
C. Rappoldt
B.J. Ens
M.A.J.M. Kersten
E.M. Dijkman

Alterra-rapport 869, ISSN 1566-7197

Wader Energy Balance & Tidal Cycle
Simulator WEBTICS
Technical Documentation version 1.1

Ministerie van Verkeer en Waterstaat
Rijksinstituut voor Kust en Zee

P135R869.qxd  21-4-2004  18:35  Pagina 1





Wader Energy Balance & Tidal Cycle Simulator WEBT ICS



Commissioned by the ministry LNV in the Netherlands



Wader Energy Balance & Tidal Cycle SimulatorWEBT ICS

Technical Documentation version 1.1

C. Rappoldt, B. J. Ens, M. A. J. M. Kersten, E. M. Dijkman

Alterra–Report 869

Alterra, Wageningen, 2004



ABSTRACT
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number of spots which have a position, height and surface area. Spots may contain prey
items characterized by type, weight and density. The program simulates tidal cycles and
calculates the fraction of time the average and ideal bird has to spend feeding in order to
meet its energy requirements. These foraging intensities are combined into a stress index for
the winter. Besides historical data on weather, prey distribution, tides and fishing, there are
bird and prey parameters on foraging, prey growth and energy conversion. Model output
files can be processed in a spreadsheet. Also bitmapped images and movies are produced.
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Preface (in Dutch)

Voor u ligt de technische documentatie van de Wader Energy Balance & Tidal Cycle
Simulator WEBT ICS dat vervaardigd is ten behoeve van de tweede evaluatiefase
van het Nederlands schelpdiervisserij–beleid, EVA II. De betrokken instellingen zijn
Alterra, het Centrum voor Schelpdier Onderzoek van het Nederlands Instituut voor
Visserij Onderzoek (RIVO-CSO) en het Rijksinstituut voor Kust en Zee (RIKZ).
Het onderzoek is verricht met financiering vanuit het ministerie van LNV in het
kader van het EVA II deelproject B1 ”voedselreservering voor scholeksters in de
Waddenzee”. Daarnaast is een deel van het werk gefinancierd met geld uit het door
LNV betaalde bestek 5a “Voedselaanbod voor vogels”.

Het model WEBT ICS is ontwikkeld ten behoeve van de studie over Scholeksters
en hun voedsel in de Waddenzee en Oosterschelde waarvan verslag gedaan is in
Rappoldt et al. (2003a,b). De bedoeling van een technische documentatie is om
de invoerparameters, de uitvoerfiles, de rekenprocedures en de programmering van
het model te documenteren. De ervaring leert dat het documenteren van technische
details over een computerprogramma snel leidt tot een zwaarlijvig en onoverzichtelijk
rapport. Ik heb daarom gepoogd me tot de hoofdzaken te beperken: de structuur
van het programma, de gebruikte parameters en “waar is wat te vinden”. Wil men
nog meer weten dan moet de Fortran code geraadpleegd worden die overigens ook
uitgebreid van commentaar is voorzien.

Een groot aantal mensen heeft bijgedragen aan de totstandkoming van het model
WEBT ICS . Met vragen over de schelpdiergegevens van het RIVO ben ik vele malen
te rade gegaan bij Pauline Kamermans en Joke Kesteloo-Hendrikse. Over de de
voedselecologie van scholeksters heb ik veel geleerd van Marcel Kersten, Bruno Ens,
Richard Stillman, Jaap de Vlas en Leo Zwarts. Het is opmerkelijk dat veel van de
hier gebruikte kennis het resultaat is van wat nog geen 10 jaar geleden fundamenteel
onderzoek aan wadvogels was, beschreven in proefschriften en tijdschriftartikelen.

Bert Brinkman heeft geholpen met het berekenen van de verdeling van de vogels
over droogvallende voedselgebieden. De stress–index voor het karakteriseren van
een winter is het resultaat van een avond praten met Marcel Kersten. Rob Dekker
heeft geholpen met de omrekening van mosselgewichten en Jaap van der Meer met
een statistische analyse. Resultaten van modelberekeningen zijn een aantal keren
besproken met collega’s van het EVA II onderzoek en met Marnix van Stralen. Veel
ideeën en verbeteringen vinden hun oorsprong in die bijeenkomsten op Texel en in
Yerseke. De afbeelding op de voorplaat van dit rapport is deels gebaseerd op fotos
van Cor Smit en Gert Eggens.
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Tenslotte moet ik mij verontschuldigen voor de onvolkomenheden in deze technische
documentatie. Dit rapport is in de loop van enkele jaren “gegroeid” hetgeen een
consistente stijl niet ten goede komt. Ik ben echter altijd bereid vragen over het
model te beantwoorden en te helpen met de inspectie van de Fortran code in geval
van onduidelijkheden.

Wageningen, maart 2004
Kees Rappoldt
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Summary

This report contains the technical documentation of the simulation modelWEBT ICS ,
the Wader Energy Balance and Tidal Cycle Simulator. The computer program has
been written in standard Fortran 95, which allows the model to run on all major
platforms, Linux, Windows, Macintosh, and Unix.

WEBT ICS is a simulation model which means that the food uptake of the birds
and their distribution over exposed parts of the mudflats are simulated with time
steps of 15 minutes, for instance. The model also calculates the energy requirement
of the birds, which depends on their weight and the temperature. If there is plenty
of food available the birds may either stop foraging after feeding at maximum intake
rate during some time, or they feed at a lower rate during the entire low tide period.

In order to simulate food intake, the model combines the functional response and
interference strength of foraging Oystercatchers with basic data on weather, tidal
water levels, the height level of a number of foraging spots, the shellfish survey
information for these spots, and data on the amount of shellfish removed by fishing.

The core of the model is a few hundred lines of Fortran code in which the rate
calculations, integration, output and evaluation of a tidal cycle are organized. From
this model structure individual modules are called which perform well described
tasks like the calculation of the Ideal Free Distribution of birds, the evaluation of
the exposure status of all mudflat spots, the removal of shellfish by fishing etc.

In the introduction the computations during the simulation are briefly explained
and important assumptions are discussed. Chapter 2 describes the structure of the
model from a programmers point of view. Chapter 3 describes the input files and
the most important output files. The stress index which characterizes the workload
of the birds during a is introduced in Chapter 4. Chapters 5, 6 and 7 document the
meaning of the various model parameters and the values used.

In a few Appendices details on various aspects are given. The most important one is
Appendix A in which the results of the interference model in Stillman et al. (2002)
are simplified as simple exponential curves describing the reduction of food intake as
function of bird density. The content of Appendix C has little to do with the model
WEBT ICS , but the power analysis has been used in Rappoldt et al. (2003a,b)
without being properly explained.

This technical documentation has probably to be updated and adapted as the
WEBT ICS model is developed further or adapted to special applications. There-
fore, this documentation has been written in English and will be made available as
a PDF file.
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Chapter 1

Introduction

This report contains the technical documentation of the simulation modelWEBT ICS ,
the Wader Energy Balance and Tidal Cycle Simulator. The computer program has
been written in standard Fortran 95, which allows the model to run on all major
platforms, Linux, Windows, Macintosh, and Unix. WEBT ICS is a simulation model
which means that the food uptake of the birds and their distribution over exposed
parts of the mudflats are simulated with time steps of 15 minutes, for instance. The
model also calculates the energy requirement of the birds, which depends on their
weight and the temperature. If there is plenty of food available the birds may either
stop foraging after feeding at maximum intake rate during some time, or they feed
at a lower rate during the entire low tide period.

In order to simulate food intake, the model combines the functional response and
interference strength of foraging Oystercatchers with basic data on weather, tidal
water levels, the height level of a number of foraging spots, the shellfish survey
information for these spots, and data on the amount of shellfish removed by fishing.

1.1 The tidal cycle

At each time step the exposure status of all mudflat spots is calculated. Then the
birds are distributed over the exposed spots in some way. The first distribution
method is by maximizing the intake rate. At the richest spots the bird density is
high and food intake there is reduced by interference effects. At less rich spots the
bird density is lower and the birds can be distributed in such a way that food intake
becomes equal at all spots used. This is the so called Ideal Free Distribution. The
birds are free to move around without energy costs and have a perfect knowledge of
their feeding grounds.

The Ideal Free Distribution has the disadvantage that the birds (in the model)
concentrate on just a few good spots to maximize their intake rate and stop foraging
when they have eaten enough. If there is plenty of food, the birds also may feed
at the average intake rate required, which allows them to exploit spots that would
otherwise be marginal.

After calculating the intake rate of the birds, the model calculates cumulative intake
and subtracts the eaten prey from the density available at each spot.
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At high tide the model evaluates the low tide period which has just passed. The
ratio between the eaten amount of food and the amount that could have been found
is calculated, which is the foraging intensity. In practice, this foraging intensity is
practically equal to the fraction of available foraging time the birds need, but since
the length of a low tide foraging period is a somewhat arbitrary quantity, the ratio
between eaten amount and the amount that could have been found is a better choice.

If the birds could not eat enough to meet their energy requirements, they loose
weight. If the birds eat more than what they need, they gain weight until some
prescribed weight is reached which varies somewhat with the season.

From the length of the next low tide period and the temperature a new value for
the required amount of food is calculated. If the birds are below their desired body
weight, this required amount is increased and a new tidal cycle begins.

1.2 Important assumptions

The calculations described above are based on some important simplifying assump-
tions

All birds are equal In reality there are differences between individuals with
respect to their foraging abilities and dominance status.

Perfect knowledge of the area The birds have a perfect knowledge of the
distribution of prey in they area and of the times at which the various spots
are exposed. Clearly, this cannot be true, which means that the degree at
which the shellfish stocks can be exploited by the birds will be overestimated.

No costs of displacement It is assumed that the birds can move from one
spot to the other in no time and without energetic costs. This leads, in the
model, to displacements over relatively large distances when good spots be-
come exposed, for instance. Also this represents an overestimate of the ex-
ploitation efficiency of the birds.

These simplifications imply that the birds considered in the model are a sort of “ideal
superbirds”. In the model the birds can survive as long as their foraging intensity
stays below 1.0. Real birds will not be able to survive under the same circumstances,
at least, a part of the birds will get into difficulties long before the workload of the
superbirds reaches a maximum.

The idea of modelling “superbirds” is that they represent a reference. If we compare
different years and the superbirds experience more difficulties in one year than in the
other, the same is likely to be true for real birds. The level of the foraging intensity
which corresponds to “problems for real birds”, however, needs to be found out by
comparing model results with field data. In order to do that we need to characterize
an entire winter with a number representing workload or risk for the birds.

1.3 The winter season

The foraging intensities calculated for the low tide periods for an entire winter are
combined into a stress index for the winter. It is assumed that the occurrence of
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high values of the foraging intensity represent a serious risk for the birds which is
not easily balanced by periods with a low foraging intensity. Therefore a weighted
average of the foraging intensities is used as a difficulty measure or stress index for
the winter. The simplest choice for the weight of each foraging intensity is simply
the value itself which means that the stress index is calculated from the squares of
the foraging intensities for the winter period. This stress index indeed appears to
be related to the number of birds returning to the area the next year (e.g. Rappoldt
et al., 2003a, Fig. 5.29).

Fishing may takes place in the model in the form of removing part of the shellfish.
Although fishing takes place over a period of about two months, the shellfish is
removed in the model at a particular day, which can be set at October 1, for instance.

1.4 On this report

This technical documentation contains a description of the various source files of the
model and a description of the input and output files. The last chapters contain a
more detailed description of bird prey and fishing parameters.

Parts of this report have been written during the development of the model. Other
parts have been written after completion of the model studies for Oosterschelde and
Wadden Sea. The report is therefore not as balanced and easy reading as it probably
could be, but given the time available for documenting the model this could not be
avoided. In case of confusion I am always prepared to answer questions or to help
with inspecting the Fortran code.
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Chapter 2

The structure of the model

The language used is standard Fortran 95. This allows the model to run on all major
platforms, Linux, Windows, Macintosh, and Unix.

2.1 Program modules

Extensive use has been made of Fortran “modules”. These are program units in
which data and subprograms working with these data are combined in a single
unit. For instance, the foraging parameters of the birds are stored in module “Bird”
together with the subprograms for calculating the functional response and the dis-
tribution over the exposed parts of the mudflats. The input data on water levels are
stored in module Tides together with a subprogram returning the exposure status
of mudflat spots. In the sections below the function of the various modules is briefly
described.

All modules make use (by means of the Fortran 95 USE statement) of the definitions
in module Codes. This module defines region names, and prey names, prey types
and lengths of character strings used throughout the model. Other interdependencies
between the modules are indicated below.

2.1.1 MudFlats

Module MudFlats stores all spot variables. Spots are locations on the mudflats for
which prey data are collected during the RIVO prey survey. The survey data are
assumed to be representative for the surface area associated with the spot. Almost all
prey related calculations in the model are carried out per spot and the calculation of
an output parameter like the fresh weight of the eaten Cockles, for instance, requires
a summation over all spots.

The spot data are stored as an array of spot records. Each spot record contains all
the variables for a certain spot: surface area, height in various years, exposure time
in various years, coordinates, etc. A special spot variable points to the prey items
belonging to the spot. The prey items are simply a part of the prey array which
stores prey size, fresh weight, wet weight, fished amount, eaten amount etc.
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Most subroutines in module Mudflats are input routines for reading the prey survey,
the height and exposure time data from file.

Module Mudflats also contains the prey parameters describing growth and death of
the various prey items. To these parameters belong the subprograms for calculating
the rates of change of fresh weight and wet weight as function of time. The prey
parameters and the associated subprograms might be moved to a separate module
Prey in a future version of the model.

Module Mudflats uses some functions from module Tides to calculate spot heights
from exposure times or the reverse.

2.1.2 Bird

Stores the foraging parameters and contains the subprograms for calculating the
functional response, the degree of interference and the distribution of the birds over
the exposed spots. Module Bird uses module Weather in calculations on the energy
requirement of the birds.

2.1.3 BirdCount

Reads the monthly bird counts from file and calculates a number at any moment in
time by linear interpolation between the counts.

2.1.4 Codes

Contains codes used by other modules like prey names and prey age class names
used in the RIVO prey survey, the corresponding numbers used in the prey record,
names of regions (e.g. “Oosterschelde” or “Waddensea”) for which the model can
run, etc. Also some special variables like “Mossel” and “Kokkel” are defined here
which improves the readability and reliability of the Fortran code.

2.1.5 Fishing

This module contains the fishing parameters describing the various options and
the subroutines for carrying out the fishing in the model. Details of the fishing
procedures in the model can be found in Section 2.3.6.

Module Fishing uses module Mudflats for information on the fished fraction and
exposure time of the various spots.

2.1.6 Output

An important output file produced by the model is named “HighTideYYYY.out”,
where “YYYY” stands for the year in which the simulation began. This file is
discussed in more detail in Chapter 3.
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Figure 2.1. Example of TIFF file output for a Wadden Sea model run. The image shows
the distribution of prey wet weight at the begin a the simulation run starting at September
1, 1990. The colour scale goes from white (less than 0.1% of the maximum) via yellow to
red (the maximum). In the printed version these colours are just levels of grey. In Rappoldt
et al. (2003b, Fig. 3.2) a print in colour can be inspected.

Module Output contains some dedicated output procedures. Heavily used are the
routines for generating simple maps for the visualisation of all sorts of prey, eaten
prey and bird distributions on the mudflats. Figure 2.1 shows an example. These
simple and coarse grained maps are TIFF images directly produced by the model.
This greatly simplifies the inspection of results since no postprocessing is necessary.

The TIFF files produced are so called indexed colour images. Every pixel is rep-
resented by an integer value in the range [0, . . . 255] and the colours coded by these
numbers are given in a so called colour lookup table with 256 three byte (24 bit)
RGB colours. The TIFF format is a fully portable format which can be displayed,
edited and converted by lots of utilities and all major image editors on all computer
platforms.

Some of the TIFF files produced by the model are multiple frame TIFF files. This
means that a sequence of images is stored in a single file (e.g. the distribution of
prey biomass at each day). Multiple frame TIFF files can be converted into a movie
which can be embedded into a Powerpoint presentation. On a PC the conversion
into an AVI file can be handled by the Animation Shop which is part of Paint Shop
Pro (www.jasc.com). On a Macintosh the shareware program GraphicConverter
(www.lemkesoft.com) and the freeware program NIH-image (rsb.info.nih.gov/nih-
image/) can do the conversion to a Quicktime movie.

Module Output uses module Mudflats information required in map construction.

2.1.7 Tides

Contains the tidal data, subroutines to read them from file and subroutines for the
calculation of the exposure status of a given spot at a given time. The tidal data
used for the Oosterschelde are a list of times and levels for each high tide and low
tide, together with some statistical parameters for the calculation of exposure time
as a function of spot height and the low tide level (see Section 2.4.
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2.1.8 Weather

Stores the minimum and maximum temperatures for each day of the simulated
period. A temperature reconstruction subroutine (Goudriaan & van Laar, 1994,
Listing 3.3) uses these data for constructing a sinusoidal temperature course during
the day and an exponential decrease during the night. The energy requirement of the
birds is calculated using this reconstructed temperature curves in order to account
for the effect of the short day length during the winter.

2.2 The actual simulation model

The simulation model contains the actual foraging model. The model uses the
above listed modules for about everything: for abiotic inputs, for the number of
birds present, for calculating a bird distribution and food intake rate, for fishing,
etc.

The birds in several areas (cf. Oosterschelde Noord, Oosterschelde Midden, etc.)
can be simulated simultaneously. A weather station and a tidal station are then
specified for each area separately. The birds in each area feed on the prey types
available in that area. Hence, the simulations are independent but are carried out
simultaneously.

The simultaneous simulation of the various areas allows us to implement forms of
interaction between the areas. One of the fishing options, for instance, is to tell the
program it should fish a certain amount without specifying where. In that case the
fishing routine decides where the fishing takes place (at the richest spots). This is
important since the food reservation takes place for the Oosterschelde or Wadden
Sea as a whole, whereas the tidal movements of the birds takes place within the
various areas.

A simulation run starts with the creation of data structures for the various areas.
Modules are initialized which implies that spot data, tidal data, weather data and
bird numbers are read from input files (e.g. Chapter 3). The model parameters listed
in the Chapters 5, 6 and 7 are read. Finally the state variables of the simulation
model are initialized. These are bird weight and stomach content, and the amount
and weights of the prey types present at each spot.

2.3 Simulation of a tidal cycle

2.3.1 Mudflat foraging

Each time step module Tides is called to get the exposure status of all mudflat spots
assigned to an area (cf. Oosterschelde West). If spots are exposed the birds are
distributed over the area, initially using an ideal free distribution. This distribution
maximizes the intake rate of the birds assuming all birds are equal and have perfect
knowledge of the food situation at all spots.

The distribution of the birds is based on the functional response and the degree
of interference. Using these functions (cf. Sections 5.5 and 5.11) the ideal free
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distribution is calculated for the exposed spots. The intake rate resulting from this
calculation is called the potential intake rate. Its integral is an increasing amount, the
potential intake. The curve “Max from mudflats” in Figure 2.2 shows the potential
intake for two successive tidal cycles in 1990. At the beginning of the low tide
periods the curves go up slowly, since just a few spots are exposed and the intake
rate is relatively low. The same happens towards the end of the low tide period and
during high tide the curve is horizontal (no uptake).

Figure 2.2. Potential and reduced intakes for a diurnal and nocturnal low tide period. The
actual energy uptake in these periods equals the required amount per low tide period. Note
that daily amounts are a factor 1.932 larger (cf. Figure 5.1), which is the average number of
tidal periods per day (cf. Section sec:TidesPerDay). Note for readers of the printed version:
the lines in the legend are in the same order as in the left hand part of the graph.

The potential intake may be reduced as a result of the following circumstances:

• the birds stomach is full (Section 5.3) and the intake rate is reduced to the
maximum digestion rate. In case of high water levels and short exposure
times this reduction may limit the food uptake. The curve “Digestive limit”
in Figure 2.2 shows the reduced intake.

• the energy goal (Section 5.2) for the current tidal period has been achieved
and the intake rate is reduced to zero. Intake is then equal to the energetic
requirement, unless there is food shortage. The curve “Actual uptake” in
Figure 2.2 shows the actual intake.

The calculations are repeated each time step. Under normal circumstances the
two reduction steps listed above take place and the actual intake lies considerably
below the potential intake. The distance between potential intake and energetic
requirements becomes smaller or even negative due to

cold weather with a higher energetic requirement (Figure 5.1)

a low potential intake rate due to a low food density (Section 5.5)

a short foraging period due to a high low tide water level (Section 2.4)
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In these situations the required amount of energy may approach or exceed the poten-
tial intake. The ratio between the actual intake and the potential intake is defined in
Section 2.3.4 as the foraging intensity. Since the cumulative intake increases linearly
with time over a large part of the low tide period, the foraging intensity may be
interpreted as the fraction of available foraging time the birds have to use in order
to meet their energy requirements.

2.3.2 Reduced intake rate distribution

If the foraging time required is less than the available time, the birds may distribute
themselves over a larger number of spots and use also spots which are otherwise
marginal. In the program this works as follows:

At the beginning of a low tide period the (ideal free) intake rate may exceed
the digestion rate for at least a time interval RIRoffsetTime.

Then the amount of time available for foraging is estimated from the last two
completed tidal cycles.

The required (and not yet realized) food intake is equally distributed over the
remaining part of the low tide period.

The birds are distributed over all spots where this reduced intake rate can
be realized. Bird densities are taken proportional to the distribution of the
maximum number of birds that could feed at the required rate on these spots.

The parameter settings controlling this are given on the model parameter input file
as

! Reduced intake rate during "Above Digestion Rate" time window
RIRandSpread = .true. ! reduce intake rate and spread birds
RIRoffsetTime = 1.0 ! (hour) time offset after reaching ADR time window

The first parameter enables or disables the entire mechanism. The second parameter
sets the time interval used. If the model switches to a reduced intake rate distribu-
tion, the curve for “actual uptake” in Figure 2.2 is gradually rising to precisely the
same end level as reached in a much shorter time with an ideal free distribution.
The calculation of the foraging intensity is unaffected.

2.3.3 High tide foraging

On top of the potential intake in Figure 2.2 (the curve named “Max from mudflats”)
there is a contribution from foraging during high tide. The potential rate of high
tide foraging is reached if all birds use the grasslands as long as they cannot use
the mudflats. This happens only if their regular prey are either not there or not
exposed.

Therefore, in the model, the degree at which the average bird uses the grassland is
a function of the foraging intensity during the previous two tidal cycles. Above a
threshold value (parameter NonMudThreshold in Section 5.12) an increasing frac-
tion of the birds is supposed to use grasslands for additional foraging and the high
tide intake rate of the average bird gradually increases to the potential grassland
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intake rate MaxNonMudIntakeRateAFDW which is reached for the maximum foraging
intensity of 1.0.

During the first tidal period in Figure 2.2, the actual intake (the lowest curve) shows
a small increase during high tide due to some high tide foraging. Note that this high
tide foraging contributes to the energy intake even though the energy requirements
were already met. At the beginning of the next cycle (around 12:00 pm) there is
also some high tide intake. During the nocturnal high tide, however, no foraging
takes place since birds do not use grassland in the night.

Also during periods with temperatures below 0◦C there is no grassland foraging
since the soil freezes. Therefore the contribution of high tide foraging to the food
requirements of the average Oystercatcher in coastal wintering areas is a minor one,
also in the model.

2.3.4 The Foraging Intensity

The ratio between the actual intake at the end of the tidal period and the potential
(non-reduced) mudflat intake is called the Foraging Intensity. It is a measure of
the workload of the animals for the tidal period that has just passed. The foraging
intensity is approximately equal to the fraction of available time actually spent
foraging by the average bird. A fraction of time, however, is hard to define precisely
since begin and the end of the low tide period are somewhat arbitrary.

Even if there is plenty of food available, the birds still need some time to handle
their prey. For profitable cockles or mussels in september the foraging intensity
amounts to about 0.25. As prey species lose weight during the winter more have
to be eaten for the same energetic intake and the foraging intensity slowly increases
during the winter. If the prey density is low, searching takes time and the potential
intake decreases, thus leading to a higher foraging intensity. Finally, if mudflat
exposure time is reduced, the potential intake is reduced as well and again the
foraging intensity will be higher.

Hence, the foraging intensity is the ratio of what the birds eat and what they could
eat from the mudflats if stomach size would not be limiting. It should be emphasized
that this intensity measure refers to the average bird. A value of 1 means that all
birds are in trouble and a lower value supposedly implies that a certain (small or
very small) fraction of the birds (e.g. the subdominant ones) cannot meet its energy
requirements or is getting in a bad condition. The interpretation of the foraging
intensities is further discussed in Chapter 4, where the intensities for all tidal cycles
are summarized into a single number, the stress index.

2.3.5 High tide

The tidal cycle ends at high tide. At high tide the model generates a so called
time event at which the simulation is halted and a special section of the model is
executed. The foraging intensity for the tidal period passed is calculated and the
energy balance of the birds is translated into a weight loss or a weight gain.

The energy requirement E2 for the next tidal cycle is calculated by integrating the
function in Figure 5.1 to the next high tide time. Further, the current bird weight
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is compared to the prescribed weight curve for the region, Oosterschelde or Wadden
Sea (Zwarts et al., 1996c), and the difference is converted into an increase or decrease
of the energetic requirement for the next tidal period.

Temperature differences between day and night, differences between the two daily
tidal periods and the possibility of high tide foraging in grassland during the day may
lead to loss of bird weight during the night and a compensating weight gain during
the day. Some measures are taken to prevent such oscillations from happening:

The energetic requirement used in setting the intake goal for the next tidal
period is the average of E1 for the previous cycle and the just calculated E2

for the next cycle. Hence, the “model birds” regulate their food intake on the
basis of a daily (or actually a two-tides) average.

A small energy gain is not immediately converted into body weight but first
stored “as kiloJoules”. This is probably what also happens in reality. The
liver buffers small differences between intake and expenses in the form of easily
convertible glycogen. This prevents losses associated with energy conversion
to and from structural body weight.

2.3.6 Fishing

The fishing which takes place in the model is carried out during the first high tide
at a specific date, usually set to 1 October. Hence, if this date has been reached, the
fishing routine is called. Fishing results in a change in prey amount and prey distri-
bution over the various spots. No other effects on the birds or on food availability
are accounted for.

The fishing in the model depends on two types of input.

• The distribution of fishing over the various spots is derived from the black box
data and read from file “FishedAreaFile” (cf. Section 3.1.1).

• The total amount fished per area are read from file “POFishedFile” (cf. Sec-
tion 3.1.1).

The most straightforward way of implementing fishing in the model is to remove
prey according to the fished fractions derived from the black box data. Due to
errors in the prey survey and in the actual fished fraction, the total amount fished,
however, will not be equal to landed amount. Various solutions for this problem are
discussed in Chapter 7 together with the parameter settings required.

2.3.7 High tide output

The most important output file produced by the model is named “HighTideYYYY.out”,
where “YYYY” stands for the year in which the simulation began. At the end of
each tidal cycle a record is written to this file containing number of birds, bird
weight, foraging intensity and amount of prey left (See also Chapter 3).

The high tide output concludes the tidal cycle. Tidal intake variables are reset and
a new cycle begins.
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2.4 Mudflat Exposure

Mudflat exposure time is a key element of the model. A tidal station is assigned to
each area (e.g. Oosterschelde Noord, Oosterschelde West) in order to account for
the variation in exposure time.

The easiest way to use the historical tidal data would be to compare the tidal water
level at a particular moment with the height of the spot. The spot is exposed if its
height exceeds the water level. This attractively simple procedure does not make
use of the maps of average exposure time prepared by the RIKZ. These maps take
into account different tidal stations in the region and have been prepared also for
2010 on the basis of expected changes in the region. The maps, however, deliver
only the average exposure time. This problem has been solved in the following way.
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Figure 2.3. Historical exposure times of a mudflat spot at −50 cm at the location of
the tidal station Roompot Binnen. The exposure times have been plotted as function of the
difference between the mudflat height (−50 cm) and the low tide level. From the regression
line an exposure time can be derived for any given low tide level. Regression line as these
were calculated for a wide range of mudflat heights and the regression parameters themselves
are somewhat dependent on spot height.

2.4.1 step 1

The historical data of the tidal station associated with the area are analysed. For
a certain mudflat height there is a relation between the exposure time and the low
tide water level. A lower low tide level leads to a larger exposure time. Figure 2.3
shows such a relation for the station “Roompot Binnen” and a height of -50 cm.
Clearly, the use of only the low tide level in explaining the variation in exposure
time represents a simplification. Lunar phase and wind would probably explain
most of the remaining variability. For the birds, however, the short exposure times
of especially somewhat lower parts of the mudflats are an important factor. These
are represented very well by this method.
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2.4.2 step 2

Using the relations shown in Figure 2.3 for a series of heights, the model only requires
low tide water levels and the heights of all mudflat spots. The full historical record
need not to be entered into the simulation model. Still, however, the information
from exposure time maps cannot be used. This requires an additional step.

2.4.3 step 3

For each tidal station (e.g. Roompot Binnen) a relation exists between the mudflat
height H and the average fraction of time it is exposed FE. This relation is described
very well by the following regression model.

FE(H) = Exp

e+ f H + d

( (
a+H
c

)b
1 +

(
a+H
c

)b
) 1

b

 , (2.1)

where a, b, c, d, e and f are regression coefficients. The model is valid for spot heights
H > −a. For the tidal station Roompot Binnen the fitted function is (with H in
meters)

FE(H) = Exp

−7.21 + 0.427H + 7.63

(
(2 +H)4.57

1 + 1.99 (2 +H)4.57

)0.219
 , (2.2)

for which Figure 2.4 shows a graph. Using this relation any average exposure time
for a certain spot (e.g. read from a RIKZ map) can be converted into an effective
spot height. This spot height, in combination with the historical low tide levels for
the station will result in the desired variation of exposure times while at the same
time the average exposure time remains equal to the one that was read from the
map.

-2 -1.5 -1 -0.5 0.5 1

-8

-6

-4

-2

spot height (m)

ln
(f

ra
ct

io
n 

ex
po

se
d)

Figure 2.4. Graph of the mean exposed time fraction as function of spot height (m)
derived for the Roompot Binnen tidal data with height intervals of 5 cm. The regression line
is given in Equation (2.2).

As a bonus, the spatial interpolation between tidal stations which is used in con-
structing exposure time maps is implicitly present in the model, although only a
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single tidal station per area is used. The tidal station is used only for generating
the variability in exposure time. The average value is read from one of the avail-
able maps. For the historical runs this average exposure time is calculated as a
time-interpolated value between the various maps available.

2.4.4 step 4

All the above calculations can be done outside the model or before the simulation
actually starts. During the simulation the effective spot height is compared with
the low tide level for a given tidal period. The resulting exposure time is assumed
to lie around the time of low tide. This means that for a given time (reached by the
simulation) the exposure status can be determined.

2.4.5 Exposure time and Average Exposed fraction

Fractions of time exposed have been converted to hours exposed by means of the
average length of a tidal cycle of 12.42 h.

This number can be calculated from the lunar orbit time Om of 2360550 s and the
earth sidereal period Te of 86164.06 s (Anonymous, 1990). The number of tides in a
solar day (86400 s) is

86400 ×
(

2
Te
− 2
Om

)
= 1.9322, (2.3)

which is indeed close to the well known ratio of 27 tidal cycles in 14 days (27/14=
1.929).

2.5 Mussels

Mussel beds exposed during low tide have largely disappeared from the Oosterschelde
region. Furthermore, in the early nineties the beds were not part of the yearly prey
survey. This forms a difficulty in attempting to estimate the importance of Mussels
as food for Oystercatchers. The only information available is a list of tons and a
map of the location of the Mussel beds. Also for the Wadden Sea there is little
information on exposed mussel banks in the early nineties.

Fortunately, Mussel beds and Mussel banks are usually not significantly depleted
by the birds (Goss-Custard et al., 2001). The food density is high and interference
tends to limit the density of the birds feeding on Mussels. Therefore, a surface
area, an amount of Mussels and an exposure time is sufficient information to include
Mussels in the WEBT ICS model.

2.5.1 Virtual Mussel spots

The Mussel beds are treated in the model as “virtual foraging spots”. They do not
have a location like the prey survey spots with Cockles and Macoma, but they only
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have a surface area, an amount of Mussels, and an exposure time. In the model, part
of the birds will feed on these virtual Mussel beds. These birds do not appear then
on the BirdDensity output maps (Section 3.5.4). By means of the control variable
AddMusselSpots the Mussel spots can be included in the calculations or not (cf.
Section 3.1.3).

However, the type of data available differs between the Oosterschelde and Wadden
Sea regions. The model has been adapted accordingly. The adaptations have been
implemented by means of the variable RegionName (see Section 3.3 by which the pro-
gram chooses between the various possibilities. This prevents maintaining different
versions of the program code.

Oosterschelde Mussel beds

The Mussel input files used for the Oosterschelde region contain for each Ooster-
schelde area the Mussel bed surface area and an indication of the exposure time
through spot ID numbers from the spot information file (cf. Table 3.5 in Sec-
tion 3.4.3). These spot ID are used only for the calculation of an exposure time.
The spots have been chosen by mapping some prey survey spots on the locations of
the old Mussel beds. An examples of a Mussel input file can be found in Section 3.4.8.

Wadden Sea Mussel beds

The Mussel input file used for the Wadden Sea region contains for each Wadden
Sea area the quantity and the surface area for three ages classes of Mussels and a
distribution over a number of exposure time classes. Using these input data the
model creates virtual spots with the appropriate prey weight, prey numbers, surface
area and exposure time. An example can be found in Section 3.4.9.

2.6 Modelling environment

WEBT ICS has been written as a simulation model for the Fortran Simulation En-
vironment FSE (van Kraalingen, 1995; Rappoldt & van Kraalingen, 2001). This
environment organizes the simulation by calling the model for rates of change, in-
tegration, output, high tide events etc. Both the FSE environment and the model
itself make extensive use of TTUTIL input and output procedures documented in
van Kraalingen & Rappoldt (2000) and some numerical procedures described in
Press et al. (1992), which is available as a (downloadable) commercial product.

2.7 Program Size of WEBT ICS

The core of the program, the tidal foraging model and the high tide calculations on
foraging intensity and body weight require about 300 lines of code. The complete
WEBT ICS program, including the various modules belonging to it, consists of
about 8000 lines of heavily commented Fortran 95 code. The FSE environment and
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linked utilities consist of another 30000 lines of Fortran code, both Fortran 77 and
Fortran 95.
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Chapter 3

Input and Output files

3.1 The Control File

There is one input file which has to be present on the directory of the running pro-
gram, file “control.dat” (Table 3.1). This file contains settings for the run, names
of the datafiles, options for using maps, etc. Note that most settings are also docu-
mented in the file itself.

The control file is a “TTUTIL” input file (van Kraalingen & Rappoldt, 2000) , which
means that all items consist of an identifier (a “name”) and a value which may be
a character string, an integer variable, floating point value, date-time string or a
logical. Both single values and arrays occur. Below, the important settings are
briefly discussed.

3.1.1 Filenames

The input and output directory are specified. The output directory should exist ; it
is not created by the program. Then the names of the input files are specified.

DataDir = ’OSdata’
ResultsDir = ’TestResults’
ModelDataFile = ’KOKKEL.DAT’ ! model parameters
AreaList = ’AreaInformation’ ! list of areas and stations
SpotInfoFile = ’SpotinfoOSBevMgr4’ ! spots
PreySurvey = ’PreySurveyOS2’
BirdCountFile = ’ScholekstersOS’
FishedAreaFile = ’SpotBevistInformationOS’ ! black box data
POFishedFile = ’TotalFished’

3.1.2 Movie settings

Movie output is time consuming and may be suppressed. Each spot is represented by
a square with size SpotSizePixels from of which a part (with size SpotFillPixels)
is actually painted.

Movies = .false.
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Table 3.1. First part of control file. Some variables have a trivial function (e.g. Machine or
Movies). The important WEBT ICS variables are explained in Section 3.1. Some variables
belonging to the simulation environment have been documented in Rappoldt & van Kraalingen
(2001).

Controller = ’StandardControl’
Machine = ’PC’ ! (or ’Macintosh’)
DataDir = ’WaddenzeeData’
ResultsDir = ’TestResults’
ResultsFile = ’Outdat.out’
Movies = .true.
NRespDays = 1*0

AddMusselSpots = .false.

AreaList = ’AreaInformation’
SpotInfoFile = ’AbiotiekTotaal2’
PreySurvey = ’PreySurveyWad’
BirdCountFile = ’ScholekstersImpute2’
FishedAreaFile = ’BevistIndexMgr’
POFishedFile = ’VangstperWaddeelgebied’
MusselAmounts = ’MosselAmounts’
MusselSpotInfo = ’MosselSpots’

RemainderFile = ’RemainingPrey’
AutumnStart = 1 ; WinterStart = 178
AutumnEnd = 177 ; WinterEnd = 350

! variable C O U P L E D M O D E L S
! ======== ============================
ModelName = ’Kokkels’
Integrator = ’FSE’
ModelDataFile = ’KOKKEL.DAT’
IntegSettFile = ’Control.dat’
NrOfInstances = 1 ! overwritten by AreaCount
WithModelEvent = .true.
WithInstEvent = .true.
. . .

SpotSizePixels = 5 ! pixels
SpotFillPixels = 4 ! pixels

3.1.3 Mussel settings

These variables specify the Mussel input files for the model. Depending on the region
for which the model is used the content of these files is different (see Sections 2.5,
3.4.8, 3.4.9).

AddMusselSpots = .true. ! add virtual mussel spots ?
MusselAmounts = ’MosselAmounts’ ! input file
MusselSpotInfo = ’MosselSpots’ ! input file
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3.1.4 Timing

The timing of the model is organized by means of the following variables. The start
time and finish time are in arbitrary units, but the variable “OneDay” tells the pro-
gram that the unit of time is “day”. The variables “WinterStart” and “WinterEnd”,
etc. are used in the stress index calculation.
ShellStartTime = 0.0
ShellFinishTime = 212.0

! integration step
DeltFSE = 0.0104166667 ! this value is 15 minutes

OneDay = 1.0 ! one day in user time units, e.g. 1.0 or 86400.0
StartYear = 1990 ! the start year of the simulation
StartDOY = 244.0 ! Day Of Year beginning from 1.00000

! note that the time specified by StartYear and
! StartDOY is associated with ShellStartTime.

AutumnStart = 1 ; WinterStart = 178 ! tides after model start
AutumnEnd = 177 ; WinterEnd = 325 ! tides after model start

3.1.5 Maximum number of lines on HighTide output

This maximizes the number of output lines per area on the HighTide output file,
which is convenient in case the file is loaded in a spreadsheet.
MaxOutputLines = 407 ! this standardizes spreadsheet output blocks

3.1.6 Maps of Height and Exposure time

The information on spots height and exposure time on the Spot Information file
(variable “SpotInforFile” in Section 3.1.1) contains readings from several maps. The
variables “HeightMapDates” and “DVTMapDates” specify the years to which these
maps refer. With the switch “FixedHeight” the usual time-interpolation between
the maps can be switched off and replaced by a fixed date (independent of the start
year). The option “UseFETmapForTides” should be set true if the exposure times
of the map(s) should be converted in effective heights (cf. Section 2.4).
HeightMapDates = 1-jul-1989, 1-jul-1994, 1-jul-2001, 1-jul-2010
DVTMapDates = 1-jul-1983, 1-jul-1989, 1-jul-2001, 1-jul-2010
FixedHeight = .false.
FixedHeightDate = 1-Sep-1983
UseFETmapForTides = .true. ! use ‘‘effective heights’’

3.1.7 Bird number options

The switch “NumberFromCounts” is usually true. If false a fixed number of birds
is read for each area from the AreaInfoFile (Section 3.1.1). Just as for the exposure
times, also here the bird number season can be fixed at “BirdNumberSeason” in
order to use bird numbers of a certain year in combination with the prey and abiotic
data from a different year. Finally, the number of birds can be multiplied by a
factor. This is used in calculations for the evaluation of fishing.
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NumberFromCounts = .true. ! number of birds option
! .true. => number from counts on file
! .false. => fixed number from
! AreaInformation file

BirdNumberSeasonFixed = .false. ! .true. => use BirdNumberYear for counts
! .false. => historical data over the years

BirdNumberSeason = 2001 ! the year used
! (no effect if NumberFromCounts = .false.)

BirdNumberMultiplier = 1.000 ! multiplies the number of birds (1.352)

3.1.8 Fishing EVA-luation options

The flag “EVAFishing” is used to switch between normal (historical) fishing (see
Section 2.3.6 and Chapter 7) and special fishing for evaluation of the fished amount.

The first thing to do if fishing is evaluated is choose the year of the prey survey with
flag “EVAsurveyYearFixed” and year “EVAsurveyYear”. Then there are two ways
to proceed:

EVAasOneArea = .false. The PO fished amounts per area for “StartYear”
(see Section 3.1.4) are used after multiplying them with “EVAmultiplier”.

EVAasOneArea = .true. A total amount “EVAfishedTons” is fished for all
areas lumped. The distribution of this amount over the various areas is done
by the model.

For both options the variable “EVAfishedFraction” replaces the black box fished area
fractions and all prey survey data are multiplied by “EVApreyMultiplier”, which
may be used to account for uncertainties in the prey survey.

EVAFishing = .true. ! .true. => force AutoDistribute ;
! use EVAmultiplier if EVAasOneArea OFF
! use EVAfishedTons if EVAasOneArea ON
! .false. => normal fishing

EVAsurveyYearFixed = .true.! .true. => use EVAsurveyYear for preys
! .false. => historical data over the years

EVAsurveyYear = 2001 ! the year used
EVAasOneArea = .true. ! .true. => all area’s are fished as a

! single one tons are set to
! EVAfishedTons
! .false. => EVAmultiplier is used on
! PO-data from file

EVAmultiplier = 0.0 ! multiply PO-fished amounts
! in case EVAFishing is ON
! == only used if EVAasOneArea is OFF ==

EVAfishedTons = 5000.0 ! tons used if EVAasOneArea ON
! Note that open areas are all areas with
! SOME PO amount specified (even if the
! amounts is overwritten by EVAfishedTons)

EVAfishedFraction = 0.5 ! smaller means that fewer spots will be
! affected by LEVELOFF fishing

EVApreyMultiplier = 0.8 ! multiplies the RIVO prey survey
! (only in case of EVA fishing)
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3.2 The model parameter file

The model parameter file, with name specified by variable ModelDataFile on the
control file (see Section 3.1.1), is discussed in the Chapters 5, 6 and 7. The model
parameter file used in the historical runs can be found in Appendix B.

3.3 Area information file

The name of the area information file is specified by variable AreaList on the control
file (see Section 3.1.1). Table 3.2 shows the file used for Oosterschelde calculations.

The file shows that the “Oosterschelde” region is subdivided into four areas. For each
area a tidal station, a weather station and a number of birds is specified (which is
used only if the control variable NumberFromCounts is set .false. (cf. Section 3.1.7).

Table 3.2. Area information file (cf. Section 3.3)

RegionName = ’Oosterschelde’

AreaName TidalStation WeatherStation NumberOfBirds
’OSW’ ’Roompot’ ’Vlissingen’ 20000.0
’OSN’ ’Yerseke’ ’Vlissingen’ 20000.0
’OSC’ ’Yerseke’ ’Vlissingen’ 20000.0
’OSO’ ’Yerseke’ ’Vlissingen’ 20000.0

AddLumpedArea = .true.
LumpedTidalStation = ’Yerseke’
LumpedWeatherStation = ’Vlissingen’

! NOTE: number of birds is used if the "fixed number option"
! is switched on by setting NumberFromCounts = .false.
! in the control file.

As an option, the model may combine all spots into an additional area which spans
the entire region. The birds in this “lumped area” make use of the entire region
and do not stay in “their” area. The simulation of the lumped area is independent
of the (simultaneous) calculations for the separate areas. The addition of a lumped
area doubles the computing time, however.

3.4 Data base input

The other files required are based on databases of the prey survey, weather, tides,
etc. Also readings from height maps and exposure time maps is included in this
section. The information is read by the program as ASCII files, however, that have
been prepared from the original data bases and maps.

WEBT ICS documentation 1.1 37



3.4.1 Tidal Stations

The tidal stations used are listed in the area information file (cf. Section 3.3).
For each tidal station the program looks for a file “TidesName.txt” at the input
directory. Table 3.3 is the first part of a tidal station input file.

Note that after a line <Begin> the file just contains a list of times and levels of all
high and low tides. The list must cover the simulated time interval. For days or
weeks lacking in the historical record for the station, data from a nearby station are
inserted.

Table 3.3. First part of a tidal station data file (cf. Section 3.4.1).

! polynomial coeficients for calculating C1 and C2
! the formules are
! C1 = SUM[PAR1(i+1)*x^i, i=0,Order1],
! C2 = SUM[PAR2(i+1)*x^i, i=0,Order2],
! where:

! Order1 - n1-1
! n1 - number of coefficients in PAR1 array
! Order2 - n2-1
! n2 - number of coefficients in PAR2 array
! x - Mudflatlevel in === meter ===

! With C1 and C2 the Exposure time is calculated as
! ExpTime = C1 * h + C2 * h^2

! where:
! ExpTime - Exposure time in === hours ===
! h - SQRT (Mudflatlevel - Lowtide) ; levels in ==== cm ====

PAR1 = 0.74052839, 0.069573394, -0.15252838, -0.046204134,
0.043653669, 0.018099107

PAR2 = -0.013230165, -0.0016012231, 0.010249429, 0.0053860167,
0.001127074

! See Mathematica file
ABCDEF = -2., 4.571952, 0.85984871, 6.5631016, -7.2139701, 0.42710487

! date time level LH
<begin>
20-Dec-1989 02:30 -85.0 ’L’
20-Dec-1989 08:40 120.0 ’H’
20-Dec-1989 14:20 -122.0 ’L’
20-Dec-1989 21:10 132.0 ’H’
21-Dec-1989 02:40 -42.0 ’L’
21-Dec-1989 08:50 148.0 ’H’
21-Dec-1989 14:50 -65.0 ’L’
21-Dec-1989 21:50 155.0 ’H’
22-Dec-1989 04:20 -67.0 ’L’
. . .
. . .

The header before <Begin> contains pre-calculated characteristics of the station
which are used in exposure time calculations. As explained in Section 2.4 mudflat
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exposure time is calculated with help of two regression coefficients C1 and C2. These
coefficients can be calculated for any mudflat height by using the terms of two pre-
calculated polynomials which are given in the tidal input file as PAR1 and PAR2. The
fitted coefficients of Equation (2.1) are supplied to the model as the six numbers of
array ABCDEF.

3.4.2 Weather Stations

The weather stations used are listed in the area information file (cf. Section 3.3).
For each weather station the program looks for a file “WeatherName.txt” at the
input directory. Table 3.4 shows the first part of a weather input file.

Table 3.4. First part of a weather station data file (cf. Section 3.4.2).

! weather station info:
! =====================
Latitude = 50.0 ; Longitude = 5.0

! Vlissingen data 1980-2002
! =========================
! datum TMIN TMAX Wind
<begin>
1-jan-1980 11 44 51
2-jan-1980 11 45 31
3-jan-1980 5 26 67
4-jan-1980 13 56 93
5-jan-1980 34 64 67
6-jan-1980 47 63 62
7-jan-1980 32 60 31
. . .

The header of the file (the part before <Begin>) contains the latitude and longitude
which are used in constructing sinusoidal temperature course during the day and
an exponential decrease during the night according to Goudriaan & van Laar (1994,
Listing 3.3).

The remainder of the file is just a list of minimum and maximum daily temperatures
(in tens of degrees) and average wind speed which is currently not used. Clearly,
the list must cover the simulated time interval. For days or weeks lacking in the
historical record for the station, data from a nearby station have been inserted.

3.4.3 Spot information

The name of the spot information file is specified by variable SpotInfoFile on the
control file (see Section 3.1.1). Table 3.5 shows an example.

The coordinates should be in metre in some rectangular coordinate system. The
surface area (in m2) is used to calculate total quantities of prey in combination with
the prey densities from the prey survey (Section 3.4.4). The coordinates are only
used for the construction of simple maps (Sections 2.1.6 and 3.5.3).

The heights and exposure times are readings from the available maps. The heights
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Table 3.5. The spot information file contains for each spot a unique identification number,
the name of the area where it belong to, surface area, coordinates and map readings for
height and exposure time (cf. Section 3.4.3). The spot numbers and area names need not
to be sorted.

! spotID - spot identification
! Area - name of area spot belongs to
! Surface - surface area in m2
! X, Y - coodinates (m) in rectangular system
!
! spotID Area Surface X Y Heights and Exposure times
15019,OSW,267503.58,39238.13,405253.48, -468.37,652,-383.08,675, ... 11.65, 176
15020,OSW,267503.15,39815.09,405240.28, -88.70,594,-124.71,647, ... 12.95, 484
15021,OSW,267527.21,40380.95,404759.79, -280.91,673,-263.42,667, ... 12.02, 290
15022,OSW,267478.23,40402.00,405686.61, -141.36,661,-144.14,657, ... 16.68, 655
15024,OSW,267429.25,40423.65,406617.59, -179.04,675,-165.73,672, ... 15.08, 402
15025,OSW,267502.29,40968.42,405210.13, -151.10,674,-150.94,667, ... 3.58, 556
15026,OSW,267477.80,40978.90,405673.54, -170.14,669,-163.02,675, ... 6.37, 675
15027,OSW,267453.31,40989.37,406136.95, -57.35,672,-54.12,664, ... 38.75, 664
. . .
. . .

in the example of Table 3.5 are in cm, followed by a count (the number of map
“pixels” falling in the spot area) and the exposure times are fractional, i.e. fractions
of total time, also followed by a count. The reference dates belonging to the various
maps are given in the control file (Section 3.1.6). Details of the map readings and
the subsequent handling of heights and exposure times differ between regions for
which the model is used. Small adaptations in the program may be required in case
of application to a new region.

3.4.4 Prey survey

The name of the prey survey file is specified by variable PreySurvey on the control
file (see Section 3.1.1). Table 3.6 shows an example. The spots are identified using
their ID numbers from the spot information file (Table 3.5 in Section 3.4.3). Note
that the file need not be sorted and may contain observations for spots outside the
areas for which the model is running.

3.4.5 Monthly Bird numbers

The name of the file with bird counts is specified by variable BirdCountFile on
the control file (see Section 3.1.1). The file (e.g. Table 3.7) contains a sorted list of
monthly oystercatcher counts. The records for which the area names match a name
in the Area information file (Section 3.3) are used.

3.4.6 Black Box fished area

The name of the file with fished area fractions is specified by variable FishedAreaFile
on the control file (see Section 3.1.1). Table 3.8 gives an example. The file contains
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Table 3.6. The prey survey file (Section 3.4.4) contains prey information for spots identified
using their ID number (cf. Section 3.4.3). Each record contains a year, a species name, a
species age class and prey density (m−2) and biomass (g m−2) for May,1 and September,1.
‘Kokkel’ is Cockle Cerastoderma edule and ‘Non’ is Macoma balthica. The prey types or spot
ID’s need not to be sorted. Note that for Macoma the september numbers are lacking.

! StationID,Jaar,Species,Age,NMayM2,BMayM2,NSeptM2,BSeptM2
15018, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
15019, 1992, ’Kokkel’,’1j’, 70.00,248.07, 51.91,398.73
15019, 1997, ’Kokkel’,’0j’, 20.00, 19.59, 5.73, 23.43
15019, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
15020, 1996, ’Kokkel’,’0j’, 10.00, 8.64, 3.93, 13.18
15020, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
15021, 1990, ’Kokkel’,’mj’, 10.00,150.89, 7.23,118.04
15021, 1994, ’Kokkel’,’mj’, 10.00,231.54, 7.55,166.26
15021, 1994, ’Kokkel’,’1j’, 10.00, 47.52, 7.55, 65.67
15021, 1996, ’Kokkel’,’1j’, 10.00, 17.01, 7.61, 41.55
15021, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
15022, 1990, ’Kokkel’,’mj’, 50.00,602.82, 36.19,496.56
15022, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
15023, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
15024, 1991, ’Kokkel’,’mj’, 10.00, 59.91, 7.08, 57.67
15024, 1991, ’Non’ ,’nb’, 20.00, 16.00,-9999.00,-9999.00
15024, 1993, ’Kokkel’,’mj’, 10.00,128.20, 8.10,106.86
15024, 2000, ’Non’ ,’nb’, 9.80, 4.90,-9999.00,-9999.00
15024, 2001, ’Kokkel’,’nb’, 0.00, 0.00, 0.00, 0.00
. . .
. . .

Table 3.7. File with bird sorted to Areaname, jaar and Maand (cf. Section 3.4.5).

Areaname jaar SEIZOEN MAAND NScholeksters
OSC 1978 1978 7 3617
OSC 1978 1978 8 19431
OSC 1978 1978 9 20375
OSC 1978 1978 10 19299
OSC 1978 1978 11 22589
OSC 1978 1978 12 14213
OSC 1979 1978 1 24253
OSC 1979 1978 2 43189
OSC 1979 1978 3 17973
OSC 1979 1978 4 7087
OSC 1979 1978 5 4336
OSC 1979 1978 6 1578
OSC 1979 1979 7 2241
. . .
. . .
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the fished area estimated from the black box data. Note that area name and (sur-
face) area are redundant. The values should be consistent with the spot information
file (Section 3.4.3). This is verified.

Table 3.8. Fished areas (Section 3.4.6) are specified per spot ID (cf. Section 3.4.3) and per
year. The file contains for each spot also surface area and area name. These two numbers
should be consistent with those given in the spot information file (Table 3.5 in Section 3.4.3).

! stationID,year,Areaname,Area, SumOfBevistOppervalkte
15021, 1994, ’OSW’, 267527.21, 2354.00
15022, 1992, ’OSW’, 267478.23, 642.00
15025, 1994, ’OSW’, 267502.29, 3852.00
15026, 1992, ’OSW’, 267477.80, 1926.00
15026, 1994, ’OSW’, 267477.80, 2568.00
15027, 1994, ’OSW’, 267453.31, 66136.00
15028, 1994, ’OSW’, 267428.82, 3852.00
15029, 1992, ’OSW’, 267501.86, 95032.00
15029, 1994, ’OSW’, 267501.86,107877.00
15030, 1992, ’OSW’, 267477.37, 11129.00
. . .

Table 3.9. The total amount fished is specified in tons fresh weight per area and per year.
See text in Section 3.4.7.

! based on file /Cees Rappoldt vangst vers.xls/
! from Yerseke (in milioen kg)
! surface & ghostsurface from work by Elze (NOT currently used)

! year area amount surface ghostsurface
1990 , OSW , 6.21 ! open spots in all OS areas (90/91 adaptation)
1991 , OSW , 3.2 ! open spots in all OS areas (90/91 adaptation)

1992 , OSC , 3.111953243 , 1715852, 59064
1992 , OSO , 2.67757829 , 1536734, 54998
1992 , OSW , 2.810470696 , 2059750, 33598
1993 , OSC , 1.139221369 , 1287210, 240322
1993 , OSO , 0.680780938 , 1017998, 115346
1994 , OSC , 4.340542897 , 3598410, 565174
1994 , OSO , 12.38560387 , 5420919, 719682
1994 , OSW , 5.393866486 , 4265464, 332128
1995 , OSC , 4.197914479 , 2999638, 145306
1995 , OSO , 2.112336074 , 1491794, 90308
1995 , OSW , 0.469752563 , 438914, 40018
1996 , OSC , 2.128898645 , 3188386, 105074
1996 , OSO , 1.244012893 , 2771514, 233902
1996 , OSW , 2.253761809 , 4473028, 101008
2001 , OSC , 1.817024361 , 3171480, 125190
2001 , OSW , 5.022978531 , 4849391, 209078

3.4.7 Total amount fished

The name of the file with total amount fished is specified by variable POFishedFile
on the control file (see Section 3.1.1). As an example, the Oosterschelde file is given
in Table3.9.
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Note that for 1990 and 1991 the “OSW” tons actually refer to the whole Ooster-
schelde region. This is dealt with in the program. The total columns “Surface” and
“Ghost surface” are not currently used. Surface is the total area fished according to
the black box data and is redundant (cf. Section 3.4.6). Ghost surface was defined
as surface occurring in the black box data as being fished but not included in the
prey survey sampling. The amount given, however, has been corrected already for
fishing outside the mudflats.

3.4.8 Mussel spots Oosterschelde

The name of the file specifying the Mussel spots in the Oosterschelde region is
specified by variable MusselSpotInfo on the control file (see also Section 3.1.3).
Table 3.10 shows the virtual Mussel spots (Section 2.5.1) created for the Ooster-
schelde region.

The name of the file specifying the Mussel amount in the Oosterschelde region is
specified by variable MusselAmounts on the control file (see Section 3.1.3). Table 3.11
shows the Mussel amount on the (virtual) Mussel spots in the Oosterschelde region.
Note that the surface area is redundant. It is there to emphasize that only the
Mussel densities (ratio between tons and area) are used from this file. The surface
area column is checked against Table 3.10, however.

3.4.9 Mussel spots Wadden Sea

The name of the file specifying the virtual Mussel spots in the Wadden Sea region
is given by variable MusselSpotInfo on the control file (see also Section 3.1.3).
Table 3.12 shows part of an input file.

In the table legend the meaning of the various columns has been described. The
data in Table 3.12 form an attempt to reconstruct the amount of mussels and the
mussel bed surface areas in the nineties, also for years for which only little data is
available. The total amount and surface area have been derived from spring and
autumn data by the RIVO. The individual weights are averages from the mussel
weights in the RIVO survey files containing also the cockle data. The exposed time
fractions actually used are multiple year averages of data on the location of mussel
beds.

For each combination of area, year, age class and exposed time fraction a virtual
spot is created with the specified fraction of the surface area and mussel amount.
The height of this spot is calculated from the desired average exposure time using
the inverse of Equation (2.2) for the tidal station of the area where the mussel spot
belongs to. Hence, the prescribed mussel bed exposure times are averages. The
actual exposure time varies through the simulated season with the tide.
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Table 3.10. Virtual Mussel spots with area name year and surface area (cf. Section 2.5.1)
created for the Oosterschelde region. The spot ID numbers in column “FETspotIDs” are used
only to get exposure times for the created Mussel spots. If several spot ID’s are supplied an
equal number of Mussel spots will be created with consecutive numbers. The surface area is
then subdivided equally over exposure times derived from the spot ID’s.

! Virtuele mosselspots ; het werkt als volgt
! kolom naam functie
! ----- ---- -------
! 1 SpotID nummer gebruikt in de voedsel file etc.
! 2 Area area name
! 3 Year year belonging to the surface info
! 3 Surface oppervlak in === ha ===
! 4 X, Y must be 0.0 in order NOT to appear on the maps
! 5 FETspotID Fractional Exposure Time reference SpotIDs

! The data in the reference SpotID are used for the FET only.
! If two or more spots are given, new spots with successive numbers
! are generated and the surface is divided equally among all spots.
!
! The height info of the reference spots is neglected. Spot height
! is calculated from an (interpolated) FET using the appropriate
! function for the tidal station belonging to the area.

! Data from Tabel 3.1 "Achtergrond Oosterschelde"

! SpotID Area Year Surface X Y FETspotIDs
! ------ ---- ---- ------- - - ----- -----

80001 OSW 1988 30.0 0.0 0.0 15059 15060
80001 OSW 1989 54.0 0.0 0.0 15059 15060
80001 OSW 1990 159.0 0.0 0.0 15059 15060
80001 OSW 1991 25.0 0.0 0.0 15059 15060
80001 OSW 1992 26.0 0.0 0.0 15059 15060
80001 OSW 1993 26.0 0.0 0.0 15059 15060
80001 OSW 1994 0.6 0.0 0.0 15059 15060
80001 OSW 1995 0.5 0.0 0.0 15059 15060
80001 OSW 1996 1.0 0.0 0.0 15059 15060
80001 OSW 1998 0.6 0.0 0.0 15059 15060

80003 OSC 1988 331.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1989 123.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1990 371.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1991 76.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1992 318.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1994 70.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1995 30.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1996 13.0 0.0 0.0 15144 15143 15142 15164 15162 15163
80003 OSC 1998 2.1 0.0 0.0 15144 15143 15142 15164 15162 15163

80009 OSO 1990 239.0 0.0 0.0 15282 15233
80009 OSO 1992 133.0 0.0 0.0 15282 15233
80009 OSO 1993 53.0 0.0 0.0 15282 15233

80011 OSN 1988 40.0 0.0 0.0 15216 15416 15225 15437
80011 OSN 1989 15.0 0.0 0.0 15216 15416 15225 15437
80011 OSN 1991 49.0 0.0 0.0 15216 15416 15225 15437
80011 OSN 1993 26.0 0.0 0.0 15216 15416 15225 15437
80011 OSN 1995 1.4 0.0 0.0 15216 15416 15225 15437
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Table 3.11. Part of file with Mussel densities on the virtual Mussel spots (cf. Section 2.5.1)
created using the instructions of Table 3.10. Note that the tons (fresh weight) in column
“Ton(FW)” have been taken directly from (Bult et al., 2000, Tabel 3.1). The surface area
column is checked against Table 3.10.

! Virtuele mosselspots ; het werkt als volgt
! kolom naam functie
! ----- ---- -------
! 1 SpotID nummer gebruikt in de voedsel file etc.
! 2 Year year belonging to the mossel density info
! 3 Species should be Mossel
! 4 Age should be nb
! 5 Ton(FW) Tons fresh weight over all virtual spots
! 6 Surface Surface area in ha total of all virtual spots

! Kolom 5 and 6 together define a ratio, the mossel density
! The input program calculates this ratio. It is done in this
! way just o be able to copy the data from Tabel 3.1.

! Data from Tabel 3.1 "Achtergrond Oosterschelde"

! SpotID Year Species Age Ton(FW) / Surface(ha) ratio
! ------ ---- ------- --- ------- -------
80001 1988 Mossel nb 891 / 30.0
80001 1989 Mossel nb 1146 / 54.0
80001 1990 Mossel nb 6057 / 159.0
80001 1991 Mossel nb 506 / 25.0
80001 1992 Mossel nb 102 / 26.0
80001 1993 Mossel nb 2854 / 26.0
80001 1994 Mossel nb 152 / 0.6
80001 1995 Mossel nb 49 / 0.5
80001 1996 Mossel nb 127 / 1.0
80001 1998 Mossel nb 105 / 0.6

80002 1988 Mossel nb 891 / 30.0
80002 1989 Mossel nb 1146 / 54.0
80002 1990 Mossel nb 6057 / 159.0
80002 1991 Mossel nb 506 / 25.0
80002 1992 Mossel nb 102 / 26.0
80002 1993 Mossel nb 2854 / 26.0

. . .
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Table 3.12. Virtual Mussel spots (cf. Section 2.5.1) with area name, year and specifications
for seed, “halfwas” and consumption mussels. Per area, per year and per age class an amount
is given in millions of kg, an area in hectare and an individual fresh weight in gram. The
total amount is then distributed over virtual spots with different exposure times according
to 10 fractions given as a percentage. The 10 percentages are fractions of the surface area
(and mussel amount) with exposed time fractions of [5%,15%, . . . 85%,95%]. The first 10
fractions refer to the seed mussels and the last 10 fractions refer to both the “halfwas” and
the consumption mussels. For each non-zero exposure time class a virtual spot is created
with the specified fraction of the surface area and mussel amount.

! ---------zaad--------- -------halfwas------ consump --- 20 percentages ---
!area y milj kg ha FW(gr) milj kg ha FW(gr) zaad halfwas+cons
AMS 1994 60.7934 1815.6950 2.15 0.8541 28.4703 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 1995 0.0000 0.0000 2.15 5.9213 511.3150 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 1996 12.6866 513.9280 2.15 1.3170 43.8995 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 1997 0.0000 0.0000 2.15 3.7525 224.4030 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 1998 0.0000 0.0000 2.15 3.1962 127.8484 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 1999 9.2869 969.3870 2.15 1.3099 43.6647 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 2000 1.0217 34.0563 2.15 4.9569 883.1020 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
AMS 2001 73.8920 3002.2750 2.15 2.1859 72.8633 8.01 ..... 2.8 3.5 ... 52.7 13.9 ...
. . .
BGZ 1994 4.5925 145.9090 2.15 0.0645 2.1507 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 1995 0.0000 0.0000 2.15 0.9880 32.9342 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 1996 2.1169 72.4850 2.15 0.2198 7.3250 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 1997 0.0000 0.0000 2.15 0.5975 19.9179 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 1998 0.0000 0.0000 2.15 1.8776 62.5874 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 1999 3.4667 115.5556 2.15 0.4890 16.2993 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 2000 0.0930 3.0994 2.15 0.4511 18.0446 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
BGZ 2001 3.8086 126.9523 2.15 0.1127 3.7555 8.01 ..... 3.7 1.8 ... 31.6 8.5 ...
. . .
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3.5 Output Files

3.5.1 FishingYYYY.out

The file “HighTideYYYY.out” reports the fishing carried out by the model for the
model run starting in year YYYY. For each fished area it contains a table with fished
fractions and fished tons per class of spots with a similar exposure time. Table 3.13
shows an example in which class 9 consists of 13 spots with an exposed time fraction
between 40% and 45%. According to the prey survey there were 292.6 ton catchable
cockles in this area (above the size limit). According to the black box data these
spots were fished for 0.8%. If this is done, the total amount fished exceeds the
reported landed amount of 469.8 ton by almost a factor 3, however. The corrected
surface fractions are given in the column “Corrected” and the corresponding fished
amount in column “Fished”.

Table 3.13. Example of fishing output FishingYYYY.out (cf. Section 3.5.1)

Fishing Report OSW method FIXEDDATEPERCLASS with option LEVELOFF
Fishing at 01-October-1995

Exposed (%) Fractional Fished Area Fresh weight (ton)
class spots from to BlackBox InModel Corrected Catchable Fished Damaged
1 13 0.0- 5.0 0.000 0.000 0.000 77.2 0.1 0.0
2 2 5.0-10.0 0.000 0.000 0.000 0.0 0.0 0.0
3 7 10.0-15.0 0.000 0.000 0.000 36.4 0.0 0.0
4 5 15.0-20.0 0.001 0.000 0.000 0.0 0.0 0.0
5 5 20.0-25.0 0.002 0.002 0.001 47.6 0.2 0.0
6 5 25.0-30.0 0.000 0.000 0.000 46.9 0.0 0.0
7 6 30.0-35.0 0.023 0.023 0.008 278.5 6.9 0.4
8 7 35.0-40.0 0.031 0.031 0.011 162.2 6.4 0.4
9 13 40.0-45.0 0.008 0.008 0.003 292.6 3.0 0.2
10 10 45.0-50.0 0.049 0.049 0.018 2669.3 331.6 17.5
11 7 50.0-55.0 0.035 0.035 0.013 1128.9 73.1 3.8
12 8 55.0-60.0 0.058 0.058 0.021 902.9 48.2 2.6
13 4 60.0-65.0 0.007 0.007 0.003 105.5 0.5 0.1
14 4 65.0-70.0 0.000 0.000 0.000 31.3 0.0 0.0
15 1 70.0-75.0 0.000 0.000 0.000 0.0 0.0 0.0

----- ----- ----- ------ ------ ------
Area Averages/Totals 0.017 0.017 0.006 5779.1 469.8 24.8
Landed (RIVO data) 469.8
NOT corrected for Black Box area outside Survey (8.4%) 469.8
NOTE: no fishing at closed spots (FISHED closed area fraction 0.0%)

3.5.2 HighTideYYYY.out

The file “HighTideYYYY.out” (where “YYYY” stands for the year in which the
simulation began) contains for each area a single line of output per tidal period.
The file can be easily imported into a spreadsheet and the lines can be sorted to
“Area” and th e time “SinceStart”. This leads to a quick overview of the results per
simulated area. The columns of the file are described in Table 3.14.
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Table 3.14. Columns of output file HighTideYYYY.out.

Variable meaning
Area area name
Date in the form 25/09/1990
Time high tide time the form 14:16
SinceStart days since start of the simulation
#Birds number of birds
Weight simulated bird weight
SetPoint preferred weight (Section 5.1)
Liver liver content (kJ)
UptakeWtW wet weight uptake during the tidal period passed
HTfr fraction of uptake realized during high tide
MaxUnlSat ratio of digestive limit and potential uptake at moment of saturation
DigInt ratio of digestive limit and potential uptake at high tide
ForagInt the foraging intensity (Section 2.3.4)
T the average temperature in the tidal period passed
DigestKJ digested amount (kJ) in the tidal period passed
UsedKJ metabolized amount (kJ) in the tidal period passed
EnergyReq foreseen for the next tidal period
WithWchange including weight change contribution
MacoFW fresh weight macoma present (ton)
MossFW fresh weight mussel present (ton)
Cock 0j fresh weight 0j cockles (ton)
Cock 1j fresh weight 1j cockles (ton)
Cock 2j fresh weight 2j cockles (ton)
Cock MJ fresh weight older cockles (ton)
MCock millions of cockles
Fresh(ton) fresh weight cockles (ton)
FishdFW fresh weight fished cockles (ton)
Damaged damaged by fishing
NatDied died cockles, not by fishing or birds, fresh weight (ton)
Wet same but wet weight
KokEatnFW cockles eaten sofar fresh weight (ton)
KokEatnWW cockles eaten sofar wet weight (ton)
NonEatnFW macoma eaten sofar fresh weight (ton)
NonEatnWW macoma eaten sofar wet weight (ton)
MosEatnFW mussels eaten sofar fresh weight (ton)
MosEatnWW mussels eaten sofar wet weight (ton)
OthrEatWW other preys eaten sofar wet weight (ton)
HiTiEatWW non-mudflat preys eaten sofar (ton)
2j+mjMayFW 2j+Mj cockles in may of start year (non-dynamic output)
OtherFrac wet weight fraction of “other” preys eaten
HiTiFrac wet weight fraction of high tide preys eaten
MeanBirds mean number of birds since start
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Spotclasses

FoodWtW

Exposed

Cumeaten

FishedFW FishedFract

Figure 3.1. Images produced by the model run for 1996-1997 using historical data for
weather, tides, mudflat heights and prey survey. The maps are simple bitmaps representing
each spot of the model run with a small square. The colour is a measure for the value. See
Section 3.5.3 for some further details. Colour prints of these figures may be inspected in
(Rappoldt et al., 2003a, Figs 5.2, 5.3, 5.4 and 5.5).
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3.5.3 TIFF Files

Figure 3.1 shows the 6 images produced by a model run. In each of the images, the
results for the various areas are combined in a single “map” and there is a only a
single colour scale for the entire Oosterschelde (no scaling per area).

For several maps a logarithmic colour scale white-yellow-red is used. To the max-
imum value the colour red is assigned. Values less or equal to 1% of the maximum
value are white and in between there are yellow spots (with values of about 10% of
the maximum). This, at least is the situation in case of 2 decades of colour range.
In case of three decades the colour range spans a factor 1000, etc. In case of a linear
scale white is zero and red is the maximum value.

The green spots occurring on some images are “ghost spots”, spots occurring in the
black box fishing data with a zero exposure time (not part of the mudflats). These
ghost spots plaid a role in an earlier version of the model. The may be neglected
now (cf. Section 3.4.7. The following maps are produced. The filenames are equal
to the names of the images with a four digit year number added and with extension
“tif”.

• FoodWtW. Total wet weight of all prey types at the start of the simulation.
The colour scale is logarithmic over 2 decades.

• Cumeaten. Wet wet weight eaten at the end of the simulation.

• Exposed. Actual exposed time during the simulation on a linear colour scale
(starting from 0.00 days exposed).

• Spotclasses. The exposure time classes used in the fishing procedure. For a
large number of classes this image should be very similar to the image of the
actual exposed time. For just 2 or 3 classes (cf. Chapter 7) there are only 2 or
3 colours on this map. Note that Oosterschelde Noord has been a closed area.

• FishedFW. Fresh weight of fished and damaged shellfish.

• Fishedfract. The distribution of the fished fraction of the surface area (cf.
Section 3.1.8 and Chapter 7).

3.5.4 Movies

By switching on the Movies control parameter (Section 3.1.2) the model produces
the following multiple frame TIFF files which may be converted into movies (cf.
Section 2.1.6).

• BirdDensity. The bird density on the mudflats given for each time step of
the model. The colour scale is logarithmic over 3 decades. Frames are only
produced for the first few and last few days of the simulated period since
otherwise the file (and the number of frames) would be too large to handle.

• EatenWtW. The wet weight of eaten preys for a completed tidal period. The
colour scale is logarithmic over 2 decades. The number of frames is equal to
the number of completed tidal cycles.
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• RemainCockWtW. The wet weight of the remaining Cockles. The colour scale
is logarithmic over 2 decades. The number of frames is equal to the number
of completed tidal cycles.
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Chapter 4

The stress index

The food situation for the birds in a simulated winter season is evaluated by means
of a single index. This index is based on the foraging intensities calculated for the
about 170 tidal cycles between december and march. Figures 4.1 and 4.2 show
examples of a calculated series of foraging intensities.

Figure 4.1. Foraging intensity as function of time for a simulation of the 1990–1991
winter based on historical bird numbers and prey data. The foraging intensity for the four
Oosterschelde areas (North(OSN), West(OSW), Central(OSC) and East(OSO)) is given by
the four jiggling lines. The straight lines refer to the right-hand vertical axis and show the
interpolated bird counts for the four areas. The frost in february leads to a prolonged period
with maximum foraging intensity (and some weight loss).

The index designed is based on the following considerations.

• Something like a critical intensity threshold does not exist. If there is too
little shellfish the birds will tend to feed from inferior prey types as much as
possible, lose weight and/or health and experience a higher risk to die during
the winter.

• Even if there would be a critical intensity level for each individual, for a pop-
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Figure 4.2. Foraging intensity as function of time for a simulation of the 2000–2001
winter based on historical bird numbers and prey data. (cf. Figure 4.1. In this mild winter
there were no problems for the birds present. Note that the numbers of birds are much lower
than in the 1990–1991 winter of Figure 4.1.

ulation there still will be a smooth relation between foraging intensity and
average stress level.

• An overall stress index should be dominated by the higher foraging intensities.
Low foraging intensities should contribute just a little. Three tidal periods
with a foraging intensity of 0.3, for instance, should be no problem compared
to a single period with an intensity of 0.9.

• The simplest way to realize such behaviour mathematically is to calculate the
square of all intensities and to add them (instead of adding the intensities
themselves).

This results into the following definition of a winter stress index σ.

σ =
1

number of tidal cycles

1−dec , 1−march∑
tidal cycles

(Foraging Intensity)2 , (4.1)

which is simply the mean square foraging intensity. The stress indices for the strong
winter in Figure 4.1 are 0.447 (OSW), 0.544 (OSC), 0.575 (OSN) and 0.414 (OSO)
with a weighted average of 0.503 (using the wintering number of birds as weights).
For the winter in Figure 4.2 these numbers are 0.128, 0.180, 0.177, 0.209 with a
weighted average of 0.173. The mortalities in these two winters amounted 7.0% and
0.8% respectively.

The definition in Equation (4.1) is clearly somewhat arbitrary. The stress index is a
number which is expected to be related to the real stress experienced by the birds.
Using the historical record of the Oosterschelde the stress index calculated for a
series of years can be calibrated against the mortality in those years. This gives us
an instrument for the interpretation of model results in terms of an increased risk
experienced by the birds.
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Chapter 5

Bird Parameters

Bird model parameters are present on the model parameter file. The order of the
variables on file is not important. The file is a TTUTIL (van Kraalingen & Rappoldt,
2000) input file.

5.1 Bird weight

For both Oosterschelde and Wadden Sea Zwarts et al. (1996c) give curves describing
the bird weight throughout the year. The bird weight in the model follows the
prescribed curve unless there is insufficient food intake. The data file contains a
weight for a series of day numbers ranging form 1.0 to 367.0.

SetPointTable =
1.0, 562.0, ! (-, gram)
31.0, 565.0,
60.0, 560.0,
91.0, 530.0, ! 31-3 october weight
244.0, 520.0, ! 31-8
274.0, 530.0, ! 30-9
305.0, 550.0, ! 31-10
335.0, 560.0, ! 30-11
367.0, 562.0

If “InitialWeight” is specified it is used, otherwise the weight is calculated from
the interpolation setpoint table above. For the energy requirements a “Minimum-
Weight” is used , also if the simulated weight is much lower (the birds in the model
never die).

!!!! InitialWeight = 500.0 ! commented-out initial weight (by ‘‘!’’)
MinimumWeight = 400.0 ! gram

5.2 Energy Requirements

There are two types of energy requirements: the costs of thermoregulation and
the metabolic requirements. Above a critical temperature, the metabolic expenses
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exceed the costs of thermoregulation and the bird does not have to spend additional
energy to remain warm. Below the critical temperature the costs of thermoregulation
requires additional heat production by the bird.

The costs of thermoregulation Et decrease with increasing temperature according
tot a linear relation

Et = a− Tb
in which T is the temperature in degrees Celsius. Kersten & Piersma (1987) give
values for the regression parameters. In the model these parameters are named
ThermoEquatOffs and ThermoEquatFact respectively.

Daily metabolic energy requirement Em is described by a power function in the form
(Zwarts et al., 1996a)

Em = aBirdMassb (5.1)

where parameter a is named FysiolEquatCons in the model and parameter b FysiolEquatPowr.
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Figure 5.1. Daily energetic requirement as function of temperature for three bird weights.

The birds energy requirement in the model is calculated as the maximum of Et and
Em. This is the energy requirement without body weight changes. Figure 5.1 shows
the daily energetic requirement as function of temperature for three bird weights.

5.3 Wet weight food intake

The fraction of digested prey actually taken up by the birds body is named FractionTakenUp
and has a value of 0.85

FractionTakenUp = 0.85 ! Speakman1987, KerstenVisser1996,
! KerstenPiersma1987, ZwartsBlomert1996

(Speakman, 1987; Kersten & Visser, 1996; Kersten & Piersma, 1987; Zwarts &
Blomert, 1996). Kersten & Visser (1996) give values for the maximum digestion
rate and the maximum stomach content.
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MaxDigestRateWtW = 378.72 ! 0.263 * 60.0 * 24.0 in gram WtW / day
MaxStorageWtW = 80.0 ! gram WtW

! The digestion rate is 0.263 gr WtW / min
! which is 4.38 mg WtW/s or 0.701 mg AFDW/s

Zwarts et al. (1996a) estimated a leftover fraction of 10% of the prey biomass is not
eaten by the bird but remains in the shell.
LeftOverKokkel = 0.10 ! ZwartsEnsKerstenEtAl1996
LeftOverNon = 0.10
LeftOverMossel = 0.10

5.4 Energy to and from body weight

Kersten & Piersma (1987) reported “body weight reserves” consisting for 85% of
fat, for 5% of dry protein and for 10% of water. With the energy content of fat and
dry protein from Smidt-Nielsen (1975) this leads to an energy content of 34.3 kJ per
gram body weight reserves.

The deposition efficiency is the factor between the body weight reserves and the
amount of energy needed to create them. Kersten & Piersma (1987) estimated a de-
position efficiency of 88% for Oystercatchers. De Groote (1974) reported deposition
efficiencies of 61%, 75% and 84% for domestic fowl. We used an efficiency of 75%
which implies that (4/3) × 34.3 kJ is needed per gram fat reserve. On datafile this
reads as
BodyGramEnergyCont = 34.295 ! 0.85 * 39.3 + 0.05 * 17.8 in kJ / gram
BodyGramEnergyReq = 45.66 ! kJ / gram 25% larger

The uncertainty in the deposition efficiency will have only minor effects on model
results. A seasonal increase in body weight of 50 g costs 50×45.66 = 2283 kJ with
an uncertainty of, say 200 kJ, which is the metabolic energy required for just about
eight hours of life (cf. Section 5.2).

In the model, the energy content of the liver serves as a buffer between energy intake
and structural body mass. The only function of this buffer is to prevent energy losses
due to conversion of small gains and losses to and from body mass. Therefore, the
precise values assumed for standard content and maximum content do not influence
any model result. The values below allow the liver content to fluctuate between 0
and 200 kJ which appears to be more than enough to realize the desired smooth
behaviour of the simulated bird weight.
BestLiverConKJ = 100.0
MaxLiverConKJ = 200.0

5.5 Cockle Functional Response Leo Zwarts

The functional response in WEBT ICS is a capture rate described as a Holling II
curve with a prey size dependent handling time. The form of this equation is

f(d, s) =
Ad

1 + λ(s)Ad
, (5.2)
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where f(d, s) is the functional response as a capture rate (number of prey per
second), d is the cockle density (m−2) and s is the prey size (mm). A is a re-
gression parameters and λ(s) the (effective) handling time as function of prey size,
also containing at least 1 regression parameter.

Zwarts et al. (1996b) give a review of functional response data for feeding on Cockles
from various sources. Assuming a handling time in the form λ(s)=B sC , a non-linear
fit on the capture rate yields (“leoA” is parameter A, etc)

leoA = 0.000860373
leoB = 0.220524
leoC = 1.79206

which implies (cf. Equation (5.2)) for the functional response

f(d, s) =
0.000860 d

1 + 0.0001897 d s1.792
, (5.3)

The fit explains 83% of the variance in the data, which is somewhat more than the
67% for the polynomial fit given in Zwarts et al. (1996b, Figure 16).
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Figure 5.2. Functional response data from Zwarts et al. (1996b) with regression lines
calculated with Equation (5.3) for Cockle sizes corresponding to Cockle weights of 20, 50,
200 and 400 mg (AFDW) (the same values used in Zwarts et al. (1996b, Figure 16)).

5.6 Cockle Functional Response Norris & Johnstone

Norris & Johnstone (1998) gives a detailed description of Oystercatchers foraging
on Cockles by hammering them. The model contains several regression lines for
handling times, wasted handling time, etc. These parameters have been included
in the Fortran program since it has little use to change them. The program section
can be found in Appendix D.

Figure 5.3 shows a comparison between uptake rates calculated with this model
and Equation (5.3) derived from the data given in Zwarts et al. (1996b). The high
uptakes calculated with Norris & Johnstone (1998)’s functional response are much
larger than the ones derived from Equation (5.3). This difference was confirmed by
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Figure 5.3. Uptake rate (gram Wet per minute) according to foraging model of Norris &
Johnstone (1998) compared with Equation (5.3) derived for data in Zwarts et al. (1996b).

John Goss-Custard (pers. comm. at EVA conference) who told us that the Norris &
Johnstone (1998)’s maximum intake rate (the “plateau” of the functional response)
deviates very much from all other values he has seen. Therefore, we no longer use
this function and all model results have been obtained with Equation (5.3).

5.7 Macoma Functional Response

Figure 5.4 shows the intake rate of Oystercatcher eating Macoma balthica as function
of the Macoma biomass density. The regression line for the intake rate (IR mg AFDW s−1)

IR(d) =
0.000625x

1 + 0.000213x
, (5.4)

where x is the biomass density in mg AFDW m−2.

The calculations inWEBT ICS are based on capture rates which are formally derived
from encounter rates and handling times. The capture rate CR corresponding to
Equation (5.4) is

CR =
0.000625x

1 + 0.000213x
× 1

1000×WetWeight× RatioAFDWtoWet
. (5.5)

Expanding the biomass density (in mg AFDW m−2) as x= d×1000×WetWeight×
RatioAFDWtoWet (cf. Section 6.8), where d is the macoma density, the capture
rate in Equation (5.5) becomes:

CR(d) =
0.000625 d

1 + 0.000213× d× 1000×WetWeight× RatioAFDWtoWet
,

which is equivalent to an encounter rate AMacoma given as

AMacoma = 0.000625 d (5.6)
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Figure 5.4. Functional Response of Oystercatchers feeding on Macoma balthica. The
Holling II curve is based on data in Bunskoeke et al. (1996), Hulscher (1982) and
Ens(pers. comm.). A fit with Macoma density on the horizontal axis has been published
by Hiddink (2003).

and an apparent handling time λMacoma of

λMacoma =
0.000213
0.000625

×
(
1000×WetWeight× RatioAFDWtoWet

)
.

The data in Figure 5.4 were collected in summer and autumn. In order to account
for the decrease of the energetic content of the prey during the winter, the handling
time λMacoma in calculated in the model for the initial prey weight WetWeightINI.
Hence,

λMacoma =
0.000213
0.000625

×
(
1000×WetWeightINI× RatioAFDWtoWet

)
. (5.7)

From Equations (5.6) and (5.7) the capture rate f(d) then becomes

f(d) =
AMacoma

1 +AMacoma × λMacoma
. (5.8)

Multiplying this by the prey weight we get the intake rate of the birds. The plateau
of the functional response reached for very high prey density is found by multiplying
1/λ by the ash free dry weight of the prey which gives

0.000625
0.000213

× WetWeight
WetWeightINI

.

This deviates from the plateau of Equation (5.4) by the weight ratio, which is of
course the consequence of using the initial weight of the prey in the handling time.

The datafile contains

hiddinkA = 0.000625
hiddinkB = 0.000213
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5.8 Combined Cockle Macoma Functional Response

At each spot various sizes of Cockles may occur in combination with Macoma balth-
ica. A combined functional response can calculated by adding as follows the terms
in the numerators of the various capture rates

fi(di, si) =
Ai di

1 +
∑n

i=1 λ(si)Ai di
, (5.9)

where i is the prey type counter. This equations implies that there is no preference
for specific types of prey. The capture rates and handling times determine the diet.

5.9 Mussel Functional Response

The bird distribution algorithm of the model will lead to a fraction of the birds
feeding on the virtual Mussel beds and the others feeding on Cockles and Macoma
balthica.

5.9.1 Oosterschelde

In case of the Oosterschelde area there is no information on mussel size available
(cf. Section 3.4.8). Goss-Custard et al. (2001, Figure 1) showed that the intake rate
of Oystercatchers feeding on mussel beds lies between 1.5 and 3 mg AFDW s1 and
is largely independent of prey density. In WEBT ICS a value of 2.5 mg AFDW s1 is
used. This figure, however, refers to relatively heavy Mussels in september. During
the winter the prey species lose weight and the maximum intake rate decreases
accordingly.

WEBT ICS keeps track of a numerical prey density at each spot in combination with
a prey weight. Therefore, the intake rate of Goss-Custard et al. (2001) has to be
converted into a capture rate which is done by using a dry mass of 850 mg of a “stand-
ard mussel” in september. This gives an effective handling time of 850/2.5=340 s,
equivalent to a maximum capture rate of 0.00294 s1.

Although normally no significant depletion takes place on Mussel beds the calcu-
lations have to be protected against negative prey densities. An encounter rate of
0.00057 m−2 s−1 leads to 95% of the maximum intake at a prey density of about
80 g AFDW m−2, which is a very low prey density for a Mussel bed. The resulting
capture rate becomes

f(d) =
0.00057 d

1 + 850mg
2.5 mg s−1 0.00057 d

(5.10)

It can be easily verified that for realistic Mussel densities this equation indeed leads
to a capture rate of nearly 0.00294 s−1. Multiplied by the september biomass the
maximum intake rate of 2.5 mg AFDW s−1 comes back, but with lower prey weight
in winter, the intake rate is reduced.

The datafile contains
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MosselSeptAFDWrate = 0.0025 ! gram AFDW per second (Goss-Custard)
StandardMosselAFDW = 0.85 ! gram (for 45 mm mussel in september)
MosselA = 0.00057 ! m^{2} s^{-1}

5.9.2 Wadden Sea

In case of the Wadden Sea the virtual spots contain seed mussels, consumption size
mussels or sizes in between. Hence, at least some size information is available (cf.
Section 3.4.9), which can be used in the functional response calculations.

Like in case of the Oosterschelde, the mussel intake is determined by the plateau of
the functional response curve for a large part of the practical mussel density range.
This plateau is given as function of mussel size by Zwarts et al. (1996b, Fig. 12B).
The encounter rate is calculated from the same value of the parameter MosselA which
has been used for the Oosterschelde region (see Section 5.9.1). The effective handling
time is then estimated by calculating the ratio between prey weight and maximum
intake rate (plateau value) for that prey size. The plateau value is calculated from
the formula in Zwarts et al. (1996b, Fig. 12B) using the initial (september) weight of
the prey. This leads to a slow decrease of the functional response during the winter.

The datafile contains

! functional response Mossel (WaddenSea, several types of Mossel)
! y = a x^b is intake rate (mg AFDW / s) as function of prey weight x (mg AFDW)
! so this is the plateau of the functional response as function of prey weight
! from Figure 12B ZwartsEnsDurellEtAl1996
MosselIntakeRateA = 0.092
MosselIntakeRateB = 0.506

5.10 Other prey

The program has the possibility to specify intake of “other” and unknown prey
species. By setting a non-zero value for one of the following variables

! OTHER preys
MinimumRateAFDW = 0.00 ! milligram AFDW per second
OtherPreysFraction = 0.10 ! uptake of unspecified preys (WtW only)

! as a fraction of the WtW uptake of regular preys

part of the intake is regarded as being from “other” prey. In case of a non-zero
MinimumRateAFDW each spot gets a minimum intake rate due to intake of “other”
prey. This option has not been used. By specifying a non-zero OtherPreysFraction
the contribution of other prey is set equal to a fraction of the intake of regular prey.
The contribution from the regular prey is reduced by the same amount, which implies
that the functional response is held constant. In this way, intake of other prey just
reduces the depletion rate of regular prey.

Clearly, these variables should be used with caution since there their values cannot
be justified by any empirical data. There may be reasons, however, to assume that
the birds feed to some extend on prey not included in the prey survey.
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5.11 Interference

Stillman et al. (2002) describes interference with help of an individual based foraging
model. For the Oystercatcher the results of this model are consistent with field
studies. The model can be simplified by fitting exponential curves through Stillman’s
relative uptake values. This has been described in detail in Appendix A.

! interference model for Oystercatcher-Cockle pair
! StillmanEtAl2002, Rappoldt2002A
KokkelAttackDistance = 2.0 ! (m)
KokkelInterferenceAlfa = 0.40 ! (-)
MosselAttackDistance = 2.4 ! (m)
MosselInterferenceAlfa = 0.125 ! (-)

5.12 High Tide Foraging

Stillman et al. (2000, after Goss-Custard, unpublished data) use a dry mass intake
rate of 0.53 mg s−1 for foraging in fields. This is less than the digestion rate, which
means that it cannot be very attractive for the birds. Stillman et al. (2000) mention
that this intake rate is fairly constant through the winter since there is no depletion
of prey and that interference effects are absent or negligible.

According to common experience, foraging outside the mudflats only takes place
during daylight under circumstances which seem difficult for the birds such as pro-
longed periods of high water levels. Therefore, in WEBT ICS , foraging outside the
mudflats takes place if

There are no mudflats exposed where the intake rate would be larger,

The average temperature during the last two tidal cycles is above 0◦C. Oth-
erwise the soil is assumed to become frozen,

There is daylight (the sun is above 0◦),

The foraging intensity (cf. Section 2.3.4 is above a threshold of 0.4, which
means that high tide foraging does not occur if the birds can easily feed on
the mudflats,

With a foraging intensity increasing from the threshold to 1.0, the average intake
rate increases linearly to 0.6 mg s−1.

On the datafile this becomes

NonMudThreshold = 0.4 ! intensity threshold
MaxNonMudIntakeRateAFDW = 0.6 ! mg AFDW per second

5.13 Intake reduction by ice

When the mudflats are covered with ice, the birds cannot reach their prey any more.
This happens during prolonged periods of cold weather which occur in some winters.
A quantitative description of the historical occurrence of ice is impossible due to a
lack of direct observations. Therefore we use a rough approximation of the effect:
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If the average temperature during the last two tidal cycles is below −5◦C, the birds
can no longer reach their prey. Between −5◦C and 0◦C, foraging increases linearly
to the ordinary level.

On the datafile this becomes

LowTempTable = ! correction of maximum foraging rate
-50.0 0.0 ! as function of average temperature
-5.0 0.0 ! is used with average temperature
0.0 1.0 ! of previous two tidal periods

+50.0 1.0
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Chapter 6

Prey Parameters

6.1 Cockle Fresh Weight

The Cockle fresh weight (shell + fresh flesh + water in the shell) at September-1
is read from an input file prepared by RIVO. This input file is based on the yearly
spring survey and corrected for death and growth of the various size classes during
the summer. Fresh weight increases a little in autumn and remains practically
constant through the winter period since loss of biomass is compensated for by a
larger amount of water inside the shell. During initialization of the program, the
fresh weights are converted to wet weights (Section 6.3) and to size (Section 6.7).
Wet weight is the weight of the uncooked, non-frozen wet flesh. Size is cockle length.

Fresh weights are further needed for evaluation of the simulated season at the end
of the program run and for calculating the number of cockles removed by fishing.

6.2 Age classes

In the “RIVO survey” cockle weights are given for four age classes, for 0-th year
(‘0j’), 1-st year (‘1j’), 2-nd year (‘2j’) and multiple year (‘mj’) cockles. The 0-th year
class, however, cannot be observed in May and therefore does not occur in the input
data corrected for summer growth. In reality the 0-th age class are late cockles of
the previous year and are treated therefore in the same way as the cockles classified
as 1-st year ones.

6.3 Fresh to Wet Weight conversion

During initialization of the program the wet weight (non-frozen, uncooked fresh
flesh) has to be calculated from the fresh weight measured in the RIVO survey.
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6.3.1 Cockle

The conversion for Cockles makes use of the following values (Kesteloo-Hendrikse,
2002a).
CockCookedToFW0j = 0.2067 ! (-)
CockCookedToFW1j = 0.1970 ! (-)
CockCookedToFW2j = 0.1701 ! (-)
CockCookedToFWMj = 0.1681 ! (-)

for the 0-th, 1-st, 2-nd and higher year class respectively. Here, the zero-th year
class refers to the new cockle generation. Hence, the last three numbers are used in
the model (cf. Section 6.2).

Conversion of cooked weight to the desired wet weight obviously requires an ad-
ditional parameter, RatioCookedToWet with value given by (Kesteloo-Hendrikse
(RIVO), pers. comm.).

RatioCookedToWet = 0.90

After converting to wet weight, the fresh weight and the wet weight during autumn
and winter are simulated independently using two different relative growth curves
(cf. Sections 6.4 and 6.5.1).

6.3.2 Macoma balthica

Wet weight WW (gram) is derived from fresh weight FW (RIVO survey in gram)
by means of

WW = A (FW )B (6.1)

with the regression constants from datafile
MacomaFWtoWtWA = 0.335 !!!!! = 0.0536 / RatioAFDWtoWet
MacomaFWtoWtWB = 0.917

This equation has been derived by taking an equation for the conversion of length
to fresh weight (Ens, pers. comm.)

FW(g) = 0.0000725 (Length(mm))3.34 , (6.2)

inverting it in order to calculate length from fresh weight

Length(mm) = 17.35 (FW(g))0.2994 , (6.3)

taking an equation for the conversion of length to prey dry weight (Zwarts, 1991,
Table 6, month 8)

AFDW(mg) = 0.008574 (Length(mm))3.063 , (6.4)

and combining the two equations into

AFDW(g) = 0.0536 (FW(g))0.917 (6.5)

which gives, after dividing by RatioAFDWtoWet (Section 6.8) the above datafile para-
meters.
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6.3.3 Mussel

For the conversion of Mussel fresh weight to wet weight a factor 0.20 is used. Since
WEBT ICS uses a standard Mussel size given by parameter standardMosselAFDW
(cf. Section 5.9), the fresh to wet weight conversion determines the number of these
“standard Mussels” allocated on the beds (fresh weight density is model input).
This numerical Mussel density affects the degree of depletion, which is normally
insignificant (Goss-Custard et al., 2001). In the model, depletion only takes place if
there is no other food available and the birds use the Mussel beds in exceptionally
high bird densities.

6.4 Cockle Fresh Weight change

For Mussel and Macoma no changes in fresh weight are considered.

Figure 6.1A shows monthly cockle weights for various parts of the Oosterschelde
area. The solid curve gives a weighted average. The data show the summer growth
of 1-st and 2-nd year cockles. Figure 6.1A uses a logarithmic scale and the vertical
distance between the various curves is more or less constant. This means that we
can approximate the fresh weight changes by means of a relative growth rate applied
to different initial weights.
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Figure 6.1. (A) Monthly values of fresh cockle weight in the Oosterschelde area (Kesteloo-
Hendrikse, 2002b). Time is given in years starting at 1-January of the year following the
“birth” of the cockles. (B) Least square fit of six third order polynomials on the weighted
average fresh weight for Oosterschelde (the solid curve in (A)). The curves (“ smoothed
cubic splines”) have been calculated for the time intervals [0.0,0.3], [0.3,0.6], [0.6,0.8],
[0.8,1.4], [1.4,1.6] and [1.6,1.84] using the Fortran library Math77 (subroutine SC2FIT based
on de Boor (1972, 1978))

The first step is to derive an approximate curve for for the weighted average in
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Figure 6.1A. The datapoints have been redrawn in Figure 6.1B as separate points
and a smooth curve has been fitted to the data. The relative growth rate is than
found by using d ln(w)/dt= 1/w d(w)/dt. Hence, the relative growth rate can be
found as the derivative of the logarithmic weight. Figure 6.2A shows the resulting
function.

The increase in fresh weight in autumn is rather small. Fresh weight increase has
been implemented in the model, however, in order not to overestimate the number
of fished cockles. The autumn growth (during September and October) for 1-st year
cockles amounts 8.5% following the curve in Figure 6.2A. For 2-nd year cockles this
is a mere 2.2%. For multiple year cockles (‘mj’) and a zero fresh weight increase in
autumn is assumed in the model.
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Figure 6.2. (A) Relative growth rate corresponding to the fit in Fig. 6.1B (B) Simulated
fresh weights using the relative growth rate from (A) and starting at three different initial
weights. The dashed lines are the original data from Fig 6.1A (now on a linear scale)

In the model the relative growth rate for fresh weight is actually found by linear
interpolation between a series of X-Y points read from the curve in Figure 6.2A.
The series of points on datafile looks like

FWrgrTable = ! Interpolation table for
0.00000 0.76146 ! relative growth rate (per year) as function of
0.50000E-01 0.74237 ! time expressed in years after 1-Januari of the
0.10000 0.85219 ! year after the "birth" of the cockles
0.15000 1.0909
0.20000 1.4586
0.25000 1.9551
0.30000 2.5806
0.35000 3.1412
. . . . . .
. . . . . .
1.6000 0.68574
1.6500 0.42501
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1.7000 0.22846
1.7500 0.09610
1.8000 0.02792
1.8356 0.01849

Relative growth rates calculated with this list have been used to simulate the fresh
weight curves in Figure 6.2B. The three curves have been calculated by just choosing
three different starting values (note the linear y-scale). The thin lines depict again
the Oosterschelde data from Figure 6.1A.

6.5 Wet Weight change

6.5.1 Cockle

The wet weight of the cockles is simulated using a start weight and a relative growth
rate. The relative growth rate depends on the time of the year and can be specified
in two ways, depending on the value of the variable CockleCurveType

CockleCurveType=’Klepper’. The curve used for wet weight is, up to a con-
stant factor RatioAFDWtoWet, equal to the curve for the ash free dry weight AFDW
given by Klepper (1989, Figure 7.2). This curve is shown in the form of points in
Figure 6.3A. The curve in the graph is a fitted function given by:

AFDW(t) = 0.0136285 Exp
[ 5.13146 t
1.28867 + t

+ 0.59952 sin(3.05164 + 2π t)
]
, (6.6)
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Figure 6.3. (A) Ash-free dry weight as function of time in years since 1-January 00:00 of
the year following the “birth” of the cockles. The “datapoints” have been read from the curves
given by Klepper (1989, Figure 7.3). The curve was fitted through the points and is given by
Equation (6.6). (B) Corresponding Relative growth rate with mathematical expression given
in Equation (6.7). This curve is used to calculate the wet cockle weight during the winter
starting from September,1. The unit of the relative growth rate is y−1. Numbers have to be
divided by the average length of a year (365.25 days) in order to get a relative growth rate
per day.

where t is the time in years since 1-January 00:00 of the year following the “birth”
of the cockles. The relative growth rate corresponding to the weight curve in Fig-
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ure 6.3A is
1

AFDW(t)
d AFDW(t)

dt
=

6.61274
(1.28867 + x)2 + 3.76689 cos(3.05164 + 2π x). (6.7)

Figure 6.3B shows a graph of this function. Using this relative growth rate function,
a weight curve can be constructed from any initial weight and from any start day.
This is what we do for the initial wet weights at 1-September.

The first period of autumn growth and winter weight loss in Klepper’s weight curve
is used for the 0-th and 1-st year class of the survey. The second one is used for all
higher year classes. No growth curve for higher year classes is available but after
1-September there is mainly loss of weight and it is assumed that this weight loss
takes place in the same way for class 2 and higher.

Note that the Equations (6.6) and (6.7) should NEVER be used for extrapolation
of the cockle weight or the cockle growth rate outside the range 0 < t < 2.4. This
leads to serious errors in the calculated weights.

CockleCurveType=’Tables’. As an alternative for Klepper’s curve the weight
loss can be specified as an interpolation function between day 1.0 and 367.0. This
requires specification of the following tables:

Wgain_0j_Table = 1.0, -0.00385, 367.0, -0.00385 ! (constant decrease)
Wgain_1j_Table = . . . . .
Wgain_2j_Table = . . . . .
Wgain_3j_Table = . . . . .

The unit of the relative growth rates in the tables is day−1.

6.5.2 Mussel

The decrease in Mussel weight given by Goss-Custard et al. (2001, Figure 2) cor-
responds to a fractional weight loss of about 0.0025 per day relative to the initial
(september) wet weight. On datafile:

StandardMosselWtWgain = -0.0025 ! gram per day per gram startweight
! (Figure 2 Goss-Custard for 45 mm mussel)

6.5.3 Macoma balthica

The same value as for Mussel has been used. On datafile:

MacomaWtWgain = -0.0025 ! mussel value taken

6.6 Prey death

Prey death by causes other than predation by birds and fishing is taken into account
as an additional monthly death rate of about 1% of the prey population.

This leads to
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CockleDeathRate = 0.00033 ! per day (1% per month)
StandardMosselDeathRate = 0.00033
MacomaDeathRate = 0.00033

Note that a death rate of 1% per month was also used by de Vlas (2002). The
results of the Cockle balance calculations in Rappoldt et al. (2003b, Figs. 3.14 and
4.2) suggest that 1% per month may be somewhat too small, but this does not
cause important deviations during the simulation of a single wintering season when
starting with measured stocks (Rappoldt et al., 2003b, Figs. 3.12 and 3.13).

6.7 Cockle Fresh weight to Length conversion

This conversion is needed to distinguish between cockles removed and not removed
by fishing. Cockle length is also a parameter of the functional response model
described in Section 5.5.

There are two sets of data available. In both cases the conversion is based on a
linear relation between the logarithm of the length ln(L) and the logarithm of the
fresh weight ln(W ), which is the same as a power law relation between L and W .

Kamermans & Kesteloo-Hendrikse (2001) report the regression equationW =0.7280L2.8108

where W is in milligram and L in mm. Inversion the equation and and expressing
W in gram gives

L = 13.0726 W 0.35577 (mm = a(gram)b) (6.8)
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Figure 6.4. Comparison between Equation (6.8) and Equation (6.9) for the calculation
of Cockle length from Cockle weight.

Another set of data (Ens, pers. comm.) has been described by the regression equa-
tion ln(W )=3.148ln(L)− 8.442 (units gram and mm). Inverting gives

L = 14.610 W 0.31766 (mm = a(gram)b) (6.9)

The data underlying Equations (6.8) and (6.9) may have been collected in different
areas or in different seasons. Figure 6.4, however, shows that the difference between
the two equations is probably of little importance.
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The regression parameters a and b (in L=a ×W b) are present on the input file as
the variables CockFWtoSizeA and CockFWtoSizeB respectively:

CockFWtoSizeA = 14.610 ! param a in: L = a FW^b (mm = a gram^b)
CockFWtoSizeB = 0.31766 ! param b in: L = a FW^b (mm = a gram^b)

6.8 Shellfish energy content

The ash free dry weight (AFDW) per gram wet weight and the energy content per
gram AFDW are given by (Zwarts et al., 1996b)

RatioAFDWtoWet = 0.16 ! -
AFDWenergyContent = 22.5 ! kJ / gram
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Chapter 7

Fishing Parameters

Fishing in WEBT ICS means removal of cockles from spots. The amount of cockles
landed in the various years are known and from the black box data a fished fraction
has been derived for each spot. Different “fishing methods” can be designed for
removing the fished cockles from the spots in the model.

7.1 Fishing method

Currently, two removal methods have been implemented, both “fixed date methods”.
Hence the fished amount is removed at a certain date, for instance at 1-October.
The fishing method is chosen on data file by

FishingType = ’FixedDatePerClass’ ! Fishing method ; one of these:
! NoFishing => No fishing
! FixedDatePerSpot => B Box data per spot
! FixedDatePerClass => B Box data per class

The option FixedDatePerSpot leads to fishing precisely as specified by the fished
area fractions derived from the black box data. There is no normalization. Hence
the actual amount removed may differ from the data on landed cockles.

The option FixedDatePerClass uses the exposure time data to make classes of spots.
For each class the black box fished areas are grouped into a fished area fraction for
that class. Then, within the class, fishing takes place at the richest spots. The class
width is set by the variable SpotClassSize as a percentage of exposure time.

The date at which the fishing takes place in the model is set by

FixedFishingDOY = 274.0 ! 1-October as fixed date for removal

Within the method FixedDatePerClass there are two ways of “fishing in a class of
spots” and the choice is made by setting PerClassOption in

PerClassOption = ’LevelOff’ ! FixedDatePerClass option for rich spot fishing
! LevelOff => reduce rich spots to some FW density
! Empty => reduction to zero of richest spots
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The option Empty empties all spots, starting with the richest, until the required area
fraction is reached. This usually leads to an overestimate of the fished amount and
the actual fishing is reduced in such a way that the landed amount is matched. The
option LevelOff leads to a reduction of the (average) cockle density in the richest
spots to a certain level. This level is calculated in such a way that the fished area
fraction for the class is matched. Then again the actual removal is normalized to
match the landed amount.

7.1.1 Threshold cockle size

The minimum width w of cockles catched is 19.62 mm (van Stralen, 1990, Minimum
length). The relation between Cockle width w and fresh weight W (van Stralen,
1990, length versus weight) is

W = 0.6162 w2.9582 (mg Fresh = a (mm)b) (7.1)

Equation (7.1) gives a minimum fresh weight of 4109 mg. With Equation (6.8) the
minimum length then becomes 21.61 mm. On datafile

ThresholdSize = 22.0 ! mm

7.2 Collateral damage

Collateral is described by two model parameters

DamageRemaining = 0.10 ! fraction dead of undersized cockles
FishingEfficiency = 0.95 ! landed fraction of removed cockles

The variable DamageRemaining describes the fraction killed of the undersized cockles.
The fraction of cockles killed during fishing (removed but not landed) is 1-FishingEfficiency.

The figures used here are rough estimates suggested by de Vlas (pers. comm.) during
a workshop in Yerseke. There is a lot of debate, however, about the damage done by
the suction dredge to the undersized shellfish and the figures used may be too low.
In that case the effect of fishing will be underestimated by the model. The required
food reservation calculated in Rappoldt et al. (2003a,b) will not be sensitive to the
error, however, since it is calibrated on the return of the birds in the next year.
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Appendix A

Stillmans interference curves
approximated with a
one parameter model

Summary

Statistical description of interference

Different types of dominant and subdominant behaviour of individuals will play a
role in the interference between the birds of a foraging flock. The overall result of
the process is not necessary complicated from a descriptive point of view, however.
Studying results of the detailed behavioural model of Richard Stillman, I observed
that the decrease of the average intake rate is very close to an exponential decrease.
An exponential decrease also results from a simple analytical model based on a
few assumptions. If the effect of interaction is proportional to the probability that
individuals come within a certain distance from each other, and if the distribution
of scattered individuals is random, at least at low densities, the probability of an
interaction depends exponentially on the value of the product ρ × D2

A, where ρ
is the density of the individuals and DA a characteristic distance belonging to the
interference process considered, Stillman’s attack distance for instance. The product
ρ × D2

A is dimensionless, which means that interference processes at very different
spatial scales are characterized by the same sort of values of this product. From the
very definition of the dimensionless quantity ρ×D2

A it can be immediately inferred
that a threshold bird density α95 (the density belonging to an uptake reduction
of 5%), will depend quadratically on the attack distance according to α95 ∝ D−2

A ,
which is precisely what Stillman found in his simulations.
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Introduction

Stillman et al. (2002) describes interference with help of an individual based for-
aging model in combination with rules for stealing prey. The resulting interference
strength is largely dominated by the so called attack distance, the distance between
a kleptoparasitic bird and its victim. The attack distance itself appeared to be a
function of the handling time of the prey.

Applying Stillman’s “quick prediction” in a food exploitation model is not as easy
as it looks like, however. Even using his parameter values for Oystercatcher and
Cockles for instance, we have nothing more than a graph describing the result of
theoretical calculations.

This note is an attempt to understand some of the relations Stillman et al. (2002)
give and to derive an approximate expression for their interference curves.

An approximate interference model

Stillman et al. (2002, Figure 2) show that the profitability of stealing is larger than
the profitability of independent foraging. This means that the presence of a suit-
able victim determines the frequency of kleptoparasitic behavior. And indeed, their
model results suggest that interference is largely determined by a distance, the at-
tack distance DA. If there is a dominant bird within attack distance a prey stealing
event takes place.

The distance to neighbouring birds is undoubtedly the result of a complicated game
played by dominant and subdominant birds. In the end, however, there must be
some relation with bird density. In a denser flock it will always be more difficult
to avoid a stealing neighbour than in a sparse one. In order to understand this a
little better, we start studying the statistical distribution of the nearest neighbour
distance D.

From distance distribution to interference model

Clearly, this distribution will depend on the average bird density ρ. In general, a 4
times larger bird density leads to 2 times smaller distances. Therefore it is advant-
ageous to use the product ρD2 as the stochastic variable instead of the distance D
itself. The (stochastic) D2 is multiplied by the average bird density ρ in order to get
dimensionless nearest neighbour distances, which are the same numbers for sparse
and dense flocks.

For mathematical reasons we multiply the dimensionless numbers by 2π and define
our dimensionless distance variable x with

x = 2πρD2.

The attack distance DA characterizes a certain predator-prey combination and cor-
responds to a dimensionless distance xA defined by

xA = 2πρD2
A. (A.1)
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Note that this xA becomes larger for increasing bird density, reflecting that a in-
creasing fraction of the distances comes within attack range.

In case of a random bird distribution, the dimensionless quantity 2πρD2 has a Chi-
square distribution with 2 degrees of freedom. The probability p that the actual
distance D is above the attack distance DA (and no stealing can take place) is the
same as the probability that x is larger than xA. It is given by an integral over the
probability density of x according to

p =
∫ ∞
xA

χ2(2, x) dx

where χ2(2, x) is the Chi-square probability density function of x with 2 degrees of
freedom. Although this looks complicated, after substitution of the equation for the
χ2 distribution, the integration is easy and

p = e−xA/2. (A.2)

We now associate p with the relative uptake U , the uptake divided by the uptake
without interference. However, this would leads us to U=p, which cannot be correct
for several reasons. In the first place the distances within attack range should refer
to subdominant neighbours, which will not always be the case. Secondly, prey
stealing events take place in time and their frequency cannot be described as a
static probability derived from a distance distribution. In an attempt to account for
these complications we put a “calibration constant” α in Equation A.2 and write

U(xA) = e−xAα/2. (A.3)

Note that Equation A.3 satisfies a few elementary conditions. For xA = 0, there
is no interference and the relative uptake is 1. For large values of xA the relative
uptake approaches zero. There are certainly many functions with this behaviour.
The exponential function, however, appears in the above analysis of distances and
it is interesting to see how far we can come with it.

The exponent in Equation A.3 may be seen as the actual argument of the relative
uptake function (here exponential). It is a dimensionless number and we therefore
call it the interference number I defined by

I = xAα/2 = πρD2
A α. (A.4)

This definition clearly implies
U(I) = e−I . (A.5)

The relative uptake as function of bird density

The shape of the uptake curves in Stillman et al. (2002, Figures 4a and 5a) is
compared with the approximate model derived above. The parameter α is found by
fitting the approximate model to Stillman’s curves.
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Figure A.1. The Oystercatcher-Cockle model results (black points) in Stillman et al. (2002,
Figure 4a) redrawn using a linear bird density axis. The straight line is given by Equation
A.6 using DA = 2.0m (Stillman et al. (2002, Table 3)) and α=0.40 (fitted to the points).

We begin with substituting Equation A.1 in Equation A.3. The resulting equation
predicts a simple exponential decrease with increasing bird density ρ. Using a lin-
ear horizontal axis for bird density and a vertical logarithmic axis for the uptake
reduction, we expect to find a straight line relationship between ρ and U .

U(ρ) = e−πρD
2
A α (A.6)

Figure A.1 shows the Oystercatcher model results in Stillman et al. (2002, Figure 4a)
as black points. The line is given by Equation A.6 with DA = 2.0m (Stillman et al.
(2002, Table 3)) and α=0.40, which was found by fitting the line to the Stillman’s
points.

The message of Figure A.1 is that the results of Stillman’s detailed foraging and
interference model can be described by means of a simple descriptive model in which
the main interference parameter of the Stillman’s model, the attack distance DA, is
retained and used in combination with one additional parameter, the fitted α.

Also the other curves in Stillman et al. (2002, Figures 4 and 5) appear to become
almost straight lines by using a linear density axis. Figure A.2 shows the points of
Stillman et al. (2002, Figure 5b) combined with exponential uptake lines calculated
for Stillman’s DA values and fitted α values. The α values used in the various lines
are given in Table A.1 where they are compared with values calculated in the next
section in a different way.

The 95% threshold density

Also in the approximate model the 95% threshold density is a function the attack
distance. This function is fitted to the threshold densities in Stillman et al. (2002,
Figures 6a and 7a). Further, values of α are derived from Stillman’s 95% thresholds
which are then compared to the ones found above.

According to Equation A.5 the uptake reduction U reaches 0.95 for interference
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Figure A.2. The Oystercatcher model results (black points) in Stillman et al. (2002, Fig-
ure 5b) with exponential uptake lines based on DA values from Stillman et al. (2002, Table 2)
and the fitted α values given in Table A.1.

Table A.1. α values found by fitting an exponential decrease through the model points in
Stillman et al. (2002, Figure 5b) compared with α values calculated from one uptake point,
the threshold densities at 95% relative uptake in Stillman et al. (2002, Figure 6a)

predator-prey case DA fitted α α from threshold
Oystercatcher & Large Spisula 3.6 0.242 0.251
Oystercatcher & Small Mussels 2.5 0.246 0.177
Oystercatcher & Small Spisula 1.7 0.335 0.367
Oystercatcher & Earthworms 1.5 0.234 0.212
Black-tailed godwit & Ragworms 1.7 0.293 0.277
Black-tailed godwit & Earthworms 0.8 0.283 0.328
Black-tailed godwit & Scrobicularia 0.7 0.180 0.228

number I = 0.05129. The corresponding threshold bird density ρ95 follows by re-
arranging Equation A.4 leading to

ρ95(DA) =
0.05129
πD2

A α
. (A.7)

This is an inverse quadratic function of the attack distance, which allows us to
determine an “overall” value for α from Stillman’s 95% threshold densities.

The points in Figure A.3 show these threshold densities (read from Stillman et al.,
2002, Figures 6a and 7a). The middle curve is the inverse quadratic function of
Equation A.7 with α= 0.212 as fitted parameter. This one parameter fit describes
73.3% of the variation in the points, which is slightly better than Stillman’s linear
fit with 2 parameters. The dashed curves in Figure A.3 give the function ρ95(DA)
for α=0.1 and α=0.4.

Also for each individual 95% threshold density a value for α can be calculated. This
means that for each predator-prey combination the exponential uptake function is
drawn through 1 point: the point at threshold density (ρ95, 0.95) (in combination
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Figure A.3. The 95% threshold density as function of the attack distance DA. The model
results (black points) were taken from Stillman et al. (2002, Figures 6a and 7a). The curves
have been calculated with Equation A.7 using three values of α: 0.10, 0.212 (fitted to the
points) and 0.40.

with the trivial point (0, 1)), whereas in Figures A.1 and A.2 the uptake function was
fitted through a series of uptakes values. The values of α obtained from Stillman’s
threshold densities will be denoted as α95 and are calculated as (e.g. Equation A.7)

α95 =
0.05129
πD2

A ρ95
. (A.8)

In Table A.1 seven out of twelve α95 values are compared with the α values obtained
in the previous section from the seven uptake curves in Stillman et al. (2002, Fig-
ures 5). There is a reasonable agreement between the two sets, which means that
the exponential uptake model works satisfactory: the exponent derived from a single
point (with just 5% uptake reduction) is about the same as the slope derived from
a series of points.

The 12 numbers α95 represent parameter values for the 12 predator-prey cases in
Stillman et al. (2002, Table 2). Since α summarizes the influence of a lot of paramet-
ers on the behaviour of Stillman’s interference model, we might ask if α is related in
a simple way to measurable properties of the predator-prey combination. A quick
search with the parameters in Stillman et al. (2002, Table 2) yielded a weak re-
lation with, again, the attack distance (see Figure A.4). It may be worthwhile to
investigate this a little better.

The strength of interference

In the approximate model Stillman’s “strength of interference” m1000 is calculated
as function of the attack distance. The result is compared to the m1000 values in
Stillman et al. (2002, Figures 6b and 7b).

According to Stillman’s definition the strength of interference derived from Equa-
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Figure A.4. α values calculated from the 12 threshold densities in Stillman et al. (2002,
Figures 6a and 7a) plotted as function of the attack distance DA. The decrease is not
significant.

tion A.6 becomes (1000 birds ha−1 is 0.1 m−2)

m1000(DA) = − ρ
U

dU
dρ

∣∣∣
ρ=0.1

= πρD2
A α
∣∣∣
ρ=0.1

= 0.1πD2
A α (A.9)

Note that this is precisely the interference number I at a bird density of 1000 ha−1.
Equation (A.9) predicts a quadratic relation between the strength of interference
and the attack distance (if α is not correlated with the attack distance for the cases
considered).

For Stillman’s 12 predator-prey cases we calculated m1000 from Stillman’s attack
distances and the α95 values derived from the threshold densities in the previous
section. Figure A.5 shows the result as function of the attack distance. The most
striking difference with Stillman et al. (2002, Figure 7) is that the values predicted
by the exponential model are smaller, especially for the larger attack distances.

In order to understand this we have to realize that m1000 is the slope of the relative
uptake curve (at ρ= 1000) on double logarithmic paper. Apparently, these slopes
are steeper in Stillman’s detailed model than in the approximate exponential model.
This probably is a real difference between the two models. For larger densities the
relative uptake curve tends to be a little steeper than predicted by the exponential
model on the basis of the threshold bird density (cf. Figures A.1 and A.2).

Discussion

The usefulness of a simple exponential interference model depends on the purpose of
the calculations. In a specific situation, like in the Oystercatcher-Cockle case (Fig-
ure A.1), the approximation is sufficiently accurate and does not require simulations
of the foraging process. The approximate model still requires, however, a value of α
fitted to either field data or results of a detailed foraging model.

WEBT ICS documentation 1.1 85



0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

attack distance (m)

st
re

ng
th

 o
f i

nt
er

fe
re

nc
e 

m
10

00
 (-

)

Figure A.5. The strength of interference m1000 as function of the attack distance (at
ρ = 1000) calculated with Equation A.9 using the attack distances DA from Stillman et al.
(2002, Table 2) and the α values derived from 95% threshold densities. The regression line
is given by −0.199 + 0.251DA.

It is interesting to speculate on out why the 95% threshold density in the model
fits so well to Stillman’s results and the strength of interference fails to do so. The
exponential expression in Equation A.5 can be replaced by any function that con-
tinuously decreases from 1 to 0 on [0,∞]. As long as the uptake reduction depends
solely on I there is a single value of I at which 95% uptake is reached. This single
value implies the quadratic behaviour of ρ95 in Equation A.7. Hence, the fit with
Stillman’s data is independent of the precise shape of the relative uptake curves, as
long as it is a unique function of I.

This does not hold for the strength of interference as function of DA. That relation
does depend on the shape of the uptake reduction function since it is the slope of
the relative uptake on double logarithmic paper. One of the reasons for

Values of α can also be calculated from the m1000 values in Stillman et al. (2002,
Figure 6b). This means, however, that α is found from the slope at ρ=1000 and we
should realize that we want approximate uptake values rather than slopes of uptake
curves. Therefore we estimated α values from uptake curves and from threshold
densities (points on uptake curves).
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Appendix B

Model parameter file

The datafile given here contains the parameters discussed in Chapters 5, 6 and 7.
The file below is the one used for the historical runs in the period 1990–2001.

The datafile is a TTUTIL (van Kraalingen & Rappoldt, 2000) input file. Every
value is identified with a name and the order of the variables on datafile is arbitrary.
Values can be either a character string, an integer value, a real value, a date or time,
or a logical value. Note that anything behind an exclamation mark is comment
added to the datafile.

! BIRD parameters (for current input reading same for all areas)
! ===============
! bird weight
! weight set point during the year as function of day number [1,367]
!
! Oosterschelde (Fig 15) ZwartsHulscherEtAl1996
!
SetPointTableOS =

1.0, 562.0, ! (-, gram)
31.0, 565.0,
60.0, 560.0,
91.0, 530.0, ! 31-3 october weight
244.0, 520.0, ! 31-8
274.0, 530.0, ! 30-9
305.0, 550.0, ! 31-10
335.0, 560.0, ! 30-11
367.0, 562.0

!
! Wadden Sea (Fig 15) ZwartsHulscherEtAl1996
!
SetPointTableWS =

1.0, 615.1 ! average of january and december
16.0, 617.7 ! average of december and february
46.0, 623.0
75.0, 575.3
106.0, 566.3
136.0, 540.0
167.0, 529.7
197.0, 535.2
228.0, 550.0
259.0, 547.8
289.0, 555.7
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320.0, 593.7
350.0, 612.4
367.0, 615.1 ! average of january and december

! InitialWeight = 500.0 ! read from table unless activated
MinimumWeight = 400.0 ! gram (technical limit, bird is dead)

! energy requirement
!
FysiolEquatCons = 0.061 ! param a in: KJ/day = a (gram)^b ZwartsEnsKerstenEtAl1996
FysiolEquatPowr = 1.489 ! param b in: KJ/day = a (gram)^b ZwartsEnsKerstenEtAl1996

ThermoEquatOffs = 904.0 ! (kJ / day) KerstenPiersma1987
ThermoEquatFact = 30.3 ! (kJ / day / deg) KerstenPiersma1987

FractionTakenUp = 0.85 ! Speakman1987, KerstenVisser1996,
! KerstenPiersma1987, ZwartsBlomert1996

MaxDigestRateWtW = 378.72 ! 0.263 * 60.0 * 24.0 in gram WtW / day KerstenVisser1996
MaxStorageWtW = 80.0 ! gram WtW KerstenVisser1996

! The digestion rate is 0.263 gr WtW / min
! which is 4.38 mg WtW/s or 0.701 mg AFDW/s

BestLiverConKJ = 100.0 ! buffer between body weight and daily intake + usage
MaxLiverConKJ = 200.0 ! buffer between body weight and daily intake + usage

BodyGramEnergyCont = 34.295 ! 0.85 * 39.3 + 0.05 * 17.8 in kJ / gram
BodyGramEnergyReq = 45.66 ! kJ / gram 25 % larger ?????? $$$$$

LeftOverKokkel = 0.10 ! ZwartsEnsKerstenEtAl1996
LeftOverNon = 0.10
LeftOverMossel = 0.10
LeftOverothers = 0.00 ! n.v.t.

! functional response
FRtype = ’LeoZwarts’ ! type of functional response

! LeoZwarts => regression from Leo Zwarts data
! Norris&Johnstone => NorrisJohnstone1998

!
! CaptureRateN = 0.000860373 * density /
! (1.0 + 0.220524 * Size**1.79206 * 0.000860373 * density)
!
leoA = 0.000860373 ! based on data in ZwartsEnsDurellEtAl1996
leoB = 0.220524 ! fit in Matematica notebook C. Rappoldt 2002
leoC = 1.79206 ! density (#/m2) ; Size (mm) ; CaptureRate (#/s)

! functional response Macoma (OS run 60 and higher, alle WZ runs)
hiddinkA = 0.000625
hiddinkB = 0.000213

! functional response Mossel (Oosterschelde, 1 type of Mossel)
MosselSeptAFDWrate = 0.0025 ! gram AFDW per second (Goss-Custard)
MosselA = 0.00057 ! estimated by assuming 95% of max uptake at

! 80 gram AFDM/m2 (= 80.0/StandardMosselAFDW) #/m2 (Goss-Custard Fig 1b)
! max capture rate (MosselSeptAFDWrate/StandardMosselAFDW)
! which implies handling time h=(StandardMosselAFDW/MosselSeptAFDWrate)
! =340 seconds
! Then MosselA=0.95/0.05/h/(80.0/StandardMosselAFDW)=
! (0.95*MosselSeptAFDWrate)/(0.05*80)=0.00057 (m2/s)

! functional response Mossel (WaddenSea, several types of Mossel)
! y = a x^b is intake rate (mg AFDW / s) as function of prey weight x (mg AFDW)
! so this is the plateau of the functional response as function of prey weight
! from Figure 12B ZwartsEnsDurellEtAl1996
MosselIntakeRateA = 0.092
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MosselIntakeRateB = 0.506

! OTHER preys
MinimumRateAFDW = 0.00 ! milligram AFDW per second
OtherPreysFraction = 0.10 ! uptake of unspecified preys (WtW only)

! as a fraction of the WtW uptake of regular preys

! non-mudflat uptake
NonMudThreshold = 0.4 ! intensity threshold
MaxNonMudIntakeRateAFDW = 0.6 ! mg AFDW per second

LowTempTable = ! correction of maximum foraging rate
-50.0 0.0 ! as function of average temperature
-5.0 0.0 ! is used with average temperature
0.0 1.0 ! of previous tidal period

+50.0 1.0

! interference model for Oystercatcher-Cockle pair
InterferenceType = ’ApproximateStillman’

! interference model for Oystercatcher-Cockle pair
KokkelAttackDistance = 2.0 ! (m) StillmanEtAl2002
KokkelInterferenceAlfa = 0.40 ! (-) Rappoldt2002A

! interference model for Oystercatcher-Mossel pair (used for Oosterschelde vanaf 60)
MosselAttackDistance = 2.3 ! same as for WaaddenSea consumption size
MosselInterferenceAlfa = 0.210 !

! interference model for Oystercatcher-Mossel pair (used for WaddenSea)
MZaadAttackDistance = 2.5 ! (m) StillmanEtAl2002 for small mussels
MZaadInterferenceAlfa = 0.254 ! (-) regression on Stillman’s model results
MHalfAttackDistance = 2.5 ! (m) StillmanEtAl2002 for small mussels
MHalfInterferenceAlfa = 0.254 ! (-) regression on Stillman’s model results
MconsAttackDistance = 2.3 ! (m) StillmanEtAl2002 for large mussels
MconsInterferenceAlfa = 0.210 ! (-) regression on Stillman’s model results

! Reduced intake rate during "Above Digestion Rate" time window
RIRandSpread = .true. ! reduce intake rate and spread birds
RIRoffsetTime = 1.0 ! (hour) time offset after reaching ADR time window

! measuring the numerical response
NumRespWindow = 1.0 ! hour (around time of low tide)

! PREY parameters
! ===============
! Wet weight change
CockleCurveType = ’Klepper’ ! option for Wet Weight change

! Klepper => use Klepper’s curves for relative rates
! Tables => use interpolation table below

! this interpolation table (Relative_Growth_Rate (per day) versus Day_Of_Year DOY)
! gives a factor 0.5 loss in 180 days
Wgain_0j_Table = 1.0, -0.00385, 367.0, -0.00385 ! table for 0j cockles
Wgain_1j_Table = 1.0, -0.00385, 367.0, -0.00385 ! table for 1j cockles
Wgain_2j_Table = 1.0, -0.00385, 367.0, -0.00385 ! table for 2j cockles
Wgain_mj_Table = 1.0, -0.00385, 367.0, -0.00385 ! table for mj cockles

! Fresh weight change
FWrgrTable = ! Interpolation table for

0.00000 0.79129 ! relative growth rate (per year) as function of
0.50000E-01 0.75207 ! time expressed in years after 1-Januari of the
0.10000 0.84790 ! year after the "birth" of the cockles
0.15000 1.0788
0.20000 1.4448
0.25000 1.9458

WEBT ICS documentation 1.1 89



0.30000 2.5819
0.35000 3.1536
0.40000 3.4613
0.45000 3.5051
0.50000 3.2849
0.55000 2.8008
0.60000 2.0527
0.65000 1.2773
0.70000 0.71118
0.75000 0.35434
0.80000 0.20679
0.85000 0.17182
0.90000 0.15276
0.95000 0.14959
1.0000 0.16233
1.0500 0.19097
1.1000 0.23550
1.1500 0.29594
1.2000 0.37228
1.2500 0.46452
1.3000 0.57266
1.3500 0.69670
1.4000 0.83664
1.4500 0.94189
1.5000 0.96179
1.5500 0.89635
1.6000 0.74555
1.6500 0.56408
1.7000 0.40655
1.7500 0.27297
1.8000 0.16333
1.8500 0.77636E-01
1.9000 0.15888E-01
1.9500 -0.21916E-01
2.0000 -0.35774E-01
2.0500 -0.30909E-01
2.1000 -0.12536E-01
2.1500 0.19344E-01
2.2000 0.64731E-01
2.2500 0.12363
2.3000 0.19603
2.3500 0.28193
2.4000 0.38135
2.4500 0.45748
2.5000 0.47353
2.5500 0.42949
2.6000 0.32538
2.6500 0.16118
2.7000 -0.63101E-01
2.7500 -0.25644
2.8000 -0.32782
2.8500 -0.27724
2.9000 -0.10469
2.9178 -0.13815E-01

! conversion FreshWeight to Size
! using ln(FW) = 3.148 ln(Size) - 8.442 (Ens, Personal Communication)
! (which leads to B=1/3.148=0.3177 and A=EXP(8.442/3.148)=14.61)
!
CockFWtoSizeA = 14.610 ! param a in: L = a FW^b (mm = a gram^b)
CockFWtoSizeB = 0.31766 ! param b in: L = a FW^b (mm = a gram^b)

! conversion FreshWeight to WetWeight
CockCookedToFW0j = 0.2067 ! (-) KestelooHendrikse2002A
CockCookedToFW1j = 0.1970 ! (-) ,,
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CockCookedToFW2j = 0.1701 ! (-) ,,
CockCookedToFWMj = 0.1681 ! (-) ,,
RatioCookedToWet = 0.94 ! (-) Kesteloo (metingen 12 december 2002)

! Mossel conversion for WaddenSea FreshWeight (gram) to Size (mm)
! using Size(mm) = a FW^b (values inverse of mean curve Ens, pers.comm)
MosFWtoSizeA = 19.6929
MosFWtoSizeB = 0.333968

! Mossel conversion to wet weight
! using BMindex (Rob Dekker, Bert Brinkman)
! this is gram ADW / L^3 (L in mm)
! value for september is mean of august and oktober values
MosBMindexSept = 5.82E-06

! conversion Macoma FreshWeight to Length (Bruno Mokbaai data, studentenverslag)
! FW(gr) = a L(mm)^b : a=7.25E-5 b=3.34
! L(mm) = A FW^B : A=17.35 B=0.2994
!
MacomaFWtoSizeA = 17.35
MacomaFWtoSizeB = 0.2994

! conversion Macoma Length to AFDW weight (Leo proefschrift Table 6, month 8)
! ln(mg) = -4.759 + 3.063 ln(mm) ==>
! mg = 0.008574 * mm^3.063 ==> (combined with FreshWeight to Length)
! mg = 0.008574 * (17.35 FW^0.2994)^3.063
! mg = 53.600 * FW^0.917 (mg AFDW)
! gram = 0.0536 * FW^0.917 (gram AFDW)
! gram = (0.0536 / RatioAFDWtoWet) * FW^0.917 (gram WtW)
!
MacomaFWtoWtWA = 0.335 !!!!! = 0.0536 / RatioAFDWtoWet
MacomaFWtoWtWB = 0.917

! natural death rate Cockles
CockleDeathRate = 0.00033 ! per day (1% per month)

! prey energy content
RatioAFDWtoWet = 0.16 ! - ZwartsEnsDurellEtAl1996
AFDWenergyContent = 22.5 ! kJ / gram ZwartsEnsDurellEtAl1996

! standard mossel parameters (Oosterschelde)
! volgens Waddenzee data (variabelen MosFWtoSize en MosBMindexSept)
! komt de standaard mossel van 0.85 gr AFD overeen met 19 gram FW ; 52 mm
! dat levert een WtW/FW verhouding van (0.85/0.16) / 19 = 0.28
StandardMosselAFDW = 0.85 ! gram (Goss-Custard for 45 mm mussel in september)
StandardMosselWtWtoFW = 0.28 ! rough estimate for september

! weight gain and death rate
MosselWtWgain = -0.0025 ! gram per day per gram startweight
! (Figure 2 Goss-Custard for 45 mm mussel)
MosselDeathRate = 0.00033 ! per day (1% per month)
MacomaWtWgain = -0.0025 ! mussel value taken
MacomaDeathRate = 0.00033 ! per day (1% per month)

! FISHING parameters
! ==================
FishingType = ’FixedDatePerClass’ ! Fishing method ; one of these:

! NoFishing => No fishing
! FixedDatePerSpot => B Box data per spot
! FixedDatePerClass => B Box data per class

PerClassOption = ’LevelOff’ ! FixedDatePerClass option for rich spot fishing
! LevelOff => reduce rich spots to some FW density
! Empty => reduction to zero of richest spots
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SpotClassSize = 5.0 ! percentage of exposed time fraction
GhostCorrection = .false.

FixedFishingDOY = 274.0 ! 1-October as fixed date for removal
ThresholdSize = 22.0 ! mm

DamageRemaining = 0.10 ! fraction dead of undersized cockles
FishingEfficiency = 0.95 ! landed fraction of removed (or killed) cockles
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Appendix C

The power of a linear trend test

J. van der Meer

Royal Netherlands Institute for Sea Research,
PO 59, 1790 AB Den Burg, The Netherlands.

A trend is fitted by a simple linear (least-squares) regression. Since the test of the
regression slope is, in fact, a one-sample t-test, the power can be relatively simply
calculated by using the cumulative Students t-distribution function (TCF(n, t), with
n degrees of freedom), where the effect size d is expressed as the size of the trend
(the slope of the regression) divided by its standard error (which follows from the
estimated error variance and the number points n).

The power P belonging to a certain significance level α is the probability that a
true effect d (the average effect over many experiments) is actually detected as a
significant slope in a one-sample t-test. With a significance level α corresponds a
two-sided t value of tα, say. Then the probability P that a value drawn from a
t-distribution around d lies either above tα or below −tα becomes

P = 1.0− TCF(n− 2, tα − d) + TCF(n− 2,−tα − d) (C.1)

The type-ii error is the probability that the statistical test with significance level
tα does not lead to a significant result although there actually is an effect of size d.
Hence, the type-ii error is equal to 1− P .
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Appendix D

The Norris & Johnstone
functional response

This is a Fortran program section. It is probably a better summary of Norris & John-
stone (1998)’s method than a more abstract description. The original paper is not
easy to read and a it is somewhat questionable wether or not a unique transcription
into a program text is possible or not. Therefore just the source code.

BillTipWidth = 0.179 ! cm
BillTipLength = 1.1 ! cm
ProbingRate = 5.5 ! s^-1
ReductionInSitu = 0.438 ! -
ReductionWasteInSitu = 0.266 ! -
OpenedFractionInSitu = 0.75 ! -

TakenList = (/1.000, 1.000, 1.000, 1.000, 0.773, 0.024/)

ShellArea(ip) = (0.479 * Prey(ip)%Size**2.003) / 100.0
TouchArea(ip) = BillTipWidth * BillTipLength + ShellArea(ip) + &

2.0 * (BillTipWidth + BillTipLength) * SQRT(ShellArea(ip)/PI)
EncounterRate(ip) = ProbingRate * Prey(ip)%Number * TouchArea(ip) / 10000.0
CockleSizeClass(ip) = (Prey(ip)%Size + 2.5) / 7.0
ProbTaken(ip) = TakenList(MIN(NINT(CockleSizeClass(ip)),5))
HandlingTimeCarried(ip) = 3.339 + 8.615 * CockleSizeClass(ip)
WasteHandlingTimeCarried(ip) = 22.380 - 3.015 * CockleSizeClass(ip)

if (Prey(ip)%Size > 22.0) then
ProbCarried(ip) = 1.0

else
ProbCarried(ip) = 0.441

end if

OpenedFractionCarried(ip) = 1.0 / (1.0+Exp(0.384*CockleSizeClass(ip)-2.57))
OpenedFraction(ip) = ProbCarried(ip) * OpenedFractionCarried(ip) + &

(1.0-ProbCarried(ip)) * OpenedFractionInSitu
HandlingTime(ip) = HandlingTimeCarried(ip) * &

(ProbCarried(ip) + (1.0-ProbCarried(ip)) * ReductionInSitu)
WasteHandlingTime(ip) = WasteHandlingTimeCarried(ip) * &

(ProbCarried(ip) + (1.0-ProbCarried(ip)) * ReductionWasteInSitu)

denom = denom + EncounterRate(ip) * (HandlingTime(ip) * OpenedFraction(ip) + &
(1.0-OpenedFraction(ip)) * WasteHandlingTime(ip)) * ProbTaken(ip)
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! eaten numbers and wet weight per bird per day (day as unit of time)
do ip=1,np

Prey(ip)%EatenN = EncounterRate(ip) * OpenedFraction(ip) * &
ProbTaken(ip) / denom * 86400.0

Prey(ip)%EatenWtW = Prey(ip)%EatenN * Prey(ip)%WetWeight
end do
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