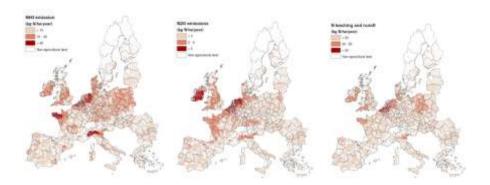
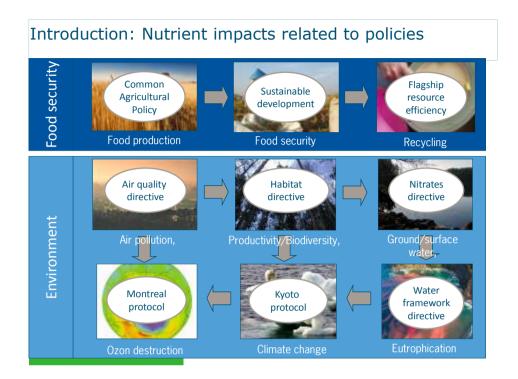
Environmental aspects of manure treatment

Gerard Velthof

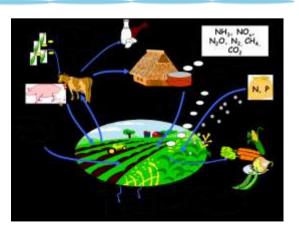
Outline

- Introduction
- Gaseous N losses: ammonia and nitrous oxide
- Methane emission
- Nitrate leaching
- Phosphorus
- Effects of large scale manure treatment
- Other environmental aspects
- Conclusions




Introduction: key threats of excess nutrients

Introduction: high N emissions in regions with high livestock density

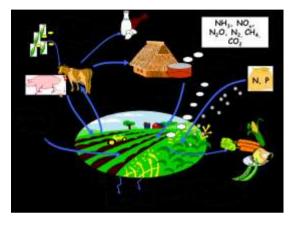


Velthof et al. (2012)

Introduction: manure chain approach

Feed-Animal-Housing-Storage-Treatment-Storage-Grazing-Application-Crop

52-


52

ST CE

Introduction: manure chain approach

Feed-Animal-Housing-Storage-Treatment-Storage-Grazing-Application-Crop

In this presentation: focus on separation and reverse osmosis

Gaseous N losses

Controlling factors: ammonia

Housing - storage - treatment

- Manure composition: NH₄, pH, dry matter
- Storage: cover

Soil

- Manure composition: NH₄, pH, dry matter
- Application method
- Weather

ALTERRA WAGENINGENUM

Controlling factors: nitrous oxide

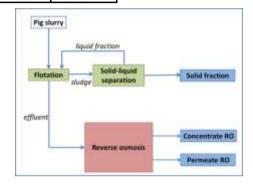
Housing - storage - treatment

- Manure composition: NH₄, NO₃, available C, pH
- Type of storage: aeration
- Temperature

Soil

- Manure composition: NH₄, NO₃, available C, pH
- Soil properties
- Application method
- Weather

N losses during slurry treatment


Average output (in % of input) of 4 manure treatment installations using reversed osmosis

Total	99	99	100
Permeate	2	0	0
Mineral concentrate	53	70	4
Solid fraction	44	29	96
	Total N	NH4-N	Р

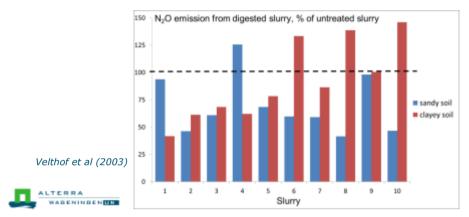
Hoeksma and Buisonjé, (2011)

N losses during storage

Nitrogen losses during storage (literature review)				
Manure type		N loss during storage, %	n	
Pig slurry	Untreated	23	8	
	Solid fraction; centrifuge	32	8	
	Liquid fraction; centrifuge	19	8	

Mosquera et al. (2010)

- Slurry systems: NH₃ emission >> N₂O emission
- N_2O emission solid manure storage >> slurry storage


Soil: ammonia emission

<section-header>

Untreated pig slurry - digestate

Digestate

- •
- •
- •
- Higher NH_4 content and higher pH Less available C Lower dry matter content Co-product influences the composition of digestate •

Methane

Controlling factors: methane

Housing - storage - treatment

- Manure composition: C, N, pH
- Storage: slurry solid (oxygen content)
- Temperature

Soil

 No/small methane emissions because of aerobic agricultural soils

Storage: methane emission

Emission during two month storage (incubation study)

Manure type		organic matter loss, %	CH ₄ , mg/kg manure
Solid cattle m	anure	26	1.0
Cattle slurry	Untreated	33	11.8
	Solid fraction; centrifuge	11	0.0
	Liquid fraction; centrifuge	19	9.1

Mosquera et al. (2010)

11/12/2013

Nitrate leaching

Controlling factors: leaching

Housing - storage - treatment

- Slurry: generally no leaching
- Solid
 - Concrete floor
 - Storage in fields

Soil application

- Manure composition
- Input output balance: N, and P
- Soil properties and weather

Nitrate leaching Average nitrate concentration upper groundwater in maize experiments (2010 and 2011) Nitrate concentration, mg NO₂ per liter 30 with winter crop without winter crop 25 20 15 10 5 ò CAN Cattle slurry Solid fraction Mineral Pig slurry Farmyard concentrate manure

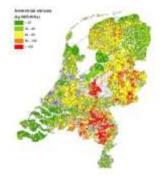
Schröder et al. (2012)

Phosphorus

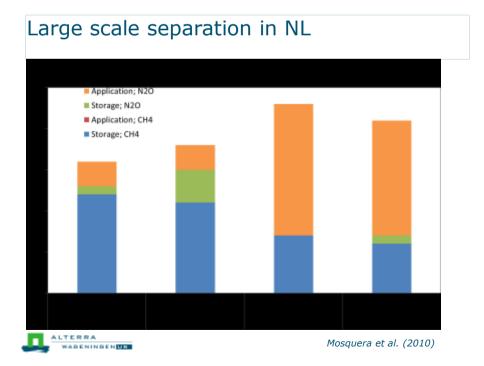
			Untreated slurry	Separation		
				solid fraction	liquid fraction	
P-content of separated	Organic matter	g/kg	35	142	5	
	Total N	g/kg	4.8	8.9	2.6	
	N-NH ₄	g/kg	3.2	3.5	2.2	
	NH₄-N, % Ntot		66	39	85	
	Р	g/kg	1.3	5.0	0.1	

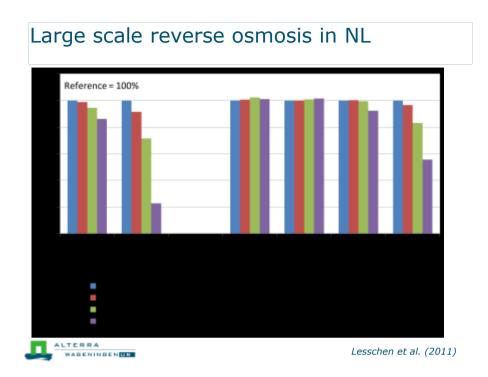
Risk of phosphorus accumulation

Hoeksma et al. (2011)


Risk of phosphorus accumulation

			Untreated slurry	Separation	
				solid fraction	liquid fraction
	Organic matter	g/kg	35	142	5
separated	Total N	g/kg	4.8	8.9	2.6
	N-NH₄	g/kg	3.2	3.5	2.2
	NH₄-N, % Ntot		66	39	85
	Р	g/kg	1.3	5.0	0.1


Hoeksma et al. (2011)


Use of additives	Manure	8 weeks	24 weeks	
	I	87	73	
	П	33	41 🗲	- iron sulfate flocculant
	ш	80	68	
	IV	73	70	
		Schi	röder et al. (2012)	

Large scale manure treatment

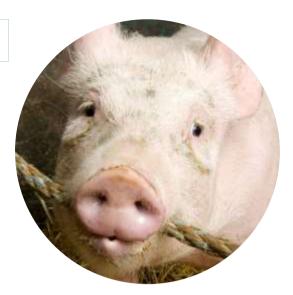
Other environmental aspects

Other environmental aspects

- Energy
- Fine particles, odour
- Heavy metals and excess of other minerals, e.g. S, Ca + Mg (hardness)
- Antibiotics, hormones
- Diseases
- Spatial planning, logistics, noise

Conclusions

Environmental assessment of manure treatment is complex


- Different parts of the manure chain
- Many compounds/aspects involved
- Risks of pollution swapping

- Manure treatment may strongly affect emissions in different parts of the manure chain.
 - overall effect on a national level may be small
- Manure treatment may improve use of manure N and P, so that less fertilizer is needed

Thank you

