Biochar and GHG mitigation

Which are the Trade Offs?

Kor Zwart

KB-13-005-008

Alterra Introduction

- Wageningen UR
 - University
 - 6 Research Institutes
 - Alterra:
 - Soil, Water & Climate, Ecology, Landscape
 - Ca. 600 staff
 - Project Organisation
 - 50-60 Million €/year
- Team: Sustainable Soil Management

Who is Kor Zwart?

- Microbiologist,
 - Yeast Physiology, Biogas production
- Soil Scientist,

Microbiology, Soil organic matter dynamics,

Nutrient dynamics

 Agronomy, mostly arable production

Kor Zwart Introduction

- Biobased Economy
 - Bioenergy, sustainability,
 - Biochar application
 - Biorefinery
 - 'New' Organic Fertilizers from waste
- Nitrates Directive evaluation in EU-27

NITRATES DIRECTIVE EU-27

REPORTING PERIOD 5 (2008-2011)

GROUND WATER ANNUAL AVERAGE NITRATE CONCENTRATION

Avg NO3 mg/l

- < 25
- 25 40
- 40 50
- >= 50

Sources : D.G. ERV., Member States reports on Nitrates Directive Implementatio: Coordinate Reference System : ETRS89 Lambert Azimutal Equal Area Cartography : JRC,05/2013 Data source: GISCO - Eurostat (European Commission)

Biochar Introduction

- Char(coal),
 - Biomass based,
 - specifically produced to be applied into the soil

Terra preta (Black soils) Amazon Basin

Terra preta (Black soils) Amazon Basin

Pyrolysis Proces -> Biochar

BioOil Storage

http://alfin 2300.blog spot.nl/2011/07/canadian-company-dynamotive-takes.html

GHG mitigation concept of biochar?

Current situation

Trade offs / Considerations

Biochar for climate mitigation?

Which are the important questions to be addressed?

Trade offs / Considerations

- C-sequestration
 - Biochar stability > 100 years?
- Soil fertility/ Soil quality, biochar effect?
 - Claims productivity, etc.
 - Effect soil organisms
- GHG emissions: Biomass C for energy or for C-sequestration?
 - Energy / GHG balance of the system?

Stability of biochar

Biochar properties

Pyrolysis of Biomass Components

Spokas (2010) Carbon Management (2010) 1(2)

Conclusions stability

Stable biochar can be produced

 Stability depends on pyrolysis conditions and Biochar composition

Composition also determines other biochar properties

Role of biochar in soil properties and functions

Biochar as soil improver?

- Biochar = organic carbon
- Soil organic matter (SOM) = organic carbon

Role of SOM

Biology

Source of energy Source of carbon, nutrients

Resilience soil-plant system

Physics

Soil structure Water retention

Thermal properties

Chemistry

CEC

Buffer capacity Complexation

SOIL ORGANIC MATTER

Role of SOM in SOIL types

Natural Organic Matter

Biochar

Biochar Carbon = Energy for microorganisms?

Thermodynamically: No problem, 30 GJ/kg

Enzymatically: ??, especially at low O:C ratio's

CO2 evolution: Low in soil incubations

Biochar Refuge for micro-organisms?

Sohi et al (2009)

faculty.yc.edu/ycfaculty/ags105/week08/soil_colloids/soil_colloids_print.html

Hydrophobic interaction Fluidized bed reactor

Figure 4. Representative sand particle partially covered with an anaerobic biofilm of thin thickness.

Figure 3. Methanogens: Methanosarcina sp

Mussati et al, 2005

Relation SOM-plant available water (pF 2-4.2)

SOM %	Plant available water mm
2	50
4	66
5	70
6	75
8	81
10	86

WHC effect biochar

WHC (AVG in 5 different soils, 4 different chars)

Water retention

Water retention Interreg Biochar Project

Pore size distribution

FIGURE 2.4: PORE SIZE DISTRIBUTION FOR COARSE CHAR

Water infiltration Interreg Biochar Project

Water infiltration Interreg Biochar Project

CEC reclaimed peat soils

CEC reclaimed peat soils

Humic Acid structure

C:O Fulvic acids: 1

Humic acids: 0.55

CEC (cmol/kg)

Modification of Biochar

- Activation (?)
- Adsorption of SOM
- Biological modification (?)
- Chemical modification
 - Functional groups CEC
 - Functional groups AEC (NR₄+)

Energy or C-sequestration?

LCA

Biochar Yields % kg DM⁻¹

	Pyrolysis Commercial Softwood Pellets	Anaerobic Digestate	Mixed Wood Chip	Green Waste
Char Yield	23.9	44	25.2	60.6
Carbon	0.89	0.52	0.87	0.18
Liquid Yield	37	24.3	33.9	12.9
Syngas Yiel	d 39.1	31.7	40.8	26.5

Markus Roedger, Biochar Climate Saving Soils

Biochar energy content MJ/kg⁻¹

	Pyrolysis Soft	ommercial wood Pellets	Anaerobic Digestate	Mixed Wood Chip	Green Waste
Biochar	HHV	33.6	16.9	32.2	8
Liquid	HHV	12.8	10.9	13	13.8
Syngas	HHV	15.3	11.3	13.3	11.5

Markus Roedger, Biochar Climate Saving Soils

LCA results

Conclusions

- Biochar can be used to sequester short cyclic C in the soil
- Biochar is rather different from SOM
- It seems unlikely that biochar can completely replace SOM
- Modification of biochar to improve its functionality is needed and is possible
- Application of biochar in agriculture? Mechanisms of effect!!!
- Energy or C-sequestration?

Biochar Process Yield

Typical product yields (dry basis) for different modes of pyrolysis

Mode	Conditions	Liquid	Char	Gas
Fast	Moderate temperature ~ 500°C	75%	12%	13%
	short vapor residence time ~ 1 s			
Moderate	moderate temperature ~ 500°C	50%	20%	30%
	moderate vapor residence time ~			
	10-20 s			
Slow	moderate temperature ~ 500°C	30%	35%	35%
	very long vapor residence time ~ 5-			
	30 min			
Gasification	high temperature > 750°C	5%	10%	85%
	moderate vapor residence time ~			
	10-20 s			

Effect of Feedstock and Thermal Process on Char Properties

Feedstock	Process	Higher Heating Value (kJ/kg)	BET Surface Area (m²/g)
Corn Stover	Slow Pyrolysis	21,596	4.1
Switchgrass	Slow Pyrolysis	12,799	22.8
Corn Stover	Fast Pyrolysis	13,833	4.5
Switchgrass	Fast Pyrolysis	16,337	17.7
Corn Stover	Gasification	15,290	43.6
Switchgrass	Gasification	15,864	39.2

Cation Exchange Capacity (CEC) of Chars

Feedstock	Process	Reactor type	CEC (cmol/kg)
Corn stover	Fast pyrolysis	PDU fluidized bed	29.89
Switchgrass	Fast pyrolysis	PDU fluidized bed	16.3
Loblolly pine	Fast pyrolysis	Lab scale fluidized bed	14.21
Corn stover	Fast pyrolysis	Lab scale free fall reactor	12.23
Switchgrass	Gasification	PDU fluidized bed	11.34
Corn stover	Gasification (cyclone 1)	PDU fluidized bed	31.4
Corn stover	Gasification (cyclone 2)	PDU fluidized bed	17.21
Hardwood	Slow pyrolysis	Lab scale fixed bed	19.04
Switchgrass	Slow pyrolysis	Lab scale fixed bed	12.35
Woodwaste	Gasification	Large pilot-scale	12.11

Used modified Compulsive Exchange Method (Gilman & Sumpter 1986, Laird & Fleming 2008)

