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Abstract

This study deepens the measurement  of technical inefficiency  in private maize farming in
Georgia, applying  iocelly  parametric (LP) r eg ression method, whicb builds  on the stochastic
frantier production function appraach. Detailed survey data for  221 mixed farms for  1997 are
used in the estimations. Findings suggest: (i) maize production can  be further increased by
breaking  up large  farms into  smaller parcels;  and (ii) increzsed  schooling  and farm experience
of new  private farm operators would further reduce  the inefficiency.  Furthermore, global and
locai  estimations of the inefficiency  suggest  different policy  directions  as  to the future of maize
farming. The global estimations, revealing non-disciriminant overestimation  of the inefficiency,
prejudice  braad-based farm reforms.  On the contrary, the local estimations, pcinting out
relatively  large  farms as  t,he  kcy source  of the inefficiency,  favor  the design of specific  polities
for  the effective  operation  of lage  farms.

Key words:  Technical inefficiency,  local  and global parametric regression methods,  stochas-
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1 Background and Introduction’

Farm inefficiency  and its determinants have since long enjoyed prime interest in much  empirical
end theoretical  wak,  beginning  with Farrell  (1957), continuing with Aigner, Love&  and Schmidt
(1977) and sausen  and van den Broed<  (1977),  and most recently  including  Bauer (1990),  Cornweil,
Schimidt,  and Sickles (1990),  Greene (1993),  Lee and Schmidt (1993),  and Battese, Mali,  and  Gil1
(1996) among  ethers.  The main goal of these studies was to  estimate the amount of output foregone
due  to inefficient  use  of inputs  and to determine key factors that account for this inefficiency.

Technical  inefficiency is a measure of the gap between  the frontier  (01  ideal)  and the  actual
output leveis.  Consider,  for example, a production relation, y 5 f(z), where  f(.) denotes  produc-
tion  technoiogy  that translates  inputs,  z, into  output, y. If 8 farm employs  the optimal bundle  2,
together with the most appropriate technology, the production relation would  held  as 9 = f(i),
where  6 is the frontier  output. On the contrary.  when  either inputs  are used  sub-optimally or
an  inappropriate technology is adopted. the same production relation would  take the farm of
y = f(z) + ~1, where  u = (y - $) 5 0 is a measure of technical  inefficiency.  Such  formulation  of the
production relat,ion  is deterministic since the inefficiency is attributed only to  farmers’ sub-optimal
choice  of input we.

In the case  that the production relation is also  affected by exogenous  factors, these  that are not
under  the  control  of farmers, the stochastic  frontier production function approach, first  introduced
by Aigner, Lovell,  and Schmidt (1977) (ALS h enceforth), becomes  suitable to  estimate the ineffi-
ciency. The stochastic frontier  production takes on the farm,  y = f(s,,0)  + E,  where  /3 is a vector
of coefficients  to  be estimated;  E = v + ti, a composite  error term; ZI, random error; and ~1, the
inefficiency. This formuiation  of the production relation assumes  that v and u follow  a symmetrie
(the normal) and  an  asymmetrie distribution (the half-normal), respectively;  and that both u and
u are orthogonal  to  each  ether and to z. These assumptions  would  allow  to disentangle u and u
from the estimated composite  regression errors  E.

One of the disadvantages  of the stochastic  frontier  approach is that it postulates  two  paramet-
rit specifications: ene  for the probability distribution of u and u and another for the production
relation f(.). Adams, Berger, and Sickles  (1999) relax these specifications by applying a semi-
parametric efficient  estimator.2  They further use  panel data to  disentangle  the time-varying  error
term, v,~, and the time-invariant  inefficiency, u;,  from the estimated regression errors  &. Unfor-
tunately,  their methodology does not allow  to  study the inefficiency in a cross-section context.

In recent yees.  nonparametric approaches bega” to become popular  in estimating  the ineffi-
ciency, as  they are free of distributional assumptions  and ad hoc functional specifications.  Data
Envelopment and kernel  density regression methods are the two  most axnmonly  applied in the
literature.  They both attribnte al1  deviations from the estimated frontier  to the inefficiency, thus
setting the random error term u = 0. A third mechod. introduced  by Varia  (X34), incorpcrates
economie  regnlarity conditions to  the frontier  analysis  by finding  the minimal perturbation of data
tbat satisfies  the inequality relations  implied by the wak  axiom of revealed  preferente. Although
t!lese  techniques  generate  estimates robust  to misspecification,  their precision  varies  inversely  with
the number of explanatory variables  and  the number of observations  (Härdle, 1991; Yatchew,  1998),
and hence parsimony is important when  such  techniques  are applied.

The current study introduces  Tibshirani  and Hastie’s  (1987) locally  parametric (LP) regression
method to  estimate technical inefficiency in maize farming in Georgia,  using detailed survey data
for 1997. The basic  idea underlying the LP method is to locally  apply in input space  ALS’s  globally
parametric (GP) method. The observations  su&iently  close to the postulated  input vector z are
used to estimate the the coefficients  of the GP model and the parameters of the normal and
half-normal distributions. Therefore, the LP coefficient  estimations  wil1  vary  in different puts  of
the input space,  as opposed to the GP estimations fixed for the entire  input space.  With the
application of the LP method, we introduce to  the iiterature a way  for deepening  the rneasurement
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of technical inefficiency. Finally,  the study quantifies  the efficiency gains attributed to  the LP
method by comparing ir  to  t,he estimates from the GP method.

2 Model Specification  and Estimation

Consider a Cobb-Douglas  production function:

with C$,a, = 1

where  Y and X stand for farm production and input, respectively. Subscripts i = 1, ,,., n and
j = 1, ,,., 2 represent  the number of farms and inputs  used,  respectively. A,, the coefficient  of
technical efficiency of farm i, is such  that A’ 2 A, for al1  i. The production frontier is then  given
b

where  the random error term u, = 0 and A, = A’  for al1  i. Following Aigner et al., Eq. (1) is
rewritten  as

,=1 j=i

with yi - In(K), Z+ s ln(Xsj), U,  E h(A,/A*), and E,  zz  v, + ui.  It should  be noted  that 2) . is an
ordinary  random error possibly  taking on either  negative  or positive  values;  however,  by definition,
the measure of inefficiency.  u,, must be non-positive. Again, following  Aigner et al., we model
this by setting u, = -jü,/  and assuming  that ~1, and Ui  have zerc-mean normal distributions with
variances  uz and uz, respectively. Furthermore, zli  and U;  are assumed to be orthogonal  to  each
ether and to the regressors  z,,.

Aigner et al’s  model is parametric in two  respects.  First, the specifìcation  of the maximum
output function in Eq. (2) is parametric. For example, by imposing  the linear  structure as  in
Eq. (2),  we are essentially  imposing a Cobb-Douglas type production function. Though this
might provide  an  adeqlxate  approximation in some  cases, it may fail  in ethers. For instance, if
the truc production function is of the CES-type, we are likeiy  to end up with biased estimates
of the componenrs  in Eq. (2). Second,  Aigner et al’s  approach concerns the normal-half-normal
specification  imposed on (u<,u,).  Though this specification  Capture the different nature of the
error components,  the imposed distributional  shape might be overly  restrictive.  As discussed  in
the introduction, Adams et al. relax these parametric assumptions.  In particular, they apply
kernel  estimation  techniques to estimate the density of E, adaptively.  As they employ  panel rather
than cross-section data, they are able  to  construct  consistent estimates of ~1. by averaging  the
estimation errors  Eit  over time t, (i.e., 6, = T-’  Cr,, E.t).  They also  sketch an  approach by which
ene can  further relax the parametric assumptions  on f(.) and estimate f(.) rather than f(.;  8) for
given  f(,;  .).

Following Tibshirani and Hastie  (1987),  the current  study applies  the LP spprosch  based  on
Aigner et 4’s  GP approach.3  Let our  model be given by,



where  u, = -(iLi/  and

(4)

Note  that the linear  parametric assumption  in Eq. (2) is relaxed by letting  f(.) depend  (and
possibly  non-linearly)  on the  input vector 2,. Furthermore, the  parameters of the normal-half-
normal  discribution  depend  on the value  of 5,. In this way,  the distribution of E, may take different
shapes  in different pats  of the  input space.

To estimate the  parameters of Eq. (3) and Eq. (4), we we locally  weighted maximum likelihood
based  o” a nearest-neighbor  type weighting schema Let

n(f(~),o?(~),u~(2))=Ciy(L.-2<;k”),~(P(T),u2,(5),uY(5)), (5)
i=l

where  7~  is the  pumber of observations;  k,,, a smoothing parameter giving the  number of nearest
neighbors; and e(.), the  globai  liielihood of the  normal-half-normal  model (sec  Aigner et al. (1977)
for the precise  formulae). The weights  in Eq. (5) are of the farm

0.75
4~ - +t; kn)  = h(k,,z) ( (6)

where  the  Mahalanobis  distance is defined as

d,(s - cc,) = J(z - 5i)‘cot~(z‘)-yz  - z;).

Cw stands for the sample covariance  matrk la(.),  the  indicator function for the  set A; and
h(k,,,x),  a constant such  that the  indicator functie” takes on a “on-zero value  for k,, observations
only.  The specification  of Eq. (6) corresponds  to  a” Epanechnikov  kernel  estimator (see Silverman
(1986)). Observations  that are closer  in input space  to the postulated  input vector z receive  a
lager  weight  in the  weighred  likelihood Eq. (5). %  obtain consistency, we need 71 , k, -+ 00 BS
wel1  as k,/n -t 0 (see Silverman  (1986)).

Using  the approach  sketched  above,  we maximiz~ the weighted local  likelihood Eq. (5) for
5  =  q.... ,Zilr thus  obtaining n estimated tupies  (f(z.),ôt(z,),  CY:(Z  We need to  estimate
farm i’s technia1 inefficiency,  ui,  for cross-sectional  data; however,  this is nat possible because  the
regression error E, = [?J$ - f(5,)1IS a compceite  of rhe  random error 21 , and  the  inefficiency measure
u,. These two  terms  cannot  be identified  separately,  therefore, instead  of using u,, we we either
E[u,ls = z,, E, = E,]  or Ejexp(u,)lz = CC,.  E, = E,].  After some  algebra, we derive  the following  two
expressions:

and

with  $(,) the standard normal-  density function, @(,) the  normal distribution functie”, X, =
oy(z,)/(uz(z,)  +o~(z;)).  and  UT  = Xzu~(z,).  It  is straightforward  to  verify  that these inefficiency
meCasures  tend to  zero if È,  -+ 00, and to -CO  for 8, -+ -03.

3 An Application

Using data from a rural  household  survey conducted  in Georgia  in 1997,4 the GP and the  LP meth-
ods  are applied  (i) to estimate a production function for mahe,  which is, by far, most commonly

‘The Rurai  Poverty  Study  of rbe  C~ucasw  Countrie. - Georgia  waa  conducted  in 1997  by  the  Cenler  lor  World
Food  Studies of the  Vrije Universiteit (SOW-VU). Amsterdam, The Netherlands.  in collaboration  with the  Interno-
tionJ1  Center lor  Reformation  and Development  of Georgian  Economy  (ICRDGE), Tbilisi, Ceorgia.  The study  was
comrnissened  by  the International Fund for  Agricultural  qDevelopment  (IFAD).
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gr0m.n crop  by private farmers that emerged after indepeodence in 19Y1, (ii) to  measure farm-leve1
technical inefficiency,  and (iii) to  identify the determinants of this inefficiency. Thereafter, the
performance of thes two  methods  is compared with respect to their explanatory power.

3.1 Production function

A production function of the farm,  y, = f(z,) +e,,  is estimated, where  y a = In(K)  is farm i’s  maize
production, z, = [ln(K,),  In(N,), In(L,)] IS a vector of inputs  farm i uw,  snd E, is the disturbance
term. The inputs  K,, N,, and Li denote  total machine hours, total labor houw,  and total harvested
area (i.e., as a measure of farmsize), respectively.

The full-sample GP estimations of the production function are reported in Table 1.5 Capita1
is found  to be the only  significant input; and fxmsize  varia  inversely  with the production. (This
is an  empirical relationship wil-documented in the literature6) Also  reported in Table 1  are the
estimates of standard errors  of the stochastic  error, 0..  and  of the technia1  inefficiency;  ou.  That
the <T- (1.05) swamps  the oy (0.11) suggests that inefficiencies should  especially  be attributed to
factors  under  the control  of farmers. This clear  dominante of the technical inefficiency  component
over  the stochastic component sterns partly  from the omission  of ether production inputs,  like
fertilizer,  since the omitted variables can  be viewed  as farm& inability in choosing the right
bundle of inputs  that play  significant role  in farm production.

In order to examine whether smal1  farms differ from large  ones  with respect to technology and
technical inefficiency parameters, the GP estimations of the production function are performed
separately  for each  farmsize (sec  Table 2). Farms in the lowest  33 percentile  of the variable  L,
are classified  as small;  these  in the middle 33 percentile, as medium; and those in the highest 33
percentile,  as large  farms. For  small  farms, capita1 and labor both have positive  but statistically
insignificant contribution to the production. Fa this group,  technical inefficiency  originates mostly
from factors  under  the control  of farmers, implied by Icu(  > (u,/. For medium-size farms, only
labor positively and significantly  contributes  to  the production, and  although Io,l > joY1  stil1
holds,  the level  is lower  compared to that estimated for smal1  farms. Lastly, for lage  farms, labor
stil1  positively and significantly contributes  to  the production, however,  capital’s contribution is
negatie, though statistically insignificant. This negative  relationship between  machine hours per
hectare and the production can  partly be attributed to  the fact that most large  farms and  most
farm equipment,  a lot of them in poer conditions,  are in the hands of previous  managers of large
state and  collective  farms. A large  number of respondents  in the survey declared  that machines
often  had technical problems  dwing the field werk,  resulting in low production. FOK  large  farms,
random factors  seem  to play  more improtant role  than factors under  the control  of farmers, implied
by bul  < 14.

To test the hypothesis that small,  medium, and large  farms al1  face the same constraints  and
operate under  the same technology  constraints, the three regression  models  in Table 2 are compared
pair-wise by using chi-square tests. Results  are reported in Table 3, indicating that none of these
pair-wise comparisons  is statistically  significant. This suggests that similar  production constraints
apply to al1  of the  private farms cqncerned,  and  hence  the estimated production function in Table
1  is assumed  to represent the average  maize production relations  in the survey at hand.

Conclusion  1 Production relotions  are indifferent aeross  famwize.  Thti  suggests that a single
production relation  estimated by the GP  method  using  the entire sample is  to represent  aIl  farms
umier  investigation.

‘Fertilizer  uae  was excloded  from  the eatimationr  as itr  inclusion reduces the number  of observstions  in the
sample. The mw private farmers hardly  apply fertilizu  in their maize farming  because of high price  and dirmanteled
distribution  ny~tem.

6For L tborough examination  of the inverse relationship in the context of both hrming  in developing  and dewloped
countria,  the reader  is referprrcd  lo  Stanton  (1978),  Feder (1985), and Twernier.  Temel,  and Li (1997) among ethers.
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3.2 Technical inefficiency

&rm  technia1 inefficiency is quantified  by the conditional estimations, E[u,lz = z~,E;  = E,]  = h(c,)
a n d  E[exp(u,)js = z,,~i  = E,]  =  h(c,),w here c, = (CX,. ei,  mi, s.) is a vector of characteristics of
ith  farm operator, a, is operator i’s  age,  ei  is farming experience in years, m, is farm manage-
ment experience,  and  s, is years of schooling. The hypothesis that maia production is indifferent
across  rn& and  female operators cannot  be tested, as our  survey bas  only a few  female operators.
Farming experience  anf farm management (both measured in years on present farm), and schooling
shou!d  be regarded  as  possible  determinants  of technia! change. Experience should  increase maize
production  directly, while schooling is likely  to affect the prcduction through the enhancement of
farmer’s allocative  ability for input uw  decisions.

3.2.1 GP estimations

The two  types of the conditional inefficiency measures given above  are estimated by using E,  which
is obtained from the production function estimation in Table 1. The vector of characteristics  c is
regressed  on E(exp(u)i?)  and E(ulZ)  separately,  and the estimation results are presented  in Tables
4 and 5, respectively.  The signs and  the levels  of significara  of the estimated coefficients  remain
the same across  the two  regression models.  The estimations indicate  that the inefficiency decreases
with more schooling and more farming experience, while increasing  with age  and more management
experience. Surprisingly, the only statistically  significant variabie,  which is also  robust  across  the
regression models,  is management experience. Such  a controversial  finding  can,  to a large  extent,
be attributed to  the fact that the Georgian land reform entitled, without discriminating, managers
of old  collective  farms and elderly  people  to receive  land from the government,  although  these
people were not able  to  effectively  we the land for productive  purposes,  at least in the early  years
of reform.  As a result,  inefficiency was high among  them.’

The two  regression  models  of the conditional inefficiency are further estimated by using the
demeaned variables (sec  Tables  6 and 7). * The intercept terms  in these models  measure the
inefficiency of an  average  farm and are significant at the 0.01 leve!. Similar to the findings  above,
the inefficiency seems  to decline  with more schooling and more farm experience and to increase  with
age  and management experience, and again  the only  significant variabie  is management experience.
The differente between  the intercept term (0.479) in Table 4 and that (0.496) in Table 6 amounts to
0.017, which suggests that an  average  farm is more efficient  relative  to  a farm run by an  operator
who  literally  has  no schooling, DO farm experience, and no management experience. A similar
comparison  of the intercept terms  in Tables  5 and  7 results  in 0.118.

3.2.2 LP estimations

The LP method allows  to  test the hypothesis that farms close to each  ether on the output space
operate under  similar  constraints  and technology parameters. This method is applied  using two
different models,  ene  with the dependent variabie  E(exp(u)lb) an  another  with E(ult), each  ofd
which is estimated across  three different window  sbes  (50, 75, and 100 observations)  (sec  Tables
8 and 9). Nat,  the sarne  LP estimations are performed using the demeaned data (sec  Tables  10
and 11). The key adaantage of the LP method over the GP method is that the different window
sizes  become  instrumental in eliminating  the influence of outliers  on the prcduction frontier.

Estimations based  on the original data are given in Tables  8 and 9. They show that the mode!
with a window  size  of 100  observations  performs  the best - compared to the ether two  models
estimated with window  sizes  of 50 and  75 observations.  With an  F-statistic  of 2.96 (3.42) in Table
8 (Table 9),  it is statistically  significant at the 0.02 (0.01) leve! and explains  5 (6) percent of the
variation  in inefficiency. The term (0.506 + 0.007 (age)) in Table 8 and (-0.930 + 0.013 (age)) in
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Table  9 both  measure the leve1 of inefficiency  of a farmer  with no schoeiing,  no farming, and DO
manr,gement everience.  In both models,  farming experience decreases,  while age  and management
experience increase  inefficiency. Except for schooling, al1  ether variables  are significant at the 0.05
levei.

Estimstions  based  on the demeaned data are given  in Tables  10 and  11. They show that the
model  with  a window size  of 100 observstions  performs the  best.  With an  P-statistic of 2.96 (3.42)
in Table  10 (Tabie  ll),  this model is statistically signi6cant  at the 0.02 (0.01) leve1 and  explains  5
(6) percent of the variation  in inefficiency  that is attributed to an  average  farm. Farming experience
decraw+  while  age  and management experience increases inefficiency. Except for schooling, al1
ether variables  are significant at the 0.05 level.

Conclusion 2 The LP performs better  thon the GP method in acwunting  for  variation  in technical
inetficiency.g

Conclusion  3 Common to al1  the estimations is the positive  relationship  between  increased  mum-
agemmt  ezperience  and th.e  ineficiency. This suggests that the old Soviet  style  farm management
ti  obsolete zn the current  private farming environment.

3 . 2 . 3  A  comparison

The GP and  LP frontier  production function  estimations are compared conditional  on capita1 and
land we. Figure  l(a) shows the frontier  estimations conditional  on leur  capita1 use  and  smal1 farm
size  (measured in terms  of harvested  land). The GP method projects a positively  sloped,  linear
production frontier. which  lies above  al1  the projections  by the LP method. The LP projections
wel1  behave  in the sense  that they fit into the net revenue  maximizing-agents  framework. The LP
projection with a window size  of 100 observations  performs the best compared to the projections
associated  with window sizes  of 50 and 75 observations.  The optimal labor  use  is roughly  3.8 and
the optimal  output is close to 9. Fignre  l(b) shows the frontier  estimstions conditional  on htgh
capita1 use  and  smal1  fam  size.  The optimal  labor  use  increases a little  over 5 and the optimal
output a little  over 9. Figure  l(c) shows the frontier  estimations conditional  on lom capita1 use  and
large  farm  size.  Both farm output snd labor  we decrease compared to the corresponding levels  in
Figure l(a), suggesting that smal1  farms using low capita1 are more product&  than large  farms
using low capital.  This suggests that smal1  private farms that emerged after the land reform have
been more product&  than large  farms. Figure l(d) shows the frontier  estimations conditio& on
high capital  we and Marge  farm  size.  The optimal labor.  use  is 4.4, and the optimal output a little
lower  than 9. Comparing this to Figure  l(b) indicstes that smal1  farms with high capita1  employ
more labor  and  produce  more output.

Conclusion 4 The key implication  of these findings  is that agricultural  policies  should target  smal1
farms’ access  to capita1  as  these farms seem  to moge product& than Iarge ones.  Thrs further
sugges t s  that breaking  up large  famu  i n t o  smnller  pnrcels  i s  a  uiable  option  for  increasing  the
aggregate  maize  production.  Interestingly,  al1  of these findings  are discovered  only  when  we deepen
the onalysis  by applying  the LP kthod.

The GP and LP estimations are further compared with respect to the empirical distributions  of
the estimated coefficients.  For each  observation  (z,y) in the sample, an  LP regression is estimated
using n observations  around  (s,z/). This procedure produces  221 sets of coefficients. Each  set
includes  6 elements:  an  intercept term, a coetlìcient  for capital,  a coefficient  for labor,  a coeficient
for land, a coefficient  for U: and  a coefficient  for nu.  The empirical  distribution for the intercept
term in Figure 2(a), for example. is nothing more than the histogram of 221 locally  estimated
intercepts.  The vertical  line at 8.52 represents  the intercept term of the GP estimation in Table  1 .
Other three  distributions around  it represent the empirical  distributions of the intercept terms  of

‘Onc  should ~imply complve  the LP etimationa  with  window sire 100 in Tabla 8 with  the GP  estimations  in
Table 4,  eonsidering  RZ, probabslity  of F-test, and rhe number  of aigni,ïcant  variables Similar  compark,ns  ,bou,d
be made betweeo  Table 9 and Table 5, between  Table 10,and  Table 6, and baween  Table  1, and ~abie ,
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the three LP models,  each  of which is associated with window sizes  of 50, 75, and 100 observations.
Similarìy, the vertical liie at 0.08 in Figure Z(b) represents the coefficient of capita1 in the GP
estimation in Table 1. Other three distributions around  it represent the distributions of the LP
coefficients of capitsl,  each  of which corresponds  to window size  50, 75, and 100 observations.
Figures Z(c)  and Z(d) are for labor and  land, respectively.  The distributions in Figures 2(a)
through 2(d) look very  much  like normal distributions. Therefore, from law  of large numbers,  we
ca expect that the LP limiting  intercept  term would be lower  than the GP intercept term in
Figure 2(a); that the LP limiting  coefficient for capita1 would be very  close to the GP coefficient
for capita1 in Figure Z(b); and that the LP limiting  coefficient for labor would be a little higher
than the GP coefficient for labor in Figure 2(c). FOK  land, however,  most local  estimations fa11  on
the left  of the vertical line at -0.14 (Figure 2(d)), suggesting that the LP limiting  coefficient for
land is more likely to be even lower  than -0.14.

Conclusion 5 The GP method  overestimates  mo~inal  effects  of production  inputs  due  most likely
to  eztreme  values  in the sample.

Finally, the GP and LP estimations are compared with respect to the empirical distributions
of the standard deviations of the stochastic  error term, o,,  and  of technical  inefficiency term, c,.
Figure 2(e) shows that almost  al1  of the LP distributions of cV fa11  on the right hand side  of the
vertical line representing the GP gv = 0.11, implying that the GP underestimates the production
effects of uncontrollable  factors.  Figure 2(f) indicates  that almost  al1  of the LP distributions of
g,, fa11  on the  left  hand side  of the vertical line at the CP gv = 1.05, implying that the GP
overestimates  the production effects of controllable  factors.

Conclusion 6 The GP and LP estimations of the ine&Gncy  suqgest  diffeerent  poky  directions  a s
to the future of maize  faming.  The GP estimations, revealing  non-disciriminant  overestimation  of
the inefficiency,  prejudice  bmmf-based  farm refomns.  On the contrary,  the LP estinalions, pointing
out  relatively  large fnms  as the key SOYTC~  of the ineficiency, fauor the design of specifìc  polities
for  the effectiue  operation  of large  farms.

4 Discussion

With the demise  of the forma Soviet  Union  (SU), Georgia  launched  structural adjustment policies
in 1992. Lage-scale state enterprises were privatized,  stateowned lage  farms - kolhozes  - broken
down, new  regulations  and  laws  designed,  and exchange and monetay  system reformed. Land
reform bas  been at the center of development  issues, as it entails implications for rural development,
agricultural production, and poverty.  Land was  distributed to  individu&, with a radical,  once-
for-all,  reform,  and at present, small-SC&  farms constitute  a large majority (Csaki  and Lerman,
1997; Lerman, 1999; IFAD. 1998). Some of the old managers of kolhozes  and politically  influential
people  received  large parcels  and  kept farm equipment under  their control.  These lage  farms were
at the same time at an  advantageous  position since  the existing agricultural infrastructure was stil1
favoring  them. with centralized Water sources.  Por  private farming to develop,  thee  was a need to
establish  an  enabling  environment  in which private farmers  could  fee1 secure about the land they
occupy, sell their produce,  buy inputs,  and involve  cross-border trade.

Although private farming in Georgia  is stil1  at an  early stage of development,  it is important for
policy makers to know  how the newly  created private farms have performed 50  far and to pinpoint
the area that need to be addressed.  One thing which is obvious  is that private farm operators need
actual farming and management experience  compatible to  the newly  emerging markets, as  they
have not had the chance  to run a private entity until independente.  Another thing is that these
operators, who  are farming on smal1  parcels  of land, are fìrst unable,  second  unwilling to  initiate
any  mw farming activity, a.s  they lack  financial resources and management skills  compatible to the
new  farming system. Therefore, the government  holds  most responsibility to  create an  enabling
environment,  ene  with an  adequate infrastructure including market  institutions snd regulatory
bodies.  To this end, an  analysis of farm efficienc

d
should consider both external (uncontrollable)
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and  intand  (controllable)  factors. Unfortunately,  however,  databases currently  available  do nat
alluw  US to  analyze  thoroughly  specific  agricultural policies  and their impacts on farm efficiency.

In this study we attempted to estimate the maize production function and technia1 inefficiency
attached to is. The estimations underline  the following  key policy issues. First, politica1 netavrking
played  a salient  role  in the initial distribution of farm land, and hence a significant number of
managers of the old  state farms received  farm land mostly large  and controlled  the use of farm
equipment.  But they lacked  labor  and operative  farm machinery. Smal1  farm operators, on the
ether hand, were mainly  lacking farming experience  since most of them used to held  non-farm
jobs  before independente.  Second,  as implied by the LP estimations, the inefficiency mostly sterns
froin  the factors under  farmers’ control,  and hence any  government  policy and/or service, such
as agricultural extension and training program, that enhances  farmers’ ailocative  ability should
positively contribute  to the production and increase  the farm efficiency. Equally  important is
experience  in farming for own  account, which most private farmers  severely  lack.  Third, economy-
wide  technology  constraints apply to al1  farms independent of farmsiae. Ram  a policy point of
view,  this sugests  that farms with diierent  size  should not be treated differently regarding  the
design and implementotion  of pmduction-enhancing agricultural polities.  Finally, management
experience  is found  to increase  technia1 inefficiency. This can  partly be attributed to the fact that
managers of old  collective  farms and elderly  people without actual farming experience  were eligible
to  receive  land from the gowrnment but not able  to use  it for productive  purposes.  As a result,
inefficiency was high among  these people.

5 Concluding Remarks
This study sought to compare the GP and  LP frontier  production function estimations, identify
the key determinants of technical inefficiency,  and estimated the gains from the application of the
LP method. Empirical analysis  was carried  out  using the data obtained fmm  a farm household
survey conducted in 1997 (IFAD, 1998).

Overall. the results  imply  that the maize production can  be further increased  by breaking up
the large  farms into smaller parcels,  provided that smal1  farmers’ access  to credit is improved  and
that after-reform  farming infrastructure me&  the needs  of smal1 farms, such  as  the construction
of a decentrnlized  water distribution system.

Future research should  grow  in two  directions. On the methodological account, there is the
need for developing  better-performing estimation techniques. A fully  non-parametric estimation
method, which bas  been receiving  a wide attention in the literature, might be ene alternative
especislly  in situations where  few  outliers  determine the production frontier. On the empirical
account, lack  of primary data seems  to be a key constraint in analyzing  the developments  in
private farming. Therefore, efforts should  focus on the construction  of databases necessary  to
evaluate  impacts of reforms  on farm technical inefficiency in Georgia.
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Table 1. The GP estimation of the production function
(Full sample)

Parameters Estimates Std. err. ESt./s.e. Prob.

Constant 8.5158
Ca E ital 0.0790

::04;4, 1% 0.0000

La or 0.0690 0.1472
Land

0:469
0.0483
0.3197

-0.1441
Sigma(v)

0.2298
0.1051

Sigma(u) :: ::::
-Ei
4:256

iE:3
1.0524 0: 0000

Table 2. The GP estimations of the production function
by farmsize

Parameters Estimates s.e Est./s.e Prob.

Constant
ca & ital
La or
sigma(v)
Sigma(u)

8.161&
cSm;d~;t  33%)

0.0991 0.2062 :::88 0: !E
0.1549 0.3032 0.511
0.0000 1.0000 0.000

-1.0481
0.3047 0.5000

0.2039 -5.141 0.0000

Constant
ca italg
La orSigma(v)

Sigma(u)

7.6322
(M;dkg33%)

9.862 0.0000
0.0343 0.2847 0:0734

KE:
1% 0.3200

-0.1221

0.9271 0:1007

4;;;; 0.0542

0: EO

Constant 7.6701
(Lar est 33%)

ca 1 ital O:hZ
13.338

-0.1042 0: E4
La orsigma(v) 2 :5:7

sigma(u)

EO:
-Ei;

0.04375.311

0.3592 0.4858 0.739 E% .

Table 3. Chi-square tests for differences in the production
relations beween  farmsizes

HO: smal1
test statistic

= medium
HO: smal1 = large

0.3211;
p-value
0.9560

HO: medium = large
3.4070; 0.3330
4.7410; 0.1918

/’
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Table 4. The GP estimation with  the dependent variable [exp(u)je]

Standard
variable

Prob
Estimate

Standardized
t-value

Cor with
Error al Estimate Dep var

Constant 0.479641 0.102415 4.683292 iE ___
---school -0.007399 0.005278 -1.401692 -0.101725exper -0.001950 0.001512 -1.290081 0:198 -0.133809

0.001714

-pXfX;;;

aw 1.540997 0.125
mngtexp O%E 0.026948 EE: .

0:082532
2.061385 0.040 0.122895

obs.: 221; R-squared:  0.037; F(4,216):  2.066; Probability of F: 0.086

Table 5. The GP estimation with the dependent variable [ute]

Standard
variable Estimate

Prob
t-value

Standardized Cor with
Error >ITl Estimate Dep var

Constant -0.965353 ---
---school

-3.791470 0.000
-0.017048

0%::

-0.005155 0:003758
-1.299214

ET:
-0.093711

-1.371658
-0.074366

exper
we 0.007640 0.004261

-0.141400
1.793011

0.019155

mngtexp 0.170466
0.074

0.066994
0.182765

2.544492
0.097266

0.012 0.171283 0.155095

obs.: 221; R-squared: 0.049; F(4,216):  2.759; Probability of F: 0.029

Table 6. The demeaned GP estimation with the dependent variable [exp(u)le]

Standard
variable Estimate

Prob
t-val ue >Itl

Standardized Cor with
Error Estimate Dep Var

constant 0.496767 0.015770 31.500372
---school 0.000 ----0.007399 0.005278 -1.401692 0.162

exper -0.001950 0.001512
-0.101725

-1.290081
-0.082337

0.002641
0.198

we 0.001714 1.540997 0.125
mngtexp 0.055550 0.026948

-g.;;gl

2.061385
EE3:

0.040 0:139617 0:122895

obs.: 221; R-squared:  0.037; F(4,216):  2.066; Probability of F: 0.086

Table 7. The demeaned GP estimation with the dependent variable [ule]

Standard
variable Estimate

Prob
Error t-value >Itl

Standardized Cor with
Estimate Deo  Var

Constant -0.847662 0.039206
school

-21.620800
--- ----0.017048 0.013122 -1.299214 Exexper -0.005155 0.003758 -1.371658

0.007640

0:172 -0.093711

age 0.004261 1.793011

-;.;;W&

0.074
mngtexp 0.170466 0.066994 2.544492

-0. p;;;;

0:171283
0:097266

0.012 O.lS5095

obs.: 221; R-squared:  0.049: F(4,216):  2.759; Probability of F: 0.029

i
: ,
1

:. .,. .._



Table 8. The LP estiinations  with the dependent varjable  kXp(U)lel

standard Prob standardized cor  with
Variable Estimate Error t-value >I:I Estimate Dep Var

mm;t”t 4.927607
-0.152349

exper -0.026093
we -0.009028
mngtexp 0.263020

obs.: 221; R-squared:

constant 1.146575
school -0.006529
exper 0.0001is
we -0.002991
mngtexp 0.136257

obs.: 220; u-squared:

m;~tlt 0.506984
0.002810

exper -0.006567
we 0.007889
mngtexp 0.119673

0,200415Win~o~2~~~~ = --- ---0.010329 0:272025 100)  0.0120.786 0.019585 0.048231
0.002958 -2.219898 -0.228420
0.003354 :%937: O:Zl

E:%:

-;JX;;;;

0 . 0 5 2 7 3 4 0.024 . 0:X7786

obs.: 221; R-squared: 0.052; ~(4,216): 2.969: Probability of F: 0.020

(window size  = 50)

2.327052 2.117566 0.035 --- ---0.119931 -1.270303 0.205 -0.093363 -0.052423
0.034348 -0.759644 E: -0.079795 -0.066865
0.038945 -0.231817

0:668
-0.024078

0.612301 0.429560 0.029464
-yx;;;;

.

0.012; F(4,216):  0.665; Probability of F: 0.617

(window size  = 75)
0.520145 2.204338 0.029 ---
0.026639 -0.245093 0.807
0.007617 0.023386
0.008676 -0.344756 Et -0.032051
0.135779 1.003520 0.317 0.069200 0.068052

0.006: F(4.215): 0.310; Probability of F: 0.871

Table 9. The LP estimations with the dependent variable  [Ulel

standard Prob standardized cor with
Variable Estimate Error t-value >Itl Estimate Dep Var

(window size  = 50)

mm;nt -0.079742 -0.011890 0.626831 0.032306 -0.127214 -0.368046 :.::3 -0.026998 --- 0.019608 ---
exper -0.OOi548 0.009252 -0.815791 -0.085527 -0.082751
w -0.000089 0.010491 -0.008522 $99: -0.000883 -0.061842
mngtexp 0.231977 0.164933 1.406488 0.161 0.096288 0.097246

obs.: 221; R-squared:  0.016; F(4.216): 0.876; Probability of F: 0.479

(window size  = 75)

constant -0.583652 0.443049 -1.317353 ---school -0.010519 0.022691. -0.463573 -0.033807 -0.003846
exper -0.00419s 0.006488 -0.646562 -0.012150

we 0.005202 0.007390 0.703936mngtexp 0.307715 0.115654 2.660648 "o%5B

obs.: 220; R-squared:  0.034; ~(4,215): 1.911; Probability of F: 0.110

(window size  = 100)
constant -0.930376 0.344596 -2.699900 --- _-_
school -0.004100 0.017760 -0.230884

Ei%
-0.016557 0.006044

exper -0.009743 0.005086 -1.915465 0.057 -0.196316
av 0.013707 0.005767 2.376804 0.018 0.240870

-; . ym;

mngtexp 0.253766 0.090671 2.798751 0.006 0.187308 0:184462

obs.: 221; R-squared:  0.060; ~(4,216): 3.422; Probability óf F: 0.010



Table 10. The demeaned LP estimations with the dependent variable [exp(u)le]

Standard
Variable

Prob
Estimate t-value

Standardized Cor with
Error At1 Estimate Dep var

constant
school
exper
we
mngtex
obs.: 21:4

m;m;~nt 0.964545
(window size

0.079599 12.117492
-0.006529 0.026639 -0.245093

exper 0.000178 0.007617 0.023386
we -0.002991 0.008676 -0.344756
mngtexp 0.136257 0.135779
obs.: 220;

1.003520
R-squared:  0.006;

0.069200
F(4,215):  0.

0.068052
Probability of F: 0.871

=

2.057904

50)

0.358326 (wigdg3:ge-1:270303 0.000 --- ----0.152349 0.119931 0.205 -0.093363

-0.026093 0.034348

-0.052423

-0.759644
-0.079795

-0.009028 0.038945
-0.066865

-0.231817 0% -0.024078
0.263020 0.612301 0.429560 0:668
R-sauared:  0.012;

0.029464
-pX;;;:

F(4,216):  0.665; Probability of FI 0.617

(Window  size  =

mm;nt 0.002810 0.824815 0.030860 0.010329

100)

2;.;;;;;: 0.000 --- ---0.786 0.019585
exper -0.006567 0.002958 -2:219898

0.048231
-0.228420 -0.063963

w 0.007889 0.003354 2.351991
0%

0.119673 0.052734
0.052213

mngtexp
obs.: 221;

2.269372 0:024
R-squared:

k :zi:
0.052;

0.157786
F(4,216):  2.969; Probability of F: 0.020

Table ll. The demeaned LP estimations with the dependent variable [u[e]

Standard
variable

Prob
Estimate Error t-valse

Standardized cor  with
>Itl Estimate Deo  var

mm;t”t
exper
we
mngtex
obs.: 21;P

Constant
school
exper
we
mngtexp
obs.:  220;

mml;nt

exper
w
mngtex
obs.: 21;P

-0.337100
-0.011890
-0.007548
-0.000089
0.231977
R-squared:

-0.440913
-0.010519
-0.004195

EE:
Rlsquared:

-0.429268
-0.004100
-0.009743
0.013707
0.253766
R-squared:

“0%230~0: 009252
0.010491
0.164933

0.016:

(window size
-3.492504
-0.368046
-0.815791
-0.008522
1.406488

F(4,216):  0

= 75)
0.000
0.643

0%
0.008

.911:

___
:;j;;;y
-0:00088;
0.096288

Probability

-0.033807
-;.~$3;"1y

0:180814
Probability

___
0.019608

-0.082751
-0.061842
0.097246

Of F: 0.479

_-_
-0.003846
-0.012150
0.022651
0.175542

Of F: 0.110

0.053062
(Window size  = 100)

-8.089943 "0% --- ---0.017760 -0.230884 -0.016557 0.006044
0.005086 -1.915465 0.057
0.005767 2.376804 0.018

-;.;iW& -0.020099

0.090671
0.087977

2.798751 0.006 0:187308
0.060; F(4,216):  3.422;

0.184462
Probability of F: 0.010
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