Manure management technologies and

mitigation of GHGs: opportunities & limitations

GGAA, June 2013, Dublin Ireland

Jerke W. De Vries, Imke J.M. De Boer Animal Production Systems Group, Wageningen University

Introduction (1/2) Contribution of MM to GHG emissions

- Manure management (MM) = storage, processing, and application of liquid (slurry) or solid manure
- MM contributes
 - ~17% to agricultural greenhouse gas (GHG) emissions in Europe, mainly swine and cattle slurry (EEA, 2012)
 - Up to 53% of agricultural N₂O emissions (Chadwick et al, 2011)
- Mainly CH₄ and N₂O, lesser extent CO₂

 Aim: Show GHG mitigation opportunities & limitations (shifting of emissions and environmental impacts)

Methods

- life cycle assessment (LCA): modelling of environmental impact from cradle to grave
- Impact categories: GHG emissions, Acidification, Eutrophication, Particulate matter, and Fossil Fuel Depletion

Mitigation opportunities?

- 1. Don't make manure
- 2. In-house/ outside storage
 - Segregating urine and faeces (keeping separate)
 - Cover storages
 - Reduce storage time/ temp
- 3. Manure processing
 - Anaerobic digestion
 - Separation of liquids and solids
 - Filtration
 - Biological treatment
 - Nutrient removal
- 4. Field application

AGENINGE

For quality of life

Broadcast spreading → not consistent

Mitigation opportunities & limitations Segregating urine & faeces

Image: state state

Mitigation opportunities & limitations (1/4)

Segregating urine & faeces

- Scenarios compared
 - 1. Reference MM
 - 2. Segregation high DM
 - High DM faeces→ open storage/ spreading + incorporation
 - Urine → closed storage/ injection
 - 3. Segregation low DM
 - Low DM faeces→ closed storage/ injection
 - Urine \rightarrow closed storage/ injection

Mitigation opportunities & limitations (2/4) Segregating urine & faeces

Mitigation opportunities & limitations (4/4) Segregating urine & faeces

Main conclusion segregating urine & faeces:

- Opportunity: Keep urine and faeces separate to reduce GHGs (~19% of agricultural GHGs in NL)

- Further process high DM faeces

- Limitations: Look at all related environmental impact categories and life cycle stages to consider shifting of emissions

Mitigation opportunities & limitations Anaerobic digestion

Mitigation opportunities & limitations Anaerobic digestion

Main conclusions anaerobic digestion:

- Opportunities: Mono-digestion of pig manure reduces some GHGs (~2% of agricultural GHGs in NL), and produces bio-energy

- Co-digestion with wastes/ residues increases bio-energy and reduces GHGs and other impacts

- Limitation: Co-digestion increased GHG emission and other impacts when competing with feedstocks; through land use change

Mitigation opportunities & limitations

Manure processing

Mitigation opportunities & limitations Manure processing

Main conclusions manure processing

- Opportunity: With anaerobic digestion, processing reduces GHGs

- Limitations: Production of concentrate increased environmental impact through storage and processing

Conclusions Opportunities & Limitations

- LCA essential for showing opportunities & limitations to mitigate GHGs
- Opportunities
 - Segregating urine and faeces reduces GHGs up to 82% compared to conventional MM (De Vries et al, 2013)
 - Anaerobic mono digestion and co-digestion with roadside grass (residual) reduces GHGs (De Vries et al, 2012a)
- Limitations
 - Shifting of N emissions to other environmental impact categories/ life cycle stages→ Bias to look only at GHGs
 - Anaerobic co-digestion: competition with feed leading to land use changes and increased GHG emission

End

`Don't get biased when GHG emissions are the highest'!

Look at all related impacts

Thank you! jerke.devries@wur.nl

The HJS Fund is acknowledged for funding part of this conference visit

