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INTRODUCTION

A group of trees on a certain area that can be considered a sylvicultural as
well as an administrative unity will be called a stand.
Estimation of the volume of standing timber is necessary for many purposes.

We will mention some of these:

1. One of the principal objects of sylviculture is the production of the largest
possible quantity of valuable timber. The estimation of the volume is
necessary to compare the effects of different sylvicultural treatments (es-
tablishing, thinning, rotation).

2. The long duration of the production necessitates periodical estimations of

the standing timber in order to regulate the annual felling.

. We also require an estimate to predict the price of timber to be sold.

. The total volume of the standing timber of a country is important for the
national economy and therefore periodical inventarisation is required to
estimate this volume,

5. Determination of the increment of the standing timber is very important to

judge whether the profit of the management is satisfactory or not. Iis
estimation is closely related to that of the volume.

PV

An obvious method of estimation is to determine the volume of each separate
tree, after which the total volume can be found by addition. The estimation of
the volume of a single tree is usually done by measurement in sections. This
method, however, takes so much time and is in consequence so expensive, that
it can not be used in forestry practice. Qur aim should be a simplification.

Let the trees of a certain stand possess a measurable property of interest A,
whose determination takes much time. Apart from A the trees possess one or
more other properties b whose determination is quick and simple. If a known
functional relation exists between b and A, it is sufficient to measure only b and
to determine A by the functional relation.

As a rule a functional relation does not exist. In many cases however the
following assumptions hold:
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1. For each fixed value of b there exists a random variable A = A) with
expectation E(Ap). The experimental data are values which A takes.

2. The function g: b—E(A), that defines the relation between b and E(A)
belongs to a class of simple functions.

The problem to find the best function g, given a large number of obser-
vations, is a regression problem.

The knowledge we need about A is sufficiently covered by E{Ap) and the
distribution of b. If E(Ay) = g(b) is known, then the procedure can be limited
to measuring b.

As an example we mention the volume tables, in which the expectation of the
volume Y can be found for values of two or more easily measurable properiies
of the tree (e.g. diameter at breast height (d1.3¢) and total height (h)). It may
be recalled that a (volume) table can be considered an expression for a function.

In order to construct a volume table the measurable quantities V, dy 30 and
h of a great number of trees of a certain wood species are determined, and then
a function is fitted.

The way of fitting this function, i.e. thc construction of the tables, can differ,
(See e.g. Kuiper (1954)). In forestry very often the so called form factor method
is used, which will be briefly outlined here.

From the explanations of the concept “form” that are given in foresiry
literature, we may conclude that this term is not identical with “form™ in the
geometrical sense (geometrical multiplication). In forestry a tree is always
considered a solid of revolution. The following deﬁmtlon of form in forest
mensuration covers the usual interpretation.

Two trees B and B” have the same form if the coordinates (x;', Xz’, x3") of the
points of B’ are found from the coordinates (x1, X2. x3) of the points of B by
the following transformation.

x1’ = px1 4+
Xo' = Pxz + g2
xg' = X3 + g3

(X1, Xz Tesp. X1’, X2’ are the horizontal coordinates and xg resp. xg the vertical
coordinate).

Let g be the area of the horizontal cross section at height (1-k)h 0< k<7 1.

As fe=V-(gzh)™! is the same for trees of the same “form”, this quantity
is considered characteristic for form, and is called the normal form factor.

However, without affecting the invariance of the normal form factor we may
use a definition of form more general than the preceding:

B and B’ (see above) have the same “form™ if:
X" = pix1 + quxe + rixa + s1
xg' = pgx1 -+ qoXs 4 T2X3 4 83
xg' == TsXs 1 s3

The proof of the equality of the form factors of B and B’ is as follows:
PLqin

pzqzr2i.V
00 rg

The volume of B'is V' = = 13(p1qz — q1p2)V.
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The total height of B’ is h' = rgh, and the area of the cross section at
height (1-k)h' is: g = (p1gz ~ qipz)g.

Consequently fi’ = V' (g'h’)1 = V(gh)l = fx. Hence we see that the
normal form factor is invariant under many transformations of the tree.

In case the trees of a certain wood species all have the same “form™, fi is a
useful quantity. If fr is known, the measurements can be confined to h and gy,
and then the estimated volume is V = h.gx-fi.

The height of the cross section (gx) however, varies with the height of the
tree. It is much simpler and quicker to measure diameters at a convenient
constant height, As a consequence of this the diameter at breast height (dbh)
was introduced. (In many countries dbh is measured at 1.30 m above the
ground). In analogy with the procedure for the normal form factor the volume

is calculated with V = % (d1.50) h I1.30.

Research workers often occupied themselves with the number fi gp. They
found f;.3q to be dependent on dj 3¢ and h, and in some cases on h only.

The formula fj 50 = (d1.30) 2-di2-fic is frequently mentioned in forestry
literature.

The form factor is obtained and used as follows:

For a great number of trees, V, d; 3o and h are determined. For every tree
fi.30 = V(g1.30 b1 is computed. Then a simple function giving the relation
between the expectation of f1.30, d1.30 and h (or of f1.30 and h) is fitted.

With the estimated expectations of fi g0 for fixed values of dj 30 and h, the
volume is estimated. It is remarkable that fi go is also called “form factor”,
although any notion of constant form is absent here, It seems to us that the
value of this so called form factor method is generally overestimaied,

According to another well known method, the expectation of V is considered
a function of the quantities dy, d1.30 and h. In particular the number g =
= dp-(d1.30) 1 is used'). This number is supposed to be a better characteristic
for “form” and is called “formguotient”. It seems that one and the same
function holds approximately for many species; on the other hand a better fit
can be obtained when one restricts oneself to one species.

In case a volume table is available the total volume of the stand can be found
by measuring dj 30 and h of each tree. This is still too laborious and further
simplification is necessary. As a height measurement takes much more time
than a diameter measurement (according to recent investigations of the Forestry
Research Institute of the University of Wageningen resp. 1.01 min and 0.109
min.) we have to limit the height measurements. First of all we replace the
complete measurements of all heights by a regression function di,z0 —h, which
is graphically obtained (height curve).

In many cases the fitting can be considerably simplified by a transformation
of scales. Logarithmic transformation (single or double logarithmic graph
paper) generally enables one to fit a straight ling, for example

h=alogdizo + b (HENRIKSEN)
logh =alogdyao + b (STOEFELS) -
1) n (# 1.30) indicates the constant height above the ground at which dn is measured,
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(In case linearity can be assumed, a rather small number of points suffices
to obtain a fairly good fit).

The height curve is found to be almost the same in stands of a certain wood
species with the same hg and average diameter d. In other words d and hg
determine the so called standard height curve. Height measurements are then
limited to 4-10 measurements of hg.

Instead of standard height curves also standard volume curves are used.
KorEzKY and GEHRHARDT take for example a linear relationship between
(d1.30)%2 and V in a stand. SPIECKER and VON LAER, constructed relevant
tables (1951).

BERKHOUT (1920) introduced the formula V = yd®, in which B is constant
for a certain species, and y a number that depends on the stand. SToFFeLs (1953)

using BErkHOUTs formula, with v however as a function of d and h, also
constructed tables.

In all methods discussed so far we assumed that the diameiers of all trees
are measured. We can achieve a further simplification if we take sample plots
over the area and estimate the volume pro ha within those plots in one of the
ways described above. The average of these estimates is used as an allround
estimate of the volume pro ha.

The marking out of plots however, takes much extra time. Consequently this
method will only be more efficient if the cruising percentage is small enough
(in practice mostly <20 %;).

The method which we will consider is as follows:

Let S(N) and S(¥) be estimates of N and v (the number of trecs pro ha and

the average volume per tree resp.). As the volume V pro ha equals V=NV,
an estimator of Vis1); _
SV) = SMN) §(v)

If one (more) tree(s) with the average volume v is (are) known, for example
recognised by a particular diameter, then S(v) can be found by measuring the
volume of this (these) tree(s) (model tree(s)).

Until now §(¥) has been determined mainly as vy, the volume of the tree
with the average basal area. (If a linear relation between v and d? (KOPEZKY-
GEHRHARDT) holds v = vg). This requires the determination of d; = n~1Zd?
and hg (the height of the tree with the mean basal area).

As d can be estimated easily, we use a function (f) of vg. (the volume of the

tree with diameter d) instead of ¥,
In this thesis we develop a.o.some theory concerning the estimation of V,
for which a formula of the kind

$(V) = S(N)£{ $(d), S(hy) }

is taken as point of departure. The function f as well as the estimators S(N), S(d)
and §(hg) are studied separately.

1) Estimators will often be indicated by the letter  §
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CHAPTER 1

SOME WELL KNOWN METHODS FOR THE DETERMINATION OF
THE STEM NUMBER 1)

1. THE SAMPLE PLOT METHOD

The most commonly used method for the determination of the stem number
is as follows: sample plots are chosen in a stand; in each plot the trees are
counted; an average is calculated and finally this number is multiplied by an
appropriate factor to get the number of trees per square unit. The plots are
taken either at random or systematically. (Systematic sampling is in general
more efficient than random sampling, although less is known about the variance
of the estimator). According to the shape of the plots the methods are called
circular plot method, strip method etc. Sometimes square plots are used.

Given a total sample area, better estimates are obtained with a greater number
of smaller sample plots. The size of the sample plots however, cannot be taken
too small (effect of boundary trees,) extra labour). A good standard for the
practice is the use of plots of such a size that the expected number of trees in
the plot is about twenty.

Due to the effect of boundary trees, circles and squares are preferred to
narrow strips ; moreover, circles are generally preferred because their establishing
and the counting of the trees take less time.

In modern survey optical instruments are used instead of tapes to stake out
the sample plots. This is an important improvement. The quickest method
however, is the counting of the trees that occur inside a circle with a radius (r)
without the use of any optical instrument but the human eye. The Dutch Forest
Service introduced and developed a method by which the trees that occur
inside a circle with a radius r = 7.98 m are counted in this way. Experiments
showed one can master this method rather guickly.

2. THE DISTANCE METHOD OF BAUERSACHS AND KGHLER

BauUERsacHS (1942) has developed a method for the determination of the stem
number by the measurement of distances. After having chosen a tree at random
he measured the distance from this tree to the next nearest tree. {For the sake
of convenience the nearest tree will be called the first, the next nearest tree the
second etc.). The average a (in meters) of these distances was used for the
estimati;)n of the stem number (N pro ha) by the empirical formula N =
8500 a—=.

For his experiments BAUERSACHS used “Kunstbestinde”, i.e. he drew dots
at random on a paper and considered the result the map of a stand. The dots
represented the trees. -

KGHLER (1954) introduced the formula N = 10.000(2n)2agz2 in which agg

1} The number of trees per unit area (usually ha) is called stem number.

2) Trees that occur in the neighborhood of the circurnference of a sample plot, which
makes it difficult to judge whether thesc trees are inside or outside the sampling area, are
called boundary trees.
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is the average of the distances from any chosen tree to the second and the
third tree and n the number of chosen trees.

BAUERSACHS did not publish a theoretical explanation of his formula.

K&HLER however ventured the following explanation:

“In einem Quadratverband von .00 m stehen die vier niichsten Stimme in
einem Abstand von 1.00 m, die folgenden vier Stimme in einem Abstand von
1.41 m von dem Stamm, von dem aus die Messungen vorgenommen werden.”

“Bei einer natiirlichen Verteilung der Stammabstinde werden von den acht
nichsten Stimme nur zufilligerweise mal zwei, wohl nie mehrere Stimme in
einem genau gleichen Abstand zu ein und demselben Stamm stehen. Es muss
daher angenommen werden, dasz von den vier niichsten Stimmen des unter-
stellten Quadratverbandes bei einer natiirlichen Verteilung der néichste und der
Zzweitniichste in einem kleinerén Abstand als 1.00 m stehen, die folgenden 212
Stamme sich auf Abstéinde von iiber 1.00 bis 1,41 m verteilen und so weiter.
In einer Entfernung von 1.00 m wiirde danach der 2.5-nichste Stamm, in einer
Entfernung von 1.41 m der 6.5 — niichste Stamm stehen usw. Verbinden wir
diese zwei festsehenden Punkte in einem Koordinatensystem durch eine Kurve
nach der Gleichung y' = px, deren Auflésung y278 = 0.4x ergibt, so er-
halten wir fiir die uns interessierenden zweit-, dritt- und viertniichsten Stimme
theoretische Abstdnde von 0.92 m, bzw. 1.07 m und 1.19 m. Eine gute Uber-
einstimmung mit der Messungen tritt somit klar zu Tage. Daraus kann fiir
die Praxis gefolgert werden, dasz der zweit- und der drittkleinste Stammab-
stand zu messen wiren, deren Mittel dem Abstand bei einem Quadratverband
entspricht:

(092 4 1.07) = 0.995 =~ 1.00 ”

There are severe objections to this explanation:
1. The concept “natiirliche Verteilung™ is not defined.
2. a. The concept ““2.5 nichste Stamm” is not defined.
b. No model is mentioned with respect to which the number 2.5 {(or 6.5)
oceurs in some way or other. '
3. The choice of the function y* = px is not motivated.

It does not seem possible to replace these arguments by others that are
logically more consistent.

J. WECK (1953) e.g. when discussing KSHLERs article writes: “Die mathema-
tische Beweisfiihrung, die A. KSHLER in seinem oben erwihnten Aufsatz zur
Begriindung seines Verfahrens bringt, ist recht originell, aber nicht ganz
zwingend™.

CHAPTER 11

SOME REMARKS CON THE DISTANCE METHOD OF BAUERSACHS
AND KOHLER

Early in 1954 the author did some preliminary studies concerning the distance
method of BAUERSACHS and K6HLER, 4 summary of which was published in the
Indian Forester of May 1956,

The basic idea was that the distance an from a tree A to its nt® neighbor, can
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be considered the radius of the smallest circle with centre A that contains at
least (n 4 1} trees.

In each sample spot is ™ <Can < rp+1 (rn+1 is the radius of a circle con-
taining n-1 trees). I therefore assumed pn <ZE(an) <<pp+: when pn is the
radius of a circle of such an area that n is the expected value of the number of
trees in that area).

Next I suggested the following approximation:

2.1 E(an) = {(n -+ S }r-m#

(S = =p? is the size of an area of which 1 is the expected value of the number
of trees). .

Under the given assumptions ay will be an estimator of {(n 4 $)S }-n~% Let
8§ = |, then we conclude from (2, 1) E(a1) = 0.69; E(as) = 0.89; E{ag) = 1.06;
E(as) = 1.20. Comparing these values with the data published by K4HLER we
notice some resemblance. (Table 1.)

TABLE 1.

a, B, ay a,
KoéuHier . . . . . . 0.50-0.85 0.85-1.00 1.00-1.10 1.15-1.25 -
BAUERSACHS 0.81-1.00
BAUERSACHS e mean (.92
Formula (21) . . . . E(a) = 0.69 | Ef(a,) = 0.89 | E(as) = 1.06 | E(a,) = 1.20

Encouraged by these results the author started an investigation. The Forest
Research Institute of the University of Agriculture in Wageningen enabled him
to use some stand maps on which the position of each tree was indicated by a
dot. 6 maps of 24 years old Douglas fir (Pseudotsuga taxifolia) plantations in
the forest range Esbeek (Netherlands) were used. On these maps trees (dots)
were chosen at random, the distances a3, as and ag were measured and their
averages determined.

From (2, 1) we find the following estimators:

(2,2} SN) &~ 0.48 2172; S(N) &~ 0.80 372; S(N) & 1.12 a52;
S(N) is an estimate of the number of trees pro square unit.

Applying (2, 2) we find estimates of N, which we compare with the known
values of N. (Table 2.)

TABLE 2.
Number of trees pro Differences in %
Number of | True num- . . °
n?:tref‘lrtl)gr distances | ber of trees ha estimated with of true number
measured pro ha a, 3, i, a, a, a;
1 50 2320 2270 2460 2395 -22 |+ 6 + 3.2
6 50 1920 1870 1895 1790 -26 |- 13 - 6.8
2 30 1481 1395 1325 1375 - 358 | -10.7 — 6.8
4 30 | 1556 1395 1445 1475 -10.9 - 7.5 - 5.5
5 25 : 1312 1135 1445 1475 -13.5 [ +10.2 | +12.5
9 40 I 1715 1870 1810 1610 |+ 9 + 5.5 - 6.2
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Additionally, field work was done in some 60 years old Scotch pine (Pinus
sifvestris) stands in the Forest range Oostereng in Wageningen. From regularly
spread spots in the stands the nearest tree was chosen and from this tree the
distances ay, as and as were measured with a tape. (In one of the stands only a;
and az were measured). The number of trees was estimaied with formula (2, 2)
and compared with the true number. The results are given in table 3.

TABLE 3
Number of trees pro Differences in %
Number of | True num- i . ¢
n?lt;!tl;gr distances | ber of trees ha estimated with of true number
measured pro ha a @, T, a, ag a,
2a 53 317 342 314 + 79 0.9
18d 24 410 427 429 437 + 4.1 +4.6 +6.6
19d 42 372 430 31e 357 +15.6 +1.9 -3.8
1%e 32 395 415 369 361 + 5.1 6.6 -8.6
20c 36 289 250 282 278 + 0.3 2.5 -3.8

The results are satisfactory. They seem to justify a more thoroughinvestigation
along the same lines. The theory however, is not very fundamental and not
proof against criticism. The necessary tape measurements are not easily ob-
tained in practice, and the use of optical instruments is not convenient.

In particular the way of sampling is rather complicated: we first take an
arbitrary point in the stand, decide which tree is nearesi and do our measurements
from this tree. We therefore switched over to a different method.

CHAPTER II1

A NEW DISTANCE METHOD

1. INTRODUCTION

From a point chosen at random in a forest stand we measure the distance
ay to the n*® tree. a, is a random variable, i.e. a variable with a probability
distribution. If the expected value of a, is large the number of trees per square
unit is small (and vice versa). In this chapter we will derive the distribution of
a, (or some parameters of the distribution) under various conditions con-
cerning the way the trees are distributed over the area.

First the case is considered where the trees are distributed at random (Random
Forest). Next we discuss the case where the trees are in the vertices of a square
or equilateral triangular lattice scheme (Systematic Forests). Some parameters
(median, first and second moment) are computed for all three cases, and
compared. It is found that for the median the mutual differences are minimal.
Moreover, there is a tendency for the differences to decrease when a farther
tree is concerned.

A theoretical consideration leads to the hypothesis that for forest stands
as they are found in practice, estimators of the number of trees assuming
Random and Systematic Forests, will yield too high and too low results
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respectively, and that the differences from the Random Forest will be small if
the number of trees is small. We therefore use in practice the estimator of the
Random Forest with a small correction that increases with the number of trees
estimated. When the mentioned differences are small in comparison to the
standard error of the estimator (which is the case when my is used), a rough
correction will be enough to reduce the bias, and m4 can be used to find an
allmost unbiased estimator of the number of trees, which is good enough for
application in practlce It will be shown that moreover in any case the estimator
with the aid of m4 is more efficient than the others.

2. THE RANDOM FOREST

In order to define a Random Forest, or in general a random set of points
in a plane ') we proceed as follows:

Let a part of a plane be given and let a set of points in this part be obtained
according to some random process. The set of points is called a random set or
a Poisson-set (Random Forest) in case the random process obeys the following
conditions: _

We denote a subdomain of the plane by S, and the size of S by x = x(S). Let
the number of points in 8 be k(S). kis a random variable.

The assumptions are:

1. The probability P{k = k} that k assumes the value k, does not depend on
S, but only on the size x of S. It will be denoted by p(x, k).

2. If the intersection of S; and Sz is void, then k(S;) and k(Ss) are stochastically
independent. From this fact we conclude:

p(x + v 0) = p(X, 0)-ply, O).
Take In p(x, 0) = f(x), then: f(x + y) = f(x) + f(y); f(nx} = nf(x)
and for « = nm™! we find flo) = finm1) = nf(m1) = nm? f(mm-1) =
=ea f(1).
3. p(x, 0) is a continuous function of x. Then f(x) is also continuous.
f(x) = xf(1) = In p(x, 0) = x In p(1,0) forany x=0.
Take In p(1,0) = —, then p(x, 0) = e**, andin case a« = 1.
3,2,1) p(x, 0) = %

In order to obtain a formula for p{x, 1), we consider the partition of a
domain of size n x in n parts of size x and observe that consequently

p(ax, 1) = np{x, Dpr1(x, 0) = np(x, e~ -1x = np(x, 1)exp-{—-(n - 1)x }
p(mx, 1) = mp(x, )pm—L (x, 0) = mp(x, Dexp-{—~(m - I)x }
Hence: p(nx, 1) = nm~1 p(mx, Dexp-{(m —n)x }
Take mx =1 and nm! =« then p{=, 1) = a2 p(l, Dexp-(1-«) or
(3,2,2) . px,1)=Cxe*

1) 'The assumptions and the proof are taken from lectures of Prof. Dr. N. H. KUIPEr at the
University of Agriculture at Wageningen.
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We next define v(x, k) by
(3,23) p(x, k) = (k)1 {Ckxk + y(x, k) Je =

and we intend to prove thatv vanishes, as is does in (1) and (2).
We make the inductive assumption:

(3,2,4) v(x, k) =0 for ks<N-1 (N>2)
From (3, 2,3) we find:
(3,25 p(x+ % N) = (N1 {CNEx + yN+ v +y, N }exp-x-y)
p&x + 5, N) = ZfLo p(x, N- k) p(3, k)
{3,2,6) px + ¥y, N) = N)T{CN(x + )N -+ v(x, N) + v(y, N) } exp{-x-y)
From (3, 2, 5) and (3, 2, 6) follows:
(3, 2,7) v(x + ¥, N) = v(x, N} + v(y, N)
Take the constant y(1, N) =t then +{x, N} = xy(l, N) = xt
From (3, 2, 3) follows:
(3, 2.8) " p(x, N) = (N 1 (CNxN 4 tx}e *
If t 5% 0 then
lim _P2x,N) =
x—0 p(x, N) p(x, 0)
If we divide a domain of size 2x containing N points in two parts of size x,

then there are N — k points in one part in case there are k in the other part.
We therefore have

p(2x, N) = 2 p(x, N) p(x, 0) -+ ZPZ] plx, N~ k) pix, k)
If t 52 0, then (compare 8),
lim  _PEAN)
x>0 2p(x, N) p(x, 0)

Hence for 2x very small there is hardly any chance that the N points are not
in the same part. The N points are “tied” together. We now give the following
assumption which excludes this possibility:

4. Points are not ‘“‘tied”,
With this assumption t =0; ¥y =0 and we get:

p(x, k) = l Clgk ex,
The sum of the probabilities is:
2T pk) =elCxx =1; C=1
In the general case « = 1:
(3, 2,9) p(x, k) = (‘”‘) e-*% (PoissoN distribution)
It is well known that:
Ek)=oax=3% E(H =2+ A o2=EEH-{EEK}2=>
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The Posson distribution with parameter i can also be obtained as the limit
of the binomial distribution P(k = k) = (i) q*(1 - q)*% with parameters s

and q, for q—>0; A = sq = constant.
P(k, PorssoN ) = limg=xg-1+p P(k, binomial s, q)} which is proved in many
text books.

3. THE PROBABILITY DISTRIBUTION OF a, IN A RANDOM FOREST

In case a number of disjoint domains 81, S, ... all of the same size are given
in the plane (= Random Forest) and the numbers of points (trees) in these
domains are k(81), k(S2}, ... then these numbers can be considered samples
from the Poisson distribution:

}\k
Pk=K=Pr=1e? k=01,2..

k!
» = E(k) is the expectation of k.

Remarks. 1. In practice distances from an arbitrary point to the centre of
a tree are measured. Only the centres of the trees are considered. The dis-
* cussion remains the same for trees as well as for points.

2. We will consider only circular domains.

Let the distance from P to the (i~ th) tree be a;. The event (a; >>a) only
occurs when the circle with centre P and radius “a” contains at most (i—1)
trees.

Let ¢ be the radius of a circle, such that E(k) = 1. If N is the number of
trees per square unit then wc2 = N-L.

Instead of a; we now consider the standardized variable
I = a7l = a(rN)t
E(1)) = (xN)* E(2))
Nb — 7 E(ry). {E(20)} ! = Ci{E(21)7;

(3,3,1) Ci=n E(r;)

and S(NY) = C; a1
In first approximation we take:

(3,3.2) S(N) = G2 a2

(3, 3,2) gives a biased estimate of N but it can be shown that this estimate is
consistent. This follows from:

SN =a Crl=a N {E@)}'=(14+u)N ¥ v={a-E(a)} {E(a) }?
E{S(N"H}-2 — E{(1 + wN+}-2 — N.E(1 + u)2
= N-E(I'-2u + 3u2 + ..)
(3,3,3) E{ SN }? = N.-E(1 + 3v2n-1);
E(u) = 0;
E(u?) = {o(@) }* { Ea} } 2 = vi# n~?
and for n—> co we have E{§(N-#)} 2 =N.
As we know vi2 (Table 4), we can calculate the bias.
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If i==4 then vi = 0.25. For n = 100 we have 3viZn~1 = 0.0018 and
for n =60, 3vi2n! = 0.003. Consequently for practical purposes we can

use (3, 3,2) to estimate N.

The event rn>> 1 only occurs when a circle with radius r contains less than n

trees. .
P(r,> 1) — 2078 P(k = i| a circle with radius r)

i
:Z%e"“; (& =3Eh

A is the expected number of trees in a circle of size wr2.
A circle of size w has 1 as expected number of trees, a circle of sizemr? has r2 as

expected number, so A = r2,
o2
It follows: P(ry> ) = Z et

3,34) Hy() 3 P> 1) = > e
Fy(r) = P(tn << 1) = 1— Hy()

The moments of the distribution.
We first compute: '

frl' eT dr = fu*l eudut = %fu*(i-l) e udu =i 5+n}
o i

oo

oo oo

B(rat) = f rtd Fu(t) = - f rtd Ha(r) = - rtHu(r) / + f Hn(r)drt
0 0 0 0

=t f rt1 Hy(r) dr and, substituting (3, 3, 4)

0
p2bt-l
S Z : e rdr
1!
0
I B
=t Z i f r2itt-1 g dr
1.
0

E(rn)t = } tZF;},Tl' LG +i

As 1ir TG4 3 = (%t +ii* 1) T'(3t) we find

EEnt)=s[1 + (i‘) + (5 7 1) + . (S T )] T' (s), where s =%

Now we make the assumption:
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3,35 Cea=1+ (’{)+ (F3)+ ()= (14
k <n.

This holds forn = 1, 2, 3.
We add to (3, 3,5) for k = n, on both sides (% +r? - l) and find:

Cy = %+n—1)+(%+n—l _{n+%
n-1 n n
Hence if (3, 3,5) holds for k = n it also holds for k—=n + 1. Then it
holds for any value of k.

As (3, 3, 5) holds for n = 1, 2, 3 it is true for every n.
We will next prove the formula:

(3,36 kis,n) =1+ (f) + (342‘1) + ... (S+n—2) _ (S+n—l)

n-1 n-1

By substitution we observe: _
k(s, n) = (S‘]};fl—l) forn = 1 or 2 and for any s.
We now prove that (3, 3,6) holds in general, by induction:

Suppose ks, i) = (S Jif_il‘l) for i <n, then k(s,n-1) = (s +n—2),

n-2
. {s+n-2) _ {s4+n-2 s+n-2} _ (s+n-1
k(s,n)ﬁk(S-n—l)Jr( no1 )( n-2 )"‘( n-1 )( n-1 )
Hence:
_ &t (n-144t 1)
3,3,7) E(rat) = ( a1 )F(z
The median

If P(r < m) = F(m) = %, then m is cailed the median of the distribution F.
The median m of F(ry) is therefore the solution m of the equation:

21
-1

Forn— 1 wefind my2 =1n2.

In case n > 2 we obtain a numerical solution for m as follows: A first
estimate of the root is obtained from a graph. After that, better estimates are
found by approximating the function Hp{(m) by a few terms of a TAYLOR series.
cf Kureer (1956).

Table 4 gives some moments and the median for n =1 till 4. It also con-
tains the variance o, the coefficient of variation v = o (r) { E (t) }~1 and the skew-
ness yi.
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TABLE 4.

|

n Ew | E® | B m o |SO{E@}| 1

1 %w* 1 %x* 08325 | 046325 | 0,527 0,6311

2 ;.u* 2 %n* 1,295 | 048255 | 03630 0,4057
"3 L3 3 (1053 | s | odsst | 02041 0,3179

16 £V}
1
4 ggrc* 4 -36175::*‘ 1,016 | 049168 | 02536 0,2692

Size of samples in a Random Forest. An example
Suppose we want to have such an estimate S(N) of N that the probability of
| S(N) - N| being greater than 0.10 is extremely small e.g. 0.05, or

(3, 3,8) P [0.9 < %ﬁ gl.lo} — 095

We take the number of measurements (q) large and use the approximation
by a normal distribution.
Roughly we get:

(3, 3,8) gives:  20{ S(N) IN-* < 0.10 or 2 o{1n S(N) } < 0.10,
20{(ln 3» } = 4 o{(ln 3n) } <0.10,
o(3y) {E(an) } 1 <0.025; q *o(a){E(2y) ) < 0.025

As we know from table 4: o(as) {E(a4)} 1 = 0.25, we have q > 100.
So we need at least 100 observations.

Table 5, page 16, shows the probability distribution of r1, r3, raand rgin a
Random Forest.

4. COMPARISON OF THE RANDOM FOREST AND A REAL FOREST AS FOUND IN NATURE

First we wani to discuss whether the four conditions defining the Random
Forest can be considered valid for a real Forest. The conditions I, III and IV
seem to be acceptable; Condition II however, states that the probability of
occurence of k trees in one interval is independent of the probability of occurence
of r trees in another interval, This independence is not strictly valid in a real
forest. Take e.g. a very small circle. If we find a tree within this area the prob-
ability of occurence of one more tree is small, because there is no room avail-
able. In other words there is a minimum distance between two trees.

Consider on the other hand a forest where the position of the trees coincides
with the vertices of a square (or triangle) lattice. Such forests will be called
Systematic Forests. In these forests a minium distance between two trees also




16 57(5)

TABEL 5. Probability distribution of the standardized 1.

r P(r, <1) P(e, <1) Piz, <P) Pz <D
0.1 0.009950 0.000050 0.000000 0.000000
0.2 0.039211 0.000779 0.000011 0.000001
0.3 0.086069 0.003815 0.000114 0.000003
0.4 0.147856 0.011513 0.000606 0.000024
0.5 0.221199 0.026499 0.002161 0.000131
0.6 0.312324 0.051161 0.005951 0.000526
0.7 0.387374 0.087187 0.013642 0.001629
0.8 0.472708 0.135241 0.027252 0.004214
0.9 0.555142 0,194807 0.048871 0.009469
1.0 0.632121 0.264242 0.080302 0.018989
1.1 0.701803 0.340985 0.122690 0.034644
1.2 0.763072 0.421896 0.176249 0.058338
1.3 0.815480 0.503641 0.240137 0.091697
1.4 0.859142 0.583060 0.312500 0.135734
1.5 0.894601 (0.657453 0.390662 0.190569
1.6 0.922695 0.724794 0.471481 0.255321
1.7 0.944424 0.783809 0.551721 0.328143
1.8 (.960836 (.833945 0.628381 0.408007
1.9 0.972948 - 0.875290 0.699018 0.4869504
2.0 0981684 0.908420 0.761892 0.566521
2.1 0.987845 0.934241 0.816046 0.642298
2.2 0.992093 0.953823 0.861210 0.711794
2.3 0.994958 0.968286 0.897738 0.773338
2.4 0.996849 0.978699 0.926428 0.826067
2.5 0.998070 0.986008 0.948312 0.869780
2.6 0.998841 (0.991006 . 0.964524 0.904862
2.7 0.999317 0.994338 0.976189 0.932088
2.8 0.996517 (.984408 0.952764
2.9 0.997902 0.990015 0.967918
3.0 0.998770 0.993788 0.978844
3.1 0.999289 0.996195 0.986285
3.2 0.997772 0.991508
33 0.998719 0.994844
34 0.999286 0.996968
35 0.998027
3.6 ! (.999079

exists. We notice that in case of real forests the distribution of the trees over
the area shows some resemblance to the distribution in Systematic Forests.

Consider now a forest that originally is established as a Systematic Forest but
in which a part (1-p) of the original number of trees is taken away in a random
manner. This frequently occurs in foresiry (e.g. thinning). We assume that in
an arbitrary real forest the distribution of the trees is more or less the same
as in the forest last mentioned. If we take sample plots (of the same size) in
such a forest the random variable X (number of trees counted in a plot) will
have approximately a binomial distribution. If p is small (few trees left), this
distribution again can be approximated by the Poisson distribution (Random
Forest).

Our assumptions are:
I. Random and Systematic forests may be regarded as limiting cases of the

real forests.
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2. The lesser trees we have pro square unit in a real forest, the more this forest _
will resemble a Random forest. !

5. SYSTEMATIC FORESTS

a. Square lattice. Consider a forest where the position of the trees coincides
with the vertices of a square lattice. Our purpose is to compute the first two
moments and the median of 11, 19, 13 and 14, defined as before. i
Assume the shortest distance between two points is 2. Take a coordinate |
system with axes parallel to the sides of the squares (2 x 2). The position of
every tree can be indicated by coordinates (x, v) = (2k, 2D) (k,1=0,1,2..).

Az AA
-
-
-~
G -~
-~
—
-~ P
- P
-
-
- |
-~
AL A, A,
Fig. 1

Take a random point P coordinates (x, y) in a square Aj, As, Ag, As (fig. 1)
with a homogeneous probability distribution, i.e. with a constant probability
density. The distance a; from P to the ith tree is a random variable. As a; is
stochastically independent of the event a; in A A;OFE (fig. 1), only distances
from P in A;OE will be used. The density then has to be (area A AQE)™1 = 2.

In fig. 1, a1 = PAj, a2 = PAs, az = PAj, a4 under assumption P in FEO
equals PA4, a4 under assumption P in FEA;, equals PA’y = a's.

We introduce the symbols A for AjOE, A’ for A FE.

The coordinates of P and A; are (x, y) and (-ps, —q:) respectively. Then:

E(ai) =2 fajdxdy (i=1,23)
A

E(@):Z( a'sdxdy- [a'adxdy + a4dxdy)
Jrer [

The computation in detail is as follows:

E(ap) = 2 f a; dxdy = 2 f r2drdy — f r2drdp (polar coordinates)
a AOG EOG -
E(a1) = %2t -4 Inf= = 0.7652. In case AjAz = | (one tree per unit)
we get:.0.3826. :
We obtained the other expected values with a numerical method and found i
E(11) = 0.3826; E(r) = 0.6994; E(rs) = 0.9081; E(ra) = 1.0226.
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The integrals E(a;%) = 2 f a;2 dx dy are also calculated, We find:
fadsdy =4+ 40+ 29) + 4@+ @¥)

A
fazdxdy = thz + & (0 + 49 + 02 + )
&l

In case AjAs = 1 we have .
E(ri?) =4, E@¥» =13, E@d=4%, Erd)=1%.

Median.

As the median my of the probability distribution of aw is the solution of the
eguation P(an <. mp) = 1, we can find the median through a method which
will be illustrated in the following example: Take n = 2. (fig. 2.)

Ay Ay
Y
2
G

€ (=]

I'§

L] Ay

FiG. 2

Consider a circle with centre Az and radius m. Take m such that the area of
. EIG equals one half of the area of EOA;, then m is the median of the probabil-
ity distribution of as, for P(as <. m) = P (a point occurs in EIG) = }. This
yields the equations: % m2p—}msing = ffzand ¢ = arccos(2m)~! from
which m can be solved (e.g. by numerical methods). In this way we find the
equations:

I 2nm2-1=0
II. 8mo%p—dmpsing—1=0; ¢ = arc cos (2mg)!
HI. 8ms2(p - ) + 4(ms? - 1 + 8mgsing -7 =0; ¢ = arcsin (Zmg)~!
4 = arc sin (mg 4/2)"1 - ;:—
IV. 8ma2(p + 1 —$s) - 8(ma? — 1) — 4my (2 sing — 2 sin o)~ 1 — 0

p = %— arcsin (2mg)1; = arccos(mg)l; Y2 — ;_ arcsin (mg4/2)1.
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The solutions are respectively:
m; = 0.3989; mg = 0.6908; m3 = 0.9153; my = 1.0500.

b. Triangle lattice. We have for a random point in AjOE (fig. 3.) Ay = first
tree, Ag the second, Az the third and A4 the fourth. The computations of
E(ai), E(a{®) and the median are analogous to those for the square lattice.

Aa A

A, Aa
FiG. 3

The results are given in table 6.

TABLE 6.
|
st tree 2nd tree ‘ 3rd tree i 4th tree
|
|
1st moment (Erp : l
quare lattice . . . . . . . .
S latt 0.3826 0.6994 | 0.9081 1.0226
Triangle ,, . . . . . 0.3772 0.7286 | 0.854 1.0576
Random . . . . . . 0.5000 07500 | 09375 10938
2nd moment (Er;®) ‘
Squarelattice . . . . | 0.1666 0.5000 i 0.8333 1.0556
Triangle ,, . . . . . : 0.1604 0.5453 I 0.7377 : 1.1226
Random . .. .. . 0.3183 0.6366 0.9549 ! 1.2732
. Median ' '
Square lattice . . . . 0.3989 0.6908 ‘ 0.9153 1.0500
Triangle ,, . . . . . 0.3989 07071 | 08631 | 1.0548
Random . . . . . . 0.4700 0.7310 ; 0.9230 J 1.0810
Coefficient of variation \ [
Square lattice . . . . 0.3714 0.1474 ' 0.0959 | 0.0972
Triangle ,, . . . . . 0.3566 | 0.1659 | 0.1072 J 0.0567
Random . ., . . . . | 0.523 ! 0.363 , 0.295 0.253

6. ESTIMATION OF THE $TEM NUMBER IN NATURE

Table 6 shows that the medians are more alike than the other parameters. -
Moreover, it shows that the differences decrease if a farther tree 15 concerned.

If we take the median of distances to the fourth tree as an estimator, the
estimate becomes fairly good for the three types of Forest; so we will use my
to estimate N. Estimates with m4 for Random Forests give a larger N than
estimates with my for Systematic Forest.
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Suppose we obtained in a real forest in nature an estimate M; of the median
of the probability distribution of a;, and uvsed this parameter to estimate N
{compare (3, 3, 2)). If we consider the forest a Random Forest the estimator is
(takee.g. a9): S(N) = N’ = 1.0812 M;~2, and if we considered it aS ystematic
Forest: S(N) = Ng' = 1.05242 My2. Let N; be the true stem number,
E(N:) = N; and E(Ni') = N;. In line with the discussions in section 4 we
assume:

a. Nt = Np = C(Nr - Ns)
(3, 6,1)
b. ¢ = (1 -ekNt) as (1 - ekNp)

An estimate of Ny is found as N¢ = 5§ (N) = N’ - (N’ — Ny').

Remark: As, in case of a4 the difference Ny — Ny is small (compare the
values of m4 in table 6), it would be hardly necessary in practice to use such an
accurate correction as in (3, 6,1). § (N) = J(Ny" + Ny") would also suffice for
practical purposes.

To test whether our assumption (3, 6,1) holds, we used some maps as in
chapter II, and also made measurements in some stands of the Forest Range
Oostereng to compute Ny, Ny’ and Ny = §(N). If (3, 6,12) holds, then:

Ny’ -N Nr—Ng . .
0< rN ; : < rN ® in most cases. The results in table 6 were used to
T T
. Nr-Ng . .
estimate N These estimates are approximately 0.3, 0.1, 0.1 and 0.05
r
in case of a1, a3, a3 and a4 respectively.
. Nr’ - Nt . R .
Table 7 gives the values of N C for estimates with the median. In
T
most of the stands about 300-400 measurements were taken.
TABLE 7.
(N = Ny (N"y}, for estimates with N Number of
Stand (pro ];a) measurements
m, m, m, m, |Pro-RE
Esbeek 1 0.24 Q.11 0.08 0.01 2317 320
» 6 0.23 0.10 0.05 0.03 1920 320
. 1 0.30 0.09 0.04 0.02 1292 360
» 6 0.26 0.12 0.08 0.06 1226 360
v 6 0.22 (.10 0.04 0.00 966 360
Qostereng 238 0.10 0.07 615 199
» 181 0.03 0.012 475 170, and 510
» 13a 0.01 0 0.03 0.003 300 316, 316, 312,
; and 394
Average. . . .| 021 0.087 0.056 0.026

We used the estimates with m; to test our hypothesis (3, 6,1P) (the others are
not convenient due to the small difference (N;— Ng) in comparison to the
variance of the estimate itself).
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We also used the results of my to get a rough estimate of k in (3, 6, 17). We
roughly estimated k = 0.001. Fig. 4 shows the results.

The points * indicate the true number of trees Ny, e the estimates of Nt and
| the confidence interval of the estimate. (All values are given in % of Np).
The distribution of the points * shows the tendency of the correction to
decrease with N,

T

&[N 100%
£ « ESTIMATE OF N (with m))
z \ * TRUE STEM NUMBER
A & ] CONFIDENCE INTERVAL
- . -90

I e ——— o ——— —

Na

FO0

O 560 1000 |560 2000 2500 3000
TRUE STEM NUMBER N

FiG. 4

As stated above confidence intervals were constructed for the stem number
estimated by the median. The construction of the confidence interval was as
follows:

If our sample is (a; <Caz.. <<ayp <apq .. < azn-1), an gives us an
estimate of the median m.

Pa<m)=Pa>m)=1]

In this model the probability of i distances being smaller (c.q. larger) than
the median, can be calculated.

If (2n - 1) is large we can use the normal distribution approximately. The
limiting rank numbers arei = n —to and j = n + to.

6 is given by #4/n, and t is the value at the 2,5 % point of the normal
distribution. In order to get a conservative test we used confidence intervals of
0.90 (Probability of occurence in the critical region is 0.10), The values a;
and aj, taken as limiting cases of the median, were calculated and used for the
computation of stem numbers, which are regarded as the limits of the confidence
intervals for the stem number (table 8, page 22).

The occurence of 1 true stem number out of 8, falling outside the confidence
interval of 0.90 (estimate with my4) is no reason to reject our testing hypothesis.
(Use the binomial distribution with p = 0.1 and n = 8 to check this state-
ment).
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TABLE 8. Confidence interva (0.90) of the stem number pro ha estimated with the median.

Stand 1st tree 2nd tree 3rd tree | 4th tree & stemtr:g mber
' ;
Esbeek 1 2372 263 | 2367 | 23059 3‘ 2317
. I 1916 2186 2144 2108
. 1 | 1398 1402 1280 1307 ‘ 1226
i ' 1088 1211 1174 1224 |
. 6 2020 2056 1907%) 1935 | 1920
N 1599 1858 1757 | 1832
" 6 | 1460 1357 1285%) 1297 | 1292
- . 1243 1248 1183 1231
” 6 | 106 | 1046 971 972 966
. i 879 | 955 893 | 894
Oostereng 13a | 310 L 313 324 ‘ 313 1 300
. * 236 ‘ 273 281 281 |
w  1BE - 439 447
. 23 [ 6% . 701 . 615
" | | 609 | 598

7. SOME NOTES IN CONNECTION WITH THE VARIANCE

Another way to test the assumptions concerning the distribution of trees in a
real Forest (section 4) is to compare the variances. In a Systematic Forest
the coefficient of variation of the distribution of ay is smaller than in a Random
Forest with the same stem number. (Table 9.) In the same stands mentioned
- above, the variance s(an) of the distances a, was calculated using: s(an) =

1

s 2 (ag — 8p)2 (N is the number of distances) and the coefficient of variation

N-1

s(ap)-an~! was calculated. Table 9 shows these values.

TABLE 9. Estimated coefficients of variation of ag

; '

n ‘ .
Stan\ | 2 3 | 4
Esbeek 1 0.445 0.261 (0.206 1 0.176

' 1 0.426 0,225 (.166 0.149

' 6 0.467 0.260 0,212 1 0.186

. [ 0.396 0.220 0.187 : 0.148

" 6 0.459 0.259 ; 0.202 0.168

Oostereng 132 0.460 - 0.255 ‘ 0.218 0.192

" 238 i 0.251 0.226

Y 18f 1 0.256 0.236
Square Iattice 0.37 0.15 ‘ 0.10 0.10
Triangle lattice 0.36 0.16 0.11 0.06
Estimated average 0.45 0.25 0.22 0.19
Random 0.52 036 | 02 0.25
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At the bottom of the table we find a weighted average of the estimated
values as well as the expected values in Random and Systematic Forests.

As we might have expected the estimated values are between the expected
values in Systematic and Random Forests.

In practice one would like to have an idea of the variance in order to find an
estimate of the number of measurements needed to get a *‘sufficiently accurate”™
estimate of the stem number.

It is known that the variance of the median is larger than that of the mean.
We also saw that the variance of the mean in Real Forests is lower than in
Random Forests. .

To estimate the variance o2 of the estimated stem number(in case the median
is used) we used the confidence intervals of N given in table 8, to estimate oqy)
dividing the length of the interval by t (approximation with the normal distri-
bution). '

In table 10 the values of S(cg)N"L are given for estimates with mg and ma.
{column 2 and 3).

TABLE t0.
| {Gan} Nlina
Stand S (Gpag)N-2 $ (aaN-t | Random Forest
{est. my) (est. m,)
[ 43 Ay
|
i :
1
Esbeek 1 0.030 | 0.026 t 0.033 0.028
" . 0.026 0.020 0.033 ! 0.028
" 6 0.024 0.017 0.031 : 0.027
. . 0.024 0.016 0.03t 0.027
» N 0.025 0.025 0.031 0.027
Qostereng 23% 0.040 0.050 0.042 0.036
. 18 0.042 0.029 3 0.045 0.021
" 13% ! 0.044 0.033 i 3.033 0.025
Average ! 0.032 0.027 0.035 0.027

In column 4 and 5 the expected oq N is given in case of estimates with a,
(using the same number of measurements) in a Random Forest.

In connection with the results in table 10 we assume that for practical
purposes we may use the variances of the mean in Random Forests as an esti-
mate of the variance of the median in real forests.

8. EFFICIENCY OF THE DISTANCE METHOD

According to the preceding consideration our estimate of the stem number
with the median of the distances to the fourth tree will give sufficiently accurate
results for practical use.

In order to test the efficiency of measurements to the fourth tree in comparison
to those to the first, second or third tree, a short 1ime study was made.t)

As we have seen the coefficient of variation decreases if a farther tree is

1) We are very greatful for the advices of Ir M. Bor, who assisted us in making the time
studies. )
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considered. On the other hand it becomes more difficult to decide which tree is
the n*d if n increases. These are two compeiing factors.

In the forest range Qosiereng we chose an arbitrary Scotch pine stand to
make the time study.

At the start of my experimental work a tape was used to measure distances.
This way of working was rather time consuming. One measurement took on
the average - 0.75 minutes. The tape proved to be very inconvenient in prac-
tice, so we switched to optical methods. The instrument that gave the best
results was the telemeter which was attached the BrLumMe-LEeiss-hypsometer; a
rod of 0.50 m length was used for the readings.

The error caused by the reading is about.0.02 as and has little influence on
the total coefficient of variation. It only raises this from 0,254 to 0.255 in case
of ma. ((0.2542 + 0.022) = 0.253).

Remark: The most proper instrument for the distance method is the
range finder, which enables one to measure (standing in a certain point) the
distance to a tree as well as its diameter. The instrument can be handled easily
by one person. To our regret this instrument was not available during our
research,

In a stand in “Qostereng” mentioned above we used the Blume-Leise tele-
meter with the rod.

The procedure of measuring was as follows, The surveyor chooses an ar-
bitrary spot (A) in the stand, measures the distance from A to the first tree,
walks 20 steps, stops at point B, measures the distance to the second tree eic.
After having measured the distance to the 4t tree he starts again with another
first tree, etc.

This method is preferred to the measuring of all distances to the first, and
then all distances to the second ctc. in order to eliminate systematic errors
(fatigue ete.).

Only the following times are distinguished in the time study: walking time
(w) = (time used to walk from one spot 1o the other); recording time (c;) =
(time used to decide which tree is the ith); reading time (d;) = (time used to
read the distance to the it! tree and to take it down in the notebook).

During the measurement we have in succession w, ¢, d, w, ¢, d, etc.

We make the following assumptions.

1. consider wi, ¢; and d; to be random variables.

2. ¢ and dy are normal deviates with expectation E(ci) and E(di) a.nd variance
R (V3] and S(di) s Tlen = B¢ = Fc}s C(d) = 9dj) = F(d)-

3. Ele) < E(c2) < E(ca) < E(ca); E(d1) < E(de) < E(ds) < E(dy).

If we want the maximum likelihood estimation of E(c) etc. under these
conditions, the problem can be solved along the same line as vaN FEDEN (1953)
discussed for ordered probabilities.!)

In case € > ¢; the observations c; and ¢; must be pooled and the maximum

1) See also vaN EEDEN (1957).
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likelihood estimation is & = & = E("_B:LJ) — G

In the same way if E(i}<CE(j) < E(k) and {e.g.) €i > Cj => Tk or Cj > Cj = C
we find for the maximum likelihood estimates
i+ ;4 )

3n

B =T =G = ~ &

QOur experimental results are given in table 10. Column 2 gives the maximum
likelihood estimate for ¢y, etc,

TABLE 11.
Distance g a CSEN | (Staay n Likcléh""d

a 5436 | 10462 | 01509 | 0.118 39 10.33

a, | 8475 10.725 04295 | 02449 40 10.33

W | g6 9.800 | 0.4031 0.1003 40 10.33

2, 1550 | 12725 | 0.6666 10282 a0 12.41

In column 3 the three first aud the last two estimates must be pooled (results

in column 7).
The results show that the reading can be considered to take the same time

if the average distance an <7 4.50 m (N pro h.a. = =+ 500). The walking time

. remains constant.
If we assume that the tofal walking time is independent of the distance we

measure (this is the case in strip sampling), we find for the total working time

(Ti) when measuring to the ith tree,

(3, 8,1} =C+n-ty =C 4+ Ty; ;
with C = constant total walking time; n; = number of measurements; J
E(ti) = E(c:) + E(dy).

As we have
n = {o{a) 12 {o(ad }72 = {E@)}2 {e(a;) )2 {a(ar)}? { E(a;) } 2 we find
(3, 8,2) Ti' = K] {V(-&ii) }72;

with Kj = t; {o(a;) }2 {E(a;)}%; V(ay) is the coefficient of variation

o(as) { E(a;) )1 and analogously V(ay).
As we know V{a;) (Table 6), and as we have an estimate of t;, an estimate
of K; can be found using (3, 8,2). Results are given in table 12,

TABLE 12.
t=(+d | . K;
o )
N<sw | Nzseo | 0 ® N<500 | N>50
[ ! f
1 15.77 | 15.77 0.2735 4.31 431
2 18.81 I 18.81 01323 2.51 2.51
3 20.01 | 20.01 L 00870 1.74 1.74
4 25.83 | 27.91 | 0.0640 1.65 1.79
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Fig. (5) shows graphs in which we can find the relation between Ty  and V(a;).

The graph enables us to compare the efficiency to the different distance
measurements.

Remark: If we assume that E(ti): E(tz): E(tz}: E(ty) is independent of
the surveyor and the condition of the stand, the results can be used for general
conclusions (fig. 5). The more detailed conclusion concerning average distances
<2 4.50 m does not necessary hold in every case, It depends on special conditions
{density).

&

E

£ 1" TREE
4000 l-">

2nd
1000 E
3rd
2000 } and
athTree

1000

Qi G0z 003 004 Q05 006 007 G08 009 QiD Vo
COEFFICIENT OF VARIATION OF THE ESTIMATE '
Fig, §

From table 12 we see that in case of N > 500 the estimates with the distance
to the 4th tree are the most efficient (less time for the same accuracy).

For N < 500, the estimate with the distance to the third tree is most efficient,
although the difference is very small.

In the preceding discussions, the walking time is considered to be constant.
If this is not the case (no strip sampling) there might be a tendency for the total
walking time to decrease when a farther tree is considered.

In these cases there will be much more reasons to assume that estimates with
my are more efficient than those with my, mg and mg,

Moreover, we only take the distance measurements into consideration.

As a rule the distance measurements are acompanied by diameter measure-
ments (calliper or tree fork).

Although we do not discuss the diameter measurements thoroughly in this
chapter, we mention the next investigation here to complete the discussion.
An additional time study was made to compare the effect of diameter
measurements with calliper and tree fork when the distance method is applied.
The results are given below for measurements to the 3™ tree.
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TABLE 13. Total time per observation {w + ¢ + d}
Distance without Distance with one Distance with two
diameter diameter diameters
Calliper . . . . . .. ‘ 38.98 J 43.62 46.52
Treefork . . . . . . . 38.98 l 39.02 35.00
Conclusions.

1. The tree fork seems more efficient than the calliper.

2. When the calliper is used there is a significant effect (t-test with values of o

from table 11) of the diameter measurements.

3. There is no effect if the tree fork is used, even when we measure two dia-

meters for each distance.

This result is due to the fact that, when the fork is used, two men can work
independently and one need not wait for the measurement made by the other.
As it is shown that the estimate of the stem number with the median (m4)
is the most efficient we constructed table 14 for practical use. Additionally table
15 is given for rough approximations of N when ms; is used. This can only be

recommended in case N <« 500, as was shown.

TABLE 14. Expected stem number (N pro ha) in case m, is estimated

‘ ‘

}
m, in meters 2 3t 4 5 6 7 8

' i

: _
00 ‘| 2784 | 1252 712 459 320 236 181
05 2651 1212 695 450 315 233 179
10 | 2528 | 1174 678 | 441 310 230 177
Is | 2413 1137 662 | 433 305 226 175
20 2305 | 103 | 647 | 425 300 223 173
25 ‘ 2205 | 1070 | 632 417 295 220 170
30 | 221 1038 | 617 409 291 217 168
a5 | 2024 | 1008 604 | 402 | 286 214 166
40 | 1942 979 590 | 394 | 282 211 164
45 | 1864 951 577 387 278 200 162
50 1791 925 565 | 380 273 206 161
550 | 13 %00 | 553 374 269 203 159
60 | 1658 875 | 541 367 | 265 201 157
&5 1597 852 | 529 361 1 261 198 155
0| 1539 820 | 5I8 354|257 195 153
75| s 808 | 508 348 254 193 152
80 1433 787 | 497 342 250 190 150
85 1384 767 | 487 337 246 188 148
90 ‘ 1338 748 | 478 331 243 186 147
95 ! 1284 729 | 468 326 | 23 183 145
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TABLE 15. Expected stem number (N pro ha) in case m, is estimated (only to be used for

N < 500
m, in meters: 1 2 3 4 5 6 7
00 - 1940 388 510 331 231 171
05 - ] 1849 860 4908 | 324 228 169
.10 - 1768 234 468 | 318 224 166
15 - 1 1686 808 475 312 220 | 164
20 - 1613 784 464 306 217 162
25 - 1544 761 453 301 214 159
30 - 1480 719 443 295 210 157
35 - 1420 718 433 290 207 155
40 - 1363 698 424 284 204 153
A5 - 1310 678 415 279 201 151
50 3413 | 1260 | 660 406 274 | 198 149
55 3198 1213 642 397 270 1 195 147
60 3004 1169 | 625 89 265 | 192 145
65 2827 1127 609 | 381 260 | 189 -
70 2666 1087 | 593 73 256 . 186 -
33 2518 049 | 378 365 252 184 -
.80 2383 1014 ‘ 563 358 247 | 181 -
85 2258 930 549 351 243 | 178 -
00 | 2144 948 j 335 344 739 | 176 -
95 | 2038 | 917 | 522 | 337 235 | 1713 | -

9. APPLICATION IN PRACTICE

The distance method has been applied in 17 Scotch pine stands in the forest
Ranges Oostereng, Ommen and Haarle. These 17 stands can be taken as a
representative sample of the Dutch Forest stands with respect to the distance
method.

The surveys were made by several surveyors.

An example of the recording and computing is given below.

Distance method a4
Forest Range: Haarle division 77a
Surveyor: G. H. Ragts, Agr. Cand.

distance in meters 1.501.752.002.252.502.753.003.253.503.754.00
frequency. . . . 1 2 4 5 1411 4 8§ 1 2 1Total53

Estimated median: 2.635 m
Estimated stem number: 1615

The value of the median is found by interpolation at 264. Class 2.75
(2.625-2.875) contains Nrs. 26 till 37.
One has at263:

(2.625 + %5-) = 2.635.

The results of all observations are given in table 16.
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TABLE 16.
! Nom- 14 i:: gy SNy~ N
Division | Forest Range iﬁrﬁ: Surveyar mt::;?g_ inmns\. inmx;x. _E g E E—g iz N .
ments SE21EF | g
|
18 | Oostereng | 1.60 ' g)en Hollan- | 48 | 4.02 S05 | 470 | 1.0745
er :
18 " 1.60 ' 50 3.93 525 470 1.1170
18 ' 1.60 o 50 4925 473 470 1.0064
18 . 1.60 ' 50 4915 | 475 470 1.0106
9a Ommen 5.53 | Raects- 107 5.61 264 266 0.9925
Thijssen
Ga - 5.53 » 100 5.54 271 266 1.0188
Qa ' 5.53 » 66 5.54 271 266 1.0188
11O ” 1.93 » 85 3.85 549 598 0.9181
11O " 1.93 | Essed 60 3.685 582 598 0.9732
11eW ' 1.92 s 95 3.95 522 545 0.9578
11cW " 1.92 | Raets 64 4.05 498 545 0.9138
1220 v 2.11 | Essed 52 174 581 538 1.0799
1240 v 2.11 | Thijssen 83 3.86 546 538 1.0149
13aW . 2.02 | Essed 54 4.45 415 467 (.8887
13aW . 202 | Raets 77 | 405 498 | 467 | 1.0664
131 . 2.21 Essed 41 7.1% 162 148 1.0946
13b . 221 | Thijssen 77 | 769 142 | 148 | 0.9594
31b - 0.594 | Racts 35 2.00 1940 | 2076 0.9345
31b ' 0.594 | Thijssen 35 1.90 2144 | 2076 1.0328
31 ' 0.594 | Essed 44 2.45 1864 | 2076 0.3979
31b e 0.594 v 40 2.30 | 2121 | 2076 1.0217
316 ' (.594 | Raets 51 2.30 | 2121 | 2076 10217
40d " (.605 | Essed 38 3.57 635 702 0.9046
404 v 0.605 1 43 3.50 748 702 1.0655
40d . 0.605 | Thijssen 32 3.31 735 702 1.0407
404 » 0.605 | Raets 53 3.625 660 702 0.9402
60a ' 1.003 | Thijssen 33 2.39 1372 | 1575 0.871t
602 . 1.003 | Essed 46 | 2.225 1579 | 1575 | 1.0025
602 ' 1.003 | Raets 35 2.40 1363 | 1575 .8654
60a " 1.003 | Thijssen 38 2.65 1597 | 1575 1.0140
T7a Haarle 0.64 | Raets 53 2.22 1599 | 1596 1.0019
77a . 0.64 ' 53 2.635 | 1615 | 1596 1.0119
784 . 0.72 v 48 5.21 305 292 1.0445
784 . 0.72 » 43 6.125 | 302 292 1.0342
97a ’e 1.03 - 65 3.29 743 741 1.0027
97a ¥ 1.03 s 65 3.84 i 741 1.0405
99 . 0.76 » 59 2.25 1544 | 1559 0.9904
99 . 0.76 . 59 2.72 | 1515 | 1559 0.9718
99¢ . 0.98 . 64 | 253 1232 | 1038 | 1.1868
90¢ ve 0.98 . 67 311 1167 | 1038 1.1243
1322 - 2.00 . 63 | 2.64 1135 | 1140 | 0.9956
132a . 2.00 » 63 3.05 1212 | 1140 1.0632
135a . 2.00 . 63 | 2.72 1072 | 1156 | 0.9273
135a s 2.00 . 63 § 3155 1133 | 1156 0.9801
sum .o, ... .. . 29.8284 | 14.25380
mean . . . . . . . 0.9943 1.0188
Total mean . . . . .

1.0021
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Consider the numbers x; = {S(N)-N}N-1 To test the O-hypothesis
S(N) = N we can make the following assumptions:

The numbers x; are random variables with an expectation E(xi) and a
normal distribution. If we compute x; we may test the hypothesis E(x;) =0
(that means {S(N)-NIN1=0 or §S(N)= N).

The standard error of x; can be estimated as o(X;) = 2 Vin~1, (n is the total
number of measurements and Vj is the coefficient of variation of the distribution
of a;; see pg 23). We find the following results:

X3 = 0.0057; o(Xs) — 2(0.295x 1780-1) — 0.0132; t3 — X3 {a(Xa) } L = 0.432
Rs = 0.0188; o(X4) = 2(0.253x 734-1) = 0.0185; ty = X4 {o(Xa) } 1 = 1,02.

As the levels of significance for these values of t are 0.333 and 0.154 respect-
ively, we have no reasons to reject the hypothesis S(N) =

We also estimated the total number of trees in all the cases considered. This
is done by multiplication of the true and estimated stem numbers by the area
of the stand. Table 17 gives a summary of the results. The average of the ab-
solute values of the deviations as well as the maximum deviations are also
given for both cases.

TABLE 17.
. [ I . average
Bai- | Aa | Tl | Baimaed | Nomberof | geyiggon | e | masimun | momber of
mator m ha. of trees Number ments in % in 9% in % ments. (size
i of sample)
m, | 54.32l 32400 | 31933 1780 0.0144 1 0.059 I 0.187 59
m, | 1472 | 1599 | 16228 734 | 00143 | 0.043 | 0124 52

It was also tried to replace the optical instruments by estimates by eye only.
The surveyor Mr. RAETS estimated stem numbers in 6 stands in Ommen in
that way. He got an average difference of 0.05 N, but in one case a difference of
0.20 N. It seems possible for well trained persons to achieve fairly good
estimates in this way.

CHAPTER IV

COMPUTATION OF THE MEAN VOLUME

1. SOME WELL KNOWN METHODS

During the development of forest mensuration much attention was paid to
the dimensions of the so called ‘“mean volume tree”, ie. a hypothetical tree
that has a volume equal to the mean volume of all the trees of the stand.
Especially in Germany different authors made investigations regarding this
subject.. As can be expected the form factor was used in all these investigations.

Ever since the beginning of forest mensuration the tree with g (the average
basal area) was used. Although SpeDEL (1893) showed that a systematic error
is made if the mean basal area tree is used, it is still a common practice to use
this tree as the mean volume tree.
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Some methods were introduced in which use is made of the diameters of all
trees and a height curve to determine the mean volume, with a volume table.
The diameter and height of the mean volume tree were found by interpolation
in the table. {TISCHENDORF, NEUBAUER.)

HoHENADL suggested the use of two trees with diameters d~sand d +s.
The average volume of these two trees was considered equal to the mean volume
of the stand. It was shown that this statement holds if the following relation
exists in the stand:

v—ad?+bd+c

v is the expected volume of a tree with diameter d.

The discussions in literature showed that the authors were aware that
dgz # d3, but they still used d; because there was no easy method known to
estlmatc d'

2. BERKHOUT’S RELATION

The author started an investigation concerning the computation of the
diameter of dj in a stand. He took as point of departure the well proved
formula of BERKHOUT which gives a relation between v and d.

BerkHOUT (1920) found the formula v = adb, (v is the expected volume of
the tree with diameter d in even aged stands. b is a constant for the wood
species and a is only constant in the stand. BERKHoOUT worked with Scotch pine

and found v = ad®2. STOFFELS introduced for the constant a the following
formula: a = pd®h®. He stated for Scotch pine: a = 0.501 d—0-268 10.865 gnd

-b = 2.2 as BerxHoUT. He used these two functions to construct standard
volume tables.

The author computed the constant b from 33 surveys of 21 different Douglas
fir plantations and 23 surveys of 10 different Japanese larch (Larix leptolepus)
plantations resp. and found for:

Larch: b = 2.393 - 0.012 and Douglas fir: b = 2.394 4 0.014

For practical purposes b = 2.4 can be used for both specws The constant
a was also calculated for Douglas fir, from 60 surveys in 24 stands using the
formula STOFFELS suggested. We found

4,21 a = 0.0597 d-0-54 p30.978

3. COMPUTATION OF THE MEAN VOLUME ¥

We start from BERKHOUT's formula, which states that the expected volume E(v)
of a tree with diameter d is given by the formula E(v) == adP.
The following symbols are used.

d = arithmetic mean diameter
dz = diameter of mean basal area tree
dy = diameter of mean volume tree
d = diameter of an arbitrary tree
u=d-d
v = expected volume of an arbitrary tree
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¥V = mean volume
vg = expected volume of the tree with diameter d

V = total volume
a ¢n b = constants

n = number of trees

82 = n' X u? = variance of the frequency distribution of the diameters

The volume of an arbitrary tree can be expressed as follows: v = a (d -+ ub,
Using TAYLOR’s series for (d | w)? we find:

v=a(d+uP=a(@+budl4 ib(b-Dudt-2+ R
After summation we find for the total volume -
Tv=a(d® 4+ bZud™! 4+ }b(b—1) X u2db-2 { R')
and the mean volume is:
v = adb {1+ nl dlZu+nld2Xu:+ R

Furthermore we have:
1. £ u=0. This follows from u = (d - d).
2. In our cases b and s2 d—2 are approximately 2, 3 and 0.06 and we can show

that R”| << 0,0006 so that R” can be omitted for practical purposes.
We find:

(4, 3,1) v—adv {l + +b(b-1).52d2}

4, 3,2) v—vgcwithe= {1+ 3bb-1)-s2d2}.

In other words: The mean volume can be found from the volume of the tree
with the arithmetic mean diameter, by multiplication with a factor that only
depends on the value of b and the coefficient of variation = sd-1.

The computation of the correction factor ¢ can be facilitated by the con-
struction of a table with the form:

Douglas fir and Larch Scotch pine:
values of ¢ values of ¢
N s s
- 2 2.5 3 - 2 2.5 3
d d
10 1.0672 1.1050 1.1512 10 1.0528 | 1.0825 1.1188

4, COMPUTATION OF THE DIAMETER OF THE MEAN VOLUME TREE

As we can easily compute d we shall express dy as a function of d. For this
purpose we use (4, 3,1)

ads? = ad®{1 +  b(b- 1)-s2d 2}
dy=d {1+ 4bb-1)szd2p’
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Using TayLOR’s series and omitting the terms of the third and higher degree
we find:

4, 3,3) dy=d{l+4(b-1)s2d2}
(4, 3,4) dy =d-¢’ withe' = 1 + L (b-1)s2d2
The formula shows that the diameter of the mean volume tree can be found

from the arithmetic mean diameter, the constant b and the coefficient of variation.
As in (4, 3,2) we see that the factor a does not occur in the formula,

5. SOME DATA FOR PRACTICAL USE.

Using the values b we mentioned in section 1 we find, taking s2 d-2 = g2
and using formula’s (4, 3,2) and (4, 3.4) for Scotch pine:

c=1+132qg% and ¢ =1+ 0.6q2
for Douglas fir and Larch:
c=1+168q% ¢’=1+07¢g

To find the mean volume we can better use volume tables as the measuring
of the volume of model trees in the stand is usually too laborious and does not
guarantee better results.

The estimate of s2 can be found with the formula n—* X u2, This requires
some computations, but not more than in the case of dg.

In practice 2s = dgao, — d1ge; is used, assuming a normal distribution (di.,
is the value of d at the i %] point of the frequency distribution of the diameters).
As we know that the frequency distribution of the diameters has a small
positive skewness, we tried to find a simple expression by the aid of which s can
be found by counting in a similar way.

For this purpose we computed s with the formula s = (Z v n~? in 65
Douglas fir stands and 36 Scotch pine stands. We assumed b; = dgoo—iyo —
~ dgyy = kis and computed bys, big and bi7 using the regression formula

ki=(Zbys)(Z s 1

The results were for Douglas fir as well as for Scotch pine: bis = 2.11 s;
big = 2.03s; byg = 1.95s. By interpolation we found 2s = bgg.g. We
suggest to use bys = 2,1 s for practical purposes.

To find an estimate of d and s we should take a sample of the diameters,
either by callipering or by using the tree-fork, We first like to have an idea
about the number of trees in our sample in order to get a certain accuracy.

It is known that if n is the size of the sample in a finite population of N
individuals, we find an estimate of the variance of the sample mean by (s7)2 =
=s2n1(1-nN). _ o _

Suppose we want an estimate D of d in such a way that P{(D - d) >>0.05d } =
= 0.95. In that case we have, assuming normal distribution, 263 = 0.05d or

o3 = 0.025 d. If we take sgj = og wehave (s3?d~2 = 1g45 or

2321 -NY = 1
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Incase s2d 2= {5 wehave n = 100 (I-nN-1), soin practice it would hardly
be necessary to measure more than 100 diameters at random. An error occurs
also, since we usually take the diameters in classes. This error can be com-
puted, assuming that every value in the class has the same probability of
occurrence. We find a rectangular distribution in the class interval. The variance

is % a? if a is the length of the class. The variance of the mean value is

% a? o1 if n is the size of the sample.
In practice the following method can be applied.
1. Take a sample of 100 diameters to estimate d and bys. If N is small e.g.
<7 500, compute the size n approximately using n = 100 (1-aN-1),
2. Measure hg and find vg in a volume table using d and h3.

3. Compute v with (4, 3,2) or use a table for it.
It is also possible to use (4, 3,4) and compute d;. After measuring hy the
volume ¥ can be found (volume table).

6. SOME APPLICATIONS .
First we use the example of STOFFELS (1953) concerning a Scotch pine stand.

We have, d = 13.59 s2 = 5.878. As b = 2.20, for Scotch pine we have:
¢ = 14063878 _ 10191

184.69
dy =¢ x d= 10191 x 13.59 cm = 13.85¢cm
¥ = 0.1008 m3
STOEFELS gives: 9%‘;”18 = 0.1007 m3

HOHENADL’s method gives:
d - s=135cm - 244cm = 11.15¢cm
d+s = 13.59 cm + 2.44 cm — 16.03 cm
v (@ = 0.0630 m3
vidisy = 0.1386 m3
¥ = }(0.0630 - 0.1386)m3 = 0.1008 m3

For a second example we chose the 41 years old Douglas fir stand S88 of
the Forestry Research Institute of the University of Wageningen. The stand
lies in division 304 of the Forest Range “Speulder and Sprielderbos”.

The volume was computed by a complete callipering. The diameter of each
tree was callipered in two directions. A height curve was constructed from a
great number of height measurements. The volumes given are calculated with
BECKING’s Volume table for Douglas fir. The total volume is 90.162 m3 and
the mean 0.8669 m3, The results are given in table (18).

In the same table the calculation with our method is given.

First the arithmetic mean diameter d = 30.45 cm was computed. hj = 25.1 m,
We found vy = 0.811 m3.
We computed s using s2 = n~1Zu2 and found s = 6.37 cm.
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Using (4, 3,2) we found ¢ = 1.074 and ¥ = 1.074 x 0.811 m® — 0.8710 m2.
A different method gives (4, 3,4) d7 = 31.7cm, and consequently h; 25.4m
and v = 0.8704 m3. '

TABLE 18. Douglas stand SS8, dev. 30d, Speulder en Sprielderbos, Apeidoom. Area
0.2736 ha (41 years old)

Old method New method
d, h Vi i d,.
mlc;:) in m n in m? il:“;llﬂ m'g;}l n u n.u n.u®
: |
15 20.0 1 0.160 | 0.160 15 i -15 . -15 225
19 21.3 3 0.271 0.813 19 3 -11 -33 363
20 21.6 1 0.304 | 0.304 20 1 -10 -10 100
21 220 2 0.340 | 0.680 21 2 -9 -18 162
22 22.3 1 0.380 | 0.380 22 1 -8 -8 64
T 23 22.6 4 0.419 1.676 23 4 -7 -28 196
24 230 6 0.464 | 2.784 24 6 -6 -36 216
25 2313 9 0.510 | 4.590 25 9 -5 —45 225
26 23.6 8 (548 | 4.384 26 8 -4 -32 128
27 24.0 6 0.611 3.666 27 6 -3 ~18 54
28 24.3 5 0.665 3.325 28 5 -2 -10 20
29 24.6 4 0.722 | 2.888 29 4 -1 -4 4
30 250 3 0.784 | 2.352 30 3 0 0 0
3 253 3 0.845 2.535 31 3 + 1 + 3 3
32 256 7 0910 | 6370 32 7 + 2 +14 28
33 260 4 0.981 3.924 33 4 + 13 +12 36
34 | 263 7 1.050 | 7.350 34 7 +4 | +28 112
35 26.6 7 1.128 | 7.896 35 7 + 5 +35 175
36 269 4 1.207 | 4.828 36 4 + 6 +24 144
37 27.2 2 1.288 2.576 37 2 + 7 +14 98
38 27.5 5 1.372 | 6.860 38 5 + 8 +40 320
39 27.8 4 1460 | 5840 39 4 + 9 +36 324
40 28.2 4 1.547 6.188 40 4 +10 +40 400
44 28.5 3 1.900 | 5.700 44 3 +14 +42 588
46 28.8 1 2,093 2,093 46 1 +16 +16 256
N =104 V =90.162 m3 Zn.u. = +47 En.u.2=4241
v = 0.8669 m3 d =30 4 g = 30.45¢em
! hg = 25.1m
¢ = (14+07 x 4%%8) =1.0306 s — (44! - 0.452) cm = 6.37 cm
dy = 30.45 x 1.0306 cm = 31.4 cm vg=03811md
hy; — 254 m c=(1+1.68 x £%%%) = 1.074
v = 0.8704 m3 v =03811 x 1.074 m® = 0.8710 m®
deviation: + 0.40 % deviation: + 047 %

Applying HonenapL's method we find v = 0.869 (deviation: 0.24 %).

Wealso tested the method, computing V for about 20 Douglas fir plantations.
All differences from the complete measurements were less than | %.
An example can show that a great deal of the deviation is due to the roundings
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in the table. Let a trec have d = 31.35cm; h = 25.35 m; its volume is
0.8662 m3. If we had rounded to d = 31.4cm; h = 25.4 m we should have
0.8704 m®. The deviation is: (.48 %.

7. DIAMETER AND VOLUME OF THE MEAN BASAL AREA TREE

As it is common in forestry practice to assume dgz = dy and consequently
vz = ¥, we want compare these two quantities.

From d2=n"1%d%; d=d+u and s2=n"1%u? we know: d=
=d2 + 52,

Using TAYLORS series we find with a sufficient approximation

dg =@+t =d(1 +32d?

For v; wefind:v;=adgP =adP (1 + $s2d2.)b.
(4,7,1) vg=adb(1 +1b.s2d2..)

From (4, 3,1) and (4, 7, 1) we find for:

V-vz=ad?} {b(b-1)-b}s2d?

4,7.2) F-vg—adP i b(b-2)-s2d2
4,7.3) V- vy — vg-c" with ¢’ = L b(b—2)s2 d~2

From (4, 7.3) we read:
1. ¥ > vg a conclusion confirmed by many eiperiments. SPEIDEL e.g. found

that in 53 of 55 stands he inspected, the diameter of the mean volume tree

was 2-5 mm higher than dg.
2. v-vg depends on b and the coefficient of variation.

An estimate of v - vz is found by taking q = sd~1 = }. For Douglas fir
and Larch ¢ = 0.03 and for Scotch pine 0.014.

In our examples, the Scotch pine stand had V = 0.1008 m3 and vz —
== 0.1000 m3, (deviation: -0.8 %) and the Douglas fir v = 0.8669 m® and
vz = 0.8478 m3 (deviation: -2.2 %).

The formulas also show that when there is a linear relation between v and
d2,(b=2) v=v;

The formulas allow us to explain the views of some authors.

We cite:

TI1SCHENDORE: *“... allerdings bezieht sich GEHRHARDT nur “auf gleichmaészige,
reine und gleichaltrige Fichtenbestiinde.” and “In Bestinden wie sie GEHR-
HARDTS Beispiel zugrunde liegen, wird der Unterschied, practisch iiberhaupt
nicht in Erwigung gezogen werden”.

GEHRHARDT: “Die theoretische Verschiedenheit des arithmetrische Massen-
und Grundflachen-Mittelstammes gleichmiiszige gut durchforsteter Bestinde
ist in Praxis meist so geringfiigig und...”
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We see that expeﬁence shows that ¥ — vg is smaller if the stands are regular
{small s). Our formula indicates the same. It is also clear why investigators in
elder Scotch pine stands find a smaller difference. In these cases (b - 2) as well

as sd-! are small.
But as we cannot expect a small value of ¢”

considerably biased estimate of V.

in EVery Case, SO Vg g‘lVﬁS a

8. HOHENADL'S METHOD
HOHENADL states that the average of the trees with diameters d + s and

d-s equals V.
If we use BERKHOUT’s formula we get:

vate = ad + )P = v,
Vi =a@ b =v.
vi = a(dP + bsd? -+ 1 b(b-1)s2db-2 + .
_ = a{dP - bsdP-1 + 3 b(b- 1) s2d>-2 + ..
3 (v4 + vo) = a(d® + 2 b(b—1)s2-d™2) = adb (1 4 } b(b- 1)s2 d~2)
"The second part of this equation is the same as in (4, 3, 2) and we find
v=13% v+ vo)

9. ACCURACY OF THE METHOD
To compute the accuracy of the method we make use of (4, 3, 2):

V=ad"(l + bb-1)s2d2).
In caleulating b for Douglas-fir and Larch we found an estimate for af,.
Estimates of op are found from the formula op, = o 4/n where n is the
number of observations used to compute b. We find
S(op) for Douglas fir: 0.014 4/33 = 0.08
S(ap) for Larch: 0.012 4/23 = 0.06

Assume op = 0.07.
The error that occurs from b is caused by the term r=3b(b-1). An

estimate of o; is found as  S(or) = (b2 op? + L ap?)t = op(b2 + 1t S(or) =

— o1 /601 = 2.456- = 0.17.

1f we assume s2 d—2 = % we find for the standard error in the volume 0.01 vg
So, if we compare the results of our method with the computation of the total
volume by summation of the volumes of each tree (volume table), we must

take a standard error of 1.0 % into account.
In practice this error has little influence on the total accuracy. If the standard
error estimating vg = 0.05 vz, we find for the total standard error {(0.052

+ 0.012)t v = 0.051 vj. In such a case the infiuence is only 0.1 %.
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CHAPTER V
CALLIPER AND TREE FORK

1. THE CALLIPER

The instrument commonly used in forestry practice for diameter measure-
ments is the calliper. All investigations in the Netherlands concerm'ng diameters
are done with the calliper.

It is a common practice to speak about ‘“‘the” dlameter of a tree although,
it is well known that the crosssection of the tree can be sufficiently approximated
by an ellips. _

Speaking about “the” diameter of a tree we indicate with this expression
the expected value (d) we will get by repeating the calliper measurement on the
crosssection of the tree many times, assuming that every point of the cross-
section has the same probability to be touched by the calliper. This expectation
can be computed as follows. Consider the crosssection to be an ellips in the
equation: .

x2a 2 y2b?= |

Let: k = (a2 -b2)(a% + b2y ! and c? = a2 + bl

Y-as

F1G. 6

Consider the calliper AB in the position given in fig. (6).

The tangents AC and BC’ have the equations: y = mx + (a2 m2 4 b?)#;
m = arc¢ tg. ¢. We find:
AB=2(a?m2 + b?)! (1 + m2yt =2(a? sin? © 4 b? cos? ¢} = (1 — kcos 29} c+/2.

As every angle ¢ has the same probability density of occurence we find, taking
the symmetry of the ellips into account
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@1, d=mlcy/2 [ (1-keos2p)de = (1-Fgki-thig k4. Je /2.
[4]

2. THE TREE FORK

Some time ago Prof. Dr. H. J. BECKING constructed a tree fork which proved
to be very useful in practice.

This treefork is composed of two metal rulers with a fixed angle (). The

rulers are provided with a scale corresponding with the diameter classes of a
cylinder, caught between the two rulers (fig. 7a).

Y~as

-%X-0s

Fic. 7a

The treefork is placed perpendicularly to the tree axis at breast height. The
diameter class of the iree can be read on the contact point of the tree circum-
ference and the ruler.

A sheet of paper with the same scale is attached to the ruler to register the
diameter classes of the measured trees. In this way the frequency distribution
of the diameters of a stand is obtained, precluding reading errors and errors
caused by misunderstanding which occur frequently when the calliper is used.

The treefork can be easily handled by one man, which allows a more efficient
organization of the work. A time study has shown that the average time needed
for a treefork measurement is 0.109 min (2254 observations) and 0.143 min
(1318 observations) for a calliper maesurement.

For the computation of the expected value for the fork measurement we
use the same notations as in the previous case. Consider the treefork PaP1 P2
in fig. 7b. The coordinates of P, and Ps are {(—x1; ¥1) and (xz2; y2).

If ¢ (resp. ¢) is the angle between PoPy (resp. PgP1} and the x-axis, we put
tgp =m; tgy=mg; tgr=4¢q; ¥ -0 =a;

The value which we are interested in, is the expectation of 2(PiPg) tg $o.
2(P1P2) ig 4o can be considered a function of ¢. If we assume that every angle
o has the same probability density of occurence and we take the symmetry of
the ellips into account, we find )

2E{(P1Po) tgd 2} = E{f@)} =" [ f(o) do
0
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The lines PoP; and P3P; have the equations:

(5, 2,1) ¥y = my % - (a2 m2 + b2} and
(5.2,2) y = max + (a2 me? + b2
From (5, 2, 1) and (5, 2,2) we find the solution for x3. For Xz we find:
(5,2.3) xg = a2 my (a% my? + b+,
As q = tge we have
5,24 q = (mg—m) (I + my mg)1.

Using (5, 2, 1), (5, 2, 2), (5, 2, 3) and (§, 2, 4) and taking P1P2 = (x2 - x3)
cos—l¢, we find after some computations:

(5, 2,5 d' = E{fio)} = {1 - fg k2~ hfg k.. Jo v/2.

Hence we find that the expected value d’ is independant of « and equals d.
In other words: Any treefork gives the same expected value as the calliper.

In case of stands with large diameters we can use forks with a greater angle a.
This is of considerable practical impartance, since the size (weight) of the
instrument can remain small. It is of some interest to show that the accuracy
of the instrument need not decrease if a greater angle is used in case of a greater
average diameter.

For practical reasons we can better take the class intervals on the rulers not
less than 2 cm. Take 2 cm as a fixed value. This means that the corresponding
diameter class increases with the angle .

It is well known that the coefficient of variation (V) of the mean, caused by
the use of diameter classes can be computed as Vo = a.(12ny~¥ d-1, where

1 is the number of observations from which d is computed and a the length of
the diameter class. If the scale on the ruler is graduated in classes of length a’,
we have for the corresponding diameter class a — 2a'tgia (xis the angle of the
treefork); Ve can be kept constant by taking such an « that d-1 tgde remains
constant.

Moreover, practical use shows that it is feasible to choose such an « and d
that V,, tends to decrease when o and d increase. This is illustrated by an example
in table 19 in which we suppose the length of the ruler to be 50 cm., 2’ = 2 cm
and n = 100,

TABLE 16.
Range of d, ’ Maximum .

average diameter, tgda measurable :i’;an.lﬁtg;] max Yc

incm diameter in cm S 1 :
T t

10- 25 ‘ 0.50 50 2 0,006
25- 50 F Q.75 75 3 0.003
50— 70 1.00 100 4 0.002
70- 90 1.25 ‘ 125 5000 0.002
90-150 2.00 i 200 8 ) 0.003
> 150 2.50 250 10 { 0.002
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CHAPTER VI

THE CONE METHOD FOR THE ESTIMATION OF THE MEAN
HEIGHT OF THE TREES IN A STAND

In 1955 I introduced 1) a method to estimate the mean height of the trees ina
stand. This so called Cone Method is related to the method of BrrTerLicH for
the estimation of the total basal area pro square unit.

1. HORIZONTAL TERRAIN

The method is as follows:

Let the ground in the forest be flat and horizontal. Consider a circular cone
C with its top A on the ground and with vertical
axis (fig. 8).

The top angle of the cone is (- 2x). We count the
number n of the tree tops in this cone?) and we will
show that this number vields an estimate of ZhZ, the
sum of squares of heighis pro unit area.

Consider the tree tops in a forest. The number of '
tops in a small domain with volume W is a random

variable with expectation W -¢(h). :“ 1
¢(h) is a function, only depending on the height of :
h, which may be called the expected density of the tree
tops at height h. The expected number of tree tops
s now
FiG. 8
(6, 1,1) En) — fcp(h) dxdy dh; C = x® |- y2 < h® cotgZa; h >0
C

- f @(h)-mh? cotg? adh
0

=mootg?a f p(h)-h? dh
0

On the other hand, in case D is a vertical cylinder with unit cross section, we
have for the expectation of Zpy h?

T h? = EEph?) = f o(h) h2 dh = E(n)n! tg2x
0

An unbiased estimate of Zh2 is therefore given by
6, 1,2) S(Z h?) = =i tg2x

1) At the same time I introduced the cone method (Nederiandsch Bosbouw Tidschrift 27
(1955) 11 (Nov.) 285-287. Mr Taneo Hirata published independently of my studies a similar
method called ,, Vertical angle count sampling” (Journal of the Japanese Foresty Society) 37

(1955 11 (Nov.) 479-480.
%) In practice we will not take the top of the cone on the ground, but at eye height. We will

show later which are the conseguences of this.
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If N is the number of trees per unit area, then the quadrate mean h¢? of the
heights in the stand is:
he? = N-1 X h?
hg can be estimated by
(6, 1,3) S(he) = (*N) ¥ nt tga

hp can be regarded as a representative for the heights of the trees in the stand
(compare the regression heights: hg, hgz, hy). We want to compare this
estimate with hg.

Consider the formula of STOFFELS (STOFFELS and vAN SoOEST 1953):
E(h) = mdn
where the expectation is considered under the condition that the diameter of

the tree is d. m and n are constants,
The diameters d in the stand have a frcquency distribution. Let d be the

relevant random variable with expectation d. We call d - d = u. We now
compute, unconditionally,

ho? = E(h?) — E m(d + w2
This is approximately
E{m2(d2® 4 2nd2rlu + 4.2n(2n - 1) dan—2u2) —
= m2d2e (1 4 0 + n(2n - 1) d-2 E(u?))
As m2d?n — hg?, and E(u) = s? we have:
ho = hz {1+ 3n(2n-1)d-2s2}

Estimates of n (in SToFFeLs’ formula) for Douglas fir and Scotch pine are
n = 0.545 and n = 0.305 respectively. (Estimated from 8 and 10 stands resp.)

Taking the coefficient of variation sd=* = } we find for Scotch pine
hp ~v 0.996 hg and for Douglas fir hp = 1.0015 h3. So hg can be considered a
good approximation of hg for practical purposes.

Remark: In case HENRIKSEN’s formula is used to compare ho and hg we
find some more complicated equations, but the conclusion that the difference
hg ~ hg is small enough to be neglected in practice, remains the same.

However, it is not convenient to choose the top of the cone on the ground.
It is chosen on eye height: ¢ = 1.70 m above the ground. Using the same
formula we do not get an estimate of Th? but of Z(h - c)2, which we denote
by Nhe2,

' = X(h2 - 2ch + c?).N-1

= ho? - 2ch 4 c2; substituting h = ho[1 — 3{ oy }2ho2]
we get = (h{] - 0)2 + C{ Sth) }211071
he? = (ho - ¢)? [1 + ¢{om }?ho  (ho - <) 2
= (ho-¢)(1 + 7)
with = lc {o@ }2hot (ho— c)2
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In order to estimate v we computed op2ho=2 in 30 different stands. For
ho =9 all values op2ho=2 were € 0.04. If ¢ =1.70m, hp=10.2m and 6,2 =
= 0.04 he?, then t — 0.005. For hp = 17m we find ¢ < 0.001. We may
conclude that for practical purposes < can be neglected. Hence:

(6, 1,4) ho=he + ¢

2. SLopks

In case the top of the cone is on sloping ground (fig. 9) the discussion remains
the same as for horizontal ground.

Analogous to (6, 1,1) we find:
E(n) = f o(h) dx dy dh; with
2

C'=x24y2 < (h+ xtgP)cotgia
= f o (h) wh2 cotg? « (1 - cotg? « tg2 f)y 1t dh
0

6, 2,1 E(n) = 7 cotg? a Zh2 (1 - cotg? o tg2 py 1}
$Zh? = n1tg? « (1 - cotg? o tg? Bt
(6,2,2) hg = N—*(Z h2)t = (nN) ¥n# tg (I — cotg? o tg2 B)

The factor (1 - cotg? « tg2 P} may be regardcd as a correction factor for
sloping ground with a slope f.

Table 20 (page 44) column 1, 2 and 3 shows the factor (1 - cotg? « tg2 )
for some values of o and B.

Formula (6, 2,2) is the general formula for the expectation of hg when the
cone is used with vertical axis.
The cone can also be used with an axis perpendicular to the ground (fig. 10).
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TABLE 20,
(1-tg2« cotg?p)t
tgee (cone) 1 ™ - cos~lt B
_ 450 | 2 = 0 #
8 (slope) (2 =457 | @=s1°25) (& = 60°35)
2°30° 0.9986 0.9991 0.9995 1.0014
5° 0.9943 0.9963 0.9982 1.0057
7730 0.9870 0.9917 0.9959 1.0130
10° 0.9766 i 0.9851 0.9926 1.0232
12° 30’ 0.9629 0.9764 0.9882 1.0366
15° 0.9457 0.9655 0.9828 : 1.0533
17°30° 0.9245 0.9521 0.9762 1.0737
20° 0.8989 0.9361 0.9682 1.0978
22°30 0.8683 ! 0.9169 0.9588 1.1261

In that case we find:
(6,2,3) hy = n* (eN) *tga cos1i 3

If the cone is used in this way, the correction is in-
dependent of «.

Table 20 column 4 gives the correction factor for
some values of 8.

We notice in formula (6, 2,2) for vertical axis that
the correction is smaller if a greater angle o is used.

As we are usually faced with more or less broken
ground, we have to assume an average ground surface
and to consider the errors due to unevenness of the
ground as accidental errors, which do not affect the
expected value but only enlarge the variance. Experi-
mental resulis proved this statement to beacceptable.

FiG, 10

3. THE CONOMETER

We introduced two types of instruments (conometers) to estimate the height
(he) with the cone method.

a. The mirror type (fig. 11). The mirror type consists of a holder ¢ that can
be mounted on a stick and of three bars a, b and e, a is a freely suspended
bar attached to ¢ and at the lower end made heavier with a weight g. Bar.a
carries bar b, wich is revolving around an axis b’ in such a way that b can form
an arbitrary angle § with a. The third bar e carries a mirror s and revolves on
the axis of b (the mirror s revolves about an axis e’). Sights VV’ are attached
to e. The use of the instrument is as follows: The line of sight VV'is directed
parallel to the ground surface by turning b and is fixed in this position. The
angle f of a and b is the angle of the slope and can be read on a scale. If we
need a cone angle(m— 2a) the mirror is fixed in such a way that the angle between
s and e is § «. We now count the number of trees that occur above the line of
sight VV’ while e is turning around the axis b.
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FiG. 11

Remark: It proved however, to be difficult to find (count) trees that are
partially obscured by others, due to the limited range of vision of the mirror.

b. The “‘free sight™ type (fig. 12 and foto). The “free sight™ type also consists
of a holder c and of three barsa, b and e, having the same function. e, however,
is also revolving about an acis e”, carries no mirror and can be fixed, in such
a position that the angle of e and b is (37 —-a) (x resp. arctg0, arctgl,
arc tg {2~¥wt}). The use is as follows: We first put ¢ perpendicular to b.(x =
= arc tg 0). Finally ¢ is fixed in such a position that « is e.g. arc tgwf. The
trees are counted in the same way as discussed above,

This last type of instrument does not present the difficulties mentioned for
the mirror type and therefore can be recommended as most suited for practical
use.

4. SOME EXPERIMENTAL RESULTS

We applied the cone method in some Scotch pine stands in the forest ranges
Ommen and Nijverdal and also in some chir pine (Pinus longifolia) stands in
Dechra Dun (India).

Table 21 gives the results:

The “true heights” are found from height curves constructed with 30-40
measurements of diameter and height.
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TABLE 21.

g = % & | 85 °\2 % £

& : g8 [[&¥ g . 24 || 584 . ghs
88| 3, | §5: 'gEE_| kD 1 §E: 2GR 5@ | fES
SEET | g | fe® | 5E8T| EE | fgF (xSER| gE | fed
wOZ % g8 $EL Azz s '3 B E Sazd a8 -
% 9 19 || 77 2 0 75 4 2.5
11O 4 08 | 135 4 +3.4 76 4 +1.1
ilew 4 24 g78 3 -3.3 77 4 -0.9
1220 4 -1.7 99b 6 —4.5 78 4 -1.2
128 W 4 +1.7 720 2 169 79 4 +1.5
130 4 +21 928 3 0 80 4 +1.7
31b 4 -1.4 788 2 37 87 4 ~1.5
407 4 +1.8 88 4 +4.7
608 5 -2.5 89 4 -1.8
90 4 -10.2

5. ASPECTS OF THE CONE METHOD

a. A time study made in Nijverdal to compare the efficiency of the cone method

with the measurement with the BLUME-LEIss hypsometer, shows the following
results:

Cone method (1 man labor) 0.854 min. pro cone
Brume-Leiss (2 man labor) 1.01 min. pro tree pro man
Brume-Leiss (1 man labor) 1.55 min. pro tree pro man
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The conometer

b. The standard error in the estimate of n! was calculated and turns out
to be smaller than the standard error in the estimate of hg with the BLUME-
LEiss, but the sample was too small to enable us to draw definite conclusions.
c. The estimation of the volume Nvg is more efficient when the cone is applied
even in the cases that the standard error of nt equals the standard error of
hg (BLUME-LE1ss).

To illustrate this statement we use formula (4, 2, 1} in connection with
BerxHouT’s formula. :

N vz = Ny dF; v = pdlhg hence
N vz = N p dfta hy".

Suppose the standard error of N, hg and nt is 5% of the relevant expected

values and that of d = 2.5 %. In case the old hypsometer is used we find for
the standard error in the estimate of Nvg
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EXY
Nvg{0.052+{13+q)2><0.0252+r2><0.052}*:0.05{1 + 124 (ﬁ%) } Nvg

In case the cone is used the formula is
N vg = N p df+a dir N-ir
N vg = N-in) gh+apir

‘< 12 2 (Bta)? '
and the standard error is 0.05 (1 -4r)2 4 412+ 5 Nvg

We notice that the influence of the standard error of N on the total estimate
is much lower as N occurs in the denominator of the cone estimate.
The computations can be facilated by the use of tables (Table 22).

CHAPTER VII
ANOTHER METHOD FOR THE ESTIMATION OF VOLUME PRO H.A.

1. THE METHOD

As we saw the cone measurements give us an unbiased estimate of Z{h-¢)?
pro ha = N(b3 -¢)? in a very easy way.

In the preceding chapter we used this estimate for the computation of hg.
In this chapter we want to use the cone measurement to estimate directly the
volume pro ha.

We assume that a relation exists between the expected value of ¥ pro ha and
the values Z(h —c¢)?, d and s and that the variance of the random variable V is
small enough to permit us to estimate not only E(V), but even V with the help
of the refation; to simplify computations we used bis == dggo, — 159, = 2.11 s
instead of s.

In order to find the relevant function for Douglas fir, we used 65 Douglas fir
surveys in stands of different ages. The data were kindly provided by the In-
stitute of Forestry Research of the University of Wageningen.

In all these stand V, Z(h - 1.70)2, d and b;s were computed. (The number
of trees counted in a cone with angle « = arc tgnt and with top 1.70 m above
the ground, is an estimate of X(h- 1.70)® 104 pro ha; this number will be
designated by n.) The subdivision Wageningen of the statistic department

TNO was kind enough to analyse the data. First the relation between V, n, d
and bys; was studied roughly with a graphical method. (Compare: EzZE-
KIEL). We found that a linear relation would suffice. There was no reason to
assume that the variance of V was correlated to one of the variables, except in
the case of V and n, where it seemed that the variance of V was positively
correlated with n. Secondly a short computation was made to see if the variables

n, d and bys were too highly correlated, in which case they can not be considered

to represent independent influences. In spite of the fact that d and bys had a
fairly high correlation the “bunch analysis” gave no reasons to exclude one of
these variables if the whole set is considered. We came to the conclusion that



16 & 8FR S8 0511

m./ 9L01 6F0I IT0I T66 TY6 TE€6 006 L9% f£€8 0011

TO'TT EL'OL <401 SI01 €86 #$S6 IT6 888 €ES8 LIS 0501

$TIT 00'HL OL°0T OFOl 60001 LL6 ¥H'6 OI'6 PL'S  LES 0001

8C'IT 8T'IT B6OI L9°0L SE'0l £0'01 696 €£6 L6'g 668 618 056

68711 "O9°IT BT'I1 L6701 ¥9°01 001 $6'6 666 1T6 I88 I+'% 006

Y2l E6IT 19T BTTE $6'01 0901 +C°01 Li86 8F'6 L06 $9'8 108 0c8

19°CT OETT L6TI €911 8TID €601 9501 LIOT LL'6 986 T68 98 008

€0'El OLTI SE'TE 10°TT 69°IT STTL 0601 0S01 6001 996 I1T6 $L'8 +C°8 054

601 vI°CT 08'T1 €P°TT 90TT 8 TI BTTT L80T SHOI OO0 #56  $0°6 €S8 00L

PLET BEET €OCT 9971 6TT1 6811 6F 11 LOLL #9701 6101 IL'6 126 698 €18 $L9

66l ¥O'El LTEl 06'TT TETI TI'TY ILIT 8T'ED +8°01 8L01 066 666 SB8 8TB 059

LTPT T6°€1 ESEl 9U'€D LLZT 9C'TL $6'IT IS'IT 9011 65°01 6001 156 €06 vb'g £C9

LSPT OTPD TRET &Pl &O'€1 T19°T1 61°Cl SL11 8T'TI1 0801 O€0F Li6 IT6 198 009

LEYT OSPT 11'vl TLE1 IE'€l 8R°ZI SPZI 00T ZS'TL #OIT I§°01 866 I¥6 088 SI'g SLE

ITCT €8'F1 EFPl £OF] ISED BI'ED ELT1 LTT1 6L11 STIT 94°01 IZ0L 796 006 EES 05§

LEST LI'ST LpT SE%1 E6El 6P EL €0'El 95T 90°CTL SSIT TOTE SH'01 86 126 €€°8 §TE

96'cl ST PIST ELPT LTPE TSET SEET 9370 9€'70 €811 BTIL OL°OT 6001 b6 bL'8 008

LEST 96'ST ES'CT OI'ST #9°%1 BI'PI OL'€] 0T'El 89'TI PI'TT 8S'II 8601 SEOL 696 (68 61'S Si¥

T8O 6E'91 96'ST IS°ST SO'ST LS'wl LOPI 9S°€] EOEl LPTI 6811 STIT #9001 S6'6 IT6 18 05y

IELT L8O TPOT 96°CT BFPCI 66'F1 8FFI S6€I THEl #8T1 +TTL 1911 $6'01 $TOI 86 €98 14 4

PRLL 6ELT T6'9T SPOT SE°CI SPST €6'F1 6EFI TRET ETET 19T1 L61T 8TIT 901 iL6 768 0or

PRI S6'LT SFLL 6691 8PO1 96'SI TPST 98%1 LTPI 99°%1 €OEl 9€TL €911 0601 6001 1T6 +T'8 SLE

LO'6] 6581 60'8T BGLI BOLT 1$'01 96'SI LECT LLPL PI'PI 6FEI O8TE 90°TI ST'II SPOl #6656 £5°% 0S¢

6L°6I 6T°61 BLBI ST8I IL°LE €ULT €91 96'S1 €EST 89FI 66'¢T LT'ET STl TLIT #8701 066 $8°8 STE

09'0C 8007 61 L6°81 TW'BI ¥8°LT ETLT 0990 96761 LTST L&vI TED £0°€L 61T STIT OQ£0I IT6 00€

IEIC 86°0T TPOT 861 ST'61 E€9RI O0'8T SE°LT L9l 96°CT 1ZSE EFPI I9€T ELT1 6L°11 91701 796 ('8 SLE

L5 00°TT I¥'IT IR'0T 8107 ¥S'61 8831 61°81 BY'LI €L°91 96'SI PIST LT¥I SEEL 9€TL STIL 6001 #L'8 05¢

6L'ET 8I'CT LE'TT €6'IT 8TIT 090T 0661 LI°61 THSL POLI TRYT 9661 SO0SI LOFI €OEl 68°L +9°01 16 STT

ETET 6SPT POE'ET 9TET LSTT SKIT I1'IT SE0T vS'61 IL°81 +#8°L1 T691 9661 €6'PT TSEI 19°C1 8TIT LL'6 a0z

96°9T 6797 6S'ST LBPT TUPT 9€°CT LE'TT SLIT 68°0C 00°0T LO61 60'81 SOLT 96'C€I LLVI 6p'€l 90°ZT SPOI €58 sLT

£I'62 OP'8C POLT 98°9T 9097 €T6T LEVT 6VET LS'TC 19°TT 0907 +S°61 THSI £T°LI 96°SI i6Pl £0°El 8Z'II 126 051

16°1€ [TI'IE BZ0E TY'G6T S§'8T $9'LT OL'9T €L°ST TL'PT L9ET LS'TT IPIT 8SU'OT 8881 SPLI 96'SI LT¥l 9€T1 60°0I Y41

I671€ 060 §86T LL'BT VLT 99T E€T'ST P6'€T LSZT II'1Z %561 8Ll 961 TREL STII 001

o oF 8€ 9¢ Pt (£ [+ 8T 9T L 4 0T 81 SI 4! 4! 1] 8 9 14 N
e
"

punoid oy saoqe doj ouod a Jo ey AP ST o (2§ = ¥) %§ o[due
do1 gy suoo JEJINGA B TF pRUN0d sdo) ooM) jo saquinu sy sp U ey oid Jaquwinu wids i sF N sIsdem of (- DPQ) Jog 7z FIEVL



50 37(3)

for practical purposes a sufficient estimate of V can be given by a simple linear
regression formula as:

(7, LI

The calculation gave:
q=20676 r=1689 t=465 and p=-78.58 for Vin m® n as stated,
d in cm and b in cm. Tables 23 gives the correlation matrix.
TABLE 23

V=p-+qn-+rd+tbys

[ -

l v 1000 d by
A4 ‘ 1 0.72621 0.93710 0.71425
100 n 0.72621 1 0.50524 0.27658
d 0.93710 0.50524 1 0.72254
by 0.71425 0.27658 072254 1

The multiple correlation coefficient is Ry, 5 3. b, = 0.9867. The standard
error around the regression plane is 6.8 %, of the mean.
For the construction of a table with (7, I, 1) we use the following expression:

712 V=N4+B+D _
We obtain V=N + B+ D with N=gn, B=tb;s and D=rd 4 p

with the help of table 24 for N, B and D.

TABLE 24
V=N+B+D

I N B D I b

1 6.76 4.65 AD = 6.89 26 100.5530
2 15.52 9.302 - 27 [07.4426
3 20.28 13.953 - 28 114.3322
4 27.04 18.604 - 29 121.2218
5 33.80 23.255 - 30 128.1114
6 40.56 27.906 - 31 135.0010
7 47.32 32.557 - 32 141.8906
8 54.08 37.208 33 148.7802
9 60.84 41.859 - 34 144.6698

10 67.60 46.510 -9.6806 35 162.5594

11 74.36 51.161 -2.7910 36 169.4490

12 81.12 55.812 4.0986 37 176.3386

13 87.88 60.463 10.9882 38 183.2282

14 94.64 65.114 17.8778 39 190.1178

15 101.40 69.765 24,7674 40 197.0074

16 108.16 74.416 31.6570

17 114.92 79.067 38.5466

18 121.68 83.718 45,4362

19 128.44 88.369 52,3258

20 135.20 93.020 59.2154

21 141.96 i - 66.1050

22 148.72 - 72.9946

23 155.48 ~ 79.8342

24 162.24 - 86.7738

25 169.00 - 93.6634
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Use of table 24:

Suppose our measurement is done with a cone angle & = arc tgnt (x =

— 60°35"). We compute fi, d and bis: In column N we find the number Ny
that corresponds with &t in ¢column L. In column B we find the number B; that
corresponds with b5 in column I, and in column D we find the number Dy

“that corresponds with d in I. We take for V in m3:
V=N1+B +D;

2. APPLICATION IN PRACTICE

In practice the survey can be done by two persons A and B as follows: A counts
the trees in about 10 cones, chosen systematically in the stand and B measures
about 100 diameters, using BECKING’s tree fork. The average A — 10-1%n

is calculated.
a. In the forest stand O.N.Q. (1} in Wageningen the cone method was

applied (« = 45°) to estimate V. From 4 cone measurements we found
n' = 40.75. This corresponds with fi = 40.757~! = 12.97 for « = 60°35".
d was estimated from 100 diameter measurements as 12.35 cm, by; is computed

as (14.89 — 10.02) cm = 4.87 cm.
We find in column N for 12.97 the value 87.68, in column B for 4.87 the value

22.65 and in column D for 12.37 the value 6.51.

V pro ha, = (87.68 + 6.51 + 22.65)m® == 116.84 m3.
From a total measurement!) (all diameters and height curve) we knew:

V pro ha = 110.31; deviation is 6.53 m® or - 5.9%,.
b. The method can be applied, using the data in table 18. From this table

we compute n = 10~4 £(h - 1.70)2 = 20.87, d is 30.45 cm and by = (37.78 -
—24.10) cm = 13.68 cmn. In the same way as discussed in the first example we

find from table 24
V pro ha = (141.08 4 131.21 4+ 63.60)m3 = 336 m3.
From the total measurement we find Voo na = 90.162:0.2763 = 330 m3;

deviation 1.8 %,

3. A STANDARD VOLUME TABLE

The formula v = ad®4 with a = 0.0597 d—0.5403 h30.978, gives
(7,3,1) v = 0.0597 d2-4 d-0-5403 h50.978,

For Douglas fir, according to (7, 3,1), we can find the volume of a tree if its

diameter d, the average diameter in the stand d and the regression height h3
are known, so (7, 3,1) defines a standard volume table for Douglas fir (com-

pare STOFFELS 1953).

1) Measurement after thinning 1957.
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CHAPTER VIl

ON THE ESTIMATION OF THE INCREMENT BY THE AID OF THE
INCREMENT BORER -

1. INTRODUCTION

For an efficient forest management the increment of the volume is as impor-
tant as the volume itself.

Several methods have been introduced to estimate the increment. One of the
most simple methods is the estimation of the increment of a single tree whose
increment is considered to be the average increment of the whole stand.
Usually the mean basal area tree (diameter dg) is chosen for this purpose.
By the aid of the increment borer the average number of annual rings on the
last cm is determined and ScHNEIDER’s formula iy — k(n dg)~! is used, in
which k is a constant, n the number of annual rings on the last cm and i, the
increment percentage. In this chapter the increment is also estimated by the
aid of an increment borer, but in connection with our discussions in Chapter
IV the problem is solved along new lines.

2. INCREMENT OF THE MEAN VOLUME TREE
Consider a forest stand at present. The volume pro ha is V, the number of

trees N, the mean volume v, the average diameter d, etc. Consider on the other
hand the same stand a short period ago (3-5 years). The properties of the old
stand will be denoted as above, but with ’. (The mean volume was ¥’ etc.).

The increment is V-V' = Nv-NV' = N(v-¥'). (provided there have
been no thinnings). We wish to express the increment v - ¥ as a function of
dy -d'5. If we use the increment borer, we find the difference d;-d'5.
If d; = dir is an acceptable approximation, the increment given by the borer
. can be used as an estimate of dj - dy.

Tt is commonly assumed in forestry that in even aged stands a linear relation
exists between the expectation of the diameter increment and the diameter.
As experiments showed this statemeiit to be acceptable (Propan (1951) and
others) we will use it for our computations. So we take

(8’ 2’1) d =ud + w
From (4, 3,4) and (8, 2,1) we find:

d'; =ud; +w=udc +w with ¢ =1+ }(b-1)s2d-2
and )

dy =d'¢’ = (ud + w)¢’ = ude’ + ¢'w with ¢ =1+ Kb—1)s'2d"2

The difference d'; —dy = ud{c - ¢} + w(l —c’) is usually small enough to
be neglected in older stands (in such cases ¢ can be taken equal to ¢’ for a short
period. The regression increment w of the tree with diameter 0 multiplied by
0.7 s2d—2 is also small enough). For practical purposes we therefore take
d’; = dy* and in consequence we state; The increment of the mean volume
tree equals the mean increment of the stand,
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3. COMPUTATION OF THE INCREMENT

The mean volume is ¥V = ad3? (BERKHOUT) with a = pdahg® (compare
4, 2,1). From these two equations we find:

(8) 3:1) vV = paq h-&l‘d;b or
InV=Inp-+qld+4rinhj+bind;

Hence

(8,3,2) dinv=gqdInd + rd Inh3 + bdInd;
we now take

(8,33 dlnd—dlnd;=k1dlnhd

From (8, 3,2} and (8, 3,3) we find
dinv=qdlndy + krdInd; +bdInd; =(q+ kr + b)dIndy

(8, 3,4) dinvy=Cdind; with C=q+kr+b
(8, 3,4) gives: InV ~lnv=C_C(Ind5-1ndy) or,
f dr;
ln —=C In &
Take V-V =1 and dy-dy = A then,

In

[t B ld; ‘AIC —~In(l-AdyHC
dg
V-i=(1-AdzHYCVv=(1-CAdy;1 |-} C(C-1A2d;2 4 .. )¥v
i={CAdy -} C(C-1)A2d;2}v=Kv
As i is the mean increment we find for the total increment 1 = Ni
(8, 3,9 I=KV with K=CAdy1+3$C(C-1)A24;2
The increment percentage is:
L=1I{4(V+V)}1=1021(V-{I)1=10KV(V-{ KV)1l=
=1K (-} K)1~ (K -+ 1K? 102

4. SOME DATA FOR PRACTICAL USE

The factor C equals b only if q 4+ kr = 0. This is usually not the case.
Taking q + kr = (0 means that we assume that the height curve does not
change (a remains constant). We know however from experience that the
height curve changes with the age, Only in selection forests the curve remains
constant. If we still use C = b, a considerable bias can be expected.

From (4, 2,1) we know that q = .54 and r = 0.98 for Douglas fir and
—0.268 resp. 0.865 for Scotch pine (section 4, 2). We also saw in section (6, 1)
that the height curve h = md® his an average n = 0.545 for Douglas fir
and 0.305 for Scotch pine. For Douglas fir we find C = 1.86 4 0.98 k and for
Scotch pine C = 1942 + 0.865k.
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Using these data we notice that if k =n, q + kr ~ 0 for both species.
{Height curve remains on the same level).

The value k can be estimated from yield tables. From data published by
VAN Laar (1954) and GRANDIEAN-VAN SOEST (1953) we see that k varies with
diameter and site class. From these data we took some rough estimates of k
{(an average site class) and computed C for Douglas fir. Table 25.

TABLE 25
diameter k C=1.86+098k
10-20 0.95 2.80
20-30 0.80 2.65
=30 0.65 2.50

The value C = 1.942 4 0.865 k 1is also estimated for Scotch pine taking the
values of k from the yield table constructed by GRANDIEAN and STOFFELS
(1955), and given below in table 26.

TABLE 26
- Site Class I T v
d
0. ... 2.91 2.84 2.84
14 . ... 2.77 . 271 2.63
8. ... 2.67 2.59 2.50
2. ... 2.55 2.44 2.29
26 .. .. 243 225 -
28 .. .. 2.38 2.17 -

5. APPLICATION IN PRACTICE

In the 24 years old Douglas fir stand O.N.O. (1) the volume pro ha was cal-
culated in 1953 and in 1957 from a complete measurement!) (all diameters and
height curve). Table 27 gives the calculation of 1.

The diameter increment was also measured by the aid of the increment borer.
We took 28 borings in all diameter classes and a straight line was fitted, giving
the relation between the diameter and its increment. The equation was:
d’ = 0.802d + 0.988. _

We found: d = 11.83; s2d2=0.0416; dy=a(l + 0.7s2d"% = 12.17
¢ = 1.0291; ¢’ = 1,0195.

From the regression line we find A = 1.42¢m, As C = 2,80 we calculated
the increment as follows:

CAdyl=10327; LC(C-1)A2d;=2 = 0.034;
K=CAdy1l-1C(C-1)A2d;2 = 0.293

I—=KV=(0.293.133.8) m3 — 39,3 m%, The deviationis (39.3-414 m3 =
=-21md=_51%.

1y 1953 after thinning; 1957 before thinning.
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TABLE 27
1953 1957
dinem | n hinm | vindm? n hinm vin dm®
1

7 ! 5 7.5 16 3 8.4 18
8 14 8.3 23 10 92 25
9 19 9.0 31 1 9.9 3
10 32 9.5 39 23 10.5 a4
1 28 100 50 18 111 56
12 21 104 60 28 11.6 68
13 18 10.8 74 17 12.0 81
14 8 11.1 87 13 12.4 96
15 1 12.8 113
i6 5 13.1 131
17 5 13.3 148
18 i 1 13.5 167

area = 0.075 ha  Vppopa 1957 = 133.8m3
Voroha 1953 = 92.4m?

Ipro ha = 41.4md

For this young stand we also calculated d'; -dy = udic - ¢y +w(l —¢);
d’; - dy = 0.072. If we take for A the correct value 1.42 + 0.07 = 1.49 we
find K =0.305 and 1= KV = 40.7 m3, Deviation: - 1.99%,.

SUMMARY

In this thesis we develop some theory about new methods to estimate the
stemm number N, the regression height hg, the diameter of the mean volume
tree dy, and the increment L.

In Chapter T and IT we discuss some well known methods for the determin-
ation of the stem number.

Chapter III gives the theory about the distance method. We propose to use
the median myg of the distances measured from points chosen systematically
(or at random) in the stand, to the fourth tree. Moreover, it is shown that in
any case the estimate with my is more efficient than estimates with the other
medians (m, etc.) or with other parameters.

In Chapter TV we show that the mean volume of the trees in even aged stands
can be calculated from the volame of the tree with the arithmetic mean dia-
meter, the constant introduced by BERKHOUT and the coeflicient of variation.
A formula for the diameter of the mean volume tree is introduced.

In Chapter V we discuss the tree fork introduced by BECKING. The fork pro-
ved to be very useful in practice. It is shown that the expected value of ,,the”
diameter of a tree is the same when the tree fork is used as when the calliper
is used.

In Chapter VI the Cone Method, introduced in 1955 by Mr. HIRATA and by
the author independently of cach other, is discussed for horizontal terrain and
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for sloping ground. The conometer, an instrument for the application of the
Cone Method, is introduced. Tt is shown that the height, estimated with the
Cone Method can be regarded as an estimate of hg.

In Chapter VII we introduce a method to estimate the volume pro ha directly.
Using this method we take full advantage of the Cone Method, discussed in
Chapter VI.

In Chapter VIII we derive a formula to estimate the increment by the aid
of the increment borer.

In all Chapters the relevant tables are given. The methods are tested in prac-
tice and examples are given concerning the application in forestry.

SAMENVATTING |

In dit proefschrift worden na enige korte statistische beschouwingen, gewijd
aan bekende schattingsmethoden in de bosbouw, nicuwe schattingsmethoden
voorgesteld. Deze worden aan de hand van de statistische theorie afgeleid en
geanalyseerd en experimenteel getoetst. Met tijdstudies wordt de efficiency der
methoden nagegaan. Enige voor de praktijk belangrijke tabellen zijn gecon-
strueerd en voorts is bij een der methoden een voor de praktijk geschikt instru-
ment voorgesteld. Aangezien de hoofdstukken verschillende uiteenlopende
onderzoekingen en beschouwingen bevatten, volgt thans een samenvatting van
elk der hoofdstukken afzonderlijk. *

Na in de inleiding ¢nige redenen te hebben opgegeven waarom de schatting
van de staande houtvoorraad voor de bosbouw van belang is, is uiteengezet op
welke wijze men streeft naar een schatting van de houtvoorraad die nauwkeurig
genoeg is voor het gestelde doel en zo min mogelijk kost. In het bijzonder wordt
aandacht besteed aan een schatting van de houtvoorraad volgens de formule:

S(V) = $N)-f { $(@), §(ha) }

Hierin is S(V) een schatting van de houtvoorraad V per oppervlakteeenheid,
N het aantal bomen per oppervlakte eenheid (verder kortweg stamtal genoemd),

d de gemiddelde diameter, hj de regressichoogte bij d, en f een functie van
twee variabelen. Al deze schattingen worden in de volgende hoofdstukken af-
zonderlijk besproken. '

Hoofdstuk I bevat een korte uiteenzetting van de twee belangrijkste methoden
ter bepaling van het stamtal nl. de z.g. monstervlakte-methode waarbij het aan-
tal bomen op bepaalde steekproefoppervlakken (monstervlakten) wordt be-
schouwd, en de afstandmethode, waarbij afstanden tussen bomen worden ge-
meten (BAuErsacHs, KSHLER). De door KSHLER voor zijn formules gegeven af-
leiding blijkt onvoldoende gesteund te worden door de statistische theorie.

In hoofdstuk II wordt de door mij in 1954 gegeven benaderings formule voor
de afstandmethode van BAuersachs en KGHLER nader verklaard. De benade-
ringsformule toont goede overeenkomst met de door vorige onderzoekers ge-
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publiceerde uitkomsten van experimenten; ook ons eigen experimenteel werk
gaf aanleiding enig vertrouwen te schenken aan de benadering. Aan deze werk-
wijze kleven echter bezwaren.

Hoofdstuk III introduceert een nieuwe afstandmethode. Beschouw een wille-
keurig punt in een bos. De dichtstbijzijnde boom wordt le boom genoemd,
de op één na dichtstbijzijnde 2e boom, enz.

De afstand anp vanuit een willekeurig punt tot de nd® boom is een stochastiek
(stochastische variabele). Is de verwachting E(an) klein (groof), dan bevat het
bos veel (weinig) bomen per. oppervlakte eenheid. Deze verwachting is dus af-
hankelijk van het aantal bomen per oppervlakte eenheid. Zij blijkt eveneens
(zij het in mindere mate) afhankelijk van de onderlinge ligging der bomen. In
verband hiermede wordt de kansverdeling van ay, (eventueel slechts enige para-
meters) afgeleid bij verschillende veronderstellingen omtrent de onderlinge
ligging der bomen, te weten:

1. De bomen staan volgens toeval op het oppervlak verspreid (Poisson-bos,
»Random Forest™). Aangezien de kansverdeling van Poisson de grondslag hier-
bij vormt, wordt een ruime plaats aan de afleiding van deze kansverdeling ge-
schonken.

2. De bomen staan in de hoekpunten van een vierkantsnet (vierkantsrooster).

3. De bomen staan in de hoekpunten van een driehoekig rooster.

De gevallen 2 en 3 worden Systematische bossen (,,Systematic Forest™) ge-
noemd. De kansverdeling ap wordt voor het Poisson-bos volledig afgeleid, ter-
wijl voor de Systematische bossen de eerste twee momenten en de mediaan
worden berekend. .

De verkregen schattingen in een Poisson-bos zijn asymptotisch zuiver.

De drie genoemde parameters worden voor de drie gevallen vergeléken,
waarbij blijkt, dat de medianen de minste onderlinge verschillen vertonen, De
onderlinge verschillen nemen af met toenemende n. Het verschil tussen de me-
diaan van het Poisson-bos en het Systematisch bos is bij de eerste boom 159,
bij de vierde boom slechts 2,5 %, van de mediaan van het Poisson-bos.

Op grond van een voor de hand liggend model wordt aangenomen, dat bij de
ligging der bomen in een bos zoals dat in de natuur wordt aangetroffen, de
mediaan van de kansverdeling van a, tussen die van het Systematisch en het
Poisson-bos inligt, indien het stamtal in al deze gevallen gelijk is. Het verschil
met de mediaan van het Poisson-bos zal kleiner zijn naarmate het verwachte
aantal bomen per oppervlakte eenheid kleiner is.

Het stamtal kan het beste worden geschat met behulp van de mediaan van
a4. Men berekent daartoe het stamtal alsof men met een Poisson-bos te doen
heeft, en past een correctie toe die afhankelijk is van het gevonden stamtal. De
toepassing wordt vergemakkelijkt door enige tabellen, waarin voor elke waarde
van my de verwachtingswaarde van het stamtal is gegeven.

De gestelde hypothesen betreffende de ligging der bomen in de natuur is
getoetst door in zeven opstanden de afstanden a1, as ag en aq te meten. Ge-
middeld zijn er per steekproef 300-400 metingen gedaan.

Het stamtal N was in elk der gevallen bekend. Bovendien wordt het stamtal
geschat onder de veronderstelling dat men met ecen systematische en een toe-
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vallige ligging te doen heeft. De zo verkregen schattingen N en N, liggen in-
derdaad aan weersztjden van N.

De gestelde hypothese is ook bevestigd door vergelijking van de in deze
opstanden geschatte variatiecoéfficient met die van an in Systematische en
Poisson-bossen.

De resultaten van cen tijdstudie gecombineerd met de bekende variantie van
ap deden zien dat de afstand tot de vierde boom de meest efficiente is.

In hoofdstuk 1V wordt een kort overzicht gegeven van de methoden die be-
staan om de gemiddelde inhoud in bosopstanden te schatten. De door BERK-
HOUT gevenden betrekking tussen de verwachtingswaarde van de inhoud van
een boom en de diameter daarvan (E(v) = adP) wordt als uitgangspunt ge-
kozen voor de berekening van de gemiddelde inhoud. De volgende formules
worden afgeleid:

_ v=vd{1Hb(b—l)szd—Z}
V-vg=14vgb(b-2)s%g%

waarmee een zuivere schatting van v gevonden wordt en de resultaten van
vorige onderzoekers kunnen worden verklaard. s kan worden geschat met de
empirische betrekking bis = dogs —do1s = 2.1 s. De constanten a en b in
de formule van BErkHOUT werden berekend voor Douglas, terwijl voor Larix
alleen b berekend is. De methode HOHENADI wordt eveneens met de gevonden
betrekkingen verklaard.

Tenslotte wordt de schaiting van ¥ met enige voorbeelden uit de praktifk
toegelicht.

o

Hoofdstuk V geeft een beschrijving van de door BECKING geconstruecerde
boomvork.

De verwachtingswaarde van de meting met de boomvork blijkt onafhanke-
lijk van de hoek van de vork te zijn, en gelijk aan de verwachtingswaarde van
de meting met de boomklem.

De boomvork heeft vele voordelen in de praktijk.

Enige resultaten van tijdstudies worden vermeld.

De door mij in 1953 geintroduceerde kegelmethode wordt besproken in
hoofdstuk VI.

Derze methode komt op het volgende neer: Telt men in een bos het aantal
boomtoppen n, dat zich binnen een kegel bevindt met verticale as en top op
hoogte ¢ boven de grond, dan is n een zuivere schaiting voor X(h -¢)2 per
eenheid van oppervlak, waarbij gesommerd is over alle bomen op de eenheid
van oppervlakte, terwijl h de hoogte van de bomen voorstelt. Deze schatting
kan worden gebruikt om met behulp van het stamtal N de hoogte hg (regressie-
hoogte bij d) op een voor de praktijk voldoende nauwkeurige wijze te schatten.
De afwijkingen, die optreden bij hellend terrein, worden besproken en een
correctie wordt vermeld. Een door mij geconstrucerd instrument (konometer),
dat het mogelijk maakt ook bij hellend terrein een zuivere schatting te krijgen,
wordt besproken. Tijdstudies waarbij de kegelmethode met de klassieke metho-
de voor hoogtemeting wordt vergeleken, doen zien dat het bepalen van n korter
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duurt dan een hoogtemeting. Enkele resultaten van experimenten in Nederland
en India worden gegeven.

In hoofdstuk VII wordt een werkwijze behandeld, waarbij de inhoud per
oppervlakte eenheid wordt verkregen als een functie van n, het aantal getelde

boomtoppen binnen de kegel, d en bis. Voor de Douglas is een tabel geconstru-
eerd met behulp waarvan de massa bij toepassing van deze werkwijze gemakke-
lijk kan worden geschat.

Tenslotte worden de formules voor de samenstelling van standaard massa-
tafels voor de Douglas gegeven.

Hoofdstuk VIII behandelt de schatting van de aanwas met behulp van boor-
spanen. Een korte afleiding doet zien, dat in de meeste gevallen de aanwas van
de massa-middenstam kan worden beschouwd als de gemiddelde aanwas. Met
bchulp van enige, in vorige hoofdstukken gevonden vergelijkingen, wordt een
formule voor de aanwasberekening afgeleid. Het in deze formule voorkomend
onbenoemd getal blijkt van de gemiddelde diameter en de boniteit af te hangen.
Een opgave van enige gegevens voor de practijk wordt gevolgd door een voor-
beeld van aanwasbepaling in een te Wageningen gelegen Douglas opstand.
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