Deepening the Measurement of
Technical Inefficiency in Private
Farming in Georgia: Locally
Parametric Regression

Research Memorandum 2003-7

Facuiteit der Economisc
en Bedrifskunde (FEW




Faculty of Economics and Business Administration

Deepening the Measurement of
Technical Inefficiency in Private
Farming in Georgia: Locally
Parametric Regression

Research Memorandum 2003-7

Tugrul Temel
Andre Lucas

vrije Universiteit .mb amsterdam




Deepening the Measurement of Technical Inefficiency in

Private Farming in Georgia: Localy Parametric Regression

Tugrul Temel
International Service for National Agricultural Research
Laan van Nieuw Oogt Indie 133
2593 BM The Hague
The Netherlands
t.temel@cgiar.org

Andre Lucas
Department of Finance and Tinbergen Institute
Free University of Amsterdam
De Boelelaan 1105, 1081 HV Amsterdam
The Netherlands
alucas@econ.vu.nl

February 19, 2003

Abstract

This study deepens the measurement of technical inefficiency in private maize farming in
Georgia, applying locally parametric (LP) I egression method, whicb builds on the stochastic
frontjer production function approach. Detailed survey data for 221 mixed farms for 1997 are
used in the estimations. Findings suggest: (i) maize production can be further increased by
breaking up large farms into smaller parcels; and (ji) increased schooling and farm experience
of new private farm operators would further reduce the inefficiency. Furthermore, global and
local estimations of the inefficiency suggest different policy directions as to the future of maize
farming. The global estimations, revealing non-disciriminant gverestimation of the inefficiency,
prejudice broad-based farm reforms. On the contrary, the local estimations, pcinting out
relatively large farms as the kcy source of the jnefficiency, favor the design of specific policies
for the effective operation of large farms.

Key words: Technical inefficiency, local and global parametric regression methods, stochas-
tic frontier production function, after-reform maize farming in Georgia
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1 Background and Introduction’

Farm inefficiency and its determinants have since long enjoyed prime interest in much empirical
end theoretical work, beginning with Farrell (1957), continuing with Aigner, Lovell, and Schmidt
(1977) and Mausen and van den Broeck (1977), and most recently including Bauer (1990}, Cornweil,
Schimidt, and Sickles (1990), Greene (1993}, Lee and Schmidt (1993), and Battese, Malik, and Gill
(1996) among others. Themain goal of these studies wasto estimate the amount of output foregone
due t0 inefficient use of inputs and to determine key factors that account for this inefficiency.

Technical inefficiency is a measure of the gap between the frontier (or ideal) and the actual
output levels. Consider, for example, a production relation, y < f(z), where f(.) denotes produc-
tion technology that translates inputs, z, into output, y.If a fam employs the optimal bundle 2,
together with the most appropriate technology, the production relation would hold as § = f(),
where § is the frontier output. On the contrary, when either inputs are used sub-optimally cr
an inappropriate technology is adopted. the same production relation would take the form of
y =@ + u, where u = (Y = §) <0 is a measure Of technical inefficiency. Such formulation of the
production yelation is deterministic since the inefficiency is attributed only £ farmers’ sub-optimal
choice of input use,

In the case that the production relation isalso affected by exogenous factors, those that are not
under the control Of farmers, the stochastic frontier production function approach, first introduced
by Aigner, Lovell, and Schmidt (1977) (ALS henceforth), becomes suitable to estimate the ineffi-
ciency. The stochastic frontier production takes on the form, y = f(x,8) + ¢, where § is a vector
of coefficients to be estimated; £ = v + u, a composite error term; v, random error; and u, the
inefficiency. This formulation of the production relation assumes that v and v follow a symmetric
(the normal) and an asymmetric distribution (the half-normal), respectively; and that both ¢ and
u are orthogonal 1o each other and to . These assumptions would allow to disentangle v and u
from the estimated compasite regression errors £,

One of the disadvantages of the stochastic frontier approach is that it postulates two paramet-
ric specifications: one for the probability distribution of y and ¢ and another for the production
relation f(.). Adams, Berger, and Sickles (1999) relax these specifications by applying a semi-
parametric efficient estimator.? They further use panel data to disentangle the time-varying error
term, vy, and the time-invariant inefficiency, u:, from the estimated regression ettors &;;. Unfor-
tunately, their methodology does notallow to study the inefficiency ing cross-section context.

In recent years, nonparametric approaches began to become popular in estimating the ineffi-
ciency, as they are free of distributional assumptions and ad hoc functional specifications. Data
Envelopment and kernel density regression methods are the two most commonly applied in the
literature. They both attribnte all deviations from the estimated frontier to the inefficiency, thus
setting the random error term ¢ = 0. A third mechod. introduced by Varian (1984), incorporates
economic regnlarity conditionsto the frontier analysis by finding the minimal perturbation of data
that satisfies the inequality relations implied by the weak axiom of revealed preference. Although
these techniquey generate estimates robust to misspecification, their precision varies inversely with
the number of explanatory variables and the number of observations (Hardle, 1991; Yatchew, 1998),
and hence parsimony is important when such techniques are applied.

The current study introduces Tibshirani and Hastie’s (1987) locally parametric (LP) regression
method te estimate technical inefficiency inmaize farming in Georgia, using detailed survey data
for 1997. Thebasic idea underlying the L P method is tolocally apply in input space ALS’s globally
parametric (GP) method. The observations sufficiently close to the postulated input vector 7 are
used to estimate the the coefficients of the GP model and the parameters of the normal] and
haif-normal distributions. Therefore, the LP coefficient estimations will vary in different parts of
the input space, as opposed to the GP estimations fixed for the entire input space. With the
application of the LP method, we introduce to the [iterature a way for deepening the measurement

1The authors like to thank Michiel Keyzer. Geert Overbosch, Maarten Nube, and seminar participants at the
Center for World Food Studies - Free University Amsterdam (SOW-VU) for their comments on the earlier version of
the paper. At the time a first draft of this study was completed, the first author was associited with the SOW-VU.
2See Greene (1990) for the implications of these ions
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of technical inefficiency. Finally, the study quantifies the efficiency gains attributed to the LP
method by comparing it to the estimates from the GP method.

2 Model Specification agnd Estimation

Consider a Cobb-Douglas production function:

z

Y= 4[] X3, with ©2a05=1
i

where Y and X stand for farm production and input, respectively. Subscripts i =1, ..., n and

j =1, ..., Z represent the number of farms and inputs used, respectively. A, the coefficient of

technical efficiency of farm i, is such that A* > A, for all i. The production frontier is then given

by

z
Yi=enA ] X7, 1

=1

where the random error term v; = 0 and A, = A* for all +. Following Aigner et al., Eq. (1) is
rewritten as

z Z
Y =e%e™ H Xf;-j < yi = Zajz;j +e5, 2)
)=l =1

with g; = In(Y3), 235 = In(Xiz), 4% = In(Ai/A*), and g =v; + 4;. It should be noted that v; is an

ordinary random error possibly taking on either negative o positive values; however, by definition,

the measure Of inefficiency, 4;, must be non-positive. Again, following Aigner et a., we model
this by setting u; = ~{@:| and assuming that ¢; and &; have zerg-mean normal distributions with
variances 02 and o2, respectively. Furthermore, y; and 4; are assumed to be orthogonal to each

other and to the regressors ;.

Aigner et al's model is parametric in two respects. First, the specification of the maximum
output function in Eq. (2) is parametric. For example, by imposing the linear structure as in
Eqg. (2), we are essentially imposing a Cobb-Douglas type production function. Though this
might provide an adequate approximation in some cases, it may fail in others. For instance, if
the true production function is of the CES-type, we are likely to end up with biased estimates
of the components in Eq. (2). Second, Aigner et al’s approach concerns the normal-half-normal
specification imposed on (v;,u;). Though this specification captures the different nature of the
error components, the imposed djstributional shape might be overly restrictive. As discussed in
the introduction, Adams et al. relax these parametric assumptions. In particular, they apply
kernel estimation techniques to estimate the density of ¢; adaptively. As they employ panel rather
than cross-section data, they are able to constn%ct consistent estimates of wu; by averaging the
estimation errors &, over time «, (i.e, @ = T~} 22—, &) They also sketch an approach by which
one can further relax the parametric assumptions on f(-) and estimate f{-} rather than f{-; 5) for
given f(.; ).

Fo{l(o,wing Tibshirani and Hastie (1987}, the current study applies the LP approach based on
Aigner et al’s GP approach.3 L et our model be given by,

yi = fz:) +ui + v, 3

v
3The reader is referred to Loader {1996) and Hjort and Jones (1996) for more reading on the LP approach.
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where y; = —}it;} and

( Z: >~N (0,( Uﬁgz,-) Uﬁ?z;) )) W

Note that the linear parametric assumption in Eq. (2) is relaxed by letting f(-) depend (and
possibly non-linearly) on the input vector z;. Furthermore, the parameters of the normal-half-
normal distribution depend on the value of x;. In this way, the distribution of ¢; may take different
shapes in different parts of the input space.

To estimate the parameters of Eqg. (3) and Eq. (4), we use locally weighted maximum likelihood
based or 4 nearest-neighbor type weighting schema Let

U f(z),03(z),0%(@)) = 3 _w(z ~ 25 ka) - {(f(2), 03 (2), 0L (a), (5)
i=1

where 1 is the number of observations; k,, & smoothing parameter giving the number of nearest
neighbors; and’é(-), the global liielihood of the normal-half-normal model (seeAigner etal. (1977)
for the precise formulae). The weights in Eq. (5) are of the form
0.75 di{z ~ z;)?

wls i k) = h(kn, ) (1= 'r(z(k,.,zl)) ) Lo,1y{di( = 2:)? Ak, 7)), ®)

where the Mahalanobis distance is defined as
dife = ) = V(z = 2;)'Cou(z:)~L(z = 2).

Cou(-) stands for the sample covariance matrix; 14(-), the indicator function for the set A; and
h(kn,x), a constant such that the indicator function takes on g “on-zero value for k, observations
only. The specification of Eq. (6) corresponds to & Epanechnikov kernel estimator (see Silverman
(1986)). Observations that are cloger in input space to the postulated input vector g receive g
larger weight in the weighted likelihood Eq. (5). To obtain consistency, we need n, kn =+ o0 as
well as k,,/n — 0 (see Silverman (1986)).

Using the approach sketched above, We maximize the weighted local likelihood Eq. (5) for
5= 1,...,,, thus Obtaining n estimated tuples (J(z;), #3(z:), ¢2(z:)). We need to estimate
farm i’s technical inefficiency, u;, for cross-sectional data however, this is not possible because the
regression error &; = [y; = f(z;)}s a composite Of the random €Tor v; and the inefficiency measure
u;. These two terms cannot be identified separately, therefore, instead of using u;, we use either
Eluilz = 2;,¢; = &) or Blexp(us)|z = x;, ¢; = &]. After some algebra, we derive the following two

expressions:
Blujz = zi,6, = &] = M&i — M
B(=N&i/0)
and

‘I’g— /\.;5‘,‘ + 02!- :0,-

[EOVENES
with ¢(-) the standard normal density function, ®(-) the normal distribution function, & =
a2(z;)/ (0% (m;) +02(z;)), and oF = Mod(a:). It i's straightforward to verify that these inefficiency
measures tend to zero if & — 00, and to —oo for & — =00,

Efexp(ui)|z = zi,6, = &] = exp(M&; + 02 /2)

3 An Application

Using data from a rural household survey conducted inGeorgia in1997,% the GP and the L P meth-
ods are applied (i) to estimate a production function for maize, which is, by far, most commonly

‘The Rural Poverty Study of the Caucasus Countries « Georgia was conducted iN 1997 by the Center for World
Food Studies of the Vrije Universiteit (SOW-VU). Amsterdam, The Netherlands, in collaboration With the Interna-~
tional Center for Reformation and Development of Georgian Economy (ICRDGE), Thilisi, Georgia. The study was
commissened by the International Fund for Agricultural Eevelopmenc (IFAD).
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grown crop by private farmers that emerged after indepeodence in 1991, (ii) to measure farm-level
technical mefﬁmenc and (iii) to identify the determinants of this inefficiency. Thereafter, the
performance of thes two methods is compared with respect to their explanatory power.

3.1 Production function

A production function of the form, v = f(z;) +e, is estimated, where y; = In(Y;) isfam 4's maize
production, z; = [In(K;), In(N:), In(L:)}s a vector of inputsfam { uses, snd g; is the disturbance
term. The inputs K, N“ and L denote total machine hours, total labor hours, and total harvested
area (i.e,, as 3 measure of farmsize), respectively.

The full-sample GP estimations of the production function are reported in Table 1.° Capital
is found to be the only significant input; and farmsize varies inversely with the production. (This
is an empirical relationship well-documented in the literature.5) Also reported in Table | are the
estimates of standard errors of the stochastic error, o, and of the technical inefficiency, ¢,,. That
the ¢ (1.05) swamps the o, (0.11) suggests that inefficiencies should especially be attributed to
factors under the contro} of farmers. This clear dominance of the technical inefficiency component
aver the stochastic component sterns partly from the omission of other production inputs, like
fertilizer, since the omitted variables can be viewed as farmers’ inability in choosing the right
bundle of inputs that play significant role in farm production.

In order to examine Whether small farms differ from large ones with respect to technology and
technical inefficiency parameters, the GP estimations of the production function are performed
separately for each farmsize (see Table 2). Farms in the lowest 33 percentile of the variable L,
are classified as small; those in the middle 33 percentile, as medium; and those in the highest 33
percentile, as large fams. For small farms, capital and labor both have positive but statistically
insignificant  contribution to the production. For this group, technica inefficiency originates mostly
from factors under the control of farmers, implied by |oy| > |o.]. For medium-size fams, only
labor positively and significantly contributes to the production, and although |ow| > {o,| still
holds, the level is Jower compared to that estimated for small farms. Lastly, for large farms, labor
stil] positively and significantly contributes to the production, however, capital’s contribution is
negatie, though statistically insignificant. This negative relationship between machine hours per
hectare and the production can partly be attributed to the fact that most large fams gpd most
farm equipment, a lot of them in poor conditions, are in the hands of previous managers of [arge
state and collective farms. A large number of respondents in the survey declared that machines
often had technical problems dwing the field work, resulting in Jow production. For large farms,
random factors seem t0 play more improtant role than factors under the control of farmers, implied
by low| <o

To test the hypothesis that small, medium, and large farms all face the game constraints and
operate under the same technology constraints, the three regression modelsin Table 2 are compared
pair-wise by using chi-square tests. Results are reported in Table 3, indicating that none of these
pair-wise comparisons i Sstatistically significant. This suggests that similar production constraints
apply to all of the private farms concerned, and hence the estimated production function in Table
1is assumed to represent the average maize production relations in the survey at hand.

Conclusion 1 Production relations are indifferent across farmsize. This suggests that 4 single
production relation estimated by the GP method using the entire sample is to represent gli farms
under investigation.

SFertilizer use Was excluded from the estimations as its inclusion reduces the number Of observations in the
sample. The new private farmers hardly apply fertilizer in their Maize farming because Of Nigh price and dismanteled
distribution system.

SFor g thorough examination of the inverse relationship in the context of both farming in developing and developed
countries, the reader IS referred to Stanton (1978), Feder (1985), and Tavemnier, Temel, and Li (1997) among others.

(4]
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3.2 Technical inefficiency

Farm technical inefficiency isquantified by the conditional estimations, E(u:|z = z;, ¢; = &)= h{c;)
and Elexp(w)le = g;,5; = &) = hlc;),where ¢ = (a;. ej, my, 8:) is a vector of characteristics of
ith farm Operator, g; is operator i's age, g; is farming experience in years, m; is farm manage-
ment experience, and ¢; IS years of schooling. The hypothesis that maiz production is indifferent
across male and female operators cannot be tested, as our survey has only a few female operators.
Farming experience anf farm management (bothmeasured in years on present farm), and schooling
should be regarded as possible determinants of technial change. Experience should increase maize
production directly, while schooling islikely to affect the preduction through the enhancement of
farmer’s allocative ability for input ise decisions.

3.21 GP estimations

The two types of the conditional inefficiency measures given above are estimated by usingé, which
i's obtained from the production function estimation in Table 1. The vector of characteristics Cis
regressed On E(exp(u)|é) and E(ulé) separately, and the estimation results are presented in Tables
4 and 5, respectively. The signs and the levels of significance of the estimated coefficients remain
the same across the two regression models. The estimations indicate that the inefficiency decreases
with more schooling and more farming experience, while increasing with age and more management
experience. Surprisingly, the only statistically significant variable, which isalso robust across the
regression models, is management experience. Such a controversial finding can, to 3 large extent,
be attributed to the fact that the Georgian landreform entitled, without discriminating, managers
of old collective farms and elderly people to receive land from the government, although these
people were not able to effectively use the land for productive purposes, at least in the early years
of reform. As g result7 inefficiency was high among them.”

The two regression models of the conditional inefficiency are further estimated by using the
demeaned variables (see Tables 6 and 7).8 The intercept terms in these models measure the
inefficiency of an average farm and are significant at the 0.01 leve!. Similar to the findings above,
the inefficiency seems to decline with more schooling and more farm experience and toincrease with
age and management experience, and again the only significant variable is management experience.
The difference between the intercept term (0.479) in Table 4 and that (0.496) in Table 6amounts to
0.017, which suggests that an average farm is more efficient relative to a farm run by ap operator
who literally has no schooling, no farm experience, and no management experience. A similar
comparison of the intercept terms in Tables 5 and 7 resuits in 0.118.

3.22 LP estimations

The LP method allows to test the hypothesis that farms close to each othet on the output space
operate under similar constraints and technology parameters. This method is applied using two
different models, gne with the dependent variable E{exp(u)|¢) andanother with E(ulg), each of
which is estimated across three different window sizes (50, 75, and 100 observations) (see Tables
8 and 9). Next, the same L P estimations are performed using the demeaned data (see Tables 10
and 11). The key advantage of the LP method over the GP method is that the different window
sizes become instrumental in eliminating the influence of outliers on the preduction frontier.
Estimations based on the original data are given inTables 8 and 9. They show that the mode!
with a window size of 100 observations performs the best . compared to the other two models
estimated with window sizes of 50and 75 ghservations. With an F-statistic of 2.96 (3.42) in Table
8 (Table 9), it is statistically significant at the 0.02 (0.01) leve! and explains 5 (6) percent of the
variation in inefficiency. The term (0.506 + 0.007 (age)) in Table 8 and (-0.930 + 0.013 (age)) in

TThe GP estimations in Tables 4 and 5 were also carried out by omitting "age”, but the results remained the
same.

3Let y and § stand for the original variable and its average value, respectively. The demeaned variable is
defined as y4 = (y ~ §). Therefore, the original model, y = a + 8z + ¢, can be expressed as the demeaned model,
Ya = &g +B4Ta--€, where aq Tepresents the level of technical inefficiency of an average farm (ie, (z = 2) — z4 = 0).
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Table 9 both measure the level of inefficiency of a farmer with no schooling, no farming, and no
management experience. [N both models, farming experience decreases, while age and management
experience increase inefficiency. Except for schooling, all other variables are significant at the 0.05
level,

Estimations based on the demeaned data are given in Tables 10 and 11. They show that the
model witha Window size of 100 phservations Performsthe best. With an F-statisticof 2.96 (3.42)
in Table 10 (Table 11), this model is statistically significant at the 0.02 (0.01) level and explains 5
(6) percent of the variation in inefficiency that is attributed toan average fam. Farming experience
decreases, while age and management experience increases inefficiency. Except for schooling, al}
other variables are significant at the 0.05 level.

Conclusion 2 The LP performs better thon the GP method in accounting for variation in technical
inefficiency.®

Conclusion 3 Common v all the estimations is the positive relationship between increased man-
agement experience and the inefficiency. This suggests that the old Soviet style farm management
is obsolete Zn the gyrrent private farming environment.

3.2.3 A comparison

The GP and L P frontier production function estimations are compared conditional on capital and
land yse. Figure |(a) shows the frontier estimations conditional on low capital use and small farm
size (measured in terms Of harvested land). The GP method projects g positively sloped, linear
production frontier. which lies above all the projections by the LP method. The LP projections
well behave in the sense that they fit into the net revenue maximizing-agents framework. The LP
projection with 3 window size of 100 ghservations performs the best compared to the projections
associated with window sizes of 50 and 75 observations. The optimal labor use iS roughly 3.8 and
the optimal output is close to 9. Figure |(b) shows the frontier estimstions conditional on high
capital use and gmall farm size. The optimal labor use increases g listle over 5 and the gptimal
output 3§ little over 9. Figure |(c) shows the frontier estimations conditional on lom capital use and
large farm size. Both farm output snd labor use decrease compared to the corresponding levels in
Figure I(a), suggesting that small farms using low capital are more productive than large fams
using low capital. This suggests that smal| private farms that emerged after the land reform have
been more productive than large farms. Figure I(d) shows the frontier estimations conditional on
high capital use and large farm size. The optimal labor. use is 4.4, and the optimal output 3 Jittle
lower than 9. Comparing this to Figure |(b) indicstes that small farms with high capita] employ
more labor and produce more output.

Conclusion 4 The key implication OF these findings is that agricultural policies should target small

farms’ aceess 1o capital 45 these farms seem to more productive than large ones. This further
suggests that breaking up large farms into smaller parcels is ¢ viable option for increasing the
aggregate maize production. Interestingly, all OF these findings are discovered only when we deepen

the analysis by applying the LP method.

The GP and L P estimationsare further compared with respect to the empirical distributions of
the estimated coefficients. For each observation (z,y) in the sample, ap LP regression is estimated
using 7 observations around {z,y). This procedure produces 221 sets of coefficients. Each set
includes 6 elements: a1 intercept term, 3 coefficient for capital, g coefficient for labor, a coefficient
for land, a coefficiens for o2 and a coefficient for (717‘, The empirical distribution for the intercept
term in Figure 2(a), for example. is nothing more than the histogram of 221 locally estimated
intercepts. The vertical line at 8.52 represents the intercept term of the GP estimation in Table 1.
Other three distributions around it represent the empirical distributions of the intercept apmg of

90ne should simply compare the LP estimations with window size 100 in Table 8 with the GP estimations in
Table 4, considering R?, probability of F-test, and the number Of significant variables Similar comparisons should
be made between Table 9 and Table 5, between Table 107nnd Table 6, and between Table 11 and Table ,




the three LP models, each of which is associated with window sizes of 50, 75, and 100 observations.
Similariy, the vertical liie at 0.08 in Figure Z(b) represents the coefficient of capital in the GP
estimation in Table 1. Other three distributions around it represent the distributions of the LP
coefficients of capital, each of which corresponds to window size 50, 75, and 100 observations.
Figures 2(c) and Z(d) are for labor and land, respectively. The distributions in Figures 2(a)
through 2(d) 100K very much like normal distributions. Therefore, from law of large numbers, we
can expect that the LP limiting intercept term would be lower than the GP intercept term in
Figure 2(a); that the L P limiting coefficient for capital would be very close to the GP coefficient
for capital in Figure Z(b); and that the LP timiting coefficient for labor would be a little higher
than the GP coefficient for labor in Figure 2(c). For land, however, most local estimations fal] on
the left of the vertical line at -0.14 (Figure 2(d)), suggesting that the LP limiting coefficient for
land is more likely to be even lower than -0.14.

Conclusion 5 The GP method overestimates marginal effects of production inputs due most likely
to extreme vaiues in the sample.

Finally, the GP and L P estimations are compared with respect to the empirical distributions
of the standard deviations of the stochastic error term, o, and of technical inefficiency term, .
Figure 2(e) shows that almost all of the LP distributions of ¢, fall on the right hand side of the
vertical line representing the GPg, = 0.11, implying that the GPunderestimates the production
effects Of uncontrollable factors, Figure 2(f) indicates that almost all of the LP distributions of
7, fall on the left hand side of the vertical line at the CP ¢, = 1.05, implying that the GP
overestimates the production effects of controllable factors.

Conclusion 6 The GP and LP estimations Of the inefficiency suggest different policy directions as
to the future OF maize farming. The GP estimations, revealing non-disciriminant overestimation O
the inefficiency, prejudice broad-based farm reforms. On the contrary, the LP estimations, pointing
out relatively large farms as the key source OF the inefficiency, fovor the design of specific policies
for the effective gperation of large farms.

4 Discussion

With the demise of the forma Soviet Union (SU), Georgia launched structural adjustment policies
in 1992. Large-scale gtate enterprises were privatized, state-owned large farms » kolhozes . broken
down, new regulations and laws designed, and exchange and monetary system reformed, Land
reform has been at the center of development issues, asit entailsimplicationsfor ryral development,
agricultural production, and poverty. Land was distributed to individu&, with a radical, once-
for-all, reform, and at present, small-scale fams constitute a large majority (Csaki and Lerman,
1997; Lerman, 1999; IFAD. 1998). Some of the old managers of kolhozes and politically influential
people received large parcels and kept farm equipment under their control. These large farms were
at the same time at yp advantageous position since the existing agricultural ipfrastructure was still
favoring them, with centralized Water sources. For private farming to develop, there was a need to
establish an enabling environment in which private farmers could feel secure about the land they
occupy, sell their produce, buy inputs, and involve cross-border trade.

Although private farming in Georgia isstill at an early stage of development, it isimportant for
policy makers to know how the newly created private farms have performed so far and to pinpoint
the areag that need to be addressed. One thing which is obvious is that private farm operators need
actual farming and management experience compatible to the newly emerging markets, as they
have not had the chance to run 4 private entity until independence. Another thing is that these
operators, who are farming on small parcels of land, are first unable, second unwilling tg initiate
any new farming activity, as they lack financial resources and management skills compatible to the
new farming system. Therefore, the government holds most responsibility to create an enabling
environment, one With an adequate infrastructure including market institutions snd regulatory
bodies. To this end, an analysis of farm e[ﬁcienc?’ should  consider  both  external  (uncontrollable)




and internal {controllable) factors, Unfortunately, however, databases currently available do not
allow us to analyze thoroughly specific agricultural policies and their impacts on farm efficiency.

In this study we attempted to estimate the maize production function and techtical inefficiency
attached to is. The estimationsunderline the following key policy issues. First, politicalnetworking
played a salient role in the initial distribution of farm land, and hence & significant number of
managers of the old state fams received farm land mostly large and controlied the use of farm
equipment. BUt they Jacked labor and cperative farm machinery. Small farm operators, on the
other hand, were mainly lacking farming experience since most of them used to hold non-farm
jobs before independence. Second, as implied by the LP estimations, the inefficiency mostly stems
from the factors under farmers’ control, and hence any government policy and/er service, such
as agricultural extension and training program, that enhances farmers’ allocative ability should
positively contribute to the production and increase the farm efficiency. Equally important is
experience in farming for own account, which most private farmers severely lack. Third, economy-
wide technology constraints apply to all farms independent of farmsize. From a policy point of
view, this suggests that farms with different size should not be treated differently regarding the
design and implementation of pmduction-enhancing agricultural policies. Finally, management
experience isfound to increase technical inefficiency. Thiscan partly be attributed to the fact that
managers of old collective farms and elderly people without actual farming experience were eligible
to receive land from the government but not able to yse it for productive purposes. AS a result,
inefficiency was highamong these people.

5 Concluding Remarks

This study sought to compare the GP apd L P frontier production function estimations, identify
the key determinants of technical inefficiency, and estimated the gainsfrom the application of the
LP method. Empirical analysis was carried out using the data obtained from a fam household
survey conducted in 1997 (IFAD, 1998).

Overall. the results imply that the maize production can be further increased by breaking up
the large farms into smaller pareels, provided that small farmers’ access to credit is improved and
that after-reform farming infrastructure meets the needs of small farms, such as the construction
of 3 decentralized water distribution system.

Future research should grew in two directions. On the methodological account, there is the
need for developing better-performing estimation techniques. A fully non-parametric estimation
method, which has been receiving & wide attention in the literature, might be one alternative
especially in situations where few outliers determine the production frontier. On the empirical
account, lack of primary data seems to be a key constraint in analyzing the developments in
private farming. Therefore, efforts should focus on the construction Of databases necessary to
evaluate impacts of reforms on farm technical inefficiency in Georgia.
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Table 1. The GP estimation of the production function
(Full  sample)

Parameters Estimates Std. err. Est./s.e. Prob.
0.8644 9.852
Conptant 8.5158 0.0475 1.662 0.0000
Ca ital 0.0790 - 0.0483
La or 0.0690 0.1472 0.469 0.3197
Land -0.1441 0.2298 -0.627 0.2654
Sigma(v) 0.1051 0.2640 0.398 0.3453
sigmau) 1.0524 0.2473 4.256 0: 0000

Table 2. The GP estimations of the production function
by farmsize

Parameters Estimates s.e ESt./s.e Prob.
(Smallest 33%)
Corgatant 8.1614 1.2619 6.468 0. 0000
ital 0.0991 0.2062 0.481 0. 3154
a or 0.1549 0.3032 0.511
S'iqmagv% 0-0000 1.0000 0.000 0047 0500
SigmaCu -1.0481 0.2039 -5.141 0.0000
(Medium 33%)
CUrE;gant 7.6322 0.7739 0.468 0.0000
capital 0.0 0.8 0.1773 1.605 0.3200
Sigma(v) -0.1221 0.0312 -3.916 0.0542
- 9.202 0.0000
sigma(u) 0.9271 0.1007 0. 0000
(Largest 33%)
Conptant 7.6701 0.275  ~1.001  0.0000
ca b ital —8.11(3349 8.0865 1-;09 8.015384
Sigma(v .5337 .1005 5.311 -0437
gma (V) 070000
sigma(u) 0.3592 0.4858 0.739 0.2298 .

Table 3. Chi-square tests for differences in the production
relations petween farmsizes

. test statistic p-value
HO: small_ = medium 0.3211; 0.9560
HO: small = |large 3.4070; 0.3330
HO: medium = large 4.7410; 0.1918




Table 4.

The GP estimation with the dependent variable [axp(u)|e]

. Standard Prob  Standardized Cor with
variable Estimate Error t-value (>)|650 Estimate Dep var
Constant 0.479641 0.102415 4.683292 0,162 —
axpepl =0.007388 0.003878 =1.200682 0.198 =0.1083808 -0.082337

2.01.28%3
age 0.002841 0.001714 1.540997 0.125 0.158044 0.082532
mngtexp 0.055550 0.026948 2.061385 0.040 0.139617 . 0.122895
obs.: 221; R-squared: 0.037; F(4,216): 2.066; Probability of F: 0.086
Table 5. The GP estimation with the dependent variable [ufe]}

. | Standard Prob Standardized Cor with

variable Estimate Error t-value >t Estimate Dep var
0.254612

Constant -0.965353 0.013122 -3.791470 0.000 -—

school -0.017048 vivasace  -1.209214 0.195  -0.093711 -0.074366

exper -0.005155 0.003758 -1.371658 0.172 -0.141400 0.019155

age 0.007640 0.004261 1.793011 0.074 0.182765 0.097266

mngtexp 0.170466 0.066994 2.544492 0.012 0.171283 0.155095

obs.: 221; R-squared: 0.049; F(4,216): 2.759; Probability of Fr: 0.029

Table 6. The demeaned GP estimation with the dependent variable [exp(u)]|e]

. . Standard Prob  Standardized Cor with
variable Estimate Error t-val ue >|t] Estimate Dep Var
constant 0.496767 0.015770 31.500372
school -0.007399 0.005278 -1.401692 0.060 -0.102725 -0.082337
exper -0.001950 0.001512 -1.290081 0.198 -0.133809 0.012883
age 0.002641 0.001714 1.540997 0.125 0.158044 0.082532
mngtexp 0.055550 0.026948 2.061385 0.040 0.139617 0.122895
obs.:  221; R-squared: 0.037; F(4,216): 2.066; Probability of Ff: 0.086
Table 7. The demeaned @GP estimation with the dependent variable [u]e]

j A Standard Prob Standardized Cor with
variable Estimate Error t-value >|t] Estimate Dep Vvar
Constant ~0.847662 0.039206  -21.620800 0,000
srpeel =0.003048 0.003188 =1.299858 0.172 -0.141400 -0.074366

0.182765 Q0.019155
age 0.007640 0.004261 1.793011 0.074 viavervs 0.097266
mngtexp 0.170466 0.066994 2.544492 0.012 0.171283  0.155095
obs.: 221; R-squared: 0.049: F(4,216): 2.759; Probability of F: 0.029

e



rae 8. The LP estimations with the dependent variable [exp(u)le]

standard Prokf standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var

(window size = 50)
cConstant 4.927607
school ~0.152349 0.329032 -2.210566 0.448  -0.093363 -0.052423
exper ~0.026093 0.034348 -0.759644 0.817  -0.079795 -0.066865
age -0.009028 0.038945 -0.231817 vias -0.024078 -0.055710
mAgtexp 0.263020 0.612301 0.429560 0,668 0.029464 0.,020183
obs.: 221; R-squared: 0.012; F{4,216): 0.665; Probability of F: 0.617
(window size = 75)

constant 1.146575 0.520145 2.204338 0.029 e ——
school -0.006529 0.026639 -0.245093 0.807 -0.018136 0.004333
exper 0.000178 0.007617 0.023386 0.981 0.002463 -0.02284§
age -0.002991 0.008676 -0.344756 0.731 -0.036035  -0.03205F
mngtexp 0.136257 0.135779 1.003520 0.317 0.069200 0.068052
obs.:  220; R-squared: 0.006: F(4.215): 0.310; Probability of F: 0.871
constant 0.506984 L eesmevrs
school 0.002810 o.omsz(gnn%,%]%gﬁ = 100)7@p 0.019585 0.048231
exper -0.006567 0.202458 -22.35 0.027  -0.228420 -0.063963
age 0.007889 0.003354 2.269372 0.020 0.239301 0.052213
mngtexp 0.119673 0.052734 0.024 0.152482 0.157786
obs.: 221;  R-squared: 0.052; ~(4,216):  2.969: Probability of F: 0.020

Table 9. The LP estimations with the dependent variable [ujel

standard Prob  standardized cor with
variable Estimate Error t-value >t Estimate Dep Var

(window size = 50)
0.899

Constant 0.01972  -0.0118% 0.626831 0.032306 -0.12104 -0.368046 0.713 -0.026998 --- 0.019608 ---
sgpmo -0.007548 0.009252 -0.815791 0.416 -0.085527 -0.082751
age -0.000089 0.010491 -0.008522 0.993 -0.000883 -0.061842
mngtexp 0.231977 0.164933 1.406488 0.161 0.096288 0.097246
obs.: 221; R-squared: 0.016; F(4.216):  0.876; Probability of F: 0.479

(window size = 75

.189

schsednt =0.6406%9 0.42304891. =0.463533 0.643

exper -0.00419s 0.006488 -0.646562 0.519

0.482

AB§texp 0.60%208 0.90%899 0.860626 0.008
obs.:  220; R-squared: 0.034; ~(4,215):  1.911;

i ize = 10.007
constant -0.930376 0.3ua506  (Vipdgsdize = 1g-g0z
school -0. 004100 0.017760 -0.230884
exper -0.009743 0. 005086 -1.915465 0. 057
age 0.013707 0. 005767 2. 376804 0.018
mngtexp 0. 253766 0.090671 2.798751 0.006

obs.: 221; R-squared: 0.060; ~(4,216): 3.422;

-0.033807. -0.003846

~0.067280  -0.012150
0.072511 0.022651
0.180814 0.175542

Probability of F: 0.110

-0. 016557 0.006044

-0.196316 -0'. 020099
0. 240870 Q.087977
0. 187308 0.184462
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Table 10. The demeaned LP estimations with the dependent variable [exp(u)ie)
Standard Prob  Standardized Cor with

Variable Estimate Error t-value >t Estimate Dep Var

= 50)

constant

school -0.052909 0.3%6926  (Wiadpwo3ssize 0.208 -0.093363 -0.052423

exper 5.743108 0.443 -0.079795 -0.066865

age -0.026028 0.038948 -0.23%647 0.817 -0.024078 -0.055710

mngtex 0.263020 0.612301 0.429560 0.668 0.029464 0.020183

obs.: #1: R-squared: 0.012; F(4,216): 0.665; Probability of g: 0.617

(window size = 75)

Constant 0.964545 0.079599 12.117492 0.000 _—— ———

school -0.006529 0.026639 -0.245093 0.807 ~-0.018136 0.004333

exper 0.000178 0.007617 0.023386 0.981 0.002469  -0.022343

age -0.002991 0.008676 -0.344756 0.731 -0.036035 -0.032051

mngtexp 0.136257 0.135779 1.003520 0.317 0.069200 0.068052

obs.:  220; R-squared: 0.006; £(4,215): 0. 310; Probability of F: 0.871

(window size = 100)

constant 0.002810  0.824815 0.030860  0.010329 26.727213 0.027 0.019585 0.048231

g -0.006567 0.002958 -0.202025 0.020 -0.228420 -0.063963

age 0.007889 0.003354 2.351991 66-2.2 8 %ggzg% 8gg§$ég

0.119673 0.052734 2.269372 . B .
DBEEP 501, R-Eqnhred: 006557 FC3 TR 2.960 Probability of F: 0.020

Table [Il. The demeaned LP estimations with the dependent variable ([ule]
" Standard Prob Standardized Cor with
variable Estimate Error t-value >t Estimate Dep var
(window gize = 50)
Constant -0.337100 0.096521  -3.492504 0.001 === ——
school -0.011890 0.032306 -0.368046 0.713 -0.026998 0.019608
exper -0.007548 0. 009252 -0.815791 0.416 =0.085527 -0.082751
age -0.000089 0.010491 -0.008522 0.993  -0.000883  -0.061842
mngtex 0.231977 0.164933 1.406488 0.161 0.096288 0.097246
obs.: 21; R-squared: 0.016: F(4,216): 0.876: Probability Of F: 0.479
(window size = 75)
Constant -0.440913 0.067801 -6.503029 0.000 -na
school -0.010519 0.022691 -0.463573 0.643 -0.033807 -0.003846
exper -0.004195 0.006488 - -0.646562 0.519  -0.067280  -0.012150
age 0.005202 0.007390 0.703936 0.482 0.072511 0.022651
mngtexp 0.307715 0.115654 2.660648 0.008 0.180814 0.175542
obs.: 220; R-squared: 0.034; F(4,215): 1.911; Probability ~ of F: 0.110
(Window size = 100)
Constant -0.429268 0.053062 0.000
school -0.004100 0.017760 -6.080883 0.818  -0.016557 0.006644
exper -0.009743 0.005086 -1.915465 0.057 -0.196316  -0.020099
age 0.013707 0.005767 2.376804 0.018 0.240870 0.087977
mngtex 0.253766 0.090671 2.798751 0.006 0.187308 0.184462
obs.: 221;  R-squared: 0.060; F(4,216): 3.422; Probability of F: 0.010
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