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1. INTRODUCTION 

As far as could be traced CANFIELD (1941) is the first to use a sampling 
technique that he describes as the 'line interception method' for sampling range 
vegetation. He rightly considers his technique as a streamlined version of earlier 
'line transect sampling', a well-known design used on maps or aerial photo
graphs and in the field, for estimating the (multinomially distributed) area 
proportions of strata. However, in the description of the extension of his method 
to assess forage utilization and forage volume, this author comes close to the 
principle of what more recently is denoted by 'line intersect sampling', a pro
jection of the principle to other than range vegetation appraisals. More specific
ally line intersect sampling is propagated as a method to quickly obtain volume 
estimates of logging residue on clearfelled areas so as to have a check on forest 
fire danger, or on royalties due by pulpwood contractors because of incomplete 
removal of usable material. WARREN and OLSEN (1964) in New Zealand are the 
first to describe the method for the latter purpose ; as far as could be traced the 
term 'line intersect method' comes to their credit. These authors were faced 
with the problem of annually assessing, with limited manpower, 2500 acres of 
clearfellings in Pinus radiata for low-priced pulpwood-size residue. Previous 
work by MITCHELL in New Zealand had shown that sampling with quarter-acre 
circular plots not only was too time consuming and expensive but also had to 
be very intensive in order to yield an acceptable precision. As most time went 
to the searching of plot areas for qualifying pieces, attention subsequently was 
given to long and narrow rectangular plots in which logs were encountered 
automatically, thus reducing searching time. Though these narrow plots seemed 
to sample the population more representatively, precision and time gain did not 
increase to such an extent as to make the inventory feasible under prevailing 
restrictions. The authors then conceived the idea of reducing plot width to a line, 
and pay attention only to the volume of the logs that intersected with that line, 
as this volume, they considered, should bear some relationship to total volume 
in a given area. On a semi-empirical basis they developed a formula for esti
mating volume of residue per acre in which, apart from the number n of inter
secting logs and line length L, two empirical values appear, named a and Ic, of 
which the first depends on dimensional characteristics, and the second on the 
orientation of the log population relative to the sampling line. This orientation 
may be pronounced, as in skyline logging, or approximately random as in 
logging by tractor, but appeared unaffected by felling direction and log size. 
Field trials made in random and oriented populations by means of mutually 
perpendicular lines of 20 chains yielded good estimates as compared with plot 
sampling, and proved to be about five times quicker than the latter. The authors 
include a theoretical basis for their method and rules for the field procedure, 
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but do not consider the case of logs showing multiple intersection. 
A considerable improvement in the theoretical background of line intersect 

sampling is given by VAN WAGNER (1968) who measures log diameter at the 
point of intersection, and develops theoretically sound estimators for volume 
and weight of logging residue per acre. Moreover he computes maximum bias 
due to log orientation relative to the sampling line for three alternative appli
cations, presents the results in a graph, and concludes that in unidirectionally 
oriented populations sampling with three lines under different angles is advis
able in order to avoid the determination of a special bias coefficient as used by 
WARREN and OLSEN. A field test with nineteen 100-feet line sections in a 20-acre 
clearcut with stems bucked into 16-feet logs, randomly oriented, yielded a half 
95 %-confidence interval of 11 % of the mean, but the result was not compared 
with true volume. The job implied diameter measurement at 680 intersections 
and was completed in 5 hours by two men. Further, the results of an office trial 
for estimating the number of elements per area unit are given, using various 
numbers of randomly distributed matches of uniform diameter and length. The 
latter author indicates a number of tallying rules; these include the advice to ig
nore any piece the central axis of which coincides with the sampling line, and fur
ther, to take diameter measurements at all points of intersection incase a log inter
sects more than once, though he expresses doubt as to the mathematical correct
ness of the latter procedure. This advice will be commented on in the following. 

BROWN (1971) describes a planar intersect method for sampling fuel volume 
and surface area, based on VAN WAGNER'S theoretical approach. The author 
discerns between cylindrical and rectangular parallelopiped shaped particles. 
Actually, ordinary line intersect sampling also is a planar intersect method, as 
in fact intersections with the line are evaluated by ocularly projecting pieces 
lying below or above the line onto the latter. 

HOWARD and WARD (1972), though erroneously quoting the meaning of the 
symbol V for volume per acre in VAN WAGNER'S estimator, describe an inter
esting field test in which 25 sampling lines, each having a length of 200 feet, are 
distributed in various patterns over clearcut areas of 40 acres, viz. randomly 
and in two systematic grid designs, one of which with straight lines, the other 
with symmetric L-shaped lines. Precision of the random pattern seems superior 
to that of the systematic one with L-shapes. 

VAN WAGNER (1968) supplies the unbiased estimator for volume per acre 
and the closely related one for weight, as well as a very restricted one for number 
of pieces. BROWN (1972) adds the also closely related estimator for surface area 
of residue to it. However, for general purposes, including the ones the above 
authors are concerned with, but also phytosociological, ecological and range 
inventory activities, knowledge of various other population parameters might 
be of importance. Considering the assessment of logging residue once more, it 
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might be of interest to be able to obtain from line intersect sampling estimations 
of e.g. average mid-diameter and average length per piece, total number of 
pieces per acre, etc. Forest entomologists might want to estimate total number 
of borer beetles in logs on an area, and mycologists total number of fructifica
tions of wood destroying fungi. In range capacity assessment one would not 
only like to obtain from a line intersect sample (so not from a belt of certain 
width (CANFIELD, 1941) about it) an estimation of the area occupied by various 
herbaceous and ligneous species, but also data as to weight, growth etc. per 
species. Phytopathologists might be interested to obtain estimations of total 
number of host-attached plant parasites in a certain area, etc. Finally, just from 
a line through a stand or its aerial photograph, a forester might wish to obtain 
information on stand characteristics. 

The author herewith presents a generalisation of the theory of line intersect 
sampling that might make possible all these estimations, and at the same time 
supplies an approximate estimation of the variance of the estimated quantity, 
even in case of a one-line sample. 

2. BUFFON'S NEEDLE PROBLEM AND LINE INTERSECT SAMPLING 

On a rectangular flat area of size WL (Fig. 1) through the center of which a 
line parallel to L has been drawn, a thin needle e'e of length lt is randomly 
thrown. Provisions are such that 1) I, < W, 2) the needle's center M is always 

FIG. 1 The needle problem 
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within the boundaries of the area, 3) irrespective of the position of M the needle 
may point in any direction, and 4) the length L is sufficiently long relative to /, 
to allow intersections of type S' to be neglected. 

The question we put is: how large is the probability that the needle will 
intersect with the center line? 

The position of the needle relative to the center line may be indicated by the 
perpendicular distance m = MT of M to the center line, and the acute angle 9 
between the needle's direction and that of the center line. Obviously, within the 
area: 0 < m < W/2 and 0 <<p <TC/2. It should be noted that we are neither 
interested in whether e points to 'the right' or to 'the left', nor whether M is 
located 'above' or 'below' the line. 

All possible combinations of m and 9 are equally probable, i.e. m and 9 are 
stochastically independent and uniformly distributed, m on the interval [0, W/2] 
and 9 on the interval [0,7t/2]. See Fig. 2. 

In cases where needle and center line intersect in a point S at a distance x 
from M, the condition x < l,/2 must be fulfilled, i.e. 

w/sin 9 < /(/2 or m < (7f/2) sin 9 (1) 
In other words: all sets (9, m) that satisfy (1) imply intersection. Such sets are 
found in the dotted region under the graph of m = (/,/2) sin 9 in Fig. 2 ; the 
area of this region is 

y j 2 ( / i / 2 ) s i n 9 d 9 = /i/2 

W/2 

li/2 

0 <Po 9 — - ir/2 
FIG. 2 Derivation of probability of intersection 
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The probability of intersection then is found as the quotient of the dotted area 
and that of the entire rectangle, i.e. as 

Pt = (/f/2)/(7t »74) - 2/,/Tt W (2) 

The above is a slight modification of the solution published in 1777 by George 
Louis Leclerc, Comte de BUFFON (France, 1707-1788). 

Note that the case (cp, m) = (0,0) is also considered as an intersection. Further, 
if the needle has an inclination y with respect to the flat plane, its effective length 
parallel to the plane is lt cos y, so that in general the probability of intersection 
is 

Pi = 2/, cos y/rc W (3) 

However, if one wishes to investigate whether the needle would have intersected 
if its position had been parallel to the plane, it should be rotated in its vertical 
plane and about its center of gravity M until it is parallel to the plane (Fig. 3). 

If the needle is substituted by an arbitrary solid of revolution the axis of the 
latter can be identified with the former. A solid of revolution other than a cyl
inder will in general have its axis inclined under a non-zero angle to a flat plane 
on which it rests, so that (3) is applicable. This influence on pt however may be 
neglected in the practical application to be considered. Under field circum
stances we have no perfectly flat plane either, and a solid may show an appre
ciable inclination because of local topography. In order then to evaluate whether 
there occurs intersection, the method of Fig. 3 should be employed. For obliq
uely truncated solids lt of course is the length of axis contained within the solid. 

FIG. 3 Check on intersection of inclined solid with sampling line 
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3. DEFINING A RANDOM VARIABLE ON A SOLID. EXTENSION TO N SOLIDS. 

GENERAL ESTIMATOR FOR A TOTAL PER UNIT AREA. 

A solid i may have an attribute x (e.g. mid-diameter) of value x, (e.g. dt). 
With this attribute a stochastic ( = random) variable ttXt may be associated (*) 
which takes the value x, with probability pt (2) in case of intersection (tt = 1), 
and the value 0 with probability (1 -pt) otherwise (tt = 0). Then the expected 
value of /jXj is : 

s ttX, = xf e ti = Xi(l.pi + 0 (1 -/?,)) = xtpi = 2x,/(/7r W (4) 

If the elements of a population of N solids, with different x, and /( are thrown 
randomly and independently into the area WL, and if n of these solids (con
stituting a sample of n out of N) intersect the center line, we have by (4) : 

e 2" x, = s 2 " /,*, = 2 " x,pi = (2/TT » 0 Sw *,/, or 
(7T/2L) £ S" xf = S^ x,/,/ WL (5) 

The right member of (5) is the mean quantity of (x^,) per unit area ; obviously 
an unbiased estimator of the latter is given by : 

(7C/2L) 2" x, (6) 

From (5,6) it follows that the total of any quantified solid attribute xt per 
unit area, viz. : 

X=XN xJWL 

can be estimated by : 

X = (7t/2L) 2 " f,*,//, = (7T/2L) 2« xJh (7) 

where 2" xjli is the sum over the sample of n intersecting solids, of the quan
tified attributes xt, each weighted with the inverse of the corresponding solid 
length /;. 

By proportional expansion, (7) yields an estimator of the population total for 
areas of arbitrary size. 

Now, if an area of WL is randomly placed within a larger area already 
randomly strewn with solids, we intuitively are in the same situation as having 
thrown solids randomly onto a fixed area of WL. It should be noted that the 
magnitude of W does not appear in the estimator (7). 

1 Throughout the text a stochastic variable (like tj) will be underlined only when confusion 
with its realisation (t,) might exist. 
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4. ESTIMATORS FOR SPECIFIC PARAMETERS 

4.1 Volume 
Tf the attribute x is defined as the volume of a solid, ti^i may take the values 

v( = 7t dJi/4 or 0 with probabilities associated with intersection and non-inter
section respectively, as above. From (7) it then follows that : 

V = (TT:2/8L) 2" d] 

is an unbiased estimator of: 

(l/WL) 2 " Ti d%\4 = {1/WL) 2 " v, = V'jWL = F 

where vt is the HUBER volume of a solid with mid-diameter dt and length /f, F ' 
total volume of the TV solids, and Fis mean volume per area unit. If all measures 
are in feet, the estimation is in cft/sq.ft ; conversion gives : 

Vd = (37.8125TU2/£) 2" d) eft/acre (dt in inches, L in feet) (8) 

The metric equivalent is : 

Vm = (TT2/8L) 2" d] m3/ha (rf, in cm, L in m) 

The indices d and m stand for duodecimal and metric system respectively. It is 
noted that VAN WAGNER (1968) though by an other reasoning, arrives at the 
same estimator for volume per area unit. 

4.2 Weight 
The estimator for weight per unit area is readily derived from (8), putting 

5 = specific gravity of solid substance relative to density of water, i.e. 62.4 lb/cft 
or 1000 kg/m3 : 

Qd = (1.1797571:2 S/L) 2" d] short tons/acre (9) 
or Qm — (^2 SßL) 2" d2. metric tons/ha 

with dt and L in the same units as in (8). 

4.3 Mid-sectional area 
If the attribute x is defined as the mid-sectional area of a solid, ttXt may take 

the values gt = n d2J4 and 0. Then it follows from (7) that : 

G = (n:2/8L) S" d2/lt 

is an unbiased estimator of: 

(l/WL) 2 " 7i d2J4 = (l/WL) 2N
 gi = G'/WL = G 
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where gt is the mid-sectional area of a solid, G' the sum of mid-sectional areas 
over all N solids, and G the mean quantity of mid-sectional area per unit area. 
Conversion of units gives : 

Gd = (37.81257r2/L) 2" d% sq.ft/acre (</, inches, lhL feet) (10) 
or Gm = (l.25n2/L) S" </*//, V / h a (rf, cm, /, dm, L m) 

4.4 Number of solids 
Associating with each solid an attribute x of constant value xt = 1, the 

stochastic variable tiXt = /,- may take the values 1 and 0 in the cases of inter
section and non-intersection respectively. It follows that an unbiased estimator 
of the number of solids per unit area is : 

or Nd = (21780 n/L) 2" 1//, solids/acre (/,-, L in feet) (11) 
Nm = (5TT: 104/L) S" l//f solids/ha (/, in dm, L in m) 

It is noted that if all solids are of equal length /, (11) changes into the estimator 
for number of solids per area unit derived by VAN WAGNER (1968). 

4.5 Total length of solids 
Taking a solid's length as its attribute x, ttXi may take the values lt and 0. 

Hence A = W IJWL, i.e. total solid length per unit area, is estimated unbiased-
ly by it n/2L. In specified units : 

Ad = 21780 Ti n/L feet/acre (L in feet) (12) 
or Am = nn 105/2L dm/ha (L in meters) 

4.6 Mean solid volume 

The estimator for mean volume per solid is, by (8, 11) 

v = V/N 

leading to : 

vd = (TC/576)(S" rf2)/(2" 1//,) eft (<ƒ, inch, /, feet) (13) 
or vm = (TC/400)(S" d))/(Ln I/I,) dm3 {dt cm, lt dm) 

4.7 Mean mid-sectional area 
From (10, 11) the mean mid-sectional area per solid is estimated as 

| = GIN 

leading to : 

gt = (TT/576)(E" <//,)/(S- 1//«) sq.ft (</, inch, /, feet) (14) 
or | m = (7t/4)(S- <//,)/(S" 1//,) cm2 (rf, cm, /, dm) 
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4.8 Mean mid-diameter 

The estimator of the diameter D of the mean mid-sectional area satisfies : 

n D2jA = I 

so that with (14) we have: 

D2 = (pd2
t/lt)l(L' 1//,) sq. inch or cm2 (15) 

and D = \/^2 inch or cm. 

Units as in (14). 

4.9 Mean solid length 
Taking Xt as the LoREY-type of average solid length, we have Xj = VjG, and 

obtain from (8, 10): 

Al = V/G = (2" <#/(E" rfj//,) feet of dm (16) 

with units as in (14). 
The estimator of the arithmetic mean solid length is : 

X2 = Â/N = n/S" l//j ft; dm (/, in ft; dm) (17) 

4.10 Total and mean of arbitrary attribute 
The unbiased estimators in sections 4.1-4.5 are only illustrations of the appli

cation of the general estimator (7). It is obvious that x, may also stand for e.g. 
bark volume, surface area, cull percentage, number of borer beetles, number of 
knots or annual rings etc. in a solid ( = log). 

It can be shown (section 6) that the derived estimators (13-17) and similar 
ones related to arbitrary attributes are approximately unbiased if the number of 
intersections is large. 

5. VARIANCE OF A QUANTITY PER UNIT AREA. REQUIRED LINE LENGTH 

5.1 Within a given area of arbitrary size and shape a straight random sampling 
line that traverses the entire area may be chosen by first randomly selecting a 
point within the area, and then a random direction. So there is an infinite num
ber of ways to select a random sampling line, and each of the corresponding 
sampling lines, the length of which may vary between zero (i.e. unspecified 
observation) and a maximum value, has the same probability of being chosen. 
By (7) an unbiased estimation of the same parameter X is associated with each 
sampling line. Supposing that all possible estimations are distributed about X 
with variance 

v a r X = S2 
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and taking a random sample of k lines of length L} (J = 1 . . . k), we obtain k 
estimations with mean 

Xn=VXjlk, 

from which S2 can be estimated by : 

s2=^\Xj-XmYI{k-\) (18) 

If we suppose a uniform random population, the estimations obtained from 
j = 1... k disconnected sampling lines of length L3 are as good as the k esti
mations we would obtain if the lines were connected one behind the other to 
constitute one sampling line of length Sk L3. The expected total number of 
intersections on the latter, s n, may be expected to equal s £ ƒ n3, and also : 
s 2" xjlt = s 2 ƒ Ti"J Xijßij. Hence we may write for the estimation associated 
with the long line : 

z X = <TU/22* LjW xJU = £(1/2* L,)SJ L3{izßL3)IP/ xu/lu = 
= zl?LJX3V

kLJ = zXw 

This suggests that an estimation should be weighted with the length L} of the 
sampling line with which it is associated, and that in case k lines are used, the X 
for the entire area is represented best by : 

Xw = Z" LAß" Lj (19) 

As in hypothetical repeated sampling with k random lines the L,-series need 
not be the same, it is mathematically difficult to derive the estimator of the 
variance of (19). However, if we specify that in hypothetical repetitions the 
same Lj-series will be considered, we have the conditional expression : 

vâr Xw\Lj(j = l...k) = s2Zk L)l&LJ)2 (20) 

where now s2 is the estimation of the variance in the subpopulation of esti
mations (7) associated with a given set of line lengths Lj(j = 1... k). The above 
also holds if the lines are given specified lengths a priori, without the condition 
that they have to traverse the entire area. For all L3 of equal length L, (20) 
becomes simply: 

vâr XW\L = s2/k (21) 

It follows that in line intersect sampling with k random lines we do not get 
around a conditional variance at present. But then there is still another aspect, 
which may also open the possibility of estimating a conditional variance in case 
of sampling with one line only. 

In line intersect sampling the probability of finding a specified sample with n 
intersections on a line, i.e. the probability of obtaining a sample S„ is : 
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f(S„) = ( | | ƒ>,)(] I (1-/»,)) (22) 
fe5n i$Sn 

From (22) it is seen that P(Sn) depends on the p, of the n solids that intersect the 
sample line and, as these probabilities in their turn depend on /;, the P(Sn) may 
be quite different even for samples of equal n. Actually, after a line intersect 
sample has been taken, we have randomly selected, without replacement, n 
units out of N by considering each of the N units separately, giving each a 
chance pL of becoming included in the sample. This principle, basic to line 
intersect sampling, is named POISSON sampling by HÄJEK (1964); by its nature it 
produces samples of size n, where n itself is a stochastic variable. 

So line intersect sampling is POISSON sampling. If we sample with one line of 
length L, we derive from (7) : 

var X = (n/2L)2
 S*(JC,//,)2 var t, (23) 

with var tt = s t] - (sf,)z = pt(\-Pi) Ä PI 

as in practical cases the pt may be considered small relative to one. It is noted 
that in (23) line length is supposed to be constant in hypothetical repetitions. 
Resubstitution of pt from (2) in (23) gives: 

var X = (7T/2L) Sw(^//,)/ WL (24) 

and from the preceding theory it follows that this quantity can be estimated by : 

vâr X = (TC/2L)2 E-C*,//,)2 = (TC/2)2(n/L)(l/L)S»(xi//()
2/n (25) 

which, it is reminded, is an approximate, conditional expression. For con
venience (25) is written as : 

vâr X = (7i:/2)2(n/L)(l/L>2 (26) 

with s2 = S"(JC,//,)2/« 

When k random lines, numbered j = 1... k of length L} are used, k indepen
dent estimates (7) with variances (24) are obtained. Combining the results of 
these k lines, the best estimate of X may be put at : 

Xw. = S* WAP* WJ (27) 

with var Xw — (S* Wj)'1 and Wj = 1/var Xs 

which quantities can be estimated by putting 

Wj = 1/vâr Xj. 

It is seen that (26) decreases with increasing line length Lj, and increases with 
the number rij/Lj of intersections per unit of L}. In a uniform random population 
of solids, rij/Lj and s2 will not vary much, so that (26) will be approximately 
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proportional to 1/L,. Then the estimate in (27) will be about equal to (19). 
Using (25) the approximate estimated conditional variances of the estimators 

(8) through (12) can be written down directly. The results are given in the table 
below. 

Metric and duodecimal estimators are indexed m and d respectively. In the 
metric system dt is in centimeters, /, in decimeters, L in meters, and S is specific 
gravity of solid material relative to the density of water, i.e. 1000 kg/m3. In the 
duodecimal system dt is in inches, /( and L in feet, and S is specific gravity 
relative to the density of water, i.e. 62.4 lb/cft. 

Estimated approximate conditional variances in line intersect sampling with one line. 

Volume per unit area 
vâr Vm = (TT2/8L)2 EV 2 ) 2 (m3/ha)2 

vâr Va = (302.5)2 (entire expression for vâr Vm) (eft/acre)2 

Weight per unit area 
vâr Qm = S2 (entire expression for vâr Vm) (m.tons/ha)2 

vâr Qd = S2 (entire expression for vâr Vd) (short tons/acre)2 

Mid-sectional area per unit area 
vâr Gm = (107r2/8L)2 2"(rf2//,)2 (m2/ha)2 

vâr Gd = (30.25)2 (entire expression for vâr Gm) (sq.ft/acre)2 

Number of solids per unit area 
vâr Nm = (50000)2(TT/L)2 2"(1//,)2 ^ (no/ha)2 

vâr Na = (0.4356)2 (entire expression for vâr ̂ m) (no/acre)2 

Total length per unit area 
vâr Âm = (l/«)(«Tt 105/2i)2 = Â2Jn (dm/ha)2 

vâr Â, = (1/»)(21780 nn/L)2 = Â2/n (ft/acre)2 

Expression (26) may be used to approximately find the required line length 
in uniform random populations in case a specified sampling precision should be 
met. Assuming that (7) is normally distributed about X with (24), and requiring 
that half the 95 % - confidence interval should not exceed a value H, we may put 
approximately: 

2 Vvar X < H 

from which follows the estimated required sample line length as 

L>(np/Lp)(nsPIH)2 (28) 

where npjLp and sp are values from a pilot sampling line of length Lp. 

5.2 For completeness' sake it should be mentioned that the theory of rejective 
sampling of size n, developed by HÂJEK (1964) as a special case of POISSON 

sampling, is also applicable to the problem of line intersect sampling. Rejective 
sampling of size n is accomplished by considering all elements of a population 
in succession, giving the i th element a chance pt of becoming included in the 
sample, but only samples of final size n are given attention, all others are ignored. 
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[n rejective sampling of size n, HÂJEK employs the unbiased HORVITZ-THOMPSON 

estimator : 

for the population total X. Here n„ the probability of inclusion of the i th unit 

in a sample, is in general a complicated function of the/?; of selection. However, 

if the pt satisfy: 

Pi = n. /,-/£" h = n.z„ i.e. 2» p, = n (29) 

where lt is a measure of size of an element, HÂJEK proves that the 7r( may be 
put approximately equal to the pt. 

Then the expression for the above estimator becomes identical to: 

Xpps = X'(xt/z,)/n 

i.e. the unbiased estimator for a population total X (COCHRAN, 1963) used in 
sampling with replacement with sample size n and selection probabilities zt. 

For rejective sampling of size n HÂJEK derives the expression for the popu
lation value of the variance which in our notation reads : 

var X0 ~ Z*(JC( - R.l,)\-n.l, + 2 N /,)/«.ƒ, 

with R ~ 2 " Xi/Z
N lt 

Putting zt = li/IiN /„ it is easily seen that for small z, : 

var X0 ~ X* zfajzi- X)2/n (30) 

which is the expression for COCHRAN'S (1963) estimator, and that HÂJEK'S 

estimator vâr X0 likewise reduces to : 

vâr X0 ~ vâr XPP5 = Tf(x,/zt - 2" x,/nz,)2/n(n-i) (31) 

Now if in line intersect sampling we take the sum of (2) over the N solids in 
the population, and require : 

ZK
 Pl = (2/it WyLN It = n (32) 

as in rejective sampling of size n, it follows that the requirement (see section 
4.5): 

A = 2 N ltjWL = 7T n/2L = A 

is implied, i.e. the identification of the estimate in 4.5 with its expected value A. 
In fact this is not unacceptable if only one sampling line is used. If, under this 
assumption, W from (32) is substituted in (2), we obtain (29), which implies 
that: 

Pl = m = HJTZW or TC/2 = 1,/^W (33) 

14 Meded. Landbouwhogeschool Wageningen 73-11 (1973) 



holds in line intersect sampling with fixed sample size n. Substitution of 7t/2 
from (33) in our estimator (7) gives : 

X = {{/LySrinßXxJl,) = (l/WLß" x,/nt = (l/WL) X„ 

which is of the HORVITZ-THOMPSON type. Consequently: 

vâr X ~ (l/WL)2 vâr X0 (see (31)) 

supposing hypothetical repetitions are made with the same L. By substitution 
of W from (32) and of the expression for zh the latter formula changes into the 
approximate, conditional estimator : 

vâr X Ä (7i/2)2(«/L)(l/L)S"(xi//i - 2" xJnltfKn-l) (34) 

which resembles (25) in many respects, and from which expressions for the 
estimated variances of estimated specific parameters can be derived in a similar 
way as before. However, in (34) restrictions are more severe than in (25) as, 
though in both formulae a constant L is assumed, the n in (25) is allowed to vary 
in repeated sampling, contrary to the n in (34). As we have the estimator (25), 
we can dispose of (34) the more so as the latter yields the value zero in a solid 
population of identical elements. Of course (25) produces larger values than 
(34). 

6. APPROXIMATE VARIANCES OF MEANS PER SOLID 

If we put 

D2 = 2W d2JN = (e 2" d*//,)/(e 2" 1/4) = R (population ratio), 

and in (15) 

D2 = (2" d*//,)/(2" 1//,) = w/m = R (estimated population ratio) (35) 

where ut = d2Jlh mt = \jlt, ü = 2" ujn with analogon for m, we have: 

R-R = (l/m)(w- Rm) ~ (l/nM)2"(Mi -Rmt) = (l/nM)2"(^-Ä)//, = 
= (1/«M) 2" xjh = (1/«M) 2 * /,(*,//,) ' (36) 

where m has been put equal to 

M = 2W mJN 

which is only allowable when n is large, and where further xt = d.-R is the 
quantified attribute of a solid, tt(

xilh) being the associated random variable as 
before, with /( = 1 or 0 in case of intersection or non-intersection respectively. 
It is easily shown that the expected value of (36) is zero if n is large, so in that 
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case (35) is an unbiased estimator of D2. The same property holds for the esti
mators (14-17). 

From (7) and (25), vâr S" *,//( can be found, and applying this result to (36) 
we obtain: 

vâr D2 = vàrR~ (2" 1//,) - 2 Y,\(d] - D2)/h)2 cm4 ; inch4 (37) 

where in and (35) have been resubstituted for lack of knowledge of the popu
lation values. Units in (37) are as in (14). 

It is noted that the same result is not found by applying the well-known esti
mator for the variance of an estimated ratio to (35) : 

vâr Ê = (l/m)2(l/«)(/ + £ V - 2 Rsum) (38) 

In doing so we find the variance under the more restricted conditions of HÄJEK'S 

rejective sampling of size n. 
To find an approximate expression for the variance of the estimated mean 

mid-diameter we might expand the function 

f02) = Vß2 

by a TAYLOR series, putting 

D2 = D2 + 8, where sS2 = var D2. 

We then obtain : 

vâr D ~ vâr D2/4Î)2 cm2 ; sq. inch (39) 

In a similar way we find (cf. 13) 

vâr v ~ (2" 1 //,) - 2 Z"((v, - v)//()
2 dm6 ; eft2 (40) 

with units as in (13). 
Further (cf. 16): 

vâr X\ ~ (S" d%)-2 S"(<(/( - Xi)//,)2 dm2 ; sq. ft (41) 

with units as in (16), and finally (cf. 17): 

vârX2 ~ (2" l / / ()-2 2"((/; -i2)lh)2 dm2; sq. ft (42) 

with units as in (17). 

From the above it will be clear that an expression for the conditional variance 
of similar mean values of other attributes can be derived analogously. 

Formula (38), where sum = 9um.su.sm indicates that these variances will be 
smaller the more u and m are positively correlated. When many different mid-
diameters and lengths are present in the population of solids, and if their values 
vary independently to a considerable extent, no high correlation coefficients can 
be expected however. 
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Using k random lines, k independent sets of estimates of a population mean 
and its variance are obtained, and weighted means may be constructed similar to 
(19) or (27). 

7. BIAS DUE TO ORIENTATION OF SOLID AXES 

The preceding formulae are based on a population of solids in random order, 
i.e. a population in which 1) the centers of the axes are randomly distributed 
over the area, 2) the orientation of the axes is random. If the orientation of the 
axes relative to the sampling line shows a pronounced trend in one direction, 
severely biased results may be obtained if the formulae for random populations 
are applied. 

VAN WAGNER (1968) derived the values of maximum bias in expected value 
of estimated volume per unit area, for the theoretical case that all solids are 
oriented in the same direction, viz. under an angle 9 with the sampling line. 
He computes this bias for three alternatives, viz. for 1) the result obtained in 
sampling with one line under a constant <p0 with the axes, 2) the average result 
in sampling with two perpendicular lines, one under an angle <p„ with the axes, 
and 3) the average result in sampling with three lines with mutual directional 
differences of 60°, one under an angle cp„ with the axes. The relation of this 
bias to the angle cp0 is easily explained by the needle model (Fig. 1) as follows: 
if <p„ is constant and 0 < w < W/2, condition (1) becomes: 

m < {lil2) sin <p0 

so that (Fig. 2) the probability of intersection is found as the quotient of the line 
segments (/;/2) sin <p0 and W/2, hence 

/>, = (/< sin <p0)/^ (43) 

Using (43) in (4 etc) we obtain for one sample line: 

s X = S(TE/2L) 2" xjlt = (TT/2) sin <p„ 2 * x,/ WL = (TU/2) sin <?0.X 

The procentuaL bias relative to X then is 

B = 50(7i sin «p.- 2 )% (44) 

Using 2 perpendicular sample lines, one under <p0, so the other under (90o-<po) 
with the axes, two values (7) are obtained with expected values (TC/2) sin <p0.X 
and (TI/2) COS 90.X respectively. The procentual bias of the mean expected value 
then becomes: 

5 - 2 5 [Tt(sin <p0 + cos 9„) - 4] % (45) 
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Using 3 sampling lines as described above the mean of the expected values of 
the three values (7) then obtained differs for the ranges 0° <<p0 < 6 0 ° and 
60° <<p„ <90° . The bias percentages for these two cases are respectively: 

B = (100/6) Ksin cp„ + y ^ cos cp0) - 6] % (46) 

and B = (100/3) [n sin <p0 - 3] % 

Equations (44) through (46) correspond to the three graphs for maximum bias 
shown by VAN WAGNER (1968) for volume estimation. From the above it is 
obvious that this bias is the same for any estimated parameter in line intersect 
sampling. Severest bias, ranging, from -100% for cp0 = 0°, to +57% for <p0 = 
90° may occur when one line is used. With 2 lines bias ranges from -22% for 
<p0 = 0 ° or 90°, to +11 % for <p„ = 45 °. With 3 lines the range is from -9 % for 
<p„ = 0° or 60°, to + 5 % for <p0 = 30° and 90°. 

The positive bias of about 15% in WARREN and OLSEN'S (1964) figures for 
three compartments logged by Skyline/Skagit and sampled with randomly 
located clusters of 2 perpendicular lines, resulting in an average angle of 9 = 
45 °, seems to correspond well with the theoretical value of 11 %. The bias of 
4.5 % for areas logged by tractor should be regarded as random. 

If there is only a slight unidirectional trend, expected bias will of course be 
less then the maximum values given by (44) to (46), but the latter may serve as 
a guide to the orders of magnitude. VAN WAGNER'S (1968) proposal to use three 
lines in that case is well founded and should be given due attention. As these 
lines constitute a cluster, maybe the best method is to consider them as a whole 
and to derive only one estimate (7) and one (25) from them. 

Finally the possibilities offered by the principle of stratification either with 
respect to the average number of solids per unit area, or with respect to the 
degree of orientation should not be forgotten. 

8. APPLICATION TO LOGGING RESIDUE INVENTORY 

It is obvious that the theory developed in the preceding sections in principle 
is applicable to the practical case of inventorying logging residue. However some 
field problems remain to be considered. Both WARREN and OASEN (1964) and 
VAN WAGNER (1968) list a number of rules for the field procedure. From the 
theory described, a somewhat more complete list may be derived: 
1. Locate one or more sampling lines randomly in the area. If there is bias in 

log orientation use one or more clusters of 3 lines with 60 ° mutual directional 
difference; 
2. Verify whether the central axis of a log intersects with the sampling line, by 

the method indicated in Fig. 3. In obliquely trimmed logs consider only 
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intersection with the central axis as far as the latter is contained in wood; 
3. Consider the (rare) case of a central axis exactly coinciding with the sampling 

line as a normal intersection ; 
4. If a volume estimate is required, measure only mid-diameter of each inter

secting log. By measurement of mid-diameter dt in favour of the diameter at 
the point of intersection (though the latter has an expected value equal to d,) 
the introduction of an extra sampling error is avoided; 
5. If estimates of other parameters are required, such as total log length per 

area unit, number of logs per area unit, mean mid-sectional diameter or 
mean log length) also measure the length /; of each intersecting log. In crooked 
logs that intersect once, maybe the best thing to do is also to measure the length 
of the central axis and not a chord, in order to avoid systematic under or over 
estimation of certain parameters; 
6. A crooked log that intersects twice or more should be considered as one part, 

yielding one d, and one /f (see Fig. 4). This procedure follows from the needle 
theory: if such a log is considered as two parts, the latter do not represent 
'randomly thrown needles' ; 
7. A forked log intersecting once or twice (Fig. 4) should be dealt with from 

the same point of view as under point 6. A representative diameter should be 
taken; 
8. Reduce the estimates of quantities per unit area to the horizontal plane by 

dividing them by cos S in case of sampling on a slope with an angle of S 
degrees. 

In order to check the formulae derived in the preceding sections, we will 
apply them to the field data given by VAN WAGNER (1968). As these data are 
incomplete from our point of view, some rough estimations will have to be made. 

FIG. 4 Some types of intersection 
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VAN WAGNER describes a field trial in a 20 acre area in which a line intersect 
sample was taken of k = 19 lines of equal length L = 100 feet. On the area a 
population of logs of constant length /, = 16 feet was randomly distributed. 
These logs originated from a clear felled mixed hardwood/conifer stand with 
diameters (at breast height = 4'6") averaging about 6 inches, with a maximum 
of 15 inches, so average mid-diameter of these logs will have been about 5 inches. 
The average number of intersections per line was n = 36, and the average 
volume estimate found with VAN WAGNER'S formula, which is identical to our 
(8), was 2701 eft/acre. This value is the mean of 19 observations of equal weight, 
as line length was constant, so its variance is given by (21) or (27). Substitution 
of the values for volume estimate and L in (8) gives 2" ct. = 724, from which 
average mid-diameter is roughly estimated as dt = V724/36 = 4.5 inch, which 
agrees well with the above estimate of dt = 5 inch. 

Substitution of dt = 4 . 5 inch, L = 100 feet in our formula (see table) for the 
variance of the volume estimate (weighted mean) gives a standard deviation of 

Vvâr Vd/k = 103 eft/acre, 

which as to order of magnitude compares well with the value of 141 eft/acre 
given by VAN WAGNER. The difference is most probably due to our calculations 
with the average n = 36. 

As 2" 1//; = 36/16 on an average, the number of logs is estimated by (11) 
as 1539 per acre, with standard deviation of 59 logs/acre. From the estimated 
2701 eft/acre and the stand data /( = \6,dt = 5, the number of logs is estimated 
on the other hand as N = (4) (144) (2701)^1,) = 1238 per acre, the difference 
with 1539 no doubt again to be ascribed to the same cause as above. 

Total solid length is estimated by (12) as 24611 feet/acre, with standard devia
tion of 

VÂ2/kn = 939 feet/acre. 

SUMMARY AND DISCUSSION 

By applying the solution of BUFFON'S slightly modified needle problem (which 
provides the probability of intersection of a randomly thrown thin needle with 
a straight line in a flat plane) to the similar case of throwing a solid of revolution 
the central axis of which is identified with a needle, and extending the theory 
to the throwing of N solids, a workable model for line intersect sampling is 
obtained. 

After a stochastic variable has been defined on a solid, the model provides a 
general estimator (7) for the average total per unit area of any characteristic 
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whatsoever, associated with the solid. This means a considerable extension of 
the potential of line intersect sampling, by which technique only estimates of 
volume, weight and surface area could be provided till now. Estimators both in 
the metric and in the duodecimal system are given for volume (8), weight (9), 
total mid-sectional area (10), number of solids (11) and aggregate solid length 
(12) on a unit area basis, for the case of sampling for logging residue. Moreover 
estimators for e.g. mean volume (13), diameter of mean mid-sectional area (15) 
and of mean solid length (16, 17) are provided. 

It is made plausible that crooked or forked logs intersecting more than once 
with the sampling line should be measured only once, and that the rare case of 
the central log axis coinciding with the sampling line should, contrary to custom, 
be considered as an intersection. 

It is indicated that line intersect sampling, where the number of intersections 
per line is a random variable, is in fact POISSON sampling as defined by HAJEK 

(1964). The recognition of this basic principle allows the derivation of simple, 
approximate estimators for conditional variances of estimated quantities in line 
intersect sampling (25, 37 etc.). From this follow indications as to how to find 
the required line length to obtain a specified precision (28) and a weighted mean 
(27) in case more than one sampling line is used. 

For completeness' sake the application of a special type of POISSON sampling, 
viz. HÂJEK'S (1964) method of'rejective sampling of size ri is considered also. 

The influence of biased orientation of solid axes on the expected value of an 
estimator is considered, and formulae for its calculation are provided (44-46), 
corresponding to the graphs given by VAN WAGNER (1968). 

Finally a number of rules for the field procedure in case of application of line 
intersect sampling to logging residue inventory is listed. 

WARREN and OLSEN (1964) use the semi-empirical formula 

V = (660) (66).oL.n/Ic.L eft/acre (L in feet) 

where a is a factor dependent on dimensional characteristics of the log popu
lation; it is set at 0.33 for pulpwood logging residue in Pinus radiata in New 
Zealand. Further n is the number of intersections counted on a line, L is line 
length, and Ic is a factor dependent on the orientation of the sampling line 
relative to the axes in the population; it is set at 0.67 for tractor ( = random) 
skidding. Equalizing WARREN and OLSEN'S formula for volume estimation and 
the duodecimal version of (8), where 2" nd2J4 is substituted by n.g (g being the 
average mid-sectional area of the intersecting solids), it is found that the above 
empirical value Ic = 0.67 in tractor skidding indeed comes close to 2/TC = 0.64. 
The value a = 0.33 then should equal g in square feet, from which follows an 
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average mid-sectional diameter of 7.8 inch, a value that seems acceptable for the 
material in question. 

CANFIELD'S (1941) 'line interception technique' may now be extended to real 
line intersect sampling for forage weight etc. in range quality assessment, with
out using a belt of certain width along the line, and may also find application 
in phytosociological enumerations. As a mixed vegetation may roughly be 
considered to consist of roundish patches (stalks, tufts, shrub and tree crowns) 
the diameters /, of which may be identified with a needle, it is easily seen that the 
probability of intersection is IJW (section 2). Then, if we put the material weight 
of an intersecting patch of a certain species equal to xh the expression 
(£" xJl^/L is an unbiased estimator of (Sw xt)/ WL, i.e. mean weightj per area unit 
of that species. Of course xt may also stand for the value associated with any 
other attribute (height, health, number of insects or fungus fructifications, 
necrotic leafspots etc.). In 'line intersect stand sampling' /( may be crown di
ameter, measured in the field or on an aerial photograph. 

The generalized theory of line intersect sampling may have numerous other 
applications in biological and technical fields, and might be extended to plane 
sampling in three dimensional space. 

A paper by the author on line intersect subsampling is to be published shortly. 

SAMENVATTING 

In 1964 publiceerden WARREN en OLSEN, Nieuw Zeeland, over een nieuwe 
methode van steekproefsgewijze volumeschatting van na exploitatie op kap-
vlakten (ca. 1000 ha/jaar) achterblijvend hout. Zij noemden hun nog half-
empirische methode 'line intersect sampling'. De volumeschatting werd ver
kregen door vaststelling van het aantal houtobjecten dat een aselect op het 
terrein uitgezette rechte lijn snijdt, welk aantal werd ingevuld in een formule, 
waarin voorts de lijnlengte en enige empirisch bepaalde waarden voorkomen. 
De methode bleek ca. 5 maal sneller en ook nauwkeuriger te zijn dan de tradi
tionele met cirkelvormige of rechthoekige steekproefvlakten. VAN WAGNER 

(1968) ontwierp een op diametermeting ter plaatse van de snijpunten gebaseerde, 
wiskundig juiste schatter voor volume/ha, waaruit tevens die voor gewicht/ha 
volgt. BROWN (1971) voegde daaraan toe de zeer verwante schatter voor hout
mantel-oppervlakte/ha, een grootheid met betrekking tot evaluatie van bos
brandgevaar. 

Tot nu toe werd een algemene wiskundig-statistische basis voor deze steek
proeftechniek niet onderkend ; deze wordt in dit artikel gegeven en is gebaseerd 
op de reeds in 1777 door BUFFON gegeven oplossing van het zg. naaldprobleem. 
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Door deze generalisatie wordt het mogelijk om uit een 'lijnintersectie steek
proef' een schatting te maken van populatie totaal en van populatiegemiddelde 
per element, voor willekeurige kwantificeerbare attributen der elementen. De 
ontwikkelde gedachte heeft, behalve in de bosbouw, wellicht toepassingsmoge
lijkheden op velerlei ander gebied, zoals b.v. bij plantensociologisch, entomo
logisch en fytopathologisch veldwerk, alsmede bij habitatinventarisaties t.b.v. 
faunabeheer. In principe kan deze steekproeftechniek ook op luchtfoto's worden 
toegepast. 

Uitbreiding der theorie tot die voor een steekproef met een vlak in de drie
dimensionale ruimte lijkt logisch. 

In het artikel wordt aangetoond dat de fundamentele achtergrond van 'line 
intersect sampling' wordt gevormd door de POISSON steekproef, zoals deze 
laatste door HÄJEK (1964) wordt gedefinieerd. Hierdoor is het mogelijk, uit 
slechts een lijn een benaderende schatter van de voorwaardelijke variantie van 
een geschatte grootheid te vinden. Tevens wordt een weg geopend tot het vinden 
van de gewenste lijnlengte bij a priori gestelde nauwkeurigheidseisen. 

De theorie wordt geïllustreerd aan de hand van afleidingen van expressies 
voor schatters van parameters met betrekking tot houtresiduen op kapvlakten; 
deze zijn o.a. van belang voor controle op naleving van bepalingen in pulphout-
contracten, alsmede voor de evaluatie van bosbrandgevaar, ook in vergelijkbare 
situaties buiten kapvlakten, en tenslotte als onderdeel van biomassaschattingen 
in het ecosysteem bos. Een lijst van instructies voor veldwerk wordt toegevoegd. 
De nog schaarse literatuur wordt besproken en becommentarieerd. 
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