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Summary and Outlook 

This report explains in brief how the palm oil production system is set-up and how 

by-products of palm oil extraction (Empty Fruit Bunch (EFB), Mesocarp Fibre, 

Shells and Palm Oil Mill Effluent (POME)) are generated in the Palm oil Mill and 

what the composition of each stream is. We then show the options for improved 

energy efficiency and alternative uses for the by-products and additional income 

generation while reducing the GHG (greenhouse gas) emissions.  

 
Figure A. Palm fruit is processed into oil and by-products (mesocarp) fibre, shell and POME 

(palm oil mill effluent). 

 
 

Most current mills are set-up to use as much mesocarp fibre and palm shell as 

possible to generate steam for sterilization and electricity generation for the mill. 

Efficient use of energy and biomass fuel is generally not relevant as biomass is 

abundant and often considered a problematic waste. The empty fruit bunch (EFB) 

is the least useful for combustion and is therefore generally considered the most 

problematic waste product (see Figure B).  

 

The demand for biomass to replace fossil fuels has increased worldwide due to 

increased cost of fossil fuels and climate change concerns. This has led to 

increased use of (agri)commodities as a fossil fuel replacement. In many cases 

this has become controversial, due to competition with food or other current uses 

(fibre, soil amendment, animal feed). As palm oil mill by-products are essentially 

underutilized this may not be a problem any time soon for palm mill by-products. 

And this may offer opportunities for improving the palm oil sustainability and 

generate additional income. This efficient use of mill residues should be one of the 

issues addressed in more detail by the RSPO, which is developing and 

implementing sustainability certification in the palm oil industry. We hope that 

efficient use of palm oil residues will also help to increase yields per hectare 

instead of expansion into virgin forest lands which is a very problematic 

sustainability issue for the whole palm oil industry. 
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Figure B. The Fresh fruit bunch (FFB) is harvested at the plantation and shipped to the mill for 

immediate processing. The empty fruit bunch (EFB) is the largest byproduct by volume 

produced at the mill. The EFB is often brought to the plantation to serve as mulch but may also 

have other applications 

  

  

 

In this report we show that under current practice (based on an average 

productive plantation system) 2.5 tons dry weight per hectare per year of surplus 

mill residues are available (see summary in Table A). Most of this biomass consist 

of EFB (1.88 tons dry weight) and shells (0.61 ton dry weight). If the energy 

efficiency of the mill is increased, and the mill switches to using energy generated 

from biogas generated by the POME and a fraction of the EFBs, the surplus mill 

residue available for other uses will increase to 4.23 ton per ha per year. The 

available biomass consists of 1,27 tons EFB, 1.95 tons fibre and 1.03 tons of 

shells. The shells and fibre should have more potential for making added value 

compounds than EFB due to the lower moisture content, and lower nutrient 

content.  

In Table B a short overview of potential applications of mill by-products is given 

together with an estimate of their suitability for conversion processes. Compared 

to EFBs, fibre and especially shells may have attractive characteristics for 

conversion into tradable commodities such as torrefied pellets and pyrolysis oil. 

Other products that should be considered are fibre products and lignocellulosic 

sugars for second generation fuels and chemicals and many other products. Apart 

from biomass becoming available for other uses there is also an estimated 

reduction of GHG emissions of 4.5 tons CO2eq per ha per year, which would add 

up to 68 million tons CO2eq per year for the total oil palm industry. 
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Table A. Current availability of biomass for alternative uses in palm oil processing mills and the 

availability under improved conditions (based on 15.4 50 million ha in 2010). 

 Surplus 

biomass 

Total 

worldwide 

Avoided GHG 

emission2 

Total avoided 

GHG 

emissions 

 Ton 

dw/ha 

GJ1/

ha 

PJ Ton CO2eq per 

ha 

Million ton 

CO2eq 

Current practice 2.5 48 740 0 0 

Improved 

efficiency and 

anaerobic 

digestion  

4.23 80 1250 4.5 68 

1
Higher Heating Value. 

2
The estimated avoided GHG emissions are related to CH4 and N2O, the 

potential GHG emission savings due to fossil fuel replacement depends on the type of 

application and is not included here.  

 

Apart from palm mill by-products, the oil palm also produces oil palm fronds (leaves) which 

are now left to mulch in the field. With a productivity of 11 tons per ha per year (almost 2.5 

tons per ton of palm oil in productive plantations). The maximum potential is 165 million 

tons worldwide. Still, using this biomass has much more constraints as the biomass is now 

used as soil amendment, returning nutrients and carbon to the soil. If fronds are to be used 

for applications, solution to the cost of collection and replacement of nutrients and carbon 

should be provided.  

 
Table B. Possible applications for palm oil mill by-products. 
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EFB Y1 P P P/Y P/N N Y Y 

POME Y N Y N N N P/N N 

Fibre Y Y P/N Y Y N Y Y 

Shell P Y N Y Y Y P P/Y 
1Y = is a good option; P = is a possible option (can be that it has not been evaluated enough or 

that yields are relatively low); N = not an option. 2Biogas production followed by generating 

electricity.  

 

In the end the local technical and economic feasibility will determine if the potential the palm 

oil residues offer will be taken advantage of. Developing clear policies that give advantage to 

biofuels made from residues (generated outside of competition with other uses) and long 

term commitments to source this biomass, will determine if the potential of palm oil mill 

residues is realised.  
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Abbreviations 

CPO:  Crude Palm Oil 

EFB:  Empty Fruit Bunch 

Fibre:  Mesocarp Fibre 

FFB:  Fresh Fruit Bunch 

HHV: Higher Heating Value 

OPF:  Oil Palm Fronds 

PKO: Palm Kernel Oil 

PKM: Palm Kernel Meal 

HHV: Higher Heating Value 

LHV:  Lower Heating Value 
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1 Introduction  

1.1 Palm oil production worldwide 

 

The African oil palm (Elaeis guineensis L.) is the most productive oil crop in the 

world and it is also the largest oil crop with an annual oil production of 53.3 million 

tons in 2012/2013 (USDA-FAS, 2013) just before soy.  

 

Crude Palm oil is derived from the mesocarp (pulp) of the fruit of the oil palm tree. 

Besides crude palm oil, palm kernel oil (PKO) is also derived from the oil palm fruit 

kernel. Crude palm oil is further refined for use in the commercial food industry. 

Palm oil, like other vegetable oils, is also used to produce biodiesel.  

The major palm oil producing countries include Indonesia, Malaysia, Thailand, 

Colombia and Nigeria. The largest importers of palm oil are India, China and the 

EU27. Table 1 gives an overview of production data of oil palm in 2010. Globally, 

approximately 15.4 million hectares are planted to palm oil, producing 

approximately 217 million tons of oil palm fruit per year, from which 43.5 million 

tons of crude palm oil and 5.7 million tons of crude palm kernel oil are generated 

(2010). Taking an approximate market value of 650 €/ton of crude palm oil only, 

the world production represents a total economic value of 32 Billion €. However, 

the economic value of products made on the basis of crude palm oil is even much 

higher. 
 

Figure 1. The fresh fruit bunch is harvested and the oldest fronds are removed and left to 

mulch in the plantation.  

 
 

 

Oil palm is the most productive oil crop in the world with potential yields of more 

than 5 tons of oil per ha per year. As can be seen from Table 1, the productivity of 

oil palm cultivation varies widely, from 3 – 5 ton Fresh Fruit Bunch (FFB) per ha in 

Africa, to more than 21 ton FFB per ha in Malaysia. 
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Table 1: Production of palm oil in major palm oil producing countries (source: FAOstat; 2010 

production date) 

 Area 

harvested 

Fresh Fruit 

Bunch 

Production 

Productivity Crude Palm 

Oil 

Production 

Crude Palm 

Kernel Oil 

Production 

 ha ton/y; fresh 

weight 

ton FFB / ha.y ton CPO/y ton CKPO/y 

Brazil 106,420 1,292,710 12.1 250,000 117,000 

Cameroon 76,000 1,575,000 20.7 111,440 37,800 

Colombia 165,000 3,100,000 18.8 753,100 78,300 

Costa Rica 55,000 141,250 2.6 210,905 15,159 

Cote 

d’ivoire 

225,000 1,500,000 6.7 330,000 29,400 

DR Congo 179,000 1,163,580 6.5 187,000 24,255 

Ecuador 120,000 1,800,000 15.0 289,900 31,700 

Ghana 360,000 2,004,300 5.6 120,000 16,000 

Guatemala 55,000 1,200,000 21.8 182,000 54,000 

Guinea 310,000 830,000 2.7 50,000 4,876 

Honduras 100,000 1,556,350 15.6 275,000 32,500 

Indonesia 5,370,000 90,000,000 16.8 19,760,000 2,358,000 

Malaysia 4,010,000 87,825,000 21.9 16,993,000 2,014,900 

Nigeria 3,200,000 8,500,000 2.7 1,350,000 542,800 

Papua New 

Guinea 

119,000 1,730,000 14.5 500,000 41,700 

Thailand 569,364 8,223,140 14.4 1,287,510 127,500 

      

World 15,410,262 217,925,795 14.1 43,573,469 5,688,559 
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Figure 2. The fresh fruit bunches are transported to the mill for processing within 24 hrs. 

 
 

1.2 Why use palm oil mill residues? 

 

Palm oil mill residues have been identified as one of the most interesting biomass 

feedstocks for the biobased economy, because they appear to be underutilized, 

they are available as “a point source” at the processing mill, and they have a low 

value (at the mill). As explained in the next chapter at least one ton of 

lignocellulosic biomass is potentially available per ton of palm oil, at the processing 

mill. This results in a largely underutilized biomass potential of more than 50 

million tons worldwide. In the plantation, fronds are also produced as a residue 

(see Figure 1). Although the total amount of fronds are estimated as well, fronds 

are not a focus of this report as they are generated at the plantation, not the oil 

mill. During processing at the palm oil refinery, by-products, such as free fatty 

acids and spent bleaching earth are produced. These are also outside the scope of 

this report, as they are of comparatively small volume.  

 

The potential of at least 50 million (dry) tons of palm oil mill residues is a 

considerable amount of biomass even in view of the very large amounts of 

biomass that are required to fulfill the biomass demands worldwide. The economic 

value represented by this amount of residues is estimated to be at least 3.4 Billion 

€. The largest demand for (lignocellulosic) biomass in the coming years is likely to 

come from the EU. Based on the National Renewable Energy Action Plans 

(NREAPs) of the 27 EU countries a total biomass demand of 650 million tons (dry 

weight) has been estimated. The estimated need for importing lignocellulosic 

biomass, was  estimated between 50 and 150 tons by 2020 in the EU 27 (Elbersen 

et al. 2011).  

 

Much of the lignocellulosic biomass is thought to be imported in the form of 

(wood) pellets, which is an easily tradable commodity. Based on different studies 

the demand for wood pellets alone is expected to be between 20 and 50 million 
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tons by 2020 in the EU 27 (Cocci et al. 2011). The same study expects a wood 

pellet demand in East Asia (mainly Japan, South Korea and China) to range 

between 5 and 10 million tons by 2020.  

 

At this moment international trade in palm oil shells, mainly for co-firing, is 

already taking place. Co-firing in powder coal facilities may be problematic due to 

the hardness of palm shell which is difficult to grind.  

Locally, empty fruit bunches (EFB) are also used for energy generation (outside of 

the mill), for example in Thailand. Other uses of by-products (mainly EFB) are 

being developed and explored (see chapter 3). 

 

One of the compelling reasons for using palm oil mill residues is that these 

residues are largely underutilized at this moment. As is explained in Chapter 2 and 

3, adaptations in the mill set-up can make by-products available without 

compromising current uses for these by-products. Therefore using these by-

products for energy applications (and other non-food uses) should not have 

undesirable indirect side-effects. This indirect effect of using biomass for non-food 

uses has in recent years become a concern, mainly when speaking about first 

generation biofuels (biodiesel and ethanol) which are produced from crops that 

can also be used for food. This may lead to increased food prices and decreased 

food security and it may also lead to indirect land use change (iLUC) as more land 

is needed for agriculture. This in turn may lead to loss of forests and grasslands 

and large greenhouse gas (GHG) emissions (Searchinger 2008). This can actually 

completely undo the GHG benefits of using biomass instead of fossil fuels. The 

iLUC risks are low or close to zero for bioenergy and biofuel feedstocks which do 

not require land for their production (Fritsche et al, 2010). Underutilised residues 

such as palm mill by-products are not in competition with other uses. At the 

source they still have a low-to-zero economic value. Still, they could be used for 

soil fertilization and maintaining soil organic carbon. A methodology to assess this 

is currently in development (Ecofys et al. 2012). 

 

Even though a large potential exists to supply palm oil mill residues, many 

constraints exist as well, which currently limit the possibilities of mobilizing this 

resource. This short study compiles the facts about palm oil residues, explains 

what constraints exist to using these residues and discusses possible solutions. 
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Figure 3. A typical oil palm extraction mill is situated close to the palm oil plantation, fresh fruit 

bunch is harvested and transported to the mill for processing. The oldest fronds (leaves) are 

also removed (pictures at Agro Palma S.A. Brazil; Dabon, Colombia; and Malaysia). 
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2 Chapter 2 

2.1 Palm oil production system 

 

Figure 4 presents a schematic of the palm oil production system. Oil palm trees 

are grown at the oil palm plantation, where fresh fruit bunches (FFB) are 

harvested from the trees. Fresh fruit bunches are then transported to the Palm Oil 

Mill. Palm oil mills are usually situated near the plantation, as the Fresh Fruit 

Bunches need to be processed quickly - within 24 hours - after harvest. A typical 

mill will process 30 tons of FFB (fresh weight) per hour, although larger mills exist 

as well.  

 

At the mill, the main products that are produced from FFB are Crude Palm Oil 

(CPO) and Palm Kernels. Crude Palm Oil is usually transported elsewhere for 

further refinery. The kernels are usually processed elsewhere into Palm Kernel Oil 

(PKO) and Palm Kernel Meal (PKM). The main by-products and by-products of the 

Plantation and Palm Oil mill are further described in this report. The Palm Oil 

Refinery and Palm Kernel processing also produce by-products, but these are 

outside the scope of this study. 

 

Figure 4: General schematic of the Palm Oil Production System (main products only). The by-

products are presented in Figure 5.  

 

Plantation Palm Oil Mill

Palm Kernel
Processing

FFB Palm OilPalm Oil Refinery
CPO

PKO
KernelFFB: Fresh Fruit Bunch

CPO: Crude Palm Oil
PKO: Palm Kernel Oil
PKM: Palm Kernel Meal

PKM
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2.2 Oil Palm Plantation 

 

Oil Palm plants are first grown in a nursery. After growing in the nursery for 

approximately 1 year, the plants are re-planted in the plantation. After 3 years in 

the field, the first fruit bunches are harvested. Harvesting is done year-round. 

During harvesting, oil palm fronds (leaves of the oil palm) are removed to 

facilitate the harvest of FFB. After approximately 25 years, the productivity of the 

trees gradually decreases, and the trees are cut down and replanted. Removing 

cut trees produces two additional by-products of the Oil Palm Plantation: trunks, 

and roots.  

Table 2 gives an overview of total production of fresh fruit bunches, and the three 

main by-products at the plantation. The data are based on a productivity of 21.4 

ton FFB/ha which is typical for plantations in Malaysia. Under these conditions a 

productive palm plantation produces some 30 tons dry weight of total biomass per 

year. For productivity in other countries, refer to Table 1 in Chapter 1. Data show 

that almost one third (9.2 tons dry weight) of the biomass is contained in the main 

product (FFB), more than 1/3 (11 tons dry weight) is contained in the leaves 

(fronds), and another 1/3 is contained in the trunks and roots combined In other 

words, of the total of 30.6 tons of dry weight biomass. 9.2 tons of dry weight in 

the form of FFB is exported to the processing mill for processing. 

Table 2 gives an estimation of the main nutrients contained in the products and 

by-products, based on literature reviews by Corley and Tinker, (2003) and 

Elbersen et al (2005). These data are also presented in Table 3 as fraction of total 

nutrients, and show that about one third of total nitrogen, nearly half of 

phosphate, and one fifth of potassium are removed from the plantation by harvest 

of Fresh Fruit Bunches (FFB). In addition, the data show that oil palm fronds 

contain by far the highest amount of nutrients from all field by-products, including 

trunks and roots. 

 
Table 2. Productivity and nutrient content of main product and by-products from the oil palm 

plantation (per hectare per year).  

  Biomass Production     Nutrients   

  Fresh 
weight 

Dry 
weight 

N P K Mg Ca 

  --------- ton/ha.yr ---------- --------------------------- kg/ha.yr ----------------------------- 

Fronds 36.7 11.0 80.5 6.1 141.9 18.6 38.8 

Trunks (average 
over 25 years) 

9.2 4.6 25.7 2.5 74.4 6.9 14.2 

Roots  19.4 5.8 18.6 1.6 46.6 4.8 2.8 

Fresh Fruit 
Bunch (FFB) 

21.4 9.2 57.0 8.3 71.7 14.7 15.6 

              

Total 86.7 30.6 181.8 18.4 334.5 45.0 71.5 
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Table 3. Biomass productivity of oil palm and nutrient distribution over the biomass 

components. 

  Biomass Production     Nutrients   

  Fresh 
weight 

Dry 
weight 

N P K Mg Ca 

Fronds 42% 36% 44% 33% 42% 41% 54% 

Trunks 11% 15% 14% 13% 22% 15% 20% 

Roots 22% 19% 10% 9% 14% 11% 4% 

Fresh Fruit (FFB) 25% 30% 31% 45% 21% 33% 22% 

Total 100% 100% 100% 100% 100% 100% 100% 

 

The removal of FFB from the plantation is inevitable for the production of palm oil. 

The field by-products (fronds) are generally not removed. If the fronds were 

removed from the plantation some form of replenishment of soil carbon and 

nutrients would be required. 

  

Oil Palm Fronds have a high water content of approximately 70% (see Table 2). 

Therefore the leaves are prone to fast deterioration. Oil Palm Fronds are very 

bulky and therefore transport and further handling is expensive. At the same time, 

the Oil Palm Fronds have a high nutrient content (relative to their dry matter 

content) causing relatively high additional costs for replenishment of nutrients 

(see Table 2 and 3). 

 

Roots are difficult to harvest and have a high water (70%) and will always be 

contaminated with soil. Transport and further handling is expensive. Therefore, 

the use of roots should be a relatively unattractive proposition.  

 

The trunks need to be removed after 25 years of production to make replanting 

possible. Whereas Oil Palm Fronds would need to be collected throughout the 

year, the trunks can be harvested and collected all at once after 25 years. 

Therefore harvest of trunks is much cheaper. Trunks have a lower water content 

(<50%) and a higher loading density on the truck. For all of these reasons, the 

trunks are the first by-products that could be removed from the plantation in an 

economical way yielding 115 tons (dry weight) after 25 years. 

 

The FFB’s that are removed from the plantation to the palm oil mill contain 

considerable amounts of nutrients (Table 2). A significant part of these nutrients 

can be recycled to the plantation by returning mulched EFB’s and ashes from 

burning of shells and fibres. Also Palm Oil Mill Effluent (POME) sludge may be 

recycled to the field.  

2.3 Energy content of plantation by-products 

 

Table 4 shows that a productive palm plantation produces some 30 tons dry 

weight of total biomass per year of which 9.2 tons dry weight FFBs are exported to 

the processing mill for processing. The FFBs contain 43% of the overall energy 

content of all biomass produced. The fronds (OPF) contain 29% of the energy.  
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Table 4. Energy contained in palm plantation products and by-products produced per year. 

(calculated from dry matter assuming 19 GJ/ton Higher Heating Value if no specific 

information was available).  

 Biomass Production Energy content 

 Fresh 

weight 

Dry 

weight 

 

 ton/ha.yr GJ/ha.yr GJ/ton 
FFB 

% of 
total 

Fronds 36.7 11 209.4 9.79 29% 

Trunks 9.2 4.6 87.3 4.08 12% 

Roots 19.4 5.8 110.6 5.17 15% 

Fresh Fruit 
(FFB) 

21.4 9.2 312.6 14.61 43% 

      

Total 86.7 30.6 719.9 33.64 100% 

 

2.4 Palm Oil Mill 

 

Byproducts are generated at the palm oil extraction mill, in which crude palm oil 

(CPO) and kernels are produced from the Fresh Fruit Bunches (FFB).  

 

At the extraction mill, the upstream production process consists of a number of 

process steps for production of CPO and kernel (Corley et al., 2003 ): 

 

1. Bunch sterilization with the aid of steam: this loosens the oil-containing 

fruit from the bunch and inactivates lipid-degrading enzymes as well as 

micro-organisms that naturally occur in FFB. 

2.  Bunch stripping, which separates the fruit from the bunch stalk and 

spikelets. In this process, the byproduct Empty Fruit Bunch (EFB) is 

produced. 

3. Fruit digestion to crush and disrupt the mesocarp(pulp), with the aid of 

steam. 

4. Pressing of the digested fruit to extract the oil from the mesocarp fibre. In 

this process, two fractions are produced: raw oil and a residue, containing 

palm oil fibres and nuts.  

5. Separating, clarifying and drying the CPO. 

6. Separating the nuts from the oil palm fibres. In this process step, the by-

product Oil Palm Mesocarp Fibres are produced, or fibres for short. 

7. Drying, grading, and cracking of the nuts, producing Palm Oil Kernels and 

shells. 

8. Separating Kernels from the shells. In this process step, the by-product Oil 

Palm Kernel Shells, or Shells for short, is produced. 

9.  Kernel drying and storage 

 

As noted earlier, pressing kernels to produce Crude Palm Kernel Oil (CPKPO) is 

usually done at larger facilities, not at the extraction mill. 
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Besides the three solid by-products (EFB, fibres, shells), a liquid effluent is 

produced in the extraction process, commonly referred to as Palm Oil Mill Effluent 

(POME). POME is generated by combining the following fractions from the 

extraction process (Corley and Tinker, 2003): 

 

- Condensate from bunch sterilization (0.6 t/t palm oil produced) 

- Water phase or sludge from oil clarification centrifuges (up to 2.5 t/t palm oil 

produced) 

- Water from the hydro cyclone used in separation (0.25 t/t palm oil) 

In other words, the primary source of liquid effluent or POME is the clarification 

process, although the amount produced per ton FFB varies greatly, depending on 

the process used. 

 

A schematic of the flow diagram of palm oil and kernel extraction is shown in 

Figure 5 and illustrated in Figure 6. Per ton of FFB , approximately 200 kg crude 

palm oil is produced, and a considerable amount of byproducts, including 220 kg 

EFB, 135 kg fibres, 55 kg shells, and more than 600 kg of liquid effluents.  

 
Figure 5. Schematic flow diagram for palm oil and kernel extraction. Approximate mass of 

outputs shown, on wet weight basis (based on Corley et al, 2003). The by-products are shown 

in the red circles. The palm oil mill effluent (POME) consists of condensate, sludge and waste 

water.  
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Figure 6. Fresh fruit bunches are transported to the processing mill and sterilized after which 

the crude palm oil is extracted and byproducts (fibre, shells and empty fruit bunch) are 

generated. 
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In Table 5 the volumes of FFB and by-products and their nutrient contents are 

presented based on different literature sources. The mass balances for dry matter 

are largely closed. Mass balances for nitrogen, phosphate and magnesium do not 

completely add up due to the fact that data was used from different sources and 

the nutrient contents of the different by-products will differ due to growing 

conditions and fertilisation. The most important aspect may be that compositions 

of by-products depends on available nutrient levels in the soil of the plantation 

(fertilisation). Also processing schemes will differ between different mills leading to 

different qualities of by-products. The separation efficiency may change and hence 

the composition of by-products changes as well. Particularly the composition of 

POME is known to be a function of process scheme, process conditions and 

separation efficiencies.  

 

Table 5. Mass balance of palm oil mill, expressed per ha. Data are based on a productivity of 

21.4 Fresh Fruit Bunches (FFB) per ha per year. 

  Biomass 
Production 

Nutrients 

  Fresh 

weight 

Dry 

weight 

N P K Mg 

  ---- ton/ha.yr ---- ----------- kg/ha.yr ----------- 

Fresh Fruit (FFB) 21.4 9.2 57.0 8.3 71.7 14.7 

Steam 10.9      

            

Total in FFB and steam 32.3 9.2 57.0 8.3 71.7 14.7 

Crude Palm Oil (CPO) 4.5 4.5 0.0 0.0 0.0 0.0 

Kernels 1.2 1.1 10.8 3.8 10.8 1.3 

Empty Fruit Bunch 

(EFB) 

4.7 1.9 12.3 1.5 44.6 1.9 

Fibres 3.0 1.9 5.6 1.4 23.0 2.0 

Shells 1.3 1.0 3.2 0.1 1.5 0.2 

Palm Oil Mill Effluent 
(POME) 

17.5 0.7 4.7 1.0 22.1 4.2 

            

Total in products/ by-
products 

32.3 11.2 36.6 7.8 102.0 9.7 
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Figure 7. Mill byproducts are stored near the mill. EFB is mainly returned to the plantation and 

mulched or burned to produce bunch ash. Fibre is mainly used to provide energy for steam 

generation. In some cases compost is produced from EFB and fibre and ash. (Pictures taken at 

Agro Palma S.A. Brazil; Daabon, Colombia; and Malaysia).  
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Table 6. Fraction of mass and nutrients of the main palm oil mill by-products (excluding the 

palm kernels). Data are based on a productivity of 21.4 Fresh Fruit Bunches per ha per year. 

  Biomass 
Production 

Nutrients 

  Fresh 

weight 

Dry 

weight 

N P K Mg 

Empty Fruit Bunch 
(EFB) 

15% 17% 34% 20% 44% 20% 

Fibres 9% 17% 15% 18% 23% 21% 

Shells 4% 9% 9% 1% 1% 2% 

Palm Oil Mill Effluent 

(POME) 

54% 6% 13% 13% 22% 43% 

Total of all products 
from oil mill 

82% 50% 71% 51% 89% 86% 

 

Data in Table 5 show that per hectare 4.5 tons of oil are produced and a total of 

6.6 tons of dry weight by-products is produced (EFB, fibres, shells, and POME).  

Most biomass (1.9 tons dry weight each) is contained in EFB and fibres. Although 

Palm Oil Mill Effluent (POME) is the largest by-product by volume (17.5 m3), in 

terms of dry weight POME only represents 6% of the total. For nutrient content, 

most of the nitrogen and potassium are contained in EFB, whereas nutrient 

concentrations in fibres and POME are largely similar (with exception of 

magnesium). The least amount of nutrients are contained in the shells, as shown 

in Table 6. 

2.5 Bioenergy balance of palm oil mill 

  

In most palm oil mills today, residues such as fibres and shells are used to 

generate steam and electricity. In order to investigate current bioenergy use of 

palm oil mills and identify options for improvement or change, the energy content 

of the major by-products are presented in Table 7. 

 

Table 7 shows the biomass energy balance of the palm oil mill, based on an 

assumed energy content (HHV) of 19 GJ/ton on dry weight basis for all by-

products. It should be pointed out that the efficiency at which bio-energy can be 

produced may vary, in particular due to differences in moisture content. The data 

show that a total of 5 GJ of primary energy are contained in the by-products, 

calculated per ton of Fresh Fruit Bunch processed by the mill. If a productivity of 

21.4 ton FFB/ha is assumed, a total of 105 GJ/ha per year is produced. Most of the 

energy is contained in EFB and fibres. 
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Table 7, Biomass energy balance of Palm Oil Mill by-products on a fresh fruit (FFB) basis and 

hectare. (based on productivity of 21.4 FFB per ha) 

  Dry 
weight 

Energy content Fraction  

  ton/ton 

FFB 

GJ/ton FFB GJ/ha % 

Empty Fruit Bunch 
(EFB) 

0.088 1.672 35.8 34% 

Fibres 0.091 1.729 37.0 35% 

Shells 0.048 0.912 19.5 18% 

Palm Oil Mill Effluent 

(POME) 

0.034 0.637 13.6 13% 

       

Total 0.261 4.950 105.9 100% 

 

2.6 Energy use in palm oil mills and options for improvement 

 

The electricity and steam needed for the extraction mill is generally produced 

locally from the by-products fibre and in some cases also the shells.  

Based on a short literature review (Schmidt, 2010; Sommart and Pipatmanomai, 

2011; Vijaja et al, 2008; Yussof, 2006) we estimate that the electricity use is 

around 17 kW.hr/ton FFB (equal to 0.061 GJe/ton FFB), which is equivalent to 1.3 

GJe per ha per year at the earlier stated productivity of 21.4 ton FFB/ha.  

The amount of steam consumed is estimated at 0.5 ton/ton FFB (equal to 1.1 

GJ/ton FFB). We estimate that in a fully insulated system, only 0.16 ton of steam 

per ton FFB would be needed. Insulation of the sterilization vessels could therefore 

greatly improve the heat efficiency of the Palm Oil Mill. Recovery of heat from 

condensate could further improve the heat efficiency. Improving thermal 

conversion systems at the mill could also raise the efficiency to produce electricity, 

although this is not taken into account. Currently, the estimated electric power 

consumption at the mill is rather low, and improving electric generation efficiency 

would only make sense if there is a local or regional market for electricity. 

 

Usually steam is produced in a low pressure boiler. This low pressure steam is 

used to drive a turbine for production of electricity. After that, the steam is used in 

the process (mainly for the sterilization). The electricity generation efficiency is 

estimated at 12% (Sommart and Pipatmanomai, 2011) and boiler efficiency at 

60%.  

Based on the data above, a set of scenarios was developed to show current and 

potential future improvements to residue use and energy generation and efficiency 

of use at the palm oil mill. These scenario’s not only help identifying opportunities 

for increased use of by-products (that are otherwise underutilised, disposed of by 

dumping, or produce a low-value compost) by the palm oil mill industry, but also 

can be used to assess to what extent a greater amount of oil palm-derived 

biomass by-products could be delivered to markets outside the palm oil sector, 

such as bioenergy production in the country, or for export. For each scenario, the 

amount of energy needed at the oil palm mill is calculated per ton of fresh fruit 

(FFB) processed, followed by an estimate of which by-products can produce that 

energy. From that it is calculated how much by-products can become available for 

other uses or export (Table 8). 



 
Valorization of palm oil (mill) residues. Identifying and solving the challenges.  

October, 2013 

 

 

 
Pagina 24 van 38 

 

 

1. Current practice (base case): Approximately 17 kWh of electricity and 0.5 

ton steam per ton FFB is required for the palm oil mill (see above). This 

energy is produced by combustion of fibres as well as shells in low 

efficiency boilers. The electricity generation efficiency is estimated at 12% 

(Sommart and Pipatmanomai, 2011) and boiler efficiency at 60%. In total 

2.1 GJ of primary energy is needed per ton of fresh fruit. This means that 

all the fibres as well as 40 % of the shells are used to generated heat and 

electricity for the mill: 60% of the shells (equivalent to approx. 0.4 GJ per 

ton FFB) are available for other uses. EFB and POME are not utilised (for 

energy generation) in this scenario. 

 

2. POME Digestion + Fibres: As in the previous scenario, 17 kWh of electricity 

and 0.5 ton steam per ton FFB is required for the palm oil mill. In this 

scenario, POME is used for generation of biogas through anaerobic 

digestion (which is increasingly practiced by oil palm mills around the 

world) and the biogas is converted to electricity and heat in a combined 

heat and power installation (see Figure 8 for an example of biogas 

generation system). Additional energy needed is provided by combustion 

of fibre. Assuming a biogas generation potential of 9.87 GJ of total solid 

for POME and a conversion efficiency of biogas to heat of 90%, the energy 

produced by POME is equivalent to 0.33 GJ per ton FFB. In this scenario, 

all shells and EFB are available for other uses or export. 

 

3. POME Digestion + EFB: This scenario is largely similar to the previous 

scenario (POME Digestion + fibres), except that additional energy needed 

for the palm oil mill-above energy already provided by biogas from POME, 

is provided by combustion of EFB, instead of fibres. In this case, all fibres 

and shells are available for other uses or export  

 

4. Higher Efficiency: In this scenario, measures are taken to reduce the 

steam required by the Palm Oil Mill, for instance by insulating sterilization 

vessels which could greatly improve the heat efficiency of the Palm Oil Mill. 

Furthermore, recovery of heat from condensate could further improve the 

heat efficiency. The boiler efficiency is generally low (40% loss, 31% loss 

in off gasses as latent heat and heat of vaporization from the high water 

content of the fuel)1 The boiler fuel can have significant water content 

(depending on the type of biofuel used). This water is evaporated during 

burning and the heat of evaporation is not recovered (Sommart and 

Pipatmanomai, 2011). As a result, boiler efficiency increases to 75%, and 

total steam utilisation is reduced to 0.25 ton of steam per ton. The total 

energy demand is thereby reduced to 1.00 GJ per ton of FFB. Assuming 

this demand is met by combustion of fibres (as in the base case), 60% of 

the fibres are sufficient to supply the palm oil mill of energy, and 40% of 

fibres and all shells are available for other uses or export. 

 

5. POME Digestion + higher efficiency: in this final scenario, a combination is 

made of improvements to the efficiency of the palm oil mill (see scenario 

 
1 Raising the efficiency of the boiler system is primarily directed at improving steam generation (in particular 

lowering biomass use to raise steam), rather then electricity generation. Improvements could also lead to 

raising the electric generation efficiency, however this is not taken into account in the scenarios. The main 

reason is that current electricity use at the mill is relatively low. 
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4) and utilising biogas from POME digestion. As in the third scenario, EFB 

provides the remainder of energy. In this case, all of the fibres, shells, as 

well as approximately 50% of EFB is available for other uses, or export. 

 

 
Figure 8. Palm oil mill effluent is cooled down before being transferred into the tarp covered 

biogas reactor. The sludge is used to make compost and the effluent is also returned to the 

plantation after aerobic treatment. (Pictures taken at Tequendama plantation in Colombia).  

  

  

 

 

In summary, a combination of employing anaerobic digestion of POME with on-site 

biogas utilisation in CHP’s, and relative simple energy savings measures in the 

form of improving boiler efficiency at the palm oil mill could free up significant 

quantities of oil palm biomass to be used in other markets, including export.  

 

Savings of the current energy use by more than a factor of 2 or more seems 

possible, making it possible for biogas from POME (and part of the EFB) to supply 

the total energy demand of the processing mill. Along the way a significant 

amount of CH4 emissions from POME (and possibly EFB) is avoided as will be 

explained in the next paragraph.  
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Table 8. Energy demand, bioenergy utilisation and associated biomass availability at palm oil 

mills, for improvement scenarios and current practice.  

    1. Current 

practice 

2. POME 

Digestion 

+ Fibres 

3. POME 

Digestion 

+ EFB 

4. Higher 

Efficiency 

only 

5. POME 

Digestion 

+ 

Efficiency 

Electricity use of 

mill 

kWhr/ton 

FFB 

17 17 17 17 17 

Electricity use of 

mill 

GJe/ton 

FFB 

0.061 0.061 0.061 0.061 0.061 

Steam generation 

of mill 

ton 

steam/ton 

FFB 

0.5 0.5 0.5 0.25 0.25 

Steam generation 

of mill 

GJ/ton FFB 1.1 1.1 1.1 0.55 0.55 

Biomass 

utilisation for 

electricity gen. 

GJ-hhv/ton 

FFB 

0.51 0.51 0.51 0.51 0.51 

Biomass 

utilisation for 

steam generation 

GJ-hhv/ton 

FFB 

1.83 1.83 1.22 0.73 0.61 

Total Biomass 

energy need for 

mill* 

GJ-hhv/ton 

FFB 

2.10 2.10 1.49 1.00 0.88 

* in cases where energy demand is met 

by biogas; HHB of biogas is used 

        

Biomass utilisation by mill       

Empty Fruit Bunch 

(EFB) 

GJ-hhv/ton 

FFB 

0 0 1.16 0 0.54 

Fibres GJ-hhv/ton 

FFB 

1.73 1.77 0 1.00 0.00 

Shells GJ-hhv/ton 

FFB 

0.37 0 0 0.00 0 

Palm Oil Mill 

Effluent (POME) 

GJ-hhv/ton 

FFB 

0 0.33 0.33 0 0.33 

Biomass available for other 

use/export 

      

Empty Fruit Bunch 

(EFB) 

% of total 

EFB 

100% 100% 31% 100% 67% 

Fibres % of total 

fibres 

0% 0% 100% 42% 100% 

Shells % of total 

shells 

60% 100% 100% 100% 100% 

Palm Oil Mill 

Effluent (POME) 

% of total 

POME 

100% 0% 0% 100% 0% 

 

2.7 GHG emissions  

 

As all energy used by the palm oil mill is derived from biomass resources, the use 

of energy does not contribute to the direct emissions of Green House Gasses. 

However, the main contributors to GHG emission are related to current disposal 

methods for by-products, in particular natural decomposition (rotting) of POME 

and EFB. 
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The EFBs are often left on a large heap. This heap will produce methane and N2O 

as a consequence of a spontaneous and largely uncontrolled rotting process.  

The methane and N2O emissions from EFB can be as high as 4.7 ton CO2eq per ha 

per year or 0.23 ton CO2eq per ton FFB or 1.1 ton CO2eq/ton palm oil (Elbersen et 

al. 2006, following CDM-SSC-PDD version 2). Other references report an emission 

that is more than a factor 2 lower (Project design document form (CDM PDD) 

Version 03.1).  

 

The other better known contributor to the GHG emissions of the palm oil mill 

originates from the open pond treatment of POME. Schmidt (2010) reports an 

emission of 11.4 kg CH4 per ton FFB. This is equal to 34 kg CH4/ton palm oil (incl. 

kernel oil) or 816 kg ton CO2eq per ton of palm oil. This is roughly 1 third of the 

CO2 captured in the palm oil. The value from Schmidt is confirmed by other 

references: A methane potential of 55 kg CH4 per ton CPO produced, at the mill 

was calculated from Soni (2007) and a 64% COD reduction at 7 days retention 

time in anaerobic treatment of POME was reported by Puetpaiboon and 

Chotwattanasak (2004). This equals 25 kg CH4 or 575 kg CO2eq per ton of palm 

oil. We conclude that overall the GHG emissions from POME and EFB can easily be 

1000 kg CO2eq per ton of palm oil. 

 

Good composting practice strongly reduces GHG emissions from EFB. The Dutch 

government reports GHG emissions of 0.05 ton CO2eq per ton of fresh waste for 

well controlled composting units (AgentschapNL). Thus the potential emission of 

0.23 ton CO2eq/ton FFB or 1 ton CO2eq/ton EFB could be reduced to only 0.05 ton 

CO2eq/ton EFB or 0.01 ton CO2eq/ton FFB by a well-controlled composting facility. 

 

Controlled anaerobic treatment of POME could also greatly reduce the GHG 

emissions. Capture of released biogas and burning the biogas in a flare would 

reduce GHG emissions by 95%. The avoided emissions can be sold as carbon 

credits in the form of Certified Emission Reductions (CERs) under the Clean 

Development Mechanism (CDM) of the Kyoto Protocol.  

 

The switch to using biogas form POME (and EFB) to provide energy to the palm oil 

mill could free up shells and fibres that could then be sold as a sustainable 

produced biomass for export or local use. In the next chapter, the available mill 

byproducts are further characterized.  
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3 Characterisation of application of palm mill by-products 

This chapter presents the main characteristics and current and alternative uses of 

the by-products of the palm oil mill. The availability of the oil palm by-products 

EFB, shells and fibres is summarised in Table 9 depending on the energy 

management scenario (as described in Table 8). This table shows that, depending 

on the scenario for energy production at the oil palm, a small-sized oil palm mill 

(capacity 30 ton FFB/y) could produce approximately 26.000 to 44.000 tons of 

biomass (dry weight) divided over the three main by-products: EFBs, fibres en 

shells.  

 

Table 9. Biomass availability of palm oil production, based on five scenarios based on (also 

refer to paragraph 2.6 for description of the scenarios.) 

    Biomass availability 

1. Current practice ton dw/ton FFB Ton dw/ha.yr ton/mill.yr 

Empty Fruit Bunch (EFB) 0.088 1.88 19800 

Fibres  0 0 0 

Shells  0.029 0.61 6434 

total   0.12 2.50 26234 

2. POME Digestion + Fibres  ton dw/ton FFB ton/ha.yr ton/mill.yr 

Empty Fruit Bunch (EFB) 0.088 1.88 19800 

Fibres  0. 0 0 

Shells  0.048 1.03 10800 

total   0.14 2.91 30600 

3. POME Digestion + EFB ton dw/ton FFB ton/ha.yr ton/mill.yr 

Empty Fruit Bunch (EFB) 0.027 0.58 6115 

Fibres  0.091 1.95 20475 

Shells  0.048 1.03 10800 

total   0.17 3.56 37390 

4. Higher Efficiency ton dw/ton FFB ton/ha.yr ton/mill.yr 

Empty Fruit Bunch (EFB) 0.088 1.88 19800 

Fibres  0.038 0.82 8661 

Shells  0.048 1.03 10800 

total   0.17 3.73 39261 

5. POME digestion + 

Higher Efficiency 

ton dw/ton FFB ton/ha.yr ton/mill.yr 

Empty Fruit Bunch (EFB) 0.059 1.27 13352 

Fibres  0.091 1.95 20475 

Shells  0.048 1.03 10800 

total   0.20 4.24 44627 

Note: availability per mill based on production of 30 ton FFB/h 
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3.1 General characteristics of palm oil EFB, fibre and shells 

 

In Table 10 the general composition characteristics of EFBs, mesocarp fibre and 

shells are summarized. This composition is variable. Especially for the ash content 

will vary according to soil characteristics and processing. The same goes for other 

components such as K, N and P. In general the ash content is lowest for shells and 

highest for EFB and fibre.  

The energy content (HHV) is highest for shells and lowest for EFBs. This is mainly 

explained by the higher lignin content of shells (which has a higher energy 

content). The potassium content is lowest for shells and highest for EFBs.  

 

Table 10. Typical composition characteristics of palm oil Empty Fruit Bunches (EFB), mesocarp 

fibre, and shells.  

  EFB Fibre Shells 

Production  ton 

d.w./ton 

FFB 

0.09 0.09 0.05 

Moisture content % FW 60 17 to 40 10 to 25 

Dry matter 

concentration at 

collection 

% dry 

weight 

40.0 83 to 60  75 to 90 

Higher heating 

value  

GJ/ton dw 17.5 to 19.0 19.7 20.5 to 21.5 

Lower heating value GJ/ton dw 6.4 13.0 15.1 

Ash concentration  % dw 1.6 to 7.7 3.5 to 8.4  2.7 to 4.4 

Biochemical 

composition 

    

Cellulose  % dw 38.3 34.5 20.8 

Hemicellulose  % dw 35.3 31.8 22.7 

Lignin % dw 22.1 25.7 50.7 

Nutrient 

composition 

    

N  % dw 0.65 to 0.7 0.29 to 1.4  0.3 to 0.6 

P  % dw 0.08 0.07 0.01 

K  % dw 2.37 1.18 0.15 

References: Dehue, 2006; Harimi et al. 2005; Kelly-Yong et al., 2007; Mohamed 

et al. 2005; MPOB; Omar et al. 2011.  

 

3.2 Empty Fruit Bunch (EFB) 

 

Current uses 

The EFB is sometimes pressed to yield small quantities of oil and reduce transport 

on stage volume. The high K content makes EFB less suitable than fibre or shells, 

as a boiler fuel because the high K content will lower ash melting point leading to 

slag formation and fouling of boilers (see Figure 9). 
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EFBs have generally been burnt in the open air or in simple burners to generate 

“bunch ash” which has a value due to its high K and other mineral content (Yusef, 

2006). Bunch ash is recycled to the plantation. Air pollution caused by this simple 

incineration is often undesirable or forbidden. Now EFB are often left on a heap 

before being returned to the plantation, though generally only to the fields close 

by the mill (see Figure 7 picture 3). The spontaneous and largely uncontrolled 

composting may produce methane and N2O as a consequence. This can generate 

GHG emissions of up to 4.7 ton CO2eq/ha.yr (as explained in paragraph 2.7). 

Especially independent millers do not return the EFB to the field as they do not 

own the plantations (Dehue, 2006). The value of EFB returned to the field as 

mulch has been estimated between $2.1 and $3.3 per tonne due to the benefit 

from replacing fertilizer the costs for transport and spreading (Dehue, 2006). 

According to Menon et. al (2003) the economic benefit of using EFBs as a fuel for 

power generation is 3,5 times the benefit of using EFBs as a fertilizer (mulch). 

 

Still, EFB appears to be the most problematic by-product of palm oil mills and a 

considerable amount of effort is being put into developing alternative uses.  

 

Figure 9. Example of ash agglomeration formed due to a low ash melting point in boilers due to 

a high alkali (K) content of the ash.  

  
 

Alternative uses 

 

Thermal conversion 

Since EFB is generally regarded as underutilised, readily available biomass, there 

is a vast literature on alternative uses for EFB. By far the most common use is 

converting EFB to electricity and heat by thermal conversion, including 

combustion. In Thailand, stand-alone boilers are in place that are fed with EFB. 

These installations produce electricity for the public electricity grid. As explained 

above the low quality characteristics for combustion (high moisture and potassium 

contents) should pose a problem here. Transport of EFBs is problematic due to the 

large volume and high moisture content (40%) therefore methods of pretreatment 

to increase energy content and storability and transportability has been assessed.  
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Pre-treatment 

Besides combustion of EFB as such (e.g. without pre-treatment), pre-treatment 

technologies for EFB are developed that facilitate combustion, such as shredding 

(which improves handling of EFB and feeding it into a boiler), torrefaction and 

pelletization. Producing pellets from EFB is reported to be more costly compared to 

producing wood pellets. For torrefaction, Aziz et al (2012) reported that EFB, due 

to its higher hemicellulose content, is almost completely decomposed by 

torrefaction. Uemura et al (2011) also found that the torrefaction (energy) yield of 

EFB was only 56% compared to 100 and 97% for shells and fibre respectively. 

Flash pyrolysis at temperatures from 400 to 600 ºC, to generate gas, char and 

pyrolysis oil (see table 11) has been tested on EFBs (Abdulla et al, 2010; Islam et 

al, 1999; Omar et al, 2011). The gas is generally used for the pyrolysis process. 

Pyrolysis oil can be easily exported for other uses such as energy generation. The 

production of chemical and second generation biofuels is under development. The 

char can be used for local heat and electricity production or soil improvement. An 

added advantage would be that most inorganic compounds are found in the char, 

thus returning valuable nutrients to the soil.  

 
Table 11. Pyrolysis products (from palm kernel shells) at different temperatures.  

Temperature  ºC Pyrolysis  Oil Char Gases 

---------------------- % of dry weight ------------------------------ 

400 42 35 23 

450 50 29 21 

500 58 26 16 

550 53 21 26 

600 41 15 34 

Source: Islam et al, 1999. 

 

Anaerobic digestion 

Some literature sources refer to producing biogas from EFB, by co-digestion with 

other biomass sources (Nieves et al, 2011; O-Thong et al, 2011). In general, the 

biogas yield of untreated EFB is low due to its lignocellulosic composition, and a 

pretreatment is necessary to improve biogas yield from EFB. Nieves et al (2011) 

report that biogas yield of untreated EFB (0.2 NM3/kg VS) can be doubled after 

treating it with Sodium hydroxide.  

 

Second generation fuels and chemicals 

EFB is also considered as source of fermentable sugars for 2nd generation 

fermentation processes, to produce biofuel or chemicals as fossil fuel replacement. 

In this case, EFB will have to undergo chemical and enzymatic pre-treatment to 

liberate sugars from the lignocellulosic biomass. After this the sugars are 

converted by fermentation into ethanol (Tan et al, 2010; Han et al, 2011; Lau et 

al, 2010; and others), or ABE (Ibrahim et al, 2012; and others). Other products 

include dissolving pulp and furfural. 

 

Materials  

EFB could also be used for production of materials, including structural materials 

(fibre boards). Currently, some EFB produced in Malaysia undergoes shredding 

and drying, and is exported to other countries. Other material uses include 

producing Medium Dense Fibreboards (MDF) from EFB, as well as dissolving 

cellulose. From 5 tons of EFB about one ton of pulp can be produced (Lee and 

Ofori-Boateng, 2013). Technologies for producing these materials are primarily 

proven in concept, and not yet implemented at a commercial scale.  
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Challenges of EFB utilisation 

 

EFB exhibits a high moisture content which, in combination with a low bulk 

density, poses particular challenges to utilisation. For most applications, some 

type of pre-processing or pretreatment is needed, and the stability of the material 

needs to be improved if EFB have to be stored for longer periods. Another relevant 

question is at which location if also whether the pre-treatment should be done at 

the mill side, or at the central site.  

 

3.3 (Mesocarp) Fibres 

 

Current uses 

Oil palm fibres have a reported moisture content of 17 to 40% (Table 10) making 

it difficult to store without drying. The fibre is (therefore) used as the primary 

boiler fuel by oil palm plantations before shells and EFBs. This explains why there 

has been less research into alternative uses compared to EFbs. However, if energy 

efficiency of the processing mill is increased and biogas from POME is used for 

energy generation up to 100% of the palm fibre could become available for 

alternative uses (see paragraph 2.6 and Table 9).  

 

Alternative uses 

Oil palm mesocarp fibres could be used to produce fuel briquettes or pellets. 

Briquetting is a mechanical treatment to make biomass more uniform via 

compaction. In some cases, the outer layer of the biomass is carbonised during 

briquetting in order to improve the combustion characteristics. So far, most 

technologies have been tested to produce briquettes from either EFB, or shells, or 

a blend of EFB and shells (MPOB, 2010). 

 

Besides energy conversion, in principal oil palm mesocarp fibre could be as raw 

materials that are also considered for EFB and shells, including light-weight 

concrete, fillers, activated carbon, and other materials. As far as known, none of 

the applications are currently done on a large scale.  

 

As mentioned (in paragraph 3.2) fibres have a better torrefaction yield than EFB. 

We speculate that pyrolysis oil yield may also be higher for fibre than for EFB due 

to lower ash contents. Other uses that have been studies even included fodder.  

 

Challenges 

Fibres have a comparatively high water content and also contain a considerable 

amount of nutrients. Still, the moisture and nutrient content is generally lower 

than for EFBs while the energy and lignin content should generally be higher. As 

fibres are the main boiler fuel, fibre should only become available if energy 

efficiency and alternative energy generation source is available.  
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3.4 Palm Kernel Shells (PKS)  

 

Current uses 

 

The primary use of shells is as a boiler fuel supplementing the fibre which is used 

as primary fuel. The remaining shells are often disposed of in the field or burned. 

In recent years PKS are sold as fuel around the world. Besides selling shells in 

bulk, there are companies that produce fuel briquettes from shells (MPOB, 2010) 

which may include partial carbonisation of the material to improve the combustion 

characteristics. As a raw material for fuel briquettes, palm shells are reported to 

have the same calorific characteristics as coconut shells. The smaller size 

compared to coconut shells makes it easier to carbonise for mass production, and 

its resulting palm shell charcoal can be pressed into a heat efficient biofuel 

briquette. To what extent oil palm shell briquettes are produced on a large scale, 

is not known. 

 

Alternative uses 

Although the literature on using oil palm shells (and fibres) is not as extensive as 

EFB, common research directions of using shells, besides energy, are to use it as 

raw material for light-weight concrete, fillers, activated carbon, and other 

materials. As far as known, none of the applications are currently done on a large 

scale. Since shells are dry and suitable for thermal conversion, technologies that 

further improve the combustion characteristics and increase the energy density, 

such as torrefaction, could be relevant for oil palm shells. Furthermore, palm oil 

shells are studied as feedstock for fast pyrolysis. To what extent shells are a 

source of fermentable sugars is not known, however the (reported) high lignin 

content in palm kernel shells indicates that shells are less suitable as raw material 

for fermentation. 

 

Challenges/opportunities 

The shells have a high dry matter content (>80% dry matter). Therefore the 

shells are generally considered a good fuel for the boilers as it generates low ash 

amounts and the low K and Cl content will lead to less ash agglomeration. These 

properties are also ideal for production of biomass for export. Aziz et al (2012) 

reported a high lignin content for shells, which affects torrefaction characteristics 

positively (as the material is not easily degraded compared to EFB and fibres).  

As described in paragaraph 3.2 pyrolysis oil production has been produced 

successfully. Giving yields of more than 50%.  

 

Economics  

On the internet, prices of 55 to 70$ /ton of shells (FOB) are quoted. 

 

3.5 Palm Oil Mill Effluent (POME) 

 

Palm Oil Mill Effluent volume and composition will vary heavily upon FFB 

composition, process scheme, actual processing conditions and separation 

efficiencies. Three different streams add to the Palm Oil Mill Effluent: (1) Sterilizer 

condensate, (2) Clarification wastewater and (3) Hydrocyclone wastewater. The 

POME flow could be reduced by heat efficiency improvements during sterilization. 
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Better heat efficiency will lead to lower usage of steam and hence to lower 

condensate flow rates. POME has been identified as one of the major sources of 

aquatic pollution in Malaysia (Yeoh, 2004). As described in paragraph 2.6 

emissions of greenhouse gasses can be equal to. Also odour and eutrophication 

can be a problem if proper disposal is not implemented. Biogas production through 

anaerobic digestion for energy production in a CHP (combined heat and power) 

system is the main alternative use for POME. As described in paragraph 2.6 and 

2.7 this will be nearly enough to provide steam and electricity for the processing 

mill, if energy efficiency measures are implemented. 

 

3.6 Technology providers and potential buyers of oil palm residues 

 

Following is an initial list of service providers, providers of technologies to add 

value to oil palm residues, and companies that would have potential interest in 

importing biomass residues to the Netherlands. The list is not conclusive, and 

inclusion in this list does not indicate any endorsement of these companies. 

 

Host, Biogast, BTG, DSM, Newfoss, BioMCN, Abengoa, Essent, Nuon/Vattenfall, 

Eon, and members of the Dutch Bioenergy Platform (refer to 

http://www.platformbioenergie.nl/nl/ab.php): Archimedes Solutions, 

Biomassbrokers, Cirmac International, Degin Duurzame Energie, EcoSon, Eneco,  

Energon, GDF SUEZ Energie Nederland, GF Energy, GMB BioEnergie Zutphen,  

Grontmij Energie, HVC K.S.B. Nederland, Ludan Renewable Energy, NUON Power 

Generation, Partners for Innovation, Rabobank, Raedthuys Groep, SEnS Capital 

Sparkling Projects, Tri-O-Gen Tubro Filter-, Lucht- en Verbrandingstechniek 

Twence Unica Ecopower.  
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