Biochar and GHG mitigation

Which are the Trade Offs?

Kor Zwart

KB-13-005-008

Alterra Introduction

- Wageningen UR
 - University
 - 6 Research Institutes
 - Alterra:
 - Soil, Water & Climate, Ecology, Landscape
 - Ca. 500 staff
 - Project Organisation
 - 50-60 Million €/year
- Team: Sustainable Soil Management

Kor Zwart Introduction

- Biobased Economy
 - Bioenergy, sustainability,
 - Biochar application
 - Biorefinery
 - 'New' Organic Fertilizers from waste
- Nitrates Directive evaluation in EU-27
- Sustainable Soil Management

Biochar Introduction

- Carbonized biomass
 - specifically produced to be applied into the soil

Terra preta (Black soils) Amazon Basin

Terra preta (Black soils) Amazon Basin

Pyrolysis Proces -> Biochar

BioOil Storage

http://alfin 2300.blog spot.nl/2011/07/canadian-company-dynamotive-takes.html

Biochar Yields % kg DM⁻¹

	Pyrolysis Commercial Softwood Pellets	Anaerobic Digestate	Mixed Wood Chip	Green Waste
Char Yield	23.9	44	25.2	60.6
Carbon	0.89	0.52	0.87	0.18
Liquid Yield	37	24.3	33.9	12.9
Syngas Yiel	d 39.1	31.7	40.8	26.5

Markus Roedger, Biochar Climate Saving Soils

GHG mitigation concept of biochar

Current situation

Trade offs / Considerations

Biochar for climate mitigation?

Which are the important questions to be addressed?

Trade offs / Considerations

- Biochar stability > 100 years?
- Is biochar improving Soil fertility / Soil quality and how?
- Biochar C for energy or for C-sequestration?

Stability of biochar

Biochar properties

Pyrolysis of Biomass Components

Pyrolysis conditions

SSA m2/g

Spokas (2010) Carbon Management (2010) 1(2)

Conclusions stability

Stable biochar can be produced, fits C-sequestration in soils

Stability depends on pyrolysis conditions -> biochar composition

Composition also determines other biochar properties

Role of biochar in soil properties and functions

SOM and BIOCHAR - Algebra

- Biochar = organic carbon
 - SOM = organic carbon
 - Biochar = SOM ?

Role of SOM

Biology

Source of energy Source of carbon, nutrients

Resilience soil-plant system

Physics

Soil structure Water retention

Thermal properties

Chemistry

CEC

Buffer capacity Complexation

SOIL ORGANIC MATTER

Role of SOM in SOIL types

Biochar **Claims** in Soil Properties

- Microbiology, nutrient delivery
- Water retention
- Nutrient buffering (CEC)

Natural Organic Matter

Biochar

Biochar Carbon = Energy for microorganisms?

Thermodynamically: No problem, 30 GJ/t

Enzymatically: ??, especially at low O:C ratio's

CO2 evolution: Low in soil incubations

Relation SOM-plant available water (pF 2-4.2)

SOM %	Plant available water mm
2	50
4	66
5	70
6	75
8	81
10	86

Water retention

Water retention Interreg Biochar Project

Pore size distribution

FIGURE 2.4: PORE SIZE DISTRIBUTION FOR COARSE CHAR

Water infiltration Interreg Biochar Project

CEC reclaimed peat soils

Humic Acid structure

C:O Fulvic acids: 1

Humic acids: 0.55

NO₃- NO₃- NH₄+ K+ Ca++

CEC (cmol/kg)

Biochar Evidence in Soil Properties

- Microbiology, nutrient delivery
- Water retention
- Nutrient buffering (CEC)

Modification of Biochar

- Activation (?)
- Adsorption of SOM
- Biological modification (?)
- Chemical modification
 - Functional groups CEC
 - Functional groups AEC (NR₄⁺)

1. Biochar North Sea ring trial

2013 crop yield

=> No significant differences

3. European biochar field experiments

127 site - biochar type – dose – year combinations

- 75% not significant
- 17% positive effect
- 9% negative effect

Principal study: Root growth of common bean in a sandy subsoil with increasing

The experiment

- Spring Barley, 18 columns, six subsoil treatments (n=3)
- Water and nutrient (~200 kg N ha⁻¹) supply in excess

Subsoil treatments: (25-100 cm, n=3)

O % (Control)

1%

2 %

Straw-biochar incorporation

1/2 %

2 % (Wood-biochar)

4 %

at

Energy or C-sequestration?

LCA

Biochar energy content MJ/kg⁻¹

	Pyrolysis Softwood Pellets		Anaerobic Digestate	Mixed Wood Chip	Green Waste
Biochar	HHV	33.6	16.9	32.2	8
Liquid	HHV	12.8	10.9	13	13.8
Syngas	HHV	15.3	11.3	13.3	11.5

Markus Roedger, Biochar Climate Saving Soils

LCA results

Conclusions

- Biochar can be used to sequester short cyclic C in the soil
- Biochar is rather different from SOM
- Application of biochar in agriculture? Not Yet
- Energy or C-sequestration?

Biochar Refuge for micro-organisms?

Sohi et al (2009)

faculty.yc.edu/ycfaculty/ags105/week08/soil_colloids/soil_colloids_print.html

Hydrophobic interaction Fluidized bed reactor

Figure 4. Representative sand particle partially covered with an anaerobic biofilm of thin thickness.

Figure 3. Methanogens: Methanosarcina sp

Mussati et al, 2005

WHC effect biochar

WHC (AVG in 5 different soils, 4 different chars)

CEC reclaimed peat soils

Humic Acid structure

C:O Fulvic acids: 1

Humic acids: 0.55

Water infiltration Interreg Biochar Project

CEC reclaimed peat soils

