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La théorie des colonnes à distiller est assez complexe. 

Marcel PONCHON, (1921)x) 

CHAPTER 1 

INTRODUCTION 

Distillation theory must still be considered a complex and difficult subject 
and the present state of affairs has been summed up well by N. R. AMUNDSON 
and A. J. PONTINEN, when they wrote :2) 

"...approximate and short-cut methods have been proposed in almost a continuous stream, 
with graphical techniques and empirical correlations. Plate by plate methods have been used 
to obtain semirigorous solutions. There is always some question as to what is meant by a 
solution to the multicomponent rectification problem. Most of the methods proposed do not 
give rigorous answers and cannot be made rigorous." 

The present thesis exhibits a detailed study of the theory of multicomponent 
distillation at minimum reflux on the basis of the widely used model of constant 
relative volatilities and constant molal overflows. Only ideal columns, operated 
with a total condenser and a total reboiler, are considered. 

The analysis is theoretical. No attempts have been made to derive short-cut 
approximations for practical purposes, nor has the applicability of the model 
been discussed. The object has been to remove some apparent obscurities and 
misinterpretations with respect to the main problem of specification, which still 
existed in distillation literature. 

A thorough mathematical investigation of the consequences of the model is 
justified by three arguments : A complete and exact model 

1. permits qualitative deductions of heuristic value. 
2. offers means to check approximative methods founded on the basic as­

sumptions underlying the model. 
3. offers a solid base for extension of the model, by weakening of the restrict­

ions imposed by, (or by generalization of), the basic assumptions. 

In 1946 UNDERWOOD [4, 5] published his theorem which made possible the 
first straightforward computations in multicomponent distillation. Rigorous 
proofs for this theorem have been provided by different authors [1, 3]. At this 
stage it is possible, when given an a priori specification of the distribution of two 
key components and of the feed condition q, to compute on the basis of the 
mentioned model the product compositions and both the reflux ratio RD and 
the reboil ratio RB- To obtain correct results, however, the numbers of light 
and heavy components, which do not distribute, must be guessed. Moreover, 
an arbitrary a priori specification of two separation ratios does not necessarily 
permit a consistent solution but must satisfy conditions which are not easy to 
formulate explicitly. Finally, a criterion for the consistency of the computed 
results being non-existent, the computation of minimum reflux was lacking 
mathematical rigour and hence could easily lead to dubious answers (pseudo-
solutions). 

1) Tech. Moderne, 13, (1921), 20. 
2) Ind. Eng. Chem., 50, (1958), 730. 
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It seems to be generally accepted that a (consistent) specification permits one 
and only one solution (uniqueness theorem). The present author, however, 
could not find a formal proof of this theorem in distillation literature. 

Similarly, straightforward computations of the feed tray conditions on the 
basis of the present model are non-existent, though VAN WIJK and coworkers 
have developed an interative method for the case of two adjacent distributed 
components ("doublet separations") [10, 11, 12]. 

The present study can be divided into two parts. The first part (chapters 
2, 3, 4 and 5) concentrates on the subject of specification. Topics are: 
Classification 

Introducing UNDERWOOD'S theorem as a postulate, the resulting method of 
computation of minimum reflux separations is examined in chapter 3, which has 
a preparative character. The smallest roots of two "characteristic equations" 
are shown to be suitable independent parameters ("pinch parameters"). The 
separations are classified with respect to number of distributed components and 
the relation between classes and distinct intervals of the pinch parameters is 
established. (Fig. 12). 

Geometrical representation 
To gain a clear survey over the entire complex of all possible separations of a 

given multicomponent mixture, fed at various thermal conditions q to an infinite 
column, a geometrical representation is developed in chapter 4. 

Minimum reflux separations are shown to be the points of a peculiarly shaped 
part of (q, RB, -Ri>)-space, (solid of minimum reflux, Fig. 19). 

Separations, pertaining to a fixed value of the feed condition parameter q, 
are represented by the points of a multiplet diagram (Fig. 16), i.e. a decomposi­
tion of the (RB, .Rö)-plane corresponding to the above mentioned classification. 
The multiplet diagram mirrors the nature and hence the principal difficulties 
of the mathematics of minimum reflux, which resembles in some respects the 
theory of continuation of analytic functions. The separation ratios Sbk (i-e. 
the quotients of the bottom rates over the feed rates), for instance, are con­
tinuous functions of the independent parameters RB and RD, (q constant). 
These functions, however, cannot be written explicitly, but are per multiplet 
solutions of a particular set of linear equations. 

Interpretation of smallest root Qo of UNDER WOOD'S equation 
The smallest root Qo, which is never used in the computations of minimum 

reflux, can take any negative or positive value outside the range of reciprocal 
relative volatilities ay1, in contradistinction with the other roots Qk of UNDER­
WOOD'S equation. WhenQo>0> it determines an empty zone between the mul­
tiplet diagram and one of the coordinate axes. (Fig. 15). It is shown in section 
4.3 that in these cases all roots play formally the same role, which is satis­
factory from the theoretical point of view. 

Vertex-separations a priori specificable 
Specification is the selection of the feed condition q and two separation ratios 

Sby. and Sbv. To compute the solution, however, the components which go 
entirely either to top or bottom and the possibility of the prescribed combina­
tion (sby., Sbv) must be known in advance. And hence part of the solution must 
be known before the computation can be initiated. 
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Exceptions to this rule are the separations represented by the vertices of the 
multiplet diagram. A vertex-separation can be completely specified by the 
selection of the non-distributed components only. The vertex-separations, 
therefore, constitute a rigid basis of the diagram of multiplets. 
Linear interpolation 

Linear equations play an important part in the theory. Separations in points 
of the boundaries (and hence the points themselves) are obtained by linear inter­
polation between vertices ; separations in interior points are obtained by linear 
interpolation between suitable points of the boundaries. 

Criterion of consistency 
An adequate criterion of consistency follows directly from the one-to-one 

correspondence between the separations and the combinations of pinch para­
meters (chapter 5). 
Monotony and uniqueness theorem 

The ordering of the components with respect to volatility induces monotony 
theorems concerning the lines of constant Sbk and the boundaries of the dia­
gram of multiplets. Rigorous proofs are given in the appendices. From the 
monotony theorems the uniqueness of a solution pertaining to a consistent 
specification is derived in section 4.8. 

Specification diagram 
In chapter 5 a definitive discussion of the specification problem is given. A 

diagram is introduced, consisting of a number of distinct quadrangles corre­
sponding to the domains of distribution ratios, total bottom liquid rate and total 
bottom product rate, pertaining to the separations of one same multiplet, (Fig. 
28). Specification and solution are combined into one simple ruler construction, 
which is based on the essential linearity of the equations of the underlying part 
of the theory. The inevitable numerical evaluations, preceding the construction, 
consist of the computation of the four vertex-separations of the multiplet to 
which the specification diagram belongs, and can be readily performed by a 
digital computer because of the above mentioned a priori specificability of 
vertex-separations. 

The second part of this thesis (chapters 6 and 7) concerns the computation 
of the compositions and equilibrium constants throughout infinite columns. 
Topics of this part are : 
Formulation of the theory 

The present formulation of the theory is an extension of the formulation 
given by VAN WIJK, who published analytical solutions of the basic equations 
for the distillation of discrete multicomponent mixtures several years prior to 
ACRIVOS and AMUNDSON (compare [8] and [1]). To overcome characteristic 
difficulties in the computation of feed tray conditions, VAN WUK'S formulation 
is appended by a complementary "mirror-formulation" in chapter 6. As a 
result, a definitive theory of infinite columns can be given and a rigorous and 
entirely straightforward computation of the physical conditions throughout 
infinite columns can be derived in chapter 7. 

Uniqueness of pinches 
The pinches are defined to be regions of infinite extension, in which the phys-
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ical conditions are uniform. It is shown in section 7.15 that one and only 
one pinch occurs in the bottom section and similarly one and only one pinch 
in the top section. 

Types of pinch location 
The trays, adjacent to condenser, feed tray or reboiler, may (but need not), 

belong to the pinches. In this respect 9 types of pinch location are to be dis­
tinguished (Fig. 31), of which type 9 pertains to absolute separations of binary 
mixtures only. 
UNDERWOOD'S theorem 

UNDERWOOD'S theorem is shown to be a direct consequence of the uniqueness 
of the pinches, (section 7.5). 
Linear equations for feed tray conditions of infinite columns1) 

Hitherto the feed tray conditions could only be computed by iterative proce­
dures [10, 11, 12]. In section 7. 7, however, a set of linear equations is derived 
from which the exact values of the compositions and of the absorption factor 
of the reference component at the feed tray can be obtained by straightforward 
solution. 

Pinch paradox 
A paradox, resulting from the discontinuity of the pinch parameters at the 

multiplet boundaries, is examined and resolved in section 7.16. 

CHAPTER 2 

PRELIMINARIES 

2.1. NOMENCLATURE 

Usually a distillation column is a vertical array of flat, in some way perfo­
rated, devices (plates or trays) locked up in a cylindrical enclosure. Liquid 
flows continuously down the column from tray to tray and across the trays. 
At the same time vapour travels up the column from tray to tray. On the trays 
exchange of heat and matter takes place. The trays are designed to give intimate 
contact between the two phases. As a result the vapour and the liquid, leaving 
the same tray, are more or less in thermodynamic equilibrium. If this equilib­
rium is perfectly established, the trays are said to be ideal or theoretical. 

For continuous operation, the multicomponent mixture (feed), which is 
separated into a distillate and a residual fraction, is introduced on a tray (feed 
tray) somewhere between the top and the bottom of the column. The feed tray 
divides the column into two sections, the lower part (stripping section or bottom 
section) and the upper part (enriching, top or rectifying section). Part of the 
bottom product is returned to the column by the reboiler, part of the distillate 
is refluxed by the condenser. A distillation column is schematically represented 
in Fig. 1. 

l) Note added in proof: It has come to the author's knowledge only recently that similar 
equations occur in UNDERWOOD'S original paper [5]. 
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FIG. 1. Schematic representation of distil­
lation column with M trays between 
reboiler and feed tray and N trays 
between feed tray and condenser. 
B, F and D represent total bottom 
product rate, total feed rate and 
total top product rate respectively. 
Rectangles I and II are drawn for 
application of law of conservation 
of matter (chapter 6). Total liquid 
rates Lb and Lt and total vapour 
rates Vb and Vt are constants. 

J L condenser 

Ü -
n.1 
n.2 

n 

n«A/-1 
n*N 
/7-A/+1 /7)-M*1 

2.2. MODEL OF CONSTANT MOLAL OVERFLOW AND CONSTANT RELATIVE 
VOLATILITIES 

2.2.1. Main characteristics 
Throughout this thesis steady state distillation is assumed and the well known 

model of constant molal overflow and constant relative volatilities is used. 
The physical state in an ideal distillation column is determined by the law of 

conservation of matter, the law of conservation of energy and the condition of 
thermodynamic equilibrium on each plate of the column. The direct application 
of these laws, however, offers unsurmountable difficulties to rigorous mathe­
matical analysis. Therefore, it has become common practice to substitute for 
the energy law the assumption of constant molal overflow, that is a constant 
value of Lb throughout the stripping section and likewise a constant Lt through­
out the top section. This assumption, though widely used, contradicts the energy 
law. 

W. R. VAN WIJK [7, 10] has developed methods to avoid this pitfall by taking 
full account of the heat balance while saving formally the present model. In-
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troducing "generalized rates", a condition for the generalized total liquid rate 
in the bottom and for the generalized total vapour rate in the top is derived 
which is similar to the condition of constant molal overflow. To this purpose, 
[10], the molal vapour heat content must be approximated by a linear function 
of the equilibrium constant K of a reference component and the molal liquid 
heat content must be approximated by a linear function of l/K. In case of mini­
mum reflux these approximations need only be valid in relatively narrow temper­
ature ranges. It is possible in this way to preserve formally the assumption of 
constant molal overflow while actually the overflow may vary appreciably 
from tray to tray. The method is amply demonstrated in two subsequent 
articles [10, 11]. It is felt that these developments increase the importance of the 
restricted model treated in this thesis. 

In the second place the customary assumption is made that the relative vola­
tilities «A are constant throughout the column. 

2.2.2. Additional assumptions and conventions 
The column is assumed to be ideal, (i.e. all the trays are ideal). 
In this thesis only columns with an infinite number of trays in both sections 

are considered. 
The components are arranged according to decreasing relative volatilities. 

The total feed rate Fis taken to be unity. 
The thermal condition of the feed is represented by the dimensionless param­

eter q, which is here defined by the quotient (£& - Li) IF which comes to 
L}>-Lt as F = 1, so 

q = Lb - Lt 

If the molal enthalpies of the liquid approaching and leaving the feed tray are 
identical and if the same holds for the molal enthalpies of the vapour, then q 
is exactly equal to the heat necessary to vaporize one mole of the feed divided 
by the latent heat of vaporization of the feed. Hence, the following feed con­
ditions correspond approximately to the listed values of q. 

q < 0 superheated vapour feed. 
q = 0 all-vapour feed at boiling point. 
0 < q < 1 partially vaporized feed. 
q = 1 all-liquid feed at boiling point. 
q > 1 cold liquid feed. 

Throughout this thesis, the assumption is made that the reboil vapour has the 
same composition as the residue, Vbo, k = RßBk for any component k, and also 
that the reflux liquid has the same composition as the distillate, Lto, k = RßL>k 
for each component k. 

2.3. GENERAL FEATURES OF MINIMUM REFLUX 

In this section a number of well known features of a rectification, performed 
at minimum reflux, are resumed without proof. 

Decrease of the reflux ratio RD of a column with a finite total number of 
trays requires an increase of the numbers of trays in both sections, in order that 
the prescribed separation of the key components shall be preserved. There 
exists a lower boundary for this reflux ratio beneath which the separation cannot 
be performed. When RD takes its minimum value the numbers of trays in both 
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FIG. 2. Characteristic sections 
of infinite column. 

3ZM 

O condenser 

top pinch 
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•feed tray 

O 

bottom pinch 

reboiler 

sections have become infinite. The minimum value of RD depends on the specified 
separation of the keys and also on the thermal condition parameter q of the feed. 

A striking feature of an infinite column is the occurrence of six distinct 
regions (schematically drawn in Fig. 2), each region consisting of an infinite 
number of trays.1) These regions must be considered as limiting cases of less 
distinct zones to be distinguished in an ordinary column with large numbers 
of trays in both sections. In the regions I, III, IV and VI the physical conditions 
(composition and temperature) differ appreciably from tray to tray. These 
differences become smaller and smaller towards the regions II and V, called 
the pinches, where the conditions are identical on all the trays of one same pinch. 

The pinches act as barriers to the separation. In fact, in most cases only a 
limited number of the components, penetrating at the feed tray, are able to 
pierce through both pinches. 

These components occur in both product streams and are therefore called 
distributed components. The more volatile components are reflected at the 
bottom pinch and leave the column only in the distillate. The less volatile com­
ponents are reflected at the top pinch and are present in the residue only. 

The first monotony theorem (appendix I) states the monotonie increase of the 
separation ratios Sbk of the distributed components with respect to index k, 
that is with respect to decreasing volatility. Hence if / is the lightest distributed 
component and h the heaviest one, the inside components k with I <k < h 
have ratios s^ which satisfy 

Sbi < SbJc < Sbh 

From this it follows that none of the ratios Sbk vanishes and that hence all 
the components k between / and h are distributed. It is seen that the distributed 
components compose what may be termed a separation band, consisting of the 
consecutive components /, / + I,..., h-1, h. 

') For exceptions see section 7.1. 
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2.4. FORMULATION OF MAIN PROBLEM 

Summing up we can formulate the main problem, treated in this thesis, as 
follows. 

Let be given 
a) the feed composition F\, F2, ..., Fj. 
b) the relative volatilities ai, 0.2, . . . , a.j. 
c) the thermal condition parameter for the feed q. 
Let be assumed 
a) the total molal overflow is constant throughout each section. 
b) the relative volatilities are constant throughout the column. 
c) the column is ideal, (i.e. all trays are ideal). 
d) the total numbers of trays in both sections are infinite. 
e) the reboil vapour has the same composition as the residue and the reflux 

liquid has the same composition as the distillate. 
Let be a priori specified 
the separation ratios of an arbitrarily chosen pair of distributed components. 
Then it is required 
to compute the product compositions, the reflux ratios as well as the com­

position and the equilibrium constant of the reference component, at each tray 
of the column. 

2.5. NUMERICAL EXAMPLE 

A large amount of numerical work has been carried out to elucidate the argu­
mentation. The results are presented in several diagrams and tables in this 
thesis. The author has used to this purpose a system of ten components, which 

TABLE 1. Ten component system of MURDOCH and HOLLAND. The order of the components 
has been reversed. (Component 7 is reference component). 

component 

1 
2 
3 
4 
5 

Fk 

0.05 
0.08 
0.14 
0.16 
0.08 

<*k 

3.00 
2.00 
1.50 
1.35 
1.25 

component 

6 
7 
8 
9 

10 

Fk 

0.14 
0.13 
0.05 
0.12 
0.05 

a* 

1.15 
1.00 
0.90 
0.70 
0.40 

was first used by MURDOCH and HOLLAND [3]. The order of the components 
has been reversed, taking here the most volatile component as the first one. The 
particulars of this system are listed in Table 1. 

CHAPTER 3 

UNDERWOOD'S METHOD 

3.1. CHARACTERISTIC EQUATIONS 

Various authors, [1, 3, 7] for instance, have carried out analytical investi­
gations based on roots of what may be called characteristic equations. Though 
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the respective formalisms, developed by these writers, diverge widely, the char­
acteristic equations are substantially the same. Adopting VAN WIJK'S formal­
ism, (chapter 6), we write the characteristic equation for the bottom section as 

J 
Lb= S Bil(\ - ons) 

and for the top section as 

Vt 

i = ; 

S A/(l 
i = i 

tfs) 

(3,1 

(3,2) 

Here s is a mathematical variable. The right hand members of Eqs. (3,1) and 
(3,2) are conveniently termed characteristic bottom function and characteristic 
top function respectively. Typical for the graphs of these functions is the oc­
currence of the vertical asymptotes generated by the fractions constituting these 
functions. It follows from the first monotony theorem (section 2.3) that Bi > 0 
if Bi > 0 and if i > /. Likewise A > 0 if Dh > 0 and if / < h. Therefore, there 
are J - I + 1 non-vanishing product streams Bi acting as numerators in the 
characteristic bottom function and hence J -1 + 1 vertical asymptotes. The 
graph of the characteristic top function is seen to have h vertical asymptotes. 
These graphs are qualitatively represented for a ten component system in Figs. 
3 and 4 respectively for the case of / = 4 and h = 1. 

The functions are steadily increasing between and outside the vertical asymp­
totes. The j-axis itself is a horizontal asymptote in both graphs. The roots of 
the characteristic equations (3,1) and (3,2) are the points of intersection with a 
horizontal straight line at a height L& or Vt respectively. A root occurs at the 
left hand side of each vertical asymptote. Hence all the roots are distinct and 
positive.1) The peculiar distribution of the roots may be loosely described by 
saying "every product stream has its own root". Each root is given the index k 
of the relative volatility determining the position of the asymptote at its right 
hand side, or, which comes to the same, the index k of the product stream in 
the numerator of the fraction generating this asymptote. Consequently the 

Zj fî,/(1-a,s) 

"1 "7 "-3 "•* ""5 ^6 "-7 
FIG. 3. Solution of characteristic bottom equation (schematical). 

*) The graph of the characteristic bottom function intersects the positive part of the ver­
tical axis at a height B = S,B;. As Lb > B, the first root is positive indeed except in the bound­
ary case Lb = B where this root is zero. Mutatis mutandis the same holds for the characteristic 
equation for the top section. 
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Z? 4 / (1- a) s) 

FIG. 4. Solution of characteristic top equation (schematical). 

characteristic bottom equation (3,1) possesses J-l + \ distinct and positive 
roots which will be denoted <$>l\. One has 

*i-i < # « < « * ' i f f c > l 
and (3,3) 

if Jt = 1 0 < 0>ïi < aT' 

Analogously the characteristic top equation (3,2) has h distinct and positive 
roots Oŷ  obeying 

«*+i < ®7l < «fc i f * < / 
and (3,4) 

0 < O7} < a j if Jfc = / 
In ordinary, finite, columns none of the product streams is exactly zero, 

strictly speaking. Then / = 1 and h = J and the summations in Eqs. (3,1) and 
(3,2) must be carried out over all J components. Usually, however, the numera­
tors in the characteristic functions are the object of the computation and hence 
are not simultaneously known in advance. Consequently the roots cannot be 
calculated a priori. Therefore, the majority of the analytical developments, 
based on roots of characteristic equations, merely result in a reshapement of 
the set of basic equations (conservation of matter and the like) with an en­
larged number of unknowns. Especially the analytical "solutions", in which 
small product rates Bi and A are neglected in the characteristic equations 
without correction for their omission, are of little value. 

For infinite columns, however, the situation is radically different. A. J. V. 
UNDERWOOD must be credited for discovering a third characteristic equation 
which provides a base for a direct computation of the unknown product rates 
of those columns. 

3.2. UNDERWOOD'S THEOREM 

According to the inequalities (3,3) and (3,4) the roots of the characteristic 
equations are imprisoned in their own intervals which are separated by the 
vertical asymptotes. From the viewpoint of these equations alone, no constraints 
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assumed to be imposed on the numerators Bi and A', a root may occupy any 
position in its interval and any combination of positions may occur. 

The numerators, however, are to be interpreted as the terminal product 
streams of an infinite column. The numerators of both characteristic equations 
are therefore mutually dependent and this dependence is reflected in a surpris­
ingly restricted behaviour of the roots. 

Let us call inside roots the roots which are situated between the asymptotes 
associated with the lightest and heaviest distributed component / and h respec­
tively. Then a theorem, discovered by UNDERWOOD [4, 5], states 

The inside roots Oj]. and <&~i\_\ satisfy the relations Ojj. = <&tk-\ 

(/ + 1 <k <h) (3,5) 

Rigorous proofs of this theorem have been given by P. G. MURDOCH and C. D. 
HOLLAND [3] and independently by A. ACRIVOS and N. R. AMUNDSON [1]. 
A proof can also be found in section 7.5 of the present thesis. 

3.3. UNDERWOOD'S EQUATION 

It is convenient to denote the values of the inside roots of the characteristic 
bottom equation by Qfc according to 

Q*-i = <D»i = «Dtt-i (/ + 1 <k <h) (3,6) 

Then, clearly, Q*-i is a r°ot of Eq. (3,2), i.e. 

F , = S A /O - a ï 'Û t i i ) (3,7) 
i = l 

Application of the law of conservation of matter to the condenser leads to 

Vt = U+ & Di (3,8) 
i = 1 

After equating the right hand members of Eqs. (3,7) and (3,8) it is easy to derive 
that h 

-Lt= 2 A7( l -«<ü*- i ) (3,9) 
i = 1 

On the other hand Qfc-i must satisfy Eq. (3,1) 

Lb= i M l - a f t - i ) (3,10) 
i = I 

Recalling Ft = Bi + Di (conservation of matter applied to the entire column) 
and recalling Bi = 0 for i < / and Dt = 0 for i > h, addition of Eqs. (3,9) and 
(3,10) yields y 

Lb-Lt= S F</(l-«|Q*_i) (3,11) 
i = l 

Hence the values £}# are the roots of a third characteristic equation which is 
UNDERWOOD'S equation 

q = Lb-Lt= S M l - « « * ) (3,12) 
; = l 

It should be noted that one must write qF instead of q if the total feed rate F 
differs from unity ! 
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1^/ (1-a , , s) 

FIG. 5. Solution of UNDERWOOD'S equation (schematical). 

The graph of the function in the right hand side of Eq. (3,12) is qualitatively 
drawn in Fig. 5. This function is of the same type as the characteristic bottom 
function. All J components occur in Eq. (3,12) which has at least J-\ distinct 
and positive roots Ofc obeying the inequality 

- I < Ü f c < a ï
1

+ i (1 < & < / - ! ) (3,13) ** 
The positive part of the vertical axis is intersected by the graph at a height 
"ZiFi = 1. Thus an additional root Do occurs which is negative for 0 < q < 1, 
zero for q = 1, and positive for q < 0 or q > 1. The meaning of this root will 
become clear in section 4.3. 

It is here that the above mentioned narrow freedom of the roots becomes 
manifest! Throughout this thesis the case is considered of prescribed feed con­
dition parameter q. Then, by virtue of UNDERWOOD'S equation (3,12), the inside 
roots 0 4 and <$~tl-\ are nailed to the s-axis in the positions s = Qk-i and 
s = Q,^ respectively, whatever the set of values of the product rates B{ and 
A may happen to be. Only the positions of the outside roots will be influenced 
by changes in the product rates Bi and A-

3.4. UNDERWOOD'S METHOD 

The important feature of UNDERWOOD'S equation (3,12) is the possibility, 
once a value for q has been selected, to calculate its roots Qjt without a knowl­
edge of the product rates Bi and A-

We no longer need to calculate roots of characteristic equations with esti­
mated approximate values of the numerators B% and A (which is the analytical 
routine for finite columns), but we substitute appropriate roots Qfc of UNDER­
WOOD'S equation into the characteristic bottom equation (3,1) and compute 
the bottom products Bi from the set of linear equations thus obtained. 

For convenience we summarize the method in the following theorem, which 
is deliberately formulated in terms of the separation ratios s^ = Bjc/F^ for 
the bottom products only: 

If I and h are the indices of the lightest and heaviest distributed component 
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respectively andifQi, Q /+i , . . . , Oft_i are the roots of UNDERWOOD'S equation 

q = 2 Zty(l-«ts) 
; = l 

W/HCA satisfy the conditions 

a*1 < Qfc < a*'+i (k = l,l+ 1 A - 1) 

fAe« ?Ae^ roota satisfy also the characteristic bottom equation and they provide 
thus precisely h-l independent linear equationsx) 

Lb = 2 SMF,/(1 - ociOfc) (k = I, I + 1, . . . , h. - 1) 
; = / 

in /Ae h-l -\- 2 unknowns Lb, Sbi, Sbi+i, •••, Sbh?) 

The number of unknowns exceeds the number of equations by two. Hence, 
to define a solution ( = separation) one must prescribe the values of two varia­
bles, for which can be chosen any pair of separation ratios, or both reflux 
ratios RB and Rr> or still an other pair of variables. 

In distillation practice it is customary to prescribe the separation of two key 
components. Although one usually takes the lightest and heaviest distributed 
component for the keys, it should be stressed that from the mathematical point 
of view the distributed components are completely equivalent, so that any two 
of them can serve as keys. The selection of the separation ratios of the keys is 
known as specification. 

MURDOCH and HOLLAND, as well as ACRIVOS and AMUNDSON, have derived 
explicite solutions, expressing the product rates of the distributed components 
in the key product rates. The present author, however, prefers to pertain to the 
original set of linear equations. The reader should bear in mind that the coeffi­
cients Fi/(I - oLiCi/c), occurring in the linear equations, are the fractions of the 
right hand member of UNDERWOOD'S equation and hence are automatically 
obtained during the calculation of the roots 0.%. In computer programs, therefore, 
it seems imperative to stick to the set of linear equations and to utilize the com­
putation of the roots Q^ in the construction of these linear equations, rather than 
to introduce the more sophisticated formulae of the authors mentioned above. 

3.5. SPECIFICATION 

It follows from UNDERWOOD'S method that the number of linear equations, 
as well as the number of unknowns, is determined by the values of / and h, 
i.e. by the extension of the separation band. 

In this thesis it will be shown that the separation band is completely and 
uniquely determined by the specification of the separation ratios Sb^ and Sbv, 
pi < v say, of two arbitrarily chosen distributed components (key components). 
By implication / and h are additional unknowns depending on Sby. and J&V, but 
a simple relation between / and h on the one hand and J&H and Sbv on the other 
hand does not exist. 

*) The mutual independence of these equations is proved in appendix IV. 
2) Apparently one has for the separation ratios of the volatile non-distributed components 

Sbi = Sb2 = ••• = W-1 = 0 and for those of the less volatile non-distributed components 
Sbh + l = Sbh + 2 = . . . = SbJ = 1. 

Meded. Landbouwhogeschool, Wageningen 61 (9), 1-94 (1961) 15 



Current distillation literature apparently ignores this problem. As far as is 
known to the present author, only ACRIVOS and AMUNDSON briefly mention the 
subject [2, page 71] 

"...Of course, it must be understood that h and / are not known a priori, and so, in general, 
there are more unknowns than there are equations. However, it turns out, in all the cases 
which have been investigated so far, that the system of equations ... and ... has only one 
solution which satisfies the additional requirement 

0 < su < 1 for / < ; < h ( + ) 
(our notation !) 

In practice it is best to assume h and / first, and then to solve equation... This process is 
repeated until ( + ) is obeyed. ..." 

In this quotation the uniqueness of a solution, determined by Sby. and s^, 
is presumed. We shall give a proof for this uniqueness in chapter 4. ACRIVOS 
and AMUNDSON recognize the risk of false solutions due to the use of incorrect 
values for / and h. We shall demonstrate in chapter 5, however, that their con­
dition (+ ) , meant to single out the unique consistent solution, is not adequate, 
and we shall replace this condition by a necessary and sufficient criterion. 

It must be realized that an arbitrary combination of values for Sb^ and s^, 
does not necessarily correspond to a physically possible state (consistent so­
lution). In the specification one has to make allowance for the monotonie in­
crease of the ratios su with respect to the component index /, (first monotony 
theorem). So if y. < v, then Sb^. belongs to the more volatile component and, 
hence, Sby. < Jbv That this condition is not sufficient can be seen, by way of 
example, from Fig. 6, where the shaded part indicates the forbidden combi­
nations of Sbi and Sbi tor the ten component system. Here q = 0.6. In the white 
area of consistent combinations values of / and h occur ranging from 1 to 4 
and from 7 to 10 respectively. 

We conclude that, having fixed q in advance, the specification of the keys 
requires a knowledge of 

FIG. 6. Forbidden combina­
tions (shaded part) of 
stA and jj7 for the ten 
component system (q 
= 0.6). 

sbl 
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a) the domain of consistent combinations of s^ and Sbv. 
b) the appropriate values of I and h conjugate to these combinations. 

Later on we shall see that there exist exactly \J(J'- 1) borderline cases in 
which this information is a priori available, {vertex-separations, vide chapter 4). 

Similar difficulties arise if one specifies both reflux ratios RB and RD instead 
of two keys. 

3.6. PINCH PARAMETERS 

We introduce as independent variables the smallest roots ® Ĵ and Oj^ of the 
characteristic equations for the bottom and the top section respectively. It 
must be understood that the indices / and h are to be considered as variables 
themselves, so that Oj} and ®~;\ can be made to coincide with the smallest roots 
of the characteristic equations corresponding to any separation of the multi-
component system. 

The roots Oj ' and (bfh are the respective reciprocal values of the absorption 
factor at the bottom pinch and the stripping factor at the top pinch of the 
reference component (with a = 1, vide chapter 6). 

^ W = = -^ftpinch ,~ . .,. 

®th = Sipinch 

Therefore, they will be termed the pinch parameters to distinguish them con­
veniently from the terminal parameters q, RB and RD. 

Specification of the pinch parameters adjusts the number of equations to the 
number of unknowns instead of decreasing the latter number as happens in 
ordinary specification. 

Indeed, to the linear equations which occur in UNDERWOOD'S method and 
which obviously may be written x) 

Lb- S sMFi/(l - o,Qfc) = S Fj/(l - a,Qfc) (3,15) 
; = / J = A + I 

k = l, I + 1, ...,h- 1. 
are added the equations 

I* - &. SMFt/il - <xt<bï\) = Î F}/(1 - oijdn)) (3,16) 

and 

Lb- S SbiFilO- - «tQth) = q- S FiKl-xiQtH) (3,17) 
• = / j = î 

Thus we have precisely h -1 + 2 linear equations in the h - / + 2 unknowns 
Lb, Sbi, Sbi+i, ..., Sbh- Equation (3,16) is essentially the characteristic bottom 
equation (3,1) *), rewritten in terms of the separation ratios SM-

Equation (3,17) is a modification of the characteristic top equation (3,2). 
Substituting Eq. (3,8) into (3,2) we find 

-U= S DiKl-atQth) (3,18) 
i = 1 

•) Recalling s/,/,+1 = sth+2 = ••• = *bj = 1, the unknowns have been concentrated in 
the left hand member. 
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Substitution of Eq. (3,18) into the defining equation of q 

q = Lb- Lt 

yields 
h 

Lb = q- S Dil{\ - OLi^th) 
i = 1 

Recalling A = Fi- Bi = Ft- sbiFi and recalling sbi = sb2 = . .. = Sbi-i = 0, 
we can write 

Lb = q- S Fi/(\ - oLi^th) + S sibFi/(l - **<%) 
i = i i = ; 

which is Eq. (3,17). 

The matrix of coefficients of the system (3,15), (3,16) and (3,17) is non-
singular. 

The proof is given in appendix IV. 
As tools for the systematic detection of consistent solutions the pinch param­

eters Oj ' and O7J are superior over the separation ratios sbv. and J&V of two 
key components, as the pinch parameters have the great advantage of pos­
sessing a priori computable intervals of consistent values with known values I 
and h, conjugate to these intervals. 

In fact we have the theorem 

OjJ has J disjunct intervals along the s-axis, corresponding to the integral 
values from I to J inclusive for I. These intervals are closed to the left and open 
to the right. 

Üz-i < OjJ < ay1 for any qifl < / < J (3,19) 

0 < Oj} < aï1 for q < 1 if I = 1 (3,20) 

0 < Qo < Oïl < «Ï1 for q > 1 if I = 1 (3,21) 

*~ S 

ft0 ' n, ' n 2
 J f t 3 " f i 4 ' n 5 " 0 n 6 "" 'n 7 "°n 8 "" ! , . n 9

a i 1 

FIG. 7. Consistent intervals (heavy bars) of ©j] on s-axis. Conjugate values of / are indicated 
(schematical) (q > 1). 

Proof. Suppose / has the value X and, hence, that Oy} = <J>jX is situated 
somewhere between oĉ li and a^1 (vide Figs. 9A and 9B). Then X is the lightest 
distributed component. When sb\ is very small, the term tf&x^/O - «AJ) c a n 

become large only if s nearly equals 05}. Hence when sb\^>- 0 the graph of th& 
characteristic bottom function will be pressed against the vertical asymptote 
at s = <xx' and the root OjX will approach ax1. Therefore, it can be assumed 
that OJX is situated in the right hand part of its interval if sb\ is sufficiently 
small, i.e. 

Q A - I < * i i < «i1 

Let now <&ï{ move to the left, towards Qx-i. Then $ j X becomes "inside root" 
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0 I- «10 I. dig L as L 07 I. a6 L 05 

çû çû srî jri çû çû flî 
a< î  a3 i., a2 ^ ai 

CQ >£g 1£8 U 7 i£6 ) £ 5 1£4 ß 3 ß 2 fy 

FIG. 8. Consistent intervals (heavy bars) of O7J on s-axis. Conjugate values of h are indicated 
(schematical) (q < 0). 

at the instant it reaches the point s = ü x - i , that is when Sbx-i starts to differ 
from zero, i.e. when component X - 1 starts to join the bottom product. At the 
same instant, however, if the variation of the separation ratios, causing the 
shift of Ojj[, is continued the root OÏJ_I comes into existence. Hence Oj} 
jumps from the point s = ü ^ - i to the consecutive interval at the left. Thus it 
is seen that O ĵ cannot reach the left hand part of the interval beyond O^-i-

A B C 
FIG. 9. Extinction and genesis of distributed components. If pinch parameter (Dĵ  -> â  

then sb\ -> 0. 
if <i>i -> nx_ 
Sbx -1 appears. 
If 3>ix -*• ßx-i then a new root Ojx-i corresponding to a new distributed component 

The left hand terminal point Q1-1 of (3,19) can be actually reached because 
the coefficients in the equations stay finite when O7J takes the value Q j - i . 
Therefore the intervals are closed at the left sides. When OjJ approaches aj1 , 
the ratio sw must vanish in order to suppress its indefinitely increasing coeffi­
cient Fiftl -oc;<DjJ), since inspection of the system of equations (3,15), (3,16) 
and (3,17) shows the other terms to be bounded. The fraction SMFI/(1 - a-i^li) 
itself does not vanish but yields a limiting value (see below). The intervals are 
hence open at their right hand sides. The analogous inequalities (3,20) and 
(3,21) are considered in section 4.3. 

Similarly one can prove the theorem 

<t>7̂  has J disjunct intervals along the s-axis, corresponding to the integral 
values from I to J inclusive for h. These intervals are closed to the left and open 
to the right. 
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Ö*1 < *7À < «ft 
O < Ojj < <v 

0 < Q51 < Ojj < <xj 

/or any ? ;ƒ 1 < « < ƒ - 1 (3,22) 

forq > 0 ifh = J (3,23) 

forq <0 ifh = J (3,24) 

Next we formulate the second monotony theorem, (the first monotony theo­
rem will be found in appendix I). 

On lines of constant Oyj; the reboil ratio RB, the total liquid rate Z.&, the total 
bottom product B and the ratios SM are continuous and monotonie functions of 
<I>ïJ in the intervals (3,19) and (3,20) or (3,21). On lines of constant O7} the reflux 
ratio RD, the total liquid rate L&, the total top product D and the ratios SM are 
continuous and monotonie functions of O7J! in the intervals (3,22) and (3,23) or 
(3,24). One has (for constant q) 

and 

3RB 

W) 
dRp 

mil) 

> 0 ; 

> 0 ; 

dB 

3D >h. -.o- dsM 

W) Wù Wnx> 

< 0 

> 0 

(3,25) 

(3,26) 

The tedious but essential elementary algebraic proof is given in appendix II. 
We shall now prove the first theorem of continuation: 

If O7J; is kept constant and if O7) approaches the right hand terminating point 
ay1 of any interval 

û i - i < <tn) < «71 

then RB, Lb, B and the ratios SM (I < i < h) approach the values corresponding 
to the left hand terminating point £li of the consecutive interval 

Oi <®H <«7+i 

Proof. We know that su ->0 when Oj ' ->ay'. Therefore, su will be elimi­
nated from the equations (3,15), (3,16) and (3,17). This is easily done by solving 
SM from equation (3,16), yielding 

FIG. 10. Monotonie behaviour of the ratios on line of constant &,/,. (q > 1, hence 0 < flo < 
< OJI < oq ) (schematical). 
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1 — a id) - 1 * 
SM= J "• [Lb- 2 swfi/O-OiOïj). 

ri i = ; + i 

S f>/( l-a,Oi))] 

which we abbreviate as 

SM 
1 - ot<&ï} [...] 

Substitution of (3,27) into Eqs. (3,15) and (3,17) yields 

Lb- S SbiFil{\ - a A ) S Fjl{\ - a îîfc) 1 - «;<&» 
1 - â Qfc 

(3,27) 

• [...] (3,28) 

1 - atOïi 
1 - ajOtt" 

[...] (3,29) 

with & = /, / + 1, . . . , h - 1, and 
A h 

Lb- 2 SbiFil(\ - a.i®th) = ? - 2 Fj/(l - <x.j<$th 
i = i+i y=i 

When O }̂ approaches aj1 the coefficients of the bracket expressions vanish 
and the equations (3,28) and (3,29) are seen to reduce exactly to the system 
which may be obtained from the equations (3,15), (3,16) and (3,17) by replacing 
/ by / + 1 and by putting O~i) equal to Q;. And this settles the theorem. 

Without proof we state the second theorem of continuation 

If O j ' is kept constant and if O7J approaches the right hand terminating point 
otft of any interval 

ÛÂ1 < ®l\ < *h 
then RD, Lb, B and the ratios SM (/ < i < h) approach the values corresponding to 
the left hand terminating point Q^ii °f the consecutive interval 

sbk 

ti ... -y-j^y 
'8 

6 

12.3.4,5 

0 Cti0 fig1 09 il'i <*8 ÎÎ71 a7 «6 a6 «5 a5 

—~*th 
FIG. 11. Monotonie behaviour of the ratios on line of constant <E>ï/. (0 < q < 1, hence 

Qo < 0 < <t>7io < « 10). (schematical). 

Both theorems of continuation are qualitatively illustrated by Figs. 10 and 
11. The proof of the second theorem is omitted as it obviously runs along the 
same lines as the proof given for the first theorem. It may suffice to point out 
a difference between Eqs. (3,16) and (3,17). In Eq. (3,17) two terms instead of 
one tend to increase indefinitely when Oyj. approaches a^. Inspection of Eq. 
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(3,17) reveals that SM must approach 1 to force both terms to cancel. This is 
clearly demonstrated by Fig. 11, where the curves bend upwards instead of 
downwards, as is the case in Fig. 10. 

3.7. CLASSIFICATION 

The dominant role, played by the separation band, suggests the use of the 
latter as a base for classification. Therefore, two separations P and Q are de­
fined to be equivalent (P co Q) if both have identical distributed components1), 
that is the same value of / and h. Evidently this relation satisfies the require­
ments of a true equivalence (reflexivity, commutativity and transitivity) and, 
therefore, induces a classification of separations. 

The classes will be denoted with regard to number and identity of the dis­
tributed components as "class of multiplet separations (/.A)", which may 
conveniently be abbreviated by "multiplet (/. A)". For the ten component system 
we can distinguish 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

decuplet 
nonuplets 
octuplets 
septuplets 
sextuplets 
quintuplets 
quadruplets 
triplets 
doublets 
singlets 

(1.10) 
(1.9) and (2.10) 
(1.8), (2.9) and (3.10) 
(1.7), (2.8), . ..,(4.10) 
(1.6), (2.7), ...,(5.10) 
(1.5), (2.6), . ..,(6.10) 
(1.4), (2.5), ...,(7.10) 
(1.3), (2.4), ...,(8.10) 
(1.2), (2.3), ...,(9.10) 
(1), (2), . . . ,(10) 

To these classes must be appended 

9 classes of absolute separations (2.1), (3.2), (4.3), ..., (10.9) 

which have no distributed components at all ! The latter classes have the com­
mon characteristic of / = h + 1, where / and h now have the meaning of 
lightest component in the bottom product and heaviest component in the top 
product respectively. 

Obviously the total number of classes amounts 

\J(J + 1) + ( / - 1) = \J(3 + 3) - 1 (3,30) 

which comes to 64 classes for the ten component system. 
The classes are completely determined by the values of / and h, as are the 

permissible intervals for <1>i\ and O7J respectively. Hence we are able to indicate 
at once the domain of combinations (OjJ, O7J;) pertaining to the separations of 
any one of the classes. These domains are shown in Fig. 12. 

For clearness' sake the diagram again has been drawn purely schematically. 
The real values of the roots Qk of Eq. (3,12) computed for the ten component 
system for various values of the feed condition parameter q are collected in 
appendix V. 

The small straight lines along the diagonal of Fig. 12 represent symbolically 
the classes of absolute separations. If distributed components are absent, the 

x) P and ß are not meant to have identical separation ratios for the distributed components! 
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Oe' 
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§ B Ë Ë / 
|"l"-5i J2.5: J3.5; U.5J I 5 ; / 

|V-6] I2.6] 13.6] U.6: 15.6! | 6 ] / 

[V7j Izfi 13.7| 14.71 15.7] 16.7] | 7 ; , 

|"|.8j [2-8] 13-8; La] J5-8| J6.e] J7.8j I S 1 / 

[l'a] j ^9 j 13.9] JZsij 15.9] 16.9] 17.9] J8£j [ 9 ] / 

I LIU! I2.IO: I3.10] L lO: I5.I0] J6.10] b.io] J8.10] I9.I0I [ l 0 

FIG. 12. Classification of separations of ten component system, (schematical). Numbers in 
squares indicate values of / and h respectively. (0 < q* < 1, hence ßo < 0). 

absolute separations are determined by Eqs. (3,16) and (3,17) only. The sepa­
ration ratios su, however, are now simultaneously known in advance. 

(sbi = s b 2 = ... = sbi-i = 0 a n d sbi = su+i = — = s b J = 1) 

The only remaining unknown is Lb. The summations in the left hand members 
of Eqs. (3,16) and (3,17) apply to distributed components and, hence, are to be 
ignored. Recalling that in this case h = I - 1, the equations become respectively 

3 
i = ; 

Lb= 2 fi/(l - oi<&ïi) 

and 

Subtraction yields 

/ - 1 
Lb = q- 2 F«/(l - OHOH-I) 

q = 2 Fil(\ - o ,0«_i) + 2 Fjl{\ - oyflç}) 
i = l ; = / 

(3,31) 

(3,32) 

(3,33) 

From Eq. (3,33) it is seen that <1>7]> and $ j j are no longer independent. Hence 
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the classes of absolute separations must be represented by curves instead of 
rectangles. As the exact shape of these curves is irrelevant for the present con­
sideration, we have not cared to compute the curves. The marked terminating 
points, however, are exact, as comparison of Eq. (3,33) with UNDERWOOD'S 
equation shows that <&a-i = Oj} = üj_i is a solution of (3,33)! 

The squares, representing the classes, are open along their northern and 
eastern boundaries (dotted lines) and closed along their southern and western 
boundaries, (compare the intervals (3,19) to (3,24) inclusive). The distributed 
squares must be put together like the pieces of a jigsaw puzzle. The first and 
second theorem of continuation govern the fitting together of the pieces. Adja­
cent eastern and western and adjacent northern and southern boundaries are 
to be identified, to obtain a pattern which is continuous in all directions. 

The diagram provides a guide to consistent solutions, i.e. solutions compa­
tible with the underlying basic equations of the present model.1) In this sense 
Fig. 12 affords a complete survey of the multitude of separations, but the survey 
is purely analytical. The diagram concerns the systems of equations, not the 
solutions. Therefore, we have now to solve the equations and to convert this 
implicit representation into an explicit one. This will be carried out in the next 
chapter, where the entire assemblage of separations will be pictured into three 
dimensional (q, RB, Ä/>)-space. 

CHAPTER 4 

MULTIPLET REPRESENTATION 

4.1. (q, RB, ÄÖ)-SPACE 

In the present model the three dimensionless terminal parameters q, RB and 
RD command the column performance. Therefore, it is logical to represent the 
separations by the points of the space in which q, RB and RD are taken as orthog­
onal Cartesian coordinates. 

4.2. PENCIL OF LINES OF CONSTANT B IN PLANE OF CONSTANT q 

From our definition of the feed condition parameter q 

q = U-U (4,1) 
if 

F = B + D = 1 (4,2) 

and from the well known relations 2) 

U = (RB + \)B (4,3) 
and 

U = RDD (4,4) 

we can obtain by simple algebra the relation 

') Vide chapter 6. 
2) Vide chapter 4. 

24 Meded. Landbouwhogeschool, Wageningen 61 (9), 1-94 (1961) 



RD *-*•+& 1 - 5 
(4,5) 

In a plane of constant q, (q = q*), Eq. (4,5) takes for constant B, (B = ß*), the 

RD 
B* 

RB 
B* -q* 

(4,6) 
1 _ B* " 1 - 5 * 

which is a linear equation in RB and RD- The substitutions RB = q* -1 and RD = 
-q* satisfy Eq. (4,6) independently of the value of B*. Hence, Eq. (4,6) represents 
a plane pencil of straight lines radiating from the centre C with coordinates 

(RB, RD) = fo* - 1, -?*) (4,7) 

This is shown in Fig. 13 for the plane q = 0.6. 
From (4,7) it follows that the centre C is situated on the straight line 

RB + RD = - 1 
Note that Eq. (4,8) is independent of the value q*. 

Differentiation of Eq. (4,6) with respect to RB yields 

dRp _ B* 
9RB \-B* 

Differentiation of Eq. (4,9) with respect to B* results in 

d2RD 1 
BB*3RB (1 - B*f 

> 0 

(4,8) 

(4,9) 

(4,10) 

-0.1 

FIG. 13. Plane q = 0.6 with first quadrant of pencil of lines B = B* and with curves Lj = L t . 
The positive i?ß-axis is the line Lb = 0.6. 
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Hence the slope of the straight line (4,6) is a monotonie increasing function of 
B* only. We find 

The pencils in all the planes of constant q are congruent. 

Of course only the lines of a pencil corresponding to values of B*, ranging 
from 0 to 1, are of interest.1) From (4,9) it is seen that the line B = 0 runs 
parallel to the Ä#-axis and the line B = 1 parallel to the Rß-axis. 

The right angle, bounded by B = 0 and by B = 1, is said to be the first 
quadrant of the pencil. 

4.3. EMPTY ZONES AND INTERPRETATION OF Q.Q 

Clearly2) the points of a plane q = q* represent separations only if they 
coincide with lines B = B* and 

0 < B* < 1 (4,11) 

Hence only the part of the positive quadrant of the (RB, Äß)-plane, which is 
covered by the first quadrant of the pencil, contains the separations. 

In Fig. 14 the line (4,8) is divided into three parts, laying in the second, third 
and fourth quadrant of the (RB, JRo)-plane. From (4,7) it is seen that q* < 0 
corresponds to the part in the second quadrant, 0 < q* < 1 to the part in the 

Rr 

0<Qn<a 

R B 

fin<0 

M J5L 

FIG. 14. Values of q* and flo pertaining to various positions of centre Cof pencil of lines 
B = B*. 

») Since B < F = 1. 
2) The total feed rate F = 1 ! 
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third quadrant and q* > 1 to the part in the fourth quadrant. In section 3.3 
it was found that 

0 < Ü51 < xj when q* < 0 
Qo < 0 whenO < q* < 1 (4,12) 

0 < Ü.0 < aï1 when q* > 1 

We consider now the case of q* > 1. (Fig. 15). 
It is seen that the positive quadrant is not entirely covered by the positive 

quadrant of the pencil. An empty zone occurs between the i?£-axis and the 
boundary of the domain of separations, i.e. the line 5 = 1 . 

From (4,7) again it follows that the abscis of the point of intersection P of 
B = 1 with the Äß-axis equals q* - 1. 

Hence for the separation P (and also for any separation of the boundary 
line B = 1) we have 

q = < ? * > 1 
RB = q*-\ (4,13) 
B = 1 

Writing out the characteristic bottom equation for the root O ĵ for this case 1) 
we get, recalling Lb = (RB + 1)5 = q* 

<7*= i BiKl-Xi^l) (4,14) 
; = 1 

Obviously one has 
Bi < Fi (4,15) 

Subtracting 
2 Bi = 1 (4,16) 

from S Fi = 1 (4,17) 

yields 2 (Fi-Bt) = 0 (4,18) 

With regard to (4,15) all the terms of the summation in (4,18) are non-negative. 
Therefore, the terms must vanish simultaneously. Hence 

Bi = Ft i=l,...,J (4,19) 

in this case and Eq. (4,14) can be written 

q*= Î M l - a ^ J ) (4,20) 
i = 1 

We conclude that $^{ satisfies UNDERWOOD'S equation and hence must be 
identified with one of the roots £2fc. Comparing intervals, it is found that both 
$j} and iio are situated between 0 and aï1, hence 

Oïl = &o (4,21) 

Here the meaning of Qo becomes clear 

When q* > 1, there exists an empty zone along the Ro-axis in the planes 
q = q*. The boundary between the empty zone and the domain of separations 
is the line B = 1, parallel to the Ro-axis. The minimum value of RB equals 
a* - 1. One has then 

') As B = 1 the ratio su =fr 0 and hence / = 1. 
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FIG. 15. Empty zone along iJo-axis in plane q = q* if q* > 1 and hence 0 < flo < «i . 

0 < Qo < ay1 (4,22) 

and Qo < $7,! < «I1 

To the separations of the boundary corresponds the value Qo for the pinch 
parameter OjJ. For the separations on the Rß-axis the pinch parameter Ojj. = 0. 

Quite analogously one can show 

When q* < 0 there exists an empty zone along the Rß-axis in the planes 
q = q*. The boundary between the empty zone and the domain of separations 
is the line B = 0, parallel to the Rß-axis. The minimum value of RD equals -q*. 
One has then 

0 < Q51 < a j (4,23) 

Q51 < #77 < «J 
To the separations of the boundary corresponds the value Q51 for the pinch para­

meter <$>i\. For the separations on the Rß-axis the pinch parameter O j] = 0. 

When 0 < q* < 1 the entire positive quadrant of the plane q = q* consists 
of points representing separations. One has 

Q o < 0 
0 < <Pj{ < ai1 (4,24) 

0 < O7} < o.j 

For the separations on the Rß-axis O7J = 0 and for those on the Ro-axis 
O7 0. 

4 . 4 M U L T I P L E T S I N P L A N E O F C O N S T A N T q 

The diagram of multiplets in the (O7J, 0;]!)-plane of Fig. 12, (q = q*), will 
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now be mapped onto the intersection of the positive quadrant of the (RB, RD)-
plane (with same value of q*) and the first quadrant of the pencil of lines 
B = B* in the latter plane. 

Obviously each point (RB, RD) of this intersection represents one and only 
one separation. Hence it follows that the multiplets fill the intersection with­
out gaps and overlaps. 

The construction of the net of multiplets has been carried out quantitatively 
for the ten component system in the plane q = 0.6 (Fig. 16). As 0 < q* < 1 
in this case, no empty zone occurs. 

In the process of mapping, the squares are distorted and condensed into a 
continuous pattern. The theorems of continuation guarantee that their order is 
preserved. The second monotony theorem determines the orientation of the 
pattern. Qualitatively one may say that the Oj'-axis becomes Rß-axis and the 
OyJi-axis becomes Rü-axis. In the treated case this can be verified easily as 
follows 

15 

10 

-

.12 

-

-

-13 

-
1.4 

-

"1.5 

16 

1.7 

1.8 

-19 

1.10 

'i. 

2.3 

/ 3 

/ 1 4 

/ 3 i / y^1 

/ \ 45 / y 
2.4 X / / ^ 

25 

2.6 

~27J 

35 / ^ - " " ' 7 / 
,---"7 / 5.6 / 

/ 4.6 / / 
36 / / J-^-^^ 

- ~ ~ " ~ / 47 / 5 - 7 / / 3.7 l__/---J~--~- 7 ^ 

28 3.8 / 48 / 7 ° V _ 
2.9 

2.10 

3.9 / 4.9 /Sa/ 69 / 7.9 

3.10 4.10 5.10 6.10, ,7.10 8.10 

/ 

' 5 

7*8 ^ 

8.9 y / 

1 , 

6 

7 

9.10 

8 

9 

, 

c 
10 

FIG. 16. Multiplets in plane q = 0.6. Values (/. h) are indicated. The Rp-axis points to the 
north and the Äs-axis to the east. 
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For the points of the Rß-uxis one has RD = 0. Hence Vt = (0 
and the characteristic top equation (3,2) becomes 

D S A/(l A') 

\)D = D 

(4,25) 

The smallest root of Eq. (4,25) is s = <b~i\ = 0 and this is the equation of the 
Oj'-axis. The second monotony theorem states 

~ ^ > 0 

ami) 
and hence both the Oj'-axis and the i^-axis have the same direction with 
respect to the pattern of multiplets. A similar argument is valid for the O7J-
axis and the i?#-axis. 
4.4.1. Interior multiplets 

The multiplets (X. •/)) with 

2 < X < 7 ] < y - l (4,26) 

are called interior multiplets. They are surrounded by a chain of peripheral 
multiplets, i.e. the multiplets alongside the i?ß-axis and the Äß-axis and the 
multiplets of infinite extension. As X < TJ at least two distributed components 
are present in the interior multiplets. 

The construction starts with the computation of the coordinates (RB, RD) 
of the interior vertices of the net. These vertices correspond to the marked 
southwest corners of Fig. 12. They stand out by the specific values of the pinch 
parametersa) 

Of 1 <j<k (4,27) ^} 
1>7i = Ü*1 1 <A: < y - l 

X+1.T1-1 

M 
FIG. 17. Designation of vertices. 

') The cases j = k will be discussed in the section on peripheral multiplets (vide singlet 
separations). 
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Hence there exist 1 + 2 + ... + ( / - 1) = \ J (J - 1) such vertices, which will 
be labelled after the lightest (X) and heaviest (YJ) distributed component occurring 
in the separation presented by the vertex (vide Fig. 17). It should be remembered 
that the squares are closed along their southern and western boundaries so that 
the southwest corner really belongs to the square, i.e. really has the same 
distributed components as the interior points of the square. The other three 
corners of a square, on the contrary, represent limiting cases in which either 
the separation ratio of the lightest distributed component vanishes or (and) the 
separation ratio of the heaviest distributed component becomes unity (vide 
the theorems of continuation). 

Because the multiplets and the squares are similarly oriented in their coor­
dinate systems a southwest corner of a square becomes a southwest corner of 
the corresponding multiplet. For convenience the dominant features of the 
construction are comprised into the following lemmas : 

Lemma 1. 
The separation in the vertex (X, YJ) with 2 < X < YJ < / - 1 is specified by the 

values Cl\-i and £2~' of the pinch parameters O7] and O7J respectively and is de­
termined by the linear equations 

U- 2 sbiFi/(l-oLiük)= 2 FiKl-ajClt) (4,28) 

with k = X- 1, X, ..,7). 
yj - X + 2 unknowns sb\, Sb\+i, ..., sbr, and Lb 

YJ - X + 2 equations 

Proof. The lemma is a direct application of the equations (3,15), (3,16) and 
(3,17). 

Lemma 2. 
On any line Sbv = constant in multiplet (X. YJ), (X < v < rj and X < YJ) the 

separation ratios Sbt are either constant or they are linear functions of an arbi­
trarily selected Ç'distributed") ratio #>,*. (X < JA < YJ ; u- ^ v). One has 

SM = 0 i < X 

SM = Tt$™> sbl, + Ut$™> { *<lj} [x <4 '2 9> 
Sbi = 1 i > YJ 

The constants Tfy'n,'t> and £/$,11,v) depend on the identity (X. YJ) of the multi­
plet and on the choice of the components i, \i and v. The constants U depend also 
on the value of the constant ratio Sbv- The total liquid rate Lb depends also 
linearly on Sb^ 

Lb = T ^ sbll + UfrW> 

Consequently the same holds for Lt, B and D. 

Proof. According to UNDERWOOD'S method Lb and the ratios SM (i ̂  v 
and # [A) satisfy the linear equations 

Lb - 2 " sbiFi/(l - aiQjc) = 2 F,/(l - oyQ*) + sbt,FJ(l - o^Q*) + 
i = X j = 7) + 1 

+ j f t v F»/(l - avQfc) (4,30) 
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The primes " indicate that the values jx and v for i are to be skipped in the 
summation. The index k takes the values X, X + l , . . . , Y ] - 1 , (?) - X equations, 
7) - X unknowns). Hence every unknown ("distributed") ratio SM can be ex­
pressed into the coefficients and the known terms in the right hand members, 
yielding Eqs. (4,29). (Compare also appendix III where Eqs (4,29) are written 
as SM = TiSbv. + Ui for simplicity.) Lt, B and D depend linearly on s^ because 
they are linear functions of L& or the ratios Sbi-

Lemma 3. 
The northern boundary of multiplet (X. r\) can be interpreted as the line Sbn = 1 

of this multiplet, or, alternatively, as the line Oj^ = 12~Li- Hence to the points 
of this boundary the equations 

L b - \ sMFil{\ - aiük) = 2 FjKl-OLjQk) (4,31) 
i = X j = ?] 

apply with the same set of UNDERwoou-roots Qx, Ox+i, . . . , Q r,-i as occurs in 
the equations concerning any interior point of multiplet (X. YJ). There are TJ-X equa­
tions for therj-l-\- 1 unknowns Lb, Sb-A, . . . , Sbr,-i. Hence one of the ratios can 
be used to label the points of the northern boundary. 

Proof. Lemma 3 is an immediate consequence of the second theorem of 
continuation. Any point of the northern boundary can be interpreted as the 
(limiting) terminating point of a line OjX = constant (vide Fig. 12). If a point 
travels along this line in the northern direction then à>7̂  -xx^ and si», -> 1. 

The theorem of continuation then states that in the limit O7À must be taken 
in the first point Q ^ of the interval (Ü^Li, <xT,-i), i.e. the equations (3,15), 
(3,16) and (3,17) apply with the particular values X and vj - 1 for / and h re­
spectively and the value 1 for s^. One has 

(3.15) -^Lb- "z SbiFil{\-<tiQk) = 2 iv(l-ayüfc) 
! = X j = 7) 

(k = \, X + 1, . . . , 7 ) -2 ) 

(3.16) ̂  I « - V SbiFiKl-x^ii) = 1 F ; ( l - a ^ ) 
! = X j = n 

(3.17) ^Lb-^t SbiFiKl - aiQ„-i) = 2 / f t l - a A - i ) 
i = X j = 7] 

(3,15) and (3,17) yield the equations (4,31). Equation (3,16) can be neglected 
to make the number of unknowns one more than the number of equations. 

Lemma 4. 
The separation ratios {and Lb) in any point of the northern boundary of multi­

plet (X.Y)) can be obtained by linear interpolation between their values in the 
terminating points of this boundary, i.e. the vertices (X, TJ - 1) and (X + 1, YJ — 1). 
The same holds for Lt, B and D. 

Proof. Lemma 4 is the direct application of lemmas 2 and 3. Quite similarly 
to lemma 3 and lemma 4 one can prove the lemmas 5 and 6. 
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Lemma 5. 
The eastern boundary of multiplet (X. YJ) can be interpreted as the line Sbx — 0 

of this multiplet, or, alternatively as the line Oj) = Q,^. To the points of this 
boundary the equations 

Lb- 2 JwFi / ( l -o t (ß t )= 2 ^ / (1-o /Û*) (4,32) 

a/p/y w*7A ?Ae .rarae je? o/ UNDERwooD-roota Q*, Q*+i,... , Qr, _ i as occurs in the 
equations concerning any interior point of multiplet (X. yj). There are vj - X e^Ka-
tions of'the r\ - X + 1 unknowns Lb, Sbx+i, Sbx+2, • • •, s^. Hence one of the ratios 
can be used to label the points of the eastern boundary. 

Lemma 6. 
The separation ratios {and Lb) in any point of the eastern boundary of multi­

plet (X.7)) can be obtained by linear interpolation between their values in the 
terminating points of this boundary, i.e. the vertices (X + 1, yj) and (X + 1, ~f] - 1) 
The same holds for Lt, B and D. 

Applying lemma 1 one can compute Lb and the ratios su in any vertex. One 
finds B from 

5 = 2 SbiFi (4,33) 
i = X 

D from 

Lt from 

and hence RB and RD from 

D= \-B (4,34) 

Lt = Lb- q* (4,35) 

RB = (Lb-B)/B (4,36) 
RD = LtID (4,37) 

In this way the coordinates {RB, RD) of all the vertices of the net of multi­
plets can be computed. Applying lemmas 4 and 6 one can find next the values 
of Lb, B, Lt and D on the boundaries by linear interpolation between appro­
priate vertices. With Eqs. (4,36) and (4,37) the coordinates of the interpolated 
points can be obtained. 

4.4.2. Peripheral multiplets 
We consider first the peripheral multiplets alongside the coordinate axes, i.e. 

the multiplets (1. vj) with 2 <T ) and (X. / ) with X < ƒ - 1. All that has been 
said for the interior multiplets is valid also for these multiplets (1. •/]) and (X. J) 
as far as concerns their northern or eastern boundaries. 

Additionally one has: 

Lemma 7. 
The eastern boundaries of the multiplets (X. J) with X < / - 1 are perpendicular 

to the Rß-axis. 
Proof. The equations (4,32) can be written for this case 

3 
Lb - 2 ' SbiFi/{l - â Qfc) = sby.FJ{l - a^Q*) (4,38) 

! = X + l 
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(The prime ' indicates that i skips the value (i.). Writing in accordance with 
Cramer's rule sbi = D^/D, it can be proved that D^/D = T<$. Sb*1). Similarly 
one can write L& = T^ sbu.. 

Hence one has 

B = S sbiFi = sbll E TftFi 
i' = X + l i = X. + l 

and 

HB B 

TP- i TftFt 
i' - x+i 
3 = constant, 

(4,39) 

(4,40) 
S TftFt 

i --= X+l 

which means that the boundary is a straight line perpendicular to the Ä^-axis. 
Quite similarly one can prove: 

Lemma 8. 
The northern boundaries of the multiplets (1. "/)) with 2 <>) are perpendicular 

to the R.D-axis. 

The peripheral multiplets of infinite extension represent singlet separations. 
In these singlets X = TJ so that they may be denoted by a single number X. In 
Fig. 16 the singlets (1) and (10) are not represented because the large values 
of RB or RB, associated with them, would have reduced the scale of the figure 
too much. 

15 

10 

\ 0 ; I . 'C-1- - 'T" ' I I I L__l L_ 

10 15 

FIG. 18. Singlet (7) in plane q = 0.6. Lines of constant Sbi are identical with lines of constant 
B. 

x) Compare appendix III, formula (III, 16). Putting v = X and st\ = 0, the determinants 
in the right hand member vanish simultaneously except the one containing sby.-
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In singlet (X) one has 
I 0 for i < X 

SM = \ Sbx i = X (4,41) 
I 1 i > X 

Hence 

B = stafx + X Fj (4,42) 
/ = A+l 

in which the sum is a constant. 
Hence it follows : 

Lemma 9. 
In singlet (X) the lines Sbx = constant are identical with the straight lines 

B = B* filling the singlet. 

From Eqs. (4,41), lemma 9 and the positive sign of (4,9) it follows : 

Lemma 10. 
The separations (i.e. the sets of SM)> represented by the points of a line Sbx = 

constant, are mere repetitions of the separation, represented by the point of 
intersection P on the boundary with the adjacent doublet. The separation P, 
however, can be performed with the smallest values of RB and Rp-

Because X is the only distributed component in singlet (X), one obviously has : 

Lemma 11. 
The singlet (X) is separated from singlet (X + 1) by the line Sbx = 0 and from 

singlet (X - 1) by the line Sbx = 1. (The line Sbx = 0 of singlet (X) is identical with 
the line Sbx+i = 1 of singlet Sbx+i). 

From lemma 11 it is clear that the separations belonging to the straight 
boundaries between the singlets contain no distributed components at all! 
These separations may be termed absolute separations. 

4.5. SEPARATIONS AT MINIMUM REFLUX 

We have obtained in Fig. 16 a complete survey of all possible separations of 
the ten component system, performed by an infinite column operated at g = 0.6. 
Lemma 10 states that the separations represented by the points of the singlets 
can be found again with lower values of RB and RD on the outer boundary 
of the chain of doublets. 

The separations represented by the points of the singlets can hence be re­
garded as superfluous and the singlets must be cut out of the (RB, Ä/))-plane. 
The remaining part, bounded by the axes (or eventually by one of the axes and 
an empty zone alongside the other one) and by the northern and eastern (limiting) 
boundaries of the doublets, must be identified with the assemblage of all pos­
sible minimum reflux separations of the multicomponent system at a feed 
condition q*. 
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FIG. 19. Solid of minimum reflux between planes q = +1 and q = - 1 . Distances of 5 units 
are indicated on horizontal axes. 

4.6. SOLID OF MINIMUM REFLUX 

The multiplet patterns in the planes q = q* constitute a solid in (q, RB, RD)-
space. This solid of minimum reflux is composed of multiplet tubes which are 
associated with the various separation bands of the multicomponent system. 
The part of the solid between the planes q = -1 and q = +1 has been drawn 
quantitatively in Fig. 19. From the mathematical point of view the solid is of 
infinite extension in the direction of the #-axis; for the use in distillation prac­
tice of course only the part corresponding to "not too large" values of \q\ is 
of importance. 

4.7. LINES OF CONSTANT SU IN PLANE OF CONSTANT q 

In Fig. 20 lines Sbi — s*b7 (s*b7 is a constant) have been drawn for the ten 
component system (q = 0.6). The lines corresponding to values 0 < s*b7 < 1 
are lying in a strip of the (RB, i?ö)-plane, consisting of the multiplets in which 
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FIG. 20. Zones of «7 = 0 and of sbi = 1 and strip of lines of constant sby in plane q = 0.6. 

component 7 occurs as distributed component. The strip is bounded by the 
northern boundaries of the multiplets (X, 7) and singlet (7), (lemma 3), and by 
the eastern boundaries of the multiplets (7, yj) and singlet (7), (lemma 5). In 
the entire zone beneath the strip the ratio sw vanishes and in the zone north of 
the strip the ratio sw equals unity. 

The east boundary of the strip intersects the i?ß-axis in point P in which 
Sbi = 0. According to the second monotony theorem this ratio increases 
steadily along the i?s-axis (on which Ojj- = 0 = constant!) in the direction 
to the origin, and this ratio continues to increase steadily along the i?o-axis 
(O~b) = 0) towards the point of intersection Q with the strip's north boundary, 
on which sw = 1. Hence any value of ̂ 7 between 0 and 1 can be found once and 
only once on the coordinate axes and hence any curve s&7 = s*b7 with 0 < s*b7 < 1 
has one terminating point on either the i?B-axis or the i?x>-axis. 

Repeating the argument for the south and the west boundary of singlet (7), 
(which correspond respectively to Oj^ = Q.f and Oj} = Ü6) it follows from 
the second monotony theorem that any value s*b7 between 0 and 1 occurs once 
only on these boundaries. And hence any curve Sbi = s*bl, with 0 < s*b7 < I, 
has one terminating point on either the south or the west boundary of singlet 7. 
In this way it can be shown : 

Any curve SM = s*bi with 0 < s*bi < 1 runs from a point on one of the coordinate 
axes towards singlet (i), where it becomes a straight B = B*-line. 

In Fig. 21 the families of lines of constant su and of constant sm are repre­
sented. In this figure the combinations (SM, ^7), suitable for specification, can 
be read from the points of intersection of jft-i-hnes with .s&7-lines. 

In Fig. 22, finally, the lines SM = 0.5 have been drawn for i = 1, 2, . . . , 9. 
The line Sbio = 0.5 corresponds to values of RB larger then 15 and hence does 
not occur in the picture. 

For the lines SM = constant one can prove the 

third monotony theorem: 
Let fj., v and i denote different, arbitrarily selected, distributed components in 

multiplet (X. YJ) with X < y). Then on a line *&v = constant 
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d SM 

d Jo,* 
> 0 

that is if y. and i are at one side of v and 

d Sbt 
< 0 

if [A and i > v 
or ify. and i < v 

if [i < v < i 
or if i < v < ji, 

(4.43) 

(4,44) 
d Sby. 

that is if\L and i are at either side of v. 

The proof of this theorem is given in appendix III (vide also Fig. 24). 

4.8. UNIQUENESS THEOREM 

From the properties of the lines 5&v = sb*v and from the second and the third 
monotony theorem the uniqueness of the solutions can be derived. 

4.8.1. Orientation of the boundaries 
The collective north boundary of the multiplets (/.•»]),/= 1, 2, . . . , YJ - 1, 

FIG. 21. Families of lines of constant SM and constant «7 in plane q = 0.6. 
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O 5 • 10 

FIG. 22. Lines stk = 0.5 in plane q = 0.6. Values of k are indicated. 

(v) fixed), is the line <&fh = Q-^ (lemma 3) and the collective east boundary 
of the multiplets (X. h), X fixed and h = X + 1, X + 2, . . . , ƒ , is the fine Oj} = 
= Qx. According to the second monotony theorem the (distributed) ratios SM 
increase steadily and simultaneously when <&~b) (or RB) decreases along a line 
of constant Oy .̂ Similarly the (distributed) ratios su increase steadily and 
simultaneously when Ojj! (or RB) increases along a line of constant <J>j'. 

The monotonie behaviour of the ratios su on the boundaries allows an orien­
tation of the boundaries ; the direction in which the ratios increase is chosen as 
the positive one. Arrows can be drawn anti-parallel to the positive Rs-axis 
in each north boundary and parallel to the positive Äo-axis in each east 
boundary. The ratios are known to increase in the directions of these arrows. 

4.8.2. Orientation of the lines s^ = s*bv 

It has been shown in the preceding section that the lines J&V = s*bv are spun 
between the axes and the outer doublet boundaries. Therefore, these lines are 
orientable, i.e. a positive direction can be introduced pointing away from the 
axes and towards the doublet boundaries. This orientation will be termed the 
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FIG. 23. 

macro-orientation, because an arrow in an arbitrary point of a line Sbv = s*bv 

can be drawn only if one of the two terminating points is given. 
The difficulty at this stage is that we still know nothing of the direction in 

which the ratios su increase or decrease along this Une. A further complication 
results from the "mixed monotony" along s0v = s*bv, i.e. part of the ratios in­
crease and part of the ratios decrease in a certain direction. Therefore, we have 
to fix an orientation of these lines first and then to link the behaviour of the 
ratios with this orientation. But in accordance with the peculiar character of the 
mathematics involved, (the mathematics of many sets of equations, each set 
being valid in its particular multiplet and "neighbouring" sets being connected 
along common boundaries), the third monotony theorem has been formulated 
per multiplet and hence the monotonie behaviour of the ratios cannot be made 
to depend on the terminating points of 5&v = s*bv but must be related to the 
orientation of the segment of this line within a multiplet. Therefore, we have 
to derive a micro-orientation, i.e. a precept to find the direction of a segment 
•s&v = s*bv, exclusively using elements of the multiplet which contains the segment. 

Corollary 1. 
A segment s^ = s*bv cannot have both its terminating points A and B on one 

same multiplet boundary. 

Proof. The case of both A and B on the north boundary is presented in Fig. 
23a and implies that the value s*bv occurs twice on this boundary, which contra­
dicts the simultaneous monotonie increase of the ratios in the direction of the 
arrow. 

Corollary 2. 
A segment st,v = s*bv cannot be spun between a west and a south boundary 

(Fig. 23b, segment AB) or between a north and an east boundary (Fig. 23b, seg­
ment DE). 

Proof. In Fig. 23b the ratios increase steadily over the path BCA and hence 
(sbv)A =£ (*6V)B- Similarly {S^)E ¥= (S^)D-

From these corollaries follows evidently 

Corollary 3. 
A segment S&, = s*bv surpasses the northwest-southeast diagonal. 
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The remaining possibilities are represented in Fig. 23c. 
We choose as the positive direction on the segments the direction from the 

southwest part towards the northeast part. 
We consider next each of the four possibilities for the segment Sbv = s*bv. 

Of course X < v <YJ. Suppose first v =/= X and v ̂  7). 

Case I (Fig. 23c, Sbr, is the guide-ratio) 
Among the ratios SM with i > v occurs the ratio $&„ which yields its maximum 

value Sbr, = 1 in the terminating point on the north boundary. Hence, accord­
ing to the third monotony theorem (vide (4,43)) the ratios SM with i > v in­
crease simultaneously with Sbr, and hence the ratios SM with i > v increase in 
the positive direction. Then, with regard to (4,44), the ratios SM with / < v 
decrease in the positive direction. 

Case II (Fig. 23c, Sbn is the guide-ratio) 
Repeating the argument we arrive at the same conclusion as in case I. 

Case III (Fig. 23c, Sbx is the guide-ratio) 
Among the ratios SM with i < v occurs the ratio Sbx which yields its minimum 

value Sb\ = 0 in the terminating point on the east boundary. And hence the 
ratios SM with i < v decrease simultaneously in the positive direction and con­
sequently the ratios SM with / > v increase in the positive direction. 

Case IV is similar to case III. 
If v = X and hence if the segment is Sbx = six, (sl\ > 0)> the1! the segment 

cannot reach the east boundary where Sbx = 0 and hence it must have a ter­
minating point on the north boundary. But then again Sbn is known to yield 
the value 1 and hence all the ratios SM with i > v = X increase simultaneously. 

If v = y), then the segment must terminate on the east boundary and the 
ratios SM (z' < v = YJ) decrease simultaneously in positive direction. 

So in any case we find: 

If X < i < v, then SM decreases in positive direction 
If v < z < 7), then SM increases in positive direction 

Next we have to show that the micro-orientation agrees with the macro-
orientation. Consider the segment of s^ = slv in multiplet (X. TJ). Following 
the segment's positive direction we cross either the multiplet's north boundary 
and enter the southwest part of multiplet (X. YJ - 1) or we cross the east boundary 
and enter the southwest part of multiplet (X + 1. *])• In both cases the difference 
v) - X has been decreased by 1. Proceeding in this way we finally enter a multiplet 
with v) - X = 1, i.e. a doublet. 

Following the negative direction either X decreases by 1 or TJ increases by 1 
each time an adjacent multiplet is being entered. Hence in the end we arrive 
either in a multiplet (1. h), adjacent to the i?j5-axis or in a multiplet (/. J), 
adjacent to the 2?£-axis. And hence the positive directions of the micro-orien­
tation agree with the positive direction of the macro-orientation. Both orien­
tations may be interchanged and the monotonie properties can hence be related 
to the macro-orientation, turning the micro-monotony into a macro-monotony. 
We conclude : 

In the positive direction of the line Sbv = s*bv the local "distributed" ratios 
SM with i < v decrease and the local "distributed" ratios SM with i > v increase 
in the positive direction. 
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368 

FIG. 24. Monotonie behaviour of Lb and the ratios su against SbZ on line sbi = 0.5 in plane 
q = 0.6. Note that B is not monotonie. Verticals represent points of intersection 
of w = 0.5 with ÄB-axis, (1.10)E, (2.10)NE, (3.9)E, (4.9)E, (5.9)N, (5.8)E, (6.8)E, 
(7.8)N respectively. 
On north boundaries (N) the ratio of the heaviest distributed component becomes 
1, on east boundaries (E) the ratio of the lightest distributed component vanishes. 
(NE denotes northeast vertex). 

This is clearly demonstrated by the families of curves Sbi = s*M and sm = 
= s*b7 in Fig. 21 and by Fig. 24. 

4.8.3. Uniqueness theorem 

The uniqueness of the solutions can now be derived easily. Given a line 
jftv = s*bw, then any occurring „distributed" ratio Sb»., (y. ̂  v), varies steadily 
along this line either until it becomes 0 or 1 and hence ceases to be a "dis­
tributed" ratio, or until it reaches an end point value. Hence any "distributed" 
value Sb», occurs once and only once on this line, or not at all. This means that 
any possible, ("consistent"), combination (sb^, Sbv) occurs once and only once, 
or: 

If the feed condition q is prescribed, a consistent combination (sb^., s&v) speci­
fies one and only one separation. 
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CHAPTER 5 

SPECIFICATION OF CONSISTENT SOLUTIONS 

5.1. GENERAL 

In this chapter a rigorous, straightforward, procedure on the basis of the 
model of constant relative volatilities and constant molal overflows is presented 
to disclose the limits and possibilities of specification of the minimum reflux 
separations, which approach the requirements of the designer. 

Usually the separation must satisfy more conditions than there exist degrees 
of freedom in specification. To find a suitable compromise, the effects of small 
tolerances in the initially proposed specification must be examined. 

Hence specification of a separation (at minimum reflux) of a multicomponent 
feed involves both the element of preparative computation and the element of 
personal judgment. We do not go into details concerning the latter aspect of 
specification, the subject of designing lying beyond the scope of this thesis. 
After the developments in the preceding chapters, however, the first aspect, the 
preliminary analysis, can be carefully dealt with. 

Introducing a specification diagram, the inevitable numerical labour has been 
reduced to the minimum without sacrificing accuracy. 

Before discussing this diagram, a few critical remarks will be made concerning 
the present state of specification theory, and its principal need, an adequate 
criterion of consistency, will be supplied. 

5.2. PSEUDO-SOLUTIONS 

In distillation theory little has been said concerning the problem of speci­
fication. The current point of view is expressed in the following quotations from 
an article by MURDOCH and HOLLAND, [3, page 288]: 

"CONDITIONS AT MINIMUM REFLUX 

The minimum reflux ratio at which specified separations of two key components can be 
carried out is the reflux ratio for which an infinity of plates in each section of the column is 
required. When the reflux is at this value, there is in each section a region (called the pinch) 
extending over an infinity of plates, within which the composition change from plate to plate 
is infinitesimal. At minimum reflux, no components heavier than the heavy key appear in the 
top product, and no components lighter than the light key appear in the bottom product..."*) 

and once more (same page) : 
"Suppose, initially, that the keys are adjacent components. ... Since at minimum reflux 

the components lighter and heavier than the keys go entirely into either the top or bottom pro­
duct, the amounts and compositions of these products are completely known... However, 
when the system contains any number of components between the keys, the problem is more 
difficult since neither D nor the distribution of the components between the keys is known 
in advance..."1) 

The cardinal point in these quotations is the suggestion that, in the limit, the 
light key becomes the lightest distributed component / and that the heavy key 
becomes the heaviest distributed component h. If, with a finite number of trays, 
the bottom product rates lighter than the keys and the top product rates heavier 

x) Author's italics. 
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than the keys are "sufficiently small" and hence if, by implication, the separa­
tion of the keys is "sufficiently sharp", the quotations may contain a correct 
description of the column performance at minimum reflux. But this observation 
merely shifts the problem from minimum reflux specification to finite column 
specification. When we specify a priori two keys, will then the appropriate out­
side product rates really become negligible with a finite number of trays? 

MURDOCH and HOLLAND present a numerical example in which the speci­
fication reads : 

sM = 0.125 000 
sb7 = 0.833 333 

(5,1) 

Their solution, in which the feed condition q has been taken 0.6, is correct and 
consequently the specification (5,1) is "sufficiently sharp". The sharpness, how-

FIG. 25. Quadruplet-tube (4.7). 
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ever, turns out to depend on the feed condition q. The specification (5,1) is 
sharp enough at q = 0.6, but it need not be so for other values of q. 

This is clearly demonstrated by Fig. 25, which shows the quadruplet-tube 
(4.7) of the solid of minimum reflux for -1 < q < + 1 . Plane cross sections 
are drawn, showing the quadruplets (4.7) at q = -1.0, -0.5, 0, +0.3, +0.6 and 
+ 1.0. In each of them the point is indicated which represents the separation 
specified by (5,1). It is seen that for q = -1.0 the point has slipped over the 
west boundary and is situated in the adjacent quintuplet (3.7), where / = 3 
instead of 4. (Compare Fig. 16). For q = +1.0 the point is about to cross the 
south boundary with quintuplet (4.8). Hence if specification (5,1) is made for 
values of q a little larger than 1, h must be taken 8 instead of 7. Sticking to the 
values 1 = 4 and h = 7 in the latter cases causes false solutions („pseudo-
solutions")-

In the quotation of ACRIVOS and AMUNDSON on page 16 this problem is 
clearly stated and a criterion is proposed to test the consistency of the solutions 
obtained by imposing various separation bands upon an a priori specification 
q, Sbv., Jftv It is advised to check the solutions with the condition 

0 < sM < 1 for I <i <h (5,2) 

Of course the condition (5,2) is necessary, it being a direct consequence of 
the law of conservation of matter. It is, however, not sufficient, as it permits the 
construction of pseudo-multiplets containing (among others) an infinity of 
false solutions. 

Let us seek all the solutions pertaining to the separation band (X. TJ) and to 
a fixed value of q and obeying condition (5,2). These solutions are represented 
by the points of a pseudo-multiplet. Condition (5,2) requires that Sbr, < 1 
and SDX > 0 ; hence the north and the east boundary of the pseudo-multiplet 
coincide (partially) with the corresponding boundaries of the proper multiplet 
(X. 7)), (lemmas 3 and 5). There are, however, no conditions defining the west 
and the south boundary. Instead of extending the pseudo-multiplet in these 
directions as far as (5,2) allows, it seems reasonable to introduce the condition 

J&x < Sb>.+1 < . . . < Sbv (5,3) 

to cut off trivial nonsensical solutions contradicting the first monotony theo­
rem. 

This has been carried out quantitatively for the pseudo-doublet (5.6) for 
q = 0.6. The result is presented in Fig. 26. The pseudo-doublet is seen to con­
tain the doublet (5.6) and parts of the multiplets (4.6), (4.7), (4.8), (4.9), (5.7) 
and (5.8). Families of pseudo-lines of constant J&5 and constant Sbe can be con­
structed, which coincide only within the proper doublet (5.6) with the real lines 
of constant Sb5 and j&e- Only the pseudo-fines Sb5 = 0.1 and Sbe = 0.2 have 
been drawn. 

Suppose it is required to keep the heavy components 7, 8, 9 and 10 out of the 
top product. This can be realized by an absolute separation with RB = 9.003 
and RD = 4.463 (Fig. 16), if q = 0.6. 

Suppose we want to lower the reflux ratios by tolerating the ratios Sbh and 
•V66 to be 0.1 and 0.2 respectively. Then the point of intersection of the pseudo-
lines 0.1 and 0.2 suggests the solution 
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FIG. 26. Pseudo-doublet (5.6). 

RB = 3.637 03 
RD = 1.937 94 

Lb = 1.789 89 
B = 0.386 00 
q = 0 . 6 

SM = 0 
Sb5 = 0.1 
Sb6 = 0 .2 

SM = 1 

i' < 5 

/ > 6 

(5,4) 

The solution (5,4) satisfies condition (5,2) perfectly and so far nothing indi­
cates the solution to be false. However, discrepancies arise if we try to compute 
the feed tray conditions. 

The correct solution, specified by Sb$ = 0.1, Sbe 
sented by the dot in quintuplet (5.9). One finds 

0.2 and q = 0.6 is repre-

RB = 
RD = 

= 3.610 28 
= 0.625 16 

Lb = 1.078 86 
B = 0.234 01 
q = 0.6 

Sbi 

Sb5 

Sb6 

Sbl 

SbS 

Sb9 

SbW 

= 0 
= 0.1 
= 0.2 
= 0.345 97 
= 0.447 97 
= 0.671 98 
= 1 

; < 5 

(5,5) 

Finally the correct solution in the point (RB, RD) of the pseudo-solution 
(5,4) has been computed. B and Lb have the same values as in case (5,4), be-
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cause B depends only on RB, RD and q, according to Eq. (4,5) and Lb = 
= (RB + V)B. Hence 

RB = 3.637 03 U = 1.789 89 
RD = 1.937 94 B = 0.386 00 

q = 0.6 

The ratios Sbi, 565, ..., sm are found from the equations (3,15), which read in 
this case 

8 10 

- S i M F j / ( l - a jQ t )= 2 F , / ( l - ayQ*) - 1.789 89 (5,6) 
; = 4 j = 9 

with & = 4, 5, 6 and 7. 

The set of equations is completed by 
10 

S sMFi = B = 0.386. 00 (5,7) 
! = 4 

One finds 
•Î&1 = 562 = 563 = 0 567 = 0.660 50 
sb4 = 0.070 33 Sb& = 0.856 10 
Sbh = 0.243 01 5ft9 = iftio = 1 (5,8) 
566 = 0.404 55 

which is entirely different from (5,4)! 

5.3. CRITERION OF CONSISTENCY 

The criterion results immediately from the one-to-one correspondence, estab­
lished in chapter 3, between the points of the (O7J, Ojj^-plane and the separa­
tions : 

A solution is consistent if and only if 

Qj-i < <&»} < «71 (5,9) 

and Or,1 < O7J; < «» 

Checking the solutions of the preceding section with (5,9), one finds : 

Pseudo-solution (5,4); / = 5, h = 6. 
Q4 = 0.7758 < O^ = 0.7838 < aç1 = 0.8 (5,10) 
<D76 = 0.8966 < Qg1 = 1.0504 < a6 = 1 . 15 

O7À is seen to occur outside the proper interval. 
Correct solution (5,5); / = 5, h = 9. 

O4 = 0.7758 < O7J = 0.7777 < oç1 = 0.8 (5,11) 
Q91 = 0.4176 < 0 ^ = 0.4642 < <x9 = 0.7 

Both pinch parameters occur in the proper intervals. 

Correct solution in point of pseudo-solution, (5,8) ; / = 4, h = 8 
Q3 = 0.6919 < O74 = 0.7240 < oq1 = 0.7407 (5,12) 
Jig1 = 0.7472 < 07a = 0.8411 < a8 = 0.9 

Again both pinch parameters satisfy condition (5,9). 
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The precept, given by ACRIVOS and AMUNDSON, might be corrected in the 
following way: 

"Assume h and I first and solve the equations. Repeat the process until (5,9) is 
obeyed." 

This advice is of value only if one can make a "good guess" for s0u Sbh, I 
and h. If little is known about the multicomponent system it is better to pro­
ceed in a manner set forth in section 5.4. 

5.4. SPECIFICATION DIAGRAM 

The construction of the diagram of multiplets of Fig. 16 is a laborious task. 
The complete diagram has been constructed to gain a better understanding 
of the complex interdependence of the many variables occuring in minimum 
reflux calculations. 

In distillation practice, however, where usually the feed condition q and the 
approximate extension (/, h) of the separation band ("overlap") are prescribed 
in advance, it is sufficient to construct at most a few central multiplets. This 
has been done by way of example in Fig. 27. Conclusions can be drawn from 
this partial diagram concerning variations in the reflux ratios RB and RD re­
sulting from certain tolerances in the sharpness of the specification. 

OESSi-

0.2 0.1 0 

s 6 3 " 
sbi, ' — 
*67 
sb&-

_i u 

FIG. 27. Four central multiplets with line segments of constant «3, «4, sbi and sts- North 
boundary of (3.7) and (4.7) pertains to 547 = 1 ; north boundary of (3.8) and (4.8) 
to sbs = 1 ; east boundary of (3.7) and (3.8) to «3 = 0 and east boundary of (4.7) 
and (4.8) to sb* = 0. 
Example of Murdoch and Holland (SM = 0.125; «7 = 0.83) is indicated, {q* = 0.6). 
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(5,14) 

To utilize fully the linear relations, which exist between the variables £&, 
B, Sbi, ..., Sbh and which are laid down in lemmas 2, 4 and 6 of chapter 4, the 
values of each variable in the four vertices of multiplet (/. A) are plotted against 
one arbitrarily selected ratio Sb^, (/ < \L < A), (vide Fig. 28). In this process, 
one vertex generates (A -1 + 2) corner points, situated on the vertical which 
corresponds to the value of ^ ^ in the vertex. The original multiplet is split into 
(A -1 + 2) quadrangles. According to lemmas 4 and 6 the curved multiplet 
boundaries become straight quadrangle sides. The quadrangles represent the 
domains of the variables Lb, B and Sbk {k ^ jx) over the multiplet (/. h). 

By way of example, the specification diagram has been constructed quantita­
tively (Fig. 28) for the values 

q = 0.6; / = 4; A = 7 (5,13) 

and, hence, concerns the quadruplet (4.7). The construction requires the cal­
culation of 
1. the roots &i-i, . . . , Q& of UNDERWOOD'S equation (3,12) 
2. the values of Lb, B, Sbi, ..., Sbh of the vertex separations (/. h), 

(/ + 1. h), (/ + 1. A -1) and (/. A-1) with the equations (4,28) of 
lemma 1. 
These calculations are rather time consuming but can be readily performed 

by a digital computer. 

5.5 SPECIFICATION AND SOLUTION BY RULER CONSTRUCTION 

Let the points of the diagram, representing a set of values of Lb, B, su, ••-, 
Sbh pertaining to one same separation, be termed conjugate. Then the following 
statements hold: 

1) Conjugate points are situated on the same vertical. 
(The values in the conjugate points pertain simultaneously to the same 

value Sb», of the separation which is represented by the set of conjugate points). 

2) Quadrangle corner points on the same vertical are conjugate and correspond 
to the same vertex-solution. 

(In Fig. 28 the multiplet vertices corresponding to the verticals through sets 
of conjugate corner points are indicated. In Fig. 29 conjugate corner points 
are conveniently designated a, b, c or d). 

Straight line segments are called conjugate if the points of intersection of the 
segments with any arbitrarily erected vertical are conjugate. One has then: 

3) Sides between conjugate corner points are conjugate. 
(Conjugate sides correspond simultaneously to the multiplet boundary be­

tween the vertices which are the originals of the conjugate corner points. A 
vertical at Sby. = s*bv, generates a set of points of intersection pertaining to the 
separation of the boundary at s ^ = s^). 

4) All segments of one conjugate set lie between two verticals. 

Through an arbitrary interior point of multiplet (/. A) pass (A - / + 1) 
curved line segments s^ = s*bv, (v = /, / + 1 , . . . , A). As on these Une segments, 
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1.0 r 

B>sbk 

I 

0.8 

0.6-

0.4 

0.2 

0.2 0A 

10 

0.6 

=65 

FIG. 28. Specification diagram showing domains of «4, SK, W, 5 and Lj corresponding to 
quadruplet separations (4.7). (q* = 0.6). Set of conjugate points pertains to separa­
tion of section (7,14). 
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by virtue of lemma 2, linear relationships hold between Lb, B and the ratios 
soi, ..., Sbh, each curved line segment generates a set of conjugate straight line 
segments in the specification diagram. Fig. 28 shows a set of conjugate points 
pertaining to a separation of quadruplet (4. 7). In quadruplet (4. 7) lines of 
constant SbA, J&5, J&6 and Sbi pass through the point representing this separation. 
The ratio Sb5 has been taken as independent variable along the horizontal axes 
of Figs. 28 and 29. Fig. 29 shows three sets of conjugate segments corresponding 
to the curved segments of constant Sbi, J06 and sm respectively. The set of seg­
ments corresponding to constant Sbk is distinguished by the occurrence of a 
horizontal segment in the quadrangle representing the domain of Sbk- The 
segments corresponding to Sb5 = s*b5 are the vertical segments cut out by the 
quadrangles on the vertical at Sb5 = s*b5, ("vertical set"). 

Fig. 29 clearly demonstrates that the set of conjugate points, representing 
the separation, are the points of intersection of the vertical set with any of the 
other sets. 

Regarding the statements 1, 2, 3 and 4, the segments of one set are closely 
interconnected. A set of conjugate segments is completely determined by the 
selection of the horizontal segment of the set. 

10 

FIG. 29. Ruler constructions of solution pertaining to specified combinations (su, «5), 0*5, 
ste) and («5, w ) respectively. 
Specified values are indicated by heavy dots. Sets of conjugate corner points are 
denoted a, b, c and d respectively. (Each construction starts with specification, i.e. 
selection of central vertical and of horizontal segment). 
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Hence specification and solution are now united into one ruler construction. 
Specification consists in the selection of one horizontal segment and of the 
vertical on which the veitical set is situated. Solution consists in the completion 
of the set pertaining to the horizontal segment. Both sets intersect in a set of 
points Lb, B and SM, representing the solution pertaining to the specification 
made. These variables can be readily read from the graph in three significant 
digits. The reflux ratios are obtained without effort from RB = (Lb - B)/B and 
RD = LtjD = (Lb - q)l(\ - B). 

Hence, once the electronic computer has put out the vertex solution (5,14), 
corresponding to an a priori selected feed condition q and overlap (/. h), the 
minimum reflux separation of even a giant multicomponent system can be 
rigorously specified and rigorously solved (on the basis of the model of constant 
relative volatilities and constant molal overflow) with the greatest of ease. 

CHAPTER 6 

MATHEMATICS OF MULTICOMPONENT DISTILLATION 

6.1. EXTENSION OF VAN WIJK'S FORMULATION 

The previous chapters concerned primarily the computation of the product 
streams. To this purpose, using UNDERWOOD'S method, only a handful of 
formulae suffice. 

To derive the necessary formulae for the computation of the compositions 
and equilibrium constants throughout the column, however, the complex ma­
thematics of multicomponent distillation in its entirety is indispensable. 

The formulation of distillation mathematics, set forth in sections 1, 2, 3, 4 
and 5 of this chapter, has been developed by W. R. VAN WIJK during the second 
world war [8, 9]. 

The distinctive feature of VAN WIJK'S formulation is the dominant function 
of the absorption factor product Apb(m) in the bottom section and of the strip­
ping factor product Spt(n) in the top section (vide sections 6.2 and 6.3). 

All physical variables pertaining to the bottom section can be expressed in 
the absorption factor product Apb(m), the reboil ratio RB and the bottom yields 
Bi. Likewise the variables of the top section can be expressed in the stripping 
factor product Spt(n), the reflux ratio RD and the top yields A-

Both the absorption factor product and the stripping factor product and 
hence the compositions and equilibrium constants can be written as functions 
of the poles and residues of typical "generating" functions. The poles are the 
roots of algebraic equations, (characteristic equations), of a degree which, in 
the case of finite columns, equals the number of components present in the feed. 

Inherent in this formulation are the difficulties, encountered in computing 
the central functions Apb(m) and Spt(n) in the vicinity of the feed tray, (com­
pare section 6.2). 

Consequently, even in the case of minimum reflux, iterative procedures could 
hitherto not be avoided. 

Duplicating VAN WIJK'S formulation by the simultaneous introduction of a 
complementary "mirror-formulation" (section 6.6) the author has found a direct 
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Solution to the problem of the computation of the physical conditions through­
out infinite columns. It is felt that the logical coherence of the theory has been 
increased considerably. 

The basic formulae of the extended formulation are derived in the present 
chapter. The definitive theory of infinite columns is given in chapter 7. 

6.2. BASIC FORMULAE FOR THE BOTTOM SECTION1) 

Application of the law of conservation of matter to the closed surface I in Fig. 
1 yields 

Lbi, m + l = Vu, m + Bi (6,1) 
for the flow rates of an arbitrary component i. 

The assumption of constant molal overflow reads 
J 
S Lu, m = Lb = constant (6,2) 

i = 1 

which expresses that the total liquid rate Lb in the stripping section is independ­
ent of the tray number m. From Eqs. (6,1) and (6,2) it follows 

Lb=Vb + B (6,3) 
and 

J 
s Vbi, m= Vb = constant (6,4) 

Assuming that the reboil vapour has the same composition as the residue 

Vbi, o = RßBi (6,5) 
(in which the constant RB is called the reboil ratio), one has in view of Eqs. 
(6,4) and (6,3) 

Vb = RBB (6,6) 
and 

Lb = (RB + 1)5 (6,7) 
The equilibrium condition, expressing that vapour and liquid leaving the same 

(ideal !) tray are in perfect equilibrium, can be written 

Lbi, m = AM, mVbi, m = Vbi, ml Su, m (6,8) 

Aw, m and SM, m = 11'AM, m are called absorption factor and stripping factor 
respectively of component i on tray m. Clearly 

AM, m = LM, ml Vbi, m = *W, mLblybi, mVb (6,9) 

Hence, in accordance with the current definition of equilibrium constant KM, m 

KM, m = ym, m/xbi, m (6,10) 
one has 

AM, m = Lb/KM, mVb (m> 1) (6,11) 
The definition of (constant !) relative volatility an reads 

a« = KM, m/Kbm (6,12) 
Kbm is the equilibrium constant on tray m of an arbitrary component r, called 
the reference component.2) 

*) A list of notations is given in appendix VII. 
2) For convenience the component index r is usually omitted in the subscripts. 
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From Eqs. (6,11) and (6,12) it follows 

AM, m = Abmlxi (6,13) 

At this stage VAN WIJK introduces the absorption factor product Apb(m), i.e. 
the product of the absorption factors of the reference component on the first 
m trays of the stripping section 

Apb(m) = AbiAb2Ab3 ... Abm (6,14) 
By definition 

Apb(P) = 1 (6,15) 

From Eqs. (6,1), (6,8) and (6,13) it can be derived by repeated substitutions 

Bi m 

LM,m+i = -r
Jr-ARB*!+ 2 Apb(k)«.Tk] (6,16) 

Substitution of (6,16) into (6,2) yields 

L " = J ^ ^ *[RB*7+ S Apb(k)xTk] (6,17) 
Apb(m) i = i k = 0 

Once the function Apb(m) is known, one can compute from Eq. (6,16) the 
individual liquid rates and hence the liquid composition on each tray of the 
stripping section. With Eq. (6,1) the vapour rates (and the vapour composition) 
on each tray can be calculated. Finally the equilibrium constant of the reference 
component throughout the stripping section is found from Eq. (6,10). Hence 
the problem has been reduced to the task of solving the central function 
Ap0(rn). This can be done step by step from Apb(l) on with Eq. (6,17), provided 
RB and the bottom product rates Bi are simultaneously known in advance. As 
has been shown in the preceding chapters, this situation occurs in the case 
of minimum reflux. At minimum reflux, however, the bottom products B\ to 
Bi-i inclusive are non existent and drop out of Eq. (6,17). Hence the compo­
nents, lighter than component /, do not contribute to Apb(m), which conse­
quently applies only to the part of the stripping section below the bottom pinch. 

Introducing the function 

ub{k)= 2 Biafi (6,18) 
i = l 

equation (6,17) can be rewritten 

1 
Lb = -j——^ [RBub(m) + 2 Apb(k)ub{m - k)] (6,19) 

Apb(m) k = o 

A peculiar feature of Eq. (6,19) is the occurrence of the function ub(m) in­
stead of the individual bottom products B%. VAN WIJK [9, 12] has made this 
property a base for the reduction of multicomponent systems to systems with 
a smaller number of components. This subject, however, will not be dealt with 
in this thesis. 

6.3. BASIC FORMULAE FOR THE TOP SECTION 

The basic formulae for the stripping section and those for the top section 
result from exactly the same assumptions (conservation of matter, ideal trays, 
constant reflux and constant relativities). Consequently, between the formulae 
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of both sections a parallelism exists, which is expressed by the following list of 
"corresponding variables": 

bottom section top 
L 
V 
B 
RB 
A 
S 
m 
M 

section 
V 
L 
D 
RD 
S 
A 
n 
N 

Therefore, the formulae for the top section are summarized below without 
comment. 

Vu, n + l = Lu, n + Di 
S Vu, n = Vt = constant 

Vt = Lt + D 
^•Lu, n = Lt = constant 

Lu, o = RüDi 
U = RDD 
Vt = (RD + \)D 

'ti, n = Sti, nLti, n = Lu, n/Au, n 
Su, n = Ku, n Vb/Lb 

<x.{ = Ku, n/Kfn 
"M, n = V-i&tn 

SPt(n) = StlSt2St3 ... Stn 
Spt(0) = 1 

Vu, „+l = ç ^K [RwQn + £ Spt(k) 
Spt(n) k = o 

i y 
Spt(n) ,- = i k = 

ut(k) = S A«!* 
i = 1 

iaf-"] 

1 Spt(k)xf] 
0 

F* = c V s [*ßMK") + S Spt(k)ut in-k)] 

(6,1a) 
(6,2a) 

(6,3a) 
(6,4a) 

(6,5a) 
(6,6a) 
(6,7a) 
(6,8a) 
(6,11a) 
(6,12a) 
(6,13a) 
(6,14a) 
(6,15a) 

(6,16a) 

(6,17a) 

(6,18a) 

(6,19a) 

6.4. A N A L Y T I C A L SOLUTIONS A N D C H A R A C T E R I S T I C E Q U A T I O N F O R T H E B O T T O M 

SECTION 

In this section the central function Apb{m), (and hence all the flow rates and 
equilibrium constants), will be expressed in the roots of the characteristic bot­
tom equation (3,1). To this purpose equation (6,17) must be solved analytically. 
VAN WIJK'S elegant method employing generating functions [8[ is followed. 
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We introduce the generating functions: 
co 

UÖOO = 2 ub(k)sk (6,20) 
4 = 0 

and 
CO 

Aft(s) = 2 Apb(k)s* (6,21) 
4 = 0 

The functions are power series of a mathematical auxiliary variable s which is 
defined in the interval 

0 < s < s (6,22) 
s is assumed to be "sufficiently small" to guarantee the convergence of the power 
series. 

According to the product rule for power series one has 
CO CO 

Ab(s)Vb(s) = 2 2 Apb{k)ub{m-k)sm (6,23) 
m = 0 4 = 0 

Multiplication of Eq. (6,19) with. Apb(m) and with sm and summation over m 
yields 

CO CO CO m 

Lb S Apb(m)sm = RB S ub(m)sm+ S 2 Apb(k)ub(m - k)sm (6,24) 
m = 0 m = 0 m = 0 4 = 0 

Apparently Eq. (6,24) can be rewritten 
LbAb(s) = RBUb(s) + Ab(s)Vb(s) (6,25) 

from which it follows 
Ab(s) = RB\lb(s)l[Lb - Ue(s)] (6,26) 

The function \Jb(s) can be summed 

Ub(s) = S [ 2 ^ a ? ] j » = Ï J j S (a»*)» = 2 r ^ - (6,27) 
m = 0 i = 1 ! = 1 m = 0 i = l A '— &iS 

Hence ÄB i n/o-w) 
Aö(s) = ^ (6,28) 

L 6 - 2 5^/(1-a*s) 
! = 1 

The function Ab(s) will now be examined. The variable s may take any 
positive value. It should be noted, however, that only if s is in the interval 
(6,22) the function Ab(s) can be expanded into the power series (6,21). Both 
numerator and denominator contain the characteristic bottom function (6,27). 
This function is qualitatively represented in Fig. 3 for the case B\ = B% = . .. = 
= Bi-x = 0, as occurs at minimum reflux. The (complete) characteristic bot­
tom function possesses / poles s = ay1. The values s = ay1, however, are not 
poles of the function Ab(s) as obviously 

A&(«y') = ^ ~ = -RB (6,29) 

The J distinct and positive poles of Ab(s) are the zeros of the denominator 

Lb - 2 5j/(l - acts) = 0 (6,30) 
; = l 
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, . _, . , . (6>31> 

Eq. (6,30) is the (complete) characteristic bottom equation (3,1), which has J 
distinct and positive roots Oj- satisfying 

«ill < $ K < «T1 • » > 1 
0 < OïJ < ai1 / = 1 

The poles of k0{s) are of the first order. Their residues 
CM = lim (1 - Ows)A6(s) 

can be easily computed with l'Hopital's rule, yielding 

RB®M S 5*/( l -a*Oïi) 
* = 1 KB^biLb . . 

CM = j = —j (0,32) 
S Ä*a*/(1 - afc0jj)2 S**o*/(l - a*<Djj)2 

* = l * = l 

From Eq. (6,28) it follows 
lim AftCî) = 0 (6,33) 

Hence Ab(s) can be written as a sum of J elementary fractions only : 

Ab(s) = i cw/0-fcws) (6,34) 
i = 1 

From Eqs. (6,29) and (6,34) it follows 

S <W(1 - < I W ) = -*B 0" = 1,2,..., / ) (6,35) 
* = i 

The set of linear equations in the c0k (6,35) presents an alternative way to 
compute the residues. 

From Eq. (6,28) it follows with regard to Eq. (6,7) 

Aft(0) = RBBKU -B)=\ (6,36) 
Hence substitution of s = 0 into Eq. (6,34) yields 

i cbi = 1 (6,37) 
i = 1 

And hence from Eqs. (6,32) and (6,37) it follows that the residues CM are posi­
tive numbers smaller than unity 

0 < CM < 1 (6,38) 
From (6,32) and again from (6,35) it follows 

lim CM = 0 (6,39) 
<DM - > <*i 

If 0 < s < Oj}, (<Dj{ is the smallest root of Eq. (6,30)), then Ab(s) can be 
expanded as follows 

J oo co jF 
A M = S CM [ 2 (4>bis)

k] = 2 [ 2 cM0£,.] s* (6,40) 
i = 1 k = 0 k = 0 i = 1 

Identification of Eqs. (6,21) and (6,40) yields 

Ap&)= & cM®li (6,41) 
• = l 
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Substitution of (6,41) into Eq. (6,16) yields the analytical expression for the 
individual liquid rates : 

Bt m j 

LM,m+i = ^-^.[Rm1Jr S S cbj%«.f-k] (6,42) 
Apb(m) k = o j = l 

Summing the geometrical series occurring in Eq. (6,42) and recalling Eq. (6,35), 
one obtains 

Lw,m+i = ~ r r & <%y«l>ï/7(*w - «*) (6,43) 

Finally we prove the monotony of the absorption factor A^m :x) 
Abm > Abm-i (m> 2) (6,44) 

As 
Abm = Apb(m)/Apb(m - 1) 

we have to show that 
Apb(m)Apb(m - 2) - Apb(m - \)Apb{m - 1) > 0 (6,45) 

The first term can be written 

2 CMCb^
m

bi^f = i S [CMCbi®ii®tf + cbjcbi®ffî72] = 

= \ E cwcwOrr2<l)?72 [O?,. + ®%] (6,46) 
». ƒ 

Here both i and7' take the values 1, 2, ..., / . 
The second term of (6,45) can be written 

2 CMCb^fr1^ = i 2 cwcw0^2«D-2. [20M<DW] (6,47) 
'. j 1, i 

Obviously 
1 S cMC6i0)^2(D^2 [Of. - 2<DW<DW + 0?y] > 0 

which proves the inequality (6,45). 

6.5. ANALYTICAL SOLUTIONS AND CHARACTERISTIC EQUATION FOR THE TOP 
SECTION 

Because of the formal parallelism between stripping and rectifying section, 
the formulae corresponding to those of the preceding section will be briefly 
summarized. 

„ U«(s) = 2 ut(k)sk (6,20a) 
k = 0 

St(s) = S Spt(k)s" (6,21a) 
k = 0 

St(s) = RD\Jt(s)/[Vt - UK*)] (6,26a) 

Äfl i A/(l-«7'*) 
S«(J) = ^ (6,28a) 

K,-_S A/(1-«7'J) 
i = 1 

' ) Proof by W. R. VAN WIJK, private communication. 
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S«(°cO = - RD (6,29a) 

F* - 2 A/(l-<*•'*) = O (6,30a) 
i = 1 

O < Ojj < xj i = J 
(6,31a) 

c« = — j = —j (6,32a) 

2 ZW/O-«!1^!)2 S ZW/f l -oc^) 8 

k = 1 * = 1 

S & ) = S CM/0-*««») (6,34a) 
i = 1 

S ctt/(l - ©«on) = -RD \<i<J (6,35a) 
* = ï 

2 cti=\ (6,37a) 

1 = 1 

0 < cu < 1 (6,38a) 

lim c« = 0 (6,39a) 

SPt(k)= Î ctMi (6,41a) 
. = ï 

K«, »+i = 7^7-, . S ctM+Wtj-Xi1) (6,43a> 
* « ( » ) ' ƒ ï 

S*» > S«, _ i (» > 2) (6,44a) 

6.6. COMPLEMENTARY FORMULATION FOR BOTTOM SECTION 

The limit (6,39) is the root of the difficulties arising in actual distillation 
computations employing analytical expressions. 

It will be shown that at minimum reflux the terms CM^H with i < I drop out 
of expression (6,41) for Ap/,(m). This collapse of the light residues CM confines 
the range of Apb(m) as expressed by Eq. (6,41) to the region between reboiler 
and bottom pinch. This is in accordance with the observation that the light 
components / ( < /) do not occur below the bottom pinch and hence do not 
contribute to the function Apb(m). 

Calculations of absorption factors and compositions on trays below the 
bottom pinch can be perfectly based on Eq. (6,41) for Apt,(m). For calculations 
concerning the region between feed tray and bottom pinch, however, a "com­
plementary" expression for Apb(m) will be derived, capable of reaching "beyond 
the pinch". To this purpose we introduce a complementary formulation for 
the bottom section, i.e. a "top-section-like" treatment of the bottom section. 
The trays of the bottom section are renumbered from the feed tray downwards. 
(Fig. 30). In this system of numbering an arbitrary tray will be indicated by the 
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n = 0 

n = 1 
n = 2 
n = 3 
n=4 

v=A/ + 1 

v=/V 
v = /V-1 
v = N - 2 
v = /V-3 

FIG. 30. Ordinary (m and n) and complementary 
system ((j. and v) of tray numbering. 

n=N-2 
n=/V-1 
n=N 

m=M + 1,n=/V+1 

m=M-\ 
m=M-2 

v=3 
v=2 
v=1 

V=0; \i=0 
u=1 
u=2 
u=3 

m=4 
m=3 
m =2 
m=1 

m=0 

(i=M-3 
t i=M-2 
u.=M-1 

u.= W+1 

greek index \L. If again M is the number of trays between reboiler and feed tray 
then the reboiler receives the number \x = M + 1. One has 

m + fi. = M + 1 (6,48) 

The product of the stripping factors of the reference component on the first 
[i trays below the feed tray will be denoted Sppbfa)-1) O n e clearly has 

SpFb(\i) = 
1 1 1 

AbM Af,M-l AbM + 1-

Apb(M-[L) 

APb(M) 
(6,49) 

and 

Also 
SPFb(M) = \\Apb(M) 

SpFb(0) = 1 

(6,50) 

(6,51) 

The law of conservation of matter and the equilibrium condition are now 
written: 

VFM, n+i = LFM, M - Bi (6,52) 
l) An index F preceding the index b indicates either that the quantity belongs essentially 

to the complementary formulation or that the tray number refers to the complementary 
system of numbering. 
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and 
VFM, V. = SFM, H LFM, H (6,53) 

Frotn Eqs. (6,52) and (6,53) it follows by repeated mutual substitution*) 

VFM^+I = ^\-ALFM,^r-Bi 2 SpFbik)^] (6,54) 

Summation over i yields 

Vb = -^-r-. i {LFM,o«.?-Bi S S^fcjocf*] (6,55) 

Introducing the function 

SFb(s) = 2 S JMA:)»* (6,56) 
i = 0 

it can be derived that 
J 
S LFM, O/(1 - a?1'') 

SFb(.s) = ——-j (6,57) 
Vb+ 2 Bj/(1-<*?'*) 

Hence the complementary characteristic bottom equation reads 

Vb + 2 fi«/(l - ay1*) = 0 (6,58) 
; = i 

If the roots of Eq. (6,58) are denoted <5>Fi,i it can be shown that 

«FM = • « « (6,59) 
i.e. fAe rootó o/ Eq. (6,58) are /Ae reciprocals of the roots of the characteristic 
bottom equation. 

The substitutions s = w_1 and Vb = Lb - B turn Eq. (6,58) after some ob­
vious simplifications into 

Lb = 2 Bi/(l - x-lw) (6,60) 
! = 1 

which is indeed the characteristic bottom equation having roots w = OjJ. 
The roots O^, are poles of the first order of SFI>(S), which can be written 

J 
SFb(s) = S CFbiKl - ®FMS) (6,61) 

i = i 

The residues 
CFbi = lim (1 - <S>FMS) Spbiß) 

can be computed from 
J 
2 Lpbk, o<Xfc/(l - (XfcOjj) 

CFM = ——J (6,62) 
2 iW( l - a f c<D;) )2 

k = 1 

in which ®FM = « ï ! has been substituted. 

*) LFH, o = iw, Af +1 are the liquid rates leaving the feed tray. 
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One has 

Sppbiy.) = 2 cpuVhi = t cpuQtf (6,63) 
i=l i=\ 

From Eqs. (6,57) and (6,61) it follows 

SPFb(0) = 2 cpbi = Sf&(0) = Lft/(F& + B) = 1 (6,64) 
i = 1 

By virtue of Eq. (6,49) one can write 

Sprite) = [ S c w O ^ ] / ^ b ( M ) 
i = i 

or 

S^ftdi) = I [cM^/APb(M)]^t (6,65) 
; = l 

Identification of formulae (6,63) and (6,65) yields 

cpbi = Cbi^ti/ApbiM) (6,66) 

The analytical expression of Eq. (6.54) reads 

VFu, 1+1 = ç - % . . Î cw<Dïf+"/($î] - aj1) (6,67) 

And hence 

LFM, H = KPW, ^ + I + A = ^ - ^ - . I < * w O#/ ( l - « * * # (6,68) 
SpFbW j = 1 

6.7. COMPLEMENTARY FORMULATION FOR TOP SECTION 

To the stripping factor product Spt(n) in the top section is appended the ab­
sorption factor product Apptiy), running from feed tray towards condenser.1) 
The adhering system of numbering is indicated in Fig. 30. Again the principal 
formulae of the complementary formulation for the top section, corresponding 
to those for the bottom section, are briefly summarized. 

n + v = N + 1 (6,48a) 

A (v) = — l 1 = Spt(N-v) 
SfN ' StN-1 "" StN+l-v Spt(N) 

APFt{N) = l/Spt(N) (6,50a) 

APFt(0) = 1 (6,51a) 

LFU, v+i = Vpu, v - A (6,52a) 

LFU, v = Apu, VVFU, v (6,53a) 

Lpti, v+i = - r \ \ {v™> ° a ' - A 2 APFt(k)xrk] (6,54a) 
Apptiy) k = o 

x) An index F preceding the index t indicates either that the quantity belongs essentially 
to the complementary formulation or that the tray number refers to the complementary 
system of numbering. 
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Lt = —^-- 2 [K«,,oa?-A S ^M^)«r*] (6,55a) 
ApFtiy) i = i * = o 

CV) 

A«(s) = 2 Apnitysk (6,56a) 
* = o 

J 
2 *>«, o/(l - «.is) 

AFt(s) = — j (6,57a) 
L«+ 2 Dilii-tw) 

i = 1 

Complementary characteristic top equation : 

U + 2 A / 0 - M = 0 (6,58a) 
; = l 

The roots are : 
<^h = * « (6,59a) 

i.e. ?Ae reciprocals of the roots of the characteristic top equation. 
J 

AFt(s) = 2 cptilil - Q>Ftis) (6,61a) 
i = l 

Ol{ £ K«*.o/(l-a*<]>«) 
CF« = - J — - (6,62a) 

2 -Dt»t/(i -«*<D«)a 

k = 1 

J J 
4/>«(v) = S c«ifl>Ä,- = 2 CFti^Ti (6,63a) 

i = 1 i = 1 

4>«(0) = 2 c™ = A«(0) = Vtl(,Lt + D) = \ (6,64a) 
• = l 

cm = ct&XlSptN) (6,66a) 

Lpu. *+i = 7 " ^ h • ^ c « * * ^ " / ^ ] - " « 0 (6,67a) 

Kw*. v = £«<, v+i + A = 7 - ^ . 2 cwa>7j/(l - a l 1 ^ ) ) (6,68a) 
ApFt(y) ; = 1 

CHAPTER 7 

THEORY OF INFINITE COLUMNS 

7.1. PINCHES 

Infinite columns permit the indices m, \L, n and v to increase indefinitely. 
Therefore, the analytical expressions of liquid rates, vapour rates, absorption 
factors and stripping factors approach limiting values. 
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In the limit these quantities have become constant, i.e. independent of the 
tray index. Hence, due to their infinite extension, in both top and bottom section 
a region develops in which all physical parameters are uniform. These regions 
are termed pinches. 

In the course of the present analysis it will become clear that one and only 
one pinch, the bottom pinch, occurs below the feed tray and simultaneously 
one and only one pinch, the top pinch, occurs over the feed tray. 

Exhaustion zones, consisting of infinite numbers of trays, may separate the 
pinches from the feed tray. 

In an exhaustion zone between feed tray and bottom pinch, (zone III in 
Fig. 2), one or more of the lightest components are eliminated from the total 
liquid rate. 

Such components start flowing downward from the feed tray with finite 
amounts but their concentrations decrease asymptotically with increasing dis­
tance from the feed tray. Likewise, in an exhaustion zone over the feed tray, 
(zone IV in Fig. 2), one or more of the heaviest components are eliminated 
from the total vapour rate. 

A transition zone, again consisting of an infinity of trays, may occur between 
reboiler and bottom pinch (zone I in Fig. 2), and (or) between top pinch and 
condenser, (zone VI in Fig. 2). 

With respect to the occurrence of zone I, III, IV and VI one has the fol­
lowing rules: 

absence of means 
I B = Bj only, no stripping near reboiler 

III B = Bi to Bj incl., no elimination below feed tray 
IV D = D\ to Dj incl., no elimination over feed tray 
VI D = Di only, no absorption near condenser. 

Obviously the simultaneous absence of both I and III implies the degeneration 
of the bottom section to one bottom pinch in which no stripping takes place. 

o o o o o o o o o 

o o o o o o o o o 
1 2 3 Z . 5 6 7 8 9 

FIG. 31. Types of pinch location in infinite columns. (Compare Fig. 2). 
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Discarding trivial arrays of this kind, there remain 3 possibilities for the bot­
tom section (I absent, III absent, neither I nor III absent), and likewise 3 
possibilities for the top section (IV absent, VI absent, neither IV nor VI ab­
sent). Hence 3 x 3 = 9 types of pinch spacing are to be distinguished. (Fig. 31). 
Some particulars of the separations connected with the types are listed in the 
following table, in which / denotes the lightest component present in the bottom 
product and A denotes the heaviest component of the top product. 

type separation remarks 
1 1 < l < h < J 
2 I = 2; A = 1 absolute 
3 1 < /; / < A = J 
4 l=\;l <h <J 
5 l = J\h = J-\ absolute 
6 / = A = 1 comp. 1 distr. 
7 / = 1 ; A = J all comp, distr. 
8 I = h = J comp. J distr. 
9 / = 2; A = 1 abs. (binary systems only) 

7.2. ABSORPTION FACTOR IN BOTTOM PINCH 

In the bottom pinch liquid rates, vapour rates and compositions are uniform. 
Therefore, the (constant) index p will be substituted for the tray index m (or (JL) 
when the quantity pertains to the bottom pinch. 

Evidently Eqs. (6,1) and (6,8), expressing conservation of matter and equi­
librium condition respectively, become 

Lbi, v = Pw, v + Bi (7,1) 
and 

LM, v — Au, pVu, v = AbpVbi, p/ocj (7,2) 

Substitution of Eq. (7,2) into Eq. (7,1) yields 

Lbi, p = BiliX - aiA$ (7,3) 
Some important conclusions can be drawn from Eq. (7,3). As obviously the 
liquid rates Lu, p cannot be negative, one has 

AUK*? (7,4) 
Let us assume that the magnitude of Afp is intermediate between cq\.x and oq1. 
Then clearly 

«71 > Afp >
 a7-i > a7-2 > • • • > «ï1 (7>5) 

and we conclude with regard to (7,4) 

Bl = B2 = ...=Bi-i = 0 (7,6) 
and 

Lbi, v = Lb%, p — ... — Lbi-i, p = 0 (7,7) 

Hence, the first / - 1 components do not occur in the bottom pinch and, con­
sequently, do not occur in zone I below the bottom pinch either. 

And hence component / is the lightest component in the bottom product. 
In zone I the equations (6,1), (6,2) and (6,8), representing conservation of 

matter, constancy of molal overflow and ideality of trays respectively, are valid 
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with respect to the components I, I + \, ..., J. Repeating the arguments of 
chapter 6 it can be found that a (reduced) characteristic bottom equation 

Lb = Î BtHl-a.ts) (7,8) 
i = / 

with roots O~h\ satisfying 
$7,} < ay' < <DiJ + 1 < ayV, < ... < Oyj < «j1 (7,9) 

and a (reduced) absorption factor product 

Apb(m) = 2 CbtQfk (7,10) 

apply to zone I. 
The pinch absorption factor Abv can be easily connected with the pinch 

parameter (chapter 3) OyJ, as summation of Eq. (7,3) over all components 
occurring in the pinch yields 

Lb = Î Bt/(l - xkA-b],) (7,11) 
k = ; 

Comparison of Eqs. (7,8) and (7,11) shows that A'b
l
p is a root of Eq. (7,8). In 

view of assumption (7,5) and enumeration convention (7,9) we conclude 

Abp = * w (7,12) 

This result can also be reached in the following way. From Eq. (7,10) it 
follows 

Abm = { i CbM/i î cwfcOfr1) (7,13) 
k = l k = I 

Hence 
Abp = Urn Abm = Ou 

m -> c>o 
as <&M is the largest of the Oöfc. 

7.3. STRIPPING FACTOR IN TOP PINCH 

In a quite analogous way it can be shown that 

V«,P = A /O-ot fSjJ) (7,3a) 

are the vapour rates in the top pinch. As the denominators must be positive 
again one has 

Sjl < a, (7,4a) 
Assuming 

«A+i < Sfp <a.h < ocft-i < ... < oci (7,5a) 
it follows 

Dh+i = Dh+2 = . .. = Dj = 0 (7,6a) 
and 

Vth+i, v — Vth+%, p = ... = Vtj, p = 0 (7,7a) 

Hence component h is the heaviest component occurring in the top product. 
A reduced characteristic top equation 

Vt= S Z>*/(1 - oc1*) (7,8a) 
* = î 

66 Meded. Landbouwhogeschool, Wageningen 61 (9), 1-94 (1961) 



with roots Oyjt satisfying 

fy\ < a* < 0) 7i_,< a»_i < ... < O7} < ai (7,9a) 

and a reduced stripping factor product 

apply to zone VI. 
One also has 

SPt(n)= S Cöfcd»?, (7,10a) 
* = 1 

StP = lim Sm = 0«ft (7,12a) 

7.4. ZERO RESIDUES C^M AND CF«* 

For clearness' sake the uniqueness of both top and bottom pinch is taken for 
granted in this section. (The proof will be given in section 7.15). 

If only one bottom pinch exists, then the stripping factor in the bottom 
pinch 

Sbp = A-b\ (7,14) 

must be the limiting value of the stripping factor SFÖ» of the complementary 
formulation, i.e. 

lim Spby. = Spbp = Sbp (7,15) 

(The uniqueness of the bottom pinch implies the identity of St^p and Sbp). 
Hence, with regard to Eq. (7,12) and recalling 

®Fbk = ®ïl 
it follows 

lim SFbt, = <Dj) = O™ (7,16) 
[X —> OO 

or 

lim ( 2 cmtQhiM 2 CFuOftl) = ®Fbi (7,17) 

The residues CFM being constants (i.e. independent of pi) smaller than unity, 
only the largest of the <&FM survives in the limit. 

As 
Q>Fbl < ®Fbl + l < ••• <®FbJ 

it follows that the terms with i > / do not occur in Eq. (7,17). 
Hence 

CFbl + l = CFbl + 2 = ... = CFbJ = 0 (7,18) 

In a quite analogous way, assuming the uniqueness of the top pinch, it can 
be shown that 

Cptl = CFt2 = . . . = CFth-1 = 0 (7,19) 

The results (7,18) and (7,19) are important as they involve UNDERWOOD'S 
theorem as well as the key to a direct computation of the compositions and, 
equilibrium constants throughout the (infinite) column. 
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7.5. UNDERWOOD'S THEOREM 

Applying the explicit analytical expressions (6,62) of the residues cpt>u the 
equations (7,18) can be written 

2 LFbk, oo*/(l - a*«!);)) = 0 (7,20) 
k == 1 

(/ = / + 1, I+ 2,..., J) 

as the denominators in Eqs. (6,62) are non-zero. 
With the conditions of equilibrium at the feed trayx) ' 

LFbk, o = ApVptk, o/afc (7,21) 

in which Ap is the absorption factor of the reference component at the feed 
tray, the liquid rates Lpbk, o are eliminated from Eqs. (7,20). Dropping the 
constant factor Ap from the resulting equations, one finds 

5 K«t,o/(l-a*0>ïJ) = 0 (7,22) 
k = î 

(i = / + 1, / + 2 , . . . , / ) 

Applying the analytical expressions (6,62a) of the residues cpu, the equations 
(7,19) yield 

£ *>» ,o / ( l -M> M ) = 0 (7,23) 
k = 1 

( i = 1,2 A - l ) 

Comparison of Eqs. (7,22) and (7,23) shows that the roots OjJ- (with i > /) 
and Ojj (with i' < h) satisfy the same equation 

6 K«*,o/(l-«*s) = 0 (7,24) 
A = 1 

which has exactly the structure of the (complete) characteristic bottom equa­
tion and, hence, possesses J- 1 distinct and positive roots s/c (1 root is infinite) 
obeying the conditions 

«T1 < J2 < oç1 < . . . . < sj < xjl (7,25) 

i.e. one and only one root Sk+i is situated between consecutive reciprocal rela­
tive volatilities aï ' and cql

+l. 
Clearly, if a root OjJ and a root O«, simultaneously satisfying Eq. (7,24), 

are both situated in the same interval (cql, aï'+1), they must be identical. Com­
paring intervals (7,9) and (7,9a) it follows the relations 

®H+2 = <&« + ! (7,26) 

O** = ®th-\ 
which constitute UNDERWOOD'S theorem. (In chapter 3 these roots have been 
denoted Qj, Qj+i, ...., QÄ_I , respectively). 

It has been shown that UNDERWOOD'S theorem (7,26) is a direct consequence 

*) Complete mixing at feed tray assumed! 
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of Eqs. (7,18) and (7,19), and hence a direct consequence of the uniqueness of 
both top and bottom pinch. 

7.6. NON-ZERO RESIDUES CFH AND CFU 

The reduced characteristic bottom equation (7,8) is the limiting case (M->~ ) 
of the complete characteristic bottom equation (6,30). 

Let us consider the case of "very large" M and, hence, "very small" values 
of B\, B2, ..., Bt, ..., Bi^i. Substituting the root <Dj!, (i < I), the (still com­
plete) characteristic bottom equation can be written*) 

Bt/(l - acOiJ) = Lb - ' z ' Bk/(l - a*0»J) - £ B}/(1 ~ *M) (7-27) 
k = 1 j = / 

In the limit M^co, the products B^ with A: < / vanish simultaneously and 
the roots <ï>ïl are pressed against the vertical asymptotes at cql (compare Fig. 
9B). Hence both numerator and denominator of the left hand member of Eq. 
(7,27) vanish. The quotient, however, stays finite, as one clearly has 

l im 1 îft=î = ^ - 2 W - W ) 0 '<0 (7,28) 

In the complementary stripping factor product SpFb(\i), the non-zero residues 
CFbk, (k = 1, 2, . . . , / - 1), are associated with the Ö>Fbk = ^ ï i having the 
limiting values a*1, and the remaining non-zero residue CFM is associated with 
<$>Fbi = ^ï l- Hence, we have to compute the limit <t>ïj -^ccf of Eq. (6,62). 

Multiplying both numerator and denominator of (6,62) with (1 - <x$<1>jj), we 
get1) 

£FM, oa* + 2 ' Lp-fcfc, 0afc(l - aj<I>7J)/(l - a^Ojj) 
k = 1 

BmlO- - a ^ ï ' ) + S ' 5 « ( 1 - «|C»ii)/(l - afcO;})2 

* = l 

(7,29) 

In the limit the terms in the summations vanish simultaneously. Applying 
the limit (7,28) and dropping the factor a* we find 

c , w = J ^ > ( /< / ) (7,30) 
Lb- S B,/(l -VOL?) 

From Eq. (6,64) it follows 
i - i 

CFbl = 1 - 2 CFM (7,31) 
1 

In a quite analogous way it can be shown : 

Uln i S<ft-i = F< - S DiKl - a » (' > A ) <7>28a) 

0 The prime ' indicates that k must skip the value /. 
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CFti = J ^ ± (,- < A) (7,30a) 
Vt- S _ Z>,/(1 - oj1«,) 

and 
J = i 

J 
CTO = 1 - S CFM (7,31a) 

!" = h + 1 

7.7. COMPUTATION OF LIQUID RATES LFM, O AND OF VAPOUR RATES VFU, O 
(FEED TRAY CONDITIONS) 

Given a specification of two bottom products, then, applying UNDERWOOD'S 
method, the unknown product rates, the total liquid rate L0> the total vapour 
rate Vt and hence all roots Ojj and Oy[ can be computed. 

Substitution of the roots 

On, . . . , « H - I ; ß j , . . . . Q»- i ; <D;i+1, . . . , O»} (7,33) 

into Eq. (7,24) 

yields with 
2 K«*, o/(l - o*j) = 0 

* = l 

2 VFt]c, o = Vt 
k = 1 

(7,34) 

(/ - 1) + (A - /) + (ƒ - A) + 1 = y linear equations from which the J vapour 
rates Vptk, o can be solved.1) 

Next the absorption factor AF can be computed.2) Summation of Eq. (7,21) 
over all components yields 

3 
Lb = AF S Vptjc, oa*1 (7,35) 

k = 1 

in which L\, is known and in which the VFUC, O have been found from Eqs. (7,34). 
Thereafter the individual liquid rates LFÖ/C, O can be obtained applying 

Eqs. (7,21). 

7.8. COMPUTATION OF EQUILIBRIUM CONSTANT KF OF REFERENCE COMPONENT 
AT FEED TRAY 

Ap has been found from Eq. (7,35). Applying Eq. (6,11) to the reference 
component at the feed tray (and hence replacing Vt, by Vt), one has 

KF = Lb/ApVt (7,36) 

7.9. COMPUTATION OF NON-ZERO RESIDUES CFU AND CFU 

Once the liquid rates LF^U, O and the vapour rates Vptic, o have been computed 
according to section 7.7, the non-zero residues CFM and CFU can be obtained 
from Eqs. (7,30), (7,31), (7,30a) and (7,31a) respectively. 

*) The independence of the equations follows from appendix IV. 
2) Complete mixing at feed tray assumed ! 
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7.10. COMPUTATION OF COMPOSITIONS AND EQUILIBRIUM CONSTANTS BETWEEN 
FEED TRAY AND BOTTOM PINCH 

The complementary stripping factor product for infinite columns reads 

Spnfa) = 2 cm**? + cFbi®iï (7,37) 
k = 1 

The equilibrium constant KFbv. (with \x > 1) of the reference component can 
be computed from 

KFbv. = Spb^Lb/Vb = SpFb(v.)Lb/SpFb(y. - l)Vb (7,38) 

(compare Eq. (6,11a)). 
From Eq. (6,68) it follows 

LFM, M. = ,-, , s, • I ^ -j zr + 1 SwJ (' > ') (7>39) 

Eq. (7,39), constituting the limit (M -> oo) of Eq. (6,68), is vab'd only for the 
liquid rates of the components i > /. 

For a component k with k < I, the bottom product B^ vanishes and hence 
all terms of the right hand member of Eq. (7,39) vanish, except the kth term in 
the summation, which yields a zero denominator (1 - a^aï1). Application of the 
limit (7,28) yields *) 

LFbK r, = g ^ .[U-& m\ - ocjOil1)] (k < /) (7,40) 

Next the composition of the liquid on tray ;x ( > 1) 

XFU, v. = LFM, J Lb i > I ) 

XFbk, v. = LFbk, JLb k < I ) 

can be computed from Eqs. (7,39) and (7,40) respectively. 

7.11. COMPUTATION OF COMPOSITIONS AND EQUILIBRIUM CONSTANTS BETWEEN 
FEED TRAY AND TOP PINCH 

The complementary absorption factor product for infinite columns reads 
3 

ApFtiy) = CFth^H + 2 cFtka.l (7,37a) 
* = A+I 

The equilibrium constant KFtv (v > 1) of the reference component can be 
computed from 

KFt, = Lt/Apt, Vt = ApFt(v - 1) Lt/ApFtfr) Vt (7,38a) 

(compare Eq. (6, 11)). 
From Eq. (6,68a) it follows 

Vpti,v= -.—T\ • h n ^ n + ^ i r r~ ] (' < « ) (7,39a) 
Apptiy) l - a . - ' O ^ j = h+i l - a , ' a ; 

x) Note that lim LFU, H = Ä/(l -<*i<&l\) if /' > I, (in accordance with (7,3) and (7,12), and 

that lim LFU, U. = 0 if i < / - 1, as O )̂ > aj1 i f ;< / - 1. 

Meded. Landbouwhogeschool, Wageningen 61 fpj, 7-94 (1961) 71 



and, with regard to (7,28a) 

Vpat, v = - ^ Ä -Wt- S Djl(\ -aj'a*] (fc > A) (7,40a) 

The liquid compositions on tray v (v > 1) can be computed from 

XFU, v = £««, v/£* = ^Ft^Vpu, v/Lt (i <A) I (7 41a) 
*F«ifc, v = Z-Fifc, v/Lt = ^F«v«ï' K ĵfc, v/£< (k > h) j 

7.12. COMPUTATION OF COMPOSITIONS AND EQUILIBRIUM CONSTANTS BETWEEN 
REBOILER AND BOTTOM PINCH 

From 

Apb(m) = S CfttOfc 
* = ; 

and 
tf&ro = Lb/AbmVb = Apb(m - l)Lb/Ap0(m)Vb (7,42) 

the equilibrium constant ÄT&m can be computed. 
Fromx) 

L«"»+i = T ^ b ^ cwOyy/(l - «<<!>»}) (7,43) 
Apb(m) j=,i 

and 
*fti, m + l = -tw, m+llLb (7,44) 

the liquid compositions JC«, TO+i can be obtained. 

7.13. COMPUTATION OF COMPOSITIONS AND EQUILIBRIUM CONSTANTS BETWEEN 
TOP PINCH AND CONDENSER 

The equilibrium constant Km follows from 

Sptin) = S ctt<D-4 
* = i 

and 
Ktn = StnLt/Vt = Spt(n)Lt/Spt(n - l)Vt (7,42a) 

The liquid compositions follow from 2) 

Vu, »+i = -£^} • S i cyO?;-/(l - «T1^)) (7,43a) 

and 
Xti, n + l — Lti, n + l/Lf = Vti, n+l/Stn + \<*4Lt (7,44a) 

*) Clearly lim iw.m+i = 5;/(l -a;©j}), in accordance with (7,3) and (7,12), as 
m->eo 

®M > «S«, if ƒ > /. 
a) lim Vn,„+i = Dil(l -a7'®7À) in accordance with (7,3a) and (7,12a). 

n-»-oo 
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7.14. NUMERICAL EXAMPLE 

The liquid compositions and equilibrium constants throughout the infinite 
column have been evaluated numerically for the separation specified by 

q = 0.6; sM = 0.125000; sbl = 0.833 333 

The separation is situated in quadruplet (4.7), as is shown in Fig. 27. 
UNDERWOOD'S method yields 

J65 = 0.323 063 
Sb6 = 0.514 701 

Lb = 2.082 790 
Vt = 2.036 553 

The product rates B% and D% and the roots of the characteristic top and bot­
tom equation are collected in Table 2. 

TABLE 2. 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

S 

Bi 

0 
0 
0 
0.020 000 
0.025 845 
0.072 058 
0.108 333 
0.050 000 
0.120 000 
0.050 000 

0.446 236 

A 

0.050 000 
0.080 000 
0.140 000 
0.140 000 
0.054 155 
0.067 942 
0.021 667 
0 
0 
0 

0.553 764 

Ol 

0.333 333 
0.500 000 
0.666 667 
0.715 910 
0.775 778 
0.832 239 
0.952 041 
1.092 856 
1.364 513 
2.448 519 

-

2.941 540 
1.944 880 
1.449 865 
1.289 029 
1.201 578 
1.050 375 
0.942 352 
0.900 000 
0.700 000 
0.400 000 

-

Note that Oj] = uf if i < 3 and «Dj) = on if i > 8. In addition, O^ = Q4, 
OjJ = Q5, Oj} = 0 6 , <&7| = -Û41, Oy£ = OH1 and <Dy£ = Qr6\ (The roots Q* 
are collected in appendix V). 

Subsequently the liquid and vapour rates, leaving the feed tray, are computed 
according to section 7.7. The results are collected in Table 3. 

TABLE 3. 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2 

VFU, 0 

0.071 112 
0.144 676 
0.349 373 
0.421 722 
0.196 044 
0.324 147 
0.280 374 
0.095 388 
0.131 226 
0.022 492 

2.036 554 

LFU, 0 

0.028 870 
0.088 103 
0.283 675 
0.380 476 
0.191 012 
0.343 306 
0.341 475 
0.129 084 
0.228 320 
0.068 483 

2.082 804 

AP =1.217 932 

The non-zero residues CFM and CFtj are collected in Table 4. 
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TABLE 4. 

i 

1 
2 
3 
4 

S 

CFbi 

0.020 089 
0.071 740 
0.419 813 
0.488 356 

0.999 998 

j 

7 
8 
9 

10 

S 

CFtj 

0.548 916 
0.291 654 
0.141 704 
0.017 723 

0.999 997 

To test the accuracy, the residues CFÖ4 and CFM have been calculated from 
Eqs. (6,62) and (6,62a) respectively, instead of Eqs. (7,31) and (7,31a). 

The liquid rates in the bottom pinch can be calculated from Eq. (7,3), sub­
stituting 0j4 for A~ilp. Analogously the vapour rates in the top pinch follow from 
Eq. (7,3a), taking Sjl = O7}. The results are collected in Table 5. 

TABLE 5. 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Lbi, p 

-
-

0.596 623 
0.245 878 
0.407 789 
0.381 333 
0.140 575 
0.240 547 
0.070 064 

2.082 809 

Vti,p 

0.072 899 
0.151 279 
0.376 582 
0.463 636 
0.220 037 
0.376 276 
0.375 850 

-
-
-

2.036 559 

Finally all remaining liquid and vapour rates, absorption and stripping fac­
tors, compositions and equilibrium constants have been calculated according 
to sections 8, 10, 11, 12, and 13 of this chapter. The resulting liquid composi­
tions xi and the equilibrium constant of the reference component, throughout 
the infinite column, are graphically represented in Fig. 32. 

7.15. UNIQUENESS OF PINCHES 

The uniqueness of the pinches, which was postulated in the preceding sec­
tions, will now be proved. 

The bottom pinch is unique if and only if S&TO and SFÖV. yield identical 
limiting values. 

Let now CM be the „lightest" non-zero ordinary residue, i.e. 

Cbi = cb2 = . .. = cbi-\ = 0 (7,45) 
Then, by implication, 

0»i = a*> if k<l-\ (7,46) 

Hence, the complementary residues CFM with k < / - 1 have the limiting val­
ues (7,30) and, therefore, are non-zero as obviously LFbk, 0 7^ 0 for any value 
of it. 
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O 0.10 0.20 0.30 0.60 0.80 100 1.20 

FIG. 32. Liquid composition and equilibrium constant K of reference component throughout 
infinite column. 

Thus 
CFbk # 0 if * < / - 1 

CbJ<&\ tj 

It follows that if 

APb{m) = CftiOy, + cw+iOR+i + .. 
then 

SPFbiV-) = CFbl^Fbl + CFb2^b2 + • • • + Cpm&Fbk 

and, (with regard to (7,47)) 
X > / - l 

(7,47) 

(7,48) 

(7,49) 

(7,50) 

For large values of m the decisive term in Apt,(m) is q>j®j, and for large values 
of jx the decisive term in SpFbfa) is CFOXO&A, as 

®bi > $ M + I > ... > Oftj 
and 

Q>FVk > ®Fb7.-l > . . . > 0 F 6 i 
Hence 

lim Sbm = [ lim Ahm]-1 = Ojj 
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and 
lim SFblL = ®Fbx = ®-b{ 

It follows that the bottom pinch is unique if and only if 

X = / (7,51) 

For finite columns, Eqs. (6,66) constitute links between the ordinary resi­
dues Cbic and the complementary residues cFbk. These equations contain the 
absorption factor product 

Apb(M) = i CM&ÎI (7,52) 
k = 1 

In the limit M^ <x>, however, the residues cbk with k < / - 1 vanish. Therefore, 
they are eliminated from (7,52) by substitution of the first ( / - 1) expressions 
(6,66) yielding 

Apb(M) = ' s cFbjApb(M) + £ ebk<$>fk (7,53) 
j = \ k = I 

from which it follows 

APb(M) = [ i c » 0 £ | / [ l - ' s cFbj] (7,54) 
* = ; y = l 

Now Apb(M) depends only on non-vanishing residues cbk and cFbj as is shown 
by comparison with (7,45) and (7,47). 

By virtue of Eqs. (6,66) and (7,54) the residue cFb\ can be written 

CFbx = c&x [1 - ' s <*»*]/[ S cbk(<bbk<bi)M] (7,55) 
y = î * = ; 

If X > /, then Oftx < Ow or (OwO») > 1 and hence, for M -> ~ , the first 
term of the summation in the denominator increases indefinitely. We conclude 

c m = 0 if X > / (7,56) 

If X = /, then OftA > <bbk or (««OjJ) < 1 if k > I. 
Hence, in the limit M -> cv>, all terms of the summation vanish except the first 
term which is cbi. 

And hence 
i - i 

CFbx -> cbi [ 1 - 2 cFbj]/cbi if X = / 
i= i 

or 
/ - 1 

cFbi = 1 - 2 cFbj (7,57) 
i= i 

which is non-zero as long as ®-b] > Qj- i , regarding (7,18) and (7.26).1) 
We conclude : X = / in expression (7,49), which settles the uniqueness of the 

bottom pinch. 
The uniqueness of the top pinch can be proved in a quite analogous way. 

7.16. PINCH PARADOX 

A striking feature of the diagram of classes (Fig. 12) is the discontinuity of 

x) For $>~b\ = ili- l compare section 7.16, formulae (7,65) and (7,66) and below. 
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the pinch parameter Oj ' = Afp at east boundaries and of the pinch parameter 
^7« = Sjp a t north boundaries. 

Now let us consider two separations P and Q at infinitesimal distance on 
either side of an arbitrary east boundary in the diagram of multiplets in a 
plane of constant q, (Fig. 33). Then P and Q have identical values for q and 
have only infinitesimal differences in RB and RD- AS q, RB and RD command 
the column performance, it is to be expected that the physical conditions in the 
column, performing separation P, approximate tray for tray the physical con­
ditions in the column which performs separation Q. Moreover, 71 being an 
arbitrary path joining P and Q and T being its point of intersection with the 
east boundary, it is to be expected that the physical systems P and Q become 
identical, i.e. both attain the limiting system T, if we let P and Q travel to T 
along -K. The latter argument,x) however, contradicts the above observation 
concerning the discontinuity of the pinch parameters. This contradiction is 
termed the pinch paradox. 

Apparently the paradox concerns the conditions at (and hence the equations 
of) the boundaries, i.e. the very basis of the diagram of multiplets. Therefore, 
it is worth while to examine this paradox in some detail. It will be shown that 
T represents two column states which differ with respect to pinch conditions 
only. 

To understand the twofold nature of T we consider the question : "What is 

FIG. 33. *e 
') A similar argument can be constructed for north boundaries. 
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the meaning of Bi = 0?" For an interior point of a multiplet (P or Q) the an­
swer is simply that component i does not occur in the bottom product and nei­
ther will do so if the point is subjected to an arbitrary displacement not trav­
ersing a multiplet boundary. For a point T at an east boundary, however, the 
answer depends on the history of the column. Either component i has been 
driven out of the bottom product by an increase of RB (case a, say), or com­
ponent i is at the verge of being admitted to the bottom product after decrease 
of RB (case b). In case a component i is still leaking out of the bottom pinch 
but its liquid rate fails to survive the descend through the infinity of trays below 
the bottom pinch. In case b component i is reflected at the top of the bottom 
pinch. Hence there exist two states T, denoted T in case a and T in case b, 
which differ with respect to the number of non-zero (bottom) pinch rates. 

Let the lightest distributed component in P's multiplet by X and hence X + 1 
in g's multiplet. Then Abp = O w in P's multiplet and Abp = O&x+i in g's 
multiplet. Hence the absorption factor of the reference component in the 
bottom pinch becomes a? for T and Q^1 for T. And hence, according to Eq. 
(7,3), one hasx) 

Lu, v = i*j/(l - < W ) 0' > X + 1) (7,58) 
and, by virtue of the limit (7,28) 

Lb-,, P=Lb- 2 Bjl(\ - oyoç1) (i = X) (7,59) 
j = x+i 

for f, and for f we find 

hi, v = W - «Au 0' > X + 1) (7,60) 
Eqs. (7,58), (7,59) and (7,60) show clearly the distinct differences which exist 

between the pinch conditions of T and T. 
If we let is in the immediate vicinity of T approximate the line of constant 

<I>7ji through T, then it follows from the first theorem of continuation (section 

3.6) that T and f have identical values for RB, Lb, B, 5x+i, •••, BJ and also 
for RD, Vt, D,D\,..., Dh. Hence Tand Thave identical characteristic bottom 
and top equations and hence identical sets of roots O^+i, <&j{+2, •••, &lj and 
$7}, O7I,.. . , O7J. It follows that f and f have the same set of roots (7,33) and 
hence the same set of equations (7,34) and hence identical feed tray vapour rates 
VFUC, 0. Next, from Eq. (7,35) follows the same value of Ap and from Eq. (7,36) 
the same value of KF for T and T. Finally, application of Eqs. (7,21) yields the 
same set of feed tray liquid rates LFM, 0 for T and T. We conclude : 

T and T have identical feed tray conditions. (7,61) 

According to Eqs. (7,30) one has also: 

T and T have identical complementary residues CFM ¥= 0 with i = 1, 2, . . . , X. 
(7,62) 

The non-zero residues c&#, (k = X + 1, X + 2, . . . , J) of T and of T are the 
solutions of the same set of linear equations 

-* •(-
*) Quantities pertaining to T or T are distinguished by and *" respectively. 
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Î cbkj{\ - OftjÄj1) = - RB (7,63) 

* " X + 1 (/ = X + 1, X + 2, . . . , J) 

as the roots <E>&fc and 7?B are the same for T and T. Hence 
-*- *-
T and T have identical residues Cbk 7^ 0 with 
& = X + 1 , X + 2, . . . , / . (7,64) 
Having the same roots and residues, it follows that T and T have the same 

absorption factor product Apb(m) and stripping factor product Sppb([i) 

Apb(m) = Apb(m) = S <%*$& (7,65) 
* = x+i 

and 
->. *- A 

«Sfo%(fjO = 5^FÔ(H) = S c^ftta^ (7,66) 
* = 1 

Note that Oftx+i = ^Ä1 in Eq. (7,65). A peculiarity of Eqs. (7,65) and (7,66) 
is the absence of a common root. Hence 

lim Apb(m)/Apb(m - 1) # Hm SpFb(y. - l)/SpFb(ii) (7,67) 

for both r and T. It must be borne in mind, however, that the pinch conditions 

of T (and mutatis mutandis the same holds for T) are the results of two limit 

procedures. For the absorption factor AbP of T, for instance, the limits are 

lim [ Um {Apb(m)/Apb(m - 1)}P] = a* (7,68) 

as we interpret T as the limiting case of P and hence the bottom pinch of T as 
the limiting case of the bottom pinch of PI 

The limits in (7,67) imply an interchange of both procedures, i.e. 

lim [ lim {Apb(m)/Apb(m - \)}P] = Q^1 (7,69) 
m^coP^T 

Apparently (7,68) and (7,69) do not yield the same result, and we conclude that 
(7,68) does and (7,69) does not meet the general requirements of continuity 
for the multiplet diagram, expressing that macro-physical states be continuous 
functions of the independent parameters. Therefore, Eq. (7,67), which contra­
dicts the uniqueness of the bottom pinch, must be rejected ! 

For finite values of m and jx Eqs. (7,65) and (7,66) apply. Now Ab\ = Apb(l)/ 
Apb(0) = Apb(l) and likewise SFbi = SpFb(l). As Q^1 > ®bk if & > X + 1 and 
as ax1 > erf if ^ < X, it follows from Eq. (7,65) 

~> •*- 3 J <-
Ab\ = Ab\ = S CôfcOftfc < Çlf { 2 cblc) = üx' = Abv (7,70) 

* = X + l k = X + l 

and from Eq. (7,66) 

4FÖI = -4FW = l/[ S CFöfcaï1] > 1 /[a^{ 2 ĉ &fc}] = «A = &̂2> (7,71) 
k = 1 * = 1 

Hence we find: 

>4&i = Ab\ < Abp < Abp < AFb\ = AFbl (7,72) 
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The inequalities (7,72) constitute the key to the solution of the pinch para­
dox. 

With regard to the monotony of At>m (vide (6,44)), we conclude from (7,72) 

that the bottom pinch of T lies lower than the bottom pinch of T. 
Moreover, recalling the limits 

lim cftx = 0 (7,73) 

and 
lim CFftÀ+i = 0 (7,74) 

it can be read from (7,72) that when P is "very close" to T, a region exists below 
i>'s bottom pinch in which the absorption factor is "nearly" constant and 
"nearly" equals the absorption factor AbP. Similarly, when Q is "very close" 
to T, a region exists over g 's bottom pinch in which the absorption factor is 
"nearly" constant and "nearly" equals the absorption factor Abp. 

Summing up : 
If (Fig. 33) the ratios RB and RD of the separations P and Q differ by an 

infinitesimal amount and if the points P and Q are separated by an east boun­
dary, then the bottom pinch absorption factors of P and g show a finite dif­
ference approximately equal to oc^-ü^1. The bottom pinches of P and Q, 
however, are not directly comparable, as the bottom pinch o f f lies higher than 
the bottom pinch of Q. Only corresponding trays, i.e. trays with the same tray 
index, are to be compared. For corresponding trays it is true that the physical 
conditions of P and Q differ only infinitesimally. 

SAMENVATTING 

Dit proefschrift bevat een analyse van de theorie van de minimum reflux, uit­
sluitend vanuit het standpunt van het model van constante relatieve vluchtig-
heden en constante molaire refluxen. 

De analyse heeft een theoretisch karakter. Er is niet gepoogd om verkorte 
rekenwijzen voor praktische toepassingen te ontwikkelen. Evenmin is de bruik­
baarheid van dit (veel toegepaste) model besproken. Het doel van het onder­
zoek is het opruimen van enkele vage en foutieve interpretaties, die in de destil­
latieliteratuur bestaan ten opzichte van het probleem van de specificatie van 
een minimum-reflux-scheiding. 

Een uitvoerig mathematisch onderzoek van een nauwkeurig omschreven 
model heeft verschillende voordelen. Een volledig en exact model 

1. veroorlooft kwalitatieve gevolgtrekkingen van heuristische waarde; 
2. levert ons de middelen om benaderingsmethoden na te rekenen, die op de­

zelfde fundamentele onderstelüngen steunen; 
3. levert een gedegen grondslag voor uitbreiding van het model door verzwak­

king of veralgemening van de onderstellingen die het model bepalen. 

In 1946 publiceerde A. J. V. UNDERWOOD [4, 5] een theorema, waardoor 
(binnen genoemd model) de eerste rechtstreekse berekeningen mogelijk werden 
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in de theorie van de destillatie van systemen bestaande uit een groot aantal 
componenten. Verschillende auteurs [1, 3] leverden strenge bewijzen voor deze 
stelling. In dit stadium was het mogelijk om de productsamenstellingen en de 
minimale refluxverhouding RDmin uit te rekenen indien de verdeling van twee 
sleutelcomponenten en een (thermische) voedingstoestandparameter q à priori 
gegeven waren. Een moeilijkheid hierbij is echter, dat de aantallen lichte en 
zware, niet verdeelde, componenten geraden moeten worden. Bovendien voert 
niet iedere keuze van de verdelingen der sleutelcomponenten tot een fysisch 
bestaanbare oplossing. Een criterium ter beoordeling van deze bestaanbaarheid 
(consistentie) was niet voorhanden. De methode ontbeerde derhalve wiskundige 
strengheid en kon gemakkelijk aanleiding geven tot schijnoplossingen. 

Men neemt algemeen aan, dat een (consistente) specificatie van q en de beide 
sleutelcomponenten slechts één (consistente) oplossing toelaat (éénduidigheids-
theorema). De schrijver heeft echter in de destillatieliteratuur geen bewijs voor 
deze stelling kunnen vinden. 

Ook een rechtstreekse berekening van de toestand bij de voedingsplaat (voor 
"oneindige kolommen" en op basis van genoemd model) is niet bekend. Wel 
hebben W. R. VAN WIJK en medewerkers een iteratiemethode ontwikkeld voor 
het geval van scheidingen met twee naast elkaar liggende sleutelcomponenten 
[10, 11, 12]. 

De inhoud van dit proefschrift valt in twee delen uiteen. Het eerste deel, (de 
hoofdstukken 2 tot en met 5), behandelt het onderwerp van de specificatie. 
Enkele hoofdpunten zijn: 

Klassificatie 
In hoofdstuk 3 wordt de geldigheid van de stelling van UNDERWOOD gepos­

tuleerd en daarna worden enkele wiskundige hulpmiddelen ontwikkeld. Aan­
getoond wordt, dat de kleinste wortels van twee karakteristieke algebraïsche 
hogeremachtsvergelijkingen geschikte onafhankelijke parameters ("pinch-
parameters") vormen voor het aanwijzen van scheidingen bij minimum reflux. 
De scheidingen in oneindige kolommen worden geklassificeerd naar aantallen 
verdeelde componenten en de relatie tussen klassen en discrete intervallen van 
de pinch-parameters wordt vastgesteld. 

Meetkundige voorstelling 
In hoofdstuk 4 wordt een meetkundige voorstelling ontwikkeld om een over­

zicht te verkrijgen over het gehele complex van scheidingen, die bij alle mogelijke 
voedingstoestanden q met een oneindige kolom verkregen kunnen worden. De 
scheidingen worden daartoe voorgesteld door de punten van een ruimte met de 
voedingstoestand q, de opkookverhouding RB en de refluxverhouding RD als 
coördinaten. De minimum-reflux-scheidingen liggen dan in de punten van een 
eigenaardig gevormd deel van de (q, RB, i?z))-ruimte (minimum-refluxlichaam, 
Fig. 19). Scheidingen, die bij een vaste waarde van q behoren, worden voorge­
steld door de punten van een "multiplettendiagram" (Fig. 16), d.w.z., een ver­
deling van het {RB, i ^ -v l ak in vakken ("multipletten"), die met de bovenge­
noemde klassen corresponderen. Naar de aantallen verdeelde componenten 
van de klassen worden deze vakken doubletten, tripletten, quadrupletten, etc. 
genoemd. De scheidingen in de punten van zo'n multiplet zijn oplossingen van 
een voor dat multiplet karakteristiek stel lineaire vergelijkingen. Het minimum-
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refluxlichaam is dan opgebouwd uit multipletbuizen ; zo'n buis bevat alle schei­
dingen met een vast stel verdeelde componenten (echter met verschillende mate 
van verdeling) en met verschillende voedingstoestand q. 

Vertex-scheidingen kunnen à priori worden gespecificeerd 
Specificatie van een scheiding is de keuze van de parameter q en van de schei­

dingsverhoudingen jftn en Sbv van twee willekeurige verdeelde componenten, 
die dan sleutelcomponenten worden genoemd. (De scheidingsverhouding SM 
van component i is het quotient van de stroom Bi in het bodemproduct en de 
voedingsstroom Fi ; su = Bi/Ft)- Om de scheiding te berekenen moet men ech­
ter reeds een deel van de oplossing van tevoren kennen, nl. de identiteit van de 
niet-verdeelde componenten en de mogelijkheid (consistentie) van de speci­
ficatie. De knooppunten (vertices) van het multiplettendiagrarn vormen uit­
zonderingen op deze regel. Een "vertex-scheiding" is volkomen gedefinieerd, 
d.w.z. zijn vergelijkingen zijn volkomen bepaald, door het kiezen van de niet-
verdeelde componenten alleen. De vertices vormen daarom een hecht uit­
gangspunt voor het berekenen van het multiplettendiagrarn. 

Lineaire interpolatie 
Lineaire vergelijkingen vormen een belangrijk bestanddeel van de theorie. 

De scheidingen in punten van de randen kunnen daardoor worden verkregen 
door lineaire interpolatie tussen vertex-scheidingen; scheidingen in inwendige 
punten kunnen worden verkregen door lineaire interpolatie tussen geschikte 
punten van de randen. 

Consistentiecriterium 
Een afdoend consistentiecriterium volgt rechtstreeks uit de één-één-correspon­

dentie tussen scheidingen en paren pinch-parameters. 

Monotonie en eenduidigheidsstelling 
De ordening van de componenten naar afnemende vluchtigheid induceert 

monotonie-eigenschappen van de scheidingsverhoudingen SM over de multi-
pletranden en over de lijnen van constante sBk- Bewijzen voor deze eigenschap­
pen zijn in de appendices gegeven. Uit deze monotoniestellingen wordt in 
hoofdstuk 4 de één-éénduidigheid van de scheiding, behorend bij een consis­
tente specificatie bewezen. 

Specificatiediagram 
In hoofdstuk 5 wordt een definitieve discussie van het specificatievraagstuk 

gegeven. Een diagram wordt ingevoerd, waarin een multiplet door een aantal 
afzonderlijke vierhoeken wordt vertegenwoordigd. Iedere vierhoek bevat het 
waardengebied van of een scheidingsverhouding, óf de totale vloeistofstroom 
beneden de voedingsschotel, of het totale bodemproduct, over het gehele multi­
plet. Specificatie en oplossing zijn daar teruggebracht tot een (exacte !) lineaal-
constructie, die gebaseerd is op de lineariteit van de betreffende vergelijkingen. 

De aan deze constructie noodzakelijk voorafgaande berekeningen bestaan 
uit het bepalen van de vier vertex-scheidingen van het multiplet. Wegens de à 
priori specificeerbaarheid van vertex-scheidingen kunnen deze berekeningen ge­
makkelijk door een digitale rekenmachine worden uitgevoerd. 
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Het tweede deel, (de hoofdstukken 6 en 7) betreft de berekening van de vloei­
stofsamenstelling en van de evenwichtsconstanten door de gehele oneindige 
kolom. Hoofdpunten van dit deel zijn : 

Formulering van de theorie 
De gebezigde formulering van de theorie is een uitbreiding van de door W. R. 

VAN WIJK gegeven formulering. Deze auteur publiceerde een aantal jaren eerder 
dan ACRIVOS en AMUNDSON analytische oplossingen van de fundamentele ver­
gelijkingen voor de destillatie van discrete mengsels van veel componenten. 
(Zie [8] en [1]). Om de typische moeilijkheden in de berekening van de toe­
stand bij de voedingsschotel op te heffen is in hoofdstuk 6 de oorspronkelijke 
formulering van VAN WIJK aangevuld met een complementaire "spiegelbeeld­
formulering". Daardoor kon in hoofdstuk 7 een strenge theorie van oneindige 
kolommen worden opgebouwd. 

Eenduidigheid van de pinches 
De "pinches" van de kolom zijn gebieden, bestaande uit een oneindig aantal 

opeenvolgende schotels, waarin de vloeistofsamenstelling en de evenwichts­
constanten uniform zijn. In hoofdstuk 7 wordt bewezen, dat zowel boven als 
beneden de voedingsplaat één en slechts één pinch optreedt. 

Typen van pinch-combinaties 
De aangrenzende schotels van de condensor, de voedingsplaat en de reboiler 

kunnen al of niet tot een pinch behoren. In verband hiermee kan men 9 typen 
van pinch-combinaties onderscheiden (Fig. 31). Hiervan kan type 9 uitsluitend 
voorkomen bij de scheiding van binaire mengsels. 

Theorema van UNDERWOOD 

Aangetoond wordt, dat het theorema van UNDERWOOD een rechtstreeks ge­
volg is van de éénduidigheid der pinches. 

Lineaire vergelijkingen voor de toestand op de voedingsplaat van oneindige ko­
lommen 

Tot nu toe kon men de toestand bij de voedingsschotel hoogstens berekenen 
met iteratiemethoden. In hoofdstuk 7 is een stel lineaire vergelijkingen afgeleid, 
waaruit rechtstreeks de samenstelling van damp en vloeistof van de voedings­
plaat (en dus de evenwichtsconstanten) exact kunnen worden berekend. 

Pinch-paradox 
De pinch-parameters zijn discontinu op de randen van het multipletten-

diagram. Hieruit volgt een schijnbare tegenspraak, de pinch-paradox. Deze 
paradox wordt geanalyseerd en opgelost in paragraaf 7.16. 

Alle ontwikkelingen zijn toegelicht met een aantal diagrammen en numerieke 
voorbeelden, die betrekking hebben op een representatief systeem, bestaande uit 
tien componenten. 
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APPENDIX I 

PROOF OF THE FIRST MONOTONY THEOREM 

If the feed rates F\, F%,..., Fj are ordered with respect to decreasing volatility, 
then 

Sbi < Sbj if I <i <j < h 

Proof. The liquid rates of the distributed components, leaving the feed tray, are 

Lpbk, o = Bk S cFbJl(l -ocfcOjj) I <k <h (1,1) 

and the vapour rates of the distributed components, leaving the feed tray, are 

VFtk, o = Dk S CFt)H\ -«i 'Or}) Kk<h (1,2) 
j = h 

according to Eqs. (7,39) and (7,39a) respectively. Applying the conditions of 
perfect equilibrium at the feed tray 

Lpbk, o = Apa-l1 VFtk, o (I»3) 
we find 

Z 
Bk 

AFv.f S cm/il-oc?®;}) 

k 2 cwy/O-atOjj) 
with l<k <h (1,4) 

7 = 1 

Recalling Oyj = a; if 7' > A and O7] = ay1 ify' < /, it follows from Figs. 3 and 
4 that all denominators in the right hand member of (1,4) are positive. Because 
of the mentioned ordering, increase of the index k implies decrease of a.k and 
increase of a*1 and hence a simultaneous increase of the fractions in the nume­
rator of (1,4) and a simultaneous decrease of the fractions in the denominator 
of (1,4). Hence the right hand member of (1,4) is a monotonie function of the 
index k. 

But Bk/Dk = Bkj{Fk-Bk) = Sbkl{\ ~Sbk) is a monotonie function of Sbk and 
vice versa. And hence Sbk is a monotonie function of k. 

APPENDIX II 

PROOF OF THE SECOND MONOTONY THEOREM 

From the equations (3,15), (3,16) and (3,17), which are linear in the un­
knowns Lb, su, Sbi+u . . . , Sbh, we solve an arbitrary separation ratio SM, 
(/ < i < h). 

Using Cramer's rule, application of elementary algebra (expansion of the 
occurring determinants and simplification of the fraction) yields : 

(l-flH<P|ft)(l- «<<&>}) - , \ l (l-a*q>t>) y , 
Ö^FO^) • Xi • L,.f, (1 -a,«*«) • Ui + SM 

7 = A + l ( 1 -V-fàbl) J 

84 Meded. Landbouwhogeschool, Wageningen 61 (9,), i-94 (1961) 



in which 

Xi = -["n (1 - a , « , ) ] J [Fm À ' ( a , -« , ) ] (11,2) 
p=i p=i 

and 

Yi} = [ f ja /n1 ' (a; - a„)] / [ n ' (1 - a A>)1 (11,3) 

(the primes ' exclude the value i, that is the component index of su, from the 
domain of the running index p). 

The quantities X% and Y y are not depending on either OjJ or OiÄ. Partial 
differentiation with respect to ®j} yields 

dsbi _ - ( 1 -a.j®th)Sbi . 

*(Oj})- ( O ï J -O^a - a ^ r 

+ (*ï) - * » ) • ^ y - *+i (1-«,*»})» ( I I ' 4 ) 

The monotonie behaviour of the separation ratio Sbt, that is the permanence 
of the sign of its partial derivative, stems from the order-relations between the 
relative volatilities OL^, the roots 0.% and the parameters 01) and ®7J>. Consulting 
Figs. 7 and 8 and recalling / < i < h, it is seen that2) 

sign (Xi) = (-1) . (-1)*-V(-1)W = (-l)*+/+i (11,5) 
sign (Ytj) = ( - l )A-M / ( + i ) = (_!)»+/+1 (11,6) 

The coefficient of SM has the sign (-1). ^ = (-1) and the remaining 

terms have the sign 

(-1) (+1) (_iy,+/+i (~1) f_nA+/+l = / _ 1 \ 
(-1) - K } • (+1) • *• } l ; 

Hence the terms of (II, 4) are simultaneously negative, and hence 

W ) < 0 l<i<h (II'7) 
As the order-relations hold in the entire intervals (3,19) to (3,24) inclusive, 

the inequality (11,7) holds in any point of these intervals. 
From 

J 
B = S F'ism 

i = i 
it follows 

WÄ)= . 2 /<W)< 0 (II'8) 

as Sbi = 1 = constant for i > h. 
From Eq. (3,17) we find 

Wü = .•?/ Ï ^ A • wk > ° . (II'9) 
as 1 - ajOeft < 0 

x) The exponents can be computed modulo 2. 
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From Lb = (RB + \)B we find 

>*» = [ 5 _ ^ _ _ L 6 _ ^ _ ] / j S 2 > 0 (11,10) 
W!) L

 5(OÏ{) ~ ° W } ) J 

because of (11,8) and (11,9). 
Because of the formal dualisme between top and bottom a similar proof can 

be given for the signs of the partial derivatives with respect to O7J!. 
In chapters 2 to 5 inclusive we have concentrated on the SM, the bottom ratios, 

and hence the formal symmetry has been lost. One can rewrite, however, Eqs. 
(3,15), (3,16) and (3,17) in terms of the top ratios stic = 1 - Sbk instead of SM, 
Vt instead of Lb, a*1 instead of a*, Q*1 instead of Q* etc. etc. and repeat the 
argument. In this way it is found 

< 0 or .- > 0 (11,11) 
WD WD 

Hence 
dD 

WD WD . 
Partial differentiation of Eq. (3,16) yields 

S Fan < 0 (11,12) 

^ = £ ^ t . _ ^ i _ > 0 (11,13) 

in view of (11,11) 
From 

it is found 

W D .--/i-«««!»»} ' W D 

Lb-q = Lt = RDD>0 (11,14) 

dRD =W^-{Lb-q)^ID*>* (11,15) 
WD WD " W D 

with regard to (11,12) and (11,13). 

APPENDIX III 

PROOF OF THE THIRD MONOTONY THEOREM 

Consider a line Sbv = constant in the multiplet (/. h) and choose Sb^. as in­
dependent variable labeling the points of this line. (/ < [x < h, I < v < h, 
(x 7^ v). As the ratios su are solutions of a set of linear equations, one can 
write 

su = TiSbv.+ Ui I <i <h (111,1) 

Let first be i < v and (x < v. 
Ti and £/$ are not depending on Sb^ but contain only constants a#, Qfc and FK 

and the ratio jftv which has been assumed constant either. Hence 

PL=Tt (111,2) 

We have to show that Tt > 0. 
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Putting 

t Ü = i^Ä ( I I I ' 3 ) 

one can rewrite the set of equations (3,15) 

Lb- S " [i] Fifibt = 2 [{] Fj + R] Ftfbv + [l] F A 
i = / j = h+l 

with A: = /, / + 1, . . . , « - 1. 
Application of Cramer's rule yields (after obvious simplification) 

DC) 
su = £ - (111,5) 

in which D stands for the determinant 

I i ta ['t1] ••• -mFi •'• [V] ta I on,6) 
and £><*) for the determinant 

I i [i] m ••'• {*} .:. [VI [â I ( i n j ) 
The primes remind us that the columns [if] and [|] are missing. The symbol 

{k} denotes 

{k}= i [{] Fj + Bf] F^Sbv. + [I] fv 56v (111,8) 
J" = A+I 

Both determinants are of degree h -1 and hence have h - / rows correspond­
ing to the values /, / + 1, ..., h - 1 for k. 

Next we consider a determinant A of degree n and of the type 

A -1 ' d ^ , TZW> - TTihr, ' (I"'9) 

with « rows corresponding to the values 1, 2 , . . . , n for k. By complete induction 
with respect to the degree n it can be shown that A may be expanded into 

(-i)»-i. n' ß,. n (p,_pfc). n (YS-Y<) 
A = ^ - n ' a - f t T « ) (m'10> 

Let now the quantities ßy and Yfc obey the respective conditions 

ß i > ß 2 > . . . > ß » - i (111,11) 
and 

T i < Ï 2 < . . . < T » (111,12) 
Then inspection of (111,10) shows that the differences ßj-ßjfc withy' < k 

are simultaneously positive and the differences Ys - Y« with s < t are simul­
taneously negative. The number of the differences Ts - Y« amounts to 1 + 2 + 
+ . . .+(»-1) = en (n-1). 

Hence the sign of the numerator of (111,10) becomes 

(-l)ra-l , (_l)ire(ra-l) = (_l)i»(ra+l)-l 

We consider next the series of inequalities 

0 < ß(,') < Y(D < ß(2') < T(2) < . . . < ß(i) < Y(n, < ß^+ 1 ) (111,13) 
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Obviously the quantities ßy> and Y(fc> still satisfy the conditions (111,11) and 
(111,12). We strike out two arbitrarily chosen quantities ßy>, say ß(u,) and ß(v>. 

The number of the remaining ßy> thereafter equals (n - 1). We now renumber 
the {n- 1) quantities ßy>, preserving their order and hence conditions (111,11) 
and (111,12), and omit the brackets of the indices, yielding ßi, ß2, . . . , ß»-i . 
These are the quantities occurring in the determinant (111,10). We compute 
now the sign of the denominator. A factor in the denominator is negative if 
1 < ß^Yj; or ßj1 < Y*, hence, with regard to (111,13) if (J) < (k). The number 
of negative factors is most easily determined with the help of a scheme, drawn 
here by way of example for the case n = 5. The signs of all the terms 1 - ß̂ Y^ 
are indicated, [x and v have been taken 3 and 5 respectively. 

One has : 
Total number of negative factors in complete scheme with (n) = 5 amounts 

1 + 2 + . - + « = \n (n + 1). 
Number of negative factors in column [i. amounts n - y. + 1 and similarly 

in column v this number is n - v + 1. Hence after striking out two ß(fc) from 
(111,13) the total number of negative factors in the denominator amounts 

%n(n+l)-n + \i-l-n + v-l = \n (w - 3) + y. + v - 2 

index of 

1 
2 

Y 3 
4 
5 

1 

-
-

2 

+ 
-
-
-
-

i 

+ 
+ 
-
-
-

P 
4 

+ 
4 -

._ 
-
-

5 

+ : 
+ : 
+ : 
+ ! 
-: 

6 

+ 
+ 
+ 
+ 
+ 

Calling the determinant (111,9) a determinant of the A-type, we find :x) 
(_1 ) in(n+l) - 1 

sign (A) = (_1)èra(»-3) +H + V-2 = H ) J'­ en, 14) 
If we take a factor -Ft out of D, it is seen that D is of the A-type with degree 

h-I. Hence we conclude 

sign (Z>) = sign {-FA) = (-1) . (-1)/•+» + ! = (-1)** + » 

We expand the determinant D<*> by splitting up the column {k} 

£<*>= s I i ta .:• fflF, .:. [j] | + 

' + I i ti] .:. mi^ ••• [fl I + 
+ I i [£] .:. m^ 6 v .:. [fl | 

Identification of (111,1) with (111,5) shows with regard to (111,16) 

(111,15) 

T< = '£ I ! lil K] [fl I 

(111,16) 

(111,17) 

The quantities [£] fill column i. They can be shifted to the position of the 
missing ( !) column \L by | i - \i \ - 1 successive column interchanges, introducing 

x) Exponents can be calculated modulo 2. 
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in this way an interchange-sign-factor (-1) I * ~ v-1 ~ x. Now again a A-type deter­
minant is obtained with " missing columns" i and v and hence in view of (III, 14) 
with a sign (-1) i +v + l . We conclude : 

( - l ) l i - f l - l (-l)i+v+l 
sign (T,) = ^ H ) ; + ^ ' = + 1 (111,18) 

It does not make any difference wether (x < i or |x > i and nothing changes 
if [x and i are both > v. 

Finally we consider the case in which [x and i occur on either side of v. The 
proof can be repeated without change until the development of £><*>. Formula 
(111,17) becomes 

Tf = J . i i [[) '.'.. m ... m i (ni,i9) 

Here the first prime denotes the missing column JJ. and the second prime the 
missing column v. The shift of column [£] to the position of the (missing) 
column [x can now be performed by a number of column interchanges 

| i - jx | -2 (111,20) 

which is one less than in the former case, because [£] must pass the column v, 
which is absent, and hence does not need to be interchanged with [£]. So for [x 
and i on either side of v one has 

sign (Ti) = -1 (111,21) 

APPENDIX IV 

INDEPENDENCE OF LINEAR EQUATIONS 

Disregarding the sign and positive factors Fk, (eventually positive factors 
VFOC, O), the determinant of the matrix of coefficients of the system of linear 
equations is of the A-type (111,9), (vide appendix III). It can be read at once 
from the expansion of A given by Eq. (111,10) that the matrix is singular if and 
only if at least either two ß's or two y's are identical, which obviously is not 
the case. 

Meded. Landbouwhogeschool, Wageningen 61 (9), 1-94 (1961) 89 



APPENDIX V 

ROOTS üt OF UNDERWOOD'S EQUATION 

10 

q 

FOR SOME VALUES OF q. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

-1 

0.339 546 
0.512 482 
0.685 530 
0.768 836 
0.823 390 
0.930 295 
1.076 656 
1.232 997 
1.781 498 

-0.5 

0.340 947 
0.514 677 
0.687 240 
0.770 961 
0.825 991 
0.937 420 
1.082 616 
1.272 899 
2.069 048 

0 

0.343 143 
0.517 738 
0.689 189 
0.773 151 
0.828 777 
0.944 393 
1.087 309 
1.308 141 
2.302 725 

1 
2 
3 
4 
5 
6 
7 
8 
9 

+0.3 

0.345 167 
0.520 207 
0.690 482 
0.774 470 
0.830 501 
0.948 342 
1.089 589 
1.324 865 
2.361 732 

+0.6 

0.348 180 
0.523 368 
0.691 869 
0.775 778 
0.832 239 
0.952 041 
1.091 535 
1.338 396 
2.394 842 

+ 1 

0.355 332 
0.529 133 
0.693 863 
0.777 477 
0.834 536 
0.956 532 
1.093 702 
1.352 424 
2.420 750 

COEFFICIENTS 
Fk 

1 - a-jcQ-i 

APPENDIX VI 

OF LINEAR EQUATIONS PERTAINING TO PLANE q = 0.6 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

nx 

-1.122 601 
0.263 470 
0.293 052 
0.301 911 
0.141 649 
0.233 492 
0.199 442 
0.072 819 
0.158 673 
0.058 090 

n2 

-0.087 703 
-1.711 749 
0.651 320 
0.545 232 
0.231 354 
0.351 647 
0.272 747 
0.094 524 
0.189 384 
0.063 239 

n3 

-0.046 485 
-0.208 474 
-3.703 213 

2.425 142 
0.591 880 
0.685 101 
0.421 900 
0.132 515 
0.232 697 
0.069 132 

n4 

-0.037 669 
-0.145 044 
-0.855 395 
-3.382 664 

2.642 226 
1.298 035 
0.579 783 
0.165 673 
0.262 608 
0.072 496 

n5 

-0.033 406 
-0.120 395 
-0.563 701 
-1.295 309 
-1.985 173 

3.261 491 
0.774 912 
0.199 215 
0.287 471 
0.074 951 
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k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

fi„ 

-0.026 938 
-0.088 488 
-0.327 056 
-0.560 901 
-0.420 939 
-1.476 059 

2.710 649 
0.349 252 
0.359 743 
0.080 751 

fi, 

-0.021 982 
-0.067 621 
-0.219 676 
-0.337 858 
-0.219 528 
-0.548 450 
-1.420 221 

2.837 926 
0.508 635 
0.088 749 

o. 

-0.016 583 
-0.047 710 
-0.138 945 
-0.198 306 
-0.118 872 
-0.259 665 
-0.384 165 
-0.244 431 

1.901 065 
0.107 610 

fi9 

-0.008 085 
-0.021 110 
-0.054 007 
-0.071 651 
-0.040 129 
-0.079 814 
-0.093 201 
-0.043 277 
-0.177 413 

1.188 687 
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APPENDIX VII 

NOTATION 

Components are arranged with respect to decreasing volatility. 
Sometimes an * is used to denote a constant value of a variable. 
Symbols pertaining to bottom section are distinguished by a first subindex b. 

Sometimes, however, index b is preceded by an index F, indicating either that 
the symbol belongs essentially to the complementary formulation, or that the 
tray number refers to the complementary system of numbering. (Fig. 30). 

If the symbol depends on the component index, b is immediately followed 
by this index. The component index is separated by a comma from the tray 
number, which comes last. 

Similar rules apply to symbols pertaining to top section, where b is replaced by t. 

As ; Apt generating functions of absorption factor products. 
Ap absorption factor of reference component a t feed tray. 
Abm ', Apu absorption factors of reference component. 
AM, m ', Apu, v absorption factors of component i. 
Apb(m) absorption factor product A\,\ Abi--- Abm of reference 

component. 
ApFt(v) absorption factor product Apa AFII •.. Aptv of refer­

ence component. 
B total residue rate. 
B]c residue rate of component k. 
CM ; cpbi ; cu ; cpu residues of poles of generating functions. 
D total distillate rate. 
D]ç distillate rate of component k. 
F total feed rate ; byconvent ion.F=l throughout this thesis . 
Ffc feed rate of component k. 
h index of heaviest distributed component or heaviest 

component in distillate rate. 
i component index. 
J or J total number of feed rates F^. 
j component index. 
Kp equilibrium constant of reference component at feed tray. 
Kbm', Kpbfi. equilibrium constant of reference component at tray m 

(or |A) of bot tom section. 
Ktn', KF^ equilibrium constant of reference component at tray n 

(or v) of top section. 
KM, m', KPM, ix equilibrium constant of component i at tray m (or JA) 

of bot tom section. 
KM, n', Kpu, v equilibrium constant of component i a t tray n (or v) 

of top section. 
k component index. 
Lb total liquid rate ( = total molal overflow) in bottom 

section; throughout this thesis Lb is assumed indepen­
dent of tray number. 

Lbk, m+i', Lpbjc, n+i liquid rate of component k leaving tray m + 1 (or 
[i. + 1) of bot tom section. 
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Lt total liquid rate ( = total molal overflow) in top section; 
throughout this thesis Lt is assumed independent of 
tray number. 

Ltk, n+i', LFUC, v+i liquid rate of component k leaving tray n + 1 (or v -f 1) 
of top section. 

/ index of lightest distributed component or lightest com­
ponent in residue rate. 

M total number of trays between reboiler and feed tray of 
finite columns. 
tray number index (bottom section). 
total number of trays between feed tray and condenser 
of finite columns. 
tray number index (top section). 
t ray index denoting pinch. 
thermal feed condition parameter, (total feed rate F= 1 !). 
reboil ratio. 
reflux ratio. 
generating functions of stripping factor products. 
stripping factor of reference component at feed tray. 
stripping factors of reference component. 
stiipping factors of component i. 
stripping factor product Sa St2 •• • Stn of reference 
component. 
stripping factor product Spn\. Spb2 • • • SF^ of reference 
component. 
separation ratio of component k. 
(top) separation ratio of component k. 
generating functions. 
auxilliary function (6,18). 
auxilliary function (6,18a). 
mole fraction in liquid. 
mole fraction in vapour. 
relative volatility of component i with respect to refer­
ence component = Kbm, i/Kbm = Ktn, i\Ktn\ in this 
thesis assumed constant throughout column. 
particular value of index h. 
particular value of index /. 

(i. tray number for bot tom section in complementary 
system of numbering (Fig. 30); sometimes used as com­
ponent index, 

v t ray number for top section in complementary system of 
numbering (Fig. 30); sometimes used as component 
index. 

®-b\ k' th root of characteristic bottom equation (3,1). 
Q>~,1 k' th root of characteristic top equation (3,2). 
®Fbk = ®bk k' th root of complementary characteristic bottom 

equation (6,58). 
®FU = ®tk k' th root of complementary characteristic top equation 

(6,58a). 
O* k' th root of UNDERWOOD'S equation (3,12). 
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m 
N 

n 

P 
q = Lb-Lt 
RB = Vb/B 
RD = Lt/D 
&Fb', S j 
SF 

"Ji^6[i) Stn 
SFM, |i> Sfi, ; 
Spt(n) 

SpFbiy-) 

Sbk = Bk/Fk 
stk = DkjFk 
U 6 ; U , 
ub(k) 
ut(k) 
X 

y 

n 

i\ 

X 
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