistent conflicts about park boundaries. These conflicts were associated with 

profitability of annual crops and political interference. The interplay of factors originating 

at larger scales (government policy, market demand, political agendas and community 

engagement) resulted in a “back-and-forth” of clearing and regrowth. Our study reveals 

that the context (e.g. law enforcement, collaborative management, political interference) 

under which drivers such as population, wealth, market access and commodity prices 

operate, rather than the drivers per-se, determines impacts on forest cover. Conservation 

and development interventions need to recognise and address local factors within the 

context and conditionalities generated by larger scale external influences. 

 

Keywords: Forest cover change, conservation management, protected areas, local 

livelihoods, coffee, Mt Elgon 
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2.1. Introduction 

Even though protected areas in the tropics have generally reduced deforestation within 

their boundaries (Bruner et al. 2001, Naughton-Treves et al. 2005), forest loss still 

continues in many (DeFries et al. 2005, Nagendra 2008). This deforestation threatens the 

provision of forest-derived services. These services range from climate regulation and 

biodiversity conservation, to water-catchment protection, to providing local populations 

with food and timber (Millennium Ecosystem Assessment 2005). Protected forests in East 

Africa, for example, often serve as important water catchments supporting high densities 

of people. They also attract substantial tourism and host rich biodiversity. One of these 

forests, on Mt Elgon (Kenya, Uganda), provides water for more than 2 million people in 

the surrounding districts (Figure 2.1) and has a rich and remarkable history of both forest 

loss and forest recovery (van Heist 1994, KWS et al. 2001).  

 

Across the tropics the underlying drivers and proximate causes of deforestation have been 

the subject of numerous studies (Geist and Lambin 2002). Population pressure and rural 

poverty, leading to agricultural expansion, dominate the global discussion on the causes of 

forest loss in the tropics (e.g. Allen and Barnes 1985, Uusivuori et al. 2002, Lung and 

Schaab 2010). By contrast, reviews show that these factors are seldom the principal 

determinants of when and where forest cover is lost (e.g. Rudel and Roper 1996, Angelsen 

and Kaimowitz 1999). Multiple political, institutional, economic and social forces operating 

at the local, national and global level interact to determine the patterns of tropical 

deforestation (Angelsen and Kaimowitz 1999, Lambin et al. 2001, Geist and Lambin 2002, 

Carr et al. 2005). The significance of different management arrangements, including the 

degree of community involvement, remains debated (Hayes 2006, Southworth et al. 

2006). Deforestation by small scale farmers reflects marginal choices about whether and 

where to clear (Sheil and Wunder 2002). Such choices depend on the availability of the 

resources needed for agricultural production, infrastructure, markets, perceived costs and 

benefits and alternative options outside agriculture (Kaimowitz and Angelsen 1998, 

Angelsen et al. 1999, Maeda et al. 2010). These factors are often time and location 

specific, but local studies using longitudinal data and linking people and place can clarify 

their role (see e.g. Fox et al. 2003).  

 

We assess how changing contexts in combination with more local drivers can influence 

forest cover within one protected area (see also Gaveau et al. 2009, Nagendra et al. 2010). 

We examine cover in Mt Elgon National Park, Uganda between 1973 and 2009. Previous 

studies emphasized the deforestation during the civil unrest of the 1970s and 1980s (Otte 

1991, van Heist 1994). Some forest recovered subsequently though clearance has 
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remained a local concern (UWA 2000). We use a combination of data and methods to 

investigate the diversity of factors that affected forest clearance and recovery within a 

single national park (as in Ostrom and Nagendra 2006). We examine three periods broadly 

corresponding to weak enforcement, strong enforcement and community engagement 

periods, and investigated the effects of changing political, economic and social factors. 

 

2.2. Study area 

2.2.1. Mt Elgon 

Mt Elgon is an extinct 4321m high Miocene volcano, shared between Kenya and Uganda. 

Its slopes are generally gentle (averaging less than 4 degrees), with characteristic natural 

terraces cut by sheer cliffs in the north, and steep slopes in the south and south-west. A 

parasitic vent formed the 20 km long ridge that extends towards the west. The protected 

area covers approximately 1120 km2 in Uganda and 1400 km2 in Kenya (Figure 2.1). Dry 

north-easterly and moist south-westerly winds determine the climate. July-August and 

December-February are relatively dry, although rain falls in all months (Figure 2.2). Annual 

precipitation in the protected area is between 1500 and 2000 mm. More rain falls on the 

western and south-western slopes and most falls mid-slope at between 2000-3000 m 

altitude (m.a.s.l.) (Dale 1940, IUCN 2005).  

 

The mountain is an important water catchment area for the Turkwell and Lake Turkana 

systems, the Lake Victoria Basin, Lake Kyoga and the Nile Basin (IUCN 2005). The 

vegetation is composed of an afromontane forest belt (Podocarpus spp., Cornus volkensii, 

Schefflera spp., Hagenia abyssinica, Olea spp., Prunus africana) with large areas of 

bamboo (Arundinaria alpina) on average between 2000 and 3000 m, followed by heathers 

(Philippia spp.), and high altitude moorland (Senecio spp., Lobelia spp., Alchemilla spp.) 

(Dale 1940, van Heist 1994). Fire on the moorlands plays a role in determining the upper 

forest boundary (Hamilton and Perrott 1981). Mt Elgon hosts biodiversity of global 

significance, including 39 endemic species of vascular plants specific to Mt Elgon and many 

species with limited distributions, such as Lobelia elgonensis and Senecio elgonensis, 

Hypericum afromontanum, Juniperus procera and Euphorbia obovalifolia (for details see 

Davenport et al. 1996, IUCN 2005).  
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Figure 2.1. Map of Mt Elgon, Uganda and Kenya, with the location of the 14 study villages. 

 

2.2.2. Land use 

In the period covered by this study, nearly all land within 20 km from the protected area 

was grazed or under cultivation (van Heist 1994, IUCN 2005) (see images in Appendix 2.A). 

The region’s volcanic soils are fertile and support intensive mixed agriculture in the south 

and west, known as the “coffee-banana farming system” (Kayiso 1993, ILRI 2007). Coffee 

(Coffea arabica) is commonly grown in combination with multipurpose shade trees, while 

stream valleys are often planted with Eucalyptus woodlots. On the north and north-

eastern slopes extensive maize, potatoes, wheat and pasture dominate (ILRI 2007), while 

trees are  scarce, especially nearer the park boundary. The western and south-western 

slopes of Mt Elgon in Uganda have been among the most densely populated and 
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cultivated in the country since before 1960 (McMaster 1962). In 2002, human population 

densities in the surrounding parishes ranged from 150 p/km2 in the north and northeast to 

more than 1000 p/km2 in the west. Average annual population growth rates ranged 

between 2.5% and 4.3% (UBOS 2002a, b, d).  

 

 

Figure 2.2. Estimated average monthly rainfall in five districts around Mt Elgon (2007-2011). See 

Figure 2.1 for district boundaries. Data for Manafwa district includes Bududa. (Data source: 

FAO/GIEWS 2012). 

 

Two ethnic groups predominate around Mt Elgon in Uganda: The Bagisu, of Bantu origin, 

in the south and south-west and the Sabiny, of Nilo-Cushtic origin in the north and north-

east. Coffee was introduced in 1912 on the north-western slopes of Mt Elgon. The crop 

helped the agriculturalist Bagisu gain substantial economic and political power and 

according to Bunker (1987), the region had the second highest per capita income in 

Uganda in the 1950s. Much of this power was lost during and after the political upheaval 

of the 1970s and 1980s and many coffee farmers diversified into additional subsistence or 

cash crops (Bunker 1987). The Sabiny were originally pastoralists dwelling in both the 
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semi-natural forest grasslands and high altitude moorlands and in the lower northern 

plains. Since the 1980s, they turned to agriculture for cash, often under the influence of 

Bagisu or immigrants from the plains. Cattle remain very important (Scott 1998). Maize 

was introduced to Uganda before colonial times and it became an important food crop on 

the northern flanks of Mt Elgon (McMaster 1962). From 2003, a new murram road from 

Mbale to Kapchorwa has improved their access to markets, but historically the Sabiny 

have lagged behind in terms of education, transport, access to agricultural support and 

credit (Kasfir 1976).  

 

Major local markets for agricultural produce exist in the west, northwest and on the 

borders with Kenya (see towns in Figure 2.1). Transport costs are high as many roads are 

unusable during heavy rains. Land degradation is a concern and landslides occur regularly 

on the relatively steep slopes on the Ugandan side of Mt Elgon (Knapen et al. 2006). 

 

2.2.3. Management history 

Uganda’s forests were brought under government control from 1929, as colonial powers 

were concerned that expanding agricultural activities would cause forest loss and damage 

water catchments (Turyahabwe and Banana 2008). The management objectives of the 

forest reserve on Mt Elgon were protection and timber extraction. From 1955, forest 

clearing started on the north-eastern side of the mountain to establish pine and cypress 

plantations (Synnott 1968). A system of resident cultivation attracted neighbouring people 

who settled inside the reserve by the northernmost plantation (Government of Uganda 

1996, Scott 1998, Médard 2006, Luzinda 2008). In 1968, forest management in Uganda 

was centralized and reserve boundaries were officially demarcated (Table 2.1). 

 

During the years of Idi Amin (1971) and Milton Obote (1978), who took power through 

successive military coups, there was a general breakdown in national and local forest 

management institutions. In 1975, in a drive to increase national agricultural production, 

Idi Amin declared all land public and open for settlement (Hamilton 1985, Turyahabwe 

and Banana 2008). In the plains north of Mt Elgon, cattle raiding activities intensified due 

to the increased availability of firearms (Otte 1991, Scott 1998).This phase of instability 

lasted until 1986 when peace was restored under President Yoweri Museveni. From 1987 

onwards, a conservation and development project and forest restoration projects were 

implemented on Mt Elgon (Table 2.1) (UWA 2000). 
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Table 2.1. Historical timeline of larger and local scale contexts for forest conservation and 

management on Mt Elgon in Uganda (sources: Synnott 1968, Bunker 1987, Government of Uganda 

1996, Scott 1998, Luzinda 2008, Turyahabwe and Banana 2008). 

Dates National / regional context Local events 

±1910 Coffee introduced as a cash crop by colonial 

power 

Start of Arabica coffee cultivation by the 

Bagisu on Elgon (northwest) 

1929-1951 First national forest policy 

Afforestation programs for fuelwood 

outside existing forests 

Management by the Forest Department 

Establishment of Mt Elgon Forest Reserve, 

subsequently: Mt Elgon Crown forest, 

Central Forest Reserve and Demarcated 

Protection Reserve 

1955  Forest clearing for plantations in northeast. 

Resident cultivation system (“Taungya”) 

1962 Independence from Britain  

1968 Centralization of forest management Forest Reserve boundary marked 

Loss of local forest management institutions 

1971-1986 Idi Amin-Obote coups, political instability.  

Withdrawal of foreign funding. Breakdown 

in forest management institutions 

Dysfunctional coffee buying cooperative 

All land declared public 

Encroachment into the Forest Reserve 

Peak in coffee prices 

Bagisu-Sabiny conflicts 

Start diversification of cash-crops  

Intensified cattle raiding from the north 

1983  Benet resettlement (> 1000 people)  

1986 Museveni president  

1986-1988 Coffee production improvement program. Raises in coffee prices to producers to 

reflect world market prices 

From 1987 Rehabilitation of the forestry sector. 

Support for protected area management by 

international donors 

Mt Elgon Conservation and Development 

Project (MECDP) supported by IUCN 

 

1988 New Uganda forest policy Start forest rehabilitation, re-establishment 

of boundaries 

1989 Collapse International Coffee Organization 

(ICO) agreement 

Low coffee prices 

Eviction of settlers near plantations 

1992-1995 Liberalization of the Uganda coffee market 

Coffee price boom on world markets 

Eviction of encroachers 

High local coffee prices 

1993 Policy decision to increase the protection 

status of 5 forest reserves, under (UWA) 

Forest Reserve converted to National Park. 

Boundary survey 

1994-2002  Forest restoration project (UWA-FACE) 

funded through carbon emissions mitigation 

1996  Collaborative management pilot projects 

2001-2009 New forest policy, decentralization including 

collaborative forest management 

Evictions and temporary resettlement inside 

the boundary in Benet (± 9km
2) 

2004-2005 Rise in coffee-prices Boundary tracing and conflicts in southwest 

and south 

2006 Multi-party elections and campaigns Conflicts and encroachment 

2008-2009 Increase demand for maize in Kenya and 

Sudan: prices doubled 

Evictions in the north and northeast leading 

to conflicts. Temporary resettlement inside 

the boundary in Benet 
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In 1993 the forest was re-gazetted as a National Park and brought under the management 

of Uganda National Parks (UNP, now Uganda Wildlife Authority, UWA), except for a small 

protuberance north of the western arm (Figure 2.1). Increasing restrictions on local people 

led to the disintegration of existing indigenous forest resource management systems and 

sparked conflict (Scott 1998). In the early 1990s, UWA policy shifted to include more 

collaborative and participatory approaches to park management (Hinchley 2000). From 

1999 onwards, agreements between local people and park management in the form of 

resource use agreements, boundary management agreements and beekeeping 

agreements were initiated in a number of parishes surrounding the park (Scott 1998, UWA 

2000). In other places, recurrent evictions created strong tensions between local people 

and park management (Table 2.1).  

 

In 1983 the Forest Department allocated land to be excised for the resettlement of forest 

dwelling Sabiny. This area in the north of the reserve is now called the “Benet 

resettlement area” (Scott 1998, Luzinda 2008) (Figure 2.1). Lowland Sabiny who had 

settled on the forest edge to escape cattle raiding from neighbouring tribes were also 

included (Government of Uganda 1996, Banana and Gombya-Ssebajjwe 2000). The 

process suffered from a number of problems. Land was illicitly acquired by members of 

the land allocation committees, some intended beneficiaries received little or no land 

while others preferred to stay in the forest (Government of Uganda 1996, UWA 2000, 

IUCN 2005). The 1993 boundary survey found that 1500 ha more land than planned had 

been given out. The eviction of settlers from these 1500 ha led to court cases and conflicts 

between local communities and park management that remain unresolved (Scott 1998, 

Himmelfarb 2006). In the meantime, people live in temporary settlements both inside and 

outside the contested area (Table 2.1). Conflicts also occur when politicians promise 

people land inside the park to gain support. This was exacerbated after multi-party politics 

were re-established in Uganda in 2005 and competition among candidates increased 

(Banana et al. 2010). 

 

2.3. Materials and methods 

2.3.1. Forest cover change 

We used Landsat images for February 1973 (MSS), 1988, 2001 (TM) and January 2009 

(ETM) (Table 2.B.1). Image dates correspond to the second half of the dry season, when 

differences between evergreen and seasonal vegetation are greatest. Recurrent cloud 

cover on Mt Elgon limited the number of useful images and prevented a more frequent 

time-series. We also used forest boundaries for 1967 (Department of Lands and Surveys 

1967), a vegetation map with data from approximately 1990 (van Heist 1994), a 90 m 
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digital elevation model (Jarvis et al. 2008) and conducted detailed field surveys in 2009 

and 2010.  

 

Image processing was done using the ENVI 4.0 (RSI) software. Each image was co-

registered to the 2001 image using Nearest Neighbour resampling with a root mean 

square error (RMSE) of less than 0.4 pixels (Schowengerdt 1997). The analysis focused on 

the Afromontane and the Afromontane Rain Forest Zones inside the protected area 

boundaries, as defined by van Heist (1994). We will further refer to this area of 

approximately 860 km2 as “the forest zone”.  

Clouds and their shadows partly obscured the higher altitudes in the 1988 and 2001 

images and were masked out using visual interpretation and classification (e.g. Martinuzzi 

et al. 2007) (see Appendix 2.B for details). Softwood plantations (near Village 13) were 

also masked-out and labelled “non-forest”. An unsupervised classification on the 

remainder of each image (Schowengerdt 1997) helped to identify natural spectral clusters. 

We then selected training areas using visual interpretation of natural clusters from the 

unsupervised classification, false colour composites of the images and the maps (Foody 

and Hill 1996). Finally a supervised classification was run using a Maximum Likelihood 

Classification algorithm (Schowengerdt 1997). This resulted in 4-7 classes per image that 

were combined into two: “forest” (minimum canopy cover of 30%, based on van Heist 

(1994)) and “non-forest” (see Appendix 2.B for details). Where possible, gaps from clouds 

and their shadows were filled manually using the 1990 map (1988 image) and Google 

Earth (2001 image) as references.  

 

We used the 1967 and 1990 forest cover maps, high resolution imagery from Google Earth 

(2003, 0.5-2.5 m resolution) and field observations as references to validate the accuracies 

of the four classification maps. We then generated four confusion matrices by allocating 

either forest or non-forest classes to additional randomly selected sample points on each 

classification map and its reference (see Appendix 2.B for details). Overall accuracies 

ranged between 91 and 95%, with kappa coefficients between 0.79 and 0.88 (Table 2.B.2) 

(Congalton and Green 1999). Quantity and allocation disagreements following Pontius and 

Millones (2011) gave values of 5%, 8%, 4% and 1% quantity disagreement for 1973, 1988, 

2001 and 2009 respectively, while allocation disagreement was 0%, 1%, 6% and 5%.  

 

2.3.2. Population data 

Using administrative boundaries and population numbers from databases at the 

International Livestock Research Institute (ILRI 2007) and Uganda Bureau of Statistics 

(UBOS 2002a, b, d), we established GIS layers of administrative boundaries for 1991 and 
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2002, population data at parish level for 1969, 1991 and 2002, and data on immigrants for 

2002. The finest scale for which population data was available was the parish, which 

usually consists of one to four villages. Between 1969 and 1991 and then 2002, some 

parishes became sub-counties that were then subdivided into new parishes. For 1969, 

visual inspection of topographic maps of the 1960s helped match administrative unit 

names and boundaries between 1969 and 1991. After 1991, subdivisions were more 

frequent and involved more boundary shifting. Sometimes pieces of former parishes were 

divided among different new sub-counties or (groups of) parishes. Therefore we 

calculated population density for 2002 using the area corresponding to the parish 

boundaries of 1991. In all cases where boundaries had changed, we assumed that the 

relative population in a parish, within the larger sub-county or a group of parishes, 

remained constant over time. We then used the 1991 proportions as a basis to estimate 

population numbers over a corresponding area in other years. This method is also used by 

the Uganda Bureau of statistics in their population projections.  

 

Population density for a parish p in the census year of interest y was then estimated as: 

Pp,y = (Pp ,1991 / Ps, 1991) × Ps, y 

With Pp,y, the unknown population of the parish of interest in year y, Pp , 1991 and Ps, 1991 the 

known population of the parish and its sub-county in 1991 and Ps, y the known population 

of that sub-county in census year y. When possible we used a group of parishes instead of 

the larger sub-county as a reference. 

 

2.3.3. Local livelihoods’ survey 

We collected livelihood-related information from 14 villages around the boundary of the 

protected area. The sites were spread evenly around the boundary to represent as much 

variation as possible. Fifteen points were originally located on the boundary line, using a 

GIS (ArcGIS 10). These were later located in the field using a GPS (Garmin 60CSx). As all 

villages are settled up to the park boundary each point was always located in a village. 

That village was identified in the field. The village at point 15 was excluded as the local 

leader was uncooperative and demanded payment. In each village, we applied a range of 

survey techniques including village meetings with semi-structured discussions collecting 

basic data on ethnicity, education, wealth, infrastructure, distance to markets, cropping 

and livestock feeding systems, boundary conflicts, historical changes in land use and 

collaborative management agreements (McCracken et al. 1988). Scoring exercises were 

used to gauge and understand people’s perceptions on the relative importance of 

agricultural land and forest (see Sheil and Liswanti 2006 for a review and discussion of 

these methods). We conducted the exercise separately with groups of men and women 
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volunteers in each village. Villages identified different land and forest types. For 

comparison among villages, we aggregated the scores into two classes: agricultural land 

and forest. Informal conversations with villagers during our stay in each village (3 days) 

allowed us to cross-reference information gathered during the more formal meetings. We 

also conducted semi-structured interviews with UWA personnel based at Mt Elgon. 

 

2.3.4. Data analysis 

To analyse changes in forest cover against local population and livelihoods data, their area 

of influence had to be determined. We drew a 2 km wide zone parallel to the boundary 

(after excision) inside the protected area. This captured the area where the initial wave of 

encroachment for agriculture took place in the 1970s and 1980s (Hamilton 1985 and this 

study), while at the same time avoiding much of the upslope cloud cover and bamboo 

areas, which experienced natural death and regrowth during the study periods. All villages 

around the park boundary are adjacent, and the areas they use in the forest overlap (Scott 

1994a). Traditional clan boundaries, corresponding to historical use zones in the forest, 

did not apply during the land rush that took place during the 70s and 80s (villagers, 

personal communication). As it was not feasible to exactly delimit their area of influence, 

we assigned each study village an area using the Euclidean allocation tool in ArcGIS 10, 

which allocated each cell in the buffer zone to the nearest sample point (Figure 2.1). 

Forest cover change is expressed as a net % change between end and base year (positive = 

net gain, and negative = net loss). The three periods are: 1973-1988, 1988-2001 and 2001-

2009. The % change is then converted to an annual rate of change (assuming a simple 

linear rate). 

Rate of change (%) in region a: Ra= (100 × (Fa2-Fa1) / Sa) / (t2-t1) 

Where Fa1 is the area of forest in region a at time t1, Fa2, the area of forest in region a at 

time t2, Sa the area of region a, t1 the base year and t2 the end year of the period. 

Remaining areas of cloud cover that could not be filled with other images were removed 

from all dates. 

 

We used inter-battery factor analysis (Tucker 1958), also known as principal component-

based coinertia analysis (Dray et al. 2003) to investigate the relationships between two 

groups of variables. The first group included the livelihood variables, population density in 

1969, population density change between 1969, 1991 and 2002 and scores for forest or 

agricultural land types. The second group consisted of the forest cover and forest cover 

change rates. Inter-battery factor analysis was chosen instead of canonical correlation 

analysis, because of the small number of villages (14) compared with the number of 

variables (31+7). Inter-battery factor analysis searches for normalized linear combinations 
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of the variables in each set, such that their covariance is maximized. The statistical 

significance of the relationship was tested using Monte Carlo permutation (999 

permutations). The results are presented in a biplot with arrows and points for variables 

and villages (Gabriel 1982). We focus on the correlations between the two sets of 

variables – livelihoods and forest cover – and also show the variation of livelihood 

variables among villages. All variables were standardized to zero mean and unit variance. 

The analysis and statistical test were carried out using the R-package ade4 (Dray and 

Dufour 2007) and the graph was made with Canoco for Windows (ter Braak and Šmilauer 

2002). We tested for differences in forest cover change between villages with and without 

collaborative management agreements separately using non-parametric Mann-Whitney U 

tests in the SPSS software package (IBM SPSS 18).  

 

2.4. Results 

2.4.1. Forest cover change on Mt Elgon, Uganda 

In the north and northeast of Mt Elgon around 50 km2 of forest had already been cleared 

before 1973, around the plantations and on the northern edge of the reserve (NF-NF in 

Figure 2.3). Between 1973 and 2009, patterns of forest loss and recovery in the protected 

area varied considerably among locations (Figure 2.3 and Table 2.2). The annual average 

forest loss and recovery rates in the forest zone for each period are summarized in Figure 

2.4. During the 1970s and 1980s, more than a quarter of the remaining forest cover in the 

forest zone was lost, at a rate of almost 12% per year (F-NF in Figure 2.3 and Figure 2.4). 

Between 1988 and 2001, many formerly-encroached areas on the western side started 

recovering (NF-F in Figure 2.3). Overall annual rates of forest recovery (6%) compensated 

new losses (4.5%) past the officially mapped 1993-boundary in the Benet resettlement in 

the north (Figure 2.3 and Figure 2.4). Recovery continued in many places of the northwest 

and west between 2001 and 2009, but the trend was reversed to the southwest of the 

mountain. The changes seen on the higher slopes reflected natural bamboo dying and its 

regeneration (Figure 2.3). 

  



Chapter 2 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Forest cover on Mt Elgon, Uganda in 1973, 1988, 2001 and 2009 derived from 

classification of Landsat satellite images (see text for details and accuracy of the methods 

employed). Transitions at higher altitudes are related to die-off and regrowth of bamboo areas. 
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Figure 2.4. Annual average rates of forest loss (negative rates) and recovery (positive rates) on Mt 

Elgon, Uganda during three time periods between 1973 and 2009.  

 

 

Table 2.2. Forest cover, proportion of forest cover and forest cover change for the study villages. 

 

Forest cover  

(km
2
) 

 Forest cover 

(%) 

 Rate of forest cover change 

(%/y) 

Village 1973 1988 2001 2009 1973 1988 2001 2009

1973-

1988 

1988-

2001 

2001-

2009 

1 7.9 5.3 6.2 3.0 79 53 62 30 -1.7 0.7 -3.9 

2 21.8 12.4 17.8 7.8 95 54 78 34 -2.7 1.8 -5.5 

3 15.3 8.0 11.9 10.3 95 50 74 64 -3.0 1.9 -1.2 

4 20.2 10.2 13.0 9.6 97 49 62 46 -3.2 1.0 -2.0 

5 17.8 8.2 10.9 12.0 87 40 53 59 -3.2 1.0 0.7 

6 16.7 2.7 5.1 5.1 94 15 29 29 -5.3 1.0 0.0 

7 8.9 0.6 0.5 1.5 93 6 5 16 -5.8 0.0 1.3 

8 7.9 3.6 4.6 4.1 96 44 56 49 -3.5 0.9 -0.8 

9 27.9 7.1 17.8 23.6 96 24 61 81 -4.8 2.8 2.5 

10 24.7 13.0 11.1 14.8 92 49 41 55 -2.9 -0.6 1.7 

11
a

22.9 20.9 5.4 3.5 96 87 23 14 -0.6 -5.0 -1.0 

12
a

21.8 14.5 14.1 17.7 84 56 54 68 -1.9 -0.1 1.7 

13
a

9.1 0.7 2.5 1.6 52 4 14 9 -3.2 0.8 -0.6 

14
a

27.9 17.0 17.8 19.3 75 46 48 52 -1.9 0.1 0.5 
a

 Sabiny dominated villages, the others are Bagisu dominated. 
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2.4.2. Population, local livelihoods and forest cover  

The area cleared under the resettlement exercise is not included in the following results as 

it is formally outside the protected area (Figure 2.1). From here we focus on the 2 km 

study zone as described in the methods. 

 

Livelihood variables (Appendix 2.C), including population (Table 2.3) and forest cover and 

cover change were significantly correlated (permutation test based on inter-battery factor 

analysis, p = 0.017). A biplot (Figure 2.5) summarizes the correlations between the 

livelihood variables and forest cover and cover change, as well as the variation in the 

livelihood variables among the villages (see also Table 2.4).  

 

The first (horizontal) component represents 57% of the sum of squared correlations and 

the second (vertical) component 23%, together 80%. The third component is not shown as 

it adds only 13%. The first component largely characterizes the two main land use systems 

(Figure 2.5): on the left hand side, maize-based villages, for both cash and staple, with 

pastures and high scores for forest and, on the right hand side, older coffee-based villages, 

with banana or maize as a main staple and high scores for agricultural land and high 

population density. Maize-based villages were poorer with a larger proportion of thatched 

roofs, using mainly pasture and the forest as a source of fodder (Table 2.4). Villages with 

coffee as the main cash crop had access to formal credit and were generally wealthier 

with more metal roofs and planted grass to feed their mainly stall-fed livestock (Table 2.4). 

Component two is associated with accessibility expressed by distance to roads and 

markets, better education and the estimated number of tree species planted in the village 

(Figure 2.5).  

 

In 1973 forest cover was still high even in the densely populated areas on the western and 

south-western slopes (Table 2.2, Figure 2.5). However, between 1973 and 1988 most 

forest was cleared near these densely populated, older, wealthier and coffee-(banana)-

based villages (Figure 2.5). Population increased a great deal in maize-based villages 

during this period (Figure 2.5), as immigrants were attracted to the resettlement and 

plantation areas (Villages 11 and 13) (Table 2.3). This did not significantly affect forest 

cover near the still forested resettlement area as loss inside the new boundary was limited 

(Figure 2.5). Between 1988 and 2001 however, population continued to increase in the 

resettlement area and forest was cleared beyond the intended boundary (Figure 2.3 and 

Figure 2.5). While in 2001 forest cover had somewhat recovered in coffee- based villages, 

it was cleared again in the south (Villages 1 till 4) between 2001 and 2009 (Figure 2.5). 
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During this period, recovery continued in coffee-banana villages, especially those with 

more educated people (Figure 2.5). 

 

 

Figure 2.5. Results of the co-inertia analysis of livelihoods variables, population and forest cover and 

cover change with villages (numbers). Forest cover and forest cover change variables are indicated 

with the abbreviation FC, followed by a shortened year or period indication (e.g. FC73 or FC7388). 

Population density is indicated with “pop” followed by the year (e.g. pop1969) or the period (e.g. 

pop0109). In the plot the forest cover arrows point - from their average value - in the direction of 

their steepest increase and their lengths express the displayed variance in forest cover. Less than 

average values, in particular negative change (loss) in forest cover between dates can be obtained 

by extending the arrows beyond the plot origin. The approximate correlation between the variables 

and forest cover or cover change can be read by projecting the variables onto the line overlaying the 

FC arrows. The absolute value of the inferred correlation is proportional to the distance of the 

projection point from the plot origin. The correlation is positive if the projection point is on the same 

side of the origin as the arrow-head and negative otherwise. The approximate ranking of the values 

of variables in villages can be read by projecting the villages onto the imaginary line running through 

the variable point and the origin of the plot. Villages 1-10 are Bagisu and villages 11-14 are Sabiny 

dominated. 
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Table 2.3. Population, population density and proportion of immigrants in the parishes where the 

study villages are located. 

  Population numbers  

Population density 

(/km
2
)  

Immigrants 

(%) 

Parish  1969 1991 2002  1969 1991 2002  2002 

1  5415 11420 17126  242 511 766  0.53 

2  5167 7317 10127  322 456 631  0.36 

3  1922 3293 4444  314 539 727  0.20 

4  3058 4398 7967  259 372 673  0.26 

5  5165 8093 16145  374 587 1170  0.52 

6  2967 5564 8651  247 464 721  0.34 

7  4418 9966 18244  316 714 1307  0.87 

8  7279 9723 13581  335 448 625  0.61 

9  5837 8633 11245  369 546 712  0.77 

10  2101 2393 2758  314 358 413  0.26 

11  284 5268 16682
b
  10 188 448  2.11 

12  1809 2935 4336  211 342 506  0.74 

13  781 1998 3082  62 158 244  3.54 

14  1194 2277 3575  125 238 374  0.56 
b
 The enumeration area for this parish in 2002 is larger than in previous years as it included a new area of temporary 

resettlement inside the official boundary and data on the split of population between old and new parish boundaries was 

unavailable. Adding this area and assuming no-one lived there in 1969 and 1991 would reduce population densities in those 

years by 25% but is not realistic. People were living inside the forest at low densities but not necessarily “counted”. 

 

 

Table 2.4. Values for livelihoods variables per group of villages. 

 Coffee  

 

Variables 

Banana 

(n=7) 

Maize 

(n=4) 

Maize 

(n=3) 

Age of the village (years) 148 107 44 

% people with a metal roof 0.7 0.9 0.3 

Distance to the nearest road (km) 6.2 2.9 6.4 

% of people with no education 13.1 19.7 24.3 

% of people with secondary or higher education 0.2 0.3 0.1 

Average area of land (acres) 1.7 1.3 0.9 

Average number of livestock (equivalents) 1.2 1.5 1 

Fodder: planted grass ++ + - 

Fodder: forest + - ++ 

Access to formal credit + + - 

Number of tree species planted in the village 5.4 4.0 2.0 

Forest scores 36.4 36.6 59.5 
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2.4.3. Collaborative management 

Of the 14 study villages, five had a resource use agreement in 2009-2010 (Villages 6 and 9-

12). Informants in four of the villages with no agreement said that having an agreement 

would enable them to access resources without conflict with UWA (village meeting). The 

main reason cited for not renewing past agreements (Villages 2 and 4) or refusing any 

form of agreement (Villages 1 and 13) were the villager’s own feelings of entitlement to 

access and their resentment with the park authorities concerning boundary conflicts. 

Forest recovery near villages with an agreement, tended to be higher (+1%/y on average) 

than in those without (-1.6%/y on average) (U=34, n = 13, P = 0.045). We found no 

significant (p < 0.05) relation between the presence of a resource use agreement and the 

first two components of the inter-battery factor analysis.  

 

2.5. Discussion 

In the following discussion we first review the quality of the cover data and analyses. Then 

we examine how the contexts that characterised each study period influenced how drivers 

such as population, wealth, market-access and commodity prices impacted on forest 

cover. Finally, we summarise our findings and their implications for improving 

conservation effectiveness. 

 

2.5.1. Forest cover change mapping on Mt Elgon, Uganda 

We achieved high overall classification accuracies (91 - 95%), which was aided by using 

broad aggregated cover classes (Appendix 2.B). The kappa coefficient has been widely 

criticized (Foody 1992, Pontius 2000). We therefore calculated an alternative classification 

error measure that combines pixel quantity and quality errors, as proposed by Pontius and 

Millones (2011). Because we compared net forest cover over time, errors in the location 

of forested pixels were less important than errors in total quantity of forest at our four 

image dates. Quantity disagreement between our images and the reference data was 

small (1-8%). The 1973 and 1988 maps combined the highest quantity disagreement (5% 

and 8% respectively) and the least allocation disagreement (0% and 1%), which consisted 

mainly of forest pixels being classified as non-forest. This is because the reference maps 

for those years had lower resolution (were more “generalized”) than the image 

classification. For the same reason, the user accuracy was lower for non-forest than for 

forest in 1973 (69%) and 1988 (77%).  

 

Any study such as ours, based on widely spaced images from distinct sources, has a limited 

ability to examine the finer details of landscape change. The study of change dynamics on 

Mt Elgon would benefit from the use of a more regular time-series, fuzzy sets and 
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continuous mapping instead of discrete classes as used in this study (see e.g. Woodcock 

and Gopal 2000, Southworth et al. 2004, Southworth and Gibbes 2010, Hartter et al. 

2011). The extended time intervals between our images likely obscures a more fluctuating 

and dynamic pattern of forest loss and recovery than we can observe from our data. 

Recurrent cloud cover prevented a more frequent time-series. Study areas 3, 4 and 8 were 

most affected by cloud and cloud shadow cover on deforested areas (Figure 2.3), and 

cloud cover was most important in the 1988 image. This may have caused an 

underestimation of forest loss in these areas, but it did not affect overall patterns (see 

Table 2.2). In all other areas, clouds were concentrated at the upper forest boundary (see 

e.g. Foody and Hill (1996) on using ancillary information to aid classification 

interpretation). Moreover, the deforestation results (30%) for the first period (1973-1988) 

of our study are comparable with those found by van Heist (1994), who reported that 28% 

of the forest on Elgon, Uganda had been encroached in 1989/90, and Otte (1991), who 

found that by 1985 30% of the forest on the western slopes had been cleared for 

agriculture. An overview of the main contexts and factors that affected forest cover during 

the study periods in the different areas of Mt Elgon is provided in Figure 2.6 and discussed 

below. 

 

2.5.2. Population, wealth and agricultural expansion 

The forest inside the reserve boundary was largely intact on the southern and western 

sides of the mountain until the mid-70s (Otte 1991, Scott 1998) (see also Figure 2.3). The 

breakdown in law enforcement of the 1970s and 1980s led to a de facto free access to 

most forests in Uganda and widespread encroachment into forest reserves (Turyahabwe 

and Banana 2008). Our data indicates that relatively wealthy people with strong 

agricultural traditions and high population density were more likely to clear forest for 

agriculture compared with their neighbours who were poorer and less densely settled 

(Figure 2.5). In an older study, Scott (1994a) also found that wealthier, more educated 

households on Mt Elgon consumed more forest products than poorer households. 

Moreover, a recent study of 8000 households in 40 sites across the tropics, relating 

poverty and the environment, suggests that wealth rather than poverty drove faster 

deforestation (CIFOR 2011). A combination of other factors added to the drive for 

agricultural expansion on the western slopes during this period. In 1979, Bagisu who had 

been progressively migrating into Sabiny areas were violently evicted and on returning to 

their home areas exacerbated pressure on land (Scott 1998). Also, despite a rise in prices 

(Figure 2.6), returns from coffee in the early 1980s were poor because of the collapse of 

the main cooperative (Table 2.1), which led to a diversification of cropping systems and 

additional demands for land (Bunker 1987). Only seasonal crops were planted inside the 
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reserve due to the risk of eviction and crop slashing by UWA (local villagers, 2009, 

personal communication).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Forest cover over time in the entire forest zone of the park and in the coffee-based and 

maize-based study villages (2 km zone) and coffee prices. We separated forest cover for villages in 

the south to illustrate the difference with other coffee-based villages in the latest period. In the top 

rectangle are contexts and drivers that contributed to forest conservation in each period, while the 

lower rectangle lists contexts and incentives for forest clearance. Forest cover prior to 1973 was 

estimated based on 1967 topographic maps. Coffee prices to growers were corrected for inflation. 

 

2.5.3. Law enforcement and coffee prices 

Otte (1991) predicted that Mt Elgon’s forests would be entirely cleared by 1990. However, 

between 1988 and 2001 the forest near densely populated coffee growing areas showed 

signs of recovery (Figure 2.3). Increased law enforcement and the change in status to 

national park coincided with the coffee-price boom in 1994-1995. Under a liberalized 

market (Table 2.1 and Figure 2.6), Bussolo et al. (2007) found that in other coffee 

producing districts in Uganda, gains from the coffee boom helped farmers diversify their 
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agriculture and start other activities that helped them cope with later price drops. In 

Village 9, local informants said that after eviction, they decided to concentrate on their 

existing land outside the park, which was made easier because of good returns from 

coffee (local villagers, 2010, personal communication). Contrary to the previous period, 

this time high returns from coffee, followed by diversification during a subsequent time of 

low prices, did not lead to expansion into the protected area. Conversely, law 

enforcement did not have the same effect in the Benet resettlement scheme where 

conflicts about the boundary were associated with continued forest loss.  

 

2.5.4. Commodity markets, collaborative management and elections  

From the early 2000s, stiff competition among coffee buyers drove local prices upwards 

again (Figure 2.6). During the same period (2001-2009) coffee growing areas in the 

southwest (Villages 1 and 2) where forest had previously recovered, now showed 

important new losses (Table 2.2). According to local informants in these villages, 

government-promoted vanilla and chilies replaced coffee when prices went down around 

2000 (Figure 2.6). They also felt that their coffee bushes were old and unproductive and 

the proximity of the Kenyan border provided ready markets for seasonal cash crops such 

as onions and maize (villagers, 2009, personal communication). Increased demand from 

Sudan and Kenya caused maize prices in Uganda to double between 2008 and 2009 (IFPRI 

2009). In Kenya maize is the main staple but crop failures and political turmoil caused 

shortages.  

 

Although the area near Village 10 has also known long standing boundary conflicts that 

have precluded any forest recovery (Figure 2.3), conflicts between local communities and 

park management over boundaries were more marked in the south (R. Matanda, 

Community Conservation Warden Mt Elgon National Park, 2009, personal 

communication). These conflicts were mainly fuelled by political interference during 

parliamentary election campaigns in 2001 and 2006 (Norgrove and Hulme 2006 and 

villagers, 2009, personal communication). The protected area is large - 1120 km2 and 288 

km of boundary - with limited staff (187 armed personnel in 2010, A. Bintoora, 

Conservation Area Manager, 2010, personal communication) and law enforcement alone 

cannot stop people encroaching into the park (Norgrove and Hulme 2006). Interactions 

between local people and park rangers were often negative, but seemed less so in villages 

with collaborative management agreements. This was observed by Sletten (2004), local 

rangers, villagers (2009-2010, personal communication) and M. Sassen (2009-2011, 

personal observation). We found that study villages with agreements tended to have 
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better forest recovery. Nevertheless, cause and effect are hard to determine as 

agreements can only be implemented effectively with willing communities.  

 

In non-coffee growing areas of the north, people gave high scores to the forest compared 

with agricultural land, yet forest clearing remained important (Figure 2.6). Government 

decisions to remove people from the forest led to a sense of alienation and to the 

disappearance of local forest management institutions (Scott 1998, Turyahabwe and 

Banana 2008 and local informants Village 14, 2009, personal communication). Cutting 

down or burning trees also maintains accessible pasture on the edges of the park (M. 

Sassen, 2009-2011, personal observation), as people lost access to traditional grazing 

areas inside the forest when the national park was created. Most villages in the north 

remain dependent on the forest for wood products because of a lack of alternatives and 

demand is likely to grow as population is increasing at an average rate of 4.3% per year 

(Kapchorwa District 2007). During the most recent study period however, clearing seemed 

to have slowed (Figure 2.6). 

 

2.5.5. Lessons for conservation and development 

Studies in Indonesia have shown negative impacts of rising coffee prices on forest 

conservation (as in this study’s first period) and that effective law enforcement can reduce 

these impacts (O’Brien and Kinnaird 2003, Gaveau et al. 2009). With our study we add to 

the evidence that as long as law enforcement is effective and conflicts with park 

management are minimized high prices for coffee alone do not lead to forest 

encroachment. The intensity of conflicts between communities and authorities seems 

strongly dependent on politics as a process. In fact, Banana et al. (2010) identified political 

interference as a major obstacle to forest conservation in East-Africa.  

 

The choice of cash crop by local farmers is strongly dependent on history, national policy 

incentives and regional market factors. In their study of factors driving Tanzanian farmers 

to expand into the forest, Angelsen et al. (1999) found that apart from population growth, 

agricultural product prices explained most of the deforestation in their model. This was 

particularly the case for non-permanent crops. In southern villages on Elgon, the returns 

from illegal cultivation of seasonal crops inside the park seemingly outweigh the risk of 

eviction for some farmers. In these places, people are especially sensitive to (and 

encouraging for) campaigning politicians, fuelling rule defiance and conflicts in their 

search for local votes. In the traditionally less densely populated areas, changes in 

agricultural lifestyles and increasing populations lead to new demands for land (Scott 
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1998). Efforts to mitigate these effects should come from both from policy and park 

management (see also Struhsaker et al. 2005).  

 

As in our study, a number of recent meta-analyses support the view that collaborative 

management can benefit local people and improve conservation outcomes (Persha et al. 

2011, Porter-Bolland et al. 2011). But conflicts need to be resolved. Attempts by park 

management to include local politicians in public discussions about conservation with local 

communities may help to strengthen governance of forest use (A. Bintoora, Conservation 

Area Manager, 2011, personal communication). A carefully selected combination of 

incentives for conservation as well as disincentives for encroachment is likely to be most 

effective. These must be tailored and kept updated to address local contexts and can 

include measures for the promotion of agroforestry or conservation-related certification 

or fair trade schemes. The Mount Elgon Regional Conservation and Development Project 

(MERECP), has recently supported payments to local communities to avoid deforestation 

and restore forest inside the park (LVBC 2009). This adds another potential lever with 

which those concerned with conservation outcomes might seek to improve effectiveness. 

In the longer term local interventions may be inadequate if wider regional pressures and 

contexts do not provide sufficient support. In any case conservation outcomes require us 

to consider a wide range of factors operating at different scales but determining local 

choices.  

 

2.6. Conclusions 

The role of protected forests as providers of ecosystem services and products is 

threatened by deforestation and forest degradation. Mt Elgon presents an opportunity to 

unravel the effects of changing political, institutional and socio-economic factors on forest 

loss and recovery in a protected area over an extended period of time. Protected areas are 

spatially and socially heterogeneous (see also Nagendra et al. 2010) and population or 

poverty alone did not explain the patterns we observed. The motivation for people to 

encroach into a park is dependent on the balance of factors that originate at larger scales, 

such as policy, commodity prices, law enforcement and political interests. It is the context 

under which underlying drivers such as population, wealth and market access operate and 

influence local drivers, rather than these drivers per se, that influences the way they 

impact forest cover. Even when actively policed, boundaries are easily encroached when 

other factors allow and even encourage it. Understanding the changing contexts and 

multiple influences that determine which drivers impact local choices and subsequent 

forest cover changes in any given time and place will help identify interventions that yield 

better forest protection, while also supporting local needs and development.  
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Abstract 

We investigated how local scale variation in human impacts influenced forest structure 

and tree species richness within Mt Elgon National Park, Uganda. We assessed basal area 

(BA), stem density, diameter at breast height (dbh) and indicators of human activity in 343 

plots in four study sites, on transects running inwards from the boundary of the park. Mt 

Elgon hosts the only remaining natural forest in a densely populated region (150-1000 

p/km2). All study sites suffered past encroachment for agriculture and were in various 

stages of recovery or renewed-clearing at the time of the study. Areas recovering from 

encroachment had lower mean BA (BA = 3-11 m2/ha), dbh and often also lower stem 

densities than forest that had never been cleared (BA = 21-43 m2/ha), even 35 years after 

abandonment and with restoration planting. Human impacts were found beyond 2 km 

into the park. Although most activities decreased with distance inside the boundary, their 

prevalence varied among sites. High coefficients of variation in BA (Cv = 0.8-1.1) and stem 

density (Cv = 1.0-2.2) within sites, together with the evidence of sustained human 

activities, suggest that forest use histories strongly influenced local forest structure. Mean 

BA increased with distance inside the boundary in all sites, but stem densities reflected 

more complex patterns. Large trees (dbh ≥ 20 cm) were most affected by former clearing 

for agriculture. The collection of stems used as crop-supports reduced regeneration and 

the density of smaller stems at one site. In another site, charcoal making was associated 

with the smallest mean BA and marked variability in forest structure. Grazed forest 

consisted of large trees with very little regeneration. On forest margins in two sites 

grazing, generally together with fire and tree-cutting, had eroded the forest edge and 

prevented regeneration. Human impacts as well as natural gradients had major impacts 

on species richness patterns. Several areas in intermediate states of disturbance showed 

higher tree species richness than either old-growth forest or more severely degraded 

areas. This study illustrates the fine scale variation due to local impacts within one forest. 

 

Keywords: tropical forest; forest structure; tree diversity; human disturbance; 

conservation; East Africa 
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3.1. Introduction 

Most tropical forests, even those in protected areas, are influenced by human activity 

(Olupot et al. 2009, MacKenzie et al. 2012). Harvesting of forest resources to meet 

livelihood needs can impact forest regeneration, structure and diversity (Fashing et al. 

2004, Olupot 2009), but there is scope for considerable variation with location, human 

activities and histories. To better manage forests for multiple local, regional and global 

values we need to understand human impacts and their variation at local scales. Such 

understanding is pertinent for forests managed for biodiversity conservation, catchment 

values and tourism that are increasingly considered in terms of their carbon stocks and the 

various benefits that they can provide to local people. 

 

Different types and intensities of local resource extraction can lead to varying outcomes 

even within one forest (Thapa and Chapman 2010). For example, forest grazing leads to 

different impacts than cutting timber or gathering other forest products (Fashing et al. 

2004, Vadjunec and Rocheleau 2009), and intensive extraction of certain highly valued 

species may have a greater impact on diversity than less intense forest uses (Ndangalasi et 

al. 2007).  

 

Distance from settlements is often considered as a proxy for the extent of human impacts 

on forest (Boudreau et al. 2005), but preferred forest resources may not be evenly 

distributed and differ among groups of people. Environmental gradients like elevation, 

slope, substrate and moisture can confound results based on distance. For example 

elevation is known to affect tree size and species diversity (Ghazoul and Sheil 2010), but 

human activities are also likely to be more intensive in lower elevation forest that is easier 

to access than on more remote, higher elevation sites.  

 

In densely populated landscapes remaining natural forests have generally been subjected 

to multiple human impacts. The resulting complexity and the challenge of defining simple 

cause and effect relationships may explain why these patterns have seldom been studied 

in detail. Yet the diversity in human activities and their impacts call for different 

interventions. For instance, different approaches may be required where people have long 

used forest as a source of medicinal products or foods, or as a location for cultural 

activities, than in areas where people claim forest-land for agriculture. Historical factors 

such as conflicts over boundaries may also influence attitudes and behaviours towards 

forest management (Cernea and Schmidt-Soltau 2006). 
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In this paper we investigate how use of the forest by communities on the edge of the Mt 

Elgon National Park (Uganda) has affected local forest structure and tree species richness. 

This is part of a linked series of studies that examine these forests and their relationship 

with local people. In a previous paper we have described the processes, contexts and 

drivers that led to localised episodes of forest loss and recovery over recent decades 

(Sassen et al. 2013). Here we look more closely at the nature of the resulting forests. We 

conducted a detailed comparative analysis of four study sites that vary in terms of the 

local land-use and the history of forest clearing and regeneration. We studied the 

variation of local activity and their ensuing impacts. We addressed the following 

questions: 1) How do indicators and measures of human activity vary within and among 

sites? and 2) How do forest structure and diversity vary with these indicators?  

 

3.2. Site and Methods 

3.2.1. Mt Elgon 

Mt Elgon (4321 m) is an extinct solitary shield volcano from the Miocene on the border 

between Uganda and Kenya. The top is an 8 km wide crater. The slopes are generally 

gentle until 2800-3000 m, with characteristic steep cliffs dropping down to the plains in 

the north, and some steeper slopes in the south-west. The mountain’s slopes are cut by 

river and stream valleys that run down the mountain from the caldera (Figure 3.1). A 20 

km long ridge extends towards the west (Figure 3.1). Dry north-easterly and moist south-

westerly winds determine the climate. Rain falls year-round but peaks in April-May and 

September-November. Annual precipitation is between 1500 and 2000 mm. Rainfall is 

higher on the southern and western slopes than on the northern and eastern slopes and 

most rain falls at between 2000-3000 m above sea level (Dale 1940, IUCN 2005).  

 

Mt Elgon is an important water catchment area for several million people in the 

surrounding districts, for the Nile and Victoria basins as well as Lake Rudolf through the 

Turkwell River (IUCN 2005). A belt of bamboo and afromontane forest is found at on 

average between 2000 and 3000 m, followed by heathers and high elevation moorland 

(Dale 1940, van Heist 1994). Mt Elgon is valued for its global biodiversity values (Howard 

1991). It hosts 39 endemic higher plant species as well as many species with limited 

distributions (for details see Davenport et al. 1996, IUCN 2005). Wildlife consists mainly of 

various monkeys, small ungulates and bush pig (Potamochoerus larvatus); rodents and 

birds are abundant (Davenport et al. 1996), but larger wildlife, in particular elephant 

(Loxodonta africana) and buffalo (Syncerus caffer), are found mainly on the Kenyan side of 

the mountain (van Heist 1994).  
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Figure 3.1: Map of Mt Elgon, Kenya/ Uganda and study sites. The small maps of the study sites show 

the location of the plots with a background of forest (dark) / non-forest (light) from the classification 

of a 2009 Landsat ETM+ image (Sassen et al. 2013). The locations of large (> 40 cm) cut trees and 

charcoal-burning pits encountered in the field were marked by GPS and are shown on the maps. 
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Mount Elgon National Park in Uganda (1120 km2) has a long history of human influence. As 

long as people remember, its forests provided a broad range of products and services such 

as fuelwood, medicine, food, materials for construction, grazing for cattle, cultural sites 

(e.g. circumcision rituals, burial) and shelter against cattle raiding (Scott 1994a, Katto 

2004). 

 

The slopes of Mt Elgon in Uganda are inhabited by two ethnic groups. The Bagisu, of Bantu 

origin, dominate the south and south-west since around 1500 AD. Their population 

density reaches over 1000 people/km2 in places (UBOS 2002c). They practice an intensive 

mixed agriculture dominated by coffee and banana (McMaster 1962, Kayiso 1993). 

Important forest products for the Bagisu include construction materials, bamboo stems 

and shoots and crop-supports (called “crop-stakes” from here-on) for bananas and for 

climbing beans (Sassen, unpublished data; Scott 1994a).  

 

The second group is the Sabiny, a Nilo-Cushtic group of pastoralists, settled in the north 

and north-east from the 17th century. They lived on the edges of open grassy areas inside 

the forest (called “glades”) on the higher slopes of Mt Elgon, until they were resettled 

down the mountain in the 1980s. Land for resettlement was allocated in an excision from 

the protected area, which was then still a forest reserve (van Heist 1994). The forest in the 

excised area was rapidly converted to agricultural land (Scott 1998) where people 

cultivate maize, potatoes, wheat and maintain pastures as cattle remain important. The 

Sabiny still use the forest and the glades (up to 3 km inside the park boundary) for (illegal) 

grazing, timber, medicine and wild foods (Scott 1994a, Norgrove 2002). 

 

Communities living near the park are poor and suffer land shortages; nearly all land 

directly surrounding the park is cultivated (van Heist 1994, IUCN 2005). There are no 

remnant forests within 20 km around the park and people are settled up to right next to 

the park boundary (Sassen et al. 2013). On the western and southern slopes trees are part 

of the agricultural system. They are found in combination with coffee and bananas, 

around homesteads and in valleys planted with Eucalyptus woodlots. In the north, where 

people are more recently settled, trees outside the park are scarce, particularly nearer to 

the park boundary. A few isolated former forest-canopy trees remain scattered amongst 

the fields (Sassen et al. 2013).  

 

Political instability from 1971 until 1986 was associated with widespread encroachment of 

Uganda’s forest reserves (Hamilton 1985, Turyahabwe and Banana 2008) and around 30% 

of Mt Elgon was cleared for agriculture (Sassen et al. 2013). From 1987, forest boundaries 
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were reinstated and restoration activities were started on the western slopes (UWA 

2000). The forest on Mt Elgon was first gazetted as a reserve in 1938 and became a 

national park in 1993 (Scott 1998). Since the late 1990s, Uganda Wildlife Authority (UWA), 

which manages the park, has initiated agreements with local people that allow regulated 

collection of non-timber products, fuelwood and crop-stakes from restricted non-tree 

species (Mimulopsis arborea and Vernonia spp.) (Scott 1998, UWA 2000). Although 

activities such as pit-sawing declined after the establishment of the national park (Scott 

1998), illegal resource extraction remained common at the time of our study. Law 

enforcement efforts were understaffed and overstretched but also felt that they could not 

always stop people from harvesting essential resources such as firewood (A. Bintoora, 

Conservation Area Manager, personal communication; personal observations).  

 

3.2.2. Data collection 

Four locations were selected to represent different elevation ranges and forest change 

histories. These locations are subsequently referred to as Sites 2, 9, 11 and 14 (see Table 

3.1 for site codes and corresponding villages) – these numbers are the same as those used 

in Sassen et al. (2013). The communities near Sites 2 and 9 practise intensive coffee-

banana based agriculture, while those near Sites 11 and 14 grow mainly maize and 

potatoes.  

 

Table 3.1. Study villages, land-use and history of encroachment 

  Site 2 Site 9 Site 11 Site 14 

Villages (2011) Bukuwa Kinyofu/ Gibuzale Korto/ Kamatelon Sindet/ Kapsata 

Sub-county (2011) Bupoto Masira Kwosir Kortek 

Population density 2002
a 

631 p km
-1

 712 p km
-1

 448 p km
-1

 374 p km
-1

 

Main cash crops
b
  

(% times listed) 

Onions (34%), 

cabbages (34%), 

coffee (28%) 

Coffee (69%), 

cabbages (35%) 

Potatoes (37%), 

maize (28%) 

Maize (98%) 

Main food crops
b
  

(% times listed) 

Maize (53%), 

banana (57%) 

Banana (60%), 

maize (42%),  

Maize (82%), 

potatoes (73%) 

Maize (98%) 

Mean number trees/ hh 33 27 3 8 

Collaborative management no yes no no 

Main periods of 

encroachment  

1979-1992, 

2006-2008, 

2010 

1979-1992 1990-2008 1985-1997, 

1991-1993, 

2008 (patchy) 

Restoration planting 1990s +- ++ -- -- 
a
 (UBOS 2002b, d, a) 
b
 Based on number of people listing the crop as either their first or second cash crop (so total % > 100)  
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Sassen et al. (2013) assessed the patterns of forest loss and recovery around Mt Elgon, 

including in the four study areas. They found that people near Site 9 did not re-encroach 

the forest inside the park after boundaries were reinstated and forest restoration began 

around 1990. In the other sites however, renewed clearing and recovery took place at 

different times (Table 3.1). In Site 2 most regenerating vegetation and restoration planting 

was cleared again from 2006. Forest clearing in Site 11 started in the 1990s, when a 

controversy arose about the boundary of the area excised for resettlement (see also 

Himmelfarb 2006). In Site 14, encroachment was patchier than in the other sites (Sassen 

et al. 2013). At the time of our study, the parish neighbouring Site 9 had an agreement 

with UWA to collect resources such as fuelwood, green vegetables and medicinal plants in 

limited amounts, twice a week.  

 

Fieldwork took place from November 2010 till April 2011. In each site, five parallel 

transects were laid out 400 m apart and as perpendicular as possible to the general 

orientation of the boundary while ending in relatively intact forest (Figure 3.1). The centre 

of the first plot on each transect was taken 50 m inside the park boundary and further 

plot-centres at 200 m intervals. We used a handheld GPS (Garmin 60CSx) to determine the 

position of the plot-centres along the transect line. We sampled 13 to 21 plots along each 

transect. The number depended on the travel time between each plot, which was 

influenced by terrain (e.g. obstacles) and vegetation (denser undergrowth required more 

clearing to discern the reference height of 1.30 m on tree stems). Each transect ended 

with at least two or three plots in areas that, according to our informants, were too far 

from the boundary to be used for poles and firewood. Some pit-sawing and/or charcoal 

burning would nevertheless still occur. We could not establish controls because any less 

disturbed site would not be similar, i.e. at higher elevation or less accessible. Hence we 

used distance effects to gauge impact intensity from assumed high to low. 

 

We used a relascope (horizontal point sampling) approach for tree selection and direct 

basal area (BA) estimation (Bitterlich 1984). This method allows quick sampling of many 

plots, with minimal accuracy differences compared with fixed-area plots (Piqué et al. 

2011). During the 360° sweep from each plot-centre, a tree was counted as “in” if it was 

wider than the relascope notch; borderline trees were checked with their dbh and 

distance from the plot-centre. The BA of each plot was calculated by multiplying the 

number of “in” trees with the BAF (Bitterlich 1984). Correction was later done for slope. 

Starting with the first plot, in every fifth plot after that we measured the diameter at 

breast height (dbh at 1.30 m) of each “in” tree. In these plots (referred to as “detailed-

plots”), we also used a checklist to record whether branches or stems had been cut-off 
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trees (termed “lopping”), whether the tree was alive and whether it had been planted. 

Sub-plots of 5 m diameter were used to measure stumps (< 1.30 m in height) and count 

saplings smaller than 2.5 cm dbh and between 2.6 and 5 cm, but taller than 1.30 m and 

seedlings shorter than 1.3 m.  

 

We scored each plot for signs of human activity such as trails and trampling, agriculture, 

fire (as evidenced from charring of stems and stumps), pit-sawing, charcoal burning (pits), 

pole cutting (cut stems) and other signs of wood harvesting. The collection of naturally 

fallen firewood does not leave obvious signs, but signs of wood splitting were found as 

waste or piles of split stems drying away from trails. Scores were assigned on a scale of 2 

(absent, present) or 3 (absent, present, severe) depending on the indicator (Table 3.3). 

Additionally, we recorded the location of any charcoal pits or signs of pit-sawing 

encountered while moving between plots (Figure 3.1).  

 

Tree species (standing trees and recently cut or coppicing stumps) were identified by 

cross-referencing names given by local informants and two knowledgeable rangers (one 

Bagisu and one Sabiny) with available references (Hamilton 1991, Katende et al. 2000) and 

later at the Institute for Tropical Forest Conservation (ITFC), Uganda using photographed 

specimens.  

 

3.2.3. Data analysis 

Plots were classified into four categories according to encroachment history as reported 

by local informants: c4 = currently cleared and cultivated or grazed, c3 = cleared in the 

1990s and 2000s now recovering, c2 = cleared in the 1970s and 1980s now recovering, c1 

= not cultivated within living memory (called “old-growth” from here-on). In Site 11, c2 

plots consisted mainly of plots in former settlement or grazing areas inside the forest from 

which people were relocated from halfway the 1980s.  

Due to the irregular shape of the park boundary, plot position along a transect is not the 

same as distance inside the boundary, except in Site 11 (Figure 3.1). The actual distance to 

the boundary was derived for each plot using a GIS (ArcGIS 10.0). We calculated BA and 

density of trees, seedlings, saplings and stumps per hectare for each plot. Human activities 

were gauged using stump density, lopping intensity and the activity indicators. From the 

indicators, we calculated mean scores per activity for each site but also for distance 

classes into the park (Figure 3.2). Lopping intensity was calculated for each plot as the 

proportion of trees with signs of cutting (branches or stems). 
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We used two methods to calculate species richness correcting for the unequal numbers of 

stems per plot. We used “BiodiversityR” (Kindt and Coe 2005), based on the “vegan” 

package in R (R Development Core Team 2011, Oksanen et al. 2012) to calculate rarefied 

species richness for plots with a minimum of five stems (using Hurlbert’s (1971) 

formulation). We also calculated Z = (species count) / log (stem count) per plot (all plots ≥ 

2 stems) as a measure of species richness corrected for stem density, which allows for 

smaller sample sizes (Sheil et al. 1999).  

Linear regression, analysis of (co-)variance (ANCOVA/ ANOVA) and non-parametric tests 

(Kendall’s tau-b rank correlation, Kruskal-Wallis (KW), Mann-Whitney U (U)) were used to 

investigate the relationship among forest structure, species richness, distance inside the 

boundary and indicators of human activity. There were no significant interactions among 

the activity indicators and we did not investigate how the covariates affected interactions 

between factors (Yzerbyt et al. 2004). Plots in areas that were cultivated at the time of the 

study (in Sites 2, 11 and 14), though within the national park, lacked much natural 

vegetation and we therefore also analysed the data without these areas. Statistical 

analysis was done using SPSS version 18.0 (SPSS Inc., Chicago IL). 

 

3.3. Results 

In total we assessed 343 plots, 76 in Site 2, 84 in Site 9, 101 in Site 11 and 52 in Site 14. 

Elevation ranged overall between 1911 and 2877 m above sea level but ranges also 

differed among the four sites (Table 3.2). We recorded 2722 live stems using the relascope 

method, of which 593 were measured for dbh in detailed-plots (Table 3.2). In total 61 

species were recorded, although 3 of these were only identified to family and 6 remained 

unknown. The incidence of human activity indicators per site is summarised in Table 3.2. 

 

Table 3.2. Summary of study site characteristics 

  Site 2 Site 9 Site 11 Site 14 

All plots (detailed-plots) 76 (17) 84 (20) 101 (25) 52 (19) 

Altitude range in masl 1911-2318 2152-2606 2478-2877 2238-2699 

Recorded live stems  403 553 1139  627  

Recorded tree species 39 32 17 30 

Activity indicators:     

Plots with trails 46 (61%) 78 (93%) 67 (66%) 62 (76%) 

Plots with cut stems 43 (57%) 60 (71%) 51 (50%) 35 (43%) 

Plot with split wood 14 (18%) 34 (40%) 24 (24%) 11 (13%) 

Plots with grazing 0 (0%) 12 (14%) 32 (32%) 26 (32%) 

Plots with cultivation 19 (25%) 0 (0%) 30 (30%) 5 (6%) 

Plots with fire signs 6 (8%) 7 (8%) 3 (3%) 26 (32%) 

Plots with charcoal pits 12 (16%) 3 (4%) 0 (0%) 0 (0%) 

Plots with pit-sawing 0 (0%) 4 (5%) 2 (2%) 0 (0%) 
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3.3.1. Disturbance 

Activity indicators 

Figure 3.2 summarises the scores for the human indicators per site (a) and with distance 

inside the boundary (b).The types and degrees of disturbance varied within and among 

sites (Figure 3.2.a), and indicators of human activity extended more than 2 km from the 

boundary into the park in all study sites (Figure 3.2.b). Site 9 scored highest on cut stems 

and split wood (Figure 3.2.a). In Site 11, all plots in the first 1000 m along the transects 

were cultivated or grazed (Figure 3.2.b).  

 

Signs of disturbance tended to decrease with distance inside the boundary, with variations 

per site and activity (Table 3.3). Plots that were cultivated at the time of the study were 

excluded from the test as agriculture dominated all other impacts. Trails continued into 

the forest beyond our last plots at all sites. Plots that scored high on trampling were closer 

to the boundary than plots with no trails or intermediate scores (Table 3.3). Except in Site 

11 where wide and well-worn trails were found up to the former settlement and grazing 

areas at around 3000 m from the boundary (Figure 3.3). Plots nearer the boundary tended 

to score higher for cut stems (Figure 3.2.b, Table 3.3). Split wood drying in the forest was 

widely observed in Site 9, but it decreased with distance inside the boundary in the other 

sites. This decrease was significant in Site 11 and 14 (Table 3.3). In Site 2 and 11, signs of 

fire occurred mostly on the edge between cultivated areas and forest at around 500 m 

and 1000 m inside the boundary respectively (Figure 3.2.b), whereas in Site 14, they were 

found in grassy areas scattered among degraded patches of forest or bush at varying 

distances up to 1500 m from the boundary (Table 3.3). In Site 2, charcoal-burning was an 

important activity and (old) pits were observed at almost all distances (Figure 3.1 and 

3.2.b, Table 3.3). Pit-sawing tended to occur further away from the boundary, although 

the relationship was not significant (p < 0.05) (Figure 3.1 and 3.2.b and Table 3.3). 
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Table 3.3. Kruskall-Wallis or Mann-Whitney U tests for the relationship between distance from the 

boundary and activity indicator scores per plot (currently cultivated areas were omitted). 

 

Trails and 

trampling Cut stems 

Wood 

splitting Grazing Fire Charcoal Pit sawing 

Site 2 

df 2 2 2  1 2  

KW/ U* 14.5 14.7 2.5  15* 0.06  

n 57 57 57  57 57  

p 0.001 0.001 0.286  0.001 0.973  

Site 9 

df 2 2 2 1 2 2 2 

KW/ U* 7.5 7.0 4.1 171* 5.7 2.1 4.9 

n 84 84 84 84 84 84 84 

p 0.024 0.030 0.126 0.001 0.057 0.343 0.085 

Site 11 

df 2 2 2 1 1  1 

KW/ U* 13.4 16.3 13.0 316* 9*  85* 

n 67 67 67 67 67  67 

p 0.185 0.000 0.002 0.005 0.039  0.499 

Site 14 

df 2 2 1 1 2   

KW/ U* 37.1 14.5 59* 129* 0.7   

n 61 61 61 61 61   

p 0.029 0.001 0.000 0.000 0.688   

 

 

 

Figure 3.3: Main trails in Site 9, 14 and 11. Note the scale in relation to the human figures in Sites 11 

and 14. The photo in Site 9 is at a similar scale. The trails in Site 11 and 14 are used by cattle. 
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Lopping and stumps 

Remnant trees in cultivated areas often showed signs of lopping: they had cut-off 

branches or stems. Overall, lopping decreased with distance inside the boundary 

(Kendall’s tau-b = -0.472, n =49, p < 0.000), and was most common in Sites 9 and 11 

(Figure 3.4).  

 

 

Figure 3.4. Lopping intensity (% trees with cut- off branches or stems per plot) and distance inside 

the boundary. 

 

No stumps were recorded within 400 m from the boundary (Figure 3.5). In Site 9 we found 

at least one stump per plot in eight of our plots (40%), all more than 800 m from the 

boundary. This represented a mean density of 504 stumps per ha. In this site 45% of all 

stems had been cut, but 63% of the stumps (16) were re-sprouting. Stump density in Site 9 

decreased with distance inside the boundary (Figure 3.5), but the data were too sparse for 

this to be statistically significant. Stems with diameters commonly used as crop-stakes (3 – 

15 cm) were cut more often than larger ones: their stumps represented 49% of all 

recorded stems in Site 9.  

 

In the other sites, we found only one stump in each of 2 plots in Site 2 (12%), in 1 plot in 

Site 11 (4%), and in 2 plots in Site 14 (11%). This represented a proportion of cut stems of 

16 % in all three sites. The cut stems observed in Sites 2 and 11 were more than 15 cm in 

diameter. In Site 2 stumps were observed mostly in open places in the forest, associated 

with signs of past pit-sawing or charcoal-burning.  
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Figure 3.5. Stump density (number.ha
-1

) and basal area (m
2
.ha

-1
) in Site 9. 

 

3.3.2. Impacts of human activities 

Impacts of human activity were assessed for BA, stem density, tree regeneration and 

species richness.  

 

Basal area 

Mean BA in the most intact vegetation type was different among sites (Kruskal-Wallis: 

KW= 50.5, n = 147, p < 0.001). Pairwise comparisons revealed that BA was significantly 

larger in Site 11 compared with all other sites (Table 3.4). BA per hectare increased 

significantly with distance inside the boundary in all sites (linear regression: Site 2: adj R
2
 = 

0.49, F1,74 =71.4; Site 9: adj R
2
 = 0.54, F1,82 = 99.4; Site 11 adj R

2
 = 0.70, F1,99 = 127.7; Site 14 

adj R
2
 = 0.48, F1,80 = 75.3; p < 0.001) (Figure 3.6). As can be seen in Figure 3.6, plots in 

cultivated areas (c4), with relatively few trees, influenced the relationship between 

distance inside the boundary and BA. Excluding these plots from the analyses weakened 

the increasing trend slightly, particularly in Site 11 (linear regression: Site 2: adj R
2
 = 0.37, 

F1,55 =33.8; Site 9: adj R
2
 = 0.54, F1,82 = 99.4; Site 11 adj R

2
 = 0.19, F1,65 = 16.5; Site 14 adj R

2
 

= 0.43, F1,59 = 46.9; p < 0.001). It made no difference in Site 9 where there was no 

cultivation at the time of the study. BA in glades (Site 11), (natural) tree fall areas or 

bamboo patches (Site 2 and 9) further inside the park was lower than in other plots at 

similar distances from the boundary (Figure 3.6).  
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Figure 3.6. Basal area of all plots and distance inside the boundary per study site, coded for each 

encroachment category as: c1 = never cultivated, c2 = cleared in the 1970s and 1980s now 

recovering, c3 = cleared in the 1990s and 2000s now recovering, c4 = currently cleared and 

cultivated (2011). In Site 2, c3 plots nearer the boundary were situated on top of a wide rocky cliff 

that is kept “open” by fire (to harvest ground honey). In Site 11, the encircled plots were in or on the 

edge of traditional grazing areas inside the forest. In Site 14, grasslands, regeneration and more 

intact forest form a patchwork up to 1500 m from the boundary. 

 

The proportion of explained variation increased in all sites when activity indicators were 

included as independent variables and distance, slope and elevation as covariates (Type II 

ANCOVA: Site 2: adj R
2
 = 0.51, F13,43 =5.5; Site 9: adj R

2
 = 0.66, F17,66 = 40.6; Site 11 adj R

2
 = 

0.77, F15,54 = 16.7; Site 14 adj R
2
 = 0.63, F14,60 = 10.1; p < 0.001). The encroachment 

category had significant influence on BA per hectare in all sites (p = 0.004 in Site 2 and p < 

0.001 in the other sites) (see also Table 3.4), but the contribution of activity indicators 

varied per site. Pit-sawing (p = 0.002) and wood splitting (p = 0.004) were significantly 

related to BA in Site 9. Grazing (p <0.001) contributed to explain BA whereas the influence 

of distance became insignificant.  

 

In Sites 11 and 14 BA seemed to plateau-out at around 2000 m from the boundary, but in 

the other two sites effects continued further. Local variation of mean BA was high in Sites 

2, 9 and 14, as shown by the standard deviations in Table 3.4. 
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Tree density 

The data for tree density was not normally distributed. We therefore used rank 

correlations to analyse the relationship between tree density and distance inside the 

boundary and elevation. 

 

The density of larger trees (≥ 20 cm dbh) increased with distance inside the boundary in all 

sites (Site 2: Kendall’s tau-b = 0.547, n =16, p = 0.004; Site 9: Kendall’s tau-b = 0.526, n =20, 

p = 0.002; Site 11: Kendall’s tau-b = 0.596, n =22, p < 0.001; Site 14: Kendall’s tau-b = 

0.556, n =19, p = 0.001) (Figure 3.7). The density of smaller stems (< 20 cm dbh) increased 

with distance only in Sites 9 and 14 (Site 9: Kendall’s tau-b = 0.445, n =20, p = 0.009; Site 

14: Kendall’s tau-b = 0.396, n =19, p = 0.031). When cultivated areas (c4) were excluded 

these relationships were no longer significant. They remain valid for Site 9, which had no 

c4 plots.  

 

 

Figure 3.7: Stem densities (stems ≥ 5 cm) and distance inside the boundary per study site (detailed 

plots). Density of stems < 20 cm and ≥ 20 cm in diameter per plot, coded per encroachment 

category. The furthest plots in Site 11 were near or in traditional grazing areas.  

 

The density of larger stems was greater in areas that had been abandoned longer ago 

(Mann-Whitney U or Kruskal-Wallis tests for categories c1 till c3: Site 2: U = 8, n = 12, p = 

0.048; Site 9: U = 10.5, n = 20, p = 0.039; Site 11: KW = 10.3, n = 14, p = 0.006; Site 14: KW 
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= 13, n = 5.9, p = 0.052). In Site 11, we found more large trees in plots with signs of wood 

splitting than in plots without (Kruskal-Wallis: KW = 7.3, n = 14, p = 0.026). In Site 14, we 

found fewer large trees in plots with signs of fire than in plots without (Kruskal-Wallis: KW 

= 4.7, n = 13, p = 0.031). Relationships between tree density and other activity indicators 

were not significant.  

 

We tested if tree density was correlated with elevation outside of currently cultivated 

plots and found a negative correlation with large tree density (≥ 20 cm dbh) in Site 2 and a 

positive correlation in Sites 9 and 11 (Site 2: Kendall’s tau-b = -0.443, n =12, p = 0.046; Site 

9: Kendall’s tau-b = 0.352, n =20, p = 0.035; Site 11: Kendall’s tau-b = 0.456, n =14, p = 

0.024; Site 14: Kendall’s tau-b = 0.128 n =13, p = 0.542). 

 

Regeneration 

Densities of saplings and seedlings varied strongly (Table 3.4) and were not significantly 

correlated with distance inside the boundary. We tested for the effect of shading by larger 

trees on regeneration but found no significant correlation with BA. There was least 

regeneration in Sites 9 and 11 (Table 3.4). In Site 9 saplings were recorded only in 

regenerating areas and 86% originated from coppicing stumps. In Sites 2, 11 and 14, 

respectively 52%, 33% and 29% of all measured saplings were coppices. The greatest 

density of seedlings in old-growth forest was found in Site 14 (Table 3.4).  

 

Species richness 

We recorded the largest number of species in Site 2, and the least in Site 11 (Figure 3.8). 

We used two methods for calculating species richness, rarefaction in plots with a 

minimum of 5 stems and a Z-species richness score corrected for stem numbers that 

included plots with at least 2 stems. Differences among sites were significant both when 

using rarefied (5-stem sample) richness (Kruskal-Wallis: KW = 23.1, n = 178, p < 0.001) and 

Z-scores (all plots ≥ 2 stems) (Kruskal-Wallis: KW = 12.1, n = 243, p = 0.007). Pairwise 

comparisons revealed greater species richness in Site 2 compared with Site 11 for both 

methods. Using rarefaction, species richness was also greater in Site 14 compared with 

Site 11.  

 

Rarefied species richness: Plots with a minimum of 5 trees de facto excluded the 

cultivated areas (c4) in Sites 2 and 11 and retained only 2-3 plots in encroachment 

categories c2, c3 and c4 in all sites, except in Site 9 (Figure 3.9.a). Rarefied species richness 

was not significantly correlated with BA or tree density in any of the sites. In Site 2 rarefied 

species richness was significantly greater in old-growth forest (c1) compared with 
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regenerating areas (c3) (Kruskal-Wallis: KW = 4.7, n = 34, p = 0.031), but there was no 

correlation with elevation or distance inside the boundary. In Site 9 the only significant 

correlation was the increase in species richness with distance inside the boundary 

(Kendall’s tau-b = 0.252, n = 44, p = 0.017) (Figure 3.9). In Sites 11 and 14 rarefied species 

richness was correlated only with elevation (Site 11: Kendall’s tau-b = 0.213, n = 54, p = 

0.023; Site 14: Kendall’s tau-b = -0.181, n = 60, p = 0.043).  

 

 

Figure 3.8. Rarefied species accumulation curves per study site (in BiodiversityR, with 100 

permutations) with standard deviation. 

 

Z-scores: More plots were included in the calculation of Z-scores as these require a 

minimum of only 2 plots (Figure 3.9.b). In Sites 9 and 14, Z-scores did not show any 

significant correlations with BA or tree density. In Sites 2 and 11, Z-species richness was 

negatively correlated with BA (Site 2: Kendall’s tau-b = -0.288, n = 46, p = 0.005; Site 11: 

Kendall’s tau-b = -0.415, n = 71, p < 0.001) and in Site 11 also with tree density (Kendall’s 

tau-b = -0.617, n = 14, p = 0.003). Z-scores for Site 11 were significantly different between 

encroachment categories (Kruskal-Wallis: KW = 12.2, n = 71, p = 0.007). Pairwise 

comparisons revealed that Z-scores were smallest in old-growth forest (c1) and largest in 

regenerating areas (c3). These were located between cultivated land (c4) and old-growth 

forest (c1) in this site (Figure 3.9.b, Site 11). In Site 14, Z-species richness was significantly 

different between encroachment categories (Kruskal-Wallis: KW = 8.0, n = 60, p = 0.046), 

with more richness in intermediate encroachment categories (c3 and c2) than in old-

growth (c1) or currently cultivated plots (c4) (Figure 3.9.b), but pairwise comparisons 

between categories were not significant. In Site 14 the correlations of Z-species richness 

with distance and with elevation were identical and negative (Kendall’s tau-b = -0.180, n = 
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60, p = 0.043), whereas in the other sites correlations with distance or elevation were not 

significant.  

 

 

Figure 3.9. Mean species richness (with ± 1 standard error) per plot per encroachment category: c1 = 

never cultivated, c2 = cleared in the 1970s and 1980s now recovering, c3 = cleared in the 1990s and 

2000s now recovering, c4 = currently cleared and cultivated. a) rarefied species richness (samples of 

5 stems) and b) species richness in plots with more than 2 stems (Z = log(species count) / log(stem 

count)). n values are at the top of each bar.  
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3.4. Discussion  

The legacies of human activities observed in this study reflected both past events and on-

going processes. These showed marked local variations. Such variations have implications 

for management. Here we shall first discuss the variation in human activities and their 

impacts on forest structure. Before addressing site-specific impacts, we first discuss more 

general patterns and extents of human impacts. We then follow this with an evaluation of 

the impacts of human activities on species richness. Finally we discuss implications for 

management and propose a number of options to consider or further investigate that 

could contribute to forest conservation on Mt Elgon for both local and wider demands. 

 

3.4.1. Activities and impacts on forest structure 

Signs of human activities and their impacts remained visible over 2 km inside the park 

boundary, revealing a broader impact zone than the 900 – 1000 m estimated in Western 

Uganda by Olupot (2009). Not all signs of activity were equally prevalent in all sites or at 

all distances from the boundary, presumably reflecting varying local demands and 

practices, availability of the resource and concern to avoid detection. Some trails 

remained wide and well-worn far into the park. Such paths are important indicators of 

human activity, as was also observed on the Kenyan side of Mt Elgon, where the size of 

local trails was significantly correlated with stem and grass harvesting (Hitimana et al. 

2010). The relationship of paths with human activities was also highlighted in a study in 

Kakamega, Kenya, where evidence of pole-cutting in sites where research and 

management trails provided access (Fashing et al. 2004). 

 

Past episodes of cultivation within the park still affect forest structure gradients. BA and 

often stem densities were lower in formerly-cultivated than in old-growth forest areas, 

even where forest had been “recovering” for 35 years (Sites 2 and 9). In old-growth forest 

plots from our study we found comparable BA and stem densities to those found in 

previously selectively logged sites on the Kenyan side of Mt Elgon (Hitimana et al. 2004, 

Ongugo et al. 2008). Unfortunately there are no studies of recognisably “untouched” 

forest on Mt Elgon, if such sites exist, to compare with. 

 

Structural diversity and patchiness is characteristic for montane forests in East Africa 

(Hamilton and Perrott 1981). This means that the high local variations in BA and stem 

densities that we found in our sites (as expressed in high standard deviations, see Table 

3.4) could be natural. It is also plausible that the patterns seen by Hamilton and Perrot 

(1981) rather reflect extended human presence on most mountain forests rather than any 

natural pattern (Hamilton et al. 1986). In our sites, the known and inferred history of 
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human presence, the extent and the intensity of the signs of human activity and the 

observed overall increase in BA (all stems) and stem density (stem size ≥ 20 cm dbh) with 

distance inside the boundary, suggest that human impacts played a major role.  

 

Hamilton and Perrot (1981) also observed that, overall, tree density (stems ≥ 15 cm dbh) 

on Mt Elgon decreased up to about 2700 m elevation, which is the elevation spanned by 

our transects (except in Site 11 where they reach almost 2900 m). We found the opposite 

or no pattern in our study sites, which was likely related to previous disturbance: in all 

four sites trees with stem size ≥ 20 cm dbh were negatively affected by the concentration 

of previous clearing nearer to the park boundary. Trees on the lower rather than the 

higher slopes were therefore more affected. Logging as in Site 9 and charcoal burring as in 

Site 2 generally affect larger trees. Any such artificial reduction of large trees is a concern 

as large trees dominate forest structure and micro-climate, store considerable amounts of 

carbon and are important as habitat and for forest regeneration (Clark and Clark 1996).  

 

3.4.2. Site-specific impacts 

Site-specific histories and resource use patterns can help us to interpret our results. Sites 

2, 11 and 14 had areas in different stages of regeneration or degradation more patchily 

distributed. Therefore forest structure gradients - beyond strips of current cultivation - 

were less clearly related to distance inside the boundary in Sites 2, 11 and 14 than in Site 9 

(Figure 3.6 and 7). 

 

In Site 9, the relationship between BA, tree density and distance inside the boundary 

(largest R
2
, see also Figure 3.6 and 7) reflected a gradual change from bushy regeneration 

to more advanced regrowth to fairly intact forest away from the boundary. The dominant 

crops - bananas, coffee and climbing beans - near this site require crop-stakes. The area 

closest to the boundary in Site 9 appears to be kept in an early succession state due to 

continuous harvesting of coppice shoots and small trees to meet the demand for small 

poles. Contrary to previous observations suggesting that local forest use was concentrated 

in the regenerating areas (Scott 1998), our study revealed that impacts on regeneration 

and small stems also occurred in old-growth forest. 

 

Resource use agreements include the monitoring of resource off-take by a local resource 

use committee (UWA 2000). Yet, in Site 9, the incidence of split wood, the signs of cut 

stems, the numbers of stumps and lopped trees indicated that this was likely not entirely 

effective. Local informants in this site (Site 9) confirmed that the split fuelwood and crop-

stakes for banana that we found drying at further distances in the forest were for 
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commercial purposes (local informants and community conservation ranger, personal 

communication). 

 

The smallest mean BA and stem sizes in old-growth and regenerating forest were found in 

Site 2 (Table 3.4). The patchy structural variation of the forest was clearly seen in the high 

standard deviations of stems densities and BA (see Table 3.4). There were many clearings 

in the forest, some were likely natural, but charcoal pits were found in 16% of the plots 

while many others were encountered while moving between the plots (Figure 3.1). 

Charcoal production removes larger trees than are taken for firewood or for poles (Girard 

2002) – this creates larger openings. The local importance of charcoal-burning in this area 

is consistent with previous findings (Scott 1994a). Conflicts between local people and park 

management were high in this area of the park (Site 2), which may have encouraged 

destructive behaviours and illegal activities (Sassen et al. 2013). 

 

In Sites 11 and 14, cattle appeared the main control of regeneration. Cattle are important 

to the local economy is these sites (Table 3.1) and law enforcement has been unable to 

prevent grazing inside the park. In Site 11, forest structure data exhibited patterns typical 

for a grazed forest: open forest with little regeneration and the maintenance of grassy 

glades (Reed and Clokie 2000). Grazing on either side of the forest edge in combination 

with tree-cutting for firewood appear the main forces keeping these areas open and 

eroding the forest edge.  

 

In Site 14, the combination of fire and grazing hindered regeneration in formerly 

cultivated areas. Fire is also used to help harvest ground honey, an important forest 

product. However, we found fewer signs of grazing in old-growth forest (although 

sometimes burn scars) in Site 14 than in Site 11 which could help explain why 

regeneration seemed better in this site.  

 

Aside from grazing and fire other signs of human use in Sites 11 and 14 were less 

prevalent than in Sites 2 and 9, possibly because of lower demands due to lower 

population densities. We note that the crops grown in Sites 11 and 14 (cereals and 

potatoes) do not require crop-stakes – thus limiting demand for small poles. However, the 

human population is growing fast (2.5 - 4.3% (UBOS 2002a, b, d)) which may lead to 

increased demand for wood products such as poles for construction and firewood. People 

in Sites 11 and 14 had fewer trees planted on their land that could provide alternatives for 

wood resources from the park (see trees per household in Table 3.1). 
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3.4.3. Patterns of species richness 

Our results suggest human impacts have affected tree species richness on Mt Elgon. We 

discuss our results in light of existing theories of natural patterns of species richness on 

mountains. Among our four study sites, and consistent with previous observations 

(Hamilton and Perrott 1981, Rahbek 1995), overall plot level tree species richness 

decreased with elevation. The highest mean number of tree species per plot was found in 

Site 2 and the lowest in Site 11 – the lowest and highest elevation sites respectively. 

Looking only at plots in old-growth forest Site 11 was also less diverse than the other sites 

(Figure 3.9). 

 

There are multiple theories concerning natural patterns of species richness on elevational 

gradients and their determinants (Ghazoul and Sheil 2010). On mountains, area effects 

have been shown to affect species richness patterns (Romdal and Grytnes 2007, McCain 

2009). Many studies indicate a so called “mid-domain effect” (MDE) in which species 

richness increases and then declines with increasing elevation and that can be seen as a 

natural consequence of species range patterns and elevation limits (Colwell and Hurtt 

1994, Cardelús et al. 2006). This theory has been challenged by empirical research (e.g. 

Kessler et al. 2011). The relative importance of different factors such as the MDE, climatic 

and topographic factors likely depends on climatic histories, taxa (Grytnes and Beaman 

2006, Acharya et al. 2011) and on spatial scale (Colwell et al. 2004).  

 

As in our case, localised studies may only span a portion of the available elevation 

gradient. Our plots started above 1900 m and the highest elevation 2877 m was well 

below the treeline at around 3200 m. At our four sites, we sampled only a section of the 

forest -range so it is unremarkable that we did not see the humped-shaped elevational 

gradients of species richness either within the individual study sites or among them. 

Historical disturbances might in any case strongly influence these theoretical patterns. 

This indeed seems to be reflected by the complex site-specific patterns at each of the four 

study sites.  

 

There has been much work on the impacts and influences of disturbance and disturbance 

regimes on the diversity of tropical forests. For example the intermediate disturbance 

hypothesis suggests that disturbance of old-growth forest can lead to enrichment through 

the addition of early successional species, but that excessive disturbance can lead to a 

decline (Sheil and Burslem 2003). 
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We discuss how patterns of species richness were affected by human activity in each site 

and the evidence for the intermediate disturbance hypothesis, which varied among sites. 

In Site 2 there were no plots that had been regenerating for more than 20 years (c2). 

Because only plots with at least 2 or 5 stems were included there were few plots in 

encroached areas (c3), which made it difficult to reveal clear patterns (Figure 3.9). Z-

species richness was negatively correlated with BA, which was strongly affected by 

intensive charcoal production in this site. Charcoal production led to many large openings 

at various distances into the park, which explains why we found no patterns with distance 

inside the boundary or elevation. In Site 9, there were no significant gradients. Selective 

harvesting may have affected species richness in the formerly encroached (c2) areas. The 

intermediate disturbance does not cover such selective processes (Site 2 and 9). In Site 9 

replanting with a mix of native species will also have affected associated diversity patterns 

to an unknown degree.  

 

We found evidence for the intermediate disturbance hypothesis In Site 11 and 14. In both 

sites plots in areas that were recovering or begin degraded (c2 and c3) were richer in 

species than old growth forest. In Site 11, rarefied species richness was slightly higher at 

higher elevations. This is because in this Site formerly encroached (c2 and c3) plots with at 

least 5 stems were found on ridges further inside forest. Z-species richness was greater in 

areas with less BA, as most old-growth forest with large BA in this site was dominated by 

few species (Cornus volkensii, Schefflera, volkensii, Hagenia abyssinica and Podocarpus 

Milianjianius) (Sassen, unpublished results). A previous study in a site near Site 11 also 

found that formerly grazed or settled locations had greater species richness than old-

growth forest (Reed and Clokie 2000).  

In Site 14 species richness decreased with elevation and distance inside the boundary, 

because there were no formerly encroached plots (c2 and c3) further into the forest as 

was the case in Site 11. In general terms it appeared that in these two Sites (11 and 14) 

human impacts, through fire, grazing and wood harvesting at intermediate levels (c2 and 

c3) often led to some enrichment, as might be predicted from the intermediate 

disturbance theory (Connell 1978, Sheil and Burslem 2003). 

 

3.4.4. Implications for management  

As is the case for many parks in the tropics, even if it were deemed ethical and necessary, 

it would be impossible to stop people from entering Mt Elgon National Park. Our results 

highlight various concerns. For instance, even in a site (Site 9) where local forest use is 

formally regulated and monitored, the intensity of pole harvesting raises concern over the 

sustainability of such activities. However, further research should investigate whether the 
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coppicing ability of tree species that are illegally used for poles and crop-stakes (e.g. 

Neoboutonia macrocalyx) could be harnessed to provide a sustainable legal source of such 

materials. In addition, alternatives need to be found outside the forest. Bamboo-

cultivation is currently being promoted in some areas around the park (community 

conservation ranger, personal communication; personal observation). Shade-trees in 

coffee can be further promoted as they have shown to benefit coffee production in sub-

optimal smallholder systems such as those on Mt Elgon (DaMatta 2004). Charcoal-burning 

(Site 2) is a commercial activity and unless brought under control will likely lead to 

continued forest degradation.  

 

Grazing cattle inside the forest is traditionally important to the communities in the north 

and north-east. A strategy to avoid conflicts could include a system of periodic grazing, 

e.g. during the dry season when there is less fodder available outside the forest. Or a 

system where people restrict grazing to the open grassland inside the forest where this 

has a long history, without hampering regeneration in the surrounding forest (Reed and 

Clokie 2000). A more in-depth study of the phenology and life history strategies of the 

plants in these glades may help development of a better understanding of the effects of 

grazing on the longer term.  

 

Cause and effect of human activities on species richness on Mt Elgon were harder to 

determine than impacts on forest structure. But in all sites, species richness was affected 

by past and present disturbance (see also Huang et al. 2003). The effect of fire on the 

forest community on Mt Elgon needs to be studied in more detail, as some communities 

on the edges of grasslands may be fire-dependent (van Heist 1994).  

 

Approaches are required that balance conservation and local demands, and that can adapt 

interventions to local contexts. Mt Elgon has important values for local communities 

directly neighbouring the park and is also an important water-catchment area for more 

than a million people in the wider region. Most mountain forests have been able to 

support or recover from extended human influence over time (Taylor et al. 1999). 

Therefore, opportunities for creating and maintaining resource use areas in intermediary 

states of succession - balancing minimum conservation needs while meeting local needs - 

should be explored (see Hutton and Leader-Williams 2003). Particularly in areas with high 

population densities with strong claims on forest resources. 

 

Despite some weaknesses, resource use agreements seemed to lead to better outcomes 

for forest conservation (see also Sassen et al. 2013). Developing capacity for collaborative 



Chapter 3 

68 

management and monitoring, sharing responsibilities and rights between park 

management and local communities can help achieve better conservation outcomes, 

while taking into account local needs (Vermeulen and Sheil 2007). Developments relating 

to payments to local communities for avoided deforestation or forest restoration, such as 

in the context of REDD+ are currently being developed on Mt Elgon as potential win-win 

solutions for conservation and local development. Practical implementation of such 

schemes have yet to prove successful in achieving better forest protection and benefits for 

local people. 

 

Options depend on local needs and preferences and their impacts on conservation 

(biodiversity, hydrological, carbon) and other values. We can only have informed 

discussions about these complex trade-offs once we better understand them – and only if 

we begin to look more carefully at the diversity of local consequences. 
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Abstract 

Local communities who live close to protected forests often depend on them for 

woodfuel. The extraction of wood for fuel can impact forest structure, function and 

biodiversity. Our aim was to assess the effects of fuelwood collection on the forest of Mt 

Elgon National Park (Uganda). Fuelwood collection is legal in areas under collaborative 

management and illegal, but sometimes tolerated, in areas without such arrangements. 

We interviewed 192 households about fuelwood use and surveyed dead wood in 81 plots 

inside the park. Forest was the most important source of fuelwood. People collected on 

average between 1.1 and 2.0 m
3 

of fuelwood per capita per year. Other activities involving 

wood fuel extraction from the forest include commercial fuelwood harvesting and 

charcoal making. Quantities of dead wood were affected by fuelwood collection up to at 

least 1000 m inside the boundary of the park. Depletion of dead wood inside the park was 

greater in the sites with the highest population density. People who planted more trees on 

their own land perceived land outside the park to be important and valued old growth 

forest less as a source of fuelwood. Highly-preferred tree species were most depleted, 

particularly when they were also valued timber trees, such as Prunus africana, Popocarpus 

milianjianus, Allophylus abyssinicus and Olea spp.. Locally dominant species such as 

Hagenia abyssinica, Neoboutonia macrocalyx, Cornus volkensii and the seasonal shrub 

Vernonia spp. were less affected. Impacts varied among sites depending on the history of 

encroachment and locally-specific forest uses, e.g. harvesting of trees for poles or use of 

the forest land for grazing. Allowing the collection of dead wood is double-edged as it also 

creates opportunities for other activities that can damage the forest. Demand for 

fuelwood is likely to grow and our study indicates that the forest may become more 

degraded as a result. Our results demonstrate that pressure on forests for fuel has 

negative consequences for both people who depend on the forest and for conservation. 

Further research into the local ecological and cultural contexts and perceptions 

concerning losses and benefits may help devise more sustainable management options 

and successful alternative sources of fuel. 

 

Keywords: Forest conservation, fuelwood, human impacts, tree species, Mt Elgon, Uganda 
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4.1. Introduction 

Fuelwood is the main source of energy for cooking and heating in large parts of the world 

(Parikka 2004, FAO 2010). Most fuelwood comes from bush and fallow lands, but wood 

extraction for fuel from forests is still important where people have few alternatives 

(Arnold et al. 2003). Small land-holdings and high population densities increase people’s 

dependence on protected areas for wood (Naughton-Treves et al. 2007, Hartter et al. 

2011). The extraction of wood for fuel by collecting dead wood or by harvesting trees or 

their branches, can impact forest structure, function and biodiversity (Ndangalasi et al. 

2007). Woody debris plays an important role in forest ecosystems, in nutrient cycling 

processes and as habitat for a diversity of fauna, plants, decomposers and other 

organisms (Duplessis 1995, Christensen et al. 2009). Active harvesting may lead to forest 

degradation and local forest loss (Geist and Lambin 2002, Arnold et al. 2003). Preferences 

for certain tree or shrub species may affect species composition. The factors affecting the 

importance of forests as sources of fuelwood for local communities are poorly 

understood, and the effect such activities have on forest conservation are uncertain.  

 

The management of tropical forested protected areas needs to consider both the needs of 

the surrounding population and the impacts of any forest use. New attitudes to forest 

management call for more devolved approaches to conservation, that allow access and 

use of forest resources by local communities living in the vicinity of protected areas, in 

exchange for improved forest protection (Vermeulen and Sheil 2007). But giving people 

access to protected areas can be double-edged. 

 

In Uganda, pressure on protected forests increases due to a combination of population 

growth, demands for land and expanding industrial and domestic consumption of wood 

fuels, including charcoal. Remnant natural forests outside reserves or national parks are 

rapidly decreasing (Naughton-Treves et al. 2007). The poorest and most vulnerable rural 

households especially rely on forest resources for energy, food and medicine (McSweeney 

2004, Vinceti et al. 2008, Powell et al. 2011, Wan et al. 2011). More than 85% of 

households in Uganda use fuelwood as the main cooking fuel, 98% if charcoal is included 

(UBOS 2006). The implications of growing demands for food and energy on forest 

resources are not well known at local scales where variable contexts may lead to different 

outcomes. Understanding the importance of forests as sources of fuelwood for local 

communities and the effects of fuelwood collection on forest conservation values can help 

design management options that better balance livelihood needs and forest conservation 

goals. 
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In this paper we study the patterns and effects of fuelwood extraction on the edges of a 

humid protected mountain forest in eastern Uganda. We investigate the characteristics 

and the effects of fuelwood collection and other activities on the availability and 

distribution of dead wood in four sites of Mt Elgon’s forest, in relation to agricultural 

encroachment, distance from the park boundary, forest structure and local preferences 

for fuelwood species. We expected that many people would depend on the park for 

fuelwood, although people with alternative fuel sources less so. We hypothesized that 

preferred species would be most depleted and this would impact fuelwood use. This study 

is the third in a series of linked studies that examine these forests and their relationship 

with local people. In a first paper we described the contexts and drivers that led to local 

variation in forest loss and recovery over recent decades (Sassen et al. 2013). A second 

paper examined the nature of the resulting forests under different patterns of local use 

(Sassen and Sheil 2013).  

 

We first investigated the differences in fuelwood use and the role of the availability of 

alternatives sources of fuel among contrasting sites situated along the northern and 

western boundaries of Mt Elgon National Park. We then quantified the volumes of dead 

wood in 81 plots in the four study sites and their relation with encroachment, distance 

inside the boundary and forest structure. Species specific impacts of fuelwood collection 

were also considered. We compared impacts on preferred and used species as reported in 

192 household interviews, whereby dead wood from preferred species for fuelwood was 

expected to be relatively more depleted at greater distances from the boundary compared 

with that of less preferred or actually used species. 

 

4.2. Study area 

Mt Elgon is located on the border between Uganda and Kenya. It is a large extinct volcano 

(4321 m) with an 8 km wide crater and generally gentle slopes until 2800-3000 m down 

from the crater-rim. Below this, slopes are steeper the south-west while characteristic 

sheer cliffs drop down to the plains in the north (Figure 4.1). Annual precipitation falls 

year round and is between 1500 and 2000 mm but it peaks in April-May and September-

November. Rainfall is higher on the southern and western slopes than on the northern 

and eastern slopes (Dale 1940, IUCN 2005). Mt Elgon is an important water catchment 

area for several million people in the surrounding districts and for important areas such as 

the Nile and Victoria basins (IUCN 2005). The mountain is covered with a belt of bamboo 

and afromontane forest at on average between 2000 and 3000 m, followed by heathers 

and high altitude moorland (Dale 1940, van Heist 1994). The forests above 2000 m and the 

higher altitude vegetation host biodiversity characteristic of the Afromontane Region, with 
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a number of species endemic to Mt Elgon (for details see Davenport et al. 1996, IUCN 

2005).  

 

Mt Elgon’s volcanic soils are fertile and in the south and south-west they support an 

intensive mixed coffee and banana based agriculture (Kayiso 1993, ILRI 2007). Coffee 

(Coffea arabica) is the main cash crop and is traditionally grown in combination with 

bananas and multi-purpose shade-trees, both indigenous and exotic species. Eucalyptus 

woodlots are often planted in stream valleys. People have been settled and cultivating 

these slopes since around 1500 AD. In the north and northeast, agriculture is practiced on 

larger plots of maize, potatoes, wheat and pasture (ILRI 2007). In this area, people have 

settled and started practicing agriculture more recently. From the 1980s they were 

resettled down from the higher slopes of the mountain and from the insecure lower plains 

to the North. Planting trees is not part of local culture in the north and northeast and trees 

are therefore rare on farmland, especially nearer the forest edge (Scott 1998).  

 

Uganda’s protected forests were widely encroached during the period of political 

instability that lasted from 1971 until 1986 (Hamilton 1985, Turyahabwe and Banana 

2008). Since 1987, forest restoration activities were started in the worst affected areas on 

the western slopes (UWA 2000), with mixed success. In later years new forest clearing 

took place in different areas of the park (Sassen et al. 2013). When Mt Elgon was gazetted 

a national park in 1993, local communities lost all legal access rights (Scott 1998). Since 

the late 1990s park management has initiated agreements with local communities living 

next to the park (at parish level) that allow regulated collection of a limited number of 

non-timber products, fallen dead wood for fuel and the stems from a limited number of 

shrub species (e.g. Vernonia spp.) to support crops like bananas and climbing beans (Scott 

1998, UWA 2000). Illegal activities include cattle grazing, tree-cutting, charcoal burning 

and hunting. Whether or not a community living next to the park has entered into such an 

agreement depends strongly on the level of conflict with UWA about park boundaries and 

access for cattle grazing (Sassen et al. 2013). In areas without agreements some uses, 

including dead wood collection, are sometimes tolerated on an ad-hoc basis in an effort by 

local rangers to minimize conflicts. Dependence on forest products remains important and 

illegal resource extraction common (Scott 1994a, Norgrove 2002, Katto 2004). This is 

unlikely to decrease in the near future as population densities continue to grow and 

increase local demands for wood. No natural forests remain within 20 km around the 

protected area (Sassen et al. 2013). In 2002, human population densities in the parishes 

surrounding Mt Elgon ranged from 150 p/km
2
 in the north to more than 1000 p/km

2
 in the 
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west. Average annual population growth rates ranged between 2.5% and 4.3% (UBOS 

2002a, b, d). 

 

 

Figure 4.1. Map of Mt Elgon with the study sites (administrative division boundaries valid in 2010). 

 

4.3. Methods 

4.3.1. Field data 

We collected data in four sites on the edge of Mt Elgon National Park, to represent 

different elevations, forest types and forest cover change histories. Forest cover change 

on Mt Elgon is strongly related to its history of agricultural encroachment and regrowth 

renewed clearing and recovery took place at different times (Sassen et al. 2013). In Site 9 

the forest was not re-encroached after people were evicted from the park in the early 
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1990s, whereas in Site 2 most of the regenerating vegetation and restoration planting was 

cleared again from 2006. In Site 11 and forest clearing for agriculture started in the 1990s, 

and was intensified by a conflict about the boundary of the area excised for resettlement. 

In Site 14, encroachment started in the 1980s but it took place in patches rather than as a 

‘front’ from the boundary inwards. Each site corresponded to a sample village (Sassen and 

Sheil 2013).  

 

In each site, we first laid out one transect approximately perpendicular to the general 

orientation of the boundary, and then two parallel transects 400 m apart on each side 

(Figure 4.1). We measured dead wood volumes on plots 50 m, 850 m, 1850 m, 2850 m and 

when possible 3850 m along the transects (Figure 4.2). Due to irregular shape of the 

boundary, this translated to different actual distances from the boundary. Actual distance 

to the boundary for each plot was calculated using a GIS. We used a handheld GPS 

(Garmin 60CSx) to determine plot position and orientation along the transect line. On 

each transect line we measured between 3 and 4 plots (15-21 per site, 81 in total), 

depending on travel time between plots which was influenced by terrain (e.g. obstacles) 

and vegetation.  

 

 
Figure 4.2. Transect line with plot positions and detail of DWD plot. The centre of each plot is also 

the point from which the relascope sweeps were held. 
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We adapted methods for assessing woody debris from Harmon and Sexton (1996). We 

established three 16 m sampling lines from the centre of each plot to record dead wood 

using a line intercept method (diameter at intercept, decay class for larger pieces, count 

for smaller ones). The first line was oriented East and the other two at 135° and 225° 

anticlockwise (Figure 4.2). We recorded woody debris lying or hanging <2 m from the 

ground. For each coarse woody debris (≥5.1 cm diam.) crossing the sampling lines we 

measured the diameter at line intercept and recorded the decay class as follows: class 1: 

solid wood, recently fallen, with bark still intact, cannot push a nail into the wood by hand; 

class 2: solid wood with > 50% bark still intact, can push a nail into the wood by hand to a 

maximum of 0.5 cm; class 3: less-solid wood, especially the outer layer, but with deeper 

layers still hard, bark <50% intact, a nail can be pushed into the wood by hand more than 

0.5 cm; rotten: soft, rotten wood, no bark, a metal nail can be pushed into the wood easily 

or it collapses when stepped on. We tallied smaller pieces (1-5 cm) on sampling line 

segments of 5 m long (starting from the centre). Only non-rotten pieces of wood were 

counted.  

 

In an assessment of forest structure we recorded the basal area of standing live and dead 

trees (taller than 1.30 m at dbh) in 343 plots using angle count sampling, and measured 

stem density in 81 plots (Sassen and Sheil 2013). The same plot-centres were used for the 

assessment of standing trees and dead wood. In each plot we recorded terrain, vegetation 

cover, signs of disturbance and history of encroachment. With the help of local 

informants, we classified each plot into one of the following categories: c1 = not cultivated 

within living memory (also called ‘old-growth forest’), c2 = cleared in the 1970s and 1980s 

but now recovering, c3 = cleared in the 1990s and 2000s but now recovering, c4 = 

currently cleared and cultivated or grazed (2011).  

 

Species were identified by local informants and two knowledgeable rangers (one of Bagisu 

and one of Sabiny ethnic background). We cross-referenced the names of standing trees 

with available references (Hamilton 1991, Katende et al. 2000). Photographs of unknown 

species were taken to the Institute for Tropical Forest Conservation (ITFC), Uganda, for 

identification. Surrounding trees aided identification of woody debris that were harder to 

recognize, but decay hindered identification. 

 

4.3.2. Data on firewood collection and use 

In each site, we conducted semi-structured interviews with households selected within 

the sample village and the neighbouring village that most corresponded to the boundary 

section intersected by the transects (Table 4.1). The households were selected by 
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randomly drawing names from a list established with the help of village leaders. 

Respondents provided information on standard household characteristics, land 

ownership, frequency, quantities and location of fuelwood collection, preferred and used 

species, perceived changes in the availability of fuelwood and numbers and species of 

trees and large shrubs on their own land. We considered different sources of fuelwood: 

“Old forest” was defined as forest that was never cleared for cultivation within living 

memory but still accessed for other uses such as fuelwood, crop stakes, medicine and 

vegetables and to reach bamboo or grazing areas deeper into the forest. “Formerly 

encroached forest” included areas that had been cleared at some point in the past (from 

the 1970s onwards) and that were in various stages of recovery at the time of this study. 

“Own land” was defined as land owned, rented or otherwise occupied by people. In sites 

with on-going encroachment, this sometimes included land inside the official boundary of 

the park. Fuelwood from the market was usually purchased within the parish or 

neighbouring parishes, collected from either the forest or from planted trees (Eucalyptus 

spp.). The Uganda Wildlife Authority defines a back- or headload as a bundle that people 

can carry on their backs or heads in one haul. We use headload as a standard term from 

here-on. We asked people to estimate the number of headloads they collected per week 

and per source area. We measured 22 loads of fuelwood carried by people coming out of 

the forest in Site 9 on resource collection days. In the other sites this was more difficult 

because people did not have a resource use agreement with UWA and therefore fuelwood 

collection was formally prohibited. 

 

4.3.3. Data analysis 

We used a conservative approach to estimate the volumes of fuelwood collected per 

household per year. We did not include fuelwood reportedly collected from people’s own 

land because we observed that people tended to collect pieces or bundles on a more ad 

hoc basis from there. Reported loads of fuelwood from the forest and from markets were 

more likely to be consistent in size with the headloads we measured. We also did not 

include fuelwood bought from markets to avoid double counting with wood that people 

collected from the forest and then sold. It was not possible to get figures for quantities 

sold. People were more willing to say that they bought fuelwood than that they collected 

fuelwood for sale, as this was illegal. For the conversion of the volume of a bundle of 

fuelwood to a solid volume measure, we used a conservative average conversion measure 

of 0.37 (FAO 1983). 

 

The relative score for preferred or used species consisted of the sum of the scores (inverse 

of rank) that a species received from each respondent divided by the total score for all 
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species in that site. We compared the lists of the five most preferred and the five most 

used species in each site, on the premise that discrepancies between the lists indicate 

depletion due to overharvesting or difficulties of access.  

 

We calculated the volumes of dead wood following Harmon and Sexton (1996), and the 

volume of standing dead trees using dbh and height and a form factor of 0.5. We explored 

the correlations between volumes of dead wood and encroachment, distance into the 

park and measures of forest structure. We also compared the volumes of dead wood 

found for preferred and used species. We calculated the relative basal area of live trees of 

preferred and used species to assess differences in the impacts of harvesting (for 

fuelwood but also other timber uses) on preferred species and on the species people 

reportedly actually used. Data analysis was carried-out using SPSS version 18.0 (SPSS Inc., 

Chicago IL).  

 

Table 4.1. Characteristics of the study sites. 

  Site 2 Site 9 Site 11 Site 14 

Village (2011) Bukuwa Kinyofu/ Gibuzale Korto/ Kamatelon Sindet/ Kapsata 

Sub-county (2011) Bupoto Masira Kwosir Kortek 

Population density 2002
a 

631 p km
-1

 712 p km
-1

 448 p km
-1

 374 p km
-1

 

Mean household size 4.7 5.2 5.6 5.8 

HH interviewed (% of 

total) 

53 (77%) 45 (45%) 51 (63%) 43 (66%) 

Perennial crop (%
b
) Coffee (28%) 

banana (57%) 

Coffee (69%) 

banana (60%)  

Only seasonal Only seasonal 

Resource use agreement no yes no no 

Plots 17 20 25 19 

Elevation plots in masl 1911-2318 2152-2606 2478-2877 2238-2699 
a
 (UBOS 2002b, d, a) 

b
 % of interviewed people listing the crop as either their first or second crop (so total % > 100)  

 

4.4. Results 

4.4.1. Fuelwood collection and use 

People generally collected fuelwood once or twice a week (all sources combined - Figure 

4.3). The park - old growth forest and regenerating areas combined – supplied the largest 

quantities, followed by markets (Table 4.2). In Site 14 none of the interviewed households 

reported collecting any fuelwood from regenerating areas, although two of them had first 

ranked these areas second as a source of fuelwood. 
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Figure 4.3. Weekly frequency at which people collect fuelwood from different sources, expressed as 

the percentage of households per site that reported that frequency for that source.  

 

 

Table 4.2. Average estimated number of head-loads of fuelwood used per household per week from 

different sources, and use. 

 Source  Volume  Use (% HH) 

Site 

Old 

forest 

Form. 

encr.
* 

Own 

land Market 

 Per HH  

m
3
.y

-1
 

Per capita 

m
3
.y

-1
 

 
Cook Heat Brew Sale

2 2.2 1.4 0.9 1.6  9.5 (±9.5) 2.0 100 0 4 13

9 1.8 1.4 0.6 1.0  8.4 (±3.7) 1.6 100 0 11 7

11 2.4 0.0 0.1 1.6  6.3 (±4.4) 1.1 100 2 6 6

14 3.2 0.0 0.0 0.0  8.3 (±4.9) 1.4 100 0 0 5
*
Formerly encroached land inside the park 

 

The average volume of a measured headload of fuelwood was 0.14 m
3 

(N =
 
25), which 

translated into an average solid volume of 0.05 m
3
 (± 0.003, 96% confidence interval) per 

headload. Taking household sizes into consideration implies that people collected on 

average between 1.1 and 2.0 m
3 

of solid fuelwood per capita per year (Table 4.2). The 

number of bundles that people reportedly collected per week was not significantly 

correlated with the size of the household (Kendalls tau-b = -0.12, p = 0.825, n = 192) or the 

area of land owned (Kendalls tau-b = 0.19, p = 0.754, n = 177). Larger households tended 

to own more land and households in the Sabiny-dominated sites (Sites 11 and 14) were 

larger than those in the Bagisu-dominated sites (Sites 2 and 9), but the area of land owned 
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did not differ between tribes (data not presented). In all households the primary use of 

fuelwood was cooking (Table 4.2). Some sale of fuelwood was reported in all sites.  

 

4.4.2. Sources of fuelwood 

In all four sites local respondents considered forest – in particular old growth forest –the 

most important source of fuelwood (Table 4.3). In Site 2, 85% of the respondents also 

reported buying fuelwood, at least occasionally. In Site 9, 69% and in Site 11, 43% of 

people sometimes bought fuelwood, whereas all fuelwood in Site 14 reportedly came 

from the forest. In Site 2 and 9, respectively 60% and 51% of the respondents collected 

fuelwood from their own land (Table 4.3). 

 

Table 4.3. Ranks given to different sources of fuelwood per site (% households). 

 Old forest  Form. encr.
* 

 Own land  Market 

Site 1
st

 2
nd

 1
st

 2
nd

 1
st

2
nd

3
rd

1
st

2
nd

3
rd

4
th

2 74 2 4 45 13 21 26 9 13 38 25 

9 80 16 18 51 2 16 33 2 11 29 22 

11 98 0 0 0 2 8 0 0 43 8 0 

14 93 0 5 0 0 0 0 0 0 0 0 
*
Formerly encroached land inside the park 

 

The 192 households we interviewed reported a total 51 (39 native) species of trees and 

shrubs on their own land. The mean number of stems per household was least in Site 11 

(less than 3 stems/HH) and highest is Site 2 (more than 33 stems/HH or 31 stems/HH 

when not counting tree-like shrubs such as Ricinus communis and Vernonia spp.) (Table 

4.4). Households in Site 2 and 9 reported a greater variety of species and more trees on 

average than in Sites 11 and 14. Exotic species were the most common species at all sites, 

but were especially dominant at Sites 11 and 14 (Table 4.4).  

 

Overall, the importance – in rank, frequency and for quantities – that households gave 

their own land as a source of fuelwood was positively correlated with the number of trees 

they had on their own land and the amount of land they owned. The correlation results 

for the number of trees were respectively for rank, frequency and quantities: Kendall’s 

tau-b = 0.465, 0.415 and 0.444, n = 192, p < 0.001. The correlations for the area of land 

were respectively for rank, frequency and quantities: Kendall’s tau-b = 0.289, 0.247 and 

0.248 n = 177, p < 0.001. The correlations between the density of trees on people’s land 

and the importance of various sources of fuelwood were similar (Appendix 4.A). There 

were variations within sites which are reported in Appendix 4.A.  
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Table 4.4. Mean number of species per site, percentage of households (HH) with trees on their land 

(minimum 1 stem), mean number of trees per household (bold in table) and maximum number of 

stems listed by one household. For the five most frequently reported species per household: 

percentage of households listing the species, mean number of stems and range. All can be used for 

fuelwood. 

 Species 

Proportion of 

households (%) 

Mean number 

stems per HH 

Maximum 

number of stems 

Site 2 All (3.98 ± 2.54 species) 87 33.25 178 

n=53 Eucalyptus sp. 51 16.98 100 

 Markhamia platycalyx 16 5.21 50 

 Cordia africana 6 1.83 12 

 Persea americana 5 1.74 18 

 Vernonia auriculifera 4 1.21 40 

Site 9 All (4.51 ± 2.46 species) 93 27.29 155 

n=45 Eucalyptus sp. 47 13.11 100 

 Persea americana 15 4.07 20 

 Markhamia platycalyx 8 2.22 30 

 Eriobotrya japonica 6 1.78 10 

 Ehretia cymosa 4 1.13 20 

Site 11 All (0.65 ± 0.90 species) 43 2.96 40 

n=51 Eucalyptus sp. 53 1.57 40 

 Allophylus abyssinicus 17 0.49 10 

 Cornus volkensii 10 0.29 10 

 Grevillea robusta 6 0.18 6 

 Dombeya goetzenii 4 0.12 4 

Site 14
a
 All (0.56 ± 0.63 species) 49 8.16 70 

n=46
 

Eucalyptus sp. 95 7.79 70 

 Grevillea robusta 3 0.21 5 

 Ekebergia capensis 1 0.09 4 

 Persea americana 1 0.07 3 
a
 In Site 14 only four species were reported 

 

Combining all sites, the importance – in terms of frequency and for quantity – of old 

growth forest was significantly negatively correlated with the number of trees people had 

on their own land, although the correlation was weak. The correlation results were 

respectively for rank, frequency and quantities: Kendall’s tau-b = -0.095 with p =0.120, -

0.125 with p =0.035 and -0.135 with p =0.017, n = 192 (details per site in Appendix 4.A). 

The importance of formerly encroached forest was also positively correlated with the 

number of trees that households report they had on their own land although the 

correlation was less strong than for “own land” (respectively for rank, frequency and 

quantities: Kendall’s tau-b = 0.240, 0.295 and 0.286, n = 192, p < 0.001 for all). Households 
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with more land had more trees on that land (Kendall’s tau-b = 0.233, n = 177, p < 0.001), 

although not always in terms of density (Kendall’s tau-b = -0.050, n = 169, p = 0.400). 

 

4.4.3. Woody debris 

Quantities of woody debris 

In all sites large woody debris (LWD) (> 5.1 cm) made up most of the woody debris volume 

(Figure 4.4). Mean volumes per hectare of dead wood were smallest in Site 11. More 

standing dead trees were found in Sites 11 and 14 compared with Sites 2 and 9 (≤ 2) 

(Figure 4.4). 

 

 

Figure 4.4. Mean volume of dead wood per ha per site for small woody debris (SWD), large woody 

debris (LWD) and standing dead trees (> 1.30 m). Stumps (LWD) and standing dead trees were 

measured in fixed area plots. 

 

The largest volumes of dead wood occurred in old-growth forest, followed by long-

recovered areas and the smallest volumes in the most recently-encroached lands (Figure 

4.5). Woody debris that originated from human activities varied between 1 and 18% of all 

recorded LWD. The highest proportion of debris that showed signs of manual cutting was 

found in Site 9 (Table 4.5).  

 

Volumes of dead wood per plot generally increased with greater distance into the park 

(Figure 4.6). Total dead wood volume per plot was positively correlated with distance 

inside the park boundary, live tree basal area and tree density in all sites (Kendall’s tau-b = 

0.449, 0.520 and 0.425 respectively for distance, BA and stem density, n = 81, p < 0.001 for 

all sites combined). Overall, the volume of woody debris was neither correlated with slope 

(Kendalls tau-b = 0.009, p = 0.913, n = 80) nor elevation (Kendalls tau-b = 0.103, p = 0.184, 

n = 81) although there were variations among sites (details in Appendix 4.B). 
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Figure 4.5. Mean total dead wood volume (± 1 standard error) per site and per encroachment 

category: c1 = never cultivated, c2 = cleared in the 1970s and 1980s now recovering, c3 = cleared in 

the 1990s and 2000s now recovering, c4 = currently cleared and cultivated (2011). Kendall’s tau-b 

correlation results are given for each site. 

 

 

Table 4.5. Percentages of rotten wood and large woody debris (LWD) that was considered suitable 

for fuelwood per decay class and proportion cut by people.  

 
Mean volume per decay class 

(m
3
.ha

-1
) and % 

 LWD suitable as fuelwood per 

decay class (% of volume found) 

LWD cut by 

people (% of 

pieces found) Site 1 2 3 Rotten All 1 and 2 3 

2 22 (48%) 4 (8%) 10 (21%) 10 (22%) 64
a 

96 48 1 

9 6 (25%) 7 (30%) 9 (34%) 3 (11%) 87 98 98 18 

11 4 (23%) 4 (24%) 6 (33%) 3 (20%) 54 91 33 12 

14 15 (40%) 10 (26%) 8 (22%) 4 (11%) 87 99 96 5 
a
 In Site 14 class 2 included some burnt LWD 
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Figure 4.6. Volume of dead wood per ha and distance from the boundary in the four study sites. 

Note: In Site 3 two large fallen Aningeria spp. in resulted in high values in two plots at around 800 m 

from the boundary. 

 

Suitability of woody debris for fuel 

Around 25% of woody debris in Sites 9 and 11 showed no signs of decay. In Sites 2 and 14 

this was 40% or more (Table 4.5). The proportion of dead wood suitable to use as 

fuelwood according to local informants in the field varied between 54 and 87%, with the 

rest being too rotten (Table 4.5). We found the smallest proportion of rotten wood in Sites 

9 and 14, where people were also the least selective in terms of fuelwood quality: almost 

all pieces of wood in decay class 3 were still considered usable as fuelwood (Table 4.5). In 

Site 11 only one third of wood in decay class 3 was considered suitable as fuelwood.  
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4.4.3. Impacts of fuelwood collection on preferred species 

Preferred and used species 

The number of different species listed in the ‘top 5 preferred species’ by the different 

households ranged from 39 in Site 2 (N=53) to 15 in Site 14 (N=43). Sites 9 (26 species; 

N=45) and 11 (17 species; N=51) were intermediate.  

 

Certain species were consistently given high ranks by most households in a site, such as 

Prunus africana (listed by 64%, 89%, 84% and 79% of all households in Sites 2, 9, 11 and 14 

respectively), Cornus volkensii and Olea chrysophylla (both listed by 76 % of the 

households in Site 11) and Allophylus abyssinicus (listed by 69% and 93% of households in 

Sites 11 and 14 respectively). In Sites 2 and 9, respectively, at least 57% and 67% of the 

households listed each of the overall top two preferred species while the other three 

species were listed by between 32-44% of the households. In Sites 11 and 14 the species 

in the top five preferred species were listed by at least 55% and the top 3 by at least 76% 

of the households. Not all listed species were forest species (Table 4.6). For example in 

Site 2, Eucalyptus sp. was listed among the top five of preferred species by 36% of the 

households (detail in Appendix 4.D). In Sites 11 and 14 the list of the five most preferred 

and the five most used species had more names in common than in Sites 2 and 9 (Table 

4.6). 
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Table 4.6. Relative scores of preferred and used species from household interviews and relative 

volumes of dead wood for the species found in the forest survey (unidentified species omitted, see 

notes). 

Site Preferred species 

Score 

(%) 

% of 

total 

BA Used species 

Score 

(%) 

% of 

total 

BA 

2 Prunus africana 16.6 1.5 Eucalyptus sp. 20.2  

 Aningeria spp. 13.3 6.1 Vernonia auriculifera 11.2  

 Eucalyptus sp. 9.5 0.0 Markhamia platycalyx 10.6 0.2 

 Croton spp. 8.1 0.2 Cordia africana 9.3 0.0 

 Vernonia auriculifera 7.3  Maize stems/cobs 6.3  

9 Prunus africana 21.5 1.5 Vernonia auriculifera 27.9  

 Podocarpus milianjianus 16.7 1.4 Hagenia abyssinica 12.6 20.5 

 Allophylus abyssinicus 9.3 4.0 Neoboutonia macrocalyx 12.3 27.1 

 Hagenia abyssinica 8.3 20.5 Maesa lanceolata 11.6 4.8 

 Olea welwitschii 6.8 0.5 Mimulopsis arborea 10.6  

11 Cornus volkensii 18.2 59.7 Cornus volkensii 17.7 59.7 

 Olea chrysophylla 16.8 0.9 Olea chrysophylla 15.3 0.9 

 Prunus africana 16.0 5.2 Allophylus abyssinicus 15.0 0.9 

 Allophylus abyssinicus 15.4 0.9 Prunus africana 15.0 5.2 

 Podocarpus milianjianus 11.4 10.1 Podocarpus milianjianus 10.5 10.1 

14 Prunus africana 18.5 2.8 Vernonia spp. 28.3  

 Allophylus abyssinicus 17.8 26.1 Solanum sp. 22.7  

 Vernonia sp. 13.3  Prunus africana 10.9 2.8 

 Croton spp. 12.9 2.7 Allophylus abyssinicus 9.5 26.1 

 Ekebergia capensis 11.4 6.9 Croton spp. 6.5 2.7 
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Table 4.6. (continued) 

 

 

Dead wood found 

% 

Vol/ha 

% of 

total 

BA Trees found 

% of 

total BA 

Aningeria spp. 60 2.9 Neoboutonia macrocalyx 27.53 

Neoboutonia macrocalyx 16 27.5 Macaranga kilimandscharica 17.37 

Syzygium guineense 8 4.1 Tabernaemontana holstii 12.80 

Macaranga kilimandscharica 6 17.4 Syzygium guineense 4.11 

Mimulopsis arborea
 

5
1
  Strombosia schefflerii 3.31 

Syzygium guineense
 

27
2 

6.6 Neoboutonia macrocalyx 26.85 

Prunus africana 18 1.5 Hagenia abyssinica 20.31 

Podocarpus milianjianus 17 1.4 Macaranga kilimandscharica 8.92 

Neoboutonia macrocalyx 15 26.9 Syzygium guineense 6.64 

Hagenia abyssinica 10 20.3 Schefflera volkensii 5.24 

Cornus volkensii 44 59.7 Cornus volkensii 59.69 

Allophylus abyssinicus
  

14
3
 0.9 Podocarpus milianjianus 10.12 

Prunus africana 13 5.2 Schefflera volkensii 7.61 

Dombeya goetzenii 10 1.6 Hagenia abyssinica 6.01 

Rapanea melanoploeos 7 3.2 Prunus africana 5.16 

Allophylus abyssinicus 37 26.1 Allophylus abyssinicus 26.05 

Olea welwitschii 25 0.8 Neoboutonia macrocalyx 19.45 

Neoboutonia macrocalyx 16 19.4 Hagenia abyssinica 7.45 

Croton spp. 9
4
 2.8 Ekebergia capensis 6.94 

Rapanea melanophloeos
 

4 2.0 Schefflera volkensii 6.46 
1 

Unidentified species made up 5% of the volume/ha 
2
 Unidentified species made up 43% of the volume/ha, but 85% of that was one unidentified log. 

3
 Unidentified species made up 19% of the volume/ha 

4
 Unidentified species made up 6% of the volume/ha 
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Basal area and dead wood of preferred and used species 

The basal area of the five most highly preferred and used forest species decreased with 

distance from inside the park towards the boundary (Figure 4.7). Certain species were 

almost completely depleted within the distance range of our study, e.g. P. africana and 

Croton spp in Site 2. Many highly preferred forest species that had small actual (Figure 4.7) 

and relative (Table 4.6) basal area were not in the top five of most used species in that 

site, except for example O. chrysophylla and A. abyssinicus in Site 11. The basal area of 

locally dominant species that were also highly preferred or used - such as H. abyssinica, 

Neoboutonia macrocalyx (Site 9), C. volkensii (Site 11) and A. abyssinicus (Site 14) - was 

generally relatively high, although they were all depleted near the boundary (Figure 4.7). 

Less dominant species had relatively low basal areas, including some preferred species 

such as A. abyssinicus and O. chrysophylla in Site 11 and Croton spp. in Site 14, but also 

others such as Markhamia platycalyx in Site 2 and Olea welwitschii in Site 9 (Table 4.6, 

Figure 4.7a).  

 

Woody debris remained unidentified in 5%, 8%, 9% and 4% of the cases in Sites 2, 9, 11 

and 14 respectively (see volume equivalents under Table 4.6). The tree species for which 

we found the largest quantities of dead wood were similar to those for which we found 

the highest relative basal areas in most sites (Table 4.6). Dead wood was most abundant 

for the dominant species in their respective sites (Table 4.6) and completely absent for 

others, such as for the preferred forest species P. africana and Croton spp. in Site 2. For 

others, such as O. chrysophylla in Site 11, we found only stumps (volumes of dead wood 

per species with distance into the park in Appendix 4.C).  
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a) 

b) 

 

Figure 4.7. Basal area (BA) of a) preferred and b) used species for fuelwood with distance from the 

boundary. Preferred and used species are the same in Site 11 and 14, except Ekebergia capensis in 

Site 14 but no dead wood was found for that species. Key to species abbreviations: Anin_spp: 

Aningeria spp., Prun_afr: Prunus africana, Crot_spp: Croton spp., Allo_aby: Allophylus abyssinicus, 

Hage_aby: Hagenia abyssinica, Olea_wel: Olea welwitschii, Podo_mil: Podocarpus milianjianus, 

Olea_chr: Olea chrysophylla, Corn_vol: Cornus volkensii, Ekeb_cap: Ekebergia capensis, Maes_lan: 

Maesa lanceolata, Neob_mac: Neoboutonia macrocalyx. 
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4.5. Discussion  

First, we discuss the importance of the forest inside Mt Elgon National Park for 

neighbouring communities as a source of fuelwood. We then reflect on how fuelwood 

collection has affected the availability of woody debris and the tree species composition in 

the four sites. We considered availability, location and preferences. Finally, we consider 

the likely implications of future demands for fuel and discuss options to address these 

impacts as well as needs for further research. 

 

4.5.1. Fuelwood collection and use  

Fuelwood collection on Mt Elgon appears to be more intense than in other areas studied 

in the region. The volume of 0.05 m
3
 per headload we observed was greater than the 

standard 0.03 m
3
 used to assess fuelwood consumption in other studies in the region 

(Banana and Turiho-habwe 1999). We calculated yearly quantities that were almost 

double the 4.5 m
3
 per household or the 0.6-0.7 m

3
 per capita found near Budongo forest 

in Uganda (see Table 4.3). In Rwanda, Ndayambaje and Mohren (2011) report a per capita 

consumption of 0.91 m
3
 y

-1
, while in a moist semi-deciduous forest in Ghana Osei (1993) 

reports a per capita use of between 1 and 1.2 m
3
 per year. If we used the standard size of 

0.03 m
3
, then fuelwood collection (3.8-5.7 m

3
y

-1
 per household) would be more consistent 

with the averages reported in Budongo (Banana and Turiho-habwe 1999). Other studies 

examined fuelwood consumed by households whereas we investigated the fuelwood 

collected. It is common for people, women mostly, to sell stocked fuelwood ad hoc, when 

cash is needed, which may partly explain the relatively high values we found on Mt Elgon 

compared with other studies. Other factors may contribute to the intense use of fuelwood 

on Mt Elgon. Cooking beans and bananas, which are a staple in Sites 2 and 9, require more 

fuel than maize and potatoes for example. Cooking times are extended at higher 

elevations, such as in our study sites (> 1900 masl). People did not boil water for drinking 

as the quality of water from natural springs was generally good (local informants, personal 

communication and personal experience), but they did heat water for bathing because it 

was often cold (< 10°C at night, especially in Sites 11 and 14). There have been past 

attempts to introducing fuel-saving stoves but they were used by none of the households 

that we stayed in (14 in total). 

 

Other uses of wood for fuel that contribute to high wood consumption were unlikely to be 

included in the quantities reported by our respondents, e.g. commercial harvesting and 

charcoal making. Because commercial fuelwood collection is illegal, selling was likely 

under-reported (see Table 4.3). Commercial brick- and charcoal-making contribute to high 

wood consumption in other Ugandan forests (Naughton-Treves et al. 2007). In our study 
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neither activity was mentioned. We did not observe brick-making in our sites, but found 

charcoal pits and evidence of commercial fuelwood harvesting in Sites 2 and 9 inside the 

park. Charcoal was already noted near Site 2 in the 1990s and has negatively impacted 

forest structure in this area (Sassen and Sheil 2013). 

 

While more than half of our respondents also used fuelwood from elsewhere, the forest – 

which on Mt Elgon means the national park – was the most important source of fuelwood 

in terms of both its perceived importance and the quantities reported. Areas with the 

highest density of trees outside the park (on people’s land) also had the most dense 

human populations, explaining why the park remains important to meet their fuelwood 

needs. The density of trees on people’s land (outside the park) reflects local history. In 

densely-populated areas, such as Sites 2 and 9 that have been settled and cultivated since 

around 1500 AD, households had native trees as part of their intensive coffee-banana 

system and households with sufficient land had woodlots of exotic species (Eucalyptus 

spp.). In the less-densely populated areas such as Sites 11 and 14 that were settled only 

during the 20
th

 century, there were few trees except for scattered forest individuals left 

after clearing land (Table 4.4). These relics were progressively being felled (personal 

observation). Here, the people were formerly pastoralists and have no culture of tree 

planting. Also tenure insecurity related to conflicts about the boundary of the area excised 

for resettlement and the allocation of land likely contributed to the fact that people 

planted few trees (Himmelfarb 2006).  

 

Households with more trees on their own land tended to value their land as a source of 

fuelwood more and used old-growth forest less than those with fewer trees. For example 

in Sites 2 and 9, households with more trees on their own land ranked their own land 

highest (Table 4.3 and 4.4). In Site 2, despite the importance given to old growth forest, 

people reported using mainly species that grew on their own land (Table 4 and 6). In Site 9 

people with more trees on their own land also ranked old-growth forest as a less 

important source of firewood (Table 4.3 and 4.4). In Sites 11 and 14, forest was the main 

source of fuelwood regardless of the number of trees on people’s own land or the area of 

land owned, because there were few trees on their land in these sites (Appendix 4.A and 

Tables 2-4). Our results suggest that people forage less far for fuel if there are closer-by 

alternatives.  

 

4.5.2. The quantity of fuelwood in the park 

Fuelwood collection reduced the amount of dead wood in the forest, in particular in 

accessible areas close to the boundary. In addition, site-specific encroachment histories 
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and other forest uses impacted local forest structure (Sassen and Sheil 2013), which in 

turn influenced dead wood availability at varying distances into the park. For example, in 

Sites 11 and 14 which are less impacted, previous encroachment had been less intense 

than in Sites 2 and 9 (Sassen et al. 2013). Other forest uses in Site 11 and 14 were mainly 

related to cattle-grazing which does not involve tree harvesting. In Site 9, the impacts of 

fuelwood collection were added to those of intense collection of stems for other uses, 

such as supports for banana and climbing beans (Sassen and Sheil 2013).The altitudinal 

range of our plots was too narrow for elevation to influence rates of decomposition 

markedly (Table 4.1), suggesting that removal was the main reason that increasing 

volumes of dead wood were found further into the park. 

 

The selectivity of fuelwood collectors was influenced by the quantity and quality of dead 

wood available in combination with species preference. For example, in Site 9 people 

were less selective because of a shortage of fuelwood, especially in the formerly-

encroached areas near the boundary (Figure 4.5). In Site 14, on the other hand, preferred 

species were still available and people collected these before others even when more 

decayed as they were often hardwood species. 

 

4.5.3. Impacts of fuelwood collection on preferred woody species 

The interviews as well as the field survey provided evidence that certain tree species in 

the forest were overexploited for fuelwood and other uses. Highly-preferred species were 

not necessarily the ones people actually used the most, which indicates a shortage of the 

preferred species. When queried about reasons for not using highly-preferred species, our 

informants always mentioned their depletion in accessible areas. According to them this 

was because they were also valued and harvested for timber (data not presented).  

 

Results from the field survey confirmed findings from the interviews. The volumes of dead 

wood and the basal area of the most highly-preferred and used species were all smaller 

near the park boundary. Some species were particularly preferred and affected, especially 

slow growing hardwood species that are also valued for timber, e.g. P. Africana, P. 

milianjianus, Aningeria spp., O. chrysophyla and O welwitschii (Scott 1994a, Hitimana et al. 

2010). Often they still occurred further inside the park (> 2000 m), but because they had 

become difficult to access our respondents did not rank them so highly in terms of actual 

use. For example in Site 9, P. africana was highly preferred but not highly used. Even 

though its woody debris represented 18% of all dead wood recorded in this site, stems 

were found mostly further from the boundary (Figure 4.7).  
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The degree of depletion of highly-preferred or used species was affected by site specific 

species composition. Stems of much preferred or used, but locally dominant, species such 

as C.volkensii, A.abyssinicus, N. macrocalyx and H.abyssinica (Table 4.6) were more 

abundant closer to the boundary than less dominant species, sometimes despite the fact 

that they also had other uses. For example, pioneer species such as H. abyssinica and N. 

macrocalyx that dominate the older regenerating areas of Site 9, were also much used as 

crop supports and poles. Other pioneers include Vernonia spp. which is a fast growing 

tree-like seasonal shrub that grows in degraded areas just inside the park boundary. 

 

In places with less dense population and less historical degradation, the lack of 

alternatives may lead to increased pressure on preferred species in the future. In Site 11 

and 14 most preferred species were still heavily used, meaning they were not yet as 

severely affected as in the other study sites. However, certain species that were both 

highly preferred and used - such as O. chrysophyla and A. abyssinicus in Site 11 and E. 

capensis in Site 14 - had small relative (Table 4.6) and absolute (Figure 4.7) basal area, 

suggesting they may become depleted if current use continues. 

 

Community composition varied with elevation independently of human impacts, and care 

is required not to confuse natural distribution effects with human impacts. For example A. 

abyssinicus in Site 11 may have a restricted lower altitudinal range close to that of the 

boundary of the park in this area. P. milianjianus in Site 9 seemed depleted close to the 

boundary but may also have been restricted to higher elevation areas within this site. 

Respondents in Sites 2 and 9 listed a higher number of species than respondents in Sites 

11 and 14, which is likely because species richness was higher in Sites 2 and 9 (Sassen and 

Sheil 2013).  

 

4.5.4. Future developments 

Fuelwood collection is important for local people on Mt Elgon. They lack sufficient 

alternatives and this dependence affects the forest. Fuelwood collection and other forest 

uses impact forest structure (Sassen and Sheil 2013), species composition and the 

availability of woody debris (this study). This in turn affects forest functioning and its 

ability to provide important resources for local populations in the long run. 

 

As population increases, demand for fuelwood is likely to grow. Our study indicates that 

this may lead to further forest degradation, both in intensity and extent. On Mt Elgon new 

roads are constructed and access is improved (Sassen et al. 2013). On each of our visits 

between 2009 and 2011, we observed new buildings being constructed in the small 
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trading centres along the roads or paths leading to the park. The main town of Mbale 

(Figure 4.1) is expanding (Mbale District 2007) which will lead to an increase in commercial 

fuelwood harvesting and an increasing demand for charcoal (Girard 2002, Bensel 2008, 

Zulu and Richardson 2012). Commercial fuelwood extraction and charcoal production can 

lead to much more severe impacts on the forest than dead wood collection because they 

entire trees are removed (Mwampamba 2007, Sassen and Sheil 2013).  

 

Allowing people access to the forest is double edged. Currently some communities around 

the park are given legal access to the park to collect dead wood and non-timber resources. 

In areas without formal agreements (e.g. Sites 2, 11 and 14) local rangers sometimes 

tolerate the collection of dead wood to avoid conflicts (Community conservation ranger, 

personal communication). On the one hand, granting people formal or informal access 

aids relations between the park and local people, and may help curb agricultural 

encroachment (Sassen et al. 2013). But the park management lacks the means to enforce 

the rules of the agreements and local forest user committees are unable or unwilling to 

impose them. Thus, illegal activities abound, including cutting of whole trees. In previous 

assessments there were indications that human uses had less impact on forest cover and 

structure in sites with a collaborative management agreement compared with sites where 

there was no agreement (Sassen and Sheil 2013, Sassen et al. 2013). But we also found 

most intense commercial fuelwood harvesting in a site where an agreement with park 

authorities gave people access twice a week (Sassen and Sheil 2013). We also observed 

that people from neighbouring parishes entered the forest on each other’s allocated 

resource collection days. Completely banning fuelwood collection from the park is 

unrealistic as many people rely on it at least party. Even if off-take was better monitored 

and found to be unsustainable, it will be impossible to stop people from entering the park. 

But dead wood collection and tree cutting should be viewed differently and there is a 

need for a system that regulates or controls the cutting of whole trees which at the same 

time allows the collection of dead wood.  

 

No one wins by losing the forest. There is a need to investigate ways in which local people 

can be empowered to have more ownership and control over the forest and how this can 

lead to more effective forest management. An important insight is that forest degradation 

is more likely where people view forests as an open-access resource rather than a 

common-pool resource (Ostrom 1999). The resource use agreements on Mt Elgon are an 

attempt to give people more ownership over resources in exchange for forest protection, 

but the degree of human impacts indicates that they are inadequate (Sassen and Sheil 

2013). However, in sites with the highest pressure (Sites 2 and 9), people realise the 
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impacts of firewood collection and other uses such as timber harvesting on the provision 

of these resources, even if they do not always act accordingly. Research has shown that 

such realisation is an important condition for the development of sustainable local rules 

(Ostrom 1999). Ostrom and others have found that congruence of local ecological and 

cultural contexts and perceived benefits and costs affect the success and sustainability of 

common-pool management arrangements (Ostrom and Hess 2010). They also developed a 

set of design principles for sustainable common-pool resource management regimes 

(Ostrom 1999), which could guide successful forest management on Mt Elgon. As an 

example, it may be possible to determine different rules with local communities regarding 

the use of slow-growing old growth forest species that are also valued for timber, trees 

with multiple uses and fast-growing pioneer species, if the local communities had a clear 

stake in the outcomes. Research on the productivity of tree species used for fuelwood by 

local communities could help inform such decisions (Top et al. 2004).  

 

In addition to more inclusive management regimes, it is important to investigate options 

for alternative sources of fuel. Access to alternatives can make a difference in the 

importance people attribute to these alternatives and to the park as a source of fuelwood. 

Even when trees are not planted to provide fuelwood, they are often highly valued as 

sources of fuel (Kindt et al. 2004, Arnold et al. 2006, Ndayambaje and Mohren 2011). For 

instance, in Site 2, M. platycalyx and C. Africana, which are commonly planted as shade 

trees for coffee, were also amongst the most used species for fuelwood. People with more 

land planted more trees but not in proportion to their land area. Identifying the right 

incentives may therefore help increase tree density outside the park in particular in areas 

where few trees are planted traditionally. Although people with little or no land may have 

fewer options to plant trees, the most densely populated areas on Mt Elgon were also the 

ones with the highest tree density outside the park. Forest use for fuelwood or other uses, 

varies among local communities which leads to different impacts within one protected 

area. There is clearly a need to look for locally appropriate options, incentives and 

alternatives that balance the needs of local livelihoods and forest conservation. 

 

4.6. Conclusions 

Fuelwood demand around Mt Elgon has intense but varying impacts over a large area of 

the park. Key old growth forest species were most affected furthest into the park, whereas 

there were less severe impacts on pioneer and locally dominant species. Yet all tree 

species that people used for fuelwood were negatively affected on the edges of the park. 

Similar impacts are likely in other forests surrounded by dense human populations with 

limited access to alternative sources of fuel. Our results demonstrate the strong impacts 
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of fuelwood extraction in combination with other uses, which will have future 

consequences for both forest dependent people and conservation. Pressure on forests for 

fuel is likely to increase and needs more attention. 
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5.1. Introduction 

Biomass from tropical forests plays an important role in sequestering carbon to offset 

climate change (DeFries et al. 2002, Pan et al. 2011). However the magnitude of the 

amount of carbon stored in the biomass of tropical forests is not well known, in particular 

in Sub-Saharan Africa (Glenday 2006, Houghton and Hackler 2006). The distribution of 

carbon in forests is affected by past and present disturbance, including the history of 

deforestation, degradation and regeneration. Degradation is often overlooked because it 

is more difficult to detect using remote sensing than deforestation (Putz and Redford 

2010). Nevertheless, many tropical forests are degraded to some extent and are 

composed of many intermediate vegetation cover classes that can store significant 

amounts of carbon (Mitchard et al. 2012, Ryan et al. 2012). These degraded and secondary 

forests are often also important for local livelihoods and conservation (Wright 2005, 

Chazdon et al. 2009). Understanding the impact of disturbance on carbon stocks, and their 

rate of recovery following such disturbance, is critical in light of planned implementation 

of the Reduced Emissions from Deforestation and Forest Degradation (REDD+) policy 

mechanism under the United Nations Framework Convention on Climate Change 

(UNFCCC).  

 

Local communities living near tropical forests are often highly dependent on forest 

resources for their livelihoods. In densely populated areas where people experience land 

scarcity, conflicts about the use of forest land and resources are common (Balmford et al. 

2001). In principle, REDD+ or other payments for environmental services schemes could 

potentially provide alternative incomes and lower the dependence of local communities 

on the forest. However, REDD+ schemes that include local livelihoods and conservation 

objectives require cost effective measures of carbon stocks with known uncertainties. 

 

Degradation processes are often gradual and take place on a small scale and are therefore 

difficult to detect remotely (GOFC-GOLD 2009). Small-scale forest degradation monitoring 

requires extensive repeated field measurements of local biomass extraction for e.g. 

cultivation, timber and fuelwood extraction. These measurements are rarely carried-out 

and unrealistic in resource-constrained conservation areas in the tropics. Optical remote 

sensing has limited capability to detect degradation in tropical forest because it sees only 

the top of the canopy. However, small scale and local degradation can happen without the 

canopy cover changing significantly (Mitchard et al. 2012, Ryan et al. 2012). In time series, 

variations in optical signatures can also be related to atmospheric effects, clouds and 

cloud shadows rather than to forest degradation (Saatchi et al. 2001). However, radar data 
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offers low cost, regular monitoring possibilities (Mitchard et al. 2009) that do not suffer 

from cloud effects, which are often a limitation over tropical forests (Saatchi et al. 2001). 

 

Research on the use of radar imagery for above ground biomass (AGB) estimation dates 

from the 1990s and was mostly focussed on the assessment of airborne radar data for 

biomass estimations (Dobson et al. 1992, Le Toan et al. 1992, Ranson and Sun 1994, 

Imhoff 1995, Kasischke et al. 1995, Rignot et al. 1995, Hoekman and Quiriones 2000), 

though attempts were also made using the L-band JAXA satellite JERS-1 (Santos et al. 

2002). More recently remote sensing radar images have been used to consistently map 

and monitor tropical forest (Saatchi et al. 2007, Quiñones et al. 2008, 2009, Hoekman et 

al. 2010, Quiñones and Hoekman 2011). L-band ALOS PALSAR Fine beam dual polarisation 

(FBD) space-borne radar imagery was found to be well correlated with above ground 

woody biomass in different tropical forests including several African forest landscapes 

(Mitchard et al. 2009, Morel et al. 2011, Ryan et al. 2012). Nevertheless such correlations 

are better in flat terrain, whereas in complex mountain ecosystems with forests growing 

on steep hills this relation is expected to be affected by geometric effects like fore-

shortening, layover or radar shadow and by radiometric effects where slopes facing the 

sensor appear brighter and slopes facing away appear darker. 

 

The forest on Mt Elgon, Uganda is characterised by steep slopes and has a long history of 

deforestation and forest degradation (Sassen et al. 2013). Much effort has been put into 

designing alternative conservation strategies and into the search for mechanisms to 

support management and ecosystem recovery. In the 1990s a foreign-funded carbon 

offset project funded restoration planting in formerly encroached areas of the park (UWA 

2000). More recently, the Mount Elgon Regional Ecosystems Conservation Project 

(MERECP) has initiated pilot REDD+ type projects in a number of locations around and 

inside the protected area (LVBC 2009). This type of project could benefit from consistent 

remote sensing observations and space borne biomass estimations to provide carbon 

levels, detect deforestation and degradation and monitor forest dynamics. The 

transparency provided by a consistent radar based monitoring system would help 

safeguard the financial benefits of local REDD+ projects to local communities. 

 

In this study we explore whether radar remote sensing can be used for above ground 

biomass (carbon) mapping in a complex, degraded mountainous forest such as on Mt 

Elgon. We first use existing allometric equations to calculate biomass from forest plot 

data. We then investigate the relationship between ALOS PALSAR Fine-Beam Dual (FBD) 

mode and the estimated biomass derived from the field measurements. We investigate 
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three different approaches for describing the relationship between estimated field 

biomass and radar backscatter and evaluate the fit between backscatter and ground 

measured AGB for these different approaches. As other factors than biomass may affect 

backscatter, we discuss the possibility of adding additional explanatory variables such as 

elevation, slope and aspect for the different approaches.  

 

Our goal was to investigate whether biomass estimations obtained using a relatively 

simple and low-cost angle-count method based on a relascope, were related to radar 

backscatter and if that relationship could be used for biomass mapping and with which 

accuracy. We also explore the possible use of an alternative method for mountainous 

ecosystems by performing a vegetation-structural classification of the radar data as a 

possible alternative for forest biomass, forest deforestation and forest loss monitoring. 

We expected that patterns of vegetation structure would be reflected in the biomass 

maps that result from applying the biomass-backscatter equations. 

 

5.2. Methods 

5.2.1. Study site 

Mt Elgon (4321m) is an extinct solitary volcano on the border between Uganda and Kenya. 

The slopes of Mt Elgon generally average less than 4 degrees, but there are characteristic 

natural terraces cut by sheer cliffs in the north, and steep slopes in the south and south-

west. The climate is determined by dry north-easterly and moist south-westerly winds. 

July-August and December-February are relatively dry, although rain falls in all months. 

Protected areas cover approximately 1120 km
2
 in Uganda and 1400 km

2
 in Kenya (Figure 

5.1) and no natural forest remains within at least 20km outside their boundaries. 

Estimated annual precipitation is between 1500 and 2500 mm (IUCN 2005). More rain falls 

on the western and south-western slopes and most falls in the forest zone, mid-slope at 

between 2000-3000 m elevation (m.a.s.l.) (Dale 1940, IUCN 2005).  

 

Mt Elgon is an important water catchment area for several million people in the 

surrounding districts and has significant biodiversity values (Davenport et al. 1996, IUCN 

2005). Historically and at the time of this study, the forest on Mt Elgon are also an 

important source of agricultural land, timber, fuel wood and other forest resources for 

local communities (Scott 1994a, Sassen and Sheil 2013). On the Ugandan side, large scale 

deforestation took place in the 1970s and 1980s with subsequent recovery after 1993, 

when a national park was established to protect the forest and the higher altitude 

moorlands. Since then regeneration, renewed encroachment and local forest use have led 
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to various degrees of recovery and degradation in different places inside the park (Sassen 

et al. 2013). 

 

Mount Elgon has a history of conservation and development projects (since the early 

1990s) that aim to support alternative livelihood options for neighbouring communities 

with mixed results (UWA 2000, LVBC 2009) .More recent pilot REDD+ initiatives aim to 

build on this in areas outside the park while also providing incentives to local groups to 

restore and protect the forest inside the park (LVBC 2009).  

 

 

 

Figure 5.1. Map of Mt Elgon, Uganda/ Kenya (administrative divisions were valid in 2010).  
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5.2.2. Field data 

Field data were collected between November 2010 and April 2011 (dry season) in 343 

plots in 4 sites (Figure 5.1). In each site, plots were established along five parallel transects 

400 m apart, pointing into the interior of the park (Figure 5.1). The centre of the first plot 

on each transect was located 50 m inside the park boundary and further plot-centres at 

200 m intervals. We sampled 13 to 21 plots along each transect, locating them using a 

handheld GPS (Garmin 60CSx). The number of plots depended on accessibility. In each plot 

we used an angle-count or relascope method to directly estimate tree basal area (BA). In 

77 of the plots we also measured the diameter at 1.3 m (dbh) of all trees counted in by the 

relascope, estimated tree height when possible and identified tree species. 

 

Height data was missing for 36 out of 632 measured live stems because the canopy was 

not always visible to reliably estimate tree height. We used the measurements from 541 

trees that were alive and unbroken to estimate missing heights using species- and site 

specific power-law regression equations (3 cases). If insufficient (n ≤ 5 and model not 

significant at p < 0.05) site-specific data were available then species-specific equations for 

all study sites combined were used (8 cases). If there were insufficient stems of the 

species in all study sites combined (n ≤ 5 and model not significant at p < 0.05), then a site 

specific equation based-on all stems in that site was used (3 cases).  

 

Because the location of our plots was determined by their distance from the boundary, we 

did not necessarily select homogenous areas for basal area measurements, or only areas 

that were forested. In fact many of our plots close to the boundary were heavily 

disturbed. In these plots, there were sometimes no trees within range of the relascope 

and they were then recorded as empty (“zero-value plots”). 

 

5.2.3. Above Ground Biomass (AGB) in field plots  

We estimated calculated above ground biomass (AGB in Mg/ha) in 77 plots with dbh and 

tree-height data (Eq. 1) but also using only dbh (Eq. 2) using the pan-tropical stem-by-stem 

allometric equations for moist forest based developed by Chave et al. (2005). These 

equations have been found suitable in various other African tropical forests (Mitchard et 

al. 2009, Mitchard et al. 2011, Ryan et al. 2012).  

 

AGB = exp[-2.977+ln(ρD
2
H)]       (Eq. 1) 

 

AGB = ρ x exp[-1.499 + 2.148ln(D) + 0.207(ln(D))
2
 – 0.0281(ln(D))

3
]  (Eq. 2) 
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Where ρ is the wood specific gravity (g/ cm
3
), D is the dbh (cm) measured at 1.3 m and H is 

the estimated tree height (m) (when available). We used Wood Specific Gravity (WSG) 

data from the Global Wood density Database (GWDD) (Chave et al. 2009). When multiple 

values existed for one species they were averaged. When there was no value for the 

species, we used the average of values for species of the same genus in Africa (n=11 of 

total dataset of 63 species). If no information for the genus was available then we 

calculated and used the average from all other trees species in our study (n=10). 

 

Because we used a plotless relascope method to select the trees, each stem represented a 

number of stems per hectare. We therefore divided the AGB per stem by its virtual plot 

area to obtain the AGB represented by each stem. Summing these per plot resulted in the 

estimated AGB/ha for each plot. Our AGB measures did not include vegetation other than 

trees. We then developed regression equations for the relation between measured BA 

and calculated AGB in the 77 measured plots (see Figure 5.2) to estimate the AGB/ha from 

plot basal area (m
2
/ha) for plots with only direct BA estimations (n = 266).  

 

5.2.4.Radar data 

The radar imagery used was from the Phased Array L-band Synthetic Aperture Radar 

sensor aboard the Advanced Land Observing Satellite (ALOS PALSAR), acquired by the 

Japanese Space agency JAXA and distributed by the European Space Agency (ESA). We 

acquired two scenes on each date to cover Mt Elgon. The scenes were captured on 

08/09/2007 and 01/08/2010 in the Fine-Beam Dual (FBD) mode: Horizontal-send 

Horizontal-receive (HH) and cross-polarised, Horizontal send Vertical-receive (HV). L-band 

SAR imagery is known for its ability to penetrate the forest canopy making it sensitive to 

forest biomass (Almeida et al. 2005, Fransson et al. 2007, Mitchard et al. 2009). The 

images were processed using standard approaches available in the image processing 

software ENVI 4.6.1. (ITT Systems) and automated scripts developed by SarVision. ALOS 

PALSAR standard FBD images were processed at 20 m. resolution. Radar data processing 

and corrections included radiometric absolute calibration, geocoding and geometric and 

radiometric terrain corrections that allow for a partial correction of the radar signature for 

slope. The resulting Gamma naught backscatter values are scaled to a decibel scale (dB) 

(for details see Appendix 5.A).  

 

The geometric and radiometric terrain corrections were attempted using the 90 m 

resolution Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) 

processed by the CGIAR Consortium for Spatial Information (http://srtm.csi.cgiar.org/). 

Unfortunately no higher resolution DEM was available, so it was likely that significant 
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terrain artefacts would remain. Layover and shadow effects could not be corrected though 

as no data was collected in these areas (see black edges on Figures 5.5 and 5.6, 

representing steep cliffs). 

 

5.2.5. Backscatter data extraction  

We extracted the average backscatter values for each plot averaged from circular areas of 

52-pixels (representing an area of 2.08 ha) around the GPS position of each plot-centre. 

Sampling areas for radar data processed at 20m resolution need to have more than 144 

looks to be considered free of speckle (calculation based on the number of looks, see 

Hoekman and Quiriones 2000). ALOS has four looks per original pixel, so we needed 

extraction areas of at least 30 pixels. We derived aspect and slope data from the DEM (but 

see 5.4.2.) and investigated the effect of removing plots on steep slopes. Elevation was 

measured in the field using a handheld GPS (Garmin 60CSx). 

 

5.2.6. Backscatter relationship with AGB 

Contrasting points of view on how to best fit backscatter to AGBgm led to three different 

approaches to describe the relationship between backscatter and AGBgm. The contrasting 

points of view were:  

1) including versus excluding plots with zero AGBgm values in the analysis. 

2) explaining AGBgm from backscatter data versus (the other way around) explaining 

backscatter data from AGBgm (see also Ryan et al. 2012).  

 

The first contrast is related to the fact that for most methods the ground based estimation 

of AGB is systematically underestimating actual biomass (e.g. they only measure trees 

with a minimum diameter and not shrubs). This means that plots that are recorded as 

bare can in reality be vegetated. On the one hand one could leave out the “zero-value” 

plots because they don’t add predictive power to the relationship between AGB and 

backscatter. On the other hand one can argue that the goal of finding a relationship 

between AGBgm and backscatter is to be able to predict AGB from space. From space you 

cannot recognize plots that would get a “zero value” for AGBgm when measured in the 

field and therefore all plots should be included in the analysis.  

 

The second contrast - regarding which of the variables (AGBgm or backscatter) is the 

explanatory and which is the explained - is a matter of personal preference. Intuitively one 

would define AGBgm as the explanatory and backscatter as the explained variable, since 

backscatter is thought to depend on AGB. The other way around though, one could argue 

that backscatter is only partly the result of AGB (but also of terrain, soil moisture, 
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vegetation structure, etc.) and that the field measured AGB is (just like backscatter) an 

estimate of the real AGB.  

The two contrasts meet in a mathematical practicality. Namely, having backscatter as the 

explained variable does not allow for the inclusion of AGBgm “zero values” when fitting 

log-based models, since this would result in having to take the logarithm of zero. This 

leaves three possible approaches to investigating the relationship between backscatter 

and AGBgm:  

1) AGBgm as the explained variable and AGBgm “zero values” included.  

2) AGBgm as the explained variable and AGBgm “zero values” excluded. 

3) backscatter as the explained variable and AGBgm “zero values” excluded.  

 

Besides having backscatter or AGBgm as explanatory variable we investigated the effect 

on the overall fit of the additional explanatory variables, slope, aspect and elevation. 

Aspect was described by two variables; one North-South variable and one East-West 

variable. All additional explanatory variables were first plotted to AGBgm one by one to 

investigate a possible relationship. Based on this preliminary investigation, equations were 

constructed to fit this relationship. All variables were fitted to AGBgm by starting off with 

a simple linear relationship and building in more complexity towards the relationship 

found through the preliminary investigation.  

 

Aboveground biomass is commonly estimated by converting radar backscatter data 

through a reduced major axis (RMA) regression (Mitchard et al. 2012, Ryan et al. 2012): 

“RMA regression minimizes the errors on both axes (rather than just on the y-axis as in 

normal regression), which is appropriate because there are errors in both data sets and 

the observer controls neither […].” (Ryan et al. 2012). However, one major drawback of 

RMA regression is that, as the slope departs from ±1, the RMA slope estimate is 

increasingly biased and the confidence interval includes the true value less and less often 

(http://cran.r-project.org/web/packages/lmodel2/vignettes/mod2user.pdf). Since part of 

the models that we wanted to compare with each other would have RMA slopes strongly 

deviating from ±1, we could not use RMA regression. Also, ordinary least square (OLS) 

regression could not be applied as our data were not normally distributed (and could not 

be transformed to a normal distribution) and contained outliers. Therefore we used 

nonlinear robust regression (MATLAB 7.5.0). Robust regression is specifically designed to 

deal with outliers and non-normally distributed data.  

 

Since our data is highly skewed and in some of our approaches zero-inflated, we expected 

difficulties in the evaluation of residual plots. Therefore, we fitted a parabolic function 
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through the residuals in order to more easily assess whether the models describing the 

relationship between AGBgm and backscatter were biased. Furthermore, Q-Q plots were 

constructed to assess whether the predicted values linearly described the observed 

values. All analysis was performed using Matlab 7.5.0. 

 

5.2.7. Vegetation classification 

We used a pixel-based combined unsupervised/ supervised classification algorithm. First, 

an unsupervised classification procedure created 30 classes, which for complex tropical 

forest ecosystems has been found to best describe the variation in the image, based on 

the Bayesian Information Criterion (for details see Hoekman et al. 2010) (further details in 

Appendix A). The resulting classification was used to evaluate vegetation patterns based 

on ancillary information (van Heist 1994, KWS et al. 2001) and expert knowledge (field 

observations). Based on this evaluation, 25 classes were retained and training data 

extracted using polygons over the radar images. The training data was then used in a 

supervised classification procedure. Classes were identified and labelled using a 

combination of ancillary data and expert knowledge of the area. A Geographical 

Information System (GIS) was created using the different available map layers and the 

radar ALOS PALSAR images to aid interpretation of the images. Finally, some of the classes 

among the 25 were merged based on interpretation of the radar backscatter values in 

relation to known vegetation structure. Formal validation was not attempted within the 

scope of this study but will be included in a later version of this paper. 

 

5.3. Results 

5.3.1. AGB from field data 

The AGB calculated for the plots with measured dbh and height varied between 0 and 731 

Mg/ha. Ranges were higher when using the equation with only dbh (Figure 5.2.b, data in 

Appendix 5.B). We calculated linear regression equations between BA and AGBgm in both 

cases (Figure 5.2.a. and 6.2.b.). 

 

For each measured plot we derived two different estimates of AGB: one resulting from the 

model including dbh and height (Figure 5.2.a) and the other from the model with only dbh 

(Figure 5.2.b).  
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Figure 5.2. Relationship between basal area (BA) per plot and AGB calculated from height and dbh 

(a) and only from dbh (b). 

 

5.3.2. Plot-level AGB backscatter relationships 

To further reduce the effects of terrain (see section 5.2.4 on terrain corrections) on the 

relationship between AGB and backscatter, we excluded all plots with slope angle greater 

than 30 degrees as radar extractions for these plots show an extremely high heterogeneity 

(standard deviation larger than 1.5 dB) compared to plots on less steep terrain. This 

difference in heterogeneity could not be corrected for and could not be explained by the 

heterogeneity in the ground based observations of AGB from these plots and was 

therefore treated as a measuring error. Removing plots with slopes above 10 degrees 

would have resulted in an even cleaner signal, but would have left only 74 plots for 

analysis (out of 343). Two more plots were excluded from the analysis, because they were 

situated on a cliff top next to a steep drop, causing their backscatter values to be 

unrealistically high.  
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AGBgm estimated using the equation that included dbh and height (Figure 5.2.a) versus 

HV backscatter, consistently gave a better fit than AGB estimated without height and BA. 

AGB (any model) or BA versus HH backscatter performed less well than HV. Therefore only 

relationships between AGB estimated using dbh and height (hereafter referred to as 

AGBgm) and HV are presented.  

 

Significant relationships between AGBgm and HV backscatter were found for all three 

approaches (Figure 5.3, Table 5.1). The approach where AGBgm was explained by 

backscatter and where zero values were included (Figure 5.3.a) showed a higher 

correlation than the two approaches without zeros (Figure 5.3.d, g). In our case most zero 

AGBgm values were correlated with a range of backscatter values where the best fit curve 

would be close to the x-axis even if there were no zeros. The difference between the zero 

and the predicted value on the best fit curve is therefore smaller than the average 

difference between the measured values and their predicted values on the curve, leading 

to a better correlation than when zeros are not included.  

 

Intuitively one would favour a higher correlation over a lower one, since a high correlation 

is beneficial for a more accurate prediction of biomass by backscatter (also reflected by a 

narrower confidence interval). In this case though, the left part of the best fit curve (Figure 

5.3.a) is flattening out to horizontal while the right part is getting steeper, therewith 

decreasing the discriminative power of backscatter over AGBgm, i.e. virtually all 

backscatter measurements less than -17 will result in a prediction of zero ABG, while a 

minute difference in backscatter above -13 can result in an error of 100 Mg AGB/ ha. 

Therefore in our case, there is a trade-off between accuracy (Figure 5.3.a) of the 

relationship and discriminative power (Figure 5.3.b) of backscatter over AGB. 

Nevertheless, the residuals plot shows virtually no bias and the Q-Q plot suggests a linear 

relationship between the observed and predicted values. Observed values in the Q-Q plot 

peak around 800 Mg/ha, while predicted values reach 400 Mg/ha; this large difference is 

caused by the large spread in AGBgm measurements around their predicted values. The 

saturation of the radar backscatter response above 150-200Mg/ha is well illustrated in all 

models presented in Figure 5.3: changes in response above this point therefore do not 

have much relevance. The differences between the fits below this saturation point are 

however still significant. 

  



Chapter 5 

110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. AGBgm (Mg/ha) plotted against HV backscatter (a,d). HV backscatter plotted against 

AGBgm (Mg/ha) (g). Residual plots with fitted parabolic functions (second column). Q-Q plots for 

observed vs. predicted values (third column). Columns 1 & 2, solid line is robust fit nonlinear 

regression, dotted lines are 95% confidence interval. Column 3, solid line is between 25
th

 and 75
th

 

quantile, dotted line is extrapolation of solid line to assess fit for the outer quarters. 

 

There is no difference between the correlations of the second (direct) and the third 

(indirect) approach, since they are based on the same data (Table 5.1). The predictive 

power (Table 5.1) though is a manifold higher in the direct estimation (Figure 5.3.d) 

compared to the indirect estimation (Figure 5.3.g). This can be clearly seen in the Q-Q plot 

(Figure 5.3.i), where predictions only start at -15 and quickly saturate around -13.5. This 

difference in predictive power can be explained by the fact that in the direct approach the 
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error in AGB is minimised, whereas in the direct approach the error in the backscatter is 

minimised. The residuals plots of the direct en indirect approaches both without zeros 

show a backwards mirrored bias of each other that can be explained by the fact that their 

equations can be rearranged between them.  

 

Table 5.1. Regression statistics for the relationship between radar backscatter and field measured 

aboveground woody biomass (Mg/ha) for the three different approaches. Where ��� & ��� are 

parameter estimates ± 95% confidence interval, �� is Spearman’s rank correlation coefficient en p is 

the probability of having 0 correlation.  

 ������,����		������� ������	����	, ������� ��������,����		������� 

� 211 169 169 

�����  AGBgm = e
����

° ����

���
�
 AGBgm = e

����
° ����

���
�
 γ��° = b�� + b��ln	�AGBgm� 

�� � 19.92 ± 1.31 22.69 ± 2.81 −15.82 ± 0.47 

�� � 1.27 ± 0.25 1.74 ± 0.53 0.35 ± 0.10 

��
 

0.61 0.50 0.50 

� ˂0.0001 ˂0.0001 ˂0.0001 

����* 88.91 125.61 0.87 

* in Mg/ha 

 

Amongst the additional explanatory variables, slope, aspect and elevation, only elevation 

significantly contributed to the improvement of the correlation between backscatter and 

AGBgm (direct approach with zeros included) (Figure 5.4). The fitted relationship was of 

the form: 

����� = �
����

° ����

���
�
+ ���	
 + ���	
� 

 

Where ���°  is HV backscatter and 	
 is elevation; coefficients (± 95% confidence intervals): 

��� = 29.15 ± 11.12, ��� = 2.87 ± 1.84, ��� = −0,27 ± 0.10, ��� = 0.0001 ± 0.00003; 

�� = 0.68; ˂0.0001; ���	 = 89.56	��/ℎ�.  

 

Compared to the model without elevation, the Spearman’s correlation coefficient 

increased from �� = 0.61 to �� = 0.68. Although the fitted model does not show bias in 

the residuals plot, one can see in the Q-Q plot that the fitted relationship does not 

describe the observed values linearly. Moreover the fitted relationship shows a “double 

band” in the predicted values. This is caused by plots at high elevation with a lower than 

expected AGBgm (and therefore a lower than expected HV backscatter value).  
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Figure 5.4. (a) AGBgm (Mg/ha) plotted against HV backscatter, red dots with lines are predicted 

values with 95% confidence intervals. (b) Residuals plot with fitted parabolic functions, solid line is 

robust fit nonlinear regression and dotted lines are 95% confidence interval. (c) Q-Q plots for 

observed vs. predicted values, solid line is between 25
th

 and 75
th

 quantile, dotted line is 

extrapolation of solid line to assess fit for the outer quarters. 

 

5.3.3. Mapping biomass 

We used the equations developed through all three approaches (Table 5.2) to invert the 

radar HV images of 2010 into biomass maps (Figure 5.5.a, b, c). We did not have plots 

outside the protected area so the low backscatter values of the northern “bare” areas are 

poorly represented in the relationship between AGB and backscatter – leading to a narrow 

range of backscatter values (5 dB) (Table 5.2) 

 

Table 5.2: Equations used to calculate biomass maps for Mt Elgon (Figure 5.5) 

Explored options to map biomass from AGB Equation  

AGB estimations based-on in-situ data measured on Mt 

Elgon. Approach: Direct, zeros included ��� = �
�ɣ	

� ���.��

�.�
�
   (Figure 5.4a) 

AGB estimations based-on in-situ data measured on Mt 

Elgon. Approach: Direct, zeros excluded ��� = �
�ɣ	

� ���.��

�.�
�
   (Figure 5.4b) 

AGB estimations based-on in-situ data measured on Mt 

Elgon. Approach: Indirect, zeros excluded ��� = �
�ɣ	

� ���.��

�.��
�
   (Figure 5.4c) 
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Figure 5.5. Above ground biomass maps of Mt Elgon, Uganda for 2010, using three 

equations based on the data from this study. 
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5.3.4. Vegetation classification 

The classification procedure yielded 14 vegetation classes of stable and changing 

vegetation (between 2007 and 2010), 1 water class and a class corresponding to slopes 

that were too steep to correct for and therefore have no data. Many bare and grassland 

areas in the lower-lying areas to the north of the mountain showed variation due to 

fluctuating regimes of flooding and drying. These classes were merged. Most change was 

apparent in the agricultural areas in the lower laying areas around the mountain and in 

plantation areas on the Eastern slopes (Figure 5.6). The classification shows vegetation 

structure varying from dense mountain forest with patches of bamboo and woodlands, to 

different densities of bushland, grassland and “bare” areas in the north.  

 

These vegetation classes are distinct in their levels of biomass and because of the 

interaction between radar backscatter and aspects of vegetation structure we expected to 

see these patterns back in the results of the biomass maps (see 5.3.3.). 

 

5.4. Discussion and conclusions 

5.4.1. AGB estimations based on angle-count methods 

It is known that basal area is strongly correlated with AGB, as both AGB and basal area 

depend on tree diameter (Phillips et al. 1998, Kronseder et al. 2012) but our finding that 

BA measured by a relascope is strongly related to field-measured BA is an important 

development. Compared to having fewer more expensive fixed area plots, plotless 

methods can work to directly estimate AGB in a large number of plots at a relatively low 

cost: it is relatively fast and a relascope can be made easily using local material or even, 

after calibration, one’s thumb. The sampling design should however be adapted for the 

purpose of biomass mapping and monitoring (see 5.4.2).  

 

There are substantial differences when using the pan-tropical equations for AGB 

developed by Chave et al. (2005) using dbh and height or only dbh, as is known from the 

literature (Feldpausch et al. 2012). Results for our plots show that AGB calculated using 

dbh and height produces systematically lower values than AGB calculated using only dbh 

(details in Appendix B). This has potentially important consequences for the economic 

valuation of Mt Elgon in terms of carbon stocks and therefore for the benefits that can be 

derived from avoided deforestation and degradation or even reforestation under REDD+. 

Developing local allometric equations relating basal area and AGB would help reduce 

uncertainties, but the general consensus from the literature is that the use of the Chave 

equation with height - as is possible here because we measured tree height for a subset of 

trees - produces more accurate results (Chave et al. 2005, Feldpausch et al. 2012).
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5.4.2. Exploring the use of ALOS PALSAR data for biomass mapping in a complex east 

African forest 

AGBgm estimated using the equation that included height versus HV backscatter, 

consistently gave a better fit than any of the other models. This is consistent with previous 

studies (Mitchard et al. 2009, Mitchard et al. 2011) and the study where the equations 

were derived, which found that errors were reduced by about half using the equations 

with height (Chave et al. 2005). 

 

All three approaches found a strong relationship between HV backscatter and AGB in the 

0-~150 or 200 Mg/ha range (Table 5.1). In this study the approach that used backscatter as 

the explanatory variable produced maps (Figure 5.5.a,b) with a higher contrast than the 

approach using backscatter as the explained variable. Given the relatively high uncertainty 

on plot-level AGB due to the use of the relascope, it was appropriate to try and minimize 

the error on AGB instead of on backscatter. The first model, including the zero AGBgm 

values, gave the better fit and thus better represented the data, which was shown by a 

higher r
2 and in the plots, even though it is less sensitive as shown in the map (Figure 

5.5.b).  

The radar backscatter saturates at higher biomass values (150-200 Mg/ha), limiting the 

possibilities to estimate biomass values above this threshold (Mitchard et al. 2011). This 

can be seen in Figures 5.3 and 5.5 where above this threshold we did not see any variation 

in backscatter, whereas AGB among plots still varied (Figure 5.3).  

 

We were expecting slope, aspect and elevation to affect the relationship between AGBgm 

and backscatter. Despite the fact that the backscatter images where corrected for the 

physical terrain we were still expecting an effect of slope and aspect caused by differences 

in plant growth due to environmental conditions related to the terrain. But we may not 

have had sufficient plots to be able to detect this relationship, as it is probably weak and 

confounded by errors on the backscatter and AGBgm. Our results indicate that elevation 

(obtained through a Digital Elevation Model) potentially can contribute to a better 

prediction of AGB. This was not explored here as an equation including elevation would 

have only been applicable for a very limited spatial extent, only within elevation ranges 

covered by our field plots, and not over the whole landscape. 

 

It is clear that our original terrain correction algorithms were not fully successful, as 

terrain influences on backscatter are clearly visible in the images. It appears that our 

terrain correction procedure was good at correcting for geometry shifts, but did not 

sufficiently correct for differences in brightness. The radiometric correction of the terrain 
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corrected effects on slopes up to 15%. When slopes are very steep then radar has well 

know limitations (Ahmed et al. 2013). We need to create a local terrain slope layer, e.g. 

using a 15 m DEM for the study site and use this either to correct the radar data for 

backscatter values independently, or include as a layer in biomass prediction. We now 

used only a global DEM with 90 m resolution.  

 

The biomass maps resulting from our derived equations of AGB against backscatter were 

not showing the patterns we had expected (Figure 5.6). Though they distinguished areas 

with broadly higher and lower biomass they did not show the forest structure patterns 

suggested from the classification image which encompasses all the variation in the radar 

data (Figure 5.6). Tree density and height are important aspects affecting biomass 

estimations per plot, but we had insufficient number of plots with data on tree density to 

investigate the relationship between backscatter and tree density. 

 

We explored the use of a biomass - backscatter equation developed for another region 

(Eq. 3 for Guyana) where the same calibration procedures as in this study were applied 

but that was based on a backscatter - biomass relationship with a much broader range of 

values (13 dB). The result shows a higher differentiation between biomass levels (Figure 

5.7).  

��� = �
�ɣ��
�

���.���

�.	��		
�
        (Eq.3) 

 

The equation developed for Guyana produced patterns closer to what we had expected 

from the structural classification compared to our own results (Figure 5.5, 5.6 and 5.7). 

But, as expected, a plot of AGB values estimated from our plots using the Guyana 

equation compared to the AGB values we measured in the field showed strong bias (data 

not presented).  
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Figure 5.7: Above ground biomass map of Mt Elgon, Uganda for 2010, using the equation developed 

for tropical rainforest in Guyana (Quinones 2009). 

 

Our sampling design was intended to assess the impacts of gradients of human use on the 

forest community (Chapter 3 and 4). We did not seek the greatest variation among 

(groups of) plots, neither did we try to keep forest structure within plots as homogenous 

as possible. The range in backscatter values among our plots was lower compared to that 

of other studies. We used relatively large areas (> 2 ha) to average pixel values for each 

plot, and it is possible that our plots did not adequately represent the forest of the 

surrounding 2 ha. It is likely that because we only sampled in a limited area of the study 

site, we covered only a comparatively small range of vegetation types (Figure 5.1).  

 

Collecting data in more homogenous plots, to reduce variation in the pixels, with clearer 

differences in vegetation cover among the plots (instead of the gradient now covered) 

could perhaps contribute to reduce the error in the relationships with AGB. Smaller 

backscatter extraction areas should also be tested, although the issue of speckle from the 

radar signal would then increase. A wider range of vegetation types should also be 

sampled. Some unexplained variation in biomass was likely due to terrain and geolocation 

errors. The influence of using PALSAR data in an area with such steep terrain and 

corrected with a 90 m DEM should be assessed. 
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REDD+ projects would benefit from cost-effective consistent remote sensing observations 

and space borne biomass estimations to provide carbon levels, detect deforestation and 

degradation and monitor forest dynamics. A radar based monitoring system could 

contribute to this, but, as we show, there are still challenges to resolve. The results 

obtained by using different equations, based on different ranges in ground data-related 

backscatter values suggests that the relationship between AGB and backscatter is very 

sensitive to the type and range of ground data used. We therefore did not attempt to 

calculate a total amount of carbon for the area. 

 

The models that we found with our data are valid only for the range of our data: the area 

around the mountain in Figure 5.5 shows little or no variation because we did not have 

any ground data for these areas. Radar technology is still in development however and 

perhaps new projects, such as the ESA mission using a polarimetric, interferometric P-

band synthetic aperture radar will be able to overcome some of the challenges of ALOS 

PALSAR data 9. However there is clearly good signal in this radar dataset, and possibly with 

a higher resolution DEM (for example the 10 m DEM’s that are available from TanDEM-X) 

would have assisted in correcting the PALSAR data and improved the regressions. 

 

In conclusion, we have shown that simple methods to estimate biomass in the field, such 

as with a relascope, can provide consistent data, and that ALOS PALSAR radar data can 

provide realistic classifications of the different vegetation types in a complex tropical 

mountain mosaic, differentiating well between different vegetation structural types. 

However, attempts to use the radar data in combination with field estimated AGB data to 

produce a biomass map had only limited success, probably due to limitations in the 

location and size of our field plots, and to remaining issues of terrain correction in our 

dataset. It may be that certain portions of this image had such large terrain artefacts that 

no correction is possible: this is a limitation in using radar data in mountainous areas. 

Using a radar-AGB calibration equation from Guyana appeared to produce a more realistic 

looking biomass map, but ultimately a higher resolution DEM is necessary to perform 

sufficiently good terrain corrections. 

 

  

                                                           
9
 http://www.esa.int/For_Media/Press_Releases/ESA_s_next_Earth_Explorer_satellite 
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The main goals of this study were to investigate how conflicting goals by different actors 

led to various outcomes for the forest and people on Mt Elgon, Uganda under different 

historical contexts and to explore lessons for the wider debate on conservation and 

development. Below I summarize the results before discussing their implications. 

 

Mt Elgon did not experience only forest loss over the past 35 years. Locally, there were 

areas of recovery (Chapter 2). By analysing local variations I found that it is the context 

(e.g. law enforcement, collaborative management, political interference) under which 

drivers such as population, wealth, market access and commodity prices operate, rather 

than the drivers per se, that influences impacts on forest cover. Agricultural expansion on 

Mt Elgon cannot simply be linked to population and poverty or other individual drivers. 

This means that conservation and development interventions need to address local 

factors while recognizing influences operating at national and global levels. At the site 

level, local forest uses strongly influenced forest structure (Chapter 3). The type of 

resources collected and the impacts thereof varied according to the land use system 

outside the park (and sometimes inside). Human impacts also affected tree species 

richness. I show that generalisations about trade-offs between local uses and conservation 

are confounded by location specific characteristics. In the specific case of fuelwood 

collection, demand for fuelwood and the availability of alternatives on people’s own land 

varied amongst the study sites and influenced fuelwood collection form the park. Dead 

wood was depleted on the edge of the park, particularly near the most densely populated 

sites (Chapter 4). Species that were highly preferred and used as fuelwood were depleted 

with possible impacts on tree biodiversity. Allowing the collection of fuelwood or other 

resources through collaborative management agreements creates opportunities for more 

destructive activities such as tree cutting for timber or charcoal (Chapter 3). On the other 

hand it helps relations between local people and park staff and is therefore a basis for 

further negotiation or improvement of collaborative management arrangements (see 

section 6.1.). Incentives to plant alternative sources of fuel on people’s own land outside 

the park can help support more effective common pool management arrangements inside 

the park by helping to reduce the perceived importance of the forest as a source of fuel 

(Chapter 4). A relatively new approach attempting to reconcile local livelihood 

improvement and conservation on Mt Elgon involves PES schemes based on REDD+. I 

found that above ground biomass is very high in some areas of Mt Elgon, reaching above 

800Mg/ ha (Chapter 5). Simple angle-count based methods can provide a cost effective 

method for AGB estimation, but the sampling design needs to be adapted to the purpose 
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of biomass mapping. Topography and local degradation affected the production of a 

biomass map and further work is needed to address these challenges (Chapter 5).  

 

The findings in Chapters 2, 3, and 4 constitute the first D and E of the DEED (Describe and 

Explain) framework presented in the introduction. Below, I explore (Explore) how the 

results of this study support theories on human-environment interactions that go beyond 

single factor relationships. In section 6.1. I discuss the importance of local motivations and 

how attitudes and decisions are shaped by changing contexts and conservation strategies. 

I then discuss generally recognised drivers of forest change from global theories on 

agricultural expansion and population (section 6.2.1.), to theories about the role of wealth 

and poverty (section 6.2.2.) and that of markets and prices (section 6.2.3.). For each of 

these I discuss how they in themselves do not explain forest change at the local scale. 

Rather, their importance is the result of the interaction of factors at different scales that 

determine the contexts under which local people make decisions on forest use. Finally, 

after considering the fine scale variation of impacts of local access and forest use (section 

6.3.), I discuss possible options and implications for the design (Design) of more locally 

adapted and ecologically and socially sustainable management arrangements on Mt Elgon 

and elsewhere (section 6.4.). I conclude with recommendations for conservation actors at 

various levels on the need to recognise local variations in motivations, impacts and 

required attention. 

 

6.1. Local decision-making and human-environment interactions (why local people do 

what they do) 

Ultimately human-environment interactions are about people making decisions. In this 

study, I found that people’s motivations are influenced by options available in a particular 

context, not necessarily by the drivers or factors themselves (Chapter 2 and 4). My 

findings support the theoretical framework proposed by VanWey et al. (2005) that various 

interacting factors determine the context within which actors make decisions and then 

mediate these decisions to lead to various environmental outcomes (see also Figure 1.1.): 

“Actors are decision makers trying to improve their well-being by choosing among 

productive options that appear available to them or when necessary, inventing new 

options”. This study showed that this is true at multiple interacting scales. There is a need 

to understand how processes at different levels interact (VanWey et al. 2005) This study 

on Mt Elgon gave empirical evidence of how such interactions work and their 

complexities. I show the importance of the interplay and feedback between context, 

drivers and of differing priorities among groups of people and how this leads to varying 
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outcomes for forest conservation (see also Leach 2008, Hersperger et al. 2010, van 

Noordwijk et al. 2011). 

 

Since its first gazettment as a forest reserve by colonial powers, local people on Mt Elgon 

progressively lost access to forest land and resources (Turyahabwe and Banana 2008). 

Before the breakdown in law enforcement under Idi Amin’s rule, the forest reserve 

boundaries appeared relatively intact (Chapter 2). There was however already a history of 

excision and de-gazettment under colonial rule, particularly in the southern area (Scott 

1998). Also, there were fewer roads all around the mountain, urban markets were likely 

smaller and demand for crops and forest resources such as fuelwood and timber was likely 

lower. I show that when law enforcement was reinstated from 1993, this played an 

important role in maintaining park boundaries but was only successful over the longer 

term in certain areas (Chapter 2). I discuss some reasons for this under section 6.2.3. 

 

However, I also found indications that boundaries were more resilient in areas with 

collaborative management or/and low conflicts (Chapter 2) (Persha et al. 2011, Porter-

Bolland et al. 2011). The attitude of local communities towards the park and its 

management seemed crucial in determining the level of conflict and the adoption of 

collaborative management, although the cause and effect relationship was not always 

clear and would merit further investigation (see also Struhsaker et al. 2005). In Burma, 

Allendorf et al. (2006) found that positive attitudes towards protected areas were related 

to perceived benefits from conservation and from managing the area, from extraction, 

and lower conflicts with park staff. On Mt Elgon, I observed different types of attitudes 

(from south to north-east): 

- Rejection of the boundary-line, agricultural encroachment, violence, back-and-

forth of clearing and regrowth before and after elections, degraded forest due to 

charcoal burning (Chapter 2, 3, 5) (Figure 6.1). 

- No agricultural encroachment but high and sometimes illegal forest use under 

collaborative management. Forest cover relatively well maintained or kept in an 

early succession state (Chapters 2, 3 and 4) (Figure 6.2). 

- Rejection of the boundary-line set by resettlement, encroachment in the 

contested area but beyond that mainly through grazing and firewood cutting and 

not so much violence. Forest cover relatively intact inside the claimed boundary 

but apparently gradually shifting back. Forest structure affected by grazing 

(Chapter 2 and 3) (Figure 6.3). 

- Boundary-line recognized but more recent degradation on the edges (Chapter 2) 

(Figure 6.4) 
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Figure 6.1. Fires on the edge of a formerly encroached (1990s), then recovered and now (2010) re-

encroached forest area in the south. The burning is to clear land for agriculture. The cultivated area 

shown in this picture is inside the official boundary and under formal dispute in the Courts (photo 

2010). 

 

 

 

Figure 6.2. Edge between cultivated area outside the park boundary and regeneration from former 

encroachment (1990s) in the north-west. Tree regeneration is slowed-down because of small-stem 

harvesting (photo 2010). 
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Figure 6.3. Formerly cleared forest edge in the north (after 2001), now grazed by cattle (photo 

2011). 

 

 

 

Figure 6.4. Almost intact forest edge in the north-east. A white boundary pillar is just visible towards 

the right of the picture (photo 2010). 

 

Different histories and a combination of the factors and contexts seem to have influenced 

these variations (see also section 6.2.). For example, in the north corruption in land 
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allocation processes related to resettlement (even recent) and boundary demarcation 

fosters resentment and powerlessness among poor people on the forest edge. Local 

people reported that this influenced their behaviour. For example in a study site in the 

east, local people told me that when the park was established in 1993, they lost their 

sense of ownership over the forest and people started encroaching the edges soon 

thereafter (see also Scott 1998). In the south people said that UWA could try and stop 

them from getting the resources they needed but that they would still go and “sneak in at 

night or when the rangers are not aware” (anonymous, personal communication) (see also 

Norgrove and Hulme 2006). 

 

Conflicts between forest management and local communities over the use of forest 

resources tend to be bad for conservation. Resolving the conflicts needs political will, 

because it seems that on Mt Elgon a large part of the conflict is due to political 

manipulation (local people, personal communication and various UWA staff, from ranger 

to Conservation Area Manager and Banana et al. 2010). Many studies focus on the 

negative perceptions local people hold against conservation areas, but during this study, 

most people in community and individual formal and informal interviews also spoke out 

about the positive aspects of the park (unpublished data). Even in areas with conflicts and 

encroachment some stated that the park was important to protect the forest from 

encroachment and that without it they would have cleared much more of it. They 

considered the forest important for water provision and climate regulation that benefit 

agriculture but also for cultural values (e.g. “the forest provides rainfall for farming, 

traditional medicine and a home for animals”, “I was born there”, “circumcision 

ceremonies used to be done in the forest”, “it is the home of our forefathers” 

(unpublished data from an exercise where people were asked to rate the relative 

importance of the forest compared to other lands). Conservation management should 

work towards fostering and building upon such positive values. 

 

6.2. Drivers of forest change, the importance of local histories, contexts and linking 

scales 

6.2.1. Agricultural expansion and population 

Globally, conversion to crop- and pastureland is the main direct cause of deforestation 

(Kaimowitz and Angelsen 1998). In single-factor theories of drivers of deforestation, 

agricultural expansion is directly caused by population or poverty (Malthus 1873, Ehrlich 

1968, Carr 2004). On Mt Elgon I found that agricultural encroachment is indeed an 

important source of forest loss, aided by grazing in some areas (Chapter 2 and 3). 

Although clearing of native forest to establish plantation areas that were never fully 
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stocked also played an important role in some places (Petursson et al. 2012). Population 

densities around the park were high (150p/km2 to more than 1000 p/km2) and growing 

fast (2.5-4.3% per year) (UBOS 2002a, b, d). Yet, I found no simple direct relationship 

between population (growth) and deforestation on Mt Elgon. Population drove 

deforestation only at a certain time and under certain conditions: when there were no 

boundaries to expansion In fact, when conditions were favourable, forest recovery took 

place near some of the most densely populated areas on Mt Elgon (Chapter 2). I discuss 

possible reasons below. 

 

According to Boserup (1965), an increase in population density leading to land scarcity 

stimulates agricultural intensification. The Bagisu on the western slopes may well have 

experienced such an evolution. They have been settled for centuries and have slowly 

moved up the mountain and cleared the forest around them as population grew: the 

fertile volcanic soils were able to sustain and thus likely also facilitated the continued 

increase in population over time. When the forest reserve was established by the colonial 

government in the 1920s their sedentary agricultural traditions (and high population) 

made it possible for them to adapt and intensify agricultural production on existing land, 

likely helped by the success of coffee as a cash crop (see below), which was introduced in 

1910 (Bunker 1987). However, in the northern area of Mt Elgon - dominated by the 

formerly pastoral Sabiny - such intensification has not (yet) taken place. VanWey et al. 

(2005) propose that “Some groups may be faced with such rapid changes in population 

and scarcity of resources that they cannot adjust fast enough”. On Mt Elgon, it is possible 

that the increase in population and change in land use systems in the north has been so 

rapid (since the 1980s) that people have not been able to adapt fast enough and create a 

land use system that is more diversified in terms of addressing nutritional and energy 

needs (less variation in crops, little firewood, in particular closer to the forest edge). Or 

perhaps they still manage to access sufficient forest resources to compensate for this and 

therefore have insufficient motivations to intensify. Further research is required to 

understand this better and how such insight can help inform better management. 

 

6.2.2. Poverty or wealth and deforestation 

The connection between wealth or poverty and deforestation is complex. Some argue it is 

wealth that enables and motivates people to clear the forest, while according to others 

poverty leads to dependence on forest resources and thus to deforestation (Moran and 

Ostrom 2005). On Elgon, wealth seems to have motivated people to both clear the forest 

and leave it to regenerate inside the protected area, depending on the context provided 

by other factors (Chapter 2). Wealth enabled people to intensify agriculture at times when 
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expansion was restricted due to institutional barriers: while there was a forest reserve 

before the 1970s and a national park after 1993. However, wealth also enabled them to 

rapidly expand when boundaries broke down in between these periods (Chapter 2). I 

found that from the 2000s new forces came-in and confounded these earlier patterns, 

such as increased market access for seasonal crops, and conflicts with park management 

(see section 6.2.3).  

 

6.2.3. The role of markets and market access 

Access to markets and crop prices are seen as major underlying causes of land use change 

leading to deforestation (Geist and Lambin 2002). But here too context and history 

influence people’s motivations and decisions. On Mt Elgon, market liberalization enabled 

coffee farmers to take advantage of booming world prices. But contrary to other studies 

(O’Brien and Kinnaird 2003, Gaveau et al. 2009) these price increases and the associated 

increase in wealth did not always lead to exacerbated deforestation (see section 6.2.2). 

Access to markets plays a role here too: even if people have the means to invest in 

expanding agriculture, they may not do so because of a lack of physical access to markets. 

This may also explain the success of coffee on Mt Elgon: access was historically difficult 

and coffee is relatively easy to transport on foot in the amounts produced by smallholder 

farmers, especially compared to other important crops such as maize or bananas. In fact, 

various studies have found that the types of crops people plant are “strongly determined 

by transportation costs and that changes in external market value or cost of transport are 

reflected relatively rapidly in the spatial allocation of agricultural activities” (VanWey et al. 

2005 citing Muller 1973, O’Kelly and Bryan 1996 and reflecting von Thünen’s theory 

(1826)). Angelsen et al. (1999) also found that prices for seasonal crops in particular were 

associated with deforestation. We see three situations related to these theories on Mt 

Elgon: 

- On the western slopes where access was still difficult at the time of this study, largely 

due to the terrain and climate, coffee remains relatively more important than other 

potential cash crops (Table 1 in Chapter 3). In their choice of a cash crop, this 

situation makes it more sensible for people to focus on a crop that is relatively easy 

to transport to markets downhill than on crops with a lower profit to volume ratio 

such as bananas. Here transportation costs determine people’s focus on coffee (see 

VanWey et al. 2005). Other cash crops such as cabbages fall somewhere in the 

middle in this balance of cost versus profit in terms of transport and increase access 

may mean increased pressure to grow these crops, especially if coffee prices go 

down again. 
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- In the south coffee-based villages diversified away from coffee when they gained 

better access to markets (2000s). Relatively bulky cash crops such as onions and 

cabbages, but also maize, fetched high prices due to shortages elsewhere (maize in 

Kenya and Sudan, see Chapter 2). Terrain is less steep and roads are better which 

reduces transport costs so people choose to focus on these high return seasonal 

crops (see VanWey et al. 2005) (Figure 6.5.). As the returns from these relatively 

short-season crops likely compensated sufficiently for the risk of eviction by the park 

management (Chapter 2), renewed forest clearing took place (Angelsen et al. 1999).  

- In the more recently settled North, coffee was not introduced on the higher slopes 

because this was still forest until the early 1980s but people were encouraged to 

grow maize and potatoes (which people already grew traditionally on small scale in 

the glades inside the forest) and later wheat as food and cash crops. New roads that 

have increased access to markets in Uganda and Kenya since the 1990s, reducing 

transport costs and therefore confirming people’s choice of crops (see VanWey et al. 

2005). At the same time high maize prices in Kenya (in 2008-2009) made these 

profitable crops, which led to some forest clearing inside the park (Angelsen et al. 

1999) (Chapter 2).  

 

6.3. Human impacts and conservation on Mt Elgon 

I found that impacts of local use inside the park extended far into the forest (> 2 km). 

Impacts of the harvesting of stems, fuelwood collection and charcoal production on forest 

structure were important (Chapter 2 and 3), especially nearer the boundary. Gaps in the 

canopy due to timber cutting or charcoal making created further inside the boundary can 

likely recover relatively rapidly if these activities are stopped because they are surrounded 

by a more intact matrix (Chazdon 2003), but in formerly encroached and re-encroached 

areas this will likely take more time as dense shrubs and ferns often dominate. These also 

burn easily killing any tree regeneration. Similarly, in intensively grazed areas, soils may be 

impacted and regeneration may be slower (Reed and Clokie 2000). Some historical 

modifications from human use on Mt Elgon very likely contributed to its biodiversity 

values, such in the semi-natural glades that are found inside the forest and the moorlands 

above the treeline (Reed and Clokie 2000). Also, some of the plant communities on the 

higher moorland may be dependent on fire (Wesche et al. 2000). 

 

Resource use agreements and low conflict did not necessarily lead to sustainable local 

forest use: I found that impacts of local uses in the forest were high even in the study site 

with a resource use agreement and low conflict with park management. Resource use 

agreements include the monitoring of resource off-take by a local resource use committee 
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but this was apparently not entirely effective (Chapter 3). Only one of the research sites 

studied in more detail had a collaborative management agreement which prevented us 

from testing statistically any differences between areas with and without agreements in 

terms of impacts of local use. It is important to further investigate the functioning of 

existing resource agreements on Mt Elgon and the motivations of local people to commit 

(or not) to the rights and obligations that they involve (Ostrom 1999) (see also section 

6.4.4.). 

 

Depletion of fuelwood and other wood resources is a concern in forest that is surrounded 

by a dense population (Chapter 3 and 4). Enforcing boundaries to prevent people from 

accessing for example fuelwood is almost impossible in practice, although impacts were 

high. Likewise, the harvesting of stems to serve as stakes for crops such as beans, banana 

and even coffee bushes with fruit-heavy branches had impacts on forest structure and 

composition. Species harvested for this purpose (e.g. Neoboutonia macrocalyx or shrubs 

such as Vernonia spp.) either coppice or regenerate easily (Katende et al. 2000). A study 

on the sustainability levels for the harvest of coppices of fast growing pioneer species in 

regeneration areas near the boundary could help find ways to accommodate local 

preferences and contribute to fostering good relations with the park. This study indicates 

that in order to design sustainable management strategies, it is important to understand 

the impacts of local forest use on the conservation values that the park is meant to 

preserve.  

 

6.4. Future options, balancing conservation and development 

In the previous sections, I analysed and discussed the drivers of forest change and impacts 

of local uses on the forest community under various interacting contexts and local factors. 

I now explore a number of future options and scenarios for more ecologically and socially 

sustainable management on Mt Elgon. 

 

6.4.1. Conservation and development  

Designing conservation management requires making choices between conservation 

values such as biodiversity, water catchment or other ecosystem services and other 

values, such as the priorities of local communities. Especially in places of high population 

density, which often have highly fertile soils (that were able to support these populations 

in the first place), the pressure on remaining forest areas is high (Naughton-Treves et al. 

2007). Mt Elgon provides a prominent example. In such places it is impossible to achieve 

effective conservation based purely on strict law enforcement and exclude local people 

completely.  
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The ability of biodiversity conservation to contribute to poverty alleviation and 

development is disputed (Adams et al. 2004). But most will agree that conservation should 

not make people poorer, both from an ethical point of view but also practically as 

increasing the number of poor will lead to an increase in pressure on resources (Hutton 

and Leader-Williams 2003, Minteer and Miller 2011). Yet, by definition (Dudley 2008) 

protected areas entail restricted or at least controlled access to land and resources, which 

then affects forest dependent neighbouring communities in one way or the other. This is 

also the case on Mt Elgon, as several studies found (Norgrove 2002, Katto 2004, 

Namugwanya 2004, Gosalamang et al. 2008). The impact of local income generating 

activities through tourism or employment as rangers, compensation for conservation 

schemes, etc. is often limited (Agrawal and Redford 2006, Brooks et al. 2006). This is the 

case even where communities benefit from tourism activities, such as in forest parks 

harbouring charismatic species like gorillas, let alone in a protected area such as Mt Elgon 

that sees only about 5000 visitors per year.  

 

6.4.1. Alternative resources for land: Intensification of agriculture outside the park?  

According to the Borlaug hypothesis, agricultural intensification (due to technological 

change, such as during the green revolution) will lead to decreased demand for land and 

thus decreased deforestation; whereas others argue that increased yields and higher 

profits will lead to greater incentives for expansion (review in Angelsen and Kaimowitz 

2001). But contexts matter. For example, in Ecuador, coffee cultivation in a context of 

labour constraints has led to less deforestation on farms. People continue to grow coffee 

even if it does “not provide the highest immediate income. Coffee has, however, a 

guaranteed market and low transportation costs and is important for farmers’ long-term 

income security” (Angelsen and Kaimowitz 2001). On Mt Elgon I found indications for both 

scenarios in the densely populated coffee-producing areas of the west and south-west 

(enough labour but little land), depending on contexts. When conflicts were low, 

collaborative management agreements were in place and the park boundaries accepted, 

people seemed to intensify production on their own land or find alternative sources of 

income (not studied here). In areas with conflicts and increased market access the risks 

ran by expanding into the park were apparently compensated by the potential returns 

(see section 6.2.3) (Figures 6.1 and 6.5).  
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Figure 6.5. Maize cultivation and fields prepared for onions near the park edge in the south of Mt 

Elgon (photo 2009). 

 

 

 

Figure 6.6. Landslide on the edge of a formerly encroached and now grazed area of the park in the 

north (photo 2011). 

 

In the north of Mt Elgon, coffee was not grown on the higher slopes close to the park 

where land was more abundant and the population less dense than in the west and south-
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west (Chapter 2). People used oxen ploughing because they have easier terrain, which 

makes it practical to grow seasonal crops such as potatoes, maize, wheat with very few 

trees in and around their fields. Little inputs were used and people probably preferred to 

save on labour than on land (Angelsen and Kaimowitz 2001). Erosion on the seasonally 

bare slopes was clearly visible (Figure 6.6) whilst more trees or permanent crops on 

people’s land may help address both this and provide alternative sources of wood. The 

conditions and incentives that would encourage farmers in the north of Mt Elgon to 

intensify whilst integrating more trees into their land-use system should be explored.  

 

6.4.2. Alternative resources for forest products: agroforestry?  

The importance of integrating improved livelihoods and biodiversity conservation goals in 

a larger landscape was shown particularly in with Chapters 3 and 4, where the importance 

of alternative resources outside the park became apparent. Trees on farms, such as in 

agroforestry systems, help maintain or restore the environment for agriculture (and can 

be seen as a remnant of shifting cultivation practices where regenerating forest 

vegetation helped restore soil fertility. Trees on farms also provide numerous products: 

food, fuel, construction materials, fodder, mulch etc. and help risk management (e.g. trees 

as a source of income in case of crop failure) (Arnold and Dewees 1997). Historically, 

access to traditional sources of tree-based resources has decreased because of exclusion 

of local uses from protected areas or because of physical changes (degradation, 

deforestation). Farmers then started to protect, plant and manage the resources they 

found important on their own land. Expanding markets for tree products (fuelwood and 

others) has accelerated this (Arnold and Dewees 1997). In many places this meant that the 

density of planted trees increased over time as a general trend (Tiifen et al. 1993, Fairhead 

and Leach 1996, Arnold and Dewees 1997).  

 

Patterns of trees on farms vary with agro ecological, economic and other contexts. It only 

makes sense when the land and capital to do so are available and when the trees provide 

higher (perceived) benefits than alternative uses of land and capital. In Kenya it was found 

that older households keep more trees as woodlots, because they need less labour than 

crops, but younger households tend to replace trees with crops such as tea of coffee as 

these are more lucrative. Having trees on land can also free up labour so that people can 

have jobs elsewhere (Arnold and Dewees 1997). On Mt Elgon shade trees in the coffee-

systems complement or contribute to crop outputs: they do not compete with them 

(Figure 6.7). When possible, existing systems should be built upon and sufficient incentives 

created for people to maintain them (Soini 2006).  
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Figure 6.7. Agroforestry system on the western slopes of Mt Elgon, with coffee, trees, and banana 

(photo 2009). 

 

6.4.3. Likely future economic change and alternative sources of income? 

The growth in the demand for certified products, in particular coffee, provides 

opportunities for farmers to earn a premium on their product. Mt Elgon had/has a strong 

reputation for good quality Arabica coffee that could be built upon. The potential for 

marketing as a fair-trade “specialty” coffee is high and already exploited by some buyers 

(Ponte and Kawuma 2003). Certification for forest-conservation-friendly coffee should be 

explored for Mt Elgon as a way to encourage and support farmers to invest in sustainable 

coffee production and make the risks of cultivating seasonal crops inside the park less 

worthwhile (Chapter 2).  

 

Growing accessibility followed by the development of trade-centres creates opportunities 

for increased wealth through other trade such as shops and restaurants etc. I observed 

change just within a year coming back to the four sites: the villages had more shops and 

the nearest “trade centre” had grown. But growing trade-centres also can lead to higher 

demand for wood resources from businesses such as the numerous tea and chapatti 

places as well as small restaurants. This likely also leads to increased demand for charcoal 

instead of fuelwood by business people with more cash (Angelsen and Wunder 2003, 

Arnold et al. 2003). Increased rural-urban migration of people in search of new 

opportunities outside agriculture may help alleviate pressure on the forest from 
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neighbouring communities, but this may be compensated by increased demands for wood 

products from urban areas (DeFries et al. 2010). 

 

Alternative sources of income can also come from payments for environmental services 

such as in the context of REDD+ schemes (Leimona et al. 2009). On Mt Elgon the MERECP 

project is piloting a number of REDD+ related initiatives that involve incentives for tree 

planting outside the park as well as restoration and protection inside the protected area 

(LVBC 2009). For such schemes to work on Mt Elgon and in light of findings of this study, 

they will have to provide enough incentive to compensate for (perceived) losses from 

cropping either on people’s own land or in the park. This is likely not a purely economic 

balance as people also value forest and trees for other things than tree products or the 

land that they stand (see section 6.1.). Carbon-related projects that involve local 

communities around forests are common pool resource situations that are embedded in 

wider, national and international contexts; through country-level REDD policies and 

international carbon markets. Outcomes will therefore depend on the interactions of 

these contexts with local factors - as shown in Chapters 2, 3 and 4 - and how these are 

addressed within such projects. 

 

On Mt Elgon, benefits from the MERECP project depend on whether one belongs to a local 

organisation (a registered community based organisation) that has been selected to 

participate in the project, and so it excludes a large section of the park neighbours (Nel 

and Hill 2013). It is not clear how others will benefit in the long run, which represents a 

risk to the long term success of this scheme: it has been shown that successful common 

property resource management systems need to be based on inclusive and adaptive 

institutions that are locally relevant, both socially and ecologically, and take into account 

local drivers for land use change (Reynolds 2012, Shames et al. 2012). Like other common 

pool resource management situations, carbon-related projects also need to ensure that 

benefits to local communities are maintained on the longer term and that they are not 

captured by the elite or the state (Leimona et al. 2009, Pollini 2009, Persha et al. 2011, Nel 

and Hill 2013). 

 

6.4.4. Conditions for management with better outcomes for forest and people 

Powerful economic and political forces at different levels drive people’s actions. 

Conservation must work with local people to find a realistic balance between conservation 

goals and local needs and demands for resources that support their livelihoods (Kaimowitz 

and Sheil 2007). There is a need to assess realistic conservation values against the needs 

of local people. This may mean accepting “lower standards” than would be dictated by 
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traditional conservation of untouched “habitats”, but possibly sufficient to maintain 

essential ecosystems services and biodiversity (see section 1.1.2.), while meeting local 

needs (in terms of resources and empowerment) sufficiently to help foster more positive 

attitudes towards protected areas. Giving people access to the forest for a limited number 

of resources can help foster such positive attitudes, although this depends on people’s 

perception of the costs versus the benefits they derive from such arrangements (Ostrom 

and Nagendra 2006). There also lies a challenge in that conservation actors and local 

communities typically operate under different time horizons (long versus shorter). A 

middle-ground needs to be found. 

 

There is a need to experiment with and learn from a wider range of institutional 

arrangements and interventions (Game et al. 2013). External conservation organisation 

and funders need to support such experimentation. In the global debate on drivers of 

forest change and in discussions about devolved forest management, local use of forest 

resources and payments for environmental services to local communities, models leading 

to “simplified institutional prescriptions” do not reflect complex local social and ecological 

realities (Ostrom and Cox 2010). Conservation actors must build strategies based on 

fostering existing positive local attitudes for conservation and the perceived benefits of 

retaining forest. The incentives for people to create alternative resources on their own 

lands, for example, need to be further studied and built upon. Congruence of local 

ecological and cultural contexts, together with perceived benefits and costs affect the 

success and sustainability of natural resource management systems more than the 

particular form of ownership (Ostrom and Nagendra 2006). Policies and institutions should 

be therefore built in a dynamic process of inclusive decision-making, implementation and 

evaluation. Further investigation is required into the local conditions and incentives that 

would support the development of sustainable common-pool resource institutions on Mt 

Elgon and elsewhere, based for example on the Design Principles defined by Ostrom 

(1999).  

 

This study shows that law enforcement is important to avoid deforestation, and perhaps 

limit degradation, but it should go hand-in-hand with developing capacity for collaborative 

management and monitoring, and for sharing responsibilities and rights between park 

management and local communities. On Mt Elgon and elsewhere, politicians need to stop 

using people and the park for their personal gain (Banana et al. 2010). This would benefit 

local people in the longer term and forest conservation too. There lies a role for the 

central government in setting the example and establishing rules of conduct. Park 

management authorities need to engage in building relationships of trust with local 
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communities, either through collaborative management agreements or by other means, 

acknowledging local needs, and displaying consistent attitudes with regard to rules, rights 

and responsibilities (Hough 1988). Without trust, it is impossible to resolve long standing 

conflicts and build sustainable and effective management arrangements. 

 

Finally, low-cost and rapid monitoring systems are essential to manage forests used by 

people in areas with limited financial resources for conservation. To monitor the local 

impacts of forest use, assessments by local people can be used but for the analysis of 

more heterogeneous patterns on larger scales such as needed in REDD+ projects, more 

formal assessments are necessary (Nagendra and Ostrom 2011). In an ecosystem such as 

on Mt Elgon, which is complex both from a human and a topographic point of view, quick 

and simple field methods in combination with radar imagery offers potential for 

establishing baselines and monitoring change, but a number of methodological issues still 

need to be resolved (Chapter 5). 

 

6.5. Conservation and livelihoods in crowded places: conclusions 

Competition over land and resource is exacerbated in areas of (extremely) high population 

density such as on Mt Elgon. A wide range of factors are involved at different levels 

creating pressures originating at multiple interacting levels. Mt Elgon, as an “island of 

tropical forest in a sea of agriculture and people” provides an illustrative case for other 

protected areas in this situation. My findings contribute to the evidence that simple 

models based on only a few drivers of deforestation (i.e. population and poverty) cannot 

explain local variation (Lambin et al. 2001). Conservation and development actors need to 

acknowledge the complexity and dynamics of underlying contexts and drivers of forest 

change (Putz and Romero 2012). Interventions need to address local factors while 

recognizing influences operating at national and global levels. Trade-offs between local 

uses and conservation are confounded by location specific characteristics, calling for 

actions that take into account these variations. Forest management that empowers local 

people combined with incentives to develop alternative resources, such as trees for 

various uses, including fuelwood, can support more sustainable forest management for 

both people and conservation. In a situation of historical conflicts such as on Mt Elgon, 

management authorities need to make a substantial effort to build trust with local 

communities, and show genuine acknowledgement of local needs.  

 

Existing theories of change provide useful frameworks for studies of local variations in 

outcomes for forest conservation, while at the same time providing insights that can help 

inform the wider conservation and development debate. It is clear that there is a need to 
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create support and new opportunities for conservation (and development) strategies that 

meet local needs and build on existing positive values people have for the forest and its 

protection. Both international conservation actors, which often have a strong influence on 

national policies and resource allocation for conservation and development, as well as 

national and local forest management authorities (e.g. Uganda Wildlife Authority) need to 

recognise that incentives that influence people’s motivation for action in relation to the 

management of common pool resources vary locally and can therefore not be designed 

globally.  
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Appendix 2.A. False color composites of Landsat images at the beginning and end of the 

study period: MSS (band 4,3,1) for 1973 and ETM+ (4,3,2) for 2009. 

 

 

 

 

 

 

 

 

 

These raw dry season images show the generally sharp edges between forest and 

agricultural areas. These correspond to the boundary of the protected area (see also 

Figure 2.1). Forest is dark red while cultivated land is pale blue-green in the drier areas or 

reddish-pink on the wetter mountain slopes where coffee and bananas create a more 

permanent vegetation cover. Green-brown colors on top of the mountain correspond to 

the higher altitude moorlands and crater.  
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Appendix 2.B. Forest cover classification and evaluation, detailed methods 

 

Data 

Details of the Landsat satellite images used to create four forest cover maps for Mt Elgon 

are found in Table 2.B.1. They were taken during the second half of the dry season 

(January-February) to minimize cloud cover and when differences between evergreen 

vegetation and seasonal vegetation are greatest (Table 2.B.1). 

 

Table 2.B.1. Satellite imagery used for classification in the study. 

Date Satellite and sensor Path/Row Nominal spatial resolution 

01/02/1973 Landsat 1 MSS 182/059 57m 

02/02/1973 Landsat 1 MSS 183/059 57m 

01/02/1973 Landsat 1 MSS 182/060 57m 

18/02/1988 Landsat 4 TM 170/059 28.5m 

05/02/2001 Landsat 7 ETM+ 170/059 28.5m 

25/02/2008 Landsat 7 ETM+ 170/059 30m 

10/01/2009 Landsat 7 ETM+ 170/059 30m 

 

We georeferenced and stitched together 6 topographic map sheets (1:50.000) based on 

interpretation of 1959 and 1960 aerial photographs followed by field revisions (1967) by 

the Uganda Department of Lands and Surveys (Department of Lands and Surveys 1967). 

From the resulting map we then digitized the boundaries of forest and other vegetation 

cover on Mt Elgon. We also used the existing Land Unit Map of Mt Elgon by van Heist 

(1994), which was based on the interpretation of 1959 and 1989-1990 aerial photographs, 

SPOT images from 1991 and 1992, and extensive fieldwork. Additional reference data was 

provided by a 90m digital elevation model (Jarvis et al. 2008) and field observations from 

2009 and 2010. These were limited due to logistical constraints. 

 

Pre-processing 

All satellite images were processed and analysed using ENVI 4.0 (RSI) software. The four 

images were already geometrically and radiometrically corrected. For 1973, 3 images had 

to be stitched together to cover the study area, while for 2009, an image from 2008 was 

used to fill gaps that are characteristic of Landsat 7 since 2003. The resulting 1973 and 

2009 images were resampled to match the 28,5m pixel size and each image was co-

registered to that of 2001 using Nearest Neighbour resampling. The 1988 image was 

registered to the 2001 image using 159 control points and a 2nd degree polynomial warp 

with a root mean square error (RMSE) of 0.33 pixels. For the1973 image we used 80 points 

with an RMS error of 0.25 pixels and a 3rd degree polynomial warp. Registration was 

verified visually by overlaying registered images (Schowengerdt 1997). The 2009 image 
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was provided already registered to the 2001 image; this was visually checked and found to 

be accurate. A subsection of 2775 by 2775 pixels, encompassing Mt Elgon and its direct 

surroundings was extracted from all images. 

 

Cloud masking 

The 1988 and 2001 images had substantial cloud and cloud shadow cover at the higher 

altitudes, the 2009 image only a few dots. Clouds were masked out on the 1988 and 2001 

images using visually estimated DN values in bands 1 and 6 (see Martinuzzi et al. 2007). 

Resulting masks were intersected and buffered. For cloud shadows the most effective 

method was found to be visual determination of training areas on a transformed image 

using principal component analysis. The result of the supervised maximum likelihood 

classification was manually corrected in ArcView and the resultant final mask buffered 

using a three-pixel buffer to include any “borderline” pixels. Finally the cloud and cloud 

shadow masks were combined into one mask for each image. Clouds on the 2009 image 

were digitized on screen.  

 

Classification 

The classification focused on the Afromontane and the Afromontane Rain Forest Zones 

inside the protected area boundaries, as defined by van Heist (1994). First, an 

unsupervised classification using the Iterative Self Organizing Data Analysis (ISODATA) 

helped identify natural spectral clusters (Schowengerdt 1997). Training areas were then 

identified using visual interpretation of the natural clusters from the unsupervised 

classification, false colour composites of the images and calculated band ratios (to 

minimize the effects of shade). Areas of shade were given separate training areas from 

illuminated areas with the same vegetation. Ancillary information composed of the 

topographic and vegetation maps aided interpretation of vegetation classes for the 1973 

and 1988 images (Foody and Hill 1996). Spectral separability of the classes was 

investigated with the help of graphical displays and statistical analysis using the Jeffries-

Matusita (JM) distance (Schowengerdt 1997). Classes with separability values lower than 

1.9 (with a maximum of 2) were re-examined and refined or merged.  

 

Finally a supervised classification was run using a maximum likelihood classifier 

(Schowengerdt 1997). The classes resulting from classification were first combined into 4-

7 main classes per image (forest, bamboo, grassland, thicket, moorlands, burn scars (on 

moorland) and water), with the help of spectral plots, maps and Google Earth images 

(2003) then into two: “forest” (forest and bamboo, minimum canopy cover of 30%)) and 

“non-forest” (the other classes). Those classes were sieved, clumped and a 3x3 pixel 



Appendices 

167 

majority filter was applied to remove isolated pixels and improve spatial coherence. We 

checked the resulting classifications on screen and when necessary edited areas of strong 

topographic gradients (cliffs), haze and pixel errors resulting from image mosaicking (1973 

and 2009 images). For this we used the reference materials listed in the accuracy 

assessment section below. All gaps caused by clouds on the 2009 imager could be filled as 

they occurred only over higher altitude forest with little change. Remaining areas of cloud 

cover were excluded from the analysis for each affected period (1973-1988, 1988-2001, 

2001-2009). One of the study villages is located next to a softwood plantation area inside 

the park (Figure 1.1). This area is managed by the park authorities and has been labelled 

“non-forest” for the purposes of this study. The resulting maps were exported to ArcGIS 

10 (ESRI) where accuracy assessments were performed. 

 

Accuracy assessment 

We used post-classification comparison to detect changes between dates (Mas 1999, Song 

et al. 2001). With this method, high accuracies of the individual classifications are needed 

because the accuracy of the change analysis is affected by the accumulation of errors from 

each classification involved in the comparison (Singh 1989). The digitized forest cover map 

of 1967 and the Land Unit Map of Mt Elgon by van Heist (1994) provided a reference to 

validate the accuracy of the 1973 and 1988 forest cover maps respectively. We allocated 

forest or non-forest classes to 165 and 152 points on the 1973 and 1988 forest cover maps 

respectively and on their 1967 and 1990 reference maps. We verified and corrected 

reference point label allocations for the 1967 and 1994 maps when known changes had 

occurred between the map production date and that of our satellite imagery (e.g. new 

plantation areas). The 2001 and 2009 forest cover maps were assigned 139 and 168 points 

respectively. We did not have reference maps for 2001 and 2009 but instead allocated 

forest or non-forest classes to the sample points based on observations from high 

resolution imagery from Google Earth (2003, resolution 0.5-2.5 m) and from field 

observations (2009 and 2010) to validate the accuracy of the 2001 and 2009 forest cover 

maps. The 2010 field data (plots on transects in 4 sites) were not used directly as their 

location did not meet the conditions of probability sampling, but they helped 

interpretation (Stehman and Czaplewski 1998). The sample points for each year were 

randomly selected with a minimum distance of 1000m between points to minimize spatial 

autocorrelation effects (Koenig 1999). We generated four confusion matrices and for each 

calculated the overall accuracy and kappa coefficient (Cohen 1960, Foody 1992, Congalton 

and Green 1999) (Table 2.B.2). We also calculated separate quantity disagreement and 

allocation disagreement following Pontius and Millones (2011) (Table 2.B.2).  
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Table 2.B.2. Classification accuracy. 

 1973 1988 2001 2009 

 F NF F NF F NF F NF 

Producer accuracy (%) 94 100 88 98 89 93 96 92 

User accuracy (%) 100 69 99 77 95 86 95 93 

Overall accuracy (%) 95 91 91 95 

Kappa 0.79 0.79 0.81 0.88 

Allocation disagreement (%) 0 1 6 5 

Quantity disagreement (%) 5 8 4 1 
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Appendix 2.C. Variables used for the livelihood characterization at village level. 

Ratio variables N Minimum Maximum Mean Std. Dev. 

Age of the village (years) 14 26.00 209.00 114.71 59.15 

% of people with no education 14 .00 73.00 17.43 20.12 

% of people with only primary 

education (at least 3-4 years) 

14 .00 .73 .17 .20 

% of people with secondary or higher 

education 

14 .05 .50 .24 .14 

Distance to any road (map) 14 0.01 6.49 1.92 1.92 

Distance to tarmac road (map) 14 2.12 28.38 17.30 8.61 

Distance to the nearest road usable in 

all seasons (km) 

14 .00 15.00 5.31 4.41 

Number of markets attended 14 1.00 6.00 3.00 1.36 

Distance to the nearest market for 

selling produce (km) 

14 .50 17.00 5.37 4.19 

Time to the nearest market for selling 

produce (minutes) 

14 5.00 330.00 111.43 89.97 

Proportion of transport time done on 

foot 

14 .33 1.00 .85 .20 

Number of tree species that people 

plant in the village 

14 .00 10.00 4.29 2.81 

% people with a thatched roof 13 .00 .60 .29 .20 

% people with a metal roof 13 .08 .95 .65 .25 

Average area of land (acres) 13 .67 3.03 1.42 .69 

Average number of livestock 

(equivalents) 

13 .67 1.80 1.23 .31 

Forest scores 13 28 67 42 3.19 

Agricultural scores 13 33 72 58 3.19 

Categorical variables N Count Percent   

Access to formal credit 14 11 79 

Electricity (generator/solar) 13 4 71 

Built taps or wells (any) 13 10 77 

Forestry support 11 3 27 

Crops: coffee-banana 14 7 14 

Crops: coffee-maize 14 4
c

 71  

Crops: maize-maize 14 3 14 

Fodder: crop residues 14 10 71 

Fodder: planted grass 14 11 79 

Fodder: pastures 14 3 21 

Fodder: from forest 14 7 50 
c
 Including one Sabiny dominated (Village 12) 
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Appendix 4.B. Kendall’s tau-b correlations between volumes of dead wood, distance 

inside the boundary, elevation, slope, basal area and tree density per ha in each site.  

   Distance Elevation Slope Basal area Tree density 

Site 2 Total DW 
Tau-b .479

*
.120 .511

**
.571

**
.342

p .011 .525 .008 .003 .074

n 16 16 16 16 16

 LWD 
Tau-b .443

*
.244 .540

*
.574

*
.360

p .015 .181 .004 .002 .060

n 17 17 17 17 16

 SWD 
Tau-b .424

*
.248 .258 .430

*
.311

p .023 .184 .180 .023 .112

n 17 17 17 17 16

 Dead trees 
Tau-b .220 .051 -.157 .120 .122

p .304 .812 .473 .578 .577

n 16 16 16 16 16

Site 9 Total DW 
Tau-b .589

**
.337

*
.086 .573

**
.422

*

p .000 .038 .602 .001 .011

n 20 20 20 20 20

 LWD 
Tau-b .536

*
.377

*
.113 .610

*
.414

*

p .001 .021 .493 .000 .013

n 20 20 20 20 20

 SWD 
Tau-b .253 .126 .032 .076 .032

p .119 .436 .845 .647 .844

n 20 20 20 20 20

 Dead trees 
Tau-b .183 .250 .254 .120 .291

p .340 .193 .192 .541 .137

n 20 20 20 20 20

Site 11 Total DW 
Tau-b .522

**
.546

**
-.393

*
.518

**
.499

**

p .001 .001 .017 .002 .002

n 22 22 22 22 22

 LWD 
Tau-b .476

*
.465

*
-.395

*
.454

*
.420

*

p .002 .002 .011 .004 .011

n 25 25 25 25 22

 SWD 
Tau-b .498

*
.601

*
-.238 .642

*
.667

*

p .001 .000 .127 .000 .000

n 25 25 25 25 22

 Dead trees 
Tau-b .358

*
.413

*
-.084 .361

*
.375

*

p .040 .018 .640 .045 .037

n 22 22 22 22 22

Site 14 Total DW 
Tau-b .470

*
.423

*
-.349 .552

*
.589

*

p .005 .013 .050 .001 .001

n 19 19 18 19 19

 LWD 
Tau-b .404

*
.380

*
-.332 .543

*
.606

*

p .019 .027 .067 .002 .001

n 19 19 18 19 19

 SWD 
Tau-b .387

*
.292 -.295 .319 .429

*

p .022 .085 .099 .065 .013

n 19 19 18 19 19

 Dead trees 
Tau-b .222 .137 -.074 .493

*
.317

p .237 .467 .712 .010 .098

n 19 19 18 19 19

 



Appendices 

173 

Appendix 4.C. Volumes of a) preferred and b) used dead wood species with distance from 

the boundary. 

 

 

Volumes of a) preferred and b) used dead wood species with distance inside the boundary. Note the 

different scale for preferred species in Site 2; these were two large logs. Preferred and used species 

are the same in Site 11 and 14, except Ekebergia capensis in Site 14 but no dead wood was found for 

that species.  
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Appendix 4.D. Frequencies for the five highest scoring preferred and used species. 

Preferred species   Used species   

 
Times 

listed 

% of HH 

listing 
 

Times 

listed 

% of HH 

listing 

2       

Prunus africana 34 64 Eucalyptus sp. 35 66 

Aningeria spp. 30 57 Vernonia auriculifera 21 40 

Eucalyptus sp. 19 36 Markhamia platycalyx 29 55 

Croton spp. 21 40 Cordia africana 25 47 

Vernonia auriculifera 17 32 Maize stems/cobs 12 23 

9      

Prunus africana 40 89 Vernonia auriculifera 41 91 

Podocarpus milianjianus 30 67 Hagenia abyssinica 25 56 

Allophylus abyssinicus 20 44 Neoboutonia macrocalyx 29 64 

Hagenia abyssinica 21 47 Maesa lanceolata 28 62 

Olea welwitschii 16 36 Mimulopsis arborea 23 51 

11      

Cornus volkensii 39 76 Cornus volkensii 32 63 

Olea chrysophylla 39 76 Olea chrysophylla 32 63 

Prunus africana 43 84 Allophylus abyssinicus 35 69 

Allophylus abyssinicus 35 69 Prunus africana 31 61 

Podocarpus milianjianus 30 59 Podocarpus milianjianus 24 47 

14      

Prunus africana 34 79 Vernonia spp. 36 84 

Allophylus abyssinicus 40 93 Solanum sp. 25 58 

Vernonia spp. 33 77 Prunus africana 14 33 

Croton spp. 25 58 Allophylus abyssinicus 15 35 

Ekebergia capensis 24 56 Croton spp. 9 21 
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Appendix 5.A. ALOS PALSAR image processing 

 

Figure 5.A1 shows the basic processing steps for each of the radar images used. 

1 Import and conversion of SAR image- and meta-data; 

2 Radiometric absolute calibration: conversion of input data into backscatter intensity 

values Gamma nought (γ
0
); 

3 Geocoding (coarse and fine ), use of SRTM 90m Digital elevation model (DEM) 

4 Geometric Terrain Correction (GTC): geometric warping to a map grid with 

correction of slope distortions; 

5 Radiometric Terrain Correction (RTC): correction of slope illumination differences; 

6 Masking background values and conversion of Gamma naught intensity values to a 

decibel scale [dB] 

7 Stacking of all data available  

 

 

Figure 5.A1: Basic processing steps executed on the ALOS PALSAR strip data used in this assignment 

(Source: SarVision). 

 

Calibration differences can be the result of inherent radar characteristics, like the 

incidence angle effect or to differences in vegetation and soil moisture conditions for the 

different strips (acquisition dates) or even within the same strip (rain events). These 
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calibration problems if severe can be reflected in the accuracy of the classification. 

Detected calibration differences between images were corrected following specific 

guidelines found in the literature (Shimada et al. 2009). Inter- calibration of radar data was 

done to achieved comparable statistical levels in al images. 

 

Geocoding was done using a combination of coarse and fine geocoding procedures. A 

coarse transformation matrix is generated on basis of orbit state vector information 

(satellite locations { x,y,z } and velocities { Vx,Vy,Vz } for 11 points and radar imaging 

geometry. With this transformation and given SRTM DEM, a simulated SAR image is 

generated and transformed back to SAR geometry. The next step is fine geocoding on a 

sub-pixel level, consisting of fine co-registration of the real SAR image and simulated SAR, 

and assessing local geometric corrections due to terrain-induced image distortions.  

According to the specifications, the absolute location accuracy of SRTM is 20m, height 

accuracy 16m (geoid heights relative to EGM'96). FBD PALSAR images were orthorectified 

using Gamma Remote Sensing software and 90m Shuttle Radar Topography Mission 

(SRTM) elevation data.  

 

Terrain slopes induce geometric and radiometric distortions in the radar image. Slopes 

facing the radar tend to fall towards the sensor (lay-over) or be shortened (fore-

shortening) and appear very bright. Slopes at the backside of the hill, as seen by the radar 

system, appear darker or even induce shadows. The amount of distortion depends on the 

slope angle and orientation in respect to the radar look angle. Correction of slope-induced 

distortions, as performed in the SarVision radar processing chain, is twofold: correction of 

geometric distortions, i.e. pulling mountains and hill “straight up”. This is called Geometric 

Terrain Correction (GTC).The second step is correction for saturation and shadow effects 

in the radar brightness and is called Radiometric Terrain Correction (RTC). These 

corrections are shown in Figure 5.A2. 
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Figure 5.A2: Detail of Radiometric Terrain Correction applied to a PALSAR FBS-FBD color composite. 

Images left and right are scaled exactly the same. Image left is Geometric Terrain Corrected image 

before radiometric terrain correction, right image after correction.  

 

Advanced radar classification approach: Forest cover type classification 

Classification of radar images suffers from effects inherent to the radar system. Speckle, a 

so called “salt and pepper” effect, is a stochastic effect that generates very bright or very 

dark pixels. This effect has obvious consequences in the classification procedure 

generating misclassification of isolated pixels. The only way to overcome this effect is by 

using specialized software that cluster and filter the images. In this assignment, recently 

developed supervised and unsupervised classification algorithms specifically designed for 

the classification of strip PALSAR data have been used (Hoekman et al. 2011. Hoekman 

and Vissers 2003). This classification procedure includes the selection of a training dataset 

that gives the statistical ground to cluster the pixels and classify the image into different 

vegetation types. A post-processing step usually follows before the final map validation. 

For the creation of a training data set an extensive sampling of the different ecosystems 

over the study area is necessary to guaranty a robust classification procedure. For that 

reason a stratification of the image in different landscapes and vegetation types or 

ecosystems is necessary. Proper and consistent interpretation of radar images in relation 

to the landscapes is of great importance for the selection of the training dataset. For each 

stratum a sufficient number of samples should be included in order to include and 

understand all the statistical variation within one class.  
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Appendix 5.B. Above Ground Biomass (AGB) calculated with and without tree height, 

stem density, basal area, and average tree dbh and tree height per plot. 

Site Plot 

AGB with 

height 

(Mg/ha) 

AGB without 

height 

(Mg/ha) 

Stem 

density 

(stems/ha) 

Average dbh 

(cm) 

Basal area 

(m
2
/ha) 

Average 

height (m) 

9 1 0.0 0.0 0 0.0 0.0 0.0 

9 5 0.0 0.0 0 0.0 0.0 0.0 

9 10 64.3 146.0 472 35.2 14.6 12.1 

9 15 128.3 209.3 1373 32.0 22.2 15.8 

9 17 0.0 0.0 0 0.0 0.0 0.0 

9 21 21.5 38.2 159 24.0 6.1 13.0 

9 26 79.9 116.4 247 55.0 10.6 20.8 

9 31 320.3 595.7 71 116.6 38.6 23.7 

9 33 0.0 0.0 0 0.0 0.0 0.0 

9 37 17.1 27.8 372 14.9 6.0 10.0 

9 42 39.0 58.2 3826 13.1 18.1 10.1 

9 47 166.1 201.2 636 46.5 27.1 23.4 

9 48 9.0 43.1 1209 13.3 8.7 3.4 

9 52 40.7 74.3 805 15.9 12.2 10.1 

9 57 83.9 126.4 708 26.3 22.5 16.3 

9 62 195.1 320.6 1521 42.9 43.8 17.3 

9 67 0.0 0.0 0 0.0 0.0 0.0 

9 72 7.1 19.7 34 27.4 2.0 9.0 

9 76 144.9 240.4 326 37.2 22.8 16.2 

9 81 255.3 426.0 932 43.6 46.5 18.4 

2 85 0.0 0.0 0 0.0 0.0 0.0 

2 89 6.0 18.0 18 37.4 2.0 10.0 

2 94 84.4 132.2 184 41.2 15.2 20.0 

2 99 54.8 72.7 142 55.7 10.1 22.2 

2 104 18.4 53.3 207 35.7 6.0 8.2 

2 109 90.9 162.0 46 73.7 13.2 21.8 

2 114 425.1 610.3 502 65.5 48.2 24.6 

2 118 0.0 0.0 0 0.0 0.0 0.0 

2 123 17.8 34.3 384 18.0 8.4 9.9 

2 128 137.6 245.3 6460 29.3 38.0 12.8 

2 132 6.5 10.5 2596 4.6 4.3 5.0 

2 137 40.5 84.1 455 29.9 13.4 11.6 

2 141 29.9 48.2 15 61.4 4.2 24.0 

2 146 0.0 0.0 0 0.0 0.0 0.0 

2 150 204.8 268.5 180 75.3 26.2 28.0 

2 155 127.5 172.5 123 52.3 18.7 25.9 
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Appendix 5.B. (Continued) 

Site Plot 

AGB with 

height 

(Mg/ha) 

AGB without 

height 

(Mg/ha) 

Stem 

density 

(stems/ha) 

Average dbh 

(cm) 

Basal area 

(m
2
/ha) 

Average 

height (m) 

11 161 0.0 0.0 0 0.0 0.0 0.0 

11 165 0.0 0.0 0 0.0 0.0 0.0 

11 168 51.3 103.8 19 70.6 6.1 20.0 

11 173 632.0 848.2 442 53.0 61.2 25.5 

11 178 44.8 80.2 82 38.8 6.4 16.7 

11 186 0.0 0.0 0 0.0 0.0 0.0 

11 189 14.9 29.3 1 200.0 2.0 25.0 

11 194 300.3 428.9 76 77.3 26.0 27.8 

11 199 496.9 667.9 155 71.8 44.0 28.8 

11 203 0.0 0.0 0 0.0 0.0 0.0 

11 207 0.0 0.0 0 0.0 0.0 0.0 

11 210 26.7 60.9 8 78.9 4.0 18.0 

11 215 731.1 980.2 477 64.4 66.8 26.6 

11 220 594.1 724.9 255 57.7 50.3 29.3 

11 222 0.0 0.0 0 0.0 0.0 0.0 

11 226 0.0 0.0 0 0.0 0.0 0.0 

11 229 39.3 58.1 12 84.7 4.1 28.0 

11 234 685.3 760.9 258 58.0 49.7 32.3 

11 239 495.9 769.2 213 79.7 51.5 24.7 

11 249 49.9 74.0 6 107.7 4.2 30.0 

11 254 668.1 761.8 336 58.8 48.8 31.5 

11 259 500.9 755.2 97 92.2 47.1 28.5 

14 262 28.8 42.9 4 86.9 2.2 29.0 

14 266 185.4 301.7 74 72.4 20.9 24.2 

14 271 18.2 38.9 28 43.8 4.2 16.0 

14 276 384.1 541.5 116 79.4 37.1 28.7 

14 280 0.0 0.0 0 0.0 0.0 0.0 

14 284 141.2 230.0 356 66.2 17.4 22.3 

14 289 106.1 151.6 1316 36.2 22.3 16.0 

14 294 307.0 433.1 426 63.8 34.6 25.0 

14 298 0.0 0.0 0 0.0 0.0 0.0 

14 302 17.0 26.1 4 85.0 2.0 28.0 

14 307 88.4 103.0 12 96.4 7.0 37.7 

14 313 160.0 305.8 996 52.0 28.0 17.4 

14 316 0.0 0.0 0 0.0 0.0 0.0 

14 320 50.3 86.3 2789 28.4 14.1 13.1 

14 325 33.8 98.7 36 58.9 6.3 12.2 

14 330 240.0 395.3 931 49.7 36.0 19.3 

14 331 0.0 0.0 0 0.0 0.0 0.0 

14 335 0.0 0.0 0 0.0 0.0 0.0 

14 340 158.2 319.4 347 78.0 24.0 18.2 
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Summary 

 

At the global scale, the need to provide food and energy for a growing world population is 

leading to changes in land use with important consequences for remaining forest areas. At 

regional or national scales, poor and land-hungry farmers are considered the main threat 

to forest conservation. In this study I investigate how conflicting goals by different actors 

led to various outcomes for the forest on Mt Elgon, Uganda, under different historical 

contexts and what this means for long term conservation efforts.  

 

Mt Elgon is a large isolated volcano straddling the Uganda/ Kenya border. Mt Elgon is an 

important water catchment area and has significant biodiversity values. The forest on Mt 

Elgon are also an important source of agricultural land, timber, fuel wood and other forest 

resources for local communities. All land within 20 km outside the protected area is under 

cultivation and population densities are high (150-1000 p/km
2
). 

 

On the Ugandan side, large scale deforestation took place in the 1970s and 1980s with 

subsequent recovery after 1993, when a national park was established to protect the 

forest and the higher altitude moorlands. Since then regeneration, renewed 

encroachment and local forest use have led to various degrees of recovery and 

degradation in different places inside the park. Mt Elgon has a history of conservation and 

development projects (since the early 1990s) and more recently pilot REDD+ have been 

implemented both inside and outside the protected area. In this study I explore the 

factors that influenced local people’s motivations to respect rules and regulations about 

forest clearing (Chapter 2), their use of forest resources (Chapter 3) and their dependence 

on the forest as a source of fuelwood (Chapter 4) on Mt Elgon, Uganda. Finally I evaluate 

the use of radar satellite data to estimate above ground biomass on Mt Elgon, Uganda and 

Kenya (Chapter 5). 

 

I used a combination of satellite image analyses together with historical information, 

population census data and interviews with local informants, to analyse the drivers of 

forest cover change in three periods between 1973 and 2009 on Mt Elgon, Uganda 

(Chapter 2). More than 25% of the forest cover on Mt Elgon in Uganda was lost in 35 

years. But Mt Elgon did not experience only forest loss in this period. Locally, there were 

areas of recovery. By analysing local variations I found that it is the context (e.g. law 

enforcement, collaborative management, political interference) under which drivers such 
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as population, wealth, market access and commodity prices operate, rather than the 

drivers per se, that influences impacts on forest cover. Agricultural expansion on Mt Elgon 

cannot simply be linked to population and poverty or other individual drivers. High prices 

for cash crops were not always associated with increased deforestation but led to varying 

impacts. These impacts depended on the relationship between local people and park 

management (and whether there was a collaborative management agreement) and the 

main cash crop – i.e. annual versus perennial.  

 

Using measures of forest structure and indicators of human activity in 343 plots in four 

study sites on Mt Elgon, Uganda I found that local forest uses strongly influenced forest 

structure, even in a study site where people had a collaborative management agreement 

with the park authorities (Chapter 3). The type of resources collected and the impacts 

thereof varied according to the land use system outside the park (and sometimes inside): 

where people grew crops that required supports such as bananas and climbing beans, 

impacts of small stem-harvesting were apparent on regeneration. In areas where cattle 

grazing was important this led to the almost absence of seedlings and a forest composed 

mainly of large trees. Human impacts also affected tree species richness and areas in 

intermediate states of disturbance showed higher richness than old-growth forest or more 

severely degraded areas. I show that impacts vary among sites according to their specific 

histories and contexts.  

 

Interviews with 192 households about fuelwood use and a survey of dead wood in 81 

plots inside the park, revealed depletion of dead wood on the edge of the park, 

particularly near the most densely populated sites (Chapter 4). Species that were highly 

preferred and used as fuelwood were affected by harvesting. Some showed signs of 

depletion - in particular when they were also valued as sources of timber or for other uses 

- with possible impacts on tree biodiversity. Allowing the collection of an important forest 

resource such as fuelwood is double-edged because it creates opportunities for more 

destructive activities such as tree cutting for timber or charcoal. On the other hand it 

contributes to improving relations between local people and park staff and is therefore a 

basis for further negotiation or improvement of management arrangements. I also found 

indications that trees on people’s own land can provide alternative sources of fuel.  

 

A relatively new approach attempting to reconcile local livelihood improvement and 

conservation on Mt Elgon involves PES schemes based on REDD+. Such schemes need 

information on the carbon content of the forest and would benefit from consistent 

remote sensing observations and space borne (ALOS PALSAR) biomass estimations to 
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provide carbon levels, detect deforestation and degradation and monitor forest dynamics. 

The relascope method was effective for direct basal area estimations and gave consistent 

estimates of above ground biomass. I found that above ground biomass is very high in 

some areas of Mt Elgon, reaching above 800Mg/ ha (Chapter 5). However, the biomass 

map produced from the relationship between plot-AGB and radar backscatter values did 

not meet our expectations. Limiting factors likely included the sampling strategy and 

topography (Chapter 5). 

 

The findings in Chapters 2, 3, and 4 give evidence that simple models based on single 

drivers of deforestation (i.e. population or poverty) cannot explain local variation. In the 

global debate on drivers of forest change and in discussions about devolved forest 

management, local use of forest resources and its impacts, simple models leading to 

“simplified institutional prescriptions” do not reflect complex local social and ecological 

realities. Each of the generally recognised drivers of forest change - from global theories 

on agricultural expansion and population, to theories about the role of wealth and poverty 

and that of markets and prices - in themselves do not explain forest change at the local 

scale. Rather, their importance is the result of the interaction of factors at different scales 

that determine the contexts under which local people make decisions on forest use. Local 

motivations and attitudes are shaped by the contexts and factors under which people 

operate. This has important implications for the design of more locally adapted and 

ecologically and socially sustainable management arrangements on Mt Elgon and 

elsewhere. These are necessary because current practices appear to lead to forest 

degradation and resource depletion, potentially affecting Mt Elgon’s role as a water tower 

for the region as well as the habitat for important biodiversity in the long run.  

 

Interventions with potential benefits for both forest conservation and local communities 

vary from agricultural intensification to agroforestry practices, building on existing land-

use systems around Mt Elgon, to payments for environmental services schemes such as 

under REDD+. However, in a situation of historical conflicts such as on Mt Elgon, 

management authorities need urgently to engage in building relationships of trust with 

local communities, either through collaborative management agreements or by other 

means of showing genuine acknowledgement of local needs and consistent attitudes with 

regard to rules, rights and responsibilities. In the context of REDD+ projects, we have first 

shown the technical difficulties in assessing biomass values in a complex landscape such as 

Mt Elgon (Chapter 5). However, beyond these technical aspects, the findings from the 

previous chapters provide insights into how the success of such schemes may be 

influenced by other factors - and the complex contexts under which these play out - that 
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affect people’s motivations. These factors operate at multiple levels: from the interests of 

national REDD strategies to risks of appropriation of benefits by politicians or elites, to 

local motivations to participate or not.  

 

Conservation and development interventions need to address local factors while 

recognizing influences operating at national and global levels. Also, generalisations about 

trade-offs between local uses and conservation are confounded by location specific 

characteristics, calling for actions that take into account these variations. Truly 

participatory approaches that empower local people combined with incentives to develop 

alternative resources, such as trees for various uses, including fuelwood, can support 

more sustainable forest management for both people and conservation. Both 

international conservation actors, which often have a strong influence on national policies 

and resource allocation for conservation and economic development, as well as national 

and local forest management authorities (e.g. Uganda Wildlife Authority) need to 

recognise that incentives that influence people’s motivation for action in relation to the 

management of common pool resources vary locally and can therefore not be designed 

globally.  
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Samenvatting 

 

Om de groeiende wereldbevolking van voldoende voedsel en energie te kunnen blijven 

voorzien, treden er veranderingen op in landgebruik, met verstrekkende gevolgen voor 

bestaande bosgebieden. Op nationale en regionale schaal worden vooral arme boeren 

met weinig land gezien als de grootste bedreiging voor de succesvolle bescherming van 

bossen. In deze studie, onderzoek ik hoe tegenstrijdige doelen van diverse 

belanghebbenden, onder verschillende historische contexten hebben geleid tot lokaal 

varierende uitkomsten voor het bosgebied op Mt Elgon, Uganda. Hieruit trek ik lessen 

voor bosbescherming op de lange termijn.  

 

Mt Elgon is een grote geïsoleerde vulkaan op de grens van Uganda en Kenia. Het is een 

belangrijk stroomgebied met een hoge biodiversiteitswaarde. Daarnaast zijn de bossen op 

Mt Elgon voor de lokale gemeenschappen een belangrijke bron van landbouwegrond, 

(brand)hout en andere bestaansbronnen. Alle grond in een strook van 20 km rondom het 

beschermde bos is gecultiveerd en heeft een hoge bevolkingsdruk (150-1000 p/km
2
). 

 

In de jaren zeventig en tachtig van de vorige eeuw was de Ugandese kant van Mt Elgon 

onderhevig aan grootschalige ontbossing. Herstel volgde toen in 1993 het gebied werd 

uitgeroepen tot nationaal park. Dit had als gevolg dat het resterend bos en de gebieden 

boven de boomgrens een beschermde status kregen. Sinds die tijd is er een bos ontstaan 

met gebieden in verschillende mate van herstel of verval, door regeneratie, hernieuwd 

illegaal kappen voor landbouw en door lokaal gebruik van het bos. Mt Elgon heeft een 

geschiedenis van projecten met als gecombineerd doel het beschermen van het bos en 

het bevorderen van lokale economische ontwikkeling (sinds het begin van de jaren 

negentig). Deze projecten zijn recentelijk opgevolgd door proefprojecten voor de 

implementatie van REDD+ (dat zich richt op het economische waarde toekennen aan bos 

voor koolstofopslag) zowel binnen als buiten het beschermd gebied. In deze studie 

onderzoek ik de factoren die van invloed zijn op de motivatie van de lokale bevolking rond 

Mt Elgon om regels en regelgeving omtrent het kappen van bos te respecteren (Hoofdstuk 

2), het gebruik van hulpbronnen uit het bos (Hoofdstuk 3) en hun afhankelijkheid van het 

bos als bron van brandhout (Hoofdstuk 4). Als laatste bestudeer ik de bruikbaarheid van 

radargegevens, vanuit een satelliet gemeten, om de bovengrondse biomassa van het bos 

op Mt Elgon in Uganda en Kenia te schatten (Hoofdstuk 5). 
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Om de factoren te analyseren die verantwoordelijk zijn voor de veranderingen in het 

bosoppervlak op Mt Elgon in Uganda, heb ik voor drie periodes, tussen 1973 en 2009, 

satelietbeelden analyseerd in combinatie met geschiedkundige informatie, gegevens over 

de bevolkingsdichtheid en gesprekken met lokale informanten (Hoofdstuk 2). De 

resultaten laten zien dat binnen deze 35 jaar het totale bosoppervlak op Mt Elgon met 

meer dan 25 procent is afgenomen. Maar er vond in deze periode niet alleen ontbossing 

plaats. Op sommige plaatsen is ook toename van bos gemeten. Door het analyseren van 

lokale variatie kon ik achterhalen dat vooral de context (bijv. rechtshandhaving, inspraak 

in beheer, politieke tussenkomst) de uitkomsten voor het bosoppervlak bepaalde, en dat 

drijvende krachten zoals bevolkingsdichtheid, rijkdom, toegang tot de markt en 

grondstoffenprijzen op zichzelf hierin minder bepalend zijn. Uitbreiding van 

landbouwactiviteiten binnen het beschermde gebied op Mt Elgon kan niet simpelweg 

verklaard worden door een toenamein bevolking en door armoede, of andere op zichzef 

staande factoren. Hoge prijzen voor handelsgewassen veroorzaakten niet 

noodzakelijkerwijs een toename in ontbossing. Ook de relatie tussen de lokale bevolking 

en de parkbeheerders (en of er afspraken waren over bosgebruik en inspraak in het 

parkbeheer) en het soort handelsgewas (d.w.z. eenjarig of overblijvend) hadden invloed 

op dit proces. 

 

Het gebruik van het bos door lokale bevolking had een sterke uitwerking op de 

vegetatiestructuur, ook in gebieden waar de lokale bevolking inspraak heeft in het 

parkbeheer door middel van zogenaamd ‘collaboratief’ bosbeheer (‘collaborative 

management’). Dit heb ik aangetoond aan de hand van metingen aan de 

vegetatiestructuur en indicatoren van menselijke activiteit in 343 plots verspreid over vier 

onderzoeksgebieden op Mt Elgon in Uganda (Hoofdstuk 3). Wat er uit het bos verzameld 

werd en het effect daarvan op de bosstructuur, verschilde afhankelijk van het soort 

landgebruik buiten het park (en soms ook daarbinnen). In gebieden waar mensen 

gewassen verbouwen die ondersteuning nodig hebben zoals bananen en bonen, werden 

veel stammen met een kleine diameter verzameld uit het bos, met negatieve gevolgen 

voor de regeneratie van bomen. In gebieden waar het weiden van vee een belangrijk 

onderdeel van het landbouwsysteem was, bestond het naburige bos voornamelijk uit 

volwassen bomen en ontbraken de zaailingen. Menselijke activiteiten hadden ook een 

effect op de soortenrijkdom van bomen: gebieden die matig verstoord waren vertoonden 

een hogere diversiteit aan boomsoorten dan oude bossen of sterk verstoorde gebieden. 

De invloed van menselijke activiteit verschilde per gebied, en hing af van de specifieke 

lokale geschiedenis en de context (Hoofdstuk 3). 
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Uit de resultaten van interviews met personen uit 192 verschillende huishoudens over hun 

brandhoutgebruik, in combinatie met de gegevens van de hoeveelheid dood hout in 81 

plots binnen het park, werd duidelijk dat aan de rand van het park dood hout zeer snel 

verwijderd wordt, vooral in de buurt van dicht bevolkte gebieden (Hoofdstuk 4). 

Boomsoorten waarvan het hout zeer geliefd of veel gebruikt werd als brandhout 

vertoonden effecten van oogst. Sommige soorten vertoonden tekenen van 

populatieafname, vooral als ze ook gewild waren als hout voor constructie of andere 

gebruiken. Dit heeft mogelijk gevolgen voor de biodiversiteit van bomen op Mt Elgon. Het 

toestaan van verzamelen van brandhout uit het park heeft twee tegengestelde kanten. 

Aan de ene kant biedt het mensen de kans om andere, meer schadelijke, activiteiten te 

ondernemen, zoals bijvoorbeeld het kappen van bomen voor timmerhout of het maken 

houtskool. Aan de andere kant draagt het bij aan een goede verstandhouding tussen de 

lokale bevolking en de beheerders van het park. Het is daarmee een basis voor verdere 

onderhandelingen over bosgebruik of voor nieuwe beheerssystemen. Tijdens de 

interviews bleek ook dat bomen op privaat land als alternatieve bron kunnen dienen voor 

brandhout (Hoofdstuk 4). 

 

Een relatief nieuwe aanpak om te pogen het lokale levensonderhoud te verbeteren en het 

bos op Mt Elgon beter te beschermen is via een systeem van directe belatingen voor 

milieudiensten (‘payments for environmetal services’ of PES in het engels) gebaseerd op 

REDD+. Deze aanpak omvat een financiële compensatie voor het niet exploiteren van bos 

(PES regelingen gebaseerd op het REDD+ programma). Dit soort regelingen kunnen alleen 

geïmplementeerd worden als er informatie beschikbaar is over de hoeveelheid koolstof 

die in een bos vastgelegd is. Consistente metingen hiervan zijn daarbij waardevol. Naast 

het berekenen van de hoeveelheid koolstof, kunnen consistente observaties via 

teledetectie en schattingen van de bovengrondse biomassa (met ALOS PALSAR radar data) 

gebruikt worden om ontbossing, degradatie en bosdynamiek te monitoren (Hoofdstuk 5). 

De relascoop-methode bleek een effectieve methode voor het direct schatten van het 

grondvlak (‘basal area’ in het engels). Het grondvlak is sterk gecorreleerd aan de 

bovengrondse biomassa. In sommige gebieden op Mt Elgon heb ik zeer hoge waarden 

voor bovengrondse biomassa gemeten, tot meer dan 800MG/ha. Een kaart van de 

biomassa op Mt Elgon gebaseerd op de gevonden relatie tussen de gemeten 

bovengrondse biomassa en de radarwaarden uit de ruimte, voldeed niet aan de 

verwachtingen. Beperkende factoren waren waarschijnlijk de bemonsteringsstrategie in 

het veld en de topografie van het landschap (Hoofdstuk 5). 
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De bevindingen in Hoofdstuk 2,3 en 4, laten zien dat simpele modellen gebaseerd op één 

enkele drijvende kracht voor ontbossing (bijvoorbeeld bevolking of armoede), lokale 

variatie niet kunnen verklaren. In het algemene debat over de drijvende krachten van 

veranderingen in bosoppervlak en in discussies over gedecentraliseerd bosbeheer, lokaal 

bosgebruik en de impact daarvan, leiden simpele modellen vaak tot “simplistische 

institutionele voorschriften” die de complexe lokale sociale en ecologische realiteiten niet 

reflecteren. Geen van de algemeen geaccepteerde drijvende krachten achter 

bosverandering – van de globale theorieën over uitbreiding van de landbouw en over de 

invloed van bevolking, tot de theorieën over de effecten van rijkdom en armoede of 

markten en prijzen – verklaardt, op zichzelf staand, lokale bosverandering. De uitwerking 

die deze krachten hebben is het resultaat van de interactie van diverse factoren op 

verschillende niveaus, die zo de context bepalen waarin lokale mensen beslissingen 

nemen over het gebruik van bos. Lokale motivaties en houdingen worden gevormd door 

de context en de factoren waaronder ze opereren. Dit heeft implicaties voor het 

ontwerpen van duurzamere beheerssystemen die beter afgestemd zijn op lokale 

ecologische en sociale omstandigheden op Mt Elgon en elders. Dit is noodzakelijk omdat 

er aanwijzingen zijn dat huidige praktijken leiden tot bosdegradatie en uitputting van 

natuurlijke hulpbronnen. Dit heeft op de langere termijn potentiële gevolgen voor de rol 

van Mt Elgon als watertoren voor de regio en voor de habitat van belangrijke 

biodiversiteit.  

 

Strategieën die ten bate kunnen zijn van zowel bosbescherming als van lokale 

gemeenschappen op Mt Elgon varieëren van intensivering van de landbouw tot het 

ontwikkelen van boslandbouwsystemen (‘agroforestry’), het voortbouwen op bestaande 

landgebruikssystemen en betalingen voor milieudiensten zoals onder REDD+ programmas. 

Maar op plekken zoals Mt Elgon, met een geschiedenis van conflicten tussen locale 

bevolking en parkbeheer, is het vooral ook van belang dat deze laatste zich toe legt op het 

kweken van vertrouwen bij lokale gemeenschappen rondom beschermde gebieden. Zowel 

systemen van collaboratief bosbeheer als het werkelijk erkennen van lokale behoeften en 

een consistente houding ten opzichte van beleid, regels, rechten en 

verantwoordelijkheden kunnen hier sterk aan bijdragen. Wat betreft de potentie van 

REDD+ projecten: we laten zien dat er een aantal technische beperkingen zijn aan het 

meten van de biomass in een topografisch complex landschap zoals op Mt Elgon 

(Hoofdstuk 5). Desalnietemin geven de bevindingen uit voorgaande hoofdstukken inzicht 

in hoe de uiteindelijke uitkomsten van zulke systemen afhankelijk zijn van allerlei andere 

factoren die de motivate en handelingen van mensen beïnvloeden, en de complexe 

contexten waaronder deze factoren ageren. Deze factoren bestaan op verschillende 
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niveaus, van de belangen die spelen binnen nationale REDD+ strategieën tot aan het risico 

van appropriatie van middelen door politici of elites of tot aan lokale motivaties om al dan 

niet “mee te doen”. 

 

Interventies met als gecombineerd doel het beschermen van bos en het bevorderen van 

lokale economische ontwikkeling moeten zowel lokaal specifieke factoren en invloeden op 

national en mondiaal niveau erkennen. Generalisaties over de ‘trade-offs’ tussen 

bosgebruik door lokale gemeenschappen en bosbescherming worden verstoord door 

lokaal specifieke kenmerken die juist vragen om aangepaste acties. Benaderingen die 

gebaseerd zijn op oprechte participatie van locale gemeenschappen, in combinatie met 

het stimuleren van alternative hulpbronnen zoals het planten van bomen voor 

verschillende doeleinden, inclusief brandhout, kunnen duurzamere bosbeheerssystemen 

voor zowel mensen en natuurbescherming ondersteunen. Zowel internationale 

natuurbeschermingsactoren - die vaak een setrke invloed hebben op nationaal beleid en 

de toewijzing van middelen voor natuurbescherming en economische ontwikkeling - als 

nationale en locale bosbeheerautoriteiten(e.g. Uganda Wildlife Authority) zullen moeten 

erkennen dat de factoren die de motivatie van mensen bepalen in relatie tot het beheer 

van gemeenschappelijk hulpbronnen lokaal varieren en daarom niet globaal kunnen 

worden bepaald. 
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