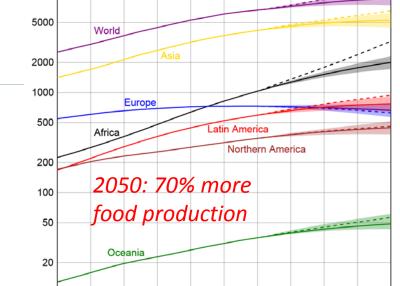
Phosphorus management in a changing world

Oscar Schoumans, Kimo van Dijk & Oene Oenema (Alterra Wageningen UR) Fayçal Bouraoui (JRC) Christian Kabbe (KompetenzZentrum Wasser Berlin)

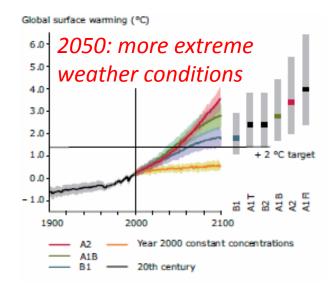
IPW7, Uppsala, Sweden, 11 – 16 September 2013

Content


- 1. Challenges
- 2. European food security
- 3. Strategies for closing the P balance
- 4. Impact of climate change
- 5. Conclusions

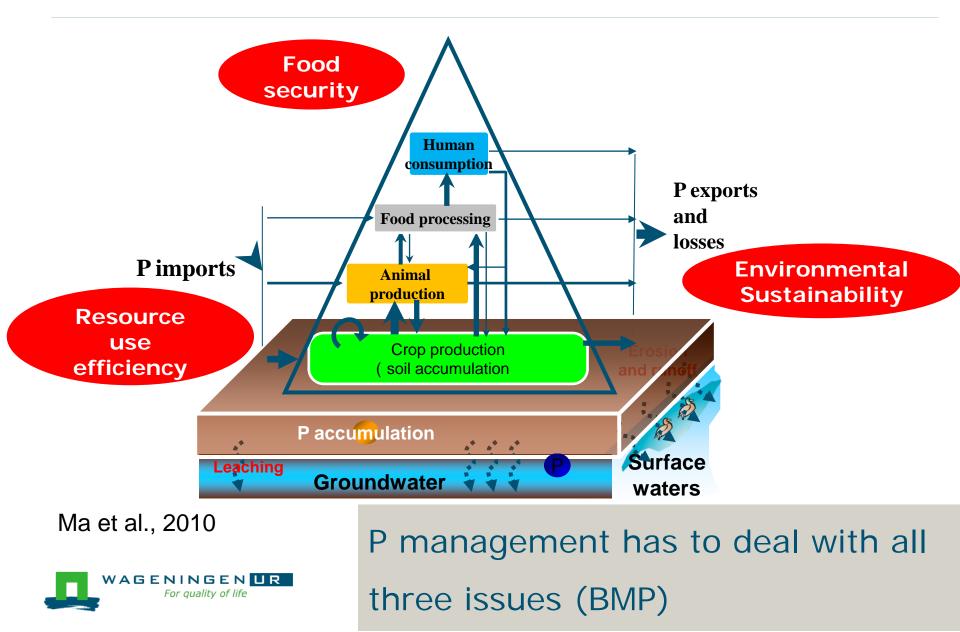
1. Challenges

Demographic changes


- From 7 to 9+ billion people
- Consumption pattern change
- Urbanization

Competing claims for resources 10 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 e.g. food vs biofuel

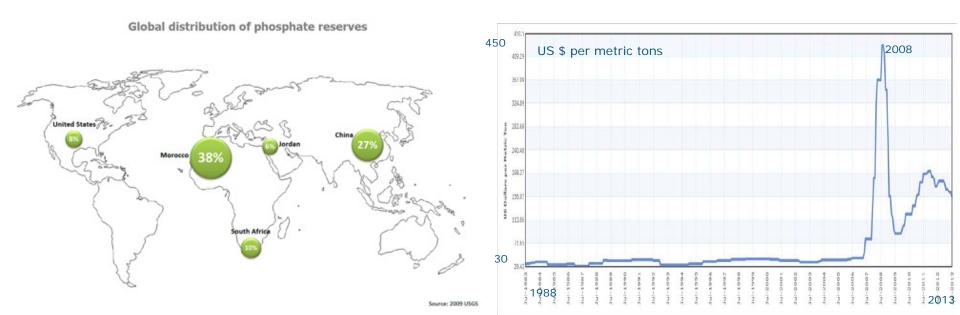
10000

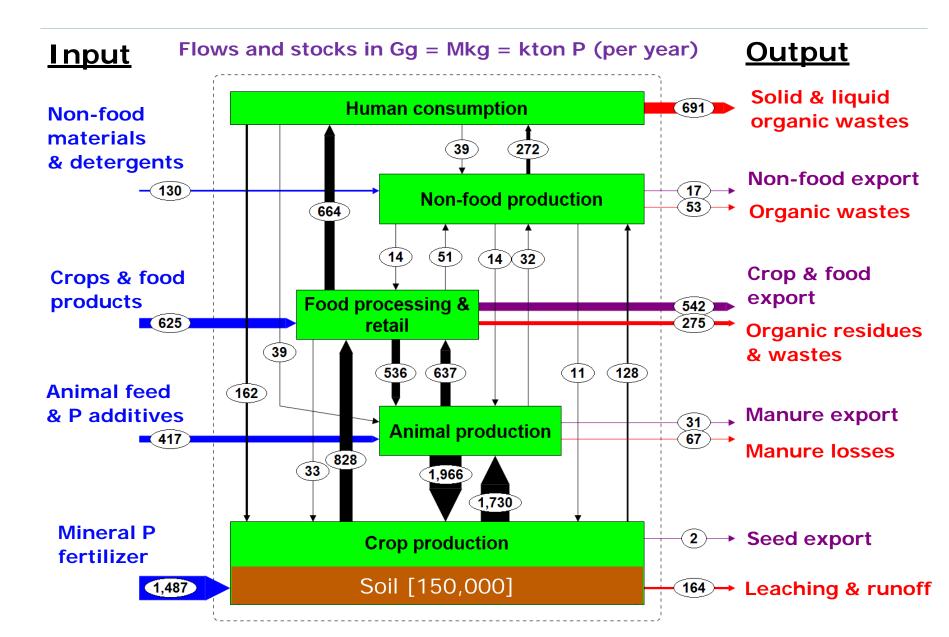

Climate change

2050: 70% of population in cities 'massive resource drains'

Food pyramid and triple management issues

Content

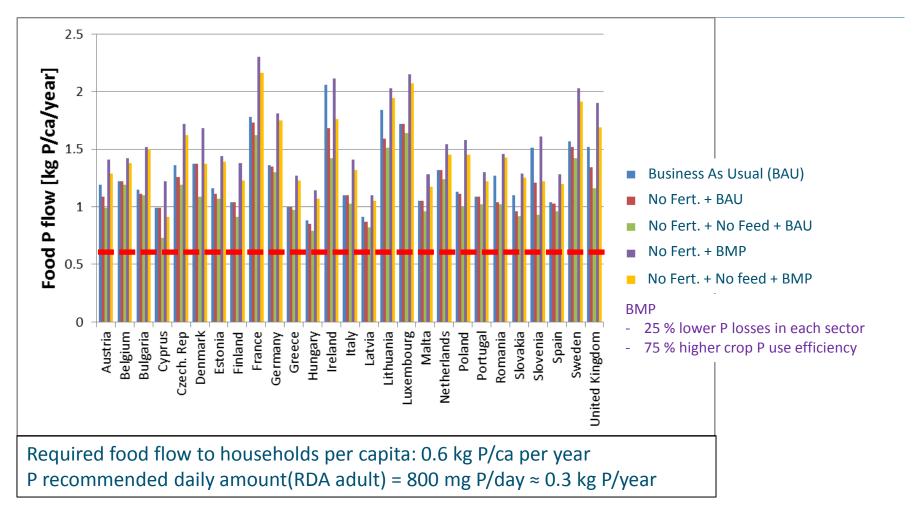

- 1. Challenges
- 2. European food security
- 3. Strategies for closing the P balance
- 4. Impact of climate change
- 5. Conclusions


2. Food security; important role of P

Phosphorus is a life essential finite irreplaceable resource.

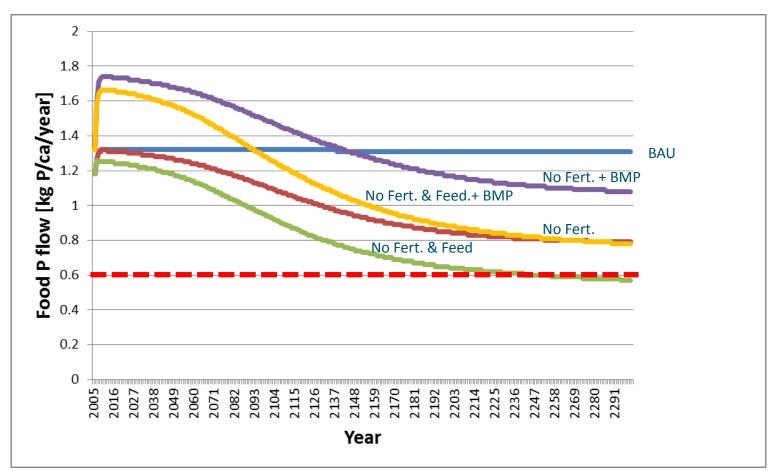
USGS (2012) P reserves worldwide 71 billion tons, world mining production in 2011: 0.19 billion tons ("400 years").
 BUT: Europe has significant no P rock mines, P dependent, geo-political changes can increase P market prices (e.g. 2008).

Phosphorus use in the EU-27 in 2005


Phosphorus use in the EU-27 in 2005

Gross balance EU27 (roughly)					
IN	kton	%	OUT & Accumulation	kton	%
No-food & detergents	100	4%	Products (exported)	600	23%
Crops & food products	600	23%	Waste & losses	1200	46%
Animal feed & P additives	400	15%	Accumulation	800	31%
Mineral fertilizer	1500	58%			
	2600	100%		2600	100%

- High P input mainly to agricultural production system (73%)
- High P losses (46%; including organic waste)
 (mainly Human consumption & Food processing; total 42%)
- High P accumulation 31% (mainly in soils; 29%)


Total P in food available per capita per Member State per scenario in 2050

For quality of life Source: Van Dijk et al., 2013

No really a topic at the short term, but when?

Changes in total P in food per capita in EU-27 per scenario for 2005-2300

At the end of 23th century an issue in EU27, but still a need to increase the P efficiency & reuse of P !!

Content

- 1. Challenges
- 2. European food security (scenario's 2050 & 2300)
- 3. Strategies for closing the P balance
- 4. Impact of climate change
- 5. Conclusions

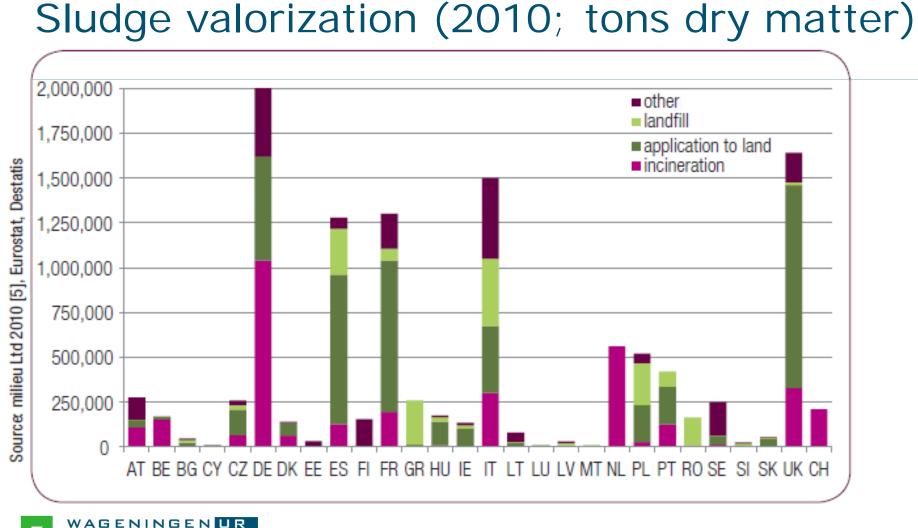
3. 4R-Strategy for closing the P balance

1. Reduce the inputs, where possible

2. Reuse P from organic residues and manures

3. Recover P from waste (& if needed manure)

4. Redefine systems, where needed



3. Implementation of the 4R-strategy

- Reduce total P content in feed and increase digestible P (biorefinery) → 20-25% reduction (Van Krimpen, 2012).
- 2. Reuse: Better use of manure reduces P fertilizer input:
 - ✓ make use of manure separation techniques
 - ✓ 4R-stewardship; right source, amount, time, place
- Recover nutrients from household / industrial waste and from excess of manure.
- 4. Redefine systems: ???????

Waste water treatment plants (WWTP)

For quality of life

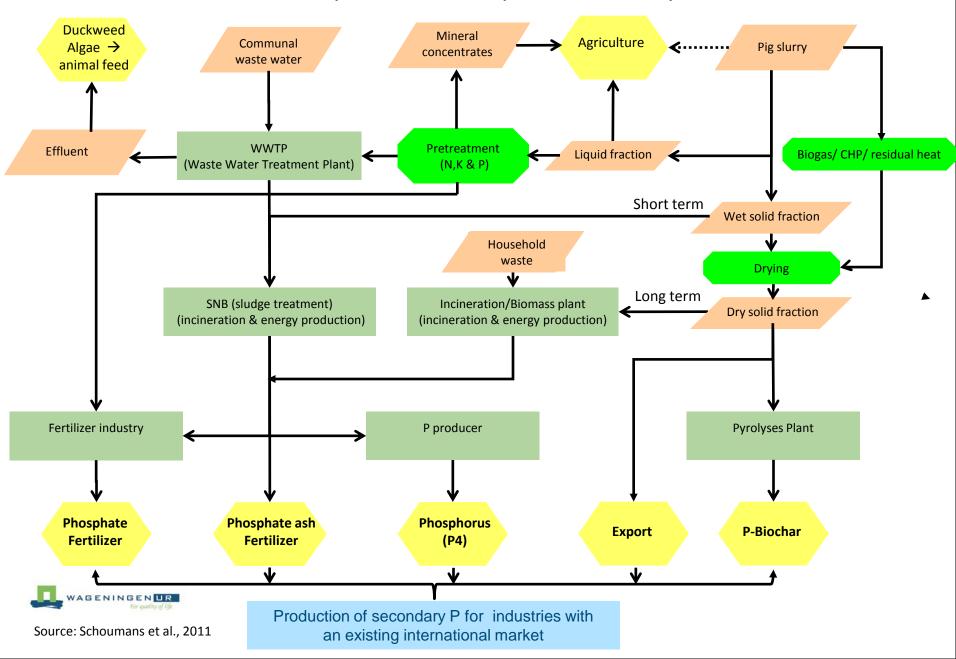
P recovery methods WWTP

	Scale	Product	
Sludge			
AirPrex [®]	full	MAP	
Lysogest®	full	MAP	
NuReSys®	full	MAP	
PHOSPAQ	full	MAP	
CRYSTALACTOR®	full	CaP	
Gifhorn process	full	MAP	
Fix-Phos	full	CaP	
Stuttgart process	pilot	MAP	
Budenheim process	pilot	Сар	
sludge liquor/process w	vater		
REPHOS®	full	MAP	
PEARL [®] (PEARL 500)	full	MAP	
NuReSys®	full	MAP	
P-RoC	pilot	CaP	
PHOSTRIP	pilot	MAP or CaP	
P recovery during or aft	er incinerati	ion	
MEPHREC®	full	P fertilizer	
SUSAN	full	P fertilizer	
Thermphos*	full	White P4	
LeachPhos	pilot	MAP or CaP	
EcoPhos/SNB/HVC	full	DCP	

full-scale units

P recovery from manure

Potential value of pig slurry


	content ¹⁾	Resource market price ²⁾	Total min	Total max
	(kg/m ³)	(€/kg)	(€/m³)	(€/m ³)
Nitrogen anorganisch (N)	0.8 - 6.8	0.167 - 0.389	€0.13	€2.64
Protassium (K ₂ O)	2 - 14	0.095 - 0.222	€0.19	€3.10
Phosphate (P ₂ O ₅)	0.6 - 6.2	0.157 - 0.365	€0.09	€2.26
Organic matter (solid phase)	35 - 45	0.091 - 0.117	€ 3.19	€5.27
Potential value (€ m ⁻³)			€ 3.60	€13.28

¹⁾ Römkens and Rietra (2008); content of inorganic N, P₂O₅ and organic matter; content of K₂O assessment

²⁾ LEI, 2012; resp. **15% - 35%** of the fertilizer market prices based on KAS (N), TSP(P_2O_5) and K60 (K₂O) and value of energy production of organic matter (based on 0.07 - 0.09 \in per kWh)

Phosphate and Phosphorus recovery

Costs of P recovery from manure

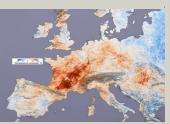
Example to produce P ash as secondary resource

	no drying	limited drying (50%)	drying (90%)	
separation, optional drying and transport liquid and solid	10- 12	14 -17	16 -19	
Treatment solid fraction	9.8	-0.5	-2.3	
Treatment liquid fraction	11 - 14	11 - 14	11 - 14	
Total	31 - 36	24 - 30	25 - 31	

P recovery from manure still rather expensive Cheaper and simpler techniques are needed

Content

- 1. Challenges
- 2. European food security (scenario's 2050 & 2300)
- 3. Strategies for closing the P balance (4R strategy)
- 4. Impact of climate change
- 5. Conclusions



4. Impacts of climate change

Expected direct changes

- o Temperature rising: 2.5–4° C warmer (2100 compared to 1961–1990).
- o Precipitation decreasing southern regions, increasing in northern Europe
- o More extreme weather events
 - Increase frequency and length of heat wave
 - Increase river flooding (N-EU) & river flow droughts (S-EU)

Impacts on Health, Nature, Agricultural, Environmental, Economy

Heat wave 2003

Flood June 2013

Droughts:

- Past thirty years to a total of 100 billion € at EU level.
- It reached an average 6.2 billion €/year (economical costs)
- 2003: France 14.000 people died (Europe total: 30.000 deaths)

Source DG Env. (2007; latest report)

Floods

- 1960-2009, 298 floods in current EU member states
- Past 10 years 1000 persons died.
- Main events: several billions € (2013 central EU: total €12.4 billion)

Source: WHO regional office Europe (2013)

But how does climate change effects P cycle????

4. Impact of climate change; Nutrient load

No overall effect of CC on nutrient losses reported for whole Europe, only some catchment, river basin & coastal studies

		Changes (%) annual			
catchment	Country	Water	Ν	Р	Reference
Vantaanjoki	Finland	3.3	2.8	2	Bouraoui et al (2004)
Ouse	England	5	6 - 27	5-34	Bouraoui et al (2002)
Gjern	Denmark	12.3	6.9-8.5	-	Andersen et al. (2006)
Streams & lakes	Denmark		-	3.3 - 16.5	Jeppersen et al (2009)
4 Catchmenst	Norway	12 -22	-	increases	Øygarden et al (2011)
Baltic Sea	Sweden e.a.	increased	decreases	increases	The BACC-porject (2006)
Baltic Sea	Sweden e.a.		decreases	increases	Arheimer et al., (2012)

4. Impact of climate change

- Nutrient losses and eutrophication: common effects based on catchment studies
 - Higher temperatures stimulate mineralisation, denitrification, P sorption, shift in crop production, higher evapotranspiration, higher nutrient uptake, but not much attention on harvest loss.
 - Increases in floods and extreme precipitation events will increase the nutrient load to surface waters due to increased erosion and (surface) run-off.
 - Decreases in summer stream flow will lead to higher nutrient concentration.
 - Variations between years were found to be much larger than an eventual longterm trend for each climate projection

Seldom combined effect of 4R-strategy (res. eff., nutrient recovery) studied & management highly determines the nutrient losses Can management (4R-strategies) compensate the increase of nutrient losses ?

5. Conclusions

- Phosphorus plays key role in the triangle Food security, Resource use and Environmental Sustainability.
- The EU-27 is heavily dependent on the import of P via mineral fertilizer and animal feed (73%). Efficiencies food system low.
- A stop on P fertilizer & feed import has a large effect on the European food security in the long term (23th century).
- 4R-strategy needed to optimize P management to deal with the food pyramid / triangle issues as a whole.
- Effects of climate change on the *whole* P cycle still quite uncertain.
 4R-strategy can help to reduce additional P losses, like management did in the past.

Thank you for your attention

