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The role of the notions random variable, random vector, random point etc.
in statistical theory and applications, has been fairly modest so far, in papers,
books, as well as in textbooks. In particular a tendency seems to exist, to replace
these notions and words in every case as soon as possible by probability dis-
tributions.

Our main objective in this paper is to demonstrate the advantages obtained
in case we consciously and on purpose not only mention random variables etc.,
but even work and do calculations with them.

With this in mind we introduce three innovations:

I. We use a symbol = for the relation, called isomory, between two random
variables (vectors), which relation consists in equality of their cumulative
distribution (c.d.) functions.

11. We make frequent use of functions of random variables: If fis a real func-
tion,  a random variable, then a random variable f () is defined.l

III. We also consider empirical random variables [8] and we even represent
them by symbols. Hence we will for example talk about the unknown (empirical)
random variable x. The application of siatistics often consists in the confronta-
tion of an empirical random variable 2 and a theoretical random variable y,
by virtue of a value & which 2 has assumed in some experiment. For example

it may happen that y — %42 and that the null-hypothesis ¢ = y = %2 must be
tested. B

In chapter I we illustrate our point with definitions and examples. See also [8].

In chapter 2 a standard representation for any random vector is applied to
normal random vectors, and we indicate our approach to the gnalysis of variance
theory (F1SHER). We give in particular the fundamental lemma for the analysis
of variance. See also [2,8].

In chapter 3, we study correlation coefficients thh our methods. For the

! Random variables, random vectors, random points, etc, will be recognised by a bar under.
2 The author is now (8.10.°62) connected with the University of Amsterdam.
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classical approach compare ANDERSON [1] chapter 4, A survey of the results in
chapter 3 is given in section 3.1.

My thanks are due to M. KgULs for help with the approximations in sections
3.5.and 3.8., and to M. KeuLs and L. C. A. CORSTEN for valuable critical remarks.

Remark I. W. KRUSKAL drew my attention to a paper by G. ELFVING, A simple
method of deducing certain distributions connected with multivariate sampling,
Skandinavisk Aktuarie tidskrift XXX (1947), p. 56-74, in which formula A
ch. 3 of this paper is given.

Remark II. R. A, WIIsMAN drew my attention to his paper, Applications of a
certain representation of the Wishart matrix, Annals of Math. Stat. 30 (1959),
p- 597601, in which a formula equivalent to formula B ch. 3 is given.

1. DEFINITIONS AND EXAMPLES
1.1, The symbol = for isomorous

R#% is the n-dimensional euclidean vectorspace of sequences a = (ay, ...dn),

b = (b1, ...by) ctc. of n real numbers, with inner product ab = = ; 2 ayb;. The
length of a is |a| = 4/@a. A probability distribution over R# determines a
theoretical random vector. For =1 it is a random variable. Following D.vAN
DaNTZIG two random vectors ¥ and y are called isomorous if they have the
same cumulative distribution (c.d.) functions. We use the symbol & for this
equivalence relation:

IIZ

g
1.2. Functions of

If is a measurable function from R% to R?, and 2 is a random vector in R#%,
then y = f () is defined to be the random vector in R? with probability for any
Borel set I < R?;

PyeD=Plf@cl]=Plzcf1D)]

It is clear that in this case

z = y implies f@) = f(p)

If fand g are two measurable functions, then the random vectors y = f{(z)
and z = g (z) may be stochastically dependent (for example if £ = g). If in the
sequel we consider two random vectors, ¥ and z, then stochastic dependence by
virtue of some ‘background’ z will always be allowed, if it is not specifically
excluded. In particular we occasionally meet the relation equality, say y = z.
This means, also for empirical random variables, that P (y = 7) = 1.

L3. If ¢ is a constant vector, then the random vector ¢ is by definition the
random vector z with P (z = ¢) = 1.

1.4. Limits*

A sequence of random vectors v(1y, ©@), ... has the random vector » as a limit¥,
if the sequence of c.d. functions of ¥, Z), ... converges, for almost every value
in the domain, to the c.d. function of ». Notation:

im*;—co v = ¥
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1.5. Direct sumu ®v. If u = (41, ... up) and v = (v1, ... ¥y} are random vectors
then (u, v) is the random vector (uy, ... up, ¥, ... ¥y} and the direct sum ¢ & v
is the random vector w — (wy, ... Wy 4) With c.d. function
P w1, . .Wp.q <Wpyg =
= Py <wy, ..up <wWp) " P (U1 < Wpi1, ..U < Wp,g)
u and v are stochastically independent if and only if
wv)xuey

1.6. The standard normal random variable with probability density
(2) "} exp (- 1 2) will be denoted by g, or short z.

L.7. Symmetry
# ~ -z (random variable)

means that the random variable g, which may be empirical or theoretical, is
symmetric with respect to 0. Consequently y = — x is a well known and true

statement concerning the standard normal random variable .

1.8. General normal random variable

rTpd oy
says that some (empirical) random variable z has the normal distribution with
expectation p and variance 2.

1.9. The central limit theorem for a random variable

If x1, xs, etc. are stochastically totally independent and mutually isomorous
random variables with finite expectation @ and finite variance 2, then (weak
law of large numbers)

n
Bm*, — oo i1 =
n
and (central limit theorem)
n
. Zg=1(Es—

1.10. The standard normal random vector X, is defined by induction and starting
from X; = X by:
e = Xpo Xy k=1

The inner product of Xy with itself is X2, the ‘Chi-square’ random variable
with dimension f.

The noncentral Chi-square random variable with dimension f and excentricity
] is

@D? 2 [y © (X + ]

STuDENT’s and FI1sHER’s noncentral random variables are:

i+

v 1l
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and 27 o (x, V2o
=1 (A
In these formulas X, Xy and X" are assumed stochastically independent.
(Compare 3.8. for some other definitions).
1.11. Some approximations
KEeULs [7] gave the following formula for an approximation by PATNAIK:
57 P ity BT o (YR
Fp ¥ = A Fwithh = > 0 ST ooy

Well known is:

V22Vl + 2 asymptotically
Or more precise:

Hm*, — oo (V2 Za2 -V 20-1) = X

2. RANDOM VECTORS AND ANALYSIS OF VARIANCE
2.1. The standard representation of a random vector y € R®
We consider random vectors for which the first and second moments of each
component are finite. If y has components y1, ...J» then . = E(y) 1s the vector
with components E (¥1), ...E (¥»). From now on it will be taken for granted
that a vector like y is @ column of random variables. We use matrix theory and
designate the transposed of a matrix m by adding a prime: m'. The covariance-

mairix Vof yis
- V=E(y-w)-w

We assume that ¥ has rank n. This is equivalent to the condition that for no
vector @ € R® the inner product ¢ , in matrix notation &' be is isomorous to a
constant. In particular:

oy = E(}E—Ezﬂz = 0.

Let N be the n X #-matrix with the numbers o; in the main diagonal and

zero’s elsewhere. Then the correlation random vector of y is

z=N1@-w ~ (matrix product)
Observe that E(z) = 0 and the diagonal terms of the correlation matrix of y,
which is the covariance matrix of z, -

R=E(zZ),
are all equal to one. The other elements, p;; = E (z; ;) for i 5 f, of R are the
correlation coefficients, Clearly:

V=E(Nz)(Nzy =NE(zZ)N'= NRN
As V has rank n, so has the symmetric matrix R, Then there exists a unique
triangular matrix T (zero’s above the main diagonal) with positive elements in
the main diagonal, hence with elements #; > 0, ty = 0 for ¢ <C j, for which:
R=TT"
For n = 2 one obtains

_{le _f{1 0 p = COS Y,
R_(pl)’TA (cosn sinvq) siny >0
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The covariance matrix of ¢ = T—1z is the unit matrix: .
E@l)Tlzy =T1EEZ)(TYHY=TTTT) =1

We can now conclude to

Theorem: (2.1]: Standard representation of a random vector . If y is a random
vector in R® with correlation matrix R of rank »,1) then there exist: (a) a
unique random vector 2 with E{g) = 0, E(xz’) = 1; (b) a unique diggonal
matrix N and a unique friangular matrix T, both with positive elements in the
diagonal, such that the following standard representation of y holds

y=E(W +Sz=p Nz (E()=w NT=5)

Tx is the correlation vector of Vs TT' = R is the correlation mairix; NEN =V
is the covgriance matrix.

If p is the correlation coefficient in case n = 2 and 1 = arc cos p, then the
standard representation is for # = 2:

— Zl _ “1 0-]'. 0 1 0 :-Bl
T (Zz) N (5‘2) + (0 02) ('30371 sin 7 -’_!?2)

2.2. The central limit theorem for a random vector

Let ypi=1, 2,... be an infinite sequence of totally independent random
vectors cach isomorous with y = ¢ +- NT 2 as in theorem [2.1]. Then (weak
law of large numbers)

. 1 n
litn*, ~ oo ;IE i=1 Yy = u

This means that the mean is a consistent estimator for .. Furthermore a form
of the central limit theorem is expressed by

) 1
llm*n=oovgz,;:1(zm W)= NTy,

2.3. The standard normal random vector and rotations
if x is a Tandom vector in R* with E(z) = Oand E{x z"Y-=1 and if Hisa
linear transformation {matrix) for which # x ~ g then
1=Egz)=E(Ha) (Heyl = HEz v)H' = H1 H = HH'
and H is an orthogonal matrix.

Theorem: The standard normal random vector X, has the property: If and
only if the matrix H is orthogonal (HH’ = 1) then
HXp > Xn
Proof: The necessity of the orthogonality follows from E (X,) = 0 and
E(Xn Xn") = 1 in view of the above remark.
The sufficiency can be proved elementary (without going into # dimensional
integration theory for n > 2 as follows: For n = 2 sufficiency follows from

! If rank R < n, then the same representation exists but it is not unique, and some of the
diagonal elements of N andjor T are necessarily zero.
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the probability density function being invariant under rotations about 0.
Then if n > 2 and if H; is some elementary orthogonal transformation, which
acts effectively as a rotation on 2 or | variables and is identity on the set of n-2
or n-1 remaining componentvariables, also H; X, = X,. But any orthogonal
transformation H can be written for some N in the form

H = Hyx Hy-) ... HoHy with H;elementaryfori=1,..., N
Then

Hip=Hy. HolXp= Hy...Xn...= HyZn = Xa
HEYp = Xn

2.4. Analysis of variance (FISHER}

In applications one often assumes that some empirical random vector ¥, for
example the set of random variables which appear in a Latin-square- or other
design, has a general normal distribution, or as we want to express it, is iso-
morous to a general normal random vector. It then admits the standard re-
presentation (Cf, th. [2.1]):

YEpt+Sg,=ut+NTy,

The analysis of variance problem of FISHER is in general: Given some assumptions
on the pair (., §) and given a value y of ¥, to test some hypothesis concerning u, §
or to estimate (by point or by confidence region) (u, S} or the value of some
Junction of (u, S).

The following case is very common and applies to regression on polynomials,
latin squares and other designs: P, Q and F are linear subspaces of R*, of
dimension p, g and f> Q ¢ P; F is totally orthogonal to P;

It is assumed that
Yy u+oy,o is an unknown scalar,
and - -

peP

The problem is for example to test, in view of a value y which y has assumed
in some experiment, the nuilhypothesis: p. € Q. B

We denote the orthogonal projection of a vector z into a linear subspace A
by z4. Then the nullhypothesis can be expressed by uwp — pg = 0 or, if D is the
space of all vectors in P that are orthogonal to Q, by:

nullhypothesis: yp = 0

The solutions of problems of this kind rests on
The main lemma of the analysis of variance [2.4) (Cf [2,8]) Letac R* be a
colummn vector, D and F totally orthogonal linear subspaces of the vector space
R? of dimensions d and f; a € D. Then using inner products:

ay,=lal-z;

[(t)ol? = 2%

. a
[(a + 0 2,) pl? = 02 (42)? with y = %
and moreover: (x)p #nd (1) are stochastically independent.
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Immediate consequences are
aln (X% /d

. = a| -

vV 2l

> F}
()2 lf
and
fa 4 o (Zn)p)?/d
o2 (1, )2If
Applying the main lemma to the above problem we easily obtain:
el
s

~ E)?’ 7, O'>0, Y:@_

a2 ltp o ()pl2 = o2 ()P withy =
and (in view of up = 0)
Vo =[pp+ o )el® = 6% 2%

These two are stochastically independent and therefore
ypld @ - |n]
=2 _~fgP? withy = —
Bir =~ e

The nullhypothesis pp = 0 or equivalently vy == @ is tested with the F-test by a
right critical region of values greater then a constant ¢, such that the significance
level has the preassigned value a:

PEf>c)=a
The power of the test is the function of y:
PEf 7 > c)

3. CORRELATION COEFFICIENTS CONCERNING NORMAL RANDOM VECTORS
3.1. Summary and results
In 3.2. we define the random variable _rfP, the random correlation coefficient

with f degrees of freedom and population correlation coefficient ¢, and we prove
the formula for |p| << 1,

(4) o
v N;_g—l—cotgn-\(&”l
\/j—cotglb= Vip
[=_JE, 7 = 4rc COS ¢
Of course: rlforp=1;r~ -1forp=-1

We get in particular:

{4°) cotgh ~ ——lff tr forp=10

We also prove the theorem of Miss HARLEY [5]: E () = .
In 3.3 and 3.4 we prove that the usual random total or partial correlation
coefficient is isomorous with rf.

In 3.5 we obtain and study an approximation, which was obtained in a
different way by Miss HARLEY. The approximation is
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(Aapyp) cotg b = l_t}s

with
2 + cotg? V 2 +1
A=} — 8 = -
V of and cotgy 3~ cotg®
In 3.6, we define the random variable 1‘;.”’ P, the random m-tuple correlation

coefficient with f degrees of freedom and population m-tuple correlation coefficient
p, and we prove the formula

B
s —cotg?h = @ + cotgn - V 225 m)P + Xy
12 = 72
r=rpFf, n=arccosp
In particular:
2 m
{(B°) ' cotgz hx~ % = }:E? for p=20

and (see formula A): .
pfR=(0F2  fom=1

In 3.7. we indicate that the usual random total or p-partial m-tuple correlation
coefficient is isomorous with r’}"- P,

In 3.8. we present iwo approximations of ¥ f which may be useful for practical
purposes,

Side remark: From formulas (4) and (B) one sees immediately (see section
1.3,1.4 and 1.11)

(4=) 1 = limpwrf =p

(Bm) _r:?,ﬂ = lim;=m_}’?z'p ~ <)

These formulae express that r;’ and r*-? for f=1,2,... are consisient se-
guences of estimators of g. :

3.2. The random variable ,r}’.

We consider a random normal vector in R2 with the standard representation
(See theorem [2.1]):

(.21) z-— (i‘;) = (ﬁ;) + (CZ)IG(;) (coiv; si(r)ln) (;2)

where (ﬁg) > Xp,m =arccos p, [p| < 1,0<y<n
%0, Yo, #o and vo are random variables and cos v = p is the (population) corre-
lation-coefficient of o and yp. The standard normal random variables o and

vo arc independent. Observe that we use the symbol — and not . in (3.2.1)
(See section 1.2).
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(3.2.1) can be written:

(322 ! %o =z + Oz lo .
Yo = wy + oy (cos % - Yo + siny . vo)
In order to give our definition of the theoretical random variable :}’, we
restrict to the case pz; = pwy = 0: :

(3.2.3) 20 = o4t0
Yo = oy (cosm - ¥p + sinv . o)

We consider a sample of size / -- 1 from the random vector zo. Equivalently
we consider f 4 1 stochastically independent random vectors zg, i = 1, ... f + 1,
each isomorous with zo. We form the vectors #, ¥, # and » € R7+1 from the

corresponding component random variables ¢, ¥4, # and v for i=1, ...
f—+ 1, and we obtain from (3.2.3):

(3.2.4) E=06zU
Y =oy(cosn- ¥+ siny-v)
with ¥ = ¢ = X7, 1, ¥ and v stochastically independent.

Definition: The (theoretical) random correlation coefficient r = r€ with f degrees
of freedom and population correlation coefficient p is:

(3.2.5) r=cosh=——

where ¢ y and 22 = z z are inner products and # = arccos 7.
Consequently:

x
cotg b ol 4

(3.26) 1= T—lﬂ—_(—@

! p—
iz
Here we substitute (3.2.4):

_ Cx oy ¥(cosm - u + siny . ¥)
6z 6y A/ (Ut (cosy . u4-siny . v)2—[u(cosy . u + siny - v)]2}

cotgh =

As the term under the root sign equals
22 [cos?n . w2 + 2sinv cosv - wv + sin®v . v2] - (cos v - 4 + sin - wp)P =
— sin? 7 - (42 v2 - (yy)z]
we find:
yy

_2+c0tgn-\/?

(3.2.7 cotgh = ¥

, (wp)?
L

As u and v are independent, we have #|# ~ v for any u; therefore for any value

Yy | ) . .
u s~ 0 of y, —= is the inner product of » > Xy, 1 with a unit vector, and
£l \/ 3 p - ~f -+
u

2
v2 _E”T.?;)_ is the square of the orthogonal projection of v on the space orthogonal

to u, consequently in view of the main lemma [2.4];
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uy .
veE- L gk

and they are stochastically independent.
Then also (uncenditionaily):

yv uv)2
==y ¥ CEJN

e
|
i
|
|
[
<o

u?
and they and u are stochastically totally independent. Furthermore u2 ~ l}%+1
and we have the fundamental formula (which we also could have used as defi-
nition) B

r x+ootgn V2
—_-—__":COt h:— =+
(A) ,\/1_!,2 g' 11%2

?vhere r= !‘f; 7 = arccos p; 1, %, and Z§+l are assumed stochastically totaily
independent.
For ¢ = 0 we obtain a known relation between rr and fy:

(A4°)

! =cotgh £ _1 i forp=0
Vg RV E VTP
Miss HARLEY [3) proved the following interesting theorem.

E{B) =9

Observe that the left hand side is independent of the number of degrees of
freedom f. DANIELS and KENDALL [3] gave a short proof of this result. We
present a slightly different short proof.

Proof: First we observe that from elementary geometry it follows that the
angle ki between two vectors x and y, both different from zero, is equal to
z
2
where the function sign takes the values 1,0, ~F incase (xz) (yz)is > 0, =0, < 0
respectively, where z runs over the sphere of unitvectors S, and the mean is

taken with respect to the rotationinvariant continuous measure on S.
Next we compute, going back to the random variable #:

h = - mean ¢ s [1-sign (xz) (yz)]

E (k) = EI; mean ; ¢ s [I-sign (22) (y2)]] = mean ; ¢ 5 E 7 [1-sign (22) (02)]

But, as the pair (z, §) is invariant under orthogonal transformations, (zz) (¥z)
is the same for any unitvector z. More precise, for any unitvectors z; and zz we
have (2z1) (yz1) % (2z2) (¥z2). In particular we may take for z the vector with
first component 1 and other components zero. We then obtain

E (k) = E5 {1-sign goYo) = E 7 [1-sign uo (cos 1 - yo + sin - 2o)]
and there remains only to prove the theorem of Miss HARLEY for the case f = 1.
As (uo, ®o) = X2 it is easily seen in the (ug, vp)-plane that
Plug(cosw . wp + siny - vg) < 0] =9/
P [ug (cos v - uy -+ sin - po) > 0] = (/=
10 Meded. Landbouwhogeschool, Wageningen 61 (12), 1-19 (1961)



Hence Esignug (cosn-up+sinn-29) = 1. (m=) /w—-1.n/mn = 1-29/x and
consequently £ (h) = .

Remark: In case ¥ and ) are stochastically independent vectors then the for-
mula (4°) holds under more general assumptions. It is sufficient to assume that
YxoyXs,1and P (xs£0)= 1. This can be seen by following the above
proof for the case p = 0 and writing  instead of . In particular  is allowed
to be any constant vector £ 0,

In view of the next sections we now consider the situation given in (3.2.4),
but in R? instead of Rft1, #> £+ 1. Hence g, ¥, ¥ and v are random vectors in
R u =~ v = Xy and # and v are stochastically independent. Let T be the
J + l-dimensional linear subspace which consists of all vectors in R* of which
the last n—f-1 components are zero. The orthogonal projection of #, etc. on T,
denoted by 2y etc., is obtained from x by replacing the last n—f~1 by zero’s,
It is clear that by just omitting these last »-f~1 componentis we obtain the
former case back and consequently

xrXT

(3.2.8) r= m

IIZ

€
=f

and also this r satisfies forimula (4), in particular (4°} in case p = 0.

In (3.2.4) the pair of independent standard normal random vectors ¥ and »
in R? is invariant under orthogonal transformations. Hence if we first apply
some orthogonal transformation H to ¥, ¥, # and », we obtain a pair (Hz, Hy)
which is as a pair isomorous to (2, ¥). If we compute r from (Hz)t and (Hy)T
we get the same results as from zr and Y. It is equivalent to apply H 1 to the
subspace T and to determine the correlation coefficient of z('m and Y ' m.
As H is an arbitrary orthogonal transformation this means that T can be repla-
ced by any £+ 1-dimensional linear subspace of R®: (3.2.8) and (A) holds for
any [+ 1-dimensional linear subspace T of R®.

3.3. The sample correlation coefficient

We now go back to the case (3.2 2) of the general normal vector in R2 and
we consider a sample of size n = f 4+ 2. This yields random vectors
(3.3.1) ¥=ug-e+agl
Y=y e+ oy(cosn- ¥ +siny-2)

where e is the vector with # components equal to [. Let T < R® be the /4 |-
dimensional subspace of all vectors orthogonal to e. As er = 0 it follows that
(xT, Yr) is independent of (pz, 1y and yields the same if we replace (@4, py) by
(0, 0). Hence we can apply (3.2.8).

LetZ :"}Izi@'i, y= %Eaz‘a
Then @7 and Y are the vectors with components ; - % for i=1,... » and
Yi—J fori=1,...nrespectively.
gr? = 2 (- 7P, yr* = D (1 - )%,
rryr =@ -2 (:i-))
and 7 in (3.2.8} is seen to be the usual sample correlation coeflicient.
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The sample correlation coefficient is isomorous to rf. If the sample has size n
then the nuimber of degrees of freedom or dimension is f = n-2.

Remark. 1t follows from the remark in section 3.2 that if  and Y are sto-
chastically independent then the result holds even under the weaker assumptions
Y = uye+ o Xy, x an arbitrary (for example constant) random vector, for
which P (xt 7 0) = 1, that is for the present case: P(x1 =a2.. = 25) = 0.
For example z can be a vector which takes e.g. as only values the permutations
of the sequence of the first » integers (SPEARMAN vector). Also in this case, and

under the given conditions, r satisfies formula (A4°). (Usual z-test).

3.4, The sample p-partial correlation coefficient

We consider a set of p 4 2 random variables which together form a general
normal random vector with expectation zero. We assume that g as well as Yo
together with the p other random variables form a random vector with corre-
lation matrix of rank p + 1. This means that no linear function of 2y (or Yp)
and the other p random variables is a constant random variable, We are not so
much interested now in the p other random variables individually as well as in
the p dimensional euclidean vector space of their linear combinations (linear
homogeneous functions). '

There exists a suitable set of orthonormal combinations to be called
Z (0, --- £ (p 0, Such that

3.4.1) { Zo = &+ zyo -+ B .
Yo =Y zwo + 8 z@yo + £ (cos -« to + sin 7 - Zo)
where: Zyo ‘

Z{p0
Ho
Y

~Xpyo,and 0 <<y <, 53>0,>0.

(3.4.1) is obtained by a orthonormalisation process from the p originally given
random variables. The number p = cos 3 is unique and it is called the popu-
lation p-partial correlation coefficient of xy and Yo with respect to the p given
random variables. v is *‘the angle between the components of gy and yp, ortho-
gonal to za)o, ... Z¢po in the linear space of all random variables”. ~

We take a sample of 4 p+ 1 independent copies of o, yo etc. and combine
them in vectors z, y etc. Then (3.4.1) yields -

(34.2) [ r=azy+Bu
y=vyzw + 3z + e(cosn . u + siny. ¥)
(3.4.3) M ZR . T IZpm 2 UV Arypa

and all random vectors in (3.4.3) are stochastically independent. The sample
partial correlation coefficient is defined to be

&1 yT
(3.4.4) —Tt

where T is the random linear subspace of dimension f+1, orthogonal to the
12 Meded. Landbouwhogeschool, Wageningen 61 (12), 1-19 (1961)



vectors Zqy, 2. . -Z(), which are linearly independent with probability one, as
their correlation matrix has rank p.

Under the condition that zq), ... z(p have the p linearly independent values
z(1), - .. Z(py We have for the conditional random vectors:

T=oazy +Pu ‘
Y=rvzm +0z@ +elcosn.u+siny.2)

where u, ¥, Z, ... Z{p are mutually independent; henceu = v = X5, 5,1. T is
the space orthogonal to z(qy, ... z(s». Therefore zr and ¥t do not change if we
omit & zqy from &, and ¥y z@y + 3 zzy from Y. But if then we compute r from
(3.4.4) under the condition T = T we obtain a random variable which is iso-
morous to ¢ = _r}’ in formula (4). Then (3.4.4} is unconditionally isomorous
to ;ﬁ‘.

In case the expectation vector of the originally given norinal random vector
e R+ 2 g not known to be zero, we apply a construction as in section (3.3)
projecting all vectors in R” in the space orthogonal to the vector e, to obtain
the usual sample p-partial correlation coefficient r which therefore is also iso-
morous to rf in formula A. The dimension f is obtained fromn=f+p + 2
in this case.

3.5. Approximation of (A)
If we substitute the approximation of section 1.11

1
VHha % 5 VD + )

in (A) we get
. 911 2.
cotg h ~ OB v (f+Y i_/xxﬁz(l +3cotg?y) - X
That is
Id
— == = cotgh = A} approximatel
Vi gl 1 app y
{(Aapp) with
_ 2 4 cotg?y _ V 241
A=/ T 3 = cotg 3 T o, cotgt 7

In TaBLE 1 a comparison is made between cotg & and its approximation 7\!?.
Tables for these two random variables by F. N, DAvID [4] and N. L. JouNsoN
and B. L. WEeLcH [6] were used for this purpose.

It should be noted that exactly the same approximation has been obtained
by Miss. B. I. HArvEY [5] by trial and guess. Her method is to equate the second
{non central) moments as well as the quotients of third to first moment of the
following random variables:

vy
C——
g Vi f
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She then finds
vVt 2-p?
This is easily seen to be equivalent to our above equations for A and 8.

In accordance with our TABLE 1, her TABLE 2 suggests a very high agreement
between the two random variables: however she restricts her considerations to
upper «-levels. a < 0,40. It has been pointed out by Miss HARLEY that the
above approximation can also be used in the inverse way, to give upper a—points
for the randotn variables 1? with the help of tables for _r}’.

From Table | we conclude that the given approximation is very satisfactory
except for the case of lower-a-points with smail f and large p.

TasLE 1. Comparison between exact and approximate upper and lower «-points of r = r;i.

Lower x-point Upper a-point
o f e exact ¢f aApprox. ci | o exact c¥ approx. clyd
0,05 4] —.6694 -.6692 0499 L6695 .6693
0.5 —-.1951 -.2015 0487 8863 .8862
5 107 1526 1358 0467
08 3838 3610 0449
09 6639 6410 0424 9822 9822
10 { 0.8 5402 5353 0480
0.9 7559 7496 0457 9678 9677
20 0.5 1844 1835 0496 7341 7340
0.9 8086 8066 0475 9535 9534
98 0.9 8643 8641 0491 9280 9279
0,025 0.5 -.3534 -.3608 0241 9182 9181
5 [ 038 +.2343 1937 .0208 .
0.9 5637 5147 0.183 98735 | 98734
10 09 7061 .6936 0223
2 0.5 1120 1106 0246 7665 7663
0.9 1817 7780 0227 9597 9596
o8 0.5 3389 3387 0249 6357 6356
0.9 8560 8536 0242 9323 9322
X 2 hts
= t t — = Al
¥ = CcOos arccotg n or Vio %

The lower a-point of r is¢f, WithP(r < ) =«
The lower a-point of y is cf,, with P (y < cf‘") =a
a =P r< cQ
The upper a-point of » is ¢4, with P(# > ¢¥) = &
The upper «-point of y is cl;, with P{y > c;) =
o’ =P > ci')
In the table o™ is not given, because it is almost equal to « in all cases presented in the table,
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3.6. The random variable Ly e,

We consider a set of m4- 1 random variables which together form a general
normal random vector in R™+1 with expectation zero. One of them is called zp.
The other m are assummed to be linearly independent with probability one. As in
section 3.4, we orthonormalise. We replace the m given random variables by m
linear combinations to be called zayo, ... zgmo, such that

(361) o — o (COST] < Zmo + Sinn . yﬁ)
and
(3.6.2) a0
: ™
Z(m)0 = Zmi1, 0=y <~§,a>o.
Uo

Then p = cos v, which is unique, is called the population multiple correlation
coefficient of xg with respect to the other random variables.

We take a sample of f-f-m independent copies of #¢ etc., and we combine
these z; i=1, ... f+m, etc. in random vectors in R/*? which in view of
(3.6.1) and (3.6.2) satisfy:

(3.6.3) = afcosy. zgy + siny - #).
and
(3.6.4) HE T Zm U Lm

and the random vectors in (3.6.4) are stochastically independent.

Let M be the m-dimensional subspace of R/% with basis zqy, ... Zan),
who are linearly independent with probability one. Let F be the f~dimensijonal
space orthogonal to M.

The random multiple correlation coefficient r#-* — r = cos B 2= 0 is defined
by

r2 (zm)?
= = 2h — =
L O = gy

1 forp =1

(3.6.5) forp < 1

and

~
e

cotg A is the ratio between the lengths of the orthogonal projections zpy of

into M, and zr of z into F. In the sequel we restrict to the case p <C 1, hence
sin) >0.

We now change temporarily to a conditiona! random situation. The con-
dition we consider is that zg), ...z () have the p linearly independent values
Z(1)s ++-Z(m)

M (the value of M) is the space of dimension m spanned by zqy, ...Zgm * Fis
the space of dimension f orthogonmal to zgq, ...Zgm- Let B be the space of
dimension 1 with basis the unitvector b = (zy2) ¥ - zy. Let A be the space
of dimension m-1 of all vectors in M that are orthogonal to b

Conditionally we find
2y IM® _ afcosy. zgy + siny - (B + ¥a))?
cotg? h P «2 [0 + sin 7 e

Meded. Landbouwhogeschoo!l, Wageningen 61 (12), 1-19 (1961) 15



[cotgn - zg) + (ub)b + ual
up?

[{cotgn -V 220y + (ub) } b]2 T+ w2
uF2

[cotgn - V' 22y + (Wb + ua?

up?

As u is stochastically independent of zy, ...zp, we have

|z, . Zp X U Xem
therefore
b= X ua® 2 X2 L up® = &5

and as B, A and I are mutually orthogonal, these random variables are stochas-
tically independent. We can write conditionally:
(cotgv; T - A

X

cotg2 b

where X, Xn—1 and Xy are also stochastically independent of zq.
Then unconditionally:

g h~ ot V2 + 1P Ly

cot,

%2
and so, as
Za) = Zam
we finally obtain the formula
(B) ’ (cotgn - VX2, + 2P 22

—_— = 2 ~
L = cotg? b = o7 ,

Y] = arccos p

—

where X, X1, Xr and Xy, 4 are in this formula assumed to be stochastically
totally independent.

In particular if the population multiple correlation coeflicient ¢ = cos % = 0
we get

X+ x2
cothE‘ ~ —Tz—ml
That is:
2
(BO) _,-2 — % NZim—-_n} —
T2 cotg? 1 = % fE forp =0

3.7. The sample m-tuple correlation coefficient

The usual sample m-tuple correlation coefficient refers to the more general
case where the expectation of (o, zayo, ...Zemo) 18 not known to be zero. We
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then apply a construction as in section 3.3. projecting all vectors in R® (n =
= f+ m + 1) in the space of all vectors orthogonal to the vector e € R®, We
conclude that the usuol random wn-sampie m-tuple correlation coefficient r of one
random variable with respect to m other random variables with correlation matrix
of rank m, and with population m-tuple correlation coefficient p (0 <pg < 1) is
isomorous to 1P in formula (B). Thedimension f is f = n-m~1 {or (B°} in case
g = 0}, Also the random n-sample p-partial m-tuple correlation coefficient con-
cerning a sample of size n = f4 m+p + 1 of copies of a random normal vector
in Rm+P+1l with population p-partial m-tuple correlation coefficient p is
isomorous to ry P. The dimension [ is = n-m-I—p. We do not enter into the

details of the proof of these last statements.

3.8. Two approximations for r = e e,
Let y, be the gamma random variable with probability density function

(T (@) tetrat fort >0

0 fort <0

For g = 24 a positive integer, one has the known relation
2, =2,

which can be used to define the lefi hand side for any a >> 0. Furthermore one
defines for any g > 1, y > 0, the non-central chi-square random variable by

Pz, +@+7?
and the non-ceniral F by

y2

por » B

-7 x2lf
The first approximation of formula B for

)

(3.8.1) r=1rm f,or b = arccos r, or cotg? b = 1‘_?,
is obtained by first finding real constants A and g > 0 such that
(3.8.2) (2 + cotgn+/ ;£f3+m)2 + J_Cri—l
and -
(3.8.3) Xy

have the same first and second moments. After straightforward computations
one finds then on dividing by X2 the approximation of formula (B):

(3.8.4) 5 X2 _ . g
cotgZ2h ~ A% = A= Fg
ER=AAET s
) o, m p? o, m o
where: A=2 prgraye + T_p2 2 p—— —+ cotgZy
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_ m+fe? _m+focos?y
and g—l(l—pz)— Asin?y
A very satisfactory and useful second approximation, which is better than the
first, was obtained by Krurs [7] who replaced the numerator (3.8.2) of (B) by

(3.8.5) A D?

where 2, v and g are chosen such that the first three moments of (3.8.2) and
(3.8.5) coincice. It turns out that then also the fourth moments are practically
the same. On substitution one finds the resuilting approximation:

(3.8.6) h = arccos r

cotg2 b = l]g, Fe.v

b cotg? v

with 7\:1+b+sinn’

m
b:w/(l-l-F)

2 bf cotg?y
22 sin n

_ (m—J—f)cotg%q+m__Y2

£ Y

October 1960, Landbouwhogeschool, Wageningen, The Netherlands.
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