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1.1 Introduction 
The global human population exceeded seven billions in 2011 and it is expected to 
reach up to ten billions in 2100 according to the medium variant defined by the 
United Nations (UN, 2011). This causes an extreme pressure on the Earth’s 
ecosystems to provide resources and services (e.g. provision of food, fresh water, 
fuel, etc.) to satisfy growing needs of the human population. According to the 
Millennium Ecosystem Assessment (MEA, 2005), the extent, structure and function 
of ecosystems have changed more rapidly since the 1950’s than in any comparable 
period of time in human history. There is currently enough scientific evidence that 
human-induced activities have been contributing to changes in global environment 
(Doney et al., 2009; Galloway et al., 2008; IPCC, 2007; Joos and Spahni, 2008; Klein 
Goldewijk et al., 2011; Thomas et al., 2004).  
     Both increasing human-induced pressure on delivery of ecosystem services and 
rapidly changing environmental conditions threaten the extent, structure and function 
of the Earth’s ecosystems. There is a chance of pushing ecosystems into a new state 
that might be less favourable to support human well-being (Rockström et al., 2009). 
For a sustainable functioning of ecosystems in future it is essential to understand how 
ecosystems respond to environmental and human-induced pressures. We already 
know that the typical response of plants to stress involves short-term physiological 
changes and long-term physiological, morphological and functional changes 
(Mooney et al., 1991). Therefore, it is important to monitor the magnitude and the 
extent of stress-induced changes, as well as to predict them to assess the future 
development of ecosystems. In this respect, remote sensing (RS) offers a unique 
opportunity for frequent monitoring of terrestrial as well as aquatic ecosystems from 
local to global scales. Since the advent of RS for Earth observation in the 1970’s, 
repetitive and spatially continuous RS data have been providing valuable information 
on the actual status of ecosystems (Joiner et al., 2011; Myneni et al., 2002), helping 
to detect changes in land cover (Skole and Tucker, 1993; Stow et al., 2004) and to 
reveal trends (de Jong et al., 2012; Stöckli and Vidale, 2004). Moreover, RS data 
hold a strong potential to be used as input to models predicting ecosystem dynamics 
under changing environmental conditions (Nemani et al., 2009; Sitch et al., 2003). 
Nowadays, many national and international organizations and initiatives have already 
included RS data to support, e.g., land use management and nature conservation 
programs. Global monitoring systems such as GEOSS (Global Earth Observation 
System of Systems) or the European GMES (Global Monitoring of Environment and 
Security) show particular examples of infrastructures combining RS and in-situ data 
and redistributing them to a wide range of users. 
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1.2 Vegetation ecosystems of interest 
This thesis contributes to scientific issues in the use of remote sensing in two 
structurally and ecologically contrasting ecosystems: evergreen coniferous forests 
and montane grasslands. 

1.2.1 Evergreen coniferous forests 

Evergreen coniferous forests spread from temperate to boreal regions of North 
America, Europe and Asia and cover approximately 10% of total land surface area 
(Bartholomé and Belward, 2005; Melillo et al., 1993). Forests in general have a 
tremendous value for human societies (Bonan, 2008). They provide timber, fuel 
wood and food resources, they support fresh water purification, cultural, spiritual and 
recreational services. Moreover, they play an essential role in the global carbon 
balance. They sequester carbon into plant biomass and mitigate this way the effect of 
global climate change. Temperate and boreal coniferous forests act as a substantial 
carbon sink with 0.6-0.7 Gt of carbon per year (Magnani et al., 2007; Myneni et al., 
2001). This represents roughly 30% of the carbon annually sequestered by terrestrial 
ecosystems. Recent studies suggested that global environmental changes may 
substantially reduce the future carbon sequestration capacity of terrestrial ecosystems 
(Canadell et al., 2007). The sequestration capacity of the evergreen coniferous 
forests, as well as their capability to provide various services is driven by actual 
forest condition and its eco-physiological status. Monitoring of the eco-physiological 
forest status from local to global scale can benefit from variables retrieved from 
remote sensing data such as leaf chlorophyll content and leaf area index. 
    From a remote sensing point of view, coniferous forests represent one the most 
challenging ecosystems to work with because of their complex canopy structure 
(Ollinger, 2011; Rochdi et al., 2006). Coniferous forests are characterized by a 
typical three-dimensional shape of leaves and a hierarchical structure of leaves, 
shoots, branches and crowns. The complex canopy structure of conifers influences 
the reflected radiation flux, particularly in the near infra-red region. Solar radiation is 
more likely to be absorbed by conifers making them appear darker in the near infra-
red region compared with their broadleaf counterparts (Rautiainen and Stenberg, 
2005). Understanding the underlying mechanisms and confounding effects of canopy 
structure on spectral measurements and estimation of biochemical properties from RS 
gains more and more attention within the remote sensing research community 
(Knyazikhin et al., 2012). 
    This thesis contributes to the research of coniferous forest structure by 
investigating the area of individual needles, its measurement and implication for the 
remote sensing of forest chlorophyll content. In addition, procedures for estimating 
the chlorophyll content of coniferous forests still require improvement in terms of 
accuracy, which are addressed here. 
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1.2.2 Montane grasslands 

Montane grasslands are the dominating vegetation coverage in subalpine and alpine 
regions. High mountain ecosystems represent the only biogeographical unit that can 
be found globally at all latitudes depending on altitude (Körner, 1999). The total 
vegetated alpine area covers only 3% of the total land surface (Körner, 1999). 
Despite this relatively small extent, montane ecosystems host roughly 10,000 higher 
plant species (corresponding to about 4% of all known higher plant species). About 
40% of the global human population depends in some way on resources and services 
of mountain regions (Körner, 1999). Montane ecosystems are often perceived as 
economically non-profitable areas for mankind, but they actually provide vast ranges 
of goods and services such as fresh water purification, protection against natural 
hazards (erosion, landslides, avalanches), provision of fodder and timber, tourism 
and recreation (Grêt-Regamey et al., 2012). Montane ecosystems are well adapted to 
very distinct and sometimes extreme environmental conditions. These environmental 
conditions make these ecosystems exceptionally fragile. Their biodiversity and 
functioning are often sensitive to changes in climate and land use, habitat 
fragmentation and other human-induced disturbances (Dirnböck et al., 2003; Pauli et 
al., 2007; Roux-Fouillet et al., 2011). A complex topography and distinct 
environmental conditions in mountain regions influence the spatial distribution of 
species occurrence and valuable ecosystem services. Spatial assessment of multiple 
ecosystem services can be important for targeted land use management, nature 
conservation and sustainable maintenance of ecosystem services for human well-
being (Naidoo et al., 2008; O'Farrell et al., 2010). In this thesis we investigate the 
role of remote sensing to map multiple ecosystem services in montane grasslands of 
the French Alps subalpine region. 

1.3 Imaging spectroscopy of vegetation 

1.3.1 Imaging spectroscopy 

Imaging spectroscopy (or hyperspectral remote sensing) was introduced in the mid 
1980’s and it brought an enhanced insight into spectral properties of Earth’s surfaces 
(Goetz, 2009). Imaging spectroradiometers, compared to multispectral remote 
sensing instruments, measure the reflected solar spectrum in the optical domain from 
400 – 2500 nm into many narrow continuous spectral bands (Schaepman, 2009). 
Modern spectroradiometers offer excellent radiometric performance and spectral 
resolution (hundreds of spectral bands usually less than 10 nm wide). The continuous 
spectral response of vegetation helps to reveal biochemical- and structure-driven 
differences among species, plant communities and ecosystems (Kokaly et al., 2009; 
Ustin et al., 2009). 
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     Several imaging spectroradiometers are nowadays available for laboratory-, 
ground-, and airborne-based sensing of vegetation spectral properties, but spaceborne 
imaging spectrometers are currently still only sparsely available (Malenovský et al., 
2009; Schaepman, 2009). In this thesis we explore the use of airborne imaging 
spectroscopy data for vegetation ecological analysis. Thanks to both high spatial and 
spectral resolution, airborne imaging spectroscopy data are particularly useful for 
local case studies of heterogeneous vegetation surfaces. Airborne data help to 
develop, test and to upscale new algorithms for satellite-based RS, and to support 
validation of satellite-based RS products.  
     Data for this thesis were acquired by the AISA airborne imaging 
spectroradiometer (Specim, Spectral Imaging Ltd., Finland). AISA is a pushbroom 
instrument operating in the optical domain of the electromagnetic spectrum. The 
visible and near infra-red spectral range (400 – 970 nm) is covered by the AISA 
Eagle instrument. AISA Eagle can acquire up to 488 bands with a spectral sampling 
distance of 1.25 nm. The maximum signal-to-noise ratio reaches up to 1250:1. The 
near- and short-wave infrared spectral range (970 – 2500 nm) is covered by the AISA 
Hawk system. AISA Hawk can acquire up to 254 bands with a spectral sampling 
distance of 6.3 nm. The maximum signal-to-noise ratio reaches up to 800:1. Both 
instruments can be combined in a dual sensor bracket mount to collect a full datacube 
from 400 to 2500 nm. Depending on the flying altitude, the spatial resolution of 
acquired images can range from sub-meter to meters pixel size.  

1.3.2 Remote sensing methods 

Generally, methods studying vegetation properties using remote sensing data can be 
divided into three groups: i) empirical, ii) physical and iii) hybrid methods (a 
combination of empirical and physical methods) (Liang, 2004). Steadily increasing 
availability of accurate imaging spectroscopy data promoted development of 
algorithms that take advantage of a high spectral dimensionality and that are often 
applied to a specific, narrow spectral region (Ustin et al., 2009). 
 
Empirical methods build on a simple regression relationship established between in-
situ measured vegetation properties and spectral data (Ferwerda and Skidmore, 2007; 
Yoder and Pettigrew-Crosby, 1995). Typically, individual spectral bands are 
combined to form a vegetation index that enhances sensitivity to a specific vegetation 
property (Verstraete and Pinty, 1996). Multivariate statistical techniques (e.g. 
multiple linear regression) combine several spectral bands into a simple empirical 
model (Serrano et al., 2002). Spectral transformations such as the derivative or 
continuum removal are often used in empirical RS methods and they are particularly 
well suited for spectrally continuous imaging spectroscopy data.  
     By nature, empirical methods are computationally fast and effectively summarize 
local data, but they lack a cause-effect relationship. Consequently, predictive 
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statistical relationships often suffer from lack of robustness and portability, as they 
are site, species and time specific. The limitation of empirical methods can be 
partially overcome by using physically-based retrieval methods (Asner et al., 2003). 
 
Physical methods are mostly based on radiative transfer theory. Radiative transfer 
models (RTMs) simulate plant-light interactions and provide an explicit link between 
the biochemical and structural characteristics of the major vegetation scattering 
elements (leaves) and the canopy reflectance (Jacquemoud et al., 2009; Ross, 1981). 
RTMs are used at the leaf and canopy level. Due to its simplicity, the PROSPECT 
model is probably the most widely used RTM to simulate leaf optical properties 
(Feret et al., 2008; Jacquemoud and Baret, 1990). The canopy RTMs range from the 
simplest homogeneous turbid medium (family of the SAIL models (Verhoef and 
Bach, 2007)) to detailed three-dimensional models (Disney et al., 2000; Gastellu-
Etchegorry et al., 2004). In the forward mode, RTMs provide an effective means to 
investigate the influence of vegetation biochemical and structural properties on 
canopy reflectance. Inverse modelling is then used for retrieving vegetation 
properties from remote sensing data (Kimes et al., 2000).  
     Physical-based RS methods are more universally applicable as they account for 
the effects of canopy structure, topography, and observation geometry on canopy 
remotely sensed reflectance (Asner et al., 2003; Gastellu-Etchegorry and Bruniquel-
Pinel, 2001). The major drawback of the RTM inversion is that the final solution is 
not necessarily unique (Combal et al., 2003) and some canopy RTMs can require 
many input parameters that limits their applicability. 
 
Finally, hybrid methods take advantage of both empirical and physical methods. A 
hybrid inversion algorithm is a combination of extensive simulation using a leaf-
canopy RTM and implementation of a parametric or non-parametric regression model 
(Bacour et al., 2006). In this thesis we employ the hybrid approach to estimate 
chlorophyll content of Norway spruce trees and use empirical methods to estimate 
vegetation properties of subalpine grasslands.  

1.3.3 Vegetation properties from imaging spectroscopy 

Not all vegetation properties can be retrieved using remote sensing based solutions 
(more discussion follows in Chapter 2). Especially biochemical (e.g. foliar pigments, 
water) and structure-related (e.g. leaf area index) vegetation properties, which play a 
key role in radiation absorption and scattering, can be retrieved from RS data with 
acceptable accuracy. 
     Complexity of plant-light interactions represents the major challenge in the 
remote sensing of vegetation. Many globally important processes occur at the leaf 
level and thus scaling schemes are required to interpret remotely sensed signals 
originating from complex plant communities (Malenovský et al., 2007). For example, 
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some vegetation indices sensitive to chlorophyll content that were developed at leaf 
level using laboratory measured spectra cannot be well transferred to the canopy 
level (Haboudane et al., 2002; Zarco-Tejada et al., 2001). The canopy structure plays 
the major role in scaling from leaf to canopy level. The effect of canopy structure can 
be incorporated into an RS method by using 3-D RTMs (Disney et al., 2000; 
Gastellu-Etchegorry et al., 2004). Recently, Knyazikhin et al. (2012) emphasized the 
crucial role of knowing well the canopy structure in RS of forest biochemical 
properties. They showed that previously reported correlations between nitrogen 
content and the near infra-red reflectance are actually a consequence of canopy 
structure variations rather than of nitrogen. 
 
The high spectral resolution that is typical for imaging spectroscopy data is 
particularly suitable to study individual absorption features of plant biochemical 
components such as plant pigments (Ustin et al., 2009), water or dry matter (Kokaly 
et al., 2009). Among the plant pigments chlorophyll a and b are of highest 
importance, because they absorb incoming solar radiation in the visible region of the 
electromagnetic spectrum (400 – 700 nm) and transfer the energy to initiate 
photosynthesis. The concentration of chlorophyll a and b controls the amount of 
absorbed solar radiation available for photosynthesis and, consequently, plant 
primary productivity. The concentration in leaves decreases under stress and during 
the senescence phase. Therefore, many RS studies focused on the quantification of 
total chlorophyll as a valuable indicator of actual plant eco-physiological status 
(Blackburn, 2007; Haboudane et al., 2002; Ustin et al., 2009). As summarized by 
Blackburn (2007), many RS-based methods have been developed for the non-
destructive measurement of chlorophyll content ranging from narrow-band vegetation 
indices, analysis of spectral derivatives or continuum-removed spectra, to the 
employment of physical methods based on RTMs. However, lack of uniformity 
between the RS methods and large variability of available chlorophyll-sensitive 
vegetation indices suggest that certain challenges and unresolved issues remain in RS 
of chlorophyll. Issues such as canopy structural effects are especially relevant for 
coniferous forest studies as demonstrated in this thesis. Moreover, this thesis 
addresses estimation of other vegetation properties such as green biomass, litter mass 
and species diversity in subalpine grasslands. 
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1.4 Research questions 
This thesis builds on interdisciplinary research and it contributes to bridging gaps 
between the remote sensing and plant ecology research communities. The main 
objective of this thesis is “to explore high spatial and spectral resolution imaging 
spectroscopy for ecological applications in two structurally and functionally 
different ecosystems: coniferous forests and montane grasslands”. To reach the 
objective we carried out an analysis at the level of individual leaves, plants and 
communities. The major challenges are addressed by the following research 
questions: 
 
1. What is the current state-of-the-art in using optical remote sensing for estimation 
of key plant traits used widely in plant ecology research? 
 
2. What is the variability of total to projected leaf area ratio of Norway spruce 
needles and what is the implication for remote sensing based estimates of crown 
averaged biochemical properties? 
 
3. What is the potential use of the continuum removal transformation for quantitative 
mapping of chlorophyll content of Norway spruce crowns using airborne data and 
radiative transfer modelling? 
 
4. What is the potential of airborne imaging spectroscopy to map ecosystem 
properties and services in subalpine grasslands in comparison with a plant-trait 
based modelling approach? 

1.5 Structure 
The thesis is based on four peer-reviewed papers (Chapters 2-5). Each of those 
chapters represents an answer to the research questions presented in section 1.4. 
Chapter 2 reviews the use of remote sensing for estimation of important plant traits. 
Chapters 3 & 4 address remote sensing applications in coniferous forests. Chapter 5 
focuses on remote sensing of ecosystem services in subalpine grasslands. 
 
     Chapter 1 introduces the ecosystems of interests, key principles about the remote 
sensing of vegetation and summarizes the main research questions. More details on 
linking remote sensing with plant ecology research are given in the next chapter.  
     Chapter 2 reviews recent achievements as well as challenges in remote sensing of 
individual plant traits that has been recognized as being important for ecosystem 
function studies (namely plant growth and life forms, flammability properties, 
photosynthetic pathway and activity, plant height, leaf lifespan and phenology, 
specific leaf area, leaf nitrogen and phosphorous). 
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     Chapter 3 addresses an important, but also challenging, aspect in remote sensing 
of coniferous canopies – the role of leaf shape. We describe our own geometrical 
model to estimate total leaf area of spruce needles and decompose the variability of 
leaf area within a crown. We study the influence of biased total leaf area 
measurements on the accuracy of remote sensing based crown averaged biochemical 
properties. 
     Chapter 4 explores the continuum removal technique applied on high resolution 
airborne imaging spectroscopy data to estimate chlorophyll content of Norway spruce 
trees. We use radiative transfer modelling to develop a new vegetation index based 
on the continuum removal transformation of the red-edge reflectance (650 – 720 nm).  
     Chapter 5 presents a case study that explores the potential of imaging 
spectroscopy beyond traditional mapping of vegetation properties. We map 
ecosystem properties that underpin ecosystem services supplied by subalpine 
grasslands and compare it with results of plant trait-based statistical modelling. 
Furthermore, we discuss advantages and disadvantages of both approaches. This 
research opens a door to assessment of multiple ecosystem services using non-
destructive remote sensing methods. 
     Chapter 6 summarizes the main results for each research question (Chapters 2 –
 5), puts them into a broader context and suggests directions for future research 
efforts. 
     The thesis is complemented by all references used throughout this work, 
appendices, acknowledgements, and curriculum related information. 
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Abstract 
Plant trait data have been used in various studies related to ecosystem functioning, 
community ecology, and assessment of ecosystem services. Evidences are that plant 
scientists agree on a set of key plant traits, which are relatively easy to measure and 
have a stable and strong predictive response to ecosystem functions. However, the in-
situ measurements of plant trait data are still limited to small area, to a certain 
moment in time and to certain number of species only. Therefore, remote sensing 
(RS) offers potential to complement or even replace in-situ measurements of some 
plant traits. It offers instantaneous spatially contiguous information, covers larger 
areas and in case of satellite observations profits from their revisit capacity.  
     In this review, we first introduce RS concepts of light – vegetation interactions, 
RS instruments for vegetation studies, RS methods, and scaling between in-situ 
measurements and RS observations. Further we discuss in detail current 
achievements and challenges of optical RS for mapping of key plant traits. We 
concentrate our discussion on three categorical plant traits (plant growth and life 
forms, flammability properties and photosynthetic pathways and activity) and on five 
continuous plant traits (plant height, leaf phenology, leaf mass per area, nitrogen and 
phosphorous concentration or content). We review existing literature to determine the 
retrieval accuracy of the continuous plant traits. The relative estimation error using 
RS ranged between 10% and 45% of measured mean value, i.e. around 10% for plant 
height of tall canopies, 20% for plant height of short canopies, 15% for plant 
nitrogen, 25% for plant phosphorus content/concentration, and 45% for leaf mass per 
area estimates.  
     The potential of RS to map plant traits is particularly high when traits are related 
to leaf biochemistry, photosynthetic processes and canopy structure. There are also 
other plant traits, i.e. leaf chlorophyll content, water content and leaf area index, 
which can be retrieved from optical RS well and can be of importance for plant 
scientists.  
      We underline the need that future assessments of ecosystem functioning using RS 
should require comprehensive and integrated measurements of various plant traits 
together with leaf and canopy spectral properties. By doing so, the interplay between 
plant structural, physiological, biochemical, phenological and spectral properties can 
be better understood. 
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2.1 Introduction 
Plant traits are structural, physiological, biochemical or phenological features, e.g. 
plant height, photosynthesis rate, nitrogen content or leaf phenology, respectively, 
which are being increasingly used in ecology research (Cornelissen et al., 2003; 
Kattge et al., 2011). Due to the fact that groups of plants sharing a similar function 
within an ecosystem also tend to exhibit similar plant traits, plant traits are used to 
study the response of plants to various environmental pressures (e.g. changes in 
climate and land use) and the effect of plants on important ecosystem processes (e.g. 
biogeochemical cycles) (Díaz and Cabido, 1997; Lavorel and Garnier, 2002). 
Moreover, they have been successfully used in various studies related to ecosystem 
functioning (Díaz et al., 2004; Orwin et al., 2010; Wright et al., 2004), community 
ecology (Kraft et al., 2008), plant response to environmental pressures (de Bello et 
al., 2006; Garnier et al., 2007), plant invasion (Kurokawa et al., 2010; van Kleunen et 
al., 2010) and assessment of ecosystem services (Lavorel et al., 2011).  
     Nowadays there are hundreds of plant traits identified and measured by ecologists 
(Kattge et al., 2011). Plant trait data are measured at the level of individual plants 
and further upscaled to canopy properties (Violle et al., 2007) and data are often 
being compiled in various local (Kleyer et al., 2008; Paula et al., 2009) and global 
(Kattge et al., 2011) databases. Evidences are that plant scientists agree on a set of 
key plant traits, which are relatively easy to measure and have a stable and strong 
predictive response to ecosystem functions at various scales (Cornelissen et al., 2003; 
Díaz et al., 2004; Wright et al., 2004). Although data on key plant traits can be 
relatively well obtained from in-situ measurements, the measurements are still 
limited to small area, to a certain moment in time and to certain number of species 
only. Therefore, remote sensing (RS) offers potential to complement or even replace 
in-situ measurements of some plant traits (Kokaly et al., 2009) at larger areas.  
     Capabilities to retrieve plant traits and canopy properties from optical RS have 
evolved hand in hand with the technological development of RS spectroradiometers 
(Milton et al., 2009). Early RS spectroradiometers providing data of coarser spatial 
and spectral resolutions have supported  mainly vegetation classification into broader 
functional groups (Ustin and Gamon, 2010) and the development of simple 
vegetation indices (VIs) that were sensitive to broad variations in canopy properties 
(Cohen and Goward, 2004; Turner et al., 1999). Next generation of medium spectral 
and spatial resolution spectroradiometers together with development of radiative 
transfer models (Liang, 2004) have facilitated quantitative estimation of some plant 
traits (e.g. chlorophyll content (Dash and Curran, 2004) and water content (Cheng et 
al., 2006)) and canopy properties (e.g. leaf area index (Myneni et al., 2002)). 
Development of high spectral resolution imaging spectroradiometers encouraged 
even more the quantitative estimation of plant traits related to physiology and 
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biochemistry. Plant pigments are the most studied traits (Blackburn, 2007; Ustin et 
al., 2009) and among them chlorophylls a and b (Cab) have received most attention 
(Haboudane et al., 2002; le Maire et al., 2004; Malenovský et al., 2013; Schlerf et al., 
2010; Zarco-Tejada et al., 2004), whereas carotenoids (Gitelson, 2002; Hernández-
Clemente et al., 2012) and anthocyanins (Gitelson et al., 2006) have been studied 
less. Other biochemical traits retrieved from optical RS data are plant macronutrients 
(N, P, K, Mg, Ca) (Mutanga et al., 2004; Pimstein et al., 2011) and there is clear 
dominance of N and P related studies (both traits discussed in details later). 
Furthermore, leaf water content (Clevers et al., 2010; Colombo et al., 2008), leaf 
mass per area (discussed in details later), lignin and cellulose (Kokaly et al., 2009) or 
polyphenols (Skidmore et al., 2010) can be potentially retrieved from optical spectral 
data too.  
     Advantages of using RS are its capability to provide spatially contiguous and – 
for certain observations – high revisit frequency at the typical length scale of the trait 
processes observed. Moreover, it offers different sampling scheme to trait mapping, 
determined by combination of pixel size, spatial extent and revisit time of RS 
observations, than in-situ measurements. The major challenge in quantitative RS of 
plant traits plays the canopy structure. It affects interpretation of canopy reflectance 
and has negative impact on the retrieval accuracy of biochemical traits (Knyazikhin 
et al., 2012; le Maire et al., 2008). Therefore approaches accounting for integral 
effects of canopy structure (Knyazikhin et al., 2012) or measurements of canopy 
structure itself (van Leeuwen and Nieuwenhuis, 2010) have recently gained more 
attention. 
     The potential of RS data for ecological applications is large, however, we see that 
successful integration of RS observations and ecological applications still requires 
bridging gaps in the perception of traits importance, scientific terminology 
(Schaepman-Strub et al., 2006; Violle et al., 2007) and scaling among leaf, plant and 
canopy levels (Malenovský et al., 2007; Messier et al., 2010). In this review, we want 
to demonstrate the potential of RS for estimating individual plant traits as defined by 
ecologists and therefore strengthen links between plant ecology and remote sensing 
research communities. First, we introduce RS concepts of light – vegetation 
interactions, RS instruments for vegetation studies, RS methods, and scaling between 
in-situ and RS data. Further, we discuss in detail current achievements and 
challenges when using optical RS to estimate key plant traits. We used Cornelissen et 
al. (2003) as baseline reference for key traits. These included plant growth and life 
forms, flammability properties, photosynthetic pathways and activity, plant height, 
leaf lifespan and phenology, specific leaf area, leaf nitrogen and phosphorous. 
Regenerative (e.g. seed mass) and belowground (e.g. rooting depth) traits are 
deliberately excluded, since they cannot be estimated using direct measurements 
from optical RS. We put emphasis on optical, passive RS, but mention active RS 
(laser scanning and microwave radar) to trait mapping whenever appropriate.  
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2.2 Material and methods 

2.2.1 Light-vegetation interactions 

Interactions between incident radiation and canopy elements are extremely complex 
and are described by three main physical mechanisms: absorption reflection, and 
transmission. The solar reflected radiation in the optical domain (i.e. between 380 
and 2500 nm) is commonly used in vegetation studies, because most of the diagnostic 
absorption features of green vegetation are located in this part of the spectrum 
(Kokaly et al., 2009; Ustin et al., 2009). Reflectance of vegetation canopies depends 
on radiative properties of leaves, other non-photosynthetic canopy elements and their 
spatial organisation. Leaf reflectance spectra are mainly characterized by i) strong 
and well described absorption of foliar photosynthetic pigments, dominated by 
chlorophylls, in the visible region (400 – 700 nm, VIS), ii) leaf structure in the near 
infrared region (700 – 1300 nm, NIR), and iii) prevailing water and protein 
absorptions (as well as other biochemicals) in the shortwave infrared region (1300 –
 2500 nm, SWIR). Mechanisms influencing leaf reflectance are well understood 
(Kumar et al., 2001), but interpretation of canopy level reflectance remains 
challenging due to multiple light interactions between canopy elements and 
background (Disney et al., 2006; Ross, 1981; Widlowski et al., 2004). The key factor 
influencing canopy reflectance is the canopy structure (Disney et al., 2006; 
Rautiainen et al., 2004). The most widely used descriptor of a canopy structure in RS 
studies is leaf area index (LAI) (Fernandes et al., 2004; Turner et al., 1999). LAI 
alone cannot fully describe the effects of the canopy structure. There are many other 
leaf level traits (e.g. ratio of mesophyll cell surface to intercellular air spaces, leaf 
thickness) and canopy properties (e.g. leaves orientation in a canopy characterized by 
leaf angle distribution, leaves aggregation characterized by clumping index) that 
strongly influence remotely sensed canopy reflectance. Lack of in-situ measurements 
and complex interplay among structural leaf traits and canopy properties prevents to 
decouple their individual effects on RS reflectance data. Furthermore, presence of 
background and understory components (Eriksson et al., 2006), presence of non-
photosynthetic elements (Verrelst et al., 2010), and varying observation geometries 
(Lobell et al., 2002) also influence canopy reflectance. Therefore RS methods try to 
minimize these confounding effects (Knyazikhin et al., 2012) and enhance the 
sensitivity of reflectance data towards a trait or a property of interest (Haboudane et 
al., 2002; Verstraete and Pinty, 1996). Alternatively, combined retrieval schemes are 
optimizes to use spectral, spatial and directional domains simultaneously (Laurent et 
al., 2011b; Schaepman, 2007). 
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2.2.2 Remote sensing instruments 

Environmental studies can nowadays benefit from a large variety of RS data provided 
by different passive and active RS systems. We first discuss optical, passive RS 
systems, because they are being prevailingly used to study vegetation properties. 
Optical spectroradiometers on satellite-, airborne- and ground-based platforms 
represent a trade-off among spatial, spectral and temporal resolutions. 
Spectroradiometers onboard satellite platforms acquire data of regional to global 
coverage with spatial resolution of tens to hundreds meters and revisit time typically 
between 2 and 16 days. From the advent of broad-band, multispectral and coarse 
spatial resolution spectroradiometers (e.g. advanced very high resolution 
spectroradiometer AVHRR onboard NOAA) in the 1970’s and 80’s we have moved 
towards spectroradiometers of increasing resolutions. Currently operational satellite-
based spectroradiometers suitable for vegetation monitoring are of moderate spectral 
and spatial resolutions (e.g. moderate resolution imaging spectroradiometers MODIS 
onboard Aqua and Terra, the recently terminated Envisat mission with MERIS, and 
Enhanced Thematic Mapper ETM+ onboard Landsat). New advanced data for 
systematic, long-term observation of the Earth systems will be provided from 2013 
onwards by the prospective future ESA Sentinel missions (Malenovský et al., 2012).  
     The major disadvantage of satellite-based multispectral spectroradiometers is that 
they sample the electromagnetic spectrum only with a few spectral bands. Therefore 
imaging spectroscopy has emerged to overcome spectral limitations of multispectral 
systems (Goetz, 2009; Schaepman, 2009). Imaging spectroscopy (often referred as 
hyperspectral RS) acquire data of unprecedented radiometric quality and high 
spectral resolution – typically the number of overlapping narrow spectral bands 
exceeds one hundred, providing therefore almost contiguous spectral information 
(Schaepman, 2009). Spaceborne imaging spectrometers are still only sparsely 
available (Hyperion on EO1 and CHRIS on PROBA platforms). Most of the existing 
imaging spectroradiometers are therefore operated on airborne platforms, which 
enables acquiring data of high spatial resolution too (the ground pixel size is usually 
less than a few meters). A great advantage of airborne RS is high versatility to meet 
user requirements on target selection, spatial and spectral resolutions, and acquisition 
date. Additionally, it allows combining imaging spectroradiometers with other type 
of RS instruments (Asner et al., 2012). One drawback of is reduced multi-temporal 
feasibility due to costs and logistics. 
     Mounting an imaging (or non-imaging) spectroradiometer on ground-based 
constructions (proximal sensing) certainly increases the temporal frequency, which is 
ideal to study diurnal changes in vegetation activity, but limits the spatial coverage to 
very small areas or individual plants only (Ač et al., 2009).  
     Comprehensive overviews of currently operational and future satellite 
multispectral and airborne imaging spectroradiometers and their specifications are 
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published elsewhere (Ayanu et al., 2012; Grace et al., 2007; Malenovský et al., 2009; 
Schaepman, 2009). 
     Other RS systems like multi-directional and active RS systems, which have 
supported studies of vegetation structue (Widlowski et al., 2004), are introduced only 
briefly. Multi-directional optical systems (e.g. CHRIS on the PROBA platform) 
provide observations of the same target from multiple viewing directions over a short 
timeframe provides. This measurement setup captures the anisotropy of reflected 
solar radiation in different wavelengths, which conveys information about canopy 
structure (Chopping, 2008; Widlowski et al., 2004).  
     Laser scanners (often referred as lidars) emit and record backscattered signal in 
the optical part of the electromagnetic spectrum (0.01 – 10 µm) and measure runtime 
from the instrument to the ground surface and back. There are two types of laser 
scanners: discrete return systems that record either single or multiple backscatter 
echoes and full waveform systems that record the entire backscatter signal from a 
return (Mallet and Bretar, 2009; Wulder et al., 2012). Up to date vegetation structural 
properties derived from laser scanning include vegetation height (see section 3.4 for 
detailed discussion), canopy volume, leaf area index, gap fraction and vegetation 
profiles (Lefsky, 2002; Lindberg et al., 2012; van Leeuwen and Nieuwenhuis, 2010). 
Recent development have advanced towards a multispectral full waveform system, 
which provide additional information on the 3D distribution of plant physiological 
properties (Hakala et al., 2012).  
     Imaging synthetic aperture radars (SAR) emit and record backscattered signal at 
one or more polarizations in the microwave part of the electromagnetic spectrum (cm 
to multiple m). Their greatest advantage over the optical instruments is of being able 
to acquire images independently of cloud cover. However, challenges remain to 
interpret radar data from very dense or moist canopies, where backscatter signal 
saturates (Mitchard et al., 2009). The major application domain of radar data is to 
estimate vegetation height and biomass (partly reviewed by Koch et al. (2010) and 
Patenaude et al. (2005)). This will be strongly supported by the future ESA radar 
mission BIOMASS (le Toan et al., 2011).  
     Studies whereby data from optical spectroradiometers, laser scanners and radar 
are combined are becoming more common and promising for complex vegetation 
studies (Asner et al., 2012; Cartus et al., 2012; Hyde et al., 2006; Montesano et al., 
2013)  

2.2.3 Remote sensing methods 

Plant traits and canopy properties may be assessed qualitatively or quantitatively 
from RS data. Qualitative methods – classification techniques use a set of decision 
rules assigning image pixels with similar spectral properties into discrete thematic 
vegetation classes (Xie et al., 2008). Qualitative methods used to interpret optical RS 
data can be divided into two broad groups: empirical and physical methods (or 
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combination of both) (Liang, 2004). Empirical methods build on statistical 
relationships established between limited number of in-situ trait measurements and 
RS data using regression techniques (Ferwerda and Skidmore, 2007; Smith et al., 
2002). The sensitivity of RS data towards traits or properties of interests is often 
enhanced by calculating VIs (Chen et al., 2010b; le Maire et al., 2004; Turner et al., 
1999) or spectral transformations in case of contiguous hyperspectral data (Schlerf et 
al., 2010). By nature, empirical methods are computationally fast and effectively 
summarize local data, but they lack cause-effect relationships. Consequently, 
predictive statistical relationships often suffer from lack of robustness and 
transferability as they are usually site, species and time specific (Colombo et al., 
2003; Grossman et al., 1996).  
     Limitations of empirical methods can be partly overcome by using physical RS 
methods. These methods are based on radiative transfer models (RTMs), which 
simulate light absorption and scattering inside vegetation canopies accounting for 
leaf biochemical composition and canopy structural properties (Gastellu-Etchegorry 
et al., 2004; Jacquemoud et al., 2009; Rautiainen et al., 2010; Verhoef and Bach, 
2007). The role of coupled soil-leaf-canopy RTMs (Jacquemoud et al., 2009) in RS is 
two-fold. First, they help to study the effects of additional perturbing factors (soil 
background, non-photosynthetic materials and observation geometry) on canopy 
reflectance. Second, they enable direct estimation of leaf traits and canopy properties 
that are directly involved in the radiative transfer by using inversion techniques 
(Baret and Buis, 2008). Further, when combined with atmospheric RTMs, they hold 
the promise to estimate many leaf traits and canopy properties simultaneously 
(Laurent et al., 2011a). Some traits and properties can be estimated with high 
accuracy and fidelity, e.g. leaf chlorophyll content (Sampson et al., 2003; Zarco-
Tejada et al., 2004), leaf water content (Clevers et al., 2008; Colombo et al., 2008) 
and leaf area index (Myneni et al., 2002; Schlerf et al., 2005). Still, other canopy 
structural properties (e.g. leaf aggregation, leaf angle distribution) present a 
substantial challenge for RTMs parameterization and interpretation from RS data 
(Ollinger, 2011). The major drawback of the physical methods is that different 
combinations of RTM input parameters may produce the same reflectance spectra, 
which makes estimation of canopy properties from RS data ambiguous (Baret and 
Buis, 2008; Combal et al., 2003).  

2.2.4 Scaling and terminology 

Spatial scale of in-situ measured plant traits and RS data often disagrees. Here we 
want to demonstrate how to match scaling terminology used in ecology and RS 
(Figure 2.1). An ultimate requirement for RS of plant traits shall be to match the 
spatial scales of trait with RS data. We exemplify this using a key plant trait – 
nitrogen (N) and demonstrated simple scaling of in-situ measurements from leaf to 
canopy level and overlap it with scaling approaches applied to RS data (Table 2.1). 
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Quantitative traits such as N are usually measured at the level of individual leaves of 
dominant plant species and expressed either as concentration (mass fraction per unit 
dry leaf mass) or content (mass fraction per unit leaf area) (here we refer to the 
terminology introduced by Datt (1998)). Assuming the mass ratio hypothesis (Grime, 
1998), the leaf level measurements can be further upscaled to the community 
(canopy) level by calculating a weighted mean using relative abundances of the most 
dominant species (Lavorel et al., 2008). This community weighted mean of a leaf 
trait is not directly comparable with RS, unless a physical scaling using leaf-canopy 
RTMs is applied to interpret RS data (Malenovský et al., 2007). If the community 
weighted mean is multiplied by biomass or LAI, one obtains a canopy integrated 
value (i.e. canopy property) expressed per unit surface area (Table 2.1), which can be 
directly compatible with remotely sensed canopy reflectance. Ultimately, RS 
spectroradiometers measure a mixed signal reflected from entire plants (including 
woody and dry elements) and soil background. Information content originating from 
the green vegetation fraction can be enhanced by downslcaing techniques – spectral 
unmixing or data fusion (Malenovský et al., 2007). However, interpretation of RS 
data in areas with fractional vegetation cover below 30% remains extremely difficult 
(Okin et al., 2001) and largely non-conclusive. 
 
 

Figure 2.1 Link between ecological and remote sensing spatial scales with examples of typical remote sensing 
spectroradiometers operational at variety of spatial scales.  
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2.3 Remote sensing of plant traits 
In the following sections we will introduce individual plant traits and possible RS 
solutions (summarized in Table 2.2 at page 31), including strengths and drawbacks of 
currently available RS methods. In order to support our discussion about RS of plant 
traits we compiled a database of reviewed scientific articles (Appendix A1). We 
reviewed scientific papers about RS of leaf mass per area (LMA), nitrogen (N) and 
phosphorus (P) concentration or content. These are three frequently used traits in 
plant ecology analysis with strong potential to be derived from RS data. Moreover, 
we discuss plant growth and life forms, plant flammability properties, plant 
photosynthetic pathway and photosynthesis, plant or canopy height, leaf lifespan and 
phenology. From the reviewed articles (Appendix A1) we extracted two accuracy 
indicators: coefficient of determination (R2) and relative root mean square error 
(RMSE) to evaluate the accuracy of RS methods estimating N, P and LMA 
(Figure 2.2). 

2.3.1 Plant growth and plant life forms 

Plant growth form and plant life form classifications (Cornelissen et al., 2003) are 
considered as one of many existing plant functional classification schemes (Ustin and 
Gamon, 2010). There is no comprehensive assessment of plant growth forms or plant 
life forms as defined in Cornelissen et al. (2003) using RS. But current moderate 
resolution RS spectroradiometers (e.g. MODIS, MERIS) have been providing global 
data for land cover classifications, where vegetation is classified into broader 
functional classes (Arino et al., 2008; Bartholomé and Belward, 2005; Friedl et al., 
2010). Existing global vegetation classifications are by definition closer to plant 
growth forms than to plant life forms, because they determine the vegetation classes 
based on canopy phenology and structure. Additionally, local studies demonstrated 
capabilities of RS to map specific plant growth forms or even individual species. 

Table 2.1 Example of scaling of leaf nitrogen concentration and content from the leaf to the canopy level. 

Trait Leaf trait of  
species i 

Leaf trait of a 
community 

Canopy trait of a  
community (~ property) 

N concentration 
[units] 

Ni 
[mg g-1 of leaf mass] 

NCWM = SUM(Ni * Fi) 
[mg g-1 of leaf mass] 

NCWM[mg g-1] * BIO[g m-2] 
[mg m-2 of surface area] 

    
N content 
[units] 

Ni 
[mg cm-2 of leaf area] 

NCWM = SUM(Ni * Fi) 
[mg m-2 of leaf area] 

NCWM[mg m-2] * LAI[m2 m-2] 
[mg m-2 of surface area] 

  RS up/downscaling (Malenovský et al., 2007) 

Reflectance  
data 

Laboratory or 
proximal sensing 

RS data combined with 
RTM upscaling 

RS data optionally combined 
with up/downscaling 

Ni – nitrogen concentration or content of a species i, CWM – community weighted mean, Fi – relative abundance 
of species i, BIO – biomass, LAI – leaf area index, RTM – radiative transfer model 
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Martin et al. (1998) determined forest species composition using maximum 
likelihood classification. Kokaly et al. (2003) mapped vegetation types in 
Yellowstone national park using continuum removal. Hamada et al. (2007) detected 
an invasive Tamarisk shrub species in riparian vegetation using hierarchical 
clustering. Kalacska et al. (2007) discriminated between forest lianas and their host 
trees in tropical forest. Underwood et al. (2006) and Hestir et al. (2008) mapped 
invasive aquatic vegetation using spectral mixture analysis. The common feature of 
RS data used in the above mentioned studies is the pixel size smaller than 20 meters. 
     The overall accuracy of the global land cover classifications varies between 68% 
and 75% (Friedl et al., 2010; Mayaux et al., 2006), whereas the accuracy of local RS 
studies varies between 65% and 95% and for some cases it drops below 50% 
(Underwood et al., 2006). Despite improving spectral and spatial resolution of RS 
instruments, it seems that RS reaches certain limits in accuracy and number of 
vegetation classes that can be distinguished. This is due to large variability within 
and among species, which decreases spectral separability among plant growth forms 
(Ustin and Gamon, 2010), as well as limited increase in dimensionality of RS data 
with increasing number of spectral bands (Schimel et al., 2013). 

2.3.2 Plant flammability properties 

Individual components of the flammability trait are twig and leaf dry matter content, 
degree of ramification, leaf size, presence of standing litter, oils and waxes 
(Cornelissen et al., 2003). RS cannot quantify individual components of the 
flammability trait, but it can be used to assess combustibility of entire plant 
communities, which is driven by the amount of dry biomass and canopy structure. RS 
data have been used to support fire risk assessment and served as basis for fire 
monitoring schemes at the landscape level (Arroyo et al., 2008). Optical RS data 
have been used to derive vegetation properties such as the proportion between live 
and dead biomass (Jia et al., 2006) and fuel moisture content (ratio between water 
and dry leaf mass) (Chuvieco et al., 2002; Koetz et al., 2004). Both are relevant 
attributes for classification of fuel types (Arroyo et al., 2008; Lasaponara and 
Lanorte, 2007). The major limitation of passive optical RS for fire risk assessment is 
its inability to i) estimate vegetation height, which is critical for fuel type 
discrimination, and ii) to penetrate deeper into multi-layered canopies and therefore 
cannot provide information about understory, which plays an important role for fire 
spreading (Arroyo et al., 2008). Using active radar RS systems (Saatchi et al., 2007) 
and the fusion of optical RS data with laser scanning (Erdody and Moskal, 2010; 
Mutlu et al., 2008) or radar data (Treuhaft et al., 2004) represent a promising 
approach for fire risk assessment in terms of precise canopy structure and biomass 
mapping.  
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Figure 2.2 Performance of remote sensing methods evaluated by (a) the coefficient of determination R2 and (b) 
the relative root mean square error RMSE for the estimation of nitrogen (N), phosphorus (P) concentration and 
content, and leaf mass per area (LMA) from various type of remote sensing data. (Legend: Central line in a box is 
median, box height is the interquartile range (i.e. 50% of the data) and whiskers represent minimum and maximum 
unless the observed values exceed 1.5 of the interquartile range and in that case they are marked as outliers 
(crosses). Number (in format of x/y) above each box indicates number of reported accuracy indicators (x) and 
corresponding number of scientific articles (y) they were extracted from). 
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2.3.3 Plant photosynthetic pathway and photosynthesis 

Spatial distribution of the plant photosynthetic pathway, i.e. C3, C4 and CAM 
metabolism, is relevant for simulating global carbon budget, because C4 plants tend 
to benefit from increasing temperature and atmospheric CO2 (Ehleringer et al., 1997; 
Still et al., 2003). C3 and C4 leaves differ in internal leaf structure and biochemical 
composition (Hatch, 1987) and therefore a possibility of spectral discrimination 
between C3 and C4 plants exists. Siebke and Ball (2009) discriminated C3 and C4 
grass species using a simple ratio between leaf reflectance at 696–709 and 545–567 
nm that was sensitive to various concentrations of chlorophyll a and b. Irisarri et al. 
(2009) found that proximal reflectance can distinguish between a pure plantation of 
C3 and C4 grass species. However, observed spectral differences can be partly 
attributed to differences in leaf orientation, because C3 species in the study of Irisarri 
et al. (2009) had more erect leaves than C4 species. Airborne or satellite based RS 
studies used multi-temporal RS observations that captured asynchronous seasonality 
of C3 and C4 grass species (Davidson and Csillag, 2001; Foody and Dash, 2007) and 
could explain about 60% of the variability in C3/C4 grassland species composition. 
     Complementary to RS based mapping of plant photosynthetic pathways, we can 
profit from intensive and ongoing research of RS of global plant photosynthesis 
known as gross primary productivity (GPP) (Coops et al., 2010; Grace et al., 2007; 
Hilker et al., 2008b). The most widely applied approach of GPP modelling is based 
on the light use efficiency concept of Monteith (1972), which calculates GPP as the 
product of two plant growth limiting factors: the amount of absorbed photosynthetic 
active radiation (APAR) between 400 and 700 nm and plant light use efficiency 
(LUE) converting APAR into biomass (Field et al., 1995; Hilker et al., 2008b).  
     APAR is approximated by unitless fraction expressing how much of incoming 
photosynthetic active radiation is absorbed by vegetation (fAPAR). FAPAR was 
recognized as one of the essential climate variables by FAO Global Terrestrial 
Observing System (Gobron and Verstraete, 2009) and it is being currently estimated 
from global satellite RS data. The simplest empirical solutions relate fAPAR to the 
vegetation greenness using NDVI (Myneni and Williams, 1994) and EVI (Xiao et al., 
2004) indices. EVI tends to outperform NDVI in denser canopies, where NDVI 
saturates (Huete et al., 2002). Empirical retrievals of fAPAR are sensitive to 
perturbing effects of soil background, observing geometry and atmospheric 
conditions (Fensholt et al., 2004). Alternatively, many operational RS-based fAPAR 
algorithms rely nowadays on physically-based approaches using RTMs (Baret et al., 
2007; Gobron et al., 2000; Myneni et al., 2002). Recent comparative studies 
(D'Odorico et al., 2013; Martínez et al., 2013; McCallum et al., 2010), however, 
found inconsistencies among fAPAR products. The largest discrepancies were 
reported for coniferous forests (D'Odorico et al., 2013; McCallum et al., 2010), 
which is mainly attributed to simplified representation of canopy structure in existing 
RTMs. 
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     Possibility of LUE estimation from RS increased only in the past decade because 
of the development of fine spectral resolution instruments. We concentrate our 
discussion on direct RS approaches, which quantify LUE by measuring subtle 
changes in leaf and canopy reflectance resulting from two photoprotective 
mechanisms: non-photochemical quenching and chlorophyll fluorescence (Grace et 
al., 2007). Non-photochemical quenching dissipates the excess energy into heat by 
inducing changes in the xantophyll pigment cycle. Different composition of 
xantophyll pigments results into changes of leaf reflectance at 531 nm, which lead to 
the formulation of the photochemical reflectance index (PRI) (Gamon et al., 1992; 
Peñuelas et al., 1995). PRI exponentially increases with increasing LUE and is able 
to explain about 42% of LUE variability at the leaf level and 59% at the canopy level 
(Garbulsky et al., 2011). According to Garbulsky et al. (2011) PRI seems to perform 
better at the canopy level, but some studies argued that the PRI-LUE relationship is 
negatively affected by the canopy structure, soil background and observation 
geometry (Barton and North, 2001; Hernández-Clemente et al., 2011; Hilker et al., 
2008a). Moreover, PRI values vary between species with the same photosynthetic 
capacity (Guo and Trotter, 2004). Therefore the use of PRI as the LUE proxy in 
complex canopies needs to be further investigated. 
     Sun induced chlorophyll fluorescence (SiF) is recently being explored as an 
indicator of LUE and actual photosynthesis (Damm et al., 2010; Malenovský et al., 
2009; Meroni et al., 2009). SiF is a flux of photons that were not used for 
photosynthesis, but re-emitted at 685 nm and 740 nm (Buschmann, 2007). This adds 
a weak (≤  3%), but detectable, signal to the remotely sensed leaf and canopy 
reflectance (Meroni et al., 2009; Moya et al., 2004). SiF was first estimated using 
proximal reflectance data by analysing double-peak reflectance feature between 690 
and 710 nm (Zarco-Tejada et al., 2003) or the narrow oxygen absorptions – 
Fraunhofer lines (Meroni and Colombo, 2006). The later principle was recently 
applied on airborne and satellite RS data. Zarco-Tejada et al. (2009) estimated SiF of 
individual trees under water stress using RS data of very high spatial (15 cm) and 
spectral (1 nm) resolutions. Joiner et al. (2011) and Guanter et al. (2012) presented 
the first global map of plant steady state SiF as monthly averages in 2° x 2° grid 
derived from Fourier Transform Spectrometer (FTS) on board of the Greenhouse 
gases Observing SATellite (GOSAT). Despite the recent evidence of SiF retrievals 
from optical RS data, the operational approaches will require rigorous spectral 
calibrations and atmospheric corrections (Guanter et al., 2007) and to fully 
understand the effects of environmental variables on SiF (Malenovský et al., 2009).  

2.3.4 Plant height 

Plant height is an important trait associated with plant competitive abilities. Laser 
scanning has emerged to be the most accurate RS technology for the measurement of 
plant and canopy height (Danson et al., 2009; Lefsky, 2002; van Leeuwen and 
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Nieuwenhuis, 2010). Discrete return laser scanning have been successfully used for 
height estimation mainly of tall canopies such as boreal coniferous (Hopkinson et al., 
2004; Næsset et al., 2004), temperate deciduous (Brandtberg et al., 2003) or tropical 
(Clark et al., 2004) forests. Less often it has been used in smaller canopies, such as 
shrubs (Glenn et al., 2011), crops (Davenport et al., 2000) or grasslands (Straatsma 
and Middelkoop, 2007). The best absolute accuracies achieved in tree height 
estimation from airborne discrete return laser scanners are between 0.5 and 1.0 m 
irrespective to a tree height (Kaartinen et al., 2012). According to Næsset et al. 
(2004) the accuracy in height estimation from discrete return laser scanning is higher 
for individual trees (relative RMSE of 5±2.5%) than for forest canopies (relative 
RMSE of 7±2.5%). Generally, a relative error of height estimation in tall forest 
canopies is usually less than 10% of the measured mean canopy height (Kaartinen et 
al., 2012; Næsset et al., 2004), while for lower canopies it reaches up to 20% 
(Davenport et al., 2000; Kaartinen et al., 2012). 
     Canopy height estimation using discrete return laser scanning faces three major 
issues. First is the determination of the terrain elevation, which is difficult in very 
low or too dense canopies, where emitted signal cannot penetrate to the ground 
(Falkowski et al., 2008; Lefsky, 2002). Second is the accurate detection of the 
uppermost canopy layer, which depends on the sampling pulse density (Jakubowski 
et al., 2013; Magnusson et al., 2007). Tree height accuracy decreases with decreasing 
sampling pulse density, but remains relatively constant and high until the densities 
drops below 1 pulse/m2 (Jakubowski et al., 2013). The last issue is related to the 
selection of an extraction method. A recent international comparison revealed large 
variability among 14 extractions methods (RMSE varied between 0.5 and 4.5 m) to 
estimate height of individual coniferous trees (Kaartinen et al., 2012). 
     Full waveform lasers (Mallet and Bretar, 2009) provide certainly better insight 
into the 3D vegetation structure (Lindberg et al., 2012), but they do not necessarily 
yield more accurate plant and canopy height estimates than discrete return systems. 
Benefits of full waveform systems are improved detection of the ground surface 
elevation in denser canopies and possibly more accurate height estimates for plants 
underneath the main canopy layer.  

2.3.5 Lifespan and phenology 

Leaf lifespan (longevity) and phenology (seasonal timing) are closely related to plant 
nutrition conservation and competitive strategies and are influenced by local 
meteorological, topographic and soil variations (Dahlgren et al., 2007). It is beyond 
the capabilities of RS to measure leaf lifespan of evergreen species. But for plant 
communities that periodically change their foliar apparatus, time series of RS data 
provide an effective means of extracting land surface phenology (LSP) indicators 
including start, end, duration and maximum peak of the vegetation season (Liang and 
Schwartz, 2009; Reed et al., 1994). Considering strictly the definition of leaf 
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phenology by Cornelissen et al. (2003) then the length of the vegetation season is the 
equivalent RS proxy of leaf phenology. It is important to realized that LSP indicators 
are related, but not identical, to field observed plant phenology indicators such as 
budburst, leaf unfolding, flowering (Liang and Schwartz, 2009). 
     Typical temporal and spatial resolutions of RS data used for LSP analysis are 
biweekly composites of VIs of global spatial extent and a pixel size ranging from 
0.25 to 8 km (e.g., MODIS land products (Huete et al., 2002), AVHRR NDVI time 
series (Tucker et al., 2005)). The estimation of the LSP indicators from the satellite 
RS is influenced by four factors: i) temporal resolution (Kross et al., 2011), ii) 
missing or noisy data due to clouds or snow cover (Delbart et al., 2006), iii) 
magnitude of the seasonal amplitude in vegetation greenness to override other 
sources of variation (e.g. earlier greening of understory), and iv) a method extracting 
the phenology indicators  (de Beurs and Henebry, 2010; White et al., 2009). White et 
al. (2009) demonstrated that different extraction methods (e.g. global and local 
threshold values, inflection points in time series curves) applied on NDVI time series 
can yield differences up to 60 ± 20 days in the estimation of the  start of the 
vegetation season. This suggests that there is no agreement on a single, globally 
appropriate extraction method of LSP (Schwartz and Hanes, 2010; White et al., 
2009).  
     Consistent and long time series of RS data enable analyzing inter-annual 
variability in vegetation trends (de Jong et al., 2012) and land surface phenology 
(White et al., 2009) (see Remote Sensing special issue on monitoring global 
vegetation with AVHRR NDVI3g Data (1981-2011); http://www.mdpi.com/journal/ 
remotesensing/special_issues/monitoring_global). Particular attention has been 
drawn on high latitude regions (Delbart et al., 2006), where climatic changes have 
been pronounced. Prolongation of the vegetation season has been revealed in Europe 
(Stöckli and Vidale, 2004) and globally (Julien and Sobrino, 2009) in 1980’s and 
90’s, but the extent and quantification of these changes are still under discussion. 

2.3.6 Specific leaf area and leaf dry matter content 

Plant scientists consider leaf dry matter content (LDMC in mg g-1) and specific leaf 
area (SLA in m2 g-1) as two separate traits. LDMC negatively correlates with SLA 
(Garnier et al., 2001; Shipley and Vu, 2002; Vile et al., 2005) and both traits are 
related to plant growth rate and leaf resistance to physical damage. We want to 
clarify first that some RS studies use terms “leaf dry matter content” or “dry matter 
content” when actually referring to leaf mass per area (LMA) – the inverse ratio of 
SLA (Riaño et al., 2005; Schaepman et al., 2004; Vohland et al., 2010). LMA can be 
retrieved from RS data using empirical, as well as physical methods, because LMA is 
an input into leaf RTM (Jacquemoud et al., 2009). Despite this fact, only a few RS 
studies specifically targeted LMA estimation from proximal or remote sensing data 
achieving rather inconsistent results. Based on our literature review (Appendix A1) 

http://www.mdpi.com/journal/%20remotesensing/special_issues/monitoring_global�
http://www.mdpi.com/journal/%20remotesensing/special_issues/monitoring_global�
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and Figure 2.2, we can conclude that LMA can be retrieved with low to moderately 
good accuracy. The average R2 between RS-estimated and measured LMA was equal 
to 0.45 ± 0.34 and the average relative RMSE was equal to 45 ± 30%. Higher 
estimation accuracies were achieved for the canopy integrated estimates (i.e. 
LMA*LAI) than for leaf-level estimates (Schaepman et al., 2004; Vohland et al., 
2010). Physically-based retrieval methods dominate and we found little agreement 
among empirical methods on the best spectral wavelengths for LMA estimation. 
Interestingly, Wang et al. (2011) found that the most optimal spectral bands for LMA 
estimation are located at 1649 and 1722 nm, but almost identical bands were used to 
estimate phosphorus content of wheat canopies (Pimstein et al., 2011). Question 
remains whether these studies observed direct variations in LMA and P, or whether 
both traits correlate with another canopy property, which influences the reflectance 
in 1650 – 1720 nm. Only a few studies attempted to estimate single leaf dry matter 
components such as cellulose or lignin using empirical methods. For example, 
Zagolski et al. (1996) could explain around 60% of lignin and cellulose variability in 
a pine forest,  Serrano et al. (2002) could explain up to 80% of lignin variability in 
chaparral communities. 
     SWIR wavelengths are most important for LMA estimation (Asner et al., 2011; 
Kokaly et al., 2009), but they are also strongly influenced by water absorption (Riaño 
et al., 2005). The masking effect of water and canopy structure decreases the 
accuracy of LMA estimates from optical RS. Therefore a water removal algorithm is 
required or one could estimate leaf water content instead, because it is a 
complementary measure of LMA and can be retrieved with higher accuracy than 
LMA using RTM inversion (Clevers et al., 2008; Colombo et al., 2008). 

2.3.7 Leaf and canopy nitrogen 

Nitrogen (N) is an important component in proteins, nucleic acids and chlorophylls 
and therefore strongly linked to plant photosynthesis (Reich et al., 1995) and gross 
primary productivity (LeBauer and Treseder, 2008; Smith et al., 2002). Currently the 
best way to estimate N from optical RS is by means of empirical methods, because 
physically-based retrievals are not well established. The only leaf RTM having N as 
an input is the LIBERTY model (Dawson et al., 1999). This model is not often used 
among the RS research community, which prefers using a simpler model – 
PROSPECT (Jacquemoud et al., 1996). Though there were attempts to incorporate N 
into PROSPECT, they were abandoned due to its strong covariance with other N 
containing compounds leading to inconsistent results (Jacquemoud et al., 1996; 
Kokaly et al., 2009). Among many empirical approaches, several VIs were proposed 
specifically to estimate leaf N and they were mainly established for crops (Chen et 
al., 2010b; Tian et al., 2011). Also band selection techniques, such as stepwise or 
partial least square regressions, were successfully applied on transformed reflectance 
spectra (Smith et al., 2003; Yoder and Pettigrew-Crosby, 1995). Based on our 
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literature review (Appendix A1) and Figure 2.2, we can conclude that empirical RS 
methods can retrieve N with high accuracy. The average R2 between RS-estimated 
and measured N was equal to 0.72 ± 0.16 and the average relative RMSE was equal 
to 15 ± 7%. 
     Wavelengths that were frequently reported as important for N estimation are 
summarized in Figure 2.3. These wavelengths can be integrated into three broad 
spectral regions: i) red-edge region (680-780 nm) that is characterized by low 
reflectance in red due to strong Cab absorption and high reflectance in NIR due to leaf 
internal scattering , ii) NIR region around 1200 nm that is associated also with water 
absorption, and iii) SWIR region where three main protein absorption features are 
located around 1680 nm, 2050 nm and 2170 nm (Kumar et al., 2001). Recent work of 
Knyazikhin et al. (2012) showed that a positive correlation between N and NIR 
reflectance, which was previously found in some temperate and boreal forests 
(Ollinger et al., 2008), is actually a result of canopy structure effects. They 
emphasized that quantification of biochemical traits from NIR in general is strongly 
influenced by radiation scattering processes, which have to be accounted for in order 
to achieve correct results. 
     Moreover, we bring evidence that a moderately strong correlation between leaf N 
and Cab exists across different species (Table 2.3 and Appendix A2). The average 
Pearson correlation coefficient is equal to 0.65 ± 0.15, and it varies between 
0.4 and 0.9 for individual species. This finding supports our hypothesis that remotely 
sensed Cab can be potentially used as an operational approach to estimate N. Many 
Cab sensitive VIs (Sims and Gamon, 2002), simple spectral models (Gitelson et al., 
2006) and spectral transformations (Kokaly and Clark, 1999) have been developed 
and tested to estimate Cab from the leaf reflectance data. Their robustness and 
upscaling to the canopy level have been thoroughly tested using RTM (Haboudane et 
al., 2002; le Maire et al., 2004). Additionally, physical RS methods using RTM 
enable direct estimation of Cab (Jacquemoud et al., 2009). This is particularly an 
advantage in structurally complex canopies such as conifers (Malenovský et al., 
2013; Zarco-Tejada et al., 2004), where simple empirical methods often fail. When 
using RS-based Cab as proxy of N, one has to keep in mind that the positive N-Cab 
relationship is species specific (Hallik et al., 2009; Appendix A2) and therefore more 
suitable for communities with lower species diversity.  
  



Plant trait mapping 

29 

 

Table 2.3 Pearson’s correlation coefficient (R) between measured leaf chlorophyll (Cab) and leaf nitrogen (N) 
concentration or content as reported for some plant species in literature and from our own field measurements. The 
number of stars in the superscript indicates the statistical significance of the reported correlations (****p ≤ 0.001, 
***p ≤ 0.01, **p ≤ 0.05, *p ≤ 0.1, in case the statistical significance was not reported the R value is without a 
superscript). 

Species name  Units   
(No. of observations) R Cab N Reference 
Trees     
  Larix decidua (18) 0.60*** µg cm-2 mg cm-2 (Appendix A2) 
  Populus tremula (19) 0.71**** g m-2 g m-2 (Hallik et al., 2009) 
  Tilia cordata (20) 0.75**** g m-2 g m-2 (Hallik et al., 2009) 
  Acer macrophyllum (80) 0.65 mg g-1 mg g-1 (Yoder and Pettigrew-Crosby, 1995) 
  Picea abies (78) 0.37*** mg g-1 % (Schlerf et al., 2010) 
  Fagus sylvatica (70) and 
     Quercus spp. (75) 

0.81**** µg cm-2 mg g-1 (le Maire et al., 2008) 

  Tsuga heterophylla (11),  
    Pinus ponderosa (6),  
    Pseudotsuga menzeisii (3), 
    Juniperus occidentalis (3) 

0.60*** mg cm-2 mg cm-2 (Johnson et al., 1994) 

  Tropical forest species (n.a.) 0.70-0.84 - - (Asner and Vitousek, 2005) 
Shrubs     
  Juniperus nana (11) 0.70* µg cm-2 mg cm-2 (Appendix A2) 
  Vaccinium myrtillus (14) 0.51* µg cm-2 mg cm-2 (Appendix A2) 
  Gossypium hirsutum (18) 0.68 mmol m-2 mmol m-2 (Evans, 1989) 
Graminoides     
  Dactylis glomerata (13) 0.78*** µg cm-2 mg cm-2 (Appendix A2) 
  Dactylis glomerata (32) 0.38** g m-2 g m-2 (Hallik et al., 2009) 
  Kobresia myosuroides (14) 0.47** µg cm-2 mg cm-2 (Appendix A2) 
  Festuca violacea (6) 0.74* µg cm-2 mg cm-2 (Appendix A2) 
  Bromus erectus (18) 0.42*** µg cm-2 mg cm-2 (Appendix A2) 
  Phleum pratense (33) 0.64**** g m-2 g m-2 (Hallik et al., 2009) 
Forbs/herbs     
  Laserpitium latifolium (14) 0.65* µg cm-2 mg cm-2 (Appendix A2) 
  Rhinanthus alectorolophus (28) 0.84**** µg cm-2 mg cm-2 (Appendix A2) 
  Crepis pyrenaica (15) 0.84**** µg cm-2 mg cm-2 (Appendix A2) 
  Leonthodon hispidus (20) 0.47* µg cm-2 mg cm-2 (Appendix A2) 
  Centaurea scabiosa (15) 0.81**** µg cm-2 mg cm-2 (Appendix A2) 
  Gentiana luthea (14) 0.61* µg cm-2 mg cm-2 (Appendix A2) 
  Plantago media (15) 0.57* µg cm-2 mg cm-2 (Appendix A2) 
  Cirsium arvense (9) 0.75** g m-2 g m-2 (Hallik et al., 2009) 
  Phaseolus vulgaris (21) 0.84 mmol m-2 mmol m-2 (Evans, 1989) 
  Spinacia oleracea (12) 0.96 mmol m-2 mmol m-2 (Evans, 1989) 
  Alocasia macrorrhiza (15) 0.50 mmol m-2 mmol m-2 (Evans, 1989) 
Crops     
  Triticum spp. (21) 0.86**** g cm-2 g m-2 (Boegh et al., 2002) 
  Triticum spp. (123) 0.50** mg g-1 % (Oppelt and Mauser, 2004) 
  Triticum aestivum (51) 0.89 mmol m-2 mmol m-2 (Evans, 1989) 
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Figure 2.3 Overview of spectral wavelength used in scientific literature for estimation of nitrogen concentration 
and content in green and dry plant leaves. Each dot represents a reported spectral wavelength. A typical reflectance 
response of green vegetation (grey line) is plotted for clarity. 

2.3.8 Leaf and canopy phosphorus 

Leaf phosphorus (P) is an indicator of plant growth rate and nutrient quality. We 
found only limited number of studies that estimated P from RS data (Appendix A1). 
Only Porder et al. (2005) used airborne RS to estimate canopy P concentration of 
broadleaf tropical forest. The rest of the reviewed studies used airborne-based or 
proximal sensing to estimate P concentration in structurally homogeneous canopies, 
such as crops and grasslands. Based on results of our literature review (Appendix 
A1) and Figure 2.2, we can conclude that P can be retrieved from optical RS with 
lower accuracies than N. The average R2 between RS-estimated and measured P was 
equal to 0.57 ± 0.16 and the average relative RMSE was equal to 23 ± 7%. In all 
cases empirical retrieval methods were used. The selection of spectral bands used in 
regression models was inconsistent among the reviewed studies, which can be mainly 
attributed to the low P concentration in leaves (less than 1% of dry leaf mass) and the 
absence of pronounced P absorption features. NIR and SWIR spectral bands were 
often included in the regression models, but these bands are strongly influenced by 
water absorption and canopy structure. When the effect of leaf water content was 
suppressed by applying a water removal technique (Schlerf et al., 2010), the accuracy 
of the P prediction in savana grasslands from proximal sensing increased (Ramoelo et 
al., 2011). We have not found any VI that is specifically designed for P estimation 
and previously designed indices for Cab or N estimation did not perform satisfactorily 
(Pimstein et al., 2011). Similar to nitrogen, the biomass weighted canopy P 
concentration can be retrieved with higher accuracy than leaf-level concentration 
(Pimstein et al., 2011).   
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2.4 Concluding remarks 
In this review, we provided an extensive summary of RS methods for the estimation 
of key plant traits as defined by Cornelissen et al. (2003). Main conclusions and 
future outlooks for the individual traits are listed as follows: 
• Classification of plant growth and plant life forms cannot be entirely reproduced 

by RS. Global RS-based land cover classification schemes classify vegetation to 
broad classes, which are by definition closer to plant growth forms. Their 
classification accuracy is around 70%. High resolution RS facilitate local 
classifications of some plant growth forms or even individual species, but the 
classification accuracy vary between 50 and 95%. Combination of optical RS 
with multi-directional RS or laser scanning can improve existing plant 
classifications by increasing the separability among vegetation types. 

• Plant flammability as a combined trait cannot be quantified using optical RS 
observations. However, when combining optical passive and active RS then the 
combustibility of entire plant communities can be well assessed. RS data are 
currently being used to quantify fire properties such as moisture content, plant 
height and the proportion between live and dead biomass. These are valuable 
input data for fire models and fuel classification schemes. 

• Use of optical RS for mapping C3 and C4 photosynthetic pathways remains rare. 
Instead, RS data has been widely exploited for spatio-temporal mapping of plant 
photosynthetic activity using proxies of fraction of absorbed photosynthetic 
radiation and light use efficiency. Direct estimation of light use efficiency by 
means of chlorophyll fluorescence has emerged as a very promising approach. 
Though major challenges in RS of chlorophyll fluorescence are currently being 
investigated, recent results already demonstrated that large scale mapping of 
chlorophyll fluorescence from RS is possible.  

• Plant height can be directly and most accurately estimated from active laser 
scanning data. The relative error of height estimation from discrete return laser 
systems is usually bellow 10% in tall forest canopies and increases up to 20% in 
lower canopies. Full waveform lasers do not necessarily provide improvement in 
absolute height estimation, but they certainly offer better insight into the 3D 
vegetation structure. Understanding the effects of canopy structure on reflectance 
is a major challenge in RS of vegetation.   

• Multi-temporal satellite RS can deliver relevant land surface phenological 
indicators, such as start, end, maximum peak and duration of the vegetation 
season for plant communities periodically changing their foliage. Recent 
comparative studies suggested that there is no agreement on a single, globally 
appropriate method to extract land surface phenology. There is critical need to 
effectively validate RS-based phenology indicators and therefore in-situ data are 
required across global biomes. Future studies should attempt to employ data 
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from active RS systems to separate asynchronous phenology of understory and 
the main canopy. Moreover, the future chlorophyll fluorescence observations 
from space can provide an accurate identification of the photosynthesis onset and 
offset. 

• Specific leaf area or its inverse ratio leaf mass per area can be estimated from the 
optical RS data using empirical, as well as physical methods. Despite this 
possibility, the retrieval accuracy substantially varied and it was the lowest 
among the reviewed plant biochemical traits. Inconsistencies are mainly due to 
confounding effects of water present in the plant tissue and the atmosphere. An 
algorithm that significantly suppresses the absorption effect of water or 
improvements in atmospheric corrections is prerequisite for an accurate retrieval 
of leaf mass per area from optical RS.  

• Nitrogen can be estimated from optical RS using empirical methods achieving 
the highest accuracies among the reviewed plant biochemical traits. The highest 
uncertainty was observed in coniferous canopies, which is due to their complex 
canopy structure. Therefore there is an urgent need for improved RS methods 
accounting and correcting for canopy structure effects. We supported the 
hypothesis that RS of chlorophyll content can be used as an operational proxy for 
N estimation, since moderately strong relationship between nitrogen and 
chlorophyll exists. Moreover, the future multi-temporal observations of 
chlorophyll fluorescence might also improve N retrieval methods.  

• Finally, phosphorus can be estimated from optical RS using empirical methods 
only. The achieved accuracies are moderately good, but lower than for nitrogen. 
Due to low concentration of P in leaves and confounding effects of canopy 
structure and water content we do not expect that operational large scale 
mapping of P from RS will be achievable in a near future.  

 
In addition, the applicability of RS methods goes beyond the traits discussed in this 
review. Several well-established and thoughtfully validated RS-based traits can 
support or even extend the collection of current key plant traits used in ecology. 
Those are mainly leaf/canopy chlorophyll and water content, LAI, fAPAR and 
fractional vegetation cover.  
     We see an urgent need to address in a more comprehensive fashion the effects of 
vegetation structure in interpretation of RS data. Therefore advanced measurements 
of traits such as the volume of intracellular air spaces, leaf thickness, leaf angle 
distribution, proportion of non-photosynthetic biomass within canopy light 
acclimation are required. Generally, more coherent collection of in-situ trait 
measurements together with proximal and remote sensing observations will be 
required to develop robust scaling schemes and support airborne and satellite based 
RS methods of trait estimation. Such an interdisciplinary cooperation resulted 
recently in a novel concept of “optical traits”, i.e. assessing combined effects of 
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vegetation physiological, structural and phenological properties on reflectance 
measurements (Ustin and Gamon, 2010). 
     The most important advantage of using RS is its ability to provide spatially 
explicit and continuous maps of relevant traits repeatedly during the vegetation 
season. If combined with eco-physiological models that are designed having the 
current and future capabilities of RS data in mind, substantial progress will be 
achieved in spatio-temporal mapping of ecosystem functioning. 
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Abstract 
Estimation of total leaf area (LAT) is important to express biochemical properties in 
plant ecology and remote sensing studies. A measurement of LAT is easy in broadleaf 
species, but it remains challenging in coniferous canopies. We proposed a new 
geometrical model to estimate Norway spruce LAT and compared its accuracy with 
other five published methods. Further, we assessed variability of the total to 
projected leaf area conversion factor (CF) within a crown and examined its 
implications for remotely sensed estimates of leaf chlorophyll content (Cab). We 
measured morphological and biochemical properties of three most recent needle age 
classes in three vertical canopy layers of 30 and 100-year-old spruce stands. Newly 
introduced geometrical model and the parallelepiped model predicted spruce LAT 
with an error < 5% of the average needle LAT, whereas two models based on an 
elliptic approximation of a needle shape underestimated LAT by up to 60%. The total 
to projected leaf area conversion factor varied from 2.5 for shaded to 3.9 for sun 
exposed needles and remained invariant with needle age class and forest stand age. 
Erroneous estimation of an average crown CF by 0.2 introduced an error of 2 –
 3 µg cm-2 into the crown averaged Cab content. In our study, this error represents 
10 – 15% of observed crown averaged Cab range (33 – 53 µg cm-2). Our results 
demonstrate the importance of accurate LAT estimates for validation of remotely 
sensed estimates of Cab content in Norway spruce canopies.  
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3.1 Introduction 
Measurements and monitoring of forest structural and biochemical properties (e.g., 
leaf area index, leaf foliar pigment, nitrogen or water content) and physiological 
processes (e.g., gas exchange, photosynthesis) are important for the understanding of 
forest carbon sequestration (Luyssaert et al., 2007). In-situ measurements of forest 
properties and processes are usually spatially and timely limited, labor demanding 
particularly in complex canopies such as mixed boreal or tropical forests. Thus, in-
situ measurements become impractical for large-scale applications. Emerging remote 
sensing (RS) imaging spectroscopy (often referred to as hyperspectral RS) has a great 
potential for regular monitoring of forest properties and processes at larger spatial 
scales (Kokaly et al., 2009; Rautiainen et al., 2010; Ustin et al., 2004). Currently, 
imaging spectroscopy data have been used to estimate leaf and canopy biochemical 
properties such as chlorophyll (Malenovský et al., 2006b; Moorthy et al., 2008; 
Zarco-Tejada et al., 2004), nitrogen (Huber et al., 2008; Schlerf et al., 2010) and 
water content (Clevers et al., 2010; Koetz et al., 2004), canopy structural properties 
such as leaf area index (Fernandes et al., 2004), and eco-physiological processes such 
as mapping of net primary productivity (Ollinger and Smith, 2005). Successful 
calibration and validation of the RS methods, however, depend on accurate and 
reliable in-situ measurements of canopy biochemical properties that are often 
expressed at leaf area basis. While estimation of leaf area of broadleaf species is 
straightforward, it is a challenging task for non-flat coniferous needles. In case of 
conifers, total leaf area (LAT) or hemisurface leaf area (LAH = ½ LAT) seems to be a 
more appropriate expression for gas exchange or photosynthesis-related studies than 
projected leaf area (LAP), as stomata are located all around the needle surface (Smith 
et al., 1991).  
     The LAT for broadleaf species is computed as two times LAP, which can easily be 
measured by planimeters, desktop scanners, or leaf area meters (Beerling and Fry, 
1990). These techniques can be used to measure LAP of coniferous species, but they 
are not suitable for LAT (or LAH) measurements due to the three-dimensional shape 
of needles. Needle LAT has been determined by a volume displacement method 
(Johnson, 1984) or from absorbance measurements of entire shoots (Serrano et al., 
1997), but both methods are used rarely. More frequently, needle LAT is computed 
from an approximation of the needle shape by a simple geometrical primitive 
(Niinemets and Kull, 1995; Sellin, 2000). Pine needles can be represented as half-
cylinders or half-ellipsoids (Svenson and Davies, 1992), spruce needles are usually 
modeled as parallelepipeds or ellipsoids (Sellin, 2000). Dimensions of geometrical 
primitives are based on directly measurable morphometric variables, such as needle 
length and diameter. For example, Perterer and Körner (1990) proposed a complex 
model based on 9 different measures for spruce and 12 for pine needles, which 



Chapter 3 

40 

significantly limits its practical use in forest research. Nevertheless, a detailed and 
accurate needle geometrical model is fundamental for developing simpler, feasible, 
but still reliable, methods to estimate LAT of coniferous species.  
     Once LAT is accurately determined, a conversion factor (CF) between LAT and 
LAP can be derived and used to estimate LAT from easily measureable LAP. 
Conversion factor is species specific, but it also varies within a canopy of the same 
species due to changing irradiance inside a canopy (Niinemets and Kull, 1995; Sellin, 
2000). The characteristic organization of branches and shoots in coniferous canopies 
produces a heterogeneous radiation regime in a canopy vertical profile (Chmura and 
Tjoelker, 2008; Špunda et al., 1998; Waring, 1983). For example lower parts of a 
young spruce canopy can receive only about 10% of irradiance when compared to the 
top of the canopy (Kalina et al., 2001). Light availability modulates leaf 
morphological properties (Bond et al., 1999; Hallik et al., 2009; Niinemets, 2007); 
the shaded needles are usually more flat compared to sun exposed needles with more 
circular or rhomboidal cross-section (Cescatti and Zorer, 2003). Usability of CF for 
LAT estimation is, therefore conditioned by understanding its variability between and 
within individual tree crowns. 
     Taking the advantage of high resolution digital photography and computer image 
processing techniques, the first objective of this study was to propose an accurate 
geometrical model to estimate LAT of Norway spruce needles and compare it with 
five previously published LAT estimating methods. The second objective was to 
investigate variability of the total to projected leaf area conversion factor (CF) taking 
into account three sources of variability: (1) needle position within a crown vertical 
profile, (2) needle age, and (3) canopy structure due to different forest stand age. 
Finally, the third objective was to quantify the influence of biased LAT measurements 
on the estimation accuracy of crown averaged biochemical properties, which are 
being used for calibration and validation of remote sensing derived products. 

3.2 Materials and methods 

3.2.1 Study area and needle sampling 

Morphological and biochemical properties of Norway spruce needles were analyzed 
for needle samples collected at the Bílý Kříž experimental research site (Moravian-
Silesian Beskydy Mts. at the eastern part of the Czech Republic bordering with 
Slovakia; 18.53°E, 49.50°N, mean altitude of 880 m a.s.l.). The microclimatological 
conditions of the site are described in Urban et al. (2007). 
     Two montane Norway spruce (Picea abies (L.) Karst) forest stands of different 
age and structure were selected for this experiment: a 30-year-old regular plantation 
(further referred to as the “immature” stand), and an about 100-year-old stand 
(further referred to as the “mature” stand), both growing on a moderate slope (13°) 
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with S-SE orientation. In 2006, the average tree height was 12.5 m in the immature 
and 40 m in the mature stand, the average diameter at breast height was 14 and 53 
cm, respectively, the canopy density was about 1,400 and 160 trees ha-1, respectively, 
and the approximate stand area was 7.5 and 2.5 ha, respectively. 
     Ten immature and 20 mature representative trees were selected for the needle 
sampling. Double number of mature trees was considered, because we expected 
higher variability in needle morphological and biochemical properties due to a larger 
structural heterogeneity of the mature stand. One branch was collected from the 
upper (sun exposed zone, E), middle (transition zone, T), and bottom (sun shaded 
zone, S) canopy layer to capture varying irradiation conditions inside the canopies. 
From each branch, the last three needle age classes were sampled resulting in nine 
needle samples per tree. About 5 – 7 representative and visually healthy shoots (i.e., 
the annual growth segments) per needle age class were selected and about 30 
individual needles were randomly sampled from the central part of shoots. Each 
needle sample was divided into three subsets including about ten needles each: the 
first subset was used for estimation of needle LAT and LAT/LAP conversion factor, 
the second subset for needle water content and specific leaf area, and the third subset 
for photosynthetic pigment analysis. In total we collected three times 270 needle 
samples. 
     Posterior statistical assessment of the optimal sample size using the Power t-test 
(Erdfelder et al., 1996) indicated a minimum sample size of 21 trees to assess the 
total variance of CF, which was exceeded with total of 30 trees sampled. 

3.2.2 Estimation of needle LAT and CF 

The needles from the first subset for LAT estimation were kept deep-frozen until the 
laboratory processing. Individual needle samples were first scanned on a desktop 
scanner to measure LAP and then five needles were randomly selected for further 
processing (preceding analysis indicated that 5 needles is sufficient to obtain LAT 
representative for the entire needle sample; results not shown). Five needles were 
scanned on a desktop double-lamp scanner to determine their individual LAP and 
length along curvature (L). Then three cross-sections (approximately 100 µm thick) 
were obtained from the base, middle and top part of a needle using a hand 
microtome. Micrographs of cross-sections were acquired with the Canon EOS 450D 
digital camera, which was mounted on the Novex BT PL microscope. The 
micrographs were captured uncompressed with maximum possible resolution of 12 
MPix to ensure high precision of image analysis. Perimeter and length of both the 
major (D1) and the minor (D2) diameters were measured automatically for each cross-
section using a self-developed image analysis procedure [combination of Python 2 
and GNU (General Public Licence) Image Manipulation Program (GIMP, v. 2.6)]. 
     The total leaf area of spruce needles was estimated using six methods. We 
proposed a new geometrical model for LAT estimation of spruce needles (method I), 
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which was based on the model of Perterer and Körner (1990). Our model 
approximated the spruce needle shape to three geometric primitives: two adjacent 
circular cone frustums, and a cone cap representing a tapered needle’s top 
(Figure 3.1). The total leaf area of a needle was calculated according to the following 
equation: 

,                                                (3.1) 

where PB, PM, and PT are the measured perimeters of three cross-sections placed at 
the base (B), middle (M) and top (T) of a needle, respectively.   is a slant height 
of the cone frustum between the base and the middle cross-sections calculated from 
the measured cone height LB-M as . is a 
slant height of the cone frustum between the middle and the top cross-section 
calculated analogous to .  is a slant height of a cone cup calculated as 

. We assumed that LT = 1.5 mm, LB-M = LM-T and the sum of the 
three lengths was equal to the total needle length measured along the curvature of the 
needle central axis (L) as illustrated at Figure 3.1b. 
     The other five methods for estimation of needle LAT were previously published in 
scientific literature. More details on methods II – V can be found in Sellin (2000) and 
on method VI in Pokorný (2002). Here, we provide only the final formulas and the 
variables are explained at Figure 3.1: 
 
Method II: A needle side approximated to a parallelepiped: 

                                                                               (3.2) 

 
 
Method III: A needle side approximated to an ellipse: 

                                                                                     (3.3) 

 
 
Method IV: A needle approximated to an ellipsoid: 

                                                                               (3.4) 
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Method V: A needle side approximated to a rectangle with tapering ends to a half-
ellipse:  

                                                              (3.5) 

(r is the relative length of the rectangular part of a needle and it was equal to 0.75). 
 
 
Method VI: CF derived as the ratio of the middle cross-section perimeter and major 
diameter: 

                                                                                       (3.6) 

 

Figure 3.1 Geometrical model developed in this study to calculate total leaf area of Norway spruce needles and its 
inputs: a) needle cross-section and its major (D1) and minor (D2) diameter, b) schematic position of three cross-
sections (PT, PM, PB are perimeters of a cross-section at the top, middle, and bottom part of a needle, respectively; 
LB-M, LM-T are lengths of segments between two cross-sections assuming that LB-M = LM-T; LT is height of cone cap, 
which was approximately 1.5mm; L is total needle length measured along the curvature of the needle central axis; 
LAP is projected leaf area of a needle).  
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     Six LAT estimating methods (Eq. 3.1 – 3.6) were compared at the individual 
needle level against the same reference . The reference total leaf area was 
calculated for 21 needles, which were selected across the entire sample pool to 
capture the variability of a needle shape. We took 9 – 15 cross-sections per needle, 
depending on its length, and calculated  using the same principle as presented for 
method I (Eq. 3.1), but instead of two we integrated surface area of up to 14 cone 
frustums. 
     Finally, the conversion factor between total (method I) and projected (scanned) 
leaf area was calculated as a simple ratio: CF = LAT / LAP. We applied a three-way 
analysis of variance (ANOVA) at the significance level α = 0.01 and with a prior 
normality test to analyze CF variability between and within spruce crowns 
considering three potential sources of CF variability: (1) needle position within a 
crown vertical profile, (2) needle age, and (3) forest stand age. 

3.2.3 Measurement of needle biochemical properties and upscaling to a crown level 

The second and the third needle subsets were used to analyze the following needle 
biochemical properties: specific leaf area (SLA), water (Cw), chlorophyll a and b 
(Cab) and carotenoid (Cxc) content. Needles for SLA and Cw content determination 
were weighted immediately after clipping, stored in paper bags, dried in an oven at 
60 °C for 48 h, and weighted again after drying. Needles for photosynthetic pigments 
(Cab and Cxc) were kept in deep freeze and dark until being processed in a laboratory. 
Pigments were extracted according to the method of Porra et al. (1989) using the 
dimethylformamide solvent and the pigment concentration was determined 
spectrophotometrically according to the equations of Wellburn (1994). Following the 
terminology proposed by Datt (1998), we define constituent concentration as mass 
fraction per unit dry leaf mass (in mg g-1) and constituent content as mass fraction per 
unit leaf area (in mg cm-2). Equation 3.7 shows the conversion between concentration 
and content of a constituent X (Cw, Cab or Cxc) using specific leaf area [SLAH, the 
ratio of hemisurface leaf area (cm2) to the corresponding dry mass weight (g)].  

                                                                        (3.7) 

     The upscaling from the leaf to the crown level was done by simply averaging nine 
values of leaf level biochemical content per tree (i.e., combination of needle samples 
from three crown vertical layers and three needle age classes). The mean value per 
crown is hereafter referred to as “crown averaged content”. We selected this simple 
upscaling approach, because it is often used in remote sensing studies (Huber et al., 
2008; Schlerf et al., 2010; Zarco-Tejada et al., 2004).  
     In order to evaluate the effect of LAT estimation on crown averaged biochemical 
content of SLA, Cw, Cab and Cxc, first, we calculated crown averaged biochemical 
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content using six LAT estimating methods (Eqs. 3.1 – 3.6). SLAH computed from six 
different LAT values served as the basis for conversion from needle biochemical 
concentrations to contents (Eq. 3.7). Second, we considered a theoretical case, where 
needle biochemical concentration (mg g-1) and corresponding LAP are known, but a 
sample LAH is unknown. Missing LAH was then calculated as LAP × CF × 0.5, where 
LAP is the measured projected leaf area of a sample and CF is a theoretical value of 
the total to projected leaf area conversion factor. The theoretical CF varied within a 
physically meaningful range from 2 (flat needles) to 4 (square shaped needles) with 
steps of 0.2, while assuming a constant theoretical CF value for entire crown vertical 
profile. Once again, we computed crown averaged biochemical content (XCF) as a 
simple average of nine needle biochemical contents, but this time using the 
theoretical CF to estimate a sample LAH. XCF was then compared with crown 
averaged biochemical content (XREF), based on the LAT estimating method I 
(Eq. 3.1), using root mean square error (RMSE): 

 ,                                                              (3.8) 

where n is the number of trees.  

3.3 Results 

3.3.1 Accuracy of LAT estimating methods 

The accuracy of six LAT estimating methods was assessed at the level of individual 
needles (in total 21 needles selected from the entire sample pool) by comparing all 
methods against one reference (Figure 3.2). The reference total leaf area ( ) was 
calculated from 9 – 15 cross-sections taken along the needle length using similar 
principle as presented in Eq. 3.1. The average total area of a single needle was 52.2 
(±9.5) mm2. Detailed cross-sections analysis showed that the minor diameter of 
needle cross-sections is almost invariant along the entire needle length, whereas the 
major diameter decreases towards the needle ends (Figure 3.3). The coefficient of 
determination (R2) between the LAT estimating methods and the reference was 
generally high, varying between 0.79 and 0.99. Methods I and II provided accurate 
estimates of LAT, R2 was higher than 0.98 and RMSE was equal to 2.4 and 1.6 mm2, 
respectively. In both cases, the relative RMSE was smaller than 5% of the average 
needle LAT. Method III, which modeled needle side as an ellipse, and method IV, 
which modeled needle as an ellipsoid, systematically underestimated LAT, with 
RMSE of 12.1 and 31.4 mm2, respectively. Relative RMSE was up to 60% of the 
average needle LAT.  
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3.3.2 Variability of total to projected leaf area conversion factor for method I 

The sample specific conversion factor (CF) computed between LAT (method I, 
Eq. 3.1) and scanned LAP varied from 2.5 to 3.8 (95th percentile). We examined three 
sources of CF variability: i) needle position within a crown vertical profile, ii) needle 
age, and iii) forest stand age (Figure 3.4 and Table 3.1). CF of the sun exposed 

Table 1 Morphological and biochemical properties of Norway spruce needles obtained from sampling of 10 
immature and 20 mature trees from three canopy vertical layers (exposed, transition and shaded) and three most 
recent needle age classes (1 – most recent, 2 – last year, 3 – two-year-old needles). The values are presented as 
mean ± standard deviation. 

 Age  Immature    Mature  
 class Exposed Transition Shaded  Exposed Transition Shaded 
Needle 1 15.9±1.2 16.3±2.6 13.3±2.0  15.8±2.2 17.7±2.0 17.1±2.5 
length 2 16.5±1.1 15.3±1.7 14.8±1.4  18.1±2.2 16.6±2.5 16.0±2.8 
[mm] 3 18.8±1.8 16.9±2.3 17.1±2.4  17.3±2.5 18.4±2.7 17.6±2.9 
         
Major 1 1.19±0.06 1.16±0.07 1.07±0.10  1.29±0.14 1.13±0.07 1.10±0.09 
diam. D1 2 1.23±0.09 1.18±0.04 1.15±0.05  1.38±0.10 1.12±0.08 1.07±0.08 
[mm] 3 1.26±0.07 1.22±0.04 1.16±0.06  1.25±0.13 1.18±0.10 1.11±0.09 
         
Minor 1 1.04±0.12 0.67±0.13 0.61±0.25  1.10±0.07 0.64±0.08 0.54±0.06 
diam. D2 2 1.08±0.09 0.84±0.15 0.61±0.17  1.18±0.13 0.66±0.10 0.64±0.11 
[mm] 3 1.03±0.15 0.88±0.14 0.67±0.19  1.19±0.09 0.59±0.05 0.55±0.06 
         
LAT / LAP 1 3.46±0.23 3.09±0.25 2.83±0.27  3.51±0.18 2.89±0.15 2.85±0.24 
CF 2 3.55±0.09 3.25±0.29 2.92±0.37  3.40±0.19 2.94±0.28 2.87±0.19 
[-] 3 3.41±0.21 3.30±0.23 2.77±0.24  3.43±0.20 2.89±0.19 2.85±0.17 
         
Cab conc. 1 1.47±0.28 2.33±0.65 3.29±0.96  1.86±0.35 2.68±0.52 2.77±0.40 
[mg g-1] 2 2.06±0.32 2.63±0.48 3.11±0.58  2.36±0.49 3.15±050 3.30±0.48 
 3 2.21±0.45 2.57±0.33 3.38±0.54  2.23±0.47 3.46±0.51 3.76±0.52 
         
Cab content 1 23.7±4.5 32.3±12.3 38.7±6.6  32.2±6.8 32.7±3.3 30.1±4.0 
[µg cm-2] 2 40.4±6.2 41.3±8.4 48.2±9.0  48.8±9.6 43.8±7.4 41.0±5.8 
 3 43.0±8.4 43.4±5.5 50.4±13.6  46.6±12.5 49.2±8.2 45.2±5.6 
         
Cxc conc. 1 0.26±0.05 0.36±0.12 0.46±0.15  0.30±0.05 0.36±0.06 0.37±0.05 
[mg g-1] 2 0.35±0.06 0.41±0.07 0.46±0.09  0.38±0.07 0.44±0.07 0.46±0.07 
 3 0.37±0.08 0.42±0.05 0.51±0.06  0.38±0.07 0.50±0.07 0.54±0.07 
         
Cxc content 1 4.1±0.8 5.0±2.3 4.3±1.0  5.2±0.9 4.4±0.4 4.1±0.5 
[µg cm-2] 2 6.9±1.1 6.4±1.1 5.6±1.6  7.8±1.5 6.2±1.1 5.8±0.9 
 3 7.3±1.4 7.1±0.8 7.3±1.9  7.8±1.9 7.1±1.3 6.5±0.9 
         
Cw conc. 1 0.59±0.02 0.62±0.02 0.63±0.02  0.55±0.02 0.61±0.02 0.61±0.03 
[g g-1] 2 0.56±0.02 0.59±0.02 0.61±0.03  0.53±0.02 0.58±0.05 0.57±0.02 
 3 0.56±0.01 0.58±0.01 0.61±0.03  0.50±0.03 0.56±0.03 0.57±0.03 
         
Cw content 1 23.8±1.6 22.8±3.2 16.7±2.4  22.0±3.1 20.2±5.8 17.9±4.7 
[mg cm-2] 2 25.1±1.9 23.0±3.4 19.3±3.1  23.5±3.0 19.0±3.5 16.7±3.0 
 3 25.4±2.7 23.3±1.9 22.0±5.5  21.2±3.2 18.1±2.6 16.4±1.7 
         
SLAH 1 61.8±3.3 74.2±10.6 105.8±24.9  58.7±9.4 82.4±15.3 91.0±17.3 
[cm2 g-1] 2 51.3±5.1 64.5±8.5 82.7±17.5  48.6±5.2 73.1±12.7 81.6±13.1 
 3 51.5±4.7 59.6±6.5 75.6±23.2  48.7±5.1 71.1±10.2 83.8±10.8 

 

Table 3.1 Morphological and biochemical properties of Norway spruce needles obtained from sampling of 10 
immature and 20 mature trees from three canopy vertical layers (exposed, transition and shaded) and three most 
recent needle age classes (1 – most recent, 2 – last year, 3 – two-year-old needles). The values are presented as 
mean ± standard deviation. 

 Age  Immature    Mature  
 class Exposed Transition Shaded  Exposed Transition Shaded 
Needle 1 15.9±1.2 16.3±2.6 13.3±2.0  15.8±2.2 17.7±2.0 17.1±2.5 
length 2 16.5±1.1 15.3±1.7 14.8±1.4  18.1±2.2 16.6±2.5 16.0±2.8 
[mm] 3 18.8±1.8 16.9±2.3 17.1±2.4  17.3±2.5 18.4±2.7 17.6±2.9 
         
Major 1 1.19±0.06 1.16±0.07 1.07±0.10  1.29±0.14 1.13±0.07 1.10±0.09 
diam. D1 2 1.23±0.09 1.18±0.04 1.15±0.05  1.38±0.10 1.12±0.08 1.07±0.08 
[mm] 3 1.26±0.07 1.22±0.04 1.16±0.06  1.25±0.13 1.18±0.10 1.11±0.09 
         
Minor 1 1.04±0.12 0.67±0.13 0.61±0.25  1.10±0.07 0.64±0.08 0.54±0.06 
diam. D2 2 1.08±0.09 0.84±0.15 0.61±0.17  1.18±0.13 0.66±0.10 0.64±0.11 
[mm] 3 1.03±0.15 0.88±0.14 0.67±0.19  1.19±0.09 0.59±0.05 0.55±0.06 
         
LAT / LAP 1 3.46±0.23 3.09±0.25 2.83±0.27  3.51±0.18 2.89±0.15 2.85±0.24 
CF 2 3.55±0.09 3.25±0.29 2.92±0.37  3.40±0.19 2.94±0.28 2.87±0.19 
[-] 3 3.41±0.21 3.30±0.23 2.77±0.24  3.43±0.20 2.89±0.19 2.85±0.17 
         
Cab conc. 1 1.47±0.28 2.33±0.65 3.29±0.96  1.86±0.35 2.68±0.52 2.77±0.40 
[mg g-1] 2 2.06±0.32 2.63±0.48 3.11±0.58  2.36±0.49 3.15±050 3.30±0.48 
 3 2.21±0.45 2.57±0.33 3.38±0.54  2.23±0.47 3.46±0.51 3.76±0.52 
         
Cab content 1 23.7±4.5 32.3±12.3 38.7±6.6  32.2±6.8 32.7±3.3 30.1±4.0 
[µg cm-2] 2 40.4±6.2 41.3±8.4 48.2±9.0  48.8±9.6 43.8±7.4 41.0±5.8 
 3 43.0±8.4 43.4±5.5 50.4±13.6  46.6±12.5 49.2±8.2 45.2±5.6 
         
Cxc conc. 1 0.26±0.05 0.36±0.12 0.46±0.15  0.30±0.05 0.36±0.06 0.37±0.05 
[mg g-1] 2 0.35±0.06 0.41±0.07 0.46±0.09  0.38±0.07 0.44±0.07 0.46±0.07 
 3 0.37±0.08 0.42±0.05 0.51±0.06  0.38±0.07 0.50±0.07 0.54±0.07 
         
Cxc content 1 4.1±0.8 5.0±2.3 4.3±1.0  5.2±0.9 4.4±0.4 4.1±0.5 
[µg cm-2] 2 6.9±1.1 6.4±1.1 5.6±1.6  7.8±1.5 6.2±1.1 5.8±0.9 
 3 7.3±1.4 7.1±0.8 7.3±1.9  7.8±1.9 7.1±1.3 6.5±0.9 
         
Cw conc. 1 0.59±0.02 0.62±0.02 0.63±0.02  0.55±0.02 0.61±0.02 0.61±0.03 
[g g-1] 2 0.56±0.02 0.59±0.02 0.61±0.03  0.53±0.02 0.58±0.05 0.57±0.02 
 3 0.56±0.01 0.58±0.01 0.61±0.03  0.50±0.03 0.56±0.03 0.57±0.03 
         
Cw content 1 23.8±1.6 22.8±3.2 16.7±2.4  22.0±3.1 20.2±5.8 17.9±4.7 
[mg cm-2] 2 25.1±1.9 23.0±3.4 19.3±3.1  23.5±3.0 19.0±3.5 16.7±3.0 
 3 25.4±2.7 23.3±1.9 22.0±5.5  21.2±3.2 18.1±2.6 16.4±1.7 
         
SLAH 1 61.8±3.3 74.2±10.6 105.8±24.9  58.7±9.4 82.4±15.3 91.0±17.3 
[cm2 g-1] 2 51.3±5.1 64.5±8.5 82.7±17.5  48.6±5.2 73.1±12.7 81.6±13.1 
 3 51.5±4.7 59.6±6.5 75.6±23.2  48.7±5.1 71.1±10.2 83.8±10.8 
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needles was higher than the CF of transition and shaded needles (p ≤ 0.01). The mean 
values of CF were 3.47 (sun exposed needles), 3.18 (transition), and 2.84 (shaded 
needles) for the immature canopy and 3.44, 2.90, and 2.85, respectively, for the 
mature canopy. We did not find any statistically significant differences among three 
investigated needle age classes. The CF was nearly invariant between the immature 
and mature stand, except the transition canopy level, where CF of mature trees was 
lower compared to immature trees.  
 

Figure 3.2 Comparison of six methods for estimation of total leaf area (Eq. 3.1 – 3.6) for individual spruce 
needles (n = 21) with the reference method ( ). Root mean square error (RMSE) between each method and the 
reference, and coefficient of determination (R2) are indicated for each method. 
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     Finally, the CF was closely related to the ratio of the middle cross-section 
perimeter (PM) and its major diameter (D1M), with R2 equal to 0.73, and thus CF 
could be reasonably modelled as: 

CF = 0.47 (PM / D1M) + 1.3                                                                        (3.9) 

3.3.4 Impact of LAT on upscaling of foliar biochemistry from leaf to crown level 

At the needle level, biochemical concentration and content varied with needle age 
and canopy vertical position as summarized in Table 3.1. Pigment concentration (i.e. 
normalized by the dry mass) increased with increasing needle age and shadowing, 
whereas content (i.e. normalized by LAH according to Eq. 3.7) increased only with 
needle age and remained nearly invariant among canopy vertical layers. Needle water 
content did not vary with needle age, but the typically sun shaded needles had lower 
Cw content than exposed needles. Specific leaf area, the ratio between needle LAH 
and the dry mass, was the most variable needle property. It varied between 30 and 
140 cm2

 g-1 and it decreased with needle age and increased with increasing 
shadowing inside the canopy. 
     At the crown level, we first examined the influence of different LAT estimating 
methods on the crown averaged biochemical content (Figure 3.5). Second, we 
examined whether the crown averaged biochemical content is sensitive towards 
biased LAT estimates due to variable CF (Figure 3.6). Although we analyzed all 
biochemical properties, for brevity, we present results only for the chlorophyll 
content, because it is one of the most frequently studied vegetation property by 
remote sensing (le Maire et al., 2004; Ustin et al., 2009) and all biochemical 
properties showed similar response to different LAT estimating methods. 
     An average crown averaged Cab was equal to 39 µg cm-2 for the immature and 
42 µg cm-2 for the mature spruce trees and it varied between 33 and 53 µg cm-2 
(values based on LAT estimations using our adjusted geometrical model, i.e. 
method I, hereafter used as the reference crown averaged Cab). Figure 3.5 shows how 
different LAT estimating methods yielded different crown averaged Cab values. 
Methods II, V and VI, which estimated LAT similar to our geometrical model 
(method I) produced crown averaged Cab within the similar range (33 – 53 µg cm-2). 
Methods III and IV, which underestimated LAT, overestimated crown averaged Cab 
up to 1.5 times. For illustration purposes we also show that the crown averaged Cab 
normalized by LAP is about 50% higher than Cab normalized by LAT (cf. the first and 
the last box of Figure 3.5).  
     The small case study with the theoretical CF, which varied between two and four 
with steps of 0.2, demonstrated how crown averaged Cab content is sensitive to 
potentially biased LAT estimates. Crown averaged chlorophyll content was 
exponentially increasing with decreasing theoretical CF (Figure 3.6b). The smallest 
RMSE (Eq. 3.8) between the reference crown averaged Cab and Cab estimated using 
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the theoretical CF was found for the value equal to 3.0 (Figure 3.6a). The smallest 
RMSE agreed well with the mean measured conversion factor for the immature 
(CF = 3.2) and the mature (CF = 3.1) spruce crowns. Large errors up to 25 µg cm-2 in 
crown averaged Cab were observed for the lower values of the theoretical CF (closer 
to flat needles). A bias of 0.2 from the true conversion factor introduced an error of 
2 – 3 µg cm-2 in crown averaged Cab estimates.  
 

Figure 3.3 Changes on needle cross-section major diameter (a) and minor diameter (b) along the needle length. 
The position of needle cross-section (x-axis) is expressed in relative units, where 0% refers to the needle base and 
100% to the needle top. Legend: central line in a box represents median, box height represents 50% of the data 
(interquartile range), whiskers represent the minimum and the maximum values, and crosses represent outliers 
(when an observed values exceeded 1.5 times the interquartile range). 

3.4 Discussion 

3.4.1 Accuracy of LAT estimating methods 

Modeling a spruce needle using our new geometrical model (method I), 
parallelepipeds as a proxy of needle sides (method II), or parallelepipeds with half-
elliptic tapering (method V) resulted in LAT estimates closely comparable with the 
true reference  (Figure 3.2). Only methods I and II estimated LAT of a single 
needle with relative RMSE less than 5% of the average LAT. According to study of 
Frey (as cited in Niinemets (1997)), method II systematically underestimated real 
Norway spruce LAT by 5 – 8%, but we did not observe any systematic 
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underestimation. Contrary to the accurate LAT estimates by methods I and II, 
method III (needle sides modeled as an ellipse) and method IV (a needle modeled as 
an ellipsoid) systematically underestimated needle LAT by 23% and 60%, 
respectively. Similar result was reported by Sellin (2000), who modeled a needle 
shape as an ellipse, which underestimated spruce needle LAP by up to 20%. Our 
results suggest that an elliptic approximation is not suitable for modeling Norway 
spruce needles, because it introduces unrealistic tapering starting already at the 
middle part of a needle. Analysis of needle cross-sections for computing the 
reference total leaf area ( ) confirmed that the major and the minor cross-section 
diameters are nearly invariant for 75% of the needle length and only the major 
diameter decreases towards needles’ ends (Figure 3.3). Thus modeling Norway 
spruce needle shape as suggest by methods I, II and IV seems to be more suitable for 
LAT estimation. 
 

Figure 3.4 Total to projected leaf area conversion factor (CF) of two experimental Norway spruce stands, 
immature (×) and mature (○). The symbols represent mean values per nee dle category (combination of three 
needle age classes and three canopy vertical layers – sun exposed, transition and shaded). The whiskers represent 
the two-sided standard deviation. Equal letters above (immature stand) and bellow (mature stand) data points 
connect homogeneous groups within each forest stand, i.e. statistically insignificant differences between data 
groups at p ≤ 0.01 (ANOVA, Tukey’s post hoc test). 
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     A reliable predictor of the total to projected leaf area CF seems to be the ratio 
between the middle cross-section perimeter and its diameter (R2 = 0.73). The same 
approach uses method VI (Pokorný, 2002) to estimate LAT from LAP measurements, 
which was in reasonably good agreement with the reference , as well as, with our 
geometrical model Method VI underestimated a single needle LAT by less than 15%. 

3.4.2 Variability of total to projected leaf area conversion factor for method I 

The values of total to projected leaf area CF varied from 2.5 to 3.8 (Figure 3.4), 
which is in agreement with previously published CF values for various Norway 
spruce canopies. A CF between 2.3 and 3.1 (mean of 2.4) was observed for a 15-
year-old experimental plantation in the Czech Republic (Pokorný, 2002), 2.3 – 3.7 
(median around 2.5) was observed for current-year needles of 12 to 32-year-old trees 
in Germany (Niinemets, 1997), 3.0 – 3.3 (mean of 3.1) was observed for a 30-year-
old forest in Estonia (Sellin, 2000), or slightly higher CF values in the range of 3.0 –
 4.0 (mean of 3.6) were observed for current-year needles of a 40-year-old plantation 
in Northern Sweden (Stenberg et al., 1999). Our results showed, nevertheless, higher 
CF values than the average CF presented by Pokorný (2002), who studied the same 
immature Norway spruce stand in 1999. He reported an average CF of 2.6, whereas 
mean of our CF measurements was equal to 3.2. The discrepancy can be attributed to 
different methodologies and possibly also to higher light availability due to 
increasing canopy openness with the time induced by natural disturbances and 
managed thinning. 
     The majority of studies measuring the CF of Norway spruce were carried out on 
trees with an age less than 40 years and the results from those studies indicate that 
CF increases with increasing canopy age. In our study we sampled trees in their 
mature age (around 100 years old) and we found that the average CF was almost 
equal to the one measured in the 30-year-old spruce canopy. Our results indicated 
that CF values of entirely sun exposed and shaded needles were not significantly 
different in both stands. Some differences in CF were observed in the transition 
canopy vertical layer (Figure 3.4), which can be characterized by more variable 
irradiation conditions. The needles from the transition zone of the mature canopy 
tended to have CF similar to shaded needles. This indicates that the transition needles 
of the mature trees were actually sampled deeper in the canopy, i.e. from locations 
with less available light, than the transition needles of the immature stand. A more 
accurate physical based delineation of canopy sampling positions, e.g. using 
measurements of incident radiation, might solve this mismatch and assure inter-
comparability of needle samples collected from different forest stands.  
     The decreasing trend of CF in the canopy vertical profile is attributed to the 
decreasing light availability in the lower parts of the canopy. Lower CF values 
together with more horizontally oriented foliage result in larger foliar surface, which 
helps trees to improve the light harvesting capacity of shaded branches. Similar trend 
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of decreasing CF with decreasing light availability has been reported for Central 
European Norway spruce by Niinemets (1997) and by Niinemets and Kull (1995), 
and for Silver fir dominated stands by Cescatti and Zorer (2003). Contrasting result, 
i.e. no trend between CF and light availability, was reported by Palmroth et al. 
(2002) for spruces growing in central Sweden. This independency can be attributed 
to the narrower crown habitus and typically more open canopies in higher latitudes, 
which ensure more equal distribution of light within the crown vertical profile. 
Furthermore, suppressed shade-tolerant Silver firs (Cescatti and Zorer, 2003) and 
shade-intolerant Scots pines (Niinemets, 2010) did not exhibit any clear trend either. 
This indicates that local ecological factors and tree social position plays important 
role in foliage adaptations towards varying irradiance intensities.   
     Finally, we did not observe significant differences in CF among three recent 
needle age classes, which is in agreement with results previously published by Sellin 
(2000).  
 
 

Figure 3.5 Summary statistics of crown averaged chlorophyll content for 30 Norway spruce trees. Six methods to 
estimate total leaf area (LAT) and directly measured projected leaf area (LAP) were used to express measured 
chlorophyll per leaf area. Detailed explanation of box plots can be found in the legend of Figure 3.3. 
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3.4.3 Impact of LAT on upscaling of foliar biochemistry from leaf to crown level 

Leaf biochemical properties, such as chlorophyll and water, are in quantitative 
remote sensing studies often expressed per leaf area (Jacquemoud et al., 1996). 
Consequently, biochemical properties of non-flat spruce needles with a quadratic 
cross-section can significantly differ if being expressed against the projected or the 
total leaf area (Niinemets (2010) and Figure 3.5 in this study). As demonstrated in 
Figure 3.4, CF is decreasing with decreasing light availability inside the spruce 
canopies. Assuming a single, average CF value around 3.0 for the entire canopy 
profile, CF causes an overestimation of LAT for shaded and an underestimation of 
LAT for sun exposed needles. This error is further propagated into the measurements 
of biochemical content at the leaf level, as well as, into crown averaged values. 
Based on Figure 3.6a, erroneous estimation of the mean crown CF by 0.2 introduces 
already an error of 2 - 3 µg cm-2 in crown averaged chlorophyll content. Considering 
that observed range of crown averaged Cab was only 20 µg cm-2 (i.e. it varied 
between 33 and 53 µg cm-2), the error represents 10 - 15% of the observed range. 
However, the variability of observed crown averaged Cab was small as it can vary 
between 20 and 100 µg cm-2 (Malenovský et al., 2006b). The maximum RMSE due to 
erroneous estimation of the CF was up to 25 µg cm-2. This error is even higher than 
the accuracy of common remote sensing methods estimating crown averaged 
chlorophyll content in coniferous canopies, which is usually around 10 µg cm-2 
(Malenovský et al., 2006b; Moorthy et al., 2008; Zarco-Tejada et al., 2004). 
     Attention should be paid to methods of upscaling from the leaf biochemical 
properties to the crown or even canopy levels. In this study, we used simple 
averaging of leaf measurements, because it is the most frequent approach used in 
remote sensing studies investigating forest biochemical properties (Huber et al., 
2008; Schlerf et al., 2010; Zarco-Tejada et al., 2004). Nevertheless, more 
sophisticated upscaling schemes, which would take into account real distribution of 
leaf biomass within the crown vertical profile, can likely provide more representative 
crown integrates. For example, Lukeš et al. (2009) combined the vertical distribution 
of leaf biomass and extinction of photosynthetically active radiation into a scaling 
scheme, which produced more realistic ground truth for validation of remotely sensed 
chlorophyll content of spruce crowns. Forthcoming upscaling studies should consider 
employing the rapidly developing methods of terrestrial and airborne laser scanning. 
Laser scanning enables mapping of 3D foliage distribution of individual tree crowns 
(van der Zande et al., 2006) and of complex forest stands (Morsdorf et al., 2010). 
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Figure 3.6 (a) RMSE (Eq. 3.8) between crown averaged leaf chlorophyll (Cab) content normalized by LAH 
calculated using sample specific CF (based on the LAT estimating method I) and theoretical CF (i.e. single value 
for entire crown vertical profile, which varies between 2 and 4 with steps of 0.2). The mean RMSE values were 
calculated for 30 Norway spruce crowns (black dots), i.e. 10 immature (squares), and 20 mature (circles). The 
inserted figure (b) demonstrates how crown averaged Cab decreases with increasing theoretical CF. The grey 
dashed line represents the median and the dotted grey lines indicate min. – max. range of the crown averaged 
content based on our LAT estimating method I. Detailed explanation of box plots can be found in the legend of 
Figure 3.3. 

3.5 Conclusions 
Two out of six evaluated LAT estimating methods, our newly proposed geometrical 
model based on three needle cross-sections (method I) and the parallelepiped model 
(method II), predicted Norway spruce needle LAT with an error less than 5% of the 
average needle LAT. Considering the overall feasibility of both methods, we can 
conclude that the parallelepiped model seems to be more suitable for an operational 
LAT estimation in eco-physiology and applied remote sensing research, because it 
requires less inputs than the new geometrical model. Methods III and IV, which 
suggest an elliptic approximation of a needle shape, underestimated LAT by up to 
60%, and thus are not suitable for prediction of spruce needle LAT. The conversion 
factor between total and projected leaf area (CF) was estimated with a reasonable 
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accuracy (R2 = 0.73) using the ratio between the needle perimeter and the major 
diameter of a cross-section taken from the middle of a needle. CF varied from 2.5 
(shaded needles) to 3.8 (sun exposed needles). The variability of CF was mainly 
driven by the position of needles in the vertical canopy profile, or in other words by 
the decreasing irradiation in the lower canopy layers. Influence of the needle and the 
stand age on the CF variability was insignificant. Therefore, for future in-situ 
measurements of CF we recommend sampling needles irrespective of their age (i.e. a 
mixed sample of several needle age classes), but taking into account several canopy 
vertical layers. 
     Since leaf area normalized biochemical properties (e.g. leaf chlorophyll and water 
content) of forest canopies can be estimated using the airborne and satellite imaging 
spectroscopy methods, representative and accurate in-situ measurements are required 
for calibration and validation of the remote sensing methods. We demonstrated that 
crown averaged chlorophyll (Cab) content normalized by LAP is about 50% higher 
than LAT normalized Cab content. Moreover, inaccurately estimated LAT due to 
biased CF can introduce an error into crown averaged chlorophyll content reaching 
up to 25 µg cm-2. If we consider a possible range of crown averaged Cab between 20 
and 100 µg cm-2, the error can represent up to 30% of the total Cab range, which can 
seriously affect the reliability of remote sensing methods.  
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Abstract 
We investigate combined continuum removal and radiative transfer (RT) modelling 
to retrieve leaf chlorophyll a and b content (Cab) from the AISA Eagle airborne 
imaging spectrometer data of sub-meter (0.4 m) spatial resolution. Based on coupled 
PROSPECT-DART RT simulations of a Norway spruce (Picea abies (L.) Karst.) 
stand, we propose a new Cab sensitive index located between 650 and 720 nm and 
termed ANCB650–720. The performance of ANCB650–720 was validated against ground-
measured Cab of ten spruce crowns and compared with Cab estimated by a 
conventional artificial neural network (ANN) trained with continuum removed RT 
simulations and also by three previously published chlorophyll optical indices: 
normalized difference between reflectance at 925 and 710 nm (ND925&710), simple 
reflectance ratio between 750 and 710 nm (SR750/710) and the ratio of TCARI/OSAVI 
indices. Although all retrieval methods produced visually comparable Cab spatial 
patterns, the ground validation revealed that the ANCB650–720 and ANN retrievals are 
more accurate than the other three chlorophyll indices (R2 = 0.72 for both methods). 
ANCB650–720 estimated Cab with an RMSE = 2.27 μg cm−2 (relative RRMSE = 4.35%) 
and ANN with an RMSE = 2.18 μg cm−2 (RRMSE = 4.18%), while SR750/710 with an 
RMSE = 4.16 μg cm−2 (RRMSE = 7.97%), ND925&710 with an RMSE = 9.07 μg cm−2 
(RRMSE = 17.38%) and TCARI/OSAVI with an RMSE = 12.30 μg cm−2 
(RRMSE = 23.56%). Also the systematic RMSE was lower than the unsystematic one 
only for the ANCB650–720 and ANN retrievals. Our results indicate that the newly 
proposed index can provide the same accuracy as ANN except for Cab values below 
30 μg cm−2, which are slightly overestimated (RMSE = 2.42 μg cm−2). The 
computationally efficient ANCB650–720 retrieval provides accurate high spatial 
resolution airborne Cab maps, considerable as a suitable reference data for validating 
satellite-based Cab products. 
 



Chlorophyll content mapping 

59 

4.1 Introduction 
Chlorophyll macromolecules are evolutionarily one of the most stable structures used 
by photosynthetically active organisms for light harvesting and energy transduction 
(Ustin et al., 2009). Therefore, they are playing an important role in the assimilation 
of carbon by green vegetation, accounting for 57 Gt of carbon per year (Normile, 
2009). The total amount of chlorophyll pigments, which is reacting on surrounding 
environmental conditions and stress agents including anthropogenic pollutants 
(Buonasera et al., 2011), indicate the actual physiological status of plants (i.e. their 
current health and/or phenological states).  
     Chlorophyll molecules (mainly a, b, but also c, d, and f) demonstrate a strong 
spectral absorption in the blue and red part of the electromagnetic spectrum (Chen et 
al., 2010a). These absorption features allow space-borne mapping of vegetation 
chlorophyll a and b content (Cab) from high spectral resolution data acquired by 
spectrometers (Harris and Dash, 2010). A challenging task is, however, to validate 
the accuracy of satellite maps that are derived at broad spatial resolutions ranging 
from tens to hundreds of meters (Dash et al., 2010; Stagakis et al., 2010). Although 
Cab is relatively stable during the high vegetation season, it changes rapidly at the 
beginning and at the end of the season. Therefore, traditional ground based validation 
of satellite maps is not only time consuming and expensive, but also potentially 
inaccurate due to the need of collecting many chlorophyll samples in a relatively 
short time. An alternative solution for spatial validation of satellite products might be 
the use of high spatial resolution chlorophyll maps retrieved from airborne imaging 
spectrometers (Moorthy et al., 2008; Zarco-Tejada et al., 2004; Zhang et al., 2008). 
     High spatial resolution mapping of forest Cab needs to account for the spatially 
heterogeneous structure of the forest environment (Verrelst et al., 2010). The 
hierarchical canopy architecture, resulting from foliage clumping at several spatial 
scales (Písek et al., 2011; Smolander and Stenberg, 2003; Stenberg, 1996), and the 
presence of various non-photosynthetic scatterers (e.g. branches and trunks) induces 
strong reflectance anisotropy and high spatial variability (Malenovský et al., 2008). 
The confounding influence of forest structure on imaging spectrometer-based 
retrievals of foliar biochemistry can be minimized by combining a continuum 
removal method (Clark and Roush, 1984) with vegetation canopy radiative transfer 
(RT) modelling (Myneni, 1991).  
     The reflectance continuum removal transformation enhances and standardizes 
specific absorption features of the foliar biochemical constituents (Broge and 
Leblanc, 2001), in our case chlorophylls. Kokaly and Clark (1999) used normalized 
band depths calculated from specific continuum-removed (CR) absorption features of 
leaf reflectance to estimate concentrations of nitrogen, lignin, and cellulose. Curran 
et al. (2001) refined this methodology and employed CR band depths normalized to 
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i) the band depth at the centre of the absorption feature (abbreviated BNC) or ii) the 
area of the absorption feature (abbreviated BNA) to estimate Cab. Underwood et al. 
(2003) used the CR technique for mapping invasive plant species, Kokaly et al. 
(2003) for discriminating different vegetation types in the Yellowstone National 
Park, and Schmidt and Skidmore (2003) for differentiating saltmarsh vegetation 
types. More recently, the CR based methods have been successfully applied to map 
subgenera of two Australian Eucalyptuses (Youngentob et al., 2011), or to quantify 
grass forage nutrients of an African savanna (Knox et al., 2011).  
     Three-dimensional (3D) RT models simulate photon interactions with objects 
within the solar reflective and/or emissive part of the electromagnetic spectrum 
(Kimes and Kirchner, 1982; Myneni et al., 1992). Radiative transfer of complex 
natural and urban landscapes is modelled using various computing techniques such as 
ray tracing or discrete ordinate methods (Disney et al., 2000; Gastellu-Etchegorry et 
al., 2004). Several 3D models were designed with an intention to simulate physically 
RT within forest environments of high structural complexity (Disney et al., 2006; 
Schaepman et al., 2009; Widlowski et al., 2006; Widlowski et al., 2008). This ability 
makes them ideal to develop methods that can separate and suppress the confounding 
influence of forest structure on estimates of foliar biochemistry (Zarco-Tejada et al., 
2001).  
     Several previously published studies have introduced a concept of estimating Cab 
from airborne high spatial resolution imaging spectroscopy data with optical indices 
upscaled from leaf to canopy level using vegetation radiative transfer modelling 
(Haboudane et al., 2002; le Maire et al., 2008; Moorthy et al., 2008; Zhang et al., 
2008). Following this concept, the objective of our study is to investigate the 
potential use of continuum removal transformation for quantitative Cab mapping from 
airborne data of sub-meter spatial resolution. For this purpose, we use reflectance 
spectra of Norway spruce (Picea abies (L.) Karst.) crowns simulated using a coupled 
PROSPECT-DART leaf-canopy RT model and we propose a new continuum removal 
based optical index termed ANCB650–720.  

4.2 Material and methods 
As this study exploits several interconnected remote sensing / ground observations, 
laboratory analyses, and computationally intensive methods, we first describe a 
general synopsis of principal methodological steps shown in Figure 4.1. In-situ 
measurements collected during a ground/flight campaign were used: i) to process 
spectral images acquired with an airborne imaging spectrometer, ii) to parameterize 
PROSPECT-DART radiative transfer modelling, and also iii) to produce the 
validation dataset (ground truth) for ten sampled spruce trees. The spectral bands 
simulated by the DART model allowed us to establish a statistical relationship 
between Cab and four Cab sensitive optical indices, i.e. a new optical index named 
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Area under continuum-removed curve Normalized to the Chlorophyll absorption 
Band depth between 650 and 720 nm (ANCB650–720) and three published indices: 
Normalized Difference between reflectance at 925 and 710 nm - ND925&710 (le Maire 
et al., 2008), Simple reflectance Ratio between 750 and 710 nm - SR750/710 (Zarco-
Tejada et al., 2004) and TCARI/OSAVI ratio (Haboudane et al., 2002). The RT 
simulations were also used to train a Cab estimating artificial neural network (ANN) 
(Bacour et al., 2006; Combal et al., 2003). Cab of sunlit parts of Norway spruce 
crowns were estimated from geocoded, radiometrically and atmospherically corrected 
airborne spectral images of an AISA Eagle spectrometer by applying the following 
methods: i) the statistical relationships established between Cab and the optical 
indices and ii) the properly trained ANN. The ANN results are cross-compared with 
estimates of the optical indices, including the newly proposed ANCB650–720 index. 
Finally, the accuracy of the Cab retrievals is validated with ground (laboratory) mea-
sured Cab, extracted from needle samples of ten spruce tree crowns. The following 
subsections are further describing each methodological step illustrated in Figure 4.1. 

4.2.1 Experimental test site 

A Norway spruce monoculture located nearby the permanent experimental eco-
physiological research station Bílý Kříž in the Moravian-Silesian Beskydy Mountains 
(eastern part of the Czech Republic; 18.54°E, 49.50°N, altitude 936 m above sea 
level) was chosen as test site of this study. In 2004 the regularly spaced 26-year-old 
spruce stand had a canopy height between 10 and 12 m, an average diameter at breast 
height (DBH) of about 13 cm and a leaf area index (LAI) ranging between 7 and 
9 m2 m-2. The Norway spruce monoculture was subject of an intensive ground 
investigation characterizing spatially canopy structure, optical properties of leaves 
and other canopy elements, and foliar biochemistry including Cab. Detailed abiotic 
and biotic characteristics of the Bílý Kříž study site and all ground measurement 
methods are described in Malenovský et al. (2008).  

4.2.2 Processing and classification of the airborne AISA Eagle spectral images 

Imaging spectroscopy data of the Bílý Kříž experimental stand was acquired under 
clear sky conditions by a pushbroom VNIR Airborne Imaging Spectroradiometer 
(AISA) Eagle (Spectral Imaging, Specim Ltd., Finland) on September 18th 2004 
(around solar noon). The acquired digital numbers of 64 spectral bands between 
398.39 and 983.06 nm (spectral sampling distance of about 10 nm) were transformed 
into radiance values using the sensor specific calibration equations in the CaliGeo 
software (Spectral Imaging, Specim Ltd., Finland). An empirical line atmospheric 
correction (Smith and Milton, 1999) and nadir image normalization was carried out 
using ground-measured spectra of five fabricated Lambertian calibration panels in 
the ATCOR-4 software (Richter and Schlapfer, 2002). The atmospherically corrected 
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AISA Eagle images of 0.4 m spatial resolution were then geo-orthorectified into the 
Universal Transverse Mercator (UTM) geographic projection (zone 34 North) using a 
digital elevation model of 2 m vertical resolution (0.4 m horizontal spatial resolution) 
and the aircraft positional data recorded by the Aerocontrol IIB inertial navigation 
system (Ingenieur-Gesellschaft für Interfaces, IGI GmbH, Germany). A detailed 
description of the radiometric, atmospheric, and geometric corrections and also the 
accuracy of the resulting AISA Eagle hemispherical directional reflectance function 
(HDRF; Schaepman-Strub et al., 2006) assessed from clay bare soil, gravel road, and 
grass canopy spectral measurements, is available in Malenovský et al. (2008).  
 

Figure 4.1 Basic methodological steps of the study. Rectangular objects represent the input/output data or models, 
while ellipsoidal objects represent the data processing and other operations (Cab – leaf chlorophyll a and b content, 
ANN – artificial neural network, AISA – airborne imaging spectroradiometer). 
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     A subset of approximately 200 by 320 m, covering the extent of the experimental 
forest stand, was extracted from the AISA Eagle image mosaic. The 0.4 m spatial 
resolution of AISA imagery allowed the identification of individual tree crowns and 
differentiation of their sunlit and shaded parts using a supervised maximum 
likelihood classification (ENVI software; ITT Visual Information Solutions) 
(Figure 4.2). Three optical indices sensitive to the vegetation structure (LAI): i) 
Normalized Difference Vegetation Index NDVI = (R775 – R680)/( R775 + R680) 
(Tucker, 1979), ii) Weighted Difference Vegetation Index WDVI = R755 – 1.376 × 
R680 (Clevers, 1989), and iii) Simple Ratio SR = R775/R708 (Jordan, 1969) were 
computed and added to the original set of AISA spectral bands to enhance spectral 
differences between the ground with understory and the spruce crowns. The AISA 
Eagle image was at first classified into five spectrally distinguishable classes: i) 
sunlit tree crowns, ii) shaded tree crowns, iii) sunlit ground and understory, iv) 
shaded bare ground, and v) shaded understory vegetation. In the second step, a local 
majority filter with a moving window of 3×3 pixels was applied to remove the single 
misclassified pixels. Finally, classes iii), iv) and v) were merged into a general class 
of ‘background’ (Figure 4.2). Five hundred validation pixels were randomly selected 
from nine digitized regions of interests that were evenly distributed over the forest 
site for an accuracy assessment purpose. Each selected pixel was visually assigned to 
one of the three classes and used to compute the classification confusion error 
matrix. An overall maximum likelihood classification accuracy of 92% (producer 
accuracies from 90% to 98% and user accuracies from 82% to 96%) with a Kappa 
coefficient of 0.864 was achieved. Similarly to Zarco-Tejada et al. (2004), we 
selected only sunlit crown pixels (classification accuracy of 96%) to be used in the 
subsequent Cab estimation. The motivation for using just sunlit pixels is to include 
only remotely sensed HDRF of a high intensity that possess a high signal-to-noise 
ratio. The mean HDRF of AISA shaded crown pixels gaining about half intensity of 
the sunlit crown HDRF signal (Figure 4.3) is likely to result in a lower Cab accuracy.  

4.2.3 Reflectance continuum removal and selection of the suitable spectral range 

The purpose of the reflectance continuum removal transformation is to enhance and 
standardize the specific absorption features of the biochemical constituents (Kokaly 
and Clark, 1999). To achieve this, the CR spectral interval must contain wavelengths 
that are most sensitive to the concentration changes of the particular biochemical 
absorbent. Proper location and width (i.e. starting and ending wavelength) of the CR 
part of spectra is, therefore, crucial for the quantification of the retrieved biochemical 
compounds. Figure 4.4 shows the mean Cab specific absorption coefficients (kab) of 
the PROSPECT radiative transfer model for Norway spruce needles (Malenovský et 
al., 2006a) with a distinct absorption feature between 550 and 750 nm caused by the 
electron transition of the photosynthetic processes (Curran, 1989). According to  
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Figure 4.2 AISA Eagle image subset of Norway spruce forest stand at the research site Bílý Kříž (a) (yellow 
polygons indicate the locations of the sunlit tree crowns selected for ground truth sampling) and the maximum 
likelihood automatic classification separating sunlit and shaded crowns from the background (b).  

 

Figure 4.3 The mean top-of-the-canopy reflectance factor of 60 AISA Eagle spectral bands for all pixels classified 
as sunlit and shaded spruce crowns (n = 151984 and 137305, respectively). 
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Gitelson et al. (1996), the red edge wavelengths most sensitive to Cab are located 
between 690 and 710 nm. The Cab absorption is strongly influencing the shorter 
wavelengths of the red edge region, while the longer wavelengths are driven by 
canopy structural characteristics like leaf area index (LAI) and leaf angle distribution 
(LAD) (Liu et al., 2004). To include the most sensitive Cab absorption wavelengths 
and to avoid in the same time negative interferences of the canopy structure, we 
decided to start the continuum removal interval in the middle of the red chlorophyll 
absorption feature (550 – 750 nm), i.e. at the wavelength of 650 nm, and to end it in 
the middle of the red edge region between 680 and 760 nm, i.e. at the wavelength of 
720 nm (see Figure 4.4). The forest RT modelling (Section 4.2.4) was, therefore, 
restricted to simulate only the AISA Eagle spectral bands located in the spectral 
region between 650 and 720 nm. 

4.2.4 PROSPECT-DART radiative transfer modelling 

The leaf optical properties were simulated using the PROSPECT leaf RT model 
(version 3) (Jacquemoud and Baret, 1990), adjusted for Norway spruce needles by 
Malenovský et al. (2006a).They were upscaled to the level of forest canopy with 
Discrete Anisotropic Radiative Transfer DART (Gastellu-Etchegorry et al., 1996); a 
3D RT model developed in CESBIO (Center for the Study of the Biosphere from 
Space, UPS-CNRS-CNES-IRD, France). A detailed description of specific DART 
functions and input parameters required to perform an ecologically sound 3D 
radiative transfer of a representative Norway spruce stand is provided in Malenovský 
et al. (2008). Herein we summarize only the most important aspects of our RT 
modelling that resulted in a database of simulated airborne spectral images. We 
subsequently use the term Look-Up-Table (LUT) for these simulated data.  
     Input parameters of our RT modelling were derived from the in-situ 
measurements collected at the Bílý Kříž test site during a join flight/field campaign 
in 2004 and destructive tree sampling performed in the previous years (Pokorný and 
Marek, 2000). Table 4.1 summarizes the key fixed and varied input parameters 
required to build a representative virtual 3D spruce forest stand. The number of tree 
crowns in a simulated scene varied according to the desired canopy cover (CC) of 
two predefined tree distributions as follows: i) four (CC= 75%), five (CC =85%), and 
six (CC =95%) trees in case of a regular tree distribution, and ii) five (CC=75%), six 
(CC=85%), and seven (CC=95%) trees in case of an irregular (clumped) tree 
distribution. Also, the LAI of the simulated stands was kept as a free variable, 
varying in accordance with ground measurements between 4 and 9 m2 m-2 with a step 
of 1 m2 m-2. Crowns with heights from 9 to 11 meters were constructed out of 
11 horizontal levels of foliage turbid cells, characterized by the specific leaf average 
angle ranging from 25° to 40°. The vertical and horizontal foliage distributions 
within a crown, the trunk parameters, geometry of branches of the first order, and the 
distribution of fine woody twigs were adjusted according to destructive in-situ 
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measurements (for detailed description see Malenovský et al. (2008)). The forest 
stand background, covering a continuous slope of 13.5°, was modelled as a mixture 
of bare soil and senescent needle litter. 
    The directional-hemispherical optical properties of the scene surfaces (i.e. bark of 
trunks and branches, forest litter and soil) were defined in DART as being of a 
Lambertian nature. Several samples of these surfaces were collected during fieldwork 
and their reflectance was measured in laboratory using an optical integrating sphere 
Li-1800-12 (Li-Cor, Inc., USA) coupled with a FieldSpec PRO spectroradiometer 
(ASD, Inc., USA) according to the standard Li-Cor sphere measurement protocol. 
The optical properties (i.e. directional-hemispherical reflectance and transmittance) 
of the three spruce needle age-classes: i) needles of the current growing season (C), 
ii) needles of the previous growing season (C+1), and iii) needles older than the 
previous growing season (C++) were also measured in the Li-1800-12 integrating 
sphere according to the protocol developed and described in Malenovský et al. 
(2006a). These measurements were used to adjust the PROSPECT model for three 
age-classes of sunlit and shaded spruce needles (Malenovský et al., 2006a) and 
consequently used to retrieve the PROSPECT mesophyll structure parameter ~ N 
(Table 4.2) according to the method described in Jacquemoud et al. (1996). Needle 
optical properties entering the DART simulations were obtained from the adjusted 
PROSPECT model parameterized with the inputs summarized in Table 4.2. The 
retrieved variable of interest (Cab) was kept free, ranging between the lowest 
(10 μg cm−2) and the highest (100 μg cm−2) value with an increment of 10 μg cm−2, 
while leaf mass per area ~ Cm, water content ~ Cw and optical structural parameter N 
were fixed based on the needle sample laboratory measurements. Further details on 
leaf biochemistry measurements are provided in Section 4.2.6. 
     All combinations of free PROSPECT-DART input parameters (i.e. two tree 
distributions, three CC, six LAIs, and ten Cab values) resulted in 360 simulations of 
Bidirectional Reflectance Factor (BRF) images containing eight AISA Eagle spectral 
bands between 650 and 720 nm (Table 4.1). Since the DART discrete ordinate RT 
simulations were performed without specifying the atmosphere between the stand 
canopy and the airborne sensor, the resulting top of canopy BRF values are 
comparable with the atmospherically corrected AISA Eagle spruce canopy 
reflectance images. The maximum likelihood classification method was applied once 
again on the PROSPECT-DART simulated spectral images to separate sunlit crown 
parts from shaded and from forest background pixels. After that, the BRFs of sunlit 
crown pixels of each simulated scene were averaged, continuum-removed, and stored 
together with the corresponding RT input parameters in the LUT.  
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Figure 4.4 Selection of the spectral interval for continuum removal of chlorophyll sensitive wavelengths: start of 
the continuum at 650 nm (in the middle of the chlorophyll a and b (Cab) specific absorption feature from 550 to 
750 nm) and end of the continuum at 720 nm (in the middle of the red edge reflectance from 680 to 760 nm). 

 
 

  

Table 4.1 Fixed and varied key input parameters for DART radiative transfer simulations of a Norway spruce 
scene. 

Sun position of real solar noon (fixed) 
   Zenith angle θs [°] 47.8 
   Azimuth angle (from North clockwise) Φs [°] 183.4 
Scene parameters representing a 25-year-old Norway spruce forest stand 
   Voxel size (fixed)  [m] 0.2 
   Horizontal dimensions (fixed) x, y [m] 6.0, 6.0 
   Slope (fixed)  [°] 13.5 
   Number of tree crowns (varied)   4-7 
   Canopy closure (varied) CC [%] 75-95 /in steps of 10/ 
   Leaf area index (varied) LAI [m2 m-2] 4.0-9.0 /in steps of 1.0/ 
Simulated AISA Eagle spectral bands with Full-width-half-maximum – FWHM = 10 nm 
   Central wavelengths of visible (VIS) 
   bands (fixed) 

λVIS [nm] 652.1, 661.4, 670.7, 680.1, 689.4 

   Central wavelengths of near infrared 
   (NIR) bands (fixed) 

λNIR [nm] 698.7, 708.1, 717.4 
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4.2.5 Retrieval of leaf chlorophyll content using optical indices and artificial neural 
network 

We implemented and cross-compared five retrieval approaches estimating forest 
canopy Cab from the airborne spectral AISA Eagle images using the PROSPECT-
DART simulated LUT. The first approach employed the newly designed optical 
index ANCB650–720, defined as the Area Under Curve of CR reflectance between 650 
and 720 nm (AUC650–720) normalized by the CR Band Depth at 670 nm (CBD670). The 
AUC650–720 was calculated according to the following equation:  
 

                                                  (4.1) 

 
where ρj and ρj+1 are values of the CR reflectance at the j and j+1 bands, λj and λj+1 
are wavelengths of the j and j+1 bands, and n is the number of used spectral bands. 
The results of three Cab sensitive optical indices that have been used in the RT 
upscaling scheme in previous studies were additionally analyzed and compared with 
the ANCB650–720 outcomes. The Normalized Difference optical index (ND925&710), 
computed between reflectance at 925 (ρ925) and 710 (ρ710) nm as: 
 

ND925&710 = (ρ925 – ρ710) / (ρ925 + ρ710),                                                       (4.2) 

 
was recommended as the best performing index for the Cab retrieval of small 
broadleaf canopies from Hyperion satellite data by le Maire et al. (2008).  
  

Table 4.2 Fixed input parameters for PROSPECT radiative transfer simulations of Norway spruce needle optical 
properties (Cw ~ leaf water column, Cm ~ leaf mass per area, N ~ leaf mesophyll structural parameter, C ~ needles 
of the current growing season, C+1 ~ needles of the previous growing season, and C++ ~ needles older than the 
previous growing season). 

PROSPECT parameters  Cw Cm N 
Needle types  [cm] [g cm-2] [-] 
Sunlit C  0.0475 0.0177 2.08 
Sunlit C+1  0.0486 0.0206 2.08 
Sunlit C++  0.0365 0.0233 2.08 
Shaded C  0.0479 0.0118 2.02 
Shaded C+1  0.0430 0.0172 2.02 
Shaded C++  0.0461 0.0170 2.02 
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The Simple reflectance Ratio index (SR750/710), computed as the red edge spectral 
transform:  
 

SR750/710 = ρ750 / ρ710,                                                                                 (4.3) 

 
where ρ750 and ρ710 is reflectance at 750 and 710 nm, respectively, was upscaled for 
Cab estimation of Jack pine (Pinus banksiana Lamb.) stands using the PROSPECT 
and SPRINT RT models by Zarco-Tejada et al. (2004). Finally, Haboudane et al. 
(2002) proposed the ratio of TCARI and OSAVI optical indices as a LAI and soil 
background independent Cab proxy for agricultural crops. The index is computed as 
the ratio of:  
 

TCARI = 3[(ρ700 – ρ670) – 0.2(ρ700 – ρ550)( ρ700 / ρ670)]                               (4.4) 

 
and 
 

OSAVI = 1.16(ρ800 – ρ670)/( ρ800 – ρ670 + 0.16),                                          (4.5) 

 
where ρ550, ρ670, ρ700 and ρ800 are the reflectance values at 550, 670, 700 and 800 nm. 
Recently, Zhang et al. (2008) applied TCARI/OSAVI upscaled by the PROSPECT 
and 4-SCALE RT models on Compact Airborne Spectrographic Imager (CASI) data 
to map Cab of Black spruce (Picea mariana Mill.) stands in Canada. All four optical 
indices were computed for each PROSPECT-DART simulation and stored in our 
LUT. The empirical functions describing the closest relationship between the index 
values and the simulated Cab were fitted in the PeakFit software package (Systat 
Software, Inc., USA). The best fitting equations (with the highest coefficient of 
determination R2, significant at a given probability level p) were then applied per-
pixel to the AISA Eagle imagery to estimate Cab of the sunlit crown pixels.  
     Apart from optical indices, the ANN based retrieval approach has been 
successfully employed in LUT inversions of RT models (Bacour et al., 2006; Combal 
et al., 2003). Therefore, we decided to cross-compare the results of the optical 
indices with estimates from the computationally different ANN approach. After 
testing several ANN architectures in the MATLAB neural network toolbox (The 
MathWorks, Inc., USA), we chose a two-layer feed-forward back-propagation ANN. 
The first (input) layer was composed out of six neurons corresponding to the six 
simulated CR AISA Eagle wavebands and associated with a tan-sigmoidal transfer 
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function. A linear transfer function was assigned to the second (output) layer that 
contained only one neuron producing the Cab estimate. Half of the PROSPECT-
DART simulated LUT entries were randomly selected to train the predefined ANN. 
To avoid a scaling factor problem (each wavelength has a typical range of values) 
and to increase the convergence performance of the training procedure, the ANN 
inputs and outputs were standardized. Each input/output had a mean value of zero 
and standard deviation of one. The high-speed processing Levenberg–Marquardt 
optimization algorithm was applied for the network training. To prevent a potential 
over-training, an early stopping technique was implemented using a quarter of the 
randomly selected PROSPECT-DART LUT entries. Finally, the performance of the 
ANN was tested with the remaining quarter of the LUT entries. In particular, the root 
mean square error (RMSE) and the coefficient of determination R2 were computed to 
test the ANN performance. The best performing ANN (i.e. not over-fitted and with 
the lowest possible RMSE and an R2 close to one) was employed to retrieve Cab from 
the AISA Eagle sunlit crown pixels.  
     To investigate the relationship of ANCB650–720 and the three other optical indices 
with Cab also in a case of broadleaf canopies, we performed additional PROSPECT-
DART simulations for a virtual 1D homogeneous turbid medium of grassland and for 
a structurally more complex 3D canopy of a deciduous forest stand. The 
methodology and results of this RT exercise are provided in Appendix A3. 
In Appendix A4 we demonstrate differences in the statistical dependency of 
ANCB650–720 on Cab when established for sunlit or shaded pixels of Norway spruce 
crowns by RT models. 
 
 

 
 
  

Table 4.3 Relative weights for sun-exposed and shaded crown parts per needle age-class used to compute the 
single mean leaf chlorophyll a & b content of sampled Norway spruce crown. (C ~ needles of the current growing 
season, C+1 ~ needles of the previous growing season, and C++ ~ needles older than the previous growing 
season). 

Branch  Sun-exposed Shaded 
Age-class  [rel] [rel.] 
C  0.230 0.057 
C+1  0.224 0.089 
C++  0.095 0.306 
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4.2.6 Validation of leaf chlorophyll content estimates using ground truth 
measurements 

Ten individual spruce trees were randomly selected in a transect crossing the 
experimental forest stand from East to West for the validation of the airborne Cab 
maps (Figure 4.2a). The sampled crowns were localized with a decimeter accuracy 
using a DGPS device combined with the Field-Map system composed of laser 
telemeter, digital compass, and forest ecosystem mapping software (Institute of 
Forest Ecosystem Research, IFER Ltd., Czech Republic). Sampling took place in five 
days following the AISA Eagle acquisition date. Shoots of the three most recent age-
classes were collected from a sun-exposed branch of the 3rd whorl (counted from top 
of the crown) and from a shaded branch (below 10th whorl) of each crown. 
Depending on their size, approximately twenty needles were randomly detached from 
each sampled shoot. Half of them were fresh-weighted, and scanned for a later 
calculation of their leaf hemisurface area according to the method described by 
Homolová et al. (2013a). The second half was frozen in liquid nitrogen, closed in a 
cooled dark container, and transported to the laboratory for a destructive Cab analysis.  
     The laboratory Cab measurements were carried out according to the standardized 
protocol established and verified in previous studies (Lhotáková et al., 2007; 
Malenovský et al., 2006a). On average, 0.5 g of the sampled frozen needles were 
bleached in 10 ml dimethylformamide (DMF), while keeping them in the dark and at 
8° C for five consecutive days (Porra et al., 1989). The absorbance of the extracts 
was measured at wavelengths of 480, 647, and 664 nm using the Unicam Helios α 
spectrophotometer (Unicam Ltd., Cambridge, UK). A complementary needle sample 
was oven dried at 60° C for 48 hours and weighted to obtain the sample dry matter 
content. Leaf chlorophyll a & b concentrations in mg g−1 of dry matter were 
calculated according to the equations of Wellburn (1994). They were transformed in 
μg cm−2 using the measured specific leaf area (SLA), defined as the ratio of the 
hemisurface leaf area [cm2] to the sample dry matter weight [g], according to 
Homolová et al. (2013a). 
     The crown representative Cab value was computed as a weighted average of six 
needle samples (i.e. more than 10 needles of three age-classes collected from the 3rd 
and below the 10th whorl). Two types of measurements were collected to determine 
the weights: i) the biomass of each needle age-class within the vertical crown profile  
(i.e. percentage of the total age-class specific needle area per vertical crown level 
measured destructively in 2007 from six branches) and ii) the light extinction within 
the vertical crown profile measured with a CANFIB optical system (Global Change 
Research Centre AS CR, Czech Republic (Urban et al., 2007)). CANFIB consists of 
several light diffusers installed within a vertical crown profile and measuring the 
total incoming photosynthetically active radiation (PAR ~ radiation between 400 and 
700 nm). The acquired relative PAR measurements expressing a fraction of the above 
canopy PAR per monitored crown level were coupled with the needle age-class 
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biomass of each sampled branch to create the average weights of each branch type 
and needle age-class (Table 4.3). Finally, the sampled trees were identified in the 
AISA Eagle image using their GPS locations. Their sunlit crown parts (between 15 
and 25 pixels representing an area of 2.4–4.0 m2 each) were manually selected (see 
their mean AISA HDRF in Figure 4.3) and their corresponding retrieved Cab 
estimates were averaged and compared with the ground-measured dataset.  

4.2.7 Statistical analysis assessing the accuracy of chlorophyll content estimates 

To assess the performance of the trained ANN and the optical indices, we computed 
the following statistical indicators for the retrieved and the ground-measured Cab: the 
coefficient of determination (R2) of a linear function, the root mean square error 
(RMSE) including its systematic (RMSEs) and unsystematic (RMSEu) components, 
the relative RMSE (RRMSE; computed as RMSE normalized by the Cab ground 
measured range) and the index of agreement (d). Additionally, the ANN Cab 
estimates obtained for sunlit crown pixels of the AISA Eagle image were cross-
compared with the ANCB650–720, ND925&710, SR750/710 and TCARI/OSAVI estimates. 
Assuming a one-to-one linear relationship between the number (N) of error free 
observations (O) and predictions (P), the RMSE of estimates and its systematic and 
unsystematic components can be calculated as follows (Willmott, 1981): 
 

                                                                        (4.6) 

 

                                                                      (4.7) 

 

                                                                       (4.8) 

 
where  = a+bOi and a and b are the coefficients of an ordinary least squares 
regression between O and P.  
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Both RMSE components are related to the RMSE through the following equation:  
 

                                                                        (4.9) 

 
     These components offer complementary information to that of RMSE (and R2) as 
they allow a deeper evaluation of the retrieval methods. If RMSES prevails over 
RMSEU, one can say that the retrieval method is affected by systematic errors and 
that it will yield biased Cab estimations. On the contrary, if the RMSE is composed 
mostly by RMSEU, then the retrieval method is as good as it can be. The index of 
agreement d complements information contained in RMSE, RMSES and RMSEU. It is 
expressed as: 
 

                                             (4.10) 

 
where ‘Pi = Pi – Ō and ‘Oi = Oi – Ō. The index specifies the degree to which the 
observed deviations of the mean observations Ō correspond, both in magnitude and 
sign, to the predicted deviations of Ō. It is a dimensionless indicator, where d = 1.0 
indicates perfect agreement between the observed and estimated observations, and 
d = 0.0 connotes complete disagreement. A detailed description of RMSEs, RMSEu 
and the index of agreement is provided in Willmott (1981). 

4.3 Results and discussion 

4.3.1 Sensitivity of continuum removed crown reflectance to Cab and LAI 

The CR bidirectional reflectance factors (BRFs) of the sunlit spruce crowns 
simulated between 650 and 720 nm in the coupled PROSPECT–DART model were 
plotted per Cab level against the LAI values to investigate their sensitivity to both 
variables. Figure 4.5 illustrates that all CR BRFs of the simulated AISA Eagle bands 
are insensitive to LAI changes between 4 and 9 m2 m-2. Some sensitivity is observed 
for LAI values below six, where the BRF of spruce canopies is influenced by 
reflectance of photosynthetically inactive surfaces (woody elements) (Malenovský et 
al., 2008). Figure 4.5 also indicates that the most Cab sensitive CR BRFs of the 
simulated AISA Eagle bands are located at 698.72 and 708.07 nm. The wavelengths 
between 650 and 690 nm are only sensitive to lower Cab values, mostly below 
40 µg cm-2, and they become saturated with increasing Cab, as previously shown by 
Daughtry et al. (2000). Consistently with Gitelson et al. (2003; 2006), our findings 
show that the most suitable (sensitive) wavelengths for Cab estimation are located 
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around 710 nm (i.e. spectral interval 700–720 nm). Since the CR BRFs between 660 
and 680 nm are rather stable and insensitive to moderate and high Cab, they can be 
used as a normalization element of a continuum removal based Cab estimator. Still, 
one has to keep in mind that such an estimator will retrieve the low Cab estimates 
(≤ 25 µg cm-2) with a certain systematic error. 

Figure 4.5 Sensitivity of continuum removed reflectance between 650 and 720 nm to leaf chlorophyll content 
(Cab) and leaf area index for six spectral bands simulated by the PROSPECT-DART radiative transfer models at: 
661.41 (a), 670.74 (b), 680.06 (c), 689.39 (d), 698.72 (e), and 708.07 nm (f). Each line corresponds with a 
simulated Cab level (Cab – 10, 25, 40, 55, 70 and 85 µg cm-2). Small error bars represent positive and negative 
standard deviations driven by simulated canopy closures (CC – 75%, 85% and 95%).   
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4.3.2 Design of a continuum removal based Cab optical index 

Figure 4.6a shows that the area integrated under the simulated CR BRF curves of 
sunlit tree crowns between 650 and 720 nm (AUC650-720) is exponentially related to 
Cab. Nevertheless, due to the early saturation this exponential relationship cannot be 
exploited to estimate Cab values above 40 µg cm-2 (e.g. AUC650-720 equal to 30 
corresponds with any Cab from 55 up to 85 µg cm-2 depending on the actual LAI). 
Figure 4.6b indicates that the CR band depth of the strongest chlorophyll absorption 
between 660 and 680 nm, represented in our case by the CR band depth at 670 nm 
(CBD670), is also insensitive to Cab above 40 µg cm-2, but the ratio of both variables 
AUC650-720/CBD670 exhibits a strong near-linear (exponential) relation to Cab 
(Figure 4.6c). This new optical index, which we call ‘Area under continuum-removed 
curve Normalized to the Chlorophyll absorption Band depth between 650 and 
720 nm’ (ANCB650-720), can estimate Cab of sunlit Norway spruce crowns 
independently from the LAI variation via the equation (R2 = 0.99, p < 0.001): 
 

ln(Cab) = 7.3903 – 7984.0135/(ANCB650-720)2.                                          (4.11) 

 
     Notice in Figure 4.6c how ANCB650-720 simulated with different LAI values 
concentrate for each Cab value into one narrow (almost a single) point. This means, 
that for instance an ANCB650-720 value around 48.4 will always predict Cab of 
55 µg cm-2 regardless the variation in actual forest stand LAI and canopy closure 
(CC). 
     Similar results were obtained also for other PROSPECT-DART simulated 
broadleaf canopies, i.e. homogeneous grassland and structurally heterogeneous 
deciduous forest stand (results in Appendix A3). The ANCB650-720 of both broadleaf 
canopies is linearly dependent on Cab (R2 = 0.95 for grassland and R2 = 0.99 for 
deciduous forest) and it maintains its LAI independency for Cab estimates higher than 
30 µg cm-2 (Figures A3.2c and A3.3c). A limited ability to retrieve Cab below this 
threshold is due to spectral influence of the simulated background (bare soil), and in 
case of the grass canopy also due to the six leaf angle distributions (Table A3.1), 
both controlling the BRF continuum when Cab absorption is too low. Because 
ANCB650-720 is designed to exploit the variation in the CR reflectance due to changes 
in chlorophyll absorption between 650 and 720 nm, it should only be applied to 
pixels of pure vegetation canopy with a strong reflectance signal, i.e. in our case 
sunlit pixels of tree crowns. A comprehensive and systematic sensitivity analysis of 
ANCB650–720 to mixed spectral information of different signal-to-noise ratios falls 
outside the scope of this study, but results in Appendix A3 suggest that an 
application of ANCB650–720 to BRFs of canopies with a low LAI and Cab (i.e. with a 
strong signal contribution from background bare soil) will result in unreliable Cab 
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estimates. Also a significant presence of non-photosynthetic surfaces (e.g. tree trunks 
or manmade objects) or a high noise, which distorts the shape of the chlorophyll 
absorption feature between 650 and 720 nm, lead logically to an erroneous Cab 
estimate. Although the analysis of the PROSPECT-DART simulated ANCB650–720 for 
shaded crown parts revealed a similar empirical relationship with Cab as for sunlit 
crowns (Appendix A4), the bottleneck for including the shaded pixels in the Cab 
estimation is their low and spatially varying reflectance intensity and also an 
occasional noise in acquired airborne spectral data. Even though Figure 4.3 indicates 
acceptable radiometric quality of the AISA shaded crown pixels, our attempt to apply 
the Cab retrieval in those pixels resulted in estimates of a random spatial variability 
(results not shown). We therefore deduce, that our shaded pixels are not suitable for 
the Cab estimation due to the limited reflectance dynamic range and the locally 
specific shade intensity depending on recombination of various structural and 
geometrical forest stand parameters (e.g. foliar density, crown shape, tree height, 
slope, terrain configuration). 

4.3.3 Chlorophyll estimation using optical indices and ANN 

Three additional Cab sensitive optical indices were computed from the PROSPECT-
DART simulated LUT according to Eq. 4.2, 4.3, 4.4 and 4.5 and related statistically 
to the predefined Cab classes (Figure 4.6d–f). The equation describing most 
accurately the dependency of ND925&710 on Cab is a second order polynomial function 
(R2 = 0.92, p < 0.01):  
 

Cab = 524.86(ND925&710)2  − 364.33(ND925&710) + 70.11                            (4.12) 

 
SR750/710 was related to Cab linearly (R2 = 0.95, p < 0.01) according to the following 
equation: 
 

Cab = 24.93(SR750/710) – 36.38                                                                  (4.13) 

 
and TCARI/OSAVI can be used to retrieve Cab through the following natural 
logarithm (R2 = 0.99, p < 0.001): 
 

Cab= −56.01 ln(TCARI/OSAVI) − 53.43.                                                 (4.14)  
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Figure 4.6 Design of the ANCB650-720 optical index (c) using the Area Under Curve (AUC650-720) of continuum 
removed reflectance (a) normalized by the Continuum Band Depth at 670 nm (CBD670) (b); relation between leaf 
chlorophyll content (Cab) and normalized difference between reflectance at 925 and 710 nm (ND925&710) (d), simple 
reflectance ratio between 750 and 710 nm (SR750/710) (e) and ratio TCARI/OSAVI (f). The equations represent the 
best fitting functions with the highest coefficient of determination (R2). A single diamond symbol represents one 
of the PROSPECT-DART simulated leaf area index (LAI) values (LAI between 4 and 9 with a step of 1) within 
three predefined canopy closures (CC – 75%, 85% and 95%).  
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Figure 4.7 Leaf chlorophyll content of sunlit Norway spruce crown pixels estimated by ANN (a), ANCB650-720 (b), 
and their reciprocal difference (ANCB650-720 – ANN) (c), including histograms showing the percentage of pixels 
per Cab class (d,e,f).  
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All three relationships are statistically significant, but only TCARI/OSAVI gains a 
variability that ensures a unique Cab estimation for almost all the simulated LAI and 
CC combinations (Figure 4.6f). The variability of ND925&710 and SR750/710 is quite 
high, which means that a given index value can correspond with up to four possible 
Cab estimates (Figures 4.6d and e), depending on LAI and CC. The ANN was trained 
using continuum-removed AISA Eagle spectral bands of sunlit spruce crowns 
simulated with PROSPECT-DART models as described in Section 4.2.5. The 
accuracy assessment of the trained ANN revealed that it could estimate the simulated 
Cab values with an RMSE of 0.40 μg cm−2 and with an R2 of 0.99. The ANN and the 
empirical functions of optical indices stated in Eqs. 4.11, 4.12, 4.13 and 4.14 were 
consequently applied on the atmospherically corrected CR AISA Eagle spectral 
bands to retrieve Cab of sunlit spruce crowns under investigation. 
     Figure 4.7 shows  the Cab maps and relative histograms of  the ANN and 
ANCB650–720 retrievals and also their reciprocal difference. Figure 4.7a and b 
demonstrate that the spatial pattern of both Cab maps is similar, showing a large patch 
of low Cab values at the highest elevation point of the study site (eastwards of the 
ecological station facility), which is exposed to a stronger environmental stress 
impact due to the weather conditions. Cab maps produced by the ND925&710, SR750/710 
and TCARI/OSAVI empirical functions are having visually similar patterns (maps 
not shown), but their dynamic ranges and histogram distributions are shifted towards 
lower Cab in case of ND925&710 and SR750/710 or higher Cab in case of TCARI/OSAVI 
(Figure 4.8a–c). We found that the lowest and the highest ANN Cab estimates are 
equal to 14.7 μg cm−2 and 65.5 μg cm−2, respectively, which match well with the 
values yielded by ANCB650–720 (the lowest Cab = 18.6 μg cm−2 and the highest 
Cab = 66.9 μg cm−2), but do not correspond so well with the estimates of the other 
three indices. For ANN and ANCB650–720, the most frequent Cab estimates are ranging 
between 40.0 and 44.9 μg cm-2 (Figures 4.7d and e), while for ND925&710 they range 
between 30.0 and 34.9 μg cm−2, for SR750/710 between 35.0 and 39.9 μg cm−2, and for 
TCARI/OSAVI between 50.0 and 54.9 μg cm−2 (Figures 4.8a–c). The subtraction of 
the ANN Cab map from the ANCB650–720 Cab map revealed an absolute mean 
difference of only 1.8 μg cm−2, with the highest prediction differences 
(≥ 5.0 μg cm−2) appearing at the locations of low Cab estimates (Figure 4.7c). The 
mean differences between ANN and the other three indices are higher, i.e. 
−9.01 μg cm−2 for ND925&710, −4.30  μg cm−2 for SR750/710, and 13.29 μg cm−2 for 
TCARI/OSAVI. The histogram of the ANCB650–720 – ANN Cab difference shows a 
nearly symmetrical Gaussian distribution, with slightly higher frequencies for 
positive Cab differences indicating a minor overestimation of ANCB650–720 
(Figure 4.7f). Almost 40% of the Cab estimates produced by both methods are equal 
and about 40% are differing by only ± 2.0 μg cm−2. Differences greater than 
± 2.0 μg cm−2 are found for less than 20% of all the examined pixels (n = 151984). 
The histograms of the ND925&710 – ANN and SR750/710 – ANN Cab differences are also 
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symmetrical, but shifted significantly towards negative values, which suggests a 
systematic underestimation of both indices. Contrary to this, the TCARI/OSAVI –
 ANN histogram shows a strong shift towards higher Cab values, i.e. an 
overestimation of Cab retrieved by the index. These results demonstrate that, unlike 
the reflectance ratio based optical indices, both continuum removal-based methods 
(ANN and ANCB650–720) produce consistent estimates.  
     A per-pixel statistical comparison of the ANN with the optical indices provided in 
Table 4.4a confirms a similar performance of the ANN and ANCB650–720 methods 
(R2 = 0.85, d = 0.95). The next two highest agreements are found between ANN and 
SR750/710 (R2 = 0.52, d = 0.75), and ANN and ND925&710 (R2 = 0.51, d = 0.60), while 
TCARI/OSAVI seems to disagree with more than half of the ANN predictions 
(R2 = 0.35, d = 0.45). The ANCB650–720 results for Cab values smaller than 30 μg cm−2 
yield, however, systematically higher values than the ANN results (Figure 4.9d). This 
discrepancy can be attributed to the normalization of the index by the CBD670 term, 
which is not constant across the whole Cab dynamic range, but slightly decreasing for 
Cab values lower than 30 μg cm−2 (see Figures 4.5b and 4.6b). Figures 4.9a–c 
illustrates a greater mismatch between the ANN method and the remaining three ratio 
indices, with ND925&710 and SR750/710 predicting in general lower and TCARI/OSAVI 
generating for most of the pixels higher Cab estimates.  
 

 
  

Table 4.4 Results of statistical analyses comparing the leaf chlorophyll a & b content (Cab) estimated for sunlit 
spruce crown pixels of the AISA Eagle airborne image with four optical indices (ANCB650-720, ND925&710, SR750/710 
and ratio TCARI/OSAVI) and with an artificial neural network (ANN) approach (a), and assessing their prediction 
accuracy when compared with ground measured crown Cab values (b). (R2 ~ coefficient of determination of the 
linear function, RMSE ~ root mean square error, RRMSE ~ relative RMSE computed for the actual chlorophyll 
range of 14.7 – 66.9 µg cm-2, RMSES ~ systematic RMSE, RMSEU ~ unsystematic RMSE, and d ~ index of 
agreement). 

 R2 RMSE RRMSE RMSES RMSEU d 
 [rel.] [µg cm-2 ] [%] [µg cm-2 ] [µg cm-2 ] [rel.] 
(a) ANN AISA estimates vs. 
   ANCB650-720 0.85 2.42 4.64 1.59 1.82 0.95 
   ND925&710 0.51 10.42 19.96 9.03 5.20 0.60 
   SR750/710 0.52 6.10 11.69 4.63 3.98 0.75 
   TCARI/OSAVI 0.35 14.93 28.60 13.32 6.74 0.45 
(b) Ground measurements vs. 
   ANN 0.72 2.18 4.18 0.77 2.04 0.92 
   ANCB650-720 0.72 2.27 4.35 1.59 1.62 0.89 
   ND925&710 0.64 9.07 17.38 8.75 2.40 0.53 
   SR750/710 0.71 4.16 7.97 3.82 1.64 0.75 
   TCARI/OSAVI 0.41 12.30 23.56 11.76 3.61 0.42 
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Figure 4.8 Histograms showing the percentage of sunlit crown pixels per Cab value estimated by the normalized 
difference between reflectance at 925 and 710 nm (ND925&710) (a), simple reflectance ratio between 750 and 
710 nm (SR750/710) (b), ratio of TCARI/OSAVI indices (c), and the distribution of estimated Cab differences 
computed between all three optical indices and ANN (d,e,f).   
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4.3.4 Comparison of airborne Cab estimates with ground measurements 

Needle samples of ten spruce crowns were collected during the flight campaign to 
generate the Cab ground truth as described in Section 4.2.6. Unfortunately one of the 
sampled crowns had to be excluded from the original validation dataset due to the 
presence of a metallic meteorological tower standing next to the tree. Photons 
reflected from the metallic tower affected negatively the HDRF of the sampled 
spruce crown, which resulted in a systematic Cab overestimation of about 17 μg cm−2 
(results not shown). 
     The comparison of the Cab values retrieved by all five estimation methods with 
the ground-measured Cab of the nine remaining crowns is displayed in Figure 4.10. 
Indicators assessing statistical accuracy of all the prediction methods are available in 
Table 4.4b. The highest R2 of 0.72 with the lowest RMSE indication and d of 
approximately 0.9 were obtained for ANN and ANCB650–720. Both approaches 
resulted in virtually identical RMSE values of 2.18 μg cm−2 for the ANN (RRMSE of 
4.18%) and 2.27 μg cm−2 for the ANCB650–720 (RRMSE of 4.35%) retrieval 
(Figures 4.10a and b), with RMSEU higher than RMSES. The two RMSE components 
are for ANCB650–720 almost equal, while RMSEU for ANN is about two times higher 
than RMSES, indicating an absence of systematic errors and a prevailing presence of 
random errors. The opposite situation is found for the other optical indices, with 
RMSEU being two to almost four times lower than RMSES. The second most accurate 
retrieval was performed with SR750/710 (R2 = 0.71, d = 0.75) (Figure 4.10e), followed 
by ND925&710 (R2 = 0.64, d = 0.53) (Figure 4.10d), both underestimating Cab by 4.16 
and 9.07 μg cm−2, respectively (RRMSE of 7.97 and 17.38%). The least accurate 
method is the TCARI/OSAVI estimation (R2 = 0.41, d = 0.42) with an RMSE equal 
to 12.30 μg cm−2 (RRMSE of 23.56%) (Figure 4.10f). A visual investigation of the 
Cab map revealed that the systematic overestimation of the TCARI/OSAVI retrieval 
is caused by pixels of a lower HDRF intensity located at the edge of spruce crowns. 
These AISA image pixels might be more affected by the background reflectance or 
they might contain a higher proportion of shadows than the one simulated by the RT 
models.  
     The results of our retrieval methods are, in general, comparable with previously 
published airborne Cab mapping efforts in coniferous canopies. For instance, Zarco-
Tejada et al. (2004) up-scaled the simple ratio SR750/710 using the PROSPECT and 
SPRINT RT models to map Cab of sunlit Jack pine crowns, achieving an RMSE of 
8.1 μg cm−2 (RRMSE of 27.0%, computed for a Cab range between 26.8 and 
56.8 μg cm−2). Our SR750/710 retrieval achieved an RMSE of 4.16 μg cm−2 (RRMSE of 
7.97%). Moorthy et al. (2008) reported an RMSE of 5.3 μg cm−2 (RRMSE of 26.20% 
for a pigment range of 25.7 – 45.9 μg cm−2), when estimating Cab of pine needles 
using coupled leaf (LIBERTY and PROSPECT) and canopy (SAILH) RT models. 
Zhang et al. (2008) estimated Cab of Black spruce stands from CASI airborne data 
using PROSPECT and the 4-Scale geometrical–optical model with an accuracy of R2 
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equal to 0.47 and an RMSE of 4.34 μg cm−2. Our continuum removal based methods 
achieved the RMSE of almost two-folds lower than results of these studies. Finally, 
Schlerf et al. (2010) obtained an R2 of 0.80 and RRMSE of 4.0% using a stepwise 
multiple linear regression predicting Cab from continuum-removed Norway spruce 
reflectance functions of two HyMap airborne wavebands. Our ANN and ANCB650–720 
retrievals reached very similar RRMSE (Table 4.4b), with the systematic RMSE 
component always smaller than the unsystematic one. Still, it should be mentioned 
that none of the sampled crowns at our study site contained extremely low 
(≤ 15 μg cm−2) or high (≥ 60 μg cm−2) amounts of Cab.  
 

Figure 4.9 Scatterplot of leaf chlorophyll content (Cab) retrieved by artificial neural network (ANN) plotted 
against the Cab estimated of normalized difference (ND925&710) (a), simple reflectance ratio (SR750/710) (b), ratio of 
TCARI/OSAVI indices (c), and ANCB650-720 optical index (d). Each dot symbol represents one pixel of a sunlit 
tree crown indentified in the AISA Eagle image of the test site (R2 – coefficient of determination, RMSE – root 
mean square error).  
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The cross-comparison of the Cab values estimated for the nine ground-sampled 
crowns by ANCB650–720 and ANN (Figure 4.10c) indicates a similar result to the one 
in Figure 4.9d. The figures show that although both approaches are based on 
continuum removal, the ANCB650–720 estimates for low Cab values are higher than 
those produced by the ANN. The ANN approach is, based on the validation results, 
slightly more accurate, but it is also more laborious and computationally intensive, 
especially during the training phase. Since ANN architecture contains several tuning 
parameters (e.g. the transitional functions between the neuron layers and their 
weights), it takes several hours and hundreds of training permutations to achieve the 
network of a desirable performance. The ANCB650–720 approach is faster (it takes 
only few minutes to establish a relationship between the index and Cab values), but 
still a comparably robust estimator, if applied to airborne images of high (sub-meter) 
spatial resolution that allows identification and exclusion of spectrally impure or 
noisy (e.g. deeply shadowed) canopy pixels.  
 

Figure 4.10 Validation of leaf chlorophyll content (Cab) retrieved for the sampled spruce crowns from the AISA 
Eagle image using artificial neural network (ANN) (a), ANCB650-720 optical index (b), normalized difference 
(ND925&710) (d), simple reflectance ratio (SR750/710) (e), ratio of TCARI/OSAVI indices (f) and the reciprocal 
comparison of ANN and ANCB650-720 estimations (c). Each circle represents one tree crown, horizontal bars 
represents two standard deviations of Cab values either measured on the ground or retrieved by ANN and optical 
indices (R2 – coefficient of determination, RMSE – root mean square error). 
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4.4 Conclusions 
This study demonstrates that leaf-canopy radiative transfer modeling combined with 
continuum removal of red and red-edge reflectance (650 – 720 nm) can be 
successfully used for the retrieval of coniferous Cab using airborne imaging 
spectroscopy data at sub-meter spatial resolution. Results are suggesting that the Cab 
estimation based on the continuum removal transformation of several adjacent 
spectral bands is more robust than the retrieval using optical indices computed from 
few discrete reflectance bands. The selected spectral range was shown to be 
sufficient to accurately retrieve Cab of closed forest canopies with a LAI above four. 
Nonetheless, a more generalized applicability of the method might be achieved, when 
further tested for sensors with different technical specifications (e.g. spectral 
sampling interval and full-width-half-maximum). 
     The newly proposed Cab index ANCB650–720 outperformed three selected 
reflectance ratio based optical indices (ND925&710, SR750/710 and TCARI/OSAVI) and 
performed comparably to an ANN trained to retrieve the leaf Cab of spruce crowns 
using the continuum removed PROSPECT-DART simulations. The only weakness in 
ANCB650–720 performance is a subtle overestimation of Cab values below 30 μg cm−2. 
With the systematic RMSE being lower than the unsystematic one, the newly 
proposed index is similarly robust, but faster, than ANN as no time-consuming 
training is required. Because of this, we recommend using ANCB650–720 for retrieving 
Cab when both high vegetation fraction and high signal-to noise ratio (as in case of 
sunlit canopy pixels) are present.  
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Abstract 
1.  There is a growing demand for spatially explicit assessment of multiple ecosystem 
services (ES) and remote sensing (RS) can provide valuable data to meet this 
challenge. 
2.  We used high spatial and spectral resolution RS images to assess multiple ES 
based on underpinning ecosystem properties (EP). We estimated five EP (green 
biomass, litter mass, crude protein content, species diversity and soil carbon content) 
from RS data using empirical RS methods and maps of ES were calculated as simple 
linear combinations of EP. Additionally, the RS-based results were compared with 
results of a plant trait-based statistical modelling approach that predicted EP and ES 
from land use, abiotic and plant trait data (modelling approach).  
3.  The RS approach was tested on subalpine grasslands located in the Central French 
Alps.  
4.  The comparison between the RS and the modelling approaches showed that RS-
based results provided better insight into the fine-grained spatial distribution of EP 
and thereby ES, whereas the modelling approach reflected the land use signal that 
underpinned trait-based models of EP. The spatial agreement between the two 
approaches at a 20 m resolution varied between 16 and 22% for individual EP, but 
for the total ecosystem service supply it was only 7%. 
5.  The modelling approach identified the alpine grazed meadows land use class as 
hot spots and mown-grazed permanent meadows as cold spots. Whereas the RS-based 
hot spots were a small subset of those predicted by the modelling approach, cold 
spots were rather scattered, small patches with limited overlap with the modelling 
results.  
6.  Synthesis. Despite limitations associated with timing of assessment campaigns and 
in-situ data requirements, RS offers valuable data for spatially continuous mapping 
of EP and can thus supply RS-based proxies of ES. Although the RS approach was 
applied to a limited area and for one type of ecosystem (subalpine grasslands), we 
believe that the broader availability of high fidelity airborne and satellite RS data 
will promote RS-based assessment of ES to larger areas and other ecosystems. 
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5.1 Introduction 
Human society benefits from a multitude of resources and processes that are supplied 
by ecosystems. They provide a vast range of services such as food, timber or clean 
water production, they regulate climate and diminish natural hazards, and they offer 
nonmaterial cultural assets (Burkhard et al., 2009; Costanza et al., 1997; de Groot et 
al., 2002; MEA, 2005). A concept of ecosystem services (ES) presents a way to 
quantify, analyze and manage the benefits obtained from ecosystems (MEA, 2005). 
Although the interest in ES is growing exponentially since the 1990’s (Costanza et 
al., 1997; de Groot et al., 2002; Fisher et al., 2009; MEA, 2005), classification and 
consistent quantification of ES still remains a challenge (de Groot et al., 2010; Fisher 
et al., 2009; Wallace, 2007). Spatially explicit mapping of ES at different scales is 
required for sustainable land use planning and environmental decision making 
(Burkhard et al., 2012). Moreover, there is a growing interest in mapping of multiple 
ES and identification of areas with concentrated ES supply (Lavorel et al., 2011; 
Naidoo et al., 2008; O'Farrell et al., 2010). 
     The biggest challenge in spatially explicit mapping of ES is often a limited 
availability of primary data on ES (Eigenbrod et al., 2010). It is thus more common 
to use ES proxies – ecosystem properties, environmental variables or land cover / 
land use maps – which are naturally linked to ES and, at the same time, easier to 
obtain (Chan et al., 2006; Egoh et al., 2008; Eigenbrod et al., 2010; Lavorel et al., 
2011). The mapping of ES is often based on land use or land cover data by 
transferring a single value of ES to each class (Burkhard et al., 2009; Costanza et al., 
1997; Eigenbrod et al., 2010; Metzger et al., 2006). This approach is practical, but 
also less accurate as it neglects variability within a single class. Eigenbrod et al. 
(2010) showed that land cover based proxies of ES poorly correlated to primary data 
of biodiversity, recreation and carbon storage ES in England. Lavorel et al. (2011) 
showed that ecosystem properties (EP), which determined ES supply in subalpine 
grasslands, were better estimated when including spatial variations in environmental 
variables and plant traits than using a pure land use based model only. This spatially 
explicit approach required intensive in-situ measurements to calibrate linear 
regression models of plant traits and EP. Considering large variability of vegetation 
properties within land use classes (Garnier et al., 2007) and across landscapes due to 
environmental gradients (Albert et al., 2010), in-situ data is clearly a limiting factor 
in EP and ES mapping at larger spatial scales. Remote sensing (RS) gives a 
possibility to map spatial and temporal variation of ecosystem properties in a more 
extensive manner than individual in-situ measurements (Kokaly et al., 2009; Mulder 
et al., 2011; Ustin and Gamon, 2010).  
     An advantage of RS is that it provides variety of spatially continuous data at 
different spatial resolutions. RS data always represent a snapshot in time of 
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ecosystem state, but satellite RS offers high revisit frequency and thus a possibility 
to analyze EP and thereby ES variations not only in the spatial, but also in the 
temporal dimension. A variety of RS instruments with different spatial, spectral and 
temporal resolutions is nowadays available (Grace et al., 2007; Malenovský et al., 
2009; Turner et al., 2003). Specifically, Ayanu et al. (2012) reviewed the suitability 
of existing satellite-based RS instruments and methods for ES assessment and 
concluded that more studies are needed to evaluate the validity of RS-based proxies 
for ES mapping.  
     In general, RS data can be used in two ways to support spatial assessment of ES. 
First, RS data serve to generate accurate and up-to-date land cover maps (Friedl et 
al., 2010), whereby different ES values are assigned to individual classes (Hu et al., 
2008; Konarska et al., 2002; Lautenbach et al., 2011). Besides major limitations of 
land cover based assessment of ES, which were discussed earlier, Verburg et al. 
(2009) and Lavorel et al. (2011) suggested that ES should be better linked to actual 
land use that often differs from the actual land cover. Furthermore, the spatial 
resolution underlying land cover maps influences both the extent and the valuation of 
ES (Di Sabatino et al., 2013; Konarska et al., 2002). 
     The second way of using RS to support ES assessment is that RS data are directly 
used to estimate EP (e.g. biomass), which in turn serve as proxies for the actual ES 
(e.g. forage production) (Malmstrom et al., 2009). Especially those vegetation 
properties that play a key role in radiation absorption and scattering can be retrieved 
from the optical RS data achieving acceptable accuracies. These are for example 
chlorophyll content (Dash and Curran, 2004; Schlerf et al., 2010; Zarco-Tejada et al., 
2004), water content (Clevers et al., 2010; Colombo et al., 2008; Serrano et al., 2000) 
and structural properties such as leaf area index (Fernandes et al., 2004) or fractional 
vegetation cover (Asner and Heidebrecht, 2002).  
     The most common RS method to study vegetation properties is to use field 
measurements to interpret RS images – empirical RS methods. Empirical RS methods 
build a statistical regression model between a limited number of in-situ data and a 
subset of spectral bands (Huber et al., 2008; Psomas et al., 2011; Serrano et al., 2002; 
Smith et al., 2002) or vegetation indices (Tian et al., 2011; Verstraete and Pinty, 
1996). By nature, they are computationally fast, easy to implement and therefore 
suitable for feasibility case studies of smaller spatial extent. The major limitation is 
that established relationships are less transferable to the same area at a different time, 
to another location or to another sensor (Asner et al., 2003; Colombo et al., 2003; 
Grossman et al., 1996).  
     The objective of this research was to test the potential of high spatial and spectral 
resolution airborne RS data for mapping of ecosystem properties and services in 
subalpine grasslands. Using a common assessment of the supply of ES by subalpine 
grasslands based on their ecosystem properties, we estimated EP directly from RS 
data using empirical retrieval methods. The RS-based maps of EP and ES were 
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compared with estimates from the plant trait-based modelling approach combining 
mapped land use, abiotic variables and plant trait in-situ data (Lavorel et al., 2011). 
Furthermore, we discussed advantages and disadvantages of both approaches. 

5.2 Material and methods 

5.2.1 Study site and in-situ measurements 

The study area is located in the Central French Alps, on the south facing slope of the 
Villar d’Arène municipality (45°02’22”N, 06°22’07”E). It spans an altitude gradient 
ranging from 1800 – 2100 m a.s.l. Floristic composition of the subalpine grasslands 
has been affected by a long history of agricultural and pastoral land use. A detailed 
description of the study area is given in Quétier et al. (2007a). Ecosystem properties 
(green biomass, litter mass, crude protein content, plant species diversity and soil 
carbon content) and plant traits (vegetation height, leaf dry matter content, nitrogen 
content and phosphorus content) were measured in 30 x 30 m permanent plots 
stratified by land use and altitude gradient during years 2004–2009. Detailed 
protocols for in-situ measurements are provided in Lavorel et al. (2011). Twenty-five 
plots were located within the area covered by the RS images (Figure 5.1a). 

5.2.2 Remote sensing data 

Airborne imaging spectroscopy (or hyperspectral RS) data were acquired using the 
AISA Dual system (Specim, Ltd. Finland) on July 23rd, 2008. We acquired six flight 
lines covering an area of about 4 x 2.5 km. The resulting ground pixel size was 
0.8 m. In total 359 spectral bands covered the range of 400 – 2450 nm and an average 
spectral sampling interval between bands varied from 4.3 to 6.3 nm. We discarded 
about one third of the available spectral bands due to poor radiometric response and 
atmospheric disturbances. The AISA Dual images were pre-processed in three steps. 
The flight lines were first calibrated to at-sensor radiance values using sensor-
specific radiometric calibration coefficients. Second, the flight lines were 
geometrically corrected using on-board navigation data and a local digital elevation 
model of 10 m spatial resolution. Subsequently, the images were orthorectified to a 
Universal Transverse Mercator (UTM, Zone 32N) map projection. Third, at-sensor 
radiance data were converted to hemispherical-directional reflectance factors (HDRF, 
see Schaepman-Strub et al. (2006) for terminology) by applying an atmospheric 
correction using the ATCOR-4 software (Richter and Schlapfer, 2002). A true colour 
composite of the fully corrected AISA Dual data is shown in Figure 5.1a. 
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Figure 5.1 (a) True color display (R = 640 nm, G = 552 nm, B = 462 nm) of the AISA Dual mosaic with field 
plots. (b) Current land cover classification derived from supervised image classification and spectral unmixing. 
First three classes represent grassland-covered areas with indicated fraction of green vegetation. (c) Land use 
classification, which was adopted from Lavorel et al. (2011). Unclassified areas are in black. 
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     We applied maximum likelihood classification (ENVI 4.8, ITT Visual 
Information Solutions) to distinguish grasslands from other land cover classes (trees 
and bushes, roads and urban areas, and bare soils and rocks). Subsequently, we 
applied a fully constrained spectral unmixing procedure (Zurita-Milla et al., 2007) on 
the classified grassland pixels, allowing them to be decomposed in relative fractions 
of three components: fractions of photosynthetic vegetation, non-photosynthetic 
vegetation, and soil. The actual land cover classification combined with the results of 
the spectral unmixing is shown in Figure 5.1b.  
     All pixels with a green vegetation fraction lower than 25% and pixels classified as 
trees/bushes, roads/urban areas, soils/rocks and heavily grazed or mown grasslands 
were masked out. In total about 25% of all AISA pixels were excluded from further 
analysis. Moreover, field plots located on the masked image area were also excluded 
and at the end maximum 18 plots remained for RS data interpretation.  

5.2.3 Estimation of ecosystem properties 

For clarity reasons we first introduce the main methodological steps (Figure 5.2) as 
this study combines and compares the RS approach (this study) with the plant trait-
based modelling approach (Lavorel et al., 2011) to map multiple EP and ES. The 
second approach (further denoted as the modelling approach) was adopted from 
Lavorel et al. (2011). In this approach, five EP (green biomass, litter mass, crude 
protein content, species diversity and soil carbon) were modelled using general linear 
models combining the maps of land use, abiotic variables (topography and soil 
properties) and plant traits (vegetation height, leaf dry matter content, nitrogen and 
phosphorus content) (details in Lavorel et al. 2011). In these EP models, both abiotic 
and plant trait inputs were estimated based on land use and possible modifications 
reflecting effects of altitude or soil heterogeneity. The resulting maps of modelled EP 
were produced at a spatial resolution of 20 m and they were transformed to match the 
spatial extent of the AISA images (ArcGIS 10.0, ESRI Inc.).  
     The RS approach estimating EP from the AISA images was based on an empirical 
method, i.e. building a statistical regression model between in-situ measurements of 
EP and reflectance data (Cho et al., 2007; Darvishzadeh et al., 2008; Psomas et al., 
2011; Ramoelo et al., 2013). We tested three empirical methods: i) narrow-band 
vegetation indices, i.e. normalized difference vegetation index (NDVI; eq. 5.1) and 
simple ratio (SR, eq. 5.2), ii) stepwise multiple linear regression (SML) and iii) 
partial least square regression (PLS).  
     We evaluated all possible two-pair band combinations (bi, bj) to build two types 
of narrow-band vegetation indices:  

NDVI = (bi - bj) / (bi + bj)                                                                          (5.1) 

SR = bi / bj                                                                                                 (5.2) 
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     SML regression was applied to the full reflectance spectra (240 bands) and we 
evaluated all possible band combinations up to maximum of four spectral bands in 
order to avoid model overfitting (Psomas et al., 2011). Regression models with high 
multicollinearity among selected spectral bands (variance inflation factor VIF > 10) 
were eliminated. SML regression was implemented in R (version 2.15.0, R 
development core team, 2012) using the packages leaps and regr0.  
     PLS regression, a multivariate technique that reduces the large number of 
collinear spectral variables to a few non-correlated latent variables, was applied to 
full, non-transformed reflectance spectra using Matlab 7.11.0, function plsregerss.  
    The low number of in-situ EP data (n ≤ 18) prevented using an independent subset 
for model calibration and validation. Therefore, all EP data were used to build 
empirical regression models. The overall capability of each empirical model to 
explain the variability in measured EP was evaluated by the coefficient of 
determination (R2). The predictive power of a model has been assessed by estimating 
the root mean square error of prediction (RMSEP) using the leave-one-out cross-
validation approach.  
     The best regression model estimating EP from RS data was selected according to 
the highest R2 and lowest RMSEP and it was then applied to the entire RS image at 
the original spatial resolution of 0.8 m. Resulting maps of EP from RS images were 
normalized between 0 and 100 using 5th and 95th data percentiles as boundary values 
(Lavorel et al., 2011) and only then resampled to 20 m spatial resolution to match the 
results of the modelling approach. 
 
 

  

Table 5.1 Coefficients used for combining individual ecosystem properties to a given ecosystem service. 

 Ecosystem properties 
Ecosystem 
Service 

Green 
biomass 

Litter  
mass 

Crude protein 
content 

Species 
diversity 

Soil carbon 
content 

Agronomic +1  +1   
Cultural  -1  +1  
C sequestration     +1 
Total Agronomic + Cultural + C sequestration ES 
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Figure 5.2 Conceptual framework for the remote sensing of ecosystem properties and services and the comparison 
with the modelling approach of Lavorel et al. (2011). Abbreviations: nitrogen nutrition index (NNI), phosphorus 
nutrition index (PNI), ecosystem properties (EP), ecosystem services (ES), remote sensing (RS), digital numbers 
(DN), hemispherical-directional reflectance (HDR).  

5.2.4 Estimation of ecosystem services 

Ecosystem services (i.e. agronomic value, cultural value and carbon sequestration) 
were related to ecosystem properties according to indicators identified by local 
stakeholders (Lamarque et al., 2011; Quétier et al., 2010) (Table 5.1). The original 
scheme relating EP and ES presented in Lavorel et al. (2011) was modified to 
overcome the inability of RS data to predict flowering onset, which was required to 
estimate the pollination ES and to incorporate date of flowering onset as part of the 
assessment of agronomic value. Maps of ES were produced as simple linear 
combinations of normalized EP maps using coefficients summarized in Table 5.1. 
Based on the three selected ES, which encompass the two most relevant services to 
local stakeholders (agronomic and cultural values), and one service of global 
relevance (carbon sequestration) (Lamarque et al., 2011), total ecosystem service 
supply was calculated as the sum of individual ES. The location of hot spots and cold 
spots of total ecosystem service supply was analyzed by applying the Getis-Ord-Gi* 
spatial statistic in ArcGIS 10.0, ESRI. The algorithm identifies statistically 
significant spatial clusters of high (hot spots) and low (cold spots) value by testing a 
null hypothesis whether the observed clustering is more pronounced than one would 
expect in a random distribution of those same values. 

5.2.5 Comparison of remote sensing and modelling approaches 

Spatial assessment of differences between the RS and the modelling approaches was 
implemented using Map Comparison Kit 3.2 (Visser and de Nijs, 2006) – a toolbox 
allowing spatial comparison of categorical maps using the fuzzy set theory (Hagen, 
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2003). The fuzzy approach has two great advantages as compared to a direct pixel-
by-pixel comparison. It allows assessing the spatial neighbourhood of a pixel (i.e. 
closer pixels are more similar than distant pixels) and proximity among classes (i.e. 
some classes are more similar to each other than other classes) (Hagen, 2003). For 
the purpose of spatial comparison, all maps were classified by grouping values to 
equally spaced bins. The spatial comparison was repeated at two spatial resolutions: 
20 m and 100 m pixel size in order to identify how the scale of heterogeneity affects 
the comparability of the RS and the modelling approaches. 
     Similarity between the RS and the modelling approaches was expressed spatially 
(similarity maps) and by calculating the percentage of average similarity (a fuzzy 
equivalent of overall classification accuracy obtained from a confusion matrix). 
Moreover, both approaches were compared by using descriptive statistics and 
frequency distributions calculated for the entire image area, as well as for the 
individual land use (LU) classes. We used the Wilcoxon-Mann-Whitney U test (p ≤ 
0.05) to identify statistically significant differences between the approaches.  
     The LU classification, which served to compare the RS and the modelling 
approaches, was fully adopted from Lavorel et al. (2011). The classification is shown 
in Figure 5.1c. Seven types of grasslands were classified within the area covered by 
the AISA images. Three LU classes were located on terraces that have been 
cultivated previously: fertilized and mown terraces (LU1), non-fertilized but mown 
terraces (LU2), and unmown terraces but grazed in spring and autumn (LU3). Two 
LU classes were located on never cultivated permanent meadows: mown grasslands 
(LU4), and unmown grasslands but grazed in summer (LU5). Finally, one class 
covered alpine-grazed meadows at altitudes above 2000 m a.s.l (LU6) and the last 
class represented grasslands growing on steep and grazed slopes (LU7). 

5.3 Results 

5.3.1 Ecosystem properties: comparison of remote sensing and modelling approaches 

The best empirical models for predicting ecosystem properties from RS data are 
summarized in Table 5.2. The best model for green biomass estimation was based on 
a narrow-band NDVI index, whereas SML provided the most accurate solution for 
other EP. Interestingly, PLS did not outperformed SML despite the fact some studies 
found PLS being more powerful than SML or vegetation indices (Cho et al., 2007; 
Darvishzadeh et al., 2008). The prediction accuracy of the RS-based empirical 
models was moderate and of a similar order to those obtained from the modelling 
approach (Lavorel et al., 2011). Green biomass was estimated with the lowest 
accuracy among all EP (R2 = 0.54), which was lower than the modelling approach 
(R2 = 0.70). The prediction accuracy of the litter mass model (R2 = 0.60) was 
comparable to the modelling approach (R2

 = 0.61). The prediction accuracy of the 
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crude protein content model (R2 = 0.97) was higher than from the modelling 
approach (R2 = 0.62), but the reliability of the RS-based model is strongly reduced 
due to low degrees of freedom, which resulted into an over-adjusted model. The 
prediction accuracies of the species diversity model (R2 = 0.60) as well as of soil 
carbon content (R2 = 0.73) were higher than for the modelling approach (both 
achieving R2 = 0.31). Additionally, Figure 5.3 shows scatter plots between measured 
and RS-predicted EP, indicating that estimated EP from RS had a comparable range 
as in-situ measured EP.  
     Resulting maps of EP from the RS (left panels) and the modelling (middle panels) 
approaches at 20 m spatial resolution are presented in Figure 5.4. The visual 
comparison between approaches emphasises spatial consistency and continuity of the 
RS approach, contrasting with the land-use based pattern underpinning the modelling 
approach. The RS approach was thus highly sensitive to fine scale heterogeneity, 
which could be captured thanks to the high spatial resolution of the RS images. 
Therefore, the variability of RS-based EP within individual LU classes was up to ten 
times higher than the variability of the modelling approach (Appendix A5). 
     In contrast to the modelling approach, none the RS-based maps of EP clearly 
captured a distinct difference between grasslands growing on previously cultivated 
terraces (LU1-3 located in the S-W part of the image area) and grasslands at 
permanent meadows (LU4-7 located in the N-E part of the image area). Statistical 
analyses revealed that for all LU classes the mean EP value from the RS approach 
was always significantly different from the modelling approach (Wilcoxon-Mann-
Whitney U test, p ≤ 0.05). For instance the modelling approach substantially over -
estimating (resp. under-estimating) green biomass for LU1 and LU5 (resp. LU3, 
LU6, LU7), and over-estimating species diversity for all land use types except LU3 
and LU5 as compared to the RS approach (Appendix A5).  
     The spatial comparison between RS and modelling approaches based on the fuzzy 
set theory (Figure 5.4) indicated that the average similarity was around 20% at the 
spatial resolution of 20 m. Crude protein content, for which there was the lowest 
number of in-situ samples to calibrate RS images, was the EP with the lowest spatial 
agreement between the approaches (average fuzzy similarity calculated for entire 
image area was only 16.6%). Species diversity was the EP with the highest spatial 
agreement between the approaches (average fuzzy similarity reached up to 22.4%). In 
classes LU2, LU3 and LU7 the average similarity reached about 25%, whereas in 
LU1 (mown-fertilized terraces) it was only about 8%. We also investigated similarity 
of RS and modelling approaches at the spatial resolution of 100 m and the average 
fuzzy similarity increased from 20% up to 40% at the 100 m resolution 
(Figure A7.1). 
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Figure 5.3 Comparison of in-situ measured and RS-predicted ecosystem properties: (a) green biomass [g m-2], (b) 
litter mass [g m-2], (c) crude protein content [g kg-1], (d) species diversity [-], and (e) soil carbon content [%]. 
Predicted EP values represent here a mean value per plot calculated from pixels within a plot, which have green 
vegetation fraction > 25%. The solid line represents the one-to-one line.   

Table 5.2 Summary of the best regression models estimating ecosystem properties from the AISA remote sensing 
data. Abbreviations: normalized difference vegetation index (NDVI), stepwise multiple linear regression (SML), 
an AISA band centred at wavelength λ (Bλ), degrees of freedom (d.f.), coefficient of determination (R2), and root 
mean square error of prediction relative to mean observed value (RMSEP). 

Ecosystem 
property 

Model 
type 

Predictive equation d.f. R2  RMSEP 
[%] 

Green 
biomass 

NDVI Gbio = 578.598*NDVI + 355.328  
            NDVI = (B682 – B2441) / (B682 – B2441) 

15 0.54 15.9 

Litter  
mass 

SML Litt = 0.158*B871 –  0.180*B1158 + 0.242*B2308 – 73.153 14 0.60 28.0 

Crude protein 
content 

SML CPC = –0.3876*B2038 + 0.5639*B2346 + 34.085 2 0.97 1.5 

Species 
diversity 

SML SDiv = 7.945e-04 * B706 – 5.031e-04 *B2447 – 3.825e-02 14 0.60 8.0 

Soil carbon 
content 

SML Soilc = –7.135e-03 * B734 + 12.352e-03 * B1328  
             – 8.101e-03 * B1686 + 2.9167 

13 0.73 8.4 
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Figure 5.4 Ecosystem properties estimated from the remote sensing approach (this study) and from the modelling 
approach (Lavorel et al., 2011) at a spatial resolution of 20 m. The most right maps show similarity between 
remote sensing and modelling approach. Frequency histograms show the distribution of values within the image.  

5.3.2 Ecosystem services: comparison of remote sensing and modelling approaches 

Ecosystem services were calculated as simple linear combinations of ecosystem 
properties (Table 5.1). The agronomic ES was calculated as the sum of fodder 
quantity (green biomass) and fodder quality (crude proteins). The cultural ES was 
calculated as the difference of species diversity and litter mass. The climate 
regulation service through soil carbon sequestration was approximated by soil carbon 
content (therefore corresponding maps of the climate regulation service are presented 
only once in Figure 5.4m,n,o). Finally, total ES supply was calculated as the sum of 
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individual ES. Resulting maps of ES as derived from the RS (left panels) and the 
modelling (middle panels) approaches are presented in Figure 5.5.  
     The statistical analysis carried out at LU class level indicated that for almost all 
classes the mean ES value from the RS approach was significantly different from the 
modelling approach (Wilcoxon-Mann-Whitney U test, p ≤ 0.05). In particular, the 
agronomic value was quite over-estimated (resp. under-estimated) by the modelling 
approach for LU1, LU2 and LU6 (resp. LU3 and LU7) as compared to the RS 
approach. The cultural value tended to be strongly over-estimated for all land use 
types except LU3 and especially LU5 (Appendix A6). 
 

Figure 5.5 Ecosystem services estimated from the remote sensing approach (this study) and modelling approach 
(Lavorel et al., 2011) at a spatial resolution of 20 m. The most right maps show similarity between remote sensing 
and modelling approach. Frequency histograms show distribution of values within the image. 

 
     The spatial comparison between approaches based on the fuzzy set theory (Figure 
5.5, right panels) indicated that the average similarity for the agronomic ES was 
around 20%, but for the cultural ES and the total ES it was less than 10%. Analogous 
to EP, LU classes with highest spatial agreement across ES were LU3 and LU7, 
where the average similarity reached about 20%. In LU1 (mown terraces) the spatial 
agreement was the lowest (about 2% only). At the spatial resolution of 100 m, the 
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average similarity increased up to 50% for agronomic ES and up to 30% for cultural 
and total ES compared to 20 m resolution (Figure A7.2). 
     Descriptive statistics for the total ecosystem service supply indicated that the 
modelling approach over-estimated (resp. under-estimated) total ES for LU1, LU2, 
LU 4 and LU6 (resp. LU3 and LU5) (Figure 5.6). Further spatial analysis of hot and 
cold spots of total ES supply (Figure 5.7) indicated that the area of hot/cold spots 
from the modelling approach was about double compared to the RS approach. The 
hot spots predicted by the RS approach appeared as a subset of those predicted by the 
modelling approach (40% overlap). This cannot be said about the cold spots of total 
ES supply, because only 17% of the RS-based cold spots overlapped with the 
modelling approach, and some different cold spots were predicted altogether. In 
general, the RS-based hot/cold spots were scattered, small patches across the study 
area, whereas the modelling approach identified the entirety of alpine grazed 
meadows (LU6) and unmown-grazed permanent meadows (LU5) as the hot spots and 
cold spots, respectively (Figure 5.7). 

5.4 Discussion 

5.4.1 Quality of empirical RS models of ecosystem properties  

The major uncertainties of the empirical RS approach are related to RS, as well as in-
situ data quality and representativeness. We minimized the uncertainties behind RS 
data by removing noisy bands and pixels with low vegetation signal, but uncertainties 
originating from atmospheric and topographic corrections remain. It is beyond the 
scope of this work to investigate their effects on the EP estimates. Therefore, we 
focus our discussion on uncertainties associated with in-situ EP measurements 
carried out at plot scale, and their matching to RS images. 
     Broad variability in EP was captured by stratifying field sampling plots according 
to land use and altitude (Lavorel et al., 2011). In this way, a small scale 
heterogeneity resulting in spectral variability within the image, for instance due to 
variability in soils and microclimatic conditions, was not fully captured. Analysis of 
the spectral representativeness of field plots indicated that about 25% of the pixels 
were outside the spectral range covered by the calibration dataset. Moreover, some 
field plots had to be removed, because they were located at areas with low green 
vegetation signal, due to mowing or grazing at the time of the RS campaign. This 
step negatively influenced mainly the litter mass model, because the plots that were 
removed had also higher values of litter mass (especially in LU5) and therefore the 
calibration range was reduced. Furthermore, there is always a risk that, by the nature 
of SLM, statistical model may be over-fitted to specific data points, and may 
therefore introduce prediction errors, especially for pixels outside of the calibration 
range. 
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Figure 5.6 Comparison of remote sensing approach (this study) and modelling approach (Lavorel et al., 2011) to 
estimate total ecosystem service supply per land use class. The left panels show frequency distribution of the total 
ecosystem service. The right panels show boxplots, where central line in a box is median, box height is 
interquartile range representing 50% of the data, whiskers are minimum and maximum unless the observed values 
exceeded 1.5 times the interquartile range and in that case they are marked with crosses as outliers. The star 
symbol indicates that differences in median values between two approaches are significant (p ≤ 0.05, Wilcoxon -
Mann-Whitney U test). 
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     Probably the strongest factor negatively influencing the quality of the RS 
empirical models was an asynchronous acquisition of in-situ EP data and RS images. 
In-situ EP data were collected between years 2004 and 2009, which smoothened 
variability among the vegetation seasons. In contrast, RS images represent one 
snapshot in time capturing the actual ecophysiological and development stage of 
grasslands during the second half of July 2008, which can not exactly be compared 
with inter-annual mean in-situ EP data (although 2008 appeared to be representative 
of an average year – Lavorel and Grigulis, 2013, unpublished data). Further, the date 
of RS acquisition was not optimal as compared to vegetation phenology and 
agricultural use. A good example that illustrates the temporal disparity is green 
biomass estimation in unmown-grazed summer meadows (LU5). Average green 
biomass value in this LU class was the highest for the modelling approach, but the 
lowest for the RS approach. This can be attributed to a large proportion of grassland 
pixels that were grazed at the date of RS acquisition, whereas the modelling approach 
was based on peak biomass measurements prior to mowing or grazing (first half of 
July). Likewise, in-situ crude protein content was estimated at peak vegetative 
growth in the middle of June, where differentiation among vegetation types is known 
to be greatest, whereas the later date for RS measurement resulted both in an average 
lower value (more advanced phenology) and a convergence among vegetation types 
(Duru, 1997). We can assume that both green biomass and crude protein content are 
the most dynamic EP within and between years and can be highly sensitive to 
disturbances such as drought in 2004 or vole outbreaks in 2009 – 2010.  

5.4.2 Alternative RS solutions for ecosystem properties estimation 

There are clear limitations and uncertainties behind the RS-based models of EP in 
this study. Being aware of them, still RS holds strong potential for EP mapping. We 
restricted our work to empirical approaches applied on airborne RS data, but there is 
large variety of other types of RS data and methods. Those might provide more 
suitable solutions to predict currently investigated or other EP, as well as some plant 
traits (Homolová et al., 2013b). 
     Green biomass and litter mass can be possibly related to the results of spectral 
unmixing, which allows subdividing the mixed nature of the spectral information into 
relative fractions of soil, photosynthetic vegetation (PV) and non-photosynthetic 
vegetation (NPV) (Asner et al., 2005; Roberts et al., 1993). We found a positive 
correlation between in-situ measurements on green biomass and the PV fraction 
(r = 0.57, results not shown), and between litter mass and the NPV fraction (r = 0.81, 
results not shown). This finding and similar patterns found by Numata et al. (2007) 
encourage a hypothesis that PV and NPV fractions can serve as proxies for green and 
dry vegetation biomass, respectively.  
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     Crude protein content is essentially proportional to nitrogen content and a 
moderately strong relationship exists between nitrogen and chlorophyll content 
(Homolová et al., 2013b). Chlorophyll content is one of the vegetation properties that 
nowadays can be estimated from RS with high fidelity using a variety of chlorophyll-
sensitive vegetation indices (Gitelson et al., 2006; Sims and Gamon, 2003) and 
physical retrieval methods based on radiative transfer modelling (Jacquemoud et al., 
2009; Malenovský et al., 2013; Zhang et al., 2008).  
     In the case of species diversity, some authors suggested to approximate it by 
indicators of spectral heterogeneity derived from RS images (Rocchini, 2007; 
Rocchini et al., 2010). However, reported relationships between species and spectral 
diversity were moderately strong (r between 0.4 and 0.7) and usually found for data 
at a spatial resolution in the order of tens of meters (Rocchini, 2007). Therefore, this 
approach would be more suitable for areas with higher heterogeneity in land cover 
and for a larger scale assessment. 
     Mapping of soil properties is in general difficult in areas covered by vegetation 
(Bartholomeus et al., 2011). Some studies suggested that soil carbon content 
correlates with other vegetation properties such as leaf area index or canopy height 
(Li et al., 2010), but screening of our in-situ data did not indicate any significant 
relationship with measured plant traits or EP (results not shown). Here, soil carbon 
content was used as a proxy for the carbon sequestration service, given that in such 
mountain grasslands aboveground biomass senesces and largely decompose every 
year, RS based solutions that directly estimate carbon stocks sequestered by 
vegetation, i.e. primary productivity (Running et al., 2004; Zhao et al., 2005), may be 
considered for other types of ecosystems such as forests. Maps of primary 
productivity are delivered globally with a typical spatial resolution of 1 km, which is 
less suitable for local studies, but a large scale assessment of ecosystem carbon 
sequestration services can certainly benefit from it. Preferably still, RS data can also 
serve as an input into ecosystem models predicting carbon stocks (Porfirio et al., 
2010).  
    Lastly, an important contribution of RS data is to update existing land use or land 
cover maps, which are often used as underlying spatial information for ES 
assessment (Eigenbrod et al., 2010; Metzger et al., 2006), and are highly dynamic 
(Verburg et al., 2009). 

5.4.3 Assessing ecosystem services from RS data 

The scheme combing the underlying EP of subalpine grasslands into ES was based on 
social evaluation as perceived by local stakeholders (Lamarque et al., 2011; Quétier 
et al., 2010). This makes it very specific for the actual study area, but we can assume 
that the scheme can be smoothly transferred to other subalpine regions with similar 
landscape management and ES demand (Lamarque et al., 2011). However, its 
applicability to more diverse landscapes needs to be further tested.  
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    In general, little agreement was found between the approaches for the total ES 
supply (Figures 5.5i and 5.6). The hot spot analysis indicated more overlaps between 
the approaches for hot spots than for cold spots. The modelling approach clearly 
identified alpine grazed meadows (LU6) as ES hot spots. These grasslands provided a 
synergy between high species diversity, soil carbon and crude protein content and 
low litter mass. The cold spots were associated to unmown-grazed permanent 
meadows (LU5). These meadows exhibited high values for litter mass and green 
biomass and lower values for the three other EP. 
     The RS-based hot/cold spots were small scattered patches across the study area, 
rather than extensive patches associated with specific land use types. This 
contraction reflected the decrease in contrast among land uses in the RS as compared 
to the modelling approach (Appendix A6). The RS-based hot spots, similar to the 
modelling approach, were mainly associated with areas where high species diversity, 
high soil carbon and low litter mass were estimated from RS images. Moreover, they 
appeared to be a small subset of the hot spots identified by the modelling approach. 
In contrast, many RS-based cold spots could be associated to the combination of high 
litter mass and low values for all other EP, which was analogous to the modelling 
approach. The RS-based cold spots correspond well to pixels with lower vegetation 
fraction and are often scattered around roads and terrace banks, but they exhibited a 
small spatial overlap with the modelling approach. 
 
 

 

Figure 5.7 Location of hot spots and cold spots of the total ecosystem service supply in subalpine grasslands as 
derived by the remote sensing (b) and the modelling (b) approaches at a spatial resolution of 20 m. 
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5.4.4 Comparison of remote sensing and modelling approaches 

The visual comparison of EP as well as ES at the spatial resolution of 20 m (cf. left 
and right panels in Figures 5.4 and 5.5 respectively) contrasted the spatial 
consistency and continuity of the RS approach with the land-used based pattern of 
the modelling approach. Indeed, in the modelling approach plant traits and abiotic 
variables incorporated into EP models were modelled themselves based on LU 
(Lavorel et al., 2011). Although the plant trait inputs of EP models provided 
additional information on the variability within single LU classes (Lavorel et al., 
2011), still the variability was lower than in the RS approach. Moreover, the current 
LU classification accounts for broad classes of past and present land use (Quétier et 
al., 2007b), but the field sampling design did not capture finer variations within the 
classes resulting from specific land use history, and especially time since last 
mowing. Indeed, complementary sampling revealed that in particular within LU 
classes with grazing on former hay meadows (LU3, LU5), there was a significant 
effect of the date of mowing cessation, which influenced plant functional 
composition and associated EP such as green biomass, litter mass and species 
diversity (Caubet, 2009). Conversely, the sub-meter spatial resolution of the original 
RS images caused EP models to be sensitive to small scale variations driven by local 
topography, soils (esp. soil depth) and microclimatic conditions. In general, a higher 
spatial similarity between the approaches was found in those areas, where RS-based 
EP maps appear to be more homogeneous suggesting that these areas must have been 
spectrally homogeneous too. 
 
Advantages and disadvantages of both approaches to quantify EP and consequently 
ES are closely related to attributes of in-situ measurements, as well as of underlying 
spatial data, which are related to spatial and temporal domains. The 
advantages/disadvantages are summarized in Table 5.3 and further discussed in 
following sections. 
     The spatial resolution of underlying spatial data plays an important role in 
assessment of ES. A coarser spatial resolution of the modelling approach (20 m) did 
not fully reflect spatial heterogeneity within the study area as it was discussed 
earlier. Moreover, it might have easily included non-vegetated areas assigning them 
an unrealistic value or left out small vegetation patches with high ES supply. Di 
Sabatino et al. (2013) demonstrated that land cover data at a spatial resolution of 20 
to 30 m can still significantly underestimate total area of highly fragmented 
ecosystems such as water bodies. The high spatial resolution of RS data helped to 
eliminate non-vegetated areas, which usually have low EP and thereby ES values. 
Small-scale case studies like this one can certainly benefit from the high spatial 
resolution of airborne RS, but it is less applicable for larger scale studies. Satellite 
RS instruments that provide a good compromise between spectral and spatial 
resolutions (e.g., Landsat or Sentinel-2) still acquire data at a spatial resolution 



Remote sensing of ecosystem services 

107 

between 10 and 60 m. Therefore, fusion of RS data of different spatial and spectral 
resolutions (Malenovský et al., 2007) can enhance spatial precision of ES mapping at 
large scales. 
 
 

 
     Both approaches addressed a temporal aspect of the analysis differently. As 
discussed earlier, the modelling approach is less dependent on inter-annual 
variability, because in-situ measurements of plant traits and EP were averaged across 
several vegetation seasons. Moreover, the underlying spatial information from the 

Table 5.3 Overview of advantages (+) and disadvantages (−) of the RS approach (this study) and the modelling 
approach (Lavorel et al., 2011) for assessment of ecosystem properties and services in subalpine grasslands. 

 Remote sensing approach Plant trait-based modelling approach 

Input spatial data (+) Higher spatial resolution from 
RS images 
Digital elevation model 

(−) Coarser spatial resolution from  
Land use map 
Digital elevation model 

Input field data (+) Less field data needed 
(ecosystem properties) 
(+) Number of data can be reduced by 
employing physically-based RS 
retrieval methods 
(−) Measurement date needs to be close 
to RS acquisition  

(−) More field data needed  
(plant traits, soil properties and 
ecosystem properties) 

Input data pre-
processing 

(−) More data processing needed  
Laboratory analysis of field samples 
and 
radiometric, geometric, atmospheric 
corrections of RS images 

(+) Less data processing needed 
Laboratory analysis of field samples 
only 

Spatial domain Determined by RS images, but 
(+) RS can be flexible on acquiring 
images at different spatial resolutions  

Determined by land use map 

Temporal domain (−) Highly dependent on RS acquisition 
date, but 
(+) RS offers high multi-temporal 
flexibility, but 
(−) additional field data reflecting 
temporal variability are required 

(+) Time independent (average), but 
(−) field data collection required during 
several vegetation seasons  

Model transferability (−) Limited transferability of empirical 
EP models to other sites, but 
(+) possibility of employing physically-
based retrieval methods increases the 
universality 

(+) Transferability of empirical trait-
based EP models to other similar (e.g. 
grassland) sites 
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LU classification is almost time independent as it reflects current and past land use 
management. In contrast, results of the RS approach are time specific, because a 
single snapshot of RS images reflects a particular development stage of vegetation 
and actual management activities. The RS approach is thus less generic than the 
modelling approach, but can in principle be extended to multi-temporal RS 
observations allowing long term monitoring and change detection of ES. Multi-
temporal RS observations also potentially enable the incorporation of important 
intra-seasonally variable parameters such as phenology, which are important 
components of some ES (Lavorel et al., 2011). 
     The nature of the underlying spatial data to model EP differed between the 
approaches. The modelling approach builds only on two spatially explicit, 
independent landscape input variables (land use and elevation maps). These were 
used to predict the spatial distribution of all other abiotic and plant trait variables 
that further entered into EP models. In contrast, RS images offered initially 240 
spectral bands, but these can be strongly correlated. The real spectral dimensionality 
of a single view imaging spectroscopy image varies between 3 and 12 (Laurent et al., 
2011a; Verhoef, 2007), meaning that 3 to 12 vegetation properties can be retrieved. 
     The RS approach allowed skipping one important step of the modelling approach, 
in which plant traits and abiotic properties were estimated from LU and elevation 
maps. This step reduced the number of in-situ measurements by eliminating data on 
plant traits and abiotic properties. Nevertheless, in-situ measurements of EP will still 
remain a limiting factor for large scale and long term applications. The RS approach, 
on one hand, minimized propagation of errors related to the quality and a spatial 
resolution of the input in-situ and spatial (LU and elevation) data, but on the other 
hand it introduced other types of errors inherent to RS images and image processing 
(e.g. topographic and atmospheric corrections). Recent studies indicated that it is 
possible to retrieve some vegetation properties from top-of-atmosphere radiance data 
(Laurent et al., 2011b) reducing therefore uncertainties from atmospheric corrections.  
     A big disadvantage of the RS empirical methods is that transferability of 
regression equations to other test sites with different vegetation types or to other RS 
sensors is usually very limited (Asner et al., 2003; Colombo et al., 2003; Grossman et 
al., 1996). Similar constraints apply to some extent to the modelling approach, 
although trait based models provide robust inter-site predictions of EP (Fortunel et 
al., 2009). Luckily, RS offers also more universal solutions based on physical 
radiative transfer models, though their retrieval capacity is strictly limited to 
vegetation properties influencing the canopy radiation regime, e.g. leaf area index, 
chlorophyll content, water content (Baret and Buis, 2008; Colombo et al., 2008; 
Jacquemoud et al., 2009; Schlerf et al., 2005; Zarco-Tejada et al., 2004).  
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5.5 Conclusions 
In this case study, we tested high spatial and spectral resolution RS data for the 
spatial assessment of ecosystem properties (EP) and multiple ecosystem services 
(ES) in subalpine grasslands. Furthermore, the RS-derived maps of EP and ES were 
compared with results of the plant trait-based modelling approach (Lavorel et al., 
2011), which predicted EP using general linear models combining maps of land use, 
abiotic variables and plant traits. The prediction accuracy of the RS-based empirical 
EP models was good (R2 = 0.54 – 0.73) and it was similar or better than those 
obtained from the modelling approach.  
     The average similarity between the RS and the modelling approaches at the 20 m 
spatial resolution varied between 16 and 22% for individual EP and for the total 
ecosystem service supply it was only around 7%. However, the spatial agreement 
increased by about 20 percentage points when increasing pixel size from 20 to 
100 m, showing that some of the discrepancies among approaches resulted from their 
differences in intrinsic spatial resolution. Despite the fact that we found similarities 
in the bundles of EP underpinning the total ES in both approaches, the exact location 
differed as the RS-based hot/cold spots were smaller scattered patches within the 
study area, owing to decreased variability in EP within land use types in the RS as 
compared to the modelling approach. Overall, while the RS-based hot spots were a 
small subset of the hot spots identified by the modelling approach, for cold spots 
there was limited spatial overlap.  
    RS-based maps provided more detailed insight into the fine-scale spatial 
distribution of EP and thereby ES, although to some extent they might be 
oversensitive to small scale heterogeneity. RS results exhibited about ten times 
higher variability within individual LU classes than the modelling approach, which 
reflected by construction the underlying LU classification.  
     We are aware of the limitations of the RS approach presented in this study, which 
mainly originated from the asynchronous acquisition of RS and in-situ data, both in 
terms of specific year, and especially of timing within the vegetation season. But 
without any objective reference, it is hard to decide which of the two approaches is 
better, as both are imperfect assessments of a reality and both having their 
advantages and disadvantages. The underlying spatial data, RS images for the RS 
approach and LU map for the modelling approach, are the major source of the 
discrepancies between the two approaches. Therefore an approach that combines RS 
images, LU and elevation maps with in-situ EP data would probably the best 
compromise for accurate spatial assessment of multiple ES supplied by subalpine 
grasslands.  
     In general, future research should look for reliable links between ES and RS 
proxies. This will require more case studies, where RS and ES data (and EP 
determining ES) are acquired and analyzed together. The assessment of ES can 
already benefit from those vegetation properties that can be estimated from RS with 



Chapter 5 

110 

higher accuracy and for which RS methods are well established, e.g. chlorophyll 
content, leaf area index, fraction of absorbed photosynthetically active radiation, 
fractional vegetation cover. Besides the spatial and spectral domains of RS data that 
were explored in this study, future assessment of ES should also consider multi-
temporal and multi-directional RS observations. 
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6.1 Main results 
Remote sensing of vegetation is a broad research field, where a lot of progress has 
been made in the last three decades. However, the complexity of interactions between 
vegetation and solar radiation, which are being constantly modulated by 
environmental factors, offers room for deeper investigation. Rather than solving one 
big research problem, this thesis builds a few bridges on a way leading to a better 
understanding of using imaging spectroscopy for ecologically driven applications in 
heterogeneous ecosystems (temperate coniferous forests and subalpine 
grasslands).The theoretical part of this thesis presented in Chapter 2 contributes to a 
critical evaluation of research achievements and challenges in RS of plant traits and 
encourages better communication between plant ecology and RS research 
communities. The applied part of this thesis contributes to improve our 
understanding of the structural and biochemical complexity in Norway spruce 
canopies (Chapters 3 and 4) and increases our knowledge of using imaging 
spectroscopy to assess ecosystem properties and capacity of subalpine grasslands in 
providing ecosystem services (Chapter 5). The work was performed at three plant 
hierarchical levels: the level of individual leaves (Chapter 3), plants (Chapter 4) and 
entire canopies (Chapter 5). 
     In this section, the main research questions of this thesis, which are elaborated in 
the core Chapters 2 – 5, are revisited and followed by a discussion on the main 
results. 
 
 
1. What is the current state-of-the-art in using optical remote sensing for estimation 
of key plant traits used widely in plant ecology research? 

Plant traits are widely used in plant ecology to understand the response of plants to 
various environmental pressures (e.g. climate change) and the effect of plants on 
ecosystem processes (e.g. biogeochemical cycles). Recent evidences are that plant 
ecologists agree on a set of key plant traits, which are relatively easy to measure in-
situ and have a strong predictive response to ecosystem functions (Cornelissen et al., 
2003). In-situ measurements do not allow spatially explicit and large scale mapping 
of key plant traits and therefore remote sensing based approaches are of great interest 
to the plant ecology community. In Chapter 2 the major achievements and challenges 
in RS estimation of key plant traits were reviewed. Our discussion was limited to 
eight traits with strongest potential to be mapped using RS (plant growth and life 
forms, flammability properties, photosynthetic pathways and photosynthesis activity, 
plant height, leaf lifespan and phenology, specific leaf area, leaf nitrogen and 
phosphorous). 
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     Abilities to map plant traits using RS are constantly improving due to 
technological advancements. Nowadays, RS offers a large spectrum of data with 
different spatial, spectral and temporal resolutions, and image interpretation methods. 
Passive optical imaging spectroradiometers facilitate better mapping of traits related 
to leaf biochemistry and phenology. Multidirectional optical RS and active RS 
systems (laser scanners and radars) recently have gained more attention for their 
ability to describe traits related to the vegetation structure.  
     Classification techniques are common methods used to transfer RS data into 
thematic classes. However, they cannot be applied to all plant categorical traits, 
because not all underlying attributes of these traits show a clear response in RS data. 
For example, mapping of plant growth forms, which is determined by plant structure 
and phenology, cannot be fully resolved by RS, because some categories are 
spectrally too similar to be distinguished. Also individual attributes underlying a 
composed plant flammability trait cannot be resolved using RS, but there are many 
operational fire monitoring schemes that use RS data to assess combustibility of 
entire plant communities. RS of C3 and C4 photosynthetic pathways remains rare, 
but there is an intensive on-going RS research of global plant photosynthesis activity 
using proxies of fraction of absorbed photosynthetic radiation and light use 
efficiency. 
     Quantitative retrieval of continuous plant traits from RS is possible though not 
always straight forward. Plant height trait can be directly derived from laser scanning 
data achieving good accuracies (error of height estimation is usually below 10% of 
the mean canopy value for tall forest canopies, and up to 20% in lower canopies). 
Leaf phenology trait can be related to only four remotely sensed indicators (start, 
end, maximum peak and duration of the vegetation season) that can be retrieved from 
multi-temporal RS data of those canopies that periodically change their foliar 
apparatus. The spatial and temporal accuracy of these indicators is clearly related to 
the type of RS data with a typical spatial resolution ranging from 0.25 to 8 km and 
biweekly acquisition frequency. 
     Biochemical traits, phosphorus and nitrogen, can be retrieved quantitatively from 
optical RS data achieving moderately good accuracies (error of nitrogen estimation is 
around 15% of a mean canopy value, and 25% for phosphorus estimation). Both traits 
can be retrieved using empirical methods relying on a limited set of in-situ trait 
measurements. The reason which prevents them to be retrieved independently from 
in-situ data using physical methods based on radiative transfer modelling is that their 
weak absorption features are often masked by the spectral effects of leaf water and 
canopy structure. Similarly, the same confounding effects negatively influence 
retrievals of specific leaf area, the only biochemical trait from the reviewed key traits 
that can be estimated using physical retrieval methods. Despite this possibility the 
accuracy is highly variable and generally the lowest one from all reviewed 
biochemical traits (estimation error was around 45% of a mean canopy value). In 
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order to remove major inconsistencies in retrievals of leaf biochemical traits 
improved algorithms that effectively suppress the negative influence of water 
absorption (Ramoelo et al., 2011) and canopy structure (Knyazikhin et al., 2012) are 
needed. 
     Despite the fact that the discussion in Chapter 2 was limited to eight key plant 
traits mainly, some general findings irrespective from individual traits can be given. 
Both plant ecology and RS research fields face problems in using clear and 
standardized terminology. Although each research community puts efforts to 
standardize the terminology and improve communication within the field, remaining 
inconsistencies partly prevent successful integration of RS with plant ecology 
research. Another challenge common to both research fields is spatial scaling. The 
pixel size of RS images can vary from less than a meter to several kilometres, which 
is not always compatible with the spatial scale of in-situ trait measurements and trait-
based analysis. Therefore, scaling schemes have to be applied on RS data 
(Malenovský et al., 2007) or in-situ trait measurements (Violle et al., 2007) prior to 
any RS-based analysis of plant traits.  
     The applicability of optical RS methods, however, goes beyond the eight key 
traits discussed in Chapter 2. Several well-established and thoughtfully validated RS-
based plant traits and vegetation properties can support or even extend the current 
collection of key plant traits used in ecology (e.g., leaf chlorophyll and water 
content, leaf area index, fraction of absorbed photosynthetic radiation, and fractional 
vegetation cover). However, at the moment these are not considered key traits by the 
ecology community. 
     Recent developments in RS indicate that multiple trait mapping becomes possible 
when using combined retrieval schemes based on radiative transfer modelling that 
are optimized using spectral, spatial and directional domains simultaneously (Laurent 
et al., 2011). Also combination of data from multiple RS instruments (Asner et al., 
2012; Cartus et al., 2012) is becoming more common and promising for complex 
vegetation studies and multiple trait mapping. 
 
 
2. What is the variability of total-to-projected leaf area ratio of Norway spruce 
needles and what is the implication for remote sensing based estimates of crown 
averaged biochemical properties? 

Plant ecologists recognize leaf area as one of the key plant traits, though it was not 
discussed in Chapter 2 as RS is not able to deliver this leaf trait. RS solutions are 
limited to estimation of leaf area index – a canopy property expressing total leaf area 
within a canopy per unit of land surface. Precise knowledge of total leaf area (LAT) 
is required for vegetation photosynthesis and gas exchange related studies, as it is 
common to express photosynthesis rate or biochemical properties at leaf area basis. 
Moreover, RS methods estimating leaf biochemical traits often rely on in-situ 
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measurements that are usually expressed on leaf area basis too. In-situ measurement 
of LAT is challenging for coniferous species due to their non-flat shape of needles. 
Therefore, the goal of Chapter 3 was to evaluate different laboratory methods to 
estimate LAT of Norway spruce needles, to investigate the variability of the total-to-
projected leaf area ratio (CF) within spruce canopies, and to explore the influence of 
an LAT estimation error with respect to remotely sensed average crown chlorophyll 
content. In order to address these three goals a unique dataset of 270 spruce needle 
samples (from three needle age-classes, three canopy vertical levels and two spruce 
stands of different age and structure) were analyzed. 
     Total leaf area of spruce needles was estimated using six methods based on 
different geometrical models approximating a needle shape – one newly proposed 
and five existing ones. The new complex geometrical model proposed in this study 
provided accurate estimates of LAT (RMSE < 5% of the average total leaf area), but a 
comparable accuracy was achieved using a simpler model. Therefore, the simpler 
parallelepiped model can be considered as more suitable for operational use in eco-
physiology and RS research of leaf biochemistry. Other needle models that suggested 
an elliptic approximation of a needle shape underestimated LAT by up to 60% and 
therefore were not suitable for spruce LAT estimation. 
     High variability in the ratio of total-to-projected leaf area (CF) within spruce 
crowns was detected. Neither the age of the needles nor the age of the forest stand 
influenced the variability in CF significantly. The main source of variability in CF 
originated from the vertical sampling position. The highest CF of about 3.8 (close to 
square shaped needles) was found in the uppermost canopy layer and CF decreased to 
2.5 (close to flat needles) in lower canopy layers. This result has an important 
implication for future sampling designs in spruce canopies; needle samples for LAT 
measurements can be taken irrespective of their age (a mixed sample of several 
needle age classes), but shall be taken from several vertical canopy layers. 
     An example of estimating leaf chlorophyll content (Cab) was taken to evaluate the 
impact of LAT on crown averaged biochemical properties. The LAT estimation 
methods themselves had a significant impact on crown averaged Cab. Furthermore, 
crown averaged Cab normalized to LAT exponentially decreased with steadily 
increasing CF from two to four. Errors in crown Cab associated with biased CF varied 
between 2 and 25 µg cm-2. Considering that the realistic range of crown Cab varies 
between 20 and 100 µg cm-2, the error associated with a biased CF can reach up to 
30% of the expected Cab range.  
     The results of Chapter 3 suggested that more attention is needed for the accurate 
estimation of total leaf area when upscaling leaf level measurements of chlorophyll 
content to the level of entire crowns or canopies. This motivated us to develop a 
sophisticated upscaling scheme, which was applied in Chapter 4, to validate maps of 
chlorophyll content derived from airborne imaging spectroscopy. 
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3. What is the potential use of the continuum removal transformation for quantitative 
mapping of chlorophyll content of Norway spruce crowns using airborne data and 
radiative transfer modelling? 

Continuous spectral data acquired by airborne imaging spectroradiometers provide 
enhanced possibilities to quantify leaf biochemical properties by investigating 
changes in the spectral continuum rather than in individual spectral bands. Therefore, 
the goal of Chapter 4 was to test the continuum removal (CR) transformation, a 
technique which enhances and normalizes spectrally contiguous absorption features, 
for estimation of leaf chlorophyll content (Cab) in Norway spruce crowns. High 
spectral and spatial resolution airborne data allowed precise location of a Cab 
absorption feature in the red part of the electromagnetic spectrum and accurate 
spatial delineation of individual sunlit crowns to strengthen the remotely sensed 
signal. The 3D canopy radiative transfer model DART coupled with the leaf-level 
model PROSPECT was used to simulate a database of canopy reflectance signatures 
in the region of the strongest Cab absorption (between 650 and 720 nm) by altering 
the main model parameters (Cab, leaf area index, canopy cover). This database was 
used to assess the sensitivity of CR spectra to Cab variations and to evaluate 
perturbing effects of canopy structure. 
     Sensitivity analysis of CR spectra to Cab revealed that area integrated under CR 
curve between 650 and 720 nm was exponentially related to Cab and showed 
saturation for Cab > 40 µg cm-2. However, when the area integrated under CR curve 
was normalized to the CR band depth at 670 nm, the relationship to Cab became 
significantly stronger and nearly linear. This result motivated us to formulate a new 
Cab sensitive vegetation index called ‘Area under continuum removed curve 
Normalized to the Chlorophyll absorption Band depth between 650 and 720 nm’ 
(ANCB650-720). 
     Validation against in-situ measured crown Cab and cross-comparison of ANCB650-

720 with four other retrieval methods (artificial neural networks applied on CR spectra 
and three vegetation indices) revealed superior performance of the two CR-based 
methods compared to simple vegetation indices constructed from a few narrow 
bands. Although both CR-based retrieval methods exhibited similar accuracy, the 
ANCB650-720 index is much faster to be implemented than the demanding training of a 
neural network.  
     The error associated with Cab prediction using the ANCB650-720 was similar or 
even lower as compared to other RS studies estimating Cab of coniferous canopies 
using airborne imaging spectroscopy. Although one could object that our CR-based 
index was developed for conifers trees only, the robustness of the method was further 
evaluated using radiative transfer model simulations for broadleaf forest and 
grassland canopies. In both canopies, the predictive power of ANCB650-720 was the 
strongest compared to the other three vegetation indices. Another potential limitation 
of the CR-based method is that it was applied on sunlit crown pixels, which could be 



Synthesis 

117 

indentified thanks to the high spatial resolution of the RS images. However, 
additional analysis using radiative transfer model simulations confirmed that also 
shaded crown pixels convey a similar information content as sunlit pixels and 
therefore one can argue that ANCB650-720 can be applied to a full crown spectrum. 
     The case study presented in Chapter 4 confirmed that the continuum removal 
technique applied to high spectral and spatial airborne imaging spectroscopy data is a 
powerful technique to estimate chlorophyll content in structurally complex forest 
canopies. The newly developed vegetation index based on CR – ANCB650-720 index – 
is easy to implement, sensitive to broad variations in Cab content, independent of leaf 
area index and for higher Cab values also independent of leaf angle distribution 
variations. Its robustness was tested on simulated spectral data and in future it shall 
be expanded to real canopies using real imaging spectroscopy data. 
 
 
4. What is the potential of airborne imaging spectroscopy to map ecosystem 
properties and services in subalpine grasslands in comparison with a plant trait-
based modelling approach? 

The concept of ecosystem services (ES) has become a widely investigated topic, 
because it presents a way to quantify, analyze and manage benefits that humans 
obtain from ecosystems. A challenge in ES mapping is lack of primary data on ES 
and therefore it is common to use proxies such as ecosystem properties (EP), 
environmental variables, land use and land cover maps, which are linked to ES and, 
at the same time, easier to obtain. In Chapter 5, a case study on ES mapping in 
subalpine grasslands using airborne imaging spectroscopy data was presented. RS 
images were used to derive five ecosystem properties (green biomass, litter mass, 
crude protein content, species diversity and soil carbon content) using empirical 
retrieval methods. Agronomic, cultural and total ES supplies of the subalpine 
grasslands were calculated as simple linear combinations of the underlying EP. 
Moreover, the RS approach was compared with the plant trait-based modelling 
approach presented by Lavorel et al. (2011), who estimated the underlying EP using 
a land use map, abiotic factors and plant trait data. 
     The best empirical models for predicting EP from RS images were based on a 
narrow-band NDVI index for green biomass, whereas stepwise linear regression 
models provided the most accurate solution for other EP. The prediction accuracy 
was good, R2 ranged from 0.54 for the green biomass up to 0.73 for the soil carbon 
content model, which was similar to those obtained from the modelling approach. 
The major uncertainties of the RS-based models were related to the in-situ measured 
EP and how well they represented spectral variability and to the vegetation status 
captured by RS images. We found out that about 25% of the image pixels were 
outside the spectral range covered by the calibration dataset, which might introduce 
prediction errors. Probably the strongest factor negatively influencing the quality of 
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the RS empirical models was an asynchronous acquisition of EP data and RS images, 
both in terms of specific year, and especially of timing within the vegetation season. 
In-situ data on EP were collected between 2004 and 2009, which smoothened 
variability among the vegetation seasons. In contrast, RS images captured the actual 
development stage of subalpine grasslands in late summer 2008. 
     Visual comparison of EP and ES contrasted the spatial consistency and continuity 
of the RS approach with the land-use (LU) based pattern of the modelling approach. 
The RS approach was sensitive to fine scale heterogeneity, which could be captured 
thanks to the high spatial resolution of the RS images. Therefore, the variability of 
RS-based EP within individual LU classes was up to ten times higher than the 
variability from the modelling approach, where plant traits and abiotic variables 
incorporated into EP models were modelled themselves based on LU. Quantitative 
comparison using a fuzzy set theory indicated that the average similarity between the 
two approaches varied between 16 and 22%. The average similarity for the 
agronomic service was around 20%, but for the cultural and total ES it was below 
10%. The spatial agreement between the two approaches significantly increased 
when the level of spatial aggregation increased from 20 m to 100 m. This suggested 
that the RS approach can detect finer spatial heterogeneity, which cannot be captured 
by the modelling approach.  
     In the modelling approach, due to the land use-based model structure, alpine 
grazed meadows were identified as hot spots, whereas mown-grazed permanent 
meadows were identified completely as cold spots of the total ES supply. The RS-
based hot/cold spots were rather scattered patches within the study area. RS-based 
hot spots appeared to be a small subset of those identified by the modelling approach. 
However, it is not true for the RS-based cold spots, which corresponded to pixels 
with low vegetation signal (i.e., scattered pixels around roads and terrace banks), and 
exhibited small spatial overlap with the modelling approach. 
    The case study presented in Chapter 5 tested the potential of airborne imaging 
spectroscopy for spatial assessment of ecosystem properties as proxies for ecosystem 
services in subalpine grasslands and compared it with the plant trait-based modelling 
approach. Without any objective reference, it is hard to decide which of the two 
approaches is better, as both are an imperfect assessment of reality and both have 
their advantages and disadvantages. A strong point of the RS approach is the fine 
spatial resolution, which detected larger variability in vegetation properties driven by 
local topography and microclimatic conditions. An advantage of the modelling 
approach is that it is more or less independent from temporal vegetation changes as 
compared to the RS approach, which captures a specific development stage at one 
snapshot. Nevertheless, the RS approach can be extended to multi-temporal RS 
observations, as well as to other spatial resolutions. The RS approach allowed 
skipping one important step of the modelling approach, i.e. modelling of plant trait 
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and abiotic inputs of the EP models, which reduced the number of required in-situ 
measurements. 
     The applicability of the RS approach was limited only to a small study area and 
one vegetation type – subalpine grasslands – and therefore shall be expanded to more 
diverse landscapes. Underlying spatial data are most important for spatial assessment 
of EP and thereby ES; therefore, an approach that combines RS images, land use and 
elevation maps with in-situ EP measurements would probably be the most optimal 
compromise for accurate spatial assessment of multiple ES supplied by subalpine 
grasslands.  

6.2 General conclusions 
The underling base line of this research was to investigate potentials of airborne 
imaging spectroscopy for ecologically driven applications in structurally and 
functionally complex canopies. The main conclusions from the work presented in this 
thesis are as follows: 
 
• Imaging spectroscopy supports better retrievals of plant traits related to leaf 

biochemistry, photosynthesis and phenology rather than traits related to 
vegetations structure. Major challenges in RS of plant traits are, first, to 
effectively suppress the negative influence of water absorption and canopy 
structure, which would facilitate accurate retrievals of biochemical and 
photosynthesis-related traits. Secondly, a challenge still is to match spatial scales 
of in-situ trait measurements and RS observations. Therefore, more coherent 
experiments, where in-situ measurements on plant traits and RS data at different 
spatial scales are acquired simultaneously, are needed. 

 
• The main source of variability in total-to-projected leaf area ratio in spruce 

canopies originated from the vertical sampling position and not from needle age 
or forest stand age. Total leaf area estimation influenced crown averaged 
chlorophyll content. We found that an error associated with biased estimates of 
total leaf area can reach up to 30% of the expected chlorophyll range commonly 
found in forest canopies that can negatively influence validation of RS-based 
chlorophyll maps. 

 
• Retrieval of spruce chlorophyll content based on a continuum removal technique 

outperformed commonly used vegetation indices. A newly designed vegetation 
index– ANCB650-720– that builds on continuum removal for chlorophyll content 
prediction had a similar accuracy as an artificial neural network based on 
continuum removed bands, but the index was a lot easier to implement. 
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• Airborne imaging spectroscopy data proved to be partly successful in estimation 
of ecosystem properties that underline supply of ecosystem services in subalpine 
grasslands. Spatial comparison of the RS approach with plant trait-based 
modelling revealed relatively low spatial agreement. The RS approach showed 
more variability in ES driven by local topography and microclimatic conditions, 
which could not be detected by the trait-based modelling approach. 

6.3 Reflection and outlook 
This research addressed several specific problems, which contributed to improve our 
knowledge of using imaging spectroscopy in structurally and functionally complex 
canopies such as coniferous forest and subalpine grasslands. Using high resolution 
imaging spectroscopy, working at three hierarchical levels and with two types of 
contrasting ecosystems opens the door into the largest room ever – a room for 
improvement. Each chapter itself already suggested the main bottlenecks and future 
research directions. But instead of listing and discussing them all, we would like to 
narrow it down to only two generic topics: the interpretation of high resolution 
imaging spectroscopy data and the role of in-situ measurements of plant traits and 
canopy properties in RS of vegetation.  
 
Interpretation of high resolution airborne imaging spectroscopy 

In this thesis, airborne imaging spectroscopy data of high spectral as well as spatial 
resolutions were analysed. The spectral domain was interpreted in two ways: i) 
investigating the shape of a spectral signature using the continuum removal 
transformation (Chapter 4) and ii) investigating the large number of individual bands 
using statistical regression methods (Chapter 5). Although the statistical methods are 
widely used in RS research, the main bottleneck remains a high degree of redundancy 
and colinearity among individual bands. To overcome large redundancy, imaging 
spectroscopy data are often transformed into several uncorrelated bands, but this 
completely destroys the information content originating from the spectral shape. 
Results of Chapter 4 indicated that a vegetation index constructed from the shape of 
the continuum removed spectrum between 650 and 720 nm estimated spruce 
chlorophyll content with higher accuracy than traditional indices constructed from a 
few isolated narrow spectral bands. Therefore, I think that future studies shall 
explore more the shape of contiguous spectral signatures in relation to other major 
leaf biochemical traits such as water and nitrogen content or specific leaf area, rather 
than focusing on individual spectral bands.  
     The very high spatial resolution of airborne images analysed in this thesis was 
taken as an advantage to eliminate unwanted objects from the analysis and strengthen 
the signal originating from the vegetation canopy of interest. However, to some 
extent it can be perceived as a disadvantage too, because the spectral analysis might 
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become oversensitive to subtle spatial variations determined mainly by micro-
topology and soil variability (as was likely the case in the grassland analysis in 
Chapter 5) or by mutual shadowing among individuals (as was the case in the spruce 
analysis in Chapter 4 and therefore the signal from sunlit and shaded crown parts was 
analysed separately). 
     The main asset of airborne imaging spectroscopy is that its high spatial and 
spectral resolution can be easily integrated to coarser resolutions and therefore used 
to study how relationships between vegetation properties and spectral data are 
maintained across different spatial, as well as, spectral scales. 
 
Role of in-situ measurements in RS 

Although RS intends to minimize efforts to map plant traits and ecosystem properties 
in-situ, the role of in-situ measurements in applied RS research is currently 
irreplaceable. Primary use of in-situ measurements of plant traits and vegetation 
properties as “ground truth” reference in RS is two-fold. They are either used to 
calibrate RS images (e.g., Chapter 5) or to validate the final RS-based maps of a 
given trait or property (e.g., Chapter 4). In this thesis, in-situ measurements were 
used both ways and we mainly struggled with a too low number of field observations 
(n < 20). The low number of observations causes that, first, the variability in field 
data is usually not fully captured. Crown averaged chlorophyll content of immature 
Norway spruce trees from Chapter 4 varied only between 35 and 45 μg cm-2, which is 
a relatively narrow range and most likely did not fully represent the entire variability 
in a given spruce plantation. Secondly, the spectral variability captured by RS images 
cannot be fully explained by a limited dataset of in-situ measurements as 
demonstrated in Chapter 5, where in-situ data on ecosystem properties well 
represented about 75% of the image spectral variability.  
     Additionally, we were often wondering, how variability of leaf level traits within 
an individual (further illustrated on a single spruce tree) influences our quantification 
of in-situ “ground truth” data. Results of Chapter 3 indicated that large variability in 
leaf level traits such as chlorophyll content or specific leaf area exists inside 
individual spruce crowns. Especially in forest canopies, about 25% of plant trait 
variability can originate from within individual trees (Messier et al., 2010) and that is 
mainly due to the vertical light distribution inside canopies (Niinemets, 2010). 
     Following my research interest in spruce canopies, a preliminary test to 
investigate the influence of within-crown variability and upscaling schemes (from 
leaf to crown level) on crown averaged “ground truth” values of chlorophyll content 
was performed. The first results indicated that crown averages calculated from leaves 
sampled from the uppermost canopy layer were lower and exhibited the lowest 
agreement with estimates of chlorophyll content as presented in Chapter 4 in 
comparison to the case that leaf samples from the lower, shaded canopy layers were 
included (Homolová and Lukeš, 2011, unpublished data; Lukeš et al., 2009). 
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Particularly in coniferous forests, lower canopy layers and a forest floor become 
more apparent in nadir looking RS images due to the greater aggregation of foliage 
and increased scattering effects inside shoots as compared to broadleaf forests 
(Eriksson et al., 2006; Rautiainen and Stenberg, 2005). 
     Therefore, we think that more attention should be devoted to in-situ 
measurements of leaf traits in coniferous canopies and leaf sampling should not be 
restricted to the uppermost, sunlit canopy layer, as is often the case in RS studies 
(Huber et al., 2008; Moorthy et al., 2008). The contribution of lower canopy levels as 
well as a large within-crown variability should be better investigated and considered 
when measuring “ground truth” reference data. Especially 3D canopy radiative 
transfer models (Gastellu-Etchegorry et al., 2004) can be very helpful to investigate 
the importance of lower canopy layers and quantify their contribution to the remotely 
sensed signal (Eriksson et al., 2006). 
     Future RS studies of vegetation traits and properties should put more effort into 
their standardized in-situ measurements. They should make use of standardized in-
situ measurement protocols that already exist for a set of key plant traits (Cornelissen 
et al., 2003; Pérez-Harguindeguy et al., 2013). However, standardized upscaling 
schemes to entire individuals or entire canopies, which are extremely important for 
example in RS studies of forest canopies, are not fully developed and established yet.  
 
The literature review (Chapter 2) and the research presented in Chapter 5 indicate the 
potential future RS research direction towards a spatial ecology, i.e. spatially explicit 
mapping of plant traits, ecosystem properties and ecosystem services. Especially the 
work in Chapter 5 was motivated by a steadily increasing demand on the spatially 
explicit assessment of multiple landscape ecosystem services. We showed that some 
of the important ecosystem services can be mapped by linking them to ecosystem 
properties derived from RS data. A key feature of this study was combining in-situ 
measurements with remotely sensed spectral information, which provided insight into 
the spatial distribution of ecosystem properties and services. Although this case study 
was limited to a small area and only to one type of ecosystem (subalpine grasslands) 
it holds promise that it can be extended to larger and more diverse landscapes.  
    High quality RS data are certainly essential building elements for spatial ecology. 
In order to address the effects of climate and land use changes on biodiversity and 
ecosystems, their properties and services, the integration of in-situ and RS data will 
be ultimately required. A good example of such a research effort is the National 
Ecological Observatory Network (NEON) in the US (Kampe et al., 2010; Schimel, 
2011). We hope that this interdisciplinary and integrative research efforts will slowly 
cross the national borders and spread worldwide. Also steadily improving RS 
technology becomes more available and therefore more existing ecological test sites 
will be able to facilitate proximal and remotely sensed spectral measurements.  
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     Integration of in-situ and RS data is currently facing a major challenge: scaling. 
First, researchers need to fully understand the mechanism how leaf scattering 
properties with the interplay of canopy structure influence the canopy reflectance. 
This issue is for example addressed by the theory of spectral invariants (Knyazikhin 
et al., 2011; Rautiainen and Stenberg, 2005), which gains more attention within the 
RS community as recent studies tested it with in-situ measurements (Lukeš et al., 
2011; Rautiainen et al., 2012). Solving the first scaling challenge will help to address 
another challenge: how relationships between plant traits and reflectance properties 
are maintained across spatial scales (from the level of leaves to entire canopies and 
ecosystems) and within time (during a vegetation season). 
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Appendices 
 
 

Appendix A1 Literature review of remote sensing of leaf biochemical traits 

Relevant peer-reviewed scientific articles presenting the estimation of important leaf 
functional biochemical traits (i.e. nitrogen and phosphorus concentration, leaf mass 
per area) using optical remote sensing (RS) methods were collected from Scopus 
using an appropriate set of keywords (e.g. “nitrogen content” and “remote sensing”). 
The reviewed papers are summarized in Table A1.1. We limit our search only to 
recent articles published since 2000, including some important studies published in 
the 1990’s. We included a paper only if it was cited more than five times before 2009 
(not applied to articles published since 2009). From each article we extracted the 
following main features of the study: i) leaf functional trait, ii) vegetation type 
(broadleaf, conifers, crops, grasslands, mixed type), iii) trait units, iv) leaf or canopy 
scale of trait and RS measurements (leaf trait measurements of individual species are 
upscaled to the canopy level by calculating community weighted trait mean using 
species relative abundance; leaf RS measurements are acquired from individual 
leaves using laboratory or in-situ spectrometers, whereas canopy RS measurements 
are acquired by airborne or satellite spectrometers), v) RS spectrometer type 
(laboratory, field, airborne, spaceborne), vi) applied RS retrieval method, vii) 
coefficient of determination (R2) reported for validation, viii) R2 reported for 
calibration (i.e. building predictive relation between a trait and RS data), ix) relative 
root mean square error (RMSE) and x) the source (table or figure) from where the R2 
or RMSE was extracted. For those studies presenting results without the statistical 
accuracy indicators (R2 and RMSE), we extracted the input data from figures and 
calculated the statistical results of the published relationship ourselves whenever 
possible. The absolute RMSE was converted to relative units by normalizing it to the 
mean observed trait value. Accuracy indicators (i.e. R2 and RMSE) of remote sensing 
methods for the estimation of nitrogen, phosphorus concentration and content and 
leaf mass per area in different vegetation types are presented at Figure A1.1.  
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Table A1.1 Summary of important features extracted from articles presenting RS methods to estimate nitrogen 
(N), phosphorus (P) content or concentration and leaf mass per area (LMA) or specific leaf area (SLA). (Legend: 
Trait/Spect. Scales (L – leaf, C – canopy defines at which organization level trait / spectral data were measured); 
Sensor type (cf. original papers for exact sensors’ acronyms, L – laboratory, F – field, A – airborne, and S – 
satellite); RS methods (R – reflectance, CR – continuum removal, FD – first derivative, LR – linear regression, 
MLR – multiple linear regression, SLR – stepwise linear regression, PLSR – partial least square regression, VI – 
vegetation index); R2 val. and cal. (coefficient of determination for validation and calibration, n.a. – data not 
available), RMSE % (relative root mean square error), figure # / table # is the number in the original publication). 

Trait Veg. 
 type 

Trait 
units 

Trait / 
Spect. 
scales 

Sensor 
type RS methods R2 

val. 
R2 
cal. 

RMSE 
% 

Fig. # / 
Tab. # Reference 

N Broadlf. % L / C AVIRIS 
(A) 

Radiative 
transfer + 
empirical 

0.91 n.a. 13.8 2a / - (Asner and 
Vitousek, 2005) 

N Crops mg g-1 L / C CASI (A) LR with 
R@550nm 

n.a. 0.78 n.a. eq. 10 (Boegh et al., 
2002) 

N Mixed % L / L NIRSys 
6500 (L) 

PLSR of 
log(1/R) 

0.87 0.97 25.8 2a,3a / - (Bolster et al., 
1996) 

N Crops mg g-1 L / C CASI (A) LR - VI 
(DCNI) 

0.51 n.a. 15.7 sec.3.5.2 (Chen et al., 
2010b) 

N Crops mg g-1 L / C FieldSpec 
(F) 

LR - VI 
(DCNI) 

0.62 0.64 13.7 fig.7a / 
sec.3.5.1 

(Chen et al., 
2010b) 

N Crops % L / L GER 3700 
(L) 

LR with red 
edge 

n.a. 0.86 n.a. 6e / - (Cho and 
Skidmore, 
2006) 

N Grassl. % L / L GER 3700 
(L) 

LR with red 
edge 

n.a. 0.47 n.a. 6e / - (Cho and 
Skidmore, 
2006) 

N Grassl. % L / C GER 3700 
(F) 

LR with red 
edge 

n.a. 0.82 n.a. 6e / - (Cho and 
Skidmore, 
2006) 

N Grassl. g m-2 C/C FieldSpec 
(F) 

LR – VI 0.77 n.a. 23.8 5,6 / v (Clevers and 
Kooistra, 2012) 

N Crops g m-2 C/C CropScan 
(F) 

LR – VI 0.85 n.a. 42.3 8,9 / vi (Clevers and 
Kooistra, 2012) 

N Broadlf. % C / C Hyperion 
(S) 

PLSR of 
log(1/R) 

0.64 n.a. 13.1 3 / 4 (Coops et al., 
2003) 

N Crops % L / C FieldSpec 
(F) 

LR – VI 
(MCARI/ 
MTVI2) 

n.a. 0.48 n.a. - / 3 (Eitel et al., 
2007) 

N Crops % L / C FieldSpec 
(F) 

LR with red 
edge 

0.75 n.a. 17.8 5a / - (Feng et al., 
2008) 

N Crops g m-2 L / C FieldSpec 
(F) 

LR with 
FD@742nm 

0.87 n.a. 17.4 6a / - (Feng et al., 
2008) 

N Mixed % L / C GER 3700 
(F) 

LR – VI 
(NDVI-based) 

0.72 n.a. n.a. - / 2 (Ferwerda et al., 
2005) 

N Mixed % L / L GER 3700 
(L) 

SLR of FD 0.86 n.a. n.a. - / 4 (Ferwerda and 
Skidmore, 
2007) 
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Table A1.1 Continues 

Trait Veg. 
 type 

Trait 
units 

Trait / 
Spect. 
scales 

Sensor 
type RS methods R2 

val. 
R2 
cal. 

RMSE 
% 

Fig. # / 
Tab. # Reference 

N Crops % L / C SD2000 
(F)  

LR – VI  
(NDVI-based) 

n.a. 0.56 n.a. 4e / 3 (Hansen and 
Schjoerring, 
2003) 

N Crops g m-2 C / C SD2000 
(F)  

LR – VI 
(NDVI-based) 

n.a. 0.69 n.a. 4f / 3 (Hansen and 
Schjoerring, 
2003) 

N Conifer. % L / C HyMap 
(A) 

CR 0.45 n.a. 8.5 7b / 3 (Huber et al., 
2008) 

N Broadlf. % L / C HyMap 
(A) 

CR 0.29 n.a. 9.7 - / 3 (Huber et al., 
2008) 

N Conifer. kg ha-1 C / C AVIRIS 
(A) 

SLR of FD 0.9 n.a. 24.8 5c / - (Johnson et al., 
1994) 

N Conifer. mg  
cm-2 

L / C AVIRIS 
(A) 

SLR of FD 0.85 n.a. 20.0 6a / - (Johnson et al., 
1994) 

N Crops g m-2 C / C CropScan 
TM (F) 

LR n.a. 0.82 n.a. 5 / - (Jongschaap 
and Booij, 
2004) 

N Grassl. % L / C CAO (A) Neural 
networks 

0.41 0.53 13.2 5 / 2 (Knox et al., 
2011) 

N Mixed % C / C AVIRIS 
(A) 

MLR of FD 0.87 n.a. 8.7 4a / 7 (Martin and 
Aber, 1997) 

N Mixed % C / C AVIRIS 
(A) 

PLSR 0.83 n.a. 13.1 - / 2 
sec3.2 

(Martin et al., 
2008) 

N Mixed % C / C Hyperion 
(S) 

PLSR 0.82 n.a. 17.0 - / 2 
sec3.2 

(Martin et al., 
2008) 

N Grassl. mg g-1 L / C GER 3700 
(F) 

LR with red 
edge 

0.89 n.a. n.a. - / 3 (Mutanga and 
Skidmore, 
2007) 

N Grassl. % L / C GER 3700 
(F) 

SLR of CR 0.52 n.a. 24.4 4 / - (Mutanga et al., 
2004) 

N Mixed % C / C AVIRIS 
(A) 

PLSR of FD 
of log(1/R) 

n.a. 0.79 n.a. 2a / - (Ollinger et al., 
2008) 

N Mixed % C / C MODIS 
(S) 

PLSR of FD 
of log(1/R) 

n.a. 0.88 n.a. 2b / - (Ollinger et al., 
2008) 

N Mixed % C / C AVIRIS 
(A) 

PLSR of FD 
of log(1/R) 

0.79 0.83 11.9 6b / 2 (Ollinger and 
Smith, 2005) 

N Mixed % C / C Hyperion 
(S) 

PLSR of FD 
of log(1/R) 

0.60 0.82 15.6 6a / 2 (Ollinger and 
Smith, 2005) 

N Crops g m-2 C / C AVIS (A) LR – VI 
(CAI) 

n.a. 0.77 n.a. 6b / - (Oppelt and 
Mauser, 2004) 

N Crops kg ha-1 C / C IKONOS 
(S) 

LR - VI 
(NDVI) 

n.a. 0.70 n.a. - / 6 (Reyniers and 
Vrindts, 2006) 
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Table A1.1 Continues 

Trait Veg. 
 type 

Trait 
units 

Trait / 
Spect. 
scales 

Sensor 
type RS methods R2 

val. 
R2 
cal. 

RMSE 
% 

Fig. # / 
Tab. # Reference 

N Crops kg ha-1 C / C CropScan 
TM (F)  

LR - VI 
(NDVI) 

n.a. 0.75 n.a. - / 7 (Reyniers and 
Vrindts, 2006) 

N Mixed % L / C AVIRIS 
(A) 

LR - VI 
(NDNI) 

n.a. 0.34 n.a. 2a / - (Serrano et al., 
2002) 

N Mixed % C / C AVIRIS 
(A) 

SLR of FD 0.75 n.a. 34.4 1a / 3 (Serrano et al., 
2002) 

N Conifer. % C / C HyMap 
(A) 

SLR of CR 0.56 n.a. 4.9 2d / 4 (Schlerf et al., 
2010) 

N Conifer. % L / L FieldSpec 
(L) 

SLR of CR 0.47 n.a. 7.0 2b / 3 (Schlerf et al., 
2010) 

N Mixed % C / C AVIRIS 
(A) 

PLSR of FD 
of log(1/R) 

0.79 0.83 10.4 - / 2 (Smith et al., 
2003) 

N Mixed % C / C Hyperion 
(S) 

PLSR of FD 
of log(1/R) 

0.6 0.82 15.7 - / 2 (Smith et al., 
2003) 

N Mixed % C / C AVIRIS 
(A) 

PLSR of FD 
of log(1/R) 

0.82 n.a. 13.4 - / 3 (Smith et al., 
2002) 

N Broadlf. % C / C AVIRIS 
(A) 

PLSR of FD 0.86 n.a. 3.1 2b / - (Townsend et 
al., 2003) 

N Broadlf. % C / C Hyperion 
(S) 

PLSR of FD 0.83 n.a. 3.6 2a / - (Townsend et 
al., 2003) 

N Broadlf. mg g-1 L / L NIRSystem 
6500 (L) 

SLR of 
log(1/R) 

0.85 n.a. 4.6 - / 2 (Yoder and 
Pettigrew-
Crosby, 1995) 

N Broadlf. g m-2 C / C GER (F) SLR of log 
(1/R) 

0.63 n.a. n.a. - / 3 (Yoder and 
Pettigrew-
Crosby, 1995) 

N Conifer. % L / C AVIRIS 
(A) 

SLR 0.55 n.a. 13.9 7a / - (Zagolski et al., 
1996) 

P Mixed % L / L GER 3700 
(L) 

SLR of FD 0.51 n.a. n.a. - / 4 (Ferwerda and 
Skidmore, 
2007) 

P Grassl. % L / C CAO (A) Neural 
networks 

0.79 0.57 17.6 5 / 2 (Knox et al., 
2011) 

P Grassl. % L / C HyMap 
(A) 

Neural 
networks 

0.63 n.a. 28.0 3 / 4 (Mutanga and 
Kumar, 2007) 

P Grassl. % L / C GER 3700 
(F) 

SLR of CR 0.70 n.a. 11.0 4 / - (Mutanga et al., 
2004) 

P Crops % L / C  FieldSpec 
(F) 

LR - VI  
(NDVI-based) 

0.30 n.a. 23.4 - / 4 (Pimstein et al., 
2011) 

P Crops g m-2 C / C  FieldSpec 
(F) 

LR - VI 
(NDVI-based) 

0.61 n.a. 36.6 4bd / 5 (Pimstein et al., 
2011) 
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Table A1.1 Continues 

Trait Veg. 
 type 

Trait 
units 

Trait / 
Spect. 
scales 

Sensor 
type RS methods R2 

val. 
R2 
cal. 

RMSE 
% 

Fig. # / 
Tab. # Reference 

P Crops g m-2 C / C  FieldSpec 
(F) 

PLSR of FD 0.81 n.a. 25.6 5d / 6 (Pimstein et al., 
2011) 

P Crops % L / C  FieldSpec 
(F) 

PLSR of FD 0.46 n.a. 18.6 5b / 6 (Pimstein et al., 
2011) 

P Broadlf. % L / C AVIRIS 
(A) 

Radiative 
transfer & 
empirical 

n.a n.a. n.a. 3b / - (Porder et al., 
2005) 

P Grassl. % C / C FieldSpec 
(F) 

SLR of water-
removed R 

0.64 n.a. 17.6 - / 1 (Ramoelo et al., 
2011) 

LMA Mixed g cm-2 L / L Perkin-
Elmer (L) 

PROSPECT 
inver. 

n.a. n.a. 28.0 - / 2 (Baret and 
Fourty, 1997) 

LMA Mixed g cm-2 L / L Varian 
Cary 17 
DI (L)  

PROSPECT 
inver. 

0.48 n.a. 42.1 6 / 2 (Baret and 
Fourty, 1997) 

LMA Broadlf. g cm-2 L / L FieldSpec 
(L) 

PROSPECT 
inver. 

0.01 n.a. n.a. 4b / - (Colombo et al., 
2008) 

LMA Broadlf. g cm-2 L / C MIVIS 
(A) 

PROSAIL 
inver. 

0.00 n.a. 23.9 8c / - (Colombo et al., 
2008) 

LMA Mixed g cm-2 L / L Perkin-
Elmer (L) 

 MLR 0.84 n.a. 17.0 6 / - (Fourty and 
Baret, 1998) 

LMA Broadlf. g m-2 L / L FieldSpec 
(L) 

LR – VI 
(NDVI-based) 

n.a. n.a. 47.1 5a / 4 (le Maire et al., 
2008) 

LMA Broadlf. g m-2 L / L FieldSpec 
(L) 

LR – VI 
(NDVI-based) 

n.a. n.a. 28.0 5b,c / 4 (le Maire et al., 
2008) 

LMA Broadlf. g m-2 C / C FieldSpec 
(F), 
Hyperion 
(S) 

LR – VI 
(NDVI-
based)) 

n.a. n.a. 11.8 7 / 5 (le Maire et al., 
2008) 

SLA Broadlf. m2  
 kg-1 

C / C Landsat 
TM (S) 

LR - VI 
(red/nir)  

n.a. 0.91 n.a. 5a / 9 (Lymburner et 
al., 2000) 

SLA Broadlf. m2  
 kg-1 

C / C Landsa 
tTM (S) 

LR - VI 
(SLAVI)  

n.a. 0.84 n.a. 5c / 9 (Lymburner et 
al., 2000) 

LMA Mixed g cm-2 L / L Perkin-
Elmer (L) 

PROSPECT 
inver. 

0.38 n.a. n.a. 2a / - (Riaño et al., 
2005) 

LMA Mixed g cm-2 C / C GER 2600 
(F) 

PROSPECT-
Lillesaeter 
inver. 

0.12 n.a. n.a. 5a / - (Riaño et al., 
2005) 

LMA Conifer. g cm-2 L / C DAIS 
7915 (A) 

PROSPECT-
GeoSAIL 
inver. 

0.15 n.a. 22.2 3d / - (Schaepman et 
al., 2004) 

LMA Conifer. g m-2 
 *LAI 

C / C DAIS 
7915 (A) 

PROSPECT-
GeoSAIL 
inver. 

0.79 n.a. 30.6 3f / - (Schaepman et 
al., 2004) 
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Table A1.1 Continues 

Trait Veg. 
 type 

Trait 
units 

Trait / 
Spect. 
scales 

Sensor 
type RS methods R2 

val. 
R2 
cal. 

RMSE 
% 

Fig. # / 
Tab. # Reference 

LMA Crops g cm-2 

 *LAI 
C / C HyMap 

(A) 
PROSAIL 
inver. 

0.86 n.a. 144.8 4d / 4 (Vohland et al., 
2010) 

LMA Crops g cm-2 

 *LAI 
C / C HyMap 

(A) 
PROSAIL 
inver. 

0.72 n.a. 134.5 4d / 4 (Vohland et al., 
2010) 

LMA Crops g cm-2  
 *LAI 

C / C HyMap 
(A) 

PROSAIL 
inver. 

0.85 n.a. 69.0 4d / 4 (Vohland et al., 
2010) 

LMA Crops g cm-2 L / C HyMap 
(A) 

PROSAIL 
inver. 

0.10 n.a. 38.5 - / 7 (Vohland et al., 
2010) 

LMA Crops g cm-2 L / C HyMap 
(A) 

PROSAIL 
inver. 

0.25 n.a. 69.2 - / 7 (Vohland et al., 
2010) 

LMA Crops g cm-2 L / C HyMap 
(A) 

PROSAIL 
inver. 

0.72 n.a. 51.3 - / 7 (Vohland et al., 
2010) 

LMA Mixed g cm-2 L / L FieldSpec 
(L) 

LR – VI 
(NDVI-based) 

0.68 0.64 n.a. 5 / 2 (Wang et al., 
2011) 
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Figure A1.1 Performance of remote sensing methods for the estimation of nitrogen, phosphorus concentration and 
content and leaf mass per area in different vegetation types evaluated by using the coefficient of determination R2 
(a) and relative root mean square error RMSE (b). (Legend: Central line in a box is median, box height is the 
interquartile range (i.e. 50% of the data) and whiskers represent minimum and maximum unless the observed 
values exceed 1.5 of the interquartile range in that case they are marked as outliers (crosses). Number (in format of 
x/y) above each box indicates number of reported accuracy indicators (x) and corresponding number of scientific 
articles (y) they were extracted from.). 
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Appendix A2 Relationship between leaf chlorophyll and nitrogen content in montane 
grass species. 

Leaf samples of 27 plant species growing at two study sites located in the area of Col 
de Lautaret, in the central French Alps (within 5 km from the Joseph Fourier alpine 
station, 45°02’09”N, 06°24’04”E) were collected during the vegetation season of 
2008. The first test site is located on the south facing slopes above the village Villar-
d’Arène (1800 – 2100 m a.s.l.). A detailed description of this site, which is affected 
by a long history of agricultural and pastoral land use, is given in Quétier et al. 
(2007a). The second test site is located in a valley between Lautaret and Galibier 
Pass (2000 – 2800 m a.s.l.). The prevailing vegetation cover is mosaic of bare rocks 
and alpine meadow species.  
     Leaf trait data of 27 dominant subalpine and alpine species, i.e. specific leaf area, 
leaf chlorophyll and nitrogen content, were measured in July 2008. Well developed 
individuals that were growing under sun exposed conditions, were collected from 
three locations along the altitude gradient at each study site. Depending on species 
occurrence, we collected 5 to 20 samples per species. Specific leaf area (SLA) was 
calculated as one-sided fresh leaf area per unit dry mass (cm2 g-1). Leaf chlorophyll a 
and b were determined spectrophotometrically from an extract of grinded leaves in 
ethanol according to Wellburn (1994) following methods proposed by Porra, et al. 
(1989). Leaf nitrogen was obtained from dried and grinded leaves samples of 3 –
 5 mg, which were analysed with a FlashEA 1112 elemental analyser (Thermo Fisher 
Scientific Inc., Milan, Italy). Both, leaf total chlorophyll and nitrogen per unit dry 
mass were multiplied by SLA to obtain final leaf chlorophyll (µg cm-2) and nitrogen 
(mg cm-2) content. Correlation coefficients and linear relationships established 
between leaf chlorophyll and nitrogen content of 27 subalpine and alpine species is 
presented at Figure A2.1. 
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Figure A2.1 Relationship between leaf chlorophyll (Cab [µg cm-2]) and nitrogen (N [mg cm-2]) content for 27 
dominant subalpine and alpine species. For each relationship we report Pearson’s correlation coefficient, the 
superscript “ns” indicates that the correlation is not significant (p ≤ 0.1). 
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Appendix A3 Chlorophyll sensitivity of ANCB650-720 and other three optical indices in 
the case of broadleaf canopies 

To compare the Cab sensitivity of the newly proposed ANCB650–720 and three 
previously published optical indices also in a case of broad-leaf plants, we simulated 
a top-of-the-canopy bi-directional reflectance factor (BRF) of two structurally 
different broadleaf canopies: i) a homogeneous grassland (scenario SC1) and ii) a 
heterogeneous deciduous forest (scenario SC2). The simulations were performed 
using the radiative transfer models PROSPECT-4 (Feret et al., 2008) and DART 
(Gastellu-Etchegorry et al., 2004). The sun-sensor geometry of the broadleaf 
simulations was kept as for the Norway spruce simulations, i.e. sun zenith angle 
equal to 47.8° and sun azimuth angle equal to 183.4°. Only the canopy reflectance 
observed from nadir was considered in this sensitivity test. We simulated canopy 
BRF at 11 discrete wavelengths corresponding to the AISA Eagle spectral bands with 
the following central wavelengths: 551, 652, 661, 670, 680, 689, 708, 717, 745, and 
802 nm (full width half maximum of 10 nm).  
     The optical properties of the soil background and woody materials were measured 
during the field campaign at Bílý Kříž test site in the ASD integrating sphere coupled 
with the ASD FieldSpec PRO spectroradiometer (ASD, Inc., USA); their spectral 
signatures are shown in Figure A3.1. The leaf optical properties were simulated with 
the PROSPECT model (version 4). The input parameters are summarized in 
Table A3.1. The variable of interest Cab was kept free, ranging between 10 and 
85 μg cm−2 increasing with a step of 15 μg cm−2. In total, 216 different combinations 
of structurally simple 1-D homogeneous turbid medium of grassland canopy were 
simulated within scenario SC1 by varying the leaf chlorophyll content (Cab), leaf area 
index (LAI) and leaf angle distribution (LAD). Scenario SC2, representing a 
structurally heterogeneous 3-D canopy of a mixed deciduous forest, was constructed 
from two horizontal leaf layers: i) the understory layer modeled as small spherical 
bushes and ii) the overstory layer modeled as ellipsoidal crowns with woody trunks. 
We executed 108 different canopy realizations of SC2 by varying the input 
parameters Cab, LAI and canopy cover. An overview of fixed and varying input pa-
rameters for both scenarios is provided in Table A3.1. All four chlorophyll sensitive 
optical indices (ANCB650–720, ND925&710, SR750/710 and TCARI/OSAVI) were 
computed from the simulated canopy BRF (in case of SC2 only from sunlit crown 
pixels) and plotted against Cab to investigate their relationship. 
     The dependency of AUC650–720 and CBD670 on Cab is for both scenarios very 
similar to Norway spruce crowns (Figures 4.5a and b) and also empirical relations 
between the indices and Cab are statistically significant (Figure A3.2 and A3.3). 
However, a large variability in computed values of ND925&710 and SR750/710 is seen in 
the case of SC1. Since this variability is not observed for SC2, it is logically caused 
by six different leaf angle distributions. ANCB650–720 and TCARI/OSAVI are less 
influenced by the changing leaf angle distribution, varying mainly for Cab lower than 
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40 μg cm−2. For both scenarios, ANCB650–720 showed the strongest Cab predictive 
power (R2 = 0.95 and 0.99, p < 0.01 and 0.001) described by a linear function. 
However, ANCB650-720 predictions for Cab values bellow 20 µg cm-2 are for both 
broadleaf canopies less reliable than those of Norway spruce crowns (Figures A3.2c 
and A3.3c). 
 
 

  

Table A3.1 Key input parameters of the PROSPECT-DART radiative transfer simulations conducted for 
sensitivity analyses of chlorophyll estimating indices for two broadleaf canopies: grassland (SC1) and deciduous 
forest (SC2). (NA ~ not applicable). 

Parameters Units SC1 (grassland) SC2 (deciduous forest) 
   Bushes Trees 
Leaf level (PROSPECT) 
   Chlorophyll content [µg cm-2 ] 10, 25, 40, 55, 70, 85 10, 25, 40, 55, 70, 85 
   Water content [g cm-2 ] 0.0175 0.0199 0.0199 
   Leaf mass per area [g cm-2 ] 0.0084 0.0043 0.0066 
   Structural parameter N [-] 1.75 1.83 2.66 
Canopy level (DART) 
   Canopy height [m] 0.5 ± 0.15 1.5 ± 0.2  8.0 ± 1.5 
   Crown shape  NA Spherical Ellipsoidal 
   Trunk diameter [m] NA NA 0.15 
   Proportion of leaf cells [%] 100 80 60 
   Leaf angle distribution [-] Erectophile, 

Spherical, 
Planophile,  
Uniform, 
Extremophile 
Plagiophile 

Spherical Planophile 

   Leaf area index [-] 1, 2, 3, 4, 5, 6 4, 5, 6, 7, 8, 9 
   Canopy cover [%] 100 45, 65, 85 
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Figure A3.1 Reflectance signatures of soil background and tree bark as used in PROSPECT-DART radiative 
transfer simulations of broadleaf canopy scenarios (SC1 and SC2). 
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Figure A3.2 Relationship between leaf chlorophyll content (Cab) and the Area Under Curve (AUC650-720) of 
continuum removed reflectance between 650 and 720 nm (a), Continuum Band Depth at 670 nm (CBD670) (b), 
ANCB650-720 optical index (c), Normalized Difference (ND925&710) (d), Simple reflectance Ratio (SR750/710) (e), and 
ratio of TCARI/OSAVI indices (f) computed from PROSPECT-DART radiative transfer simulations for a 
homogenous grassland (scenario SC1). (R2 is coefficient of determination of the best fitting mathematical 
function). 
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Figure A3.3 Relationship between leaf chlorophyll content (Cab) and the Area Under Curve (AUC650-720) of 
continuum removed reflectance between 650 and 720 nm (a), Continuum Band Depth at 670 nm (CBD670) (b), 
ANCB650-720 optical index (c), Normalized Difference (ND925&710) (d), Simple reflectance Ratio (SR750/710) (e), and 
ratio of TCARI/OSAVI indices (f) computed from PROSPECT-DART radiative transfer simulations for a 
heterogeneous deciduous forest stand (scenario SC2). (R2 is coefficient of determination of the best fitting 
mathematical function). 
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Appendix A4 Comparison of the ANCB650-720 – Cab relationship for sunlit and shaded 
spruce crowns parts simulated with PROSPECT and DART 

Similar to the structurally heterogeneous 3-D canopy of a mixed broadleaf forest 
(Appendix A3), 108 Norway spruce scenes parameterized according to Tables 4.1 
and 4.2 were simulated with spruce-adapted PROSPECT and DART models for a leaf 
chlorophyll content varying between 10 and 85 μg cm−2 increasing with a step of 
15 μg cm−2. Pixels of sunlit and shaded crown parts were separated using a maximum 
likelihood classification. AUC650–720, CBD670 and ANCB650–720 were computed from 
the top-of-the-canopy bi-directional reflectance factor (BRF) averaged per simulation 
and plotted against the predefined Cab classes to investigate potential differences in 
Cab empirical relationships for sunlit and shaded pixels. Figure A4.1 demonstrates 
that the AUC650–720 and CBD670 values of shaded crown parts vary more than those of 
sunlit parts. ANCB650–720 is, nevertheless, reducing this variability and producing the 
statistically significant exponential relationship (R2 = 0.99, p < 0.001) of very similar 
shape as for sunlit parts (Figure A4.1c). Based on this result, one could propose to 
use the whole spruce crowns for Cab estimation regardless their sunlit or shaded 
appearance. It is, however, important to stress out that the presented relationships 
were obtained from the radiative transfer modeling of a generalized spruce forest 
stand, which omitted any kind of image noise. Depending on radiometric 
specifications of an airborne sensor, the reflectance signal of shaded pixels may 
contain a higher portion of a random noise. The presence of noise, the spatially 
specific forest canopy shade intensity, and importantly the limited reflectance 
dynamic range (Figure 4.3 indicates that reflectance of shaded pixels is twice lower 
than of sunlit crown pixels) will predominantly result in Cab estimates of low 
accuracy. 
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Figure A4.1 The ANCB650-720 optical index (c) computed from the Area Under Curve (AUC650-720) of continuum-
removed reflectance (a) and Continuum Band Depth at 670 nm (CBD670) (b) separately from sunlit and shaded 
Norway spruce crown pixels. The equations represent the best fitting exponential functions (coefficient of 
determination R2 = 0.99, signific

-   
  75, 85 and 95%). 
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Appendix A5 Descriptive statistics: comparison of the remote sensing and the 
modelling approaches to estimate ecosystem properties per land use class. 

 
The evaluated ecosystem properties are: (a) green biomass, (b) litter mass, (c) crude 
protein content, (d) species diversity and (e) soil carbon content. The left panels 
show frequency distribution of a given ecosystem property for the remote sensing 
approach (black bars) and for the modelling approach (grey bars). The right panels 
show boxplots, where central line in a box is median, box height is interquartile 
range representing 50% of the data, whiskers are minimum and maximum unless the 
observed values exceeded 1.5 times the interquartile range and in that case they are 
marked with crosses as outliers. The star symbol indicates that differences in median 
values between two approaches are significant (p ≤ 0.05, Wilcoxon -Mann-Whitney U 
test). 
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Appendix A6 Descriptive statistics: comparison of the remote sensing and the 
modelling approaches to estimate ecosystem services per land use class. 

 
The evaluated ecosystem properties are: (a) agronomic and (b) cultural value. The 
left panels show frequency distribution of a given ecosystem service for the remote 
sensing approach (black bars) and for the modelling approach (grey bars). The right 
panels show boxplots, where central line in a box is median, box height is 
interquartile range representing 50% of the data, whiskers are minimum and 
maximum unless the observed values exceeded 1.5 times the interquartile range and 
in that case they are marked with crosses as outliers. The star symbol indicates that 
differences in median values between two approaches are significant (p ≤ 0.05, 
Wilcoxon-Mann-Whitney U test). 
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Appendix A7 Ecosystem properties and services estimated from the remote sensing 
and the modelling approachs at a spatial resolution of 100 m. 

 
 

Figure A7.1 Ecosystem properties estimated from the remote sensing approach (Chapter 5) and from the 
modelling approach (Lavorel et al., 2011) at a spatial resolution of 100 m. The most right maps show similarity 
between the approaches. Frequency histograms show the distribution of values within the image. 
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Figure A7.2 Ecosystem services estimated from the remote sensing approach (Chapter 5) and from the modelling 
approach (Lavorel et al., 2011) at a spatial resolution of 100 m. The most right maps show similarity between the 
approaches. Frequency histograms show the distribution of values within the image. 
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Summary 
Terrestrial vegetation is an important component of the Earth’s biosphere and 
therefore playing an essential role in climate regulation, carbon sequestration, and it 
provides large variety of services to humans. For a sustainable management of 
terrestrial ecosystems it is essential to understand vegetation responses to various 
pressures, to monitor and to predict the spatial extent and the rate of ecosystem 
changes. Remote sensing (RS) therefore offers a unique opportunity for spatially 
continuous, and for some type of RS data, also frequent monitoring of terrestrial 
ecosystems. 
     RS of vegetation is a broad research field, where a lot of progress has been made 
in the last three decades. However, the complexity of interactions between vegetation 
and solar radiation, constantly modulated by environmental factors, offers room for 
deeper investigation. Rather than solving one big research problem, this thesis built a 
few bridges on a way leading towards better understanding of using airborne imaging 
spectroscopy for ecological analysis in temperate coniferous forests and subalpine 
grasslands. The research was divided into a theoretical and an applied part. The 
theoretical part contributed to a critical evaluation of research achievements and 
challenges in optical RS of plant traits (Chapter 2). The applied part addressed three 
research topics: i) investigating variability of total to projected leaf area ratio in 
spruce canopies and its implications on RS of chlorophyll content (Chapter 3), ii) 
testing chlorophyll retrieval methods based on continuum removal in spruce canopies 
(Chapter 4), and iii) exploring potentials of imaging spectroscopy to map ecosystem 
properties and the capacity of subalpine grasslands in providing ecosystem services 
in comparison with a plant trait-based modelling approach (Chapter 5). 
     In Chapter 2, we reviewed achievements and challenges in RS estimation of key 
plant traits and we concentrated our discussion on eight traits with the strongest 
potential to be mapped using RS (plant growth and life forms, flammability 
properties, photosynthetic pathways and photosynthesis activity, plant height, leaf 
lifespan and phenology, specific leaf area, leaf nitrogen and phosphorous). The 
review indicated that imaging spectroscopy facilitates better retrievals of plant traits 
related to leaf biochemistry, photosynthesis and phenology rather than traits related 
to vegetations structure. Estimation of the canopy structure related traits (e.g. plant 
height) can certainly benefit from increasing synergies between imaging 
spectroscopy and active RS (radar or laser scanning). One of major challenges in RS 
of plant traits is to effectively suppress the negative influences of water absorption 
and canopy structure, which would facilitate more accurate retrievals of biochemical 
and photosynthesis-related traits. Secondly, a successful integration of RS and plant 
ecology concepts would require careful matching of spatial scales of in-situ trait data 
with RS observations.  
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     In Chapter 3, measurement methods and variability of total to projected leaf area 
within spruce crowns were investigated. Comparison of six laboratory methods 
revealed that methods using an elliptic approximation of a needle shape 
underestimated total leaf area compared to methods using a parallelepiped 
approximation. The variability in total to projected leaf area was primarily driven by 
the vertical sampling position and less by needle age or forest stand age. We found 
that total leaf area estimation has an important implication on RS of leaf chlorophyll 
content. An error associated with biased estimates of total leaf area can reach up to 
30% of the expected chlorophyll range commonly found in forest canopies and 
therefore negatively influences the validation of RS-based chlorophyll maps.  
     In Chapter 4, potentials of the continuum removal transformation for mapping of 
chlorophyll content in spruce canopies were investigated. We tested two methods 
based on continuum removal: artificial neural networks and an optical index. The 
optical index was newly designed here and it was based on the spectral continuum 
between 650 and 720 nm. Both continuum removal based methods exhibited superior 
accuracy in chlorophyll retrieval compared to commonly used narrow-band 
vegetation indices (e.g. NDVI, TCARI/OSAVI). The newly designed index was 
equally accurate, but certainly provided a more operational approach as compared to 
the neural network. 
     In Chapter 5, mapping of ecosystem properties that underline ecosystem services 
provided by subalpine grasslands using RS methods was tested and further compared 
with a statistical plant trait-based modelling approach. Imaging spectroscopy in 
combination with empirical retrieval methods was partly successful to map 
ecosystem properties. The prediction accuracy at the calibration phase was 
comparable to the trait-based modelling approach. Spatial comparison between the 
two approaches revealed rather small agreement. The average fuzzy similarity 
between the approaches was around 20% for ecosystem properties, but in case of the 
total ecosystem service supply it decreased below 10%. However, the RS approach 
detected more variability in ecosystem properties and thereby in services, which was 
driven by local topography and microclimatic conditions, which could not be 
detected by the plant trait-based approach.  
     Especially Chapters 2 and 5 indicated that one of the future RS research directions 
may be in spatial ecology, i.e. spatially explicit mapping of plant traits, ecosystem 
properties and ecosystem services. High quality RS data are certainly essential 
building elements for spatial ecology. But in order to address the effects of climate 
and land use changes on biodiversity and ecosystems, their properties and services, 
the integration of in-situ and RS data will be ultimately required. Therefore, more 
coherent experiments, where in-situ and RS data are measured simultaneously at 
different spatial scales, are needed in the future.  
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Samenvatting 
Terrestrische vegetatie vormt een belangrijk onderdeel van de biosfeer op aarde en speelt 
dus een essentiële rol in de regulering van het klimaat en de koolstofvastlegging, en het 
biedt een grote verscheidenheid aan diensten voor de mens. Voor een duurzaam beheer van 
terrestrische ecosystemen is het essentieel om de vegetatiereactie op verschillende 
invloeden te begrijpen, en om de ruimtelijke omvang en het tempo van veranderingen in 
een ecosysteem te monitoren en te voorspellen. Remote sensing (RS) biedt daarom een 
unieke mogelijkheid voor ruimtelijk continue, en voor sommige type RS-gegevens ook 
frequente, monitoring van terrestrische ecosystemen. 
     RS van vegetatie is een breed terrein van onderzoek, waar in de afgelopen drie decennia 
veel vooruitgang is geboekt. Echter, de complexiteit van de interacties tussen vegetatie en 
zonnestraling, voortdurend gewijzigd door omgevingsfactoren, biedt ruimte voor nader 
onderzoek. In plaats van het oplossen van één groot onderzoeksprobleem, bouwt dit 
proefschrift een paar bruggen op een weg die leidt tot een beter begrip van het gebruik van 
beeldvormende spectroscopie vanuit vliegtuigen voor ecologische analyse in gematigde 
naaldbossen en sub-alpiene graslanden. Het onderzoek is opgedeeld in een theoretisch en 
een toegepast deel. Het theoretische deel draagt bij aan een kritische evaluatie van 
onderzoeksresultaten en aan uitdagingen in de optische RS van planteigenschappen 
(Hoofdstuk 2). Het toegepaste deel besteedt aandacht aan drie onderzoeksthema's: i) het 
onderzoeken van de variabiliteit in de verhouding van totaal ten opzichte van geprojecteerd 
bladoppervlak bij sparren en de implicaties ervan op de RS van het chlorofylgehalte 
(Hoofdstuk 3), ii) het testen van methoden voor het bepalen van het chlorofylgehalte bij 
sparren op basis van de zogenaamde ‘continuum removal’ techniek (Hoofdstuk 4), en iii) 
het verkennen van de mogelijkheden van beeldvormende spectroscopie voor het karteren 
van ecosysteem-eigenschappen en het vermogen van sub-alpiene graslanden om 
ecosysteemdiensten te leveren in vergelijking met een modelbenadering gebaseerd op 
planteigenschappen (Hoofdstuk 5). 
     In hoofdstuk 2 wordt een overzicht gegeven van resultaten en uitdagingen voor het 
schatten van de belangrijkste planteigenschappen met behulp van RS en concentreren we 
onze discussie op acht eigenschappen met de beste potentie om met behulp van RS in kaart 
te worden gebracht (plantengroei en levensvorm, ontvlambaarheid, fotosyntheseprocessen 
en -activiteit, planthoogte, levensduur en fenologie van bladeren, specifiek bladoppervlak, 
stikstofgehalte en fosforgehalte in het blad). Het overzicht leert dat beeldvormende 
spectroscopie de bepaling van planteigenschappen gerelateerd aan de biochemische 
samenstelling van bladeren, fotosynthese en fenologie beter mogelijk maakt dan 
eigenschappen gerelateerd aan vegetatiestructuur. Schatting van aan vegetatiestructuur-
gerelateerde kenmerken (bijv. planthoogte) kan zeker profiteren van de synergie van 
beeldvormende spectroscopie en actieve RS (radar of laser scanning). Een van de grote 
uitdagingen in de RS van planteigenschappen is om de negatieve invloeden van absorptie 
door water en van vegetatiestructuur effectief te onderdrukken, hetgeen nauwkeuriger 
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bepalingen van biochemische en fotosynthese-gerelateerde kenmerken zou 
vergemakkelijken. Ten tweede zou een succesvolle integratie van RS en concepten uit de 
plantenecologie een zorgvuldige afstemming van ruimtelijke schalen van in-situ data met 
RS observaties vereisen. 
     In hoofdstuk 3 worden meetmethoden en variabiliteit in de verhouding van totaal ten 
opzichte van geprojecteerd bladoppervlak bij sparren onderzocht. Uit vergelijking van zes 
laboratoriumtechnieken blijkt dat methoden met behulp van een elliptische benadering van 
de naaldvorm het totale bladoppervlak onderschatten in vergelijking tot methoden met 
behulp van een parallellepipedum benadering. De variabiliteit in de verhouding van totaal 
ten opzichte van geprojecteerd bladoppervlak wordt voornamelijk bepaald door de verticale 
positie van bemonstering en minder door de leeftijd van de naalden of van de bosopstand. 
De schatting van het totale bladoppervlak is van groot belang voor de RS van het 
chlorofylgehalte van het blad. Een systematische fout in schattingen van het totale 
bladoppervlak kan oplopen tot 30% van de verwachte range in chlorofylgehaltes gevonden 
in bossen en heeft dus een negatieve invloed op de validatie van op RS gebaseerde 
chlorofylkaarten. 
     In hoofdstuk 4 worden de mogelijkheden van de ‘continuum removal’ transformatie 
voor het karteren van het chlorofylgehalte bij sparren onderzocht. Wij hebben twee 
methoden op basis van ‘continuum removal’ getest: kunstmatige neurale netwerken en een 
optische index. De optische index is nieuw ontworpen en is gebaseerd op het spectrale 
continuüm tussen 650 en 720 nm. Beide ‘continuum removal’ methoden geven een 
superieure nauwkeurigheid in het afleiden van het chlorofylgehalte vergeleken met 
veelgebruikte smalle-band vegetatie indices (bv. NDVI, TCARI / OSAVI). De nieuw 
ontworpen index is even nauwkeurig, maar geeft zeker een meer operationele benadering 
vergeleken met het neurale netwerk. 
     In hoofdstuk 5 wordt het in kaart brengen van ecosysteem-eigenschappen, die 
ecosysteemdiensten van sub-alpiene graslanden onderstrepen en die verkregen zijn met 
behulp van RS methoden, getest en verder vergeleken met een statistische modelbenadering 
gebaseerd op planteigenschappen. Beeldvormende spectroscopie in combinatie met 
empirische bepalingsmethoden is deels succesvol in het karteren van ecosysteem-
eigenschappen. De voorspellingsnauwkeurigheid in de kalibratiefase is vergelijkbaar met 
de modelbenadering gebaseerd op planteigenschappen. Ruimtelijke vergelijking tussen de 
twee benaderingen blijkt vrij weinig overeenstemming op te leveren. De gemiddelde 
‘fuzzy’ overeenstemming tussen de benaderingen is ongeveer 20% voor ecosysteem-
eigenschappen, maar in het geval van de totale levering van ecosysteemdiensten daalt deze 
beneden 10%. De RS aanpak detecteert echter meer variabiliteit in ecosysteem-
eigenschappen en daardoor ook in ecosysteemdiensten, hetgeen gedreven wordt door lokale 
topografie en micro-klimatologische condities, die niet kunnen worden gedetecteerd door 
de planteigenschappen-benadering. 
      Vooral de hoofdstukken 2 en 5 tonen aan dat een van de toekomstige RS 
onderzoeksrichtingen de ruimtelijke ecologie zou kunnen zijn, d.w.z. het ruimtelijk 
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expliciet bepalen van planteigenschappen, ecosysteem-eigenschappen en 
ecosysteemdiensten. Hoge kwaliteit RS gegevens vormen zeker essentiële bouwstenen voor 
de ruimtelijke ecologie. Maar om de gevolgen aan te pakken van klimaatverandering en 
landgebruiksveranderingen op biodiversiteit en op ecosystemen, hun eigenschappen en 
diensten, zal uiteindelijk de integratie van in-situ en RS-gegevens nodig zijn. Daarom zijn 
meer samenhangende experimenten, waarbij in-situ en RS data gelijktijdig op verschillende 
schaalniveaus worden gemeten, in de toekomst nodig. 
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Shrnutí 
     Vegetace je nezbytnou součásti zemské biosféry, podílí se na regulaci klimatu a 
poskytuje lidem celou řadu hmotných i nehmotných přínosů (ekosystémové služby). 
Lidská společnost by proto měla usilovat o trvale udržitelné využívání ekosystémů a 
hospodaření v nich. Toho lze dosáhnout tehdy, pokud budeme schopni pochopit, 
jakým způsobem vegetace reaguje na různé stresové podněty, a budeme monitorovat 
současný stav ekosystémů a předvídat jejich změny v prostoru, čase i co se týče 
jejich funkce. Vhodným nástrojem pro studium ekosystémů jsou tak moderní metody 
optického dálkového průzkumu Země (DPZ), které poskytují prostorové informace o 
zemském povrchu. 
     Studium vegetace s použitím metod optického DPZ je široké pole vědecké 
činnosti, která se rozvíjí již 30 let. Avšak vzájemné působení slunečního záření a 
vegetace je proces natolik komplexní, že neustále poskytuje prostor pro nové vědecké 
bádaní a zlepšování metod DPZ. Tato disertační práce řeší několik oddělených 
vědeckých otázek, které zapadají do mozaiky poznání toho, jak letecká obrazová 
spektroskopie (úzce specifický typ dat DPZ) může přispět ke studiu ekosystémů, jako 
jsou jehličnaté lesy a horské louky. Disertační práce je rozdělena do dvou částí, 
teoretické a praktické. Teoretická část kriticky hodnotí současné metody optického 
DPZ a jejich využití v rámci monitorování stavu a vlastností vegetace (kapitola 2). 
Praktická část pak řeší tři následující témata: i) jak se mění poměr celkové a 
projekční listové plochy v porostech smrku ztepilého a jaký vliv mají tyto změny na 
mapování obsahu chlorofylu z dat obrazové spektroskopie (kapitola 3), ii) vývoj 
nového metodického postupu pro odhad obsahu chlorofylu v porostech smrku 
ztepilého z dat obrazové spektroskopie (kapitola 4), a iii) srovnání dvou metod pro 
mapování ekosystémových vlastností a služeb horských lučních ekosystémů, kde 
první metoda je založena na prostorových datech obrazové spektroskopie a druhá 
metoda na pozemních měření vlastností horských luk a způsobu využití půdy 
(kapitola 5). 
     Literární rešerše, která je prezentována v druhé kapitole, shrnuje současný stav 
využití metod optického DPZ v rámci studia vegetace a jejích vlastností. Diskuzi 
jsme zaměřili především na osm hlavních vlastností vegetace, které se hojně 
používají při studiu funkce rostlin v ekosystémech a u nichž je zároveň velká 
pravděpodobnost, že mohou být studovány za pomocí DPZ. Tyto vlastnosti jsou 
životní formy rostlin, vlastnosti rostlin rozhodující o jejich vznícení, fotosyntéza, její 
aktivita a rozlišení C3 a C4 rostlin, fenologie rostlin, výška, specifická listová 
plocha, obsah dusíku a obsah fosforu v listech. Data optické spektroskopie jsou 
častěji využívána pro studium fyziologických a fenologických vlastností rostlin. 
Zatímco metody DPZ zaměřené na studium morfologických vlastností rostlin a 
struktury porostů spíše využívají data aktivního DPZ (radar a laserové skenovaní) a 
jejich propojení s optickými daty. Hlavním problémem při studiu vlastností vegetace 
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z dat DPZ je vliv vody a struktury vegetace na kvalitu signálu v infračervených 
vlnových délkách. Tudíž jedním z hlavních úkolů studia vegetací pomocí metod DPZ 
je efektivně potlačit tyto negativní vlivy ovlivňující infračervená pásma. Pro 
ekologicky zaměřené aplikace používající metody optického DPZ je taktéž nezbytné 
sladit prostorové rozlišení dat DPZ a pozemních měření vlastností rostlin a 
ekosystémových procesů. 
     Ve třetí kapitole jsme se zaměřili na studium listové plochy v porostech smrku 
ztepilého. Studovali jsme, jakým způsobem lze co nejpřesněji změřit celkovou a 
projekční plochu jehlic, jak se mění poměr mezi celkovou a projekční listovou 
plochu v rámci koruny smrku, a jakým způsobem se chyby v měření listové plochy 
promítají do odhadů obsahu chlorofylu z dat obrazové spektrometrie. V této studii 
jsme srovnali šest metod výpočtu celkové plochy jehlic na základě jejich 
morfologických znaků a zjednodušeného geometrického modelu jehlice. Metody, 
které použily elipsoid jako základ geometrického modelu jehlice, výrazně 
podhodnocovaly celkovou plochu jehlic ve srovnání s metodami, které použily hranol 
nebo složeninu komolých kuželů jako základ geometrického modelu jehlic. Dále 
jsme zjistili, že poměr mezi celkovou a projekční plochou jehlic se mění v rámci 
koruny smrků a to hlavně ve vertikálním směru v závislosti na intenzitě slunečního 
osvitu. Vliv věku jehlic a průměrného stáří porostu na poměr mezi celkovou a 
projekční listovou plochou je minimální. Právě výpočet celkové plochy jehlic má i 
výrazný vliv na přesnost odhadů obsahu chlorofylu z dat DPZ, neboť obsah 
chlorofylu je často vyjádřen na jednotku listové plochy. Míra chyby z odhadu 
celkové listové plochy jehlic smrku ztepilého, která se může dále promítnout do 
obsahu chlorofylu, může činit až 30% z celkového rozsahu běžných hodnot obsahu 
chlorofylu ve smrkových porostech 
     Ve čtvrté kapitole jsme se zaměřili na vývoj metodiky odhadu obsahu chlorofylu 
ve smrkových porostech z dat letecké obrazové spektrometrie s velmi vysokým 
prostorovým a spektrálním rozlišením. Právě velmi vysoké spektrální rozlišení 
leteckých snímků umožnilo stanovit metodiku odhadu chlorofylu na tvaru spektrální 
křivky odrazivosti a využít tak transformaci spektrálního kontinua (tzv. „kontinuum 
removal“). Transformovaná spektrální informace pomocí „continuum removal“ byla 
poté využita ve dvou výpočetních modulech, i) jako nově navržený optický vegetační 
index v rozmezí 650 a 720 nm a ii) jako vstupní data do umělé neuronové sítě. Oba 
přístupy založené na transformaci spektrálního kontinua dokázaly odhadnout obsah 
chlorofylu ve smrkových porostech s vyšší přesností než běžně používané vegetační 
indexy jako NDVI nebo TCARI/OSAVI. I když oba přístupy založené na 
transformaci spektrálního kontinua vykazovaly podobně přesné výsledky odhadu 
chlorofylu, nově navržený vegetační index byl početně jednodušší a praktičtější než 
metoda použití neuronových sítí.  
     V páté kapitole jsme se pak zaměřili na srovnání dvou metodických přístupů pro 
ohodnocení ekosystémových služeb v rámci horských lučních ekosystémů. V obou 
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případech byly ekosystémové služby vztaženy k vlastnostem horských lučních 
ekosystémů jako nadzemní zelená a suchá biomasa, obsah proteinů, druhová 
rozmanitost a obsah uhlíku v půdě. Oba přístupy se právě odlišovaly v metodice, jak 
tyto vlastnosti lučních ekosystémů byly modelovány v prostoru. Jeden přístup byl 
založen na prostorových datech z letecké obrazové spektroskopie a druhý přístup na 
prostorových datech jako digitální model terénu a mapy využití půdy. Srovnání obou 
přístupů ukázalo, že pouze 20% z naší zájmové lokality vykazovalo shodu obou 
přístupů, co se týče již výše zmíněných modelovaných vlastností lučních ekosystémů. 
Co se týče služeb poskytovaných horskými loukami, tak pouze 10% z celkové plochy 
naší zájmové lokality vykazovalo shodu mezi oběma přístupy. Výhodou metodiky 
založené na datech letecké obrazové spektroskopie bylo, že dokázala zachytit 
mnohem vyšší variabilitu ekosystémových vlastností v prostoru, což odráží vysokou 
rozmanitost terénu a mikroklimatických podmínek v rámci studované lokality. 

Prostorově zaměřené analýzy v ekologii se budou neustále rozvíjet. Jak nastínily 
kapitoly 2 a 5, stanou se data optického DPZ, zejména pak obrazové spektroskopie, 
základním stavebním kamenem pro moderní ekologii (mapování a monitorování 
stavu ekosystémů a jejich vlastností). Každopádně vývoj takovýchto přístupů bude 
vyžadovat sladění a souhru metod DPZ s ekologickými metodami a více příležitostí, 
kdy budou pozemní data ekosystémových vlastností a data dálkového průzkumu 
Země měřena současně a v různých prostorových měřítkách. 
 
 



Acknowledgements 

173 

Acknowledgements 
Reflecting back on my PhD time with some of distance, I have to say that it was an 
exciting though sometimes painful experience, but it certainly was an interesting and 
worthy way that I decided to walk on. There have been many people, supervisors, 
colleagues, friends and my closest family, who supported me during that time and 
now I would like to use this opportunity to say “Thank You”. 
     First of all, I would like to express my sincere thanks to my supervisors, Michael 
Schaepman and Jan Clevers. Although our interactions were sometimes scarce due to 
the fact that we rarely shared the same geographical location, I appreciate your 
encouragement and valuable comments to my work. I am very grateful to Michael for 
the opportunity spending last two years at Remote Sensing Laboratories in Zurich. 
     I would like to thank to all of my co-authors for the constructive comments and 
feedback on my papers. It was my pleasure to keep on working with my former 
colleagues from the remote sensing group of Czechglobe – Petr Lukeš, Jan Hanuš 
and Věroš Kaplan. I would like to thank to Zbyněk Malenovský for his partial 
coordination during my first year in Zurich and his valuable feedback on my papers. 
And I wish to thank to Sandra Lavorel and Pénélope Lamarque from Laboratoire 
d’Ecologie Alpine, who helped me a lot with my last paper on ecosystem services 
     In order to keep the PhD spirit up, I’m more than grateful to all my friends, who 
gave me an opportunity to take a break from it and spent pleasurable moments in 
their company. I would like to thank to my office mates from RSL for a friendly 
working atmosphere. Thanks to Jirka I know how Lapland looks in winter. Thanks to 
Monika, Pawel and Agatka I discovered beauties of Poland. Livia pushed me beyond 
my physical limits when asking for more pilates and jogging. And it was always very 
happy to meet every now and then a couple of friends from the Czech Republic and 
therefore my greetings and thanks go to Jana, Blanka, Honza, Jarka and their 
families. My special thanks go to Scotland to my good friend Andrea, who always 
recharged me with her overwhelming positive energy. Last but not least, I wish to 
express my deepest gratitude to my best PhD mates and good friends, Lucia, Petra, 
Valerie and Titia. Girls, your support and nice time we spent together were priceless. 
     Most importantly, I want to say big “DĚKUJI” to my family. My deepest respect 
and gratitude flies to my parents and grandparents for their never ending support, 
love and endless hours on skype when reporting news from home. I want to thank to 
my brothers Jirka and Tomáš and to my cousins Víťa and Zuzka, who always find 
time to visit me wherever I was living. And I owe my deep loving thanks to Daniel 
who supported me with friendship, love, energy, inspiration and chocolate during last 
years of my PhD. I truly believe that getting know you is the most valuable outcome 
of this project. 
 



Biography 

174 

Short biography 
Lucie was born in Velké Meziříčí, located nearby Brno in the Czech Republic on July 
19th, 1981. She attended the local primary school, as well as the gymnasium in Velké 
Meziříčí, where she graduated in 1999. Besides her regular studies she attended 
painting and handcrafting classes and handcrafting remained her most enjoyable and 
relaxing hobby until now. 
     In 1999 she started her master studies at Czech University of Life Sciences 
Prague. She studied master curriculum in Landscape engineering at Faculty of 
forestry and environment. After the fourth year of her master studies she decided to 
get an international experience and thanks to the Erasmus student exchange program 
she could spend one year in the Netherlands at Wageningen University. At the end, 
she extended her stay in Wageningen by one more year and in 2005 she obtained her 
first master degree in Geo-Information Science. Her master thesis was about leaf area 
index estimation in Norway spruce forests using airborne imaging spectroscopy and 
radiative transfer modelling.  
     After she graduated in Wageningen, Lucie moved back to the Czech Republic. 
She finished her master studies of Landscape engineering and started a part time 
research job at Academy of Sciences, Institute of Systems Biology and Ecology 
(nowadays called Global Change Research Centre). Her major responsibilities were 
field measurements of forest biochemical and spectral properties and further data 
processing. She was contributing to the ESA/PECS project on spectral-spatial scaling 
of forest biochemical properties to support forthcoming GMES Sentinel 2 mission. 
     In February 2008 Lucie joined Marie Curie Research Training Network (Hyper-I-
Net) and at the same time she started her PhD curriculum at Wageningen University. 
Within the Hyper-I-Net network Lucie spent two years in Specim, Ltd. (Finland), a 
leading company in imaging spectroscopy. Lucie was trained in calibration of 
airborne imaging spectroradiometers and she explored the use of downwelling 
irradiance sensor for atmospheric correction of airborne images. In February 2010 
Lucie moved to Poland, where she spent nine months at University of Warsaw. Since 
2011 Lucie was located at University of Zurich in Switzerland, where she continued 
working on her PhD thesis, which is successfully finished by now.  
     In the course of five years of her PhD, Lucie lived in three countries with 
contrasting cultural background. Besides moving around Europe and exploring 
Finnish, Polish and Swiss cultures, food and landscapes Lucie worked on various 
research topics presented in this thesis. She attended several courses, summer schools 
and international conferences.  
 



Publications 

175 

List of publications 
 
Peer reviewed journals 

Homolová L, Schaepman ME, Lamarque P, Clevers JGPW, de Bello F, Thuiller W, 
Lavorel S (2013) Comparison of remote sensing and plant trait-based modelling 
to predict ecosystem services in subalpine grasslands. Journal of Ecology 
(Submitted) 

Pottier J, Malenovský Z, Psomas A, Homolová L, Schaepman ME, Choler P, 
Thuiller W, Guisan A, Zimmermann NE (2013) Modelling plant species 
distribution and diversity in alpine grasslands using airborne imaging 
spectroscopy. Biology Letters (Submitted) 

Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME 
(2013) Review of optical-based remote sensing for plant trait mapping. 
Ecological Complexity 15: 1-16 

Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-
Etchegorry J-P, Schaepman ME (2013) Retrieval of spruce leaf chlorophyll 
content from airborne image data using continuum removal and radiative transfer. 
Remote Sensing of Environment, 131, 85-102. 

Homolová L, Lukeš P, Malenovský Z, Lhotáková Z, Kaplan V, Hanuš J (2013) 
Measurement methods and variability assessment of the Norway spruce total leaf 
area: implications for remote sensing. Trees Structure and Functions, 27, 111-
121. 

Rautiainen M, Mõttus M, Yáñez-Rausell L, Homolová L, Malenovský Z, Schaepman 
ME (2012) A note on upscaling coniferous needle spectra to shoot spectral 
albedo. Remote Sensing of Environment, 117, 469-474 

Malenovský Z, Martin E, Homolová L, Gastellu-Etchegorry J-P, Zurita-Milla R, 
Schaepman ME, Pokorný R, Clevers JGPW, Cudlín P (2008) Influence of woody 
elements of a Norway spruce canopy on nadir reflectance simulated by the DART 
model at very high spatial resolution. Remote Sensing of Environment, 112(1), 1-
18 

  



Publications 

176 

Other scientific publications 

Homolová L, Alanko-Huotari K, Schaepman ME (2009) Sensitivity of the ground-
based downwelling irradiance recorded by the FODIS sensor in respect of 
different angular positions. 1st IEEE Workshop on Hyperspectral Image and 
Signal Processing: Evolution in Remote Sensing (WHISPERS). Grenoble, France 

Yañez-Rausell L, Homolová L, Malenovský Z, Schaepman ME (2008) Geometrical 
and structural parameterization of forest canopy radiative transfer by LIDAR 
measurements. The International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences XXI ISPRS Congress. Beijing, China 

Homolová L, Malenovský Z, Lhotáková Z, Kaplan V, Hanuš J (2007) Optical 
differences between sun exposed and shaded Norway spruce needles. 5th EARSeL 
SIG IS workshop on Imaging Spectroscopy: innovation in environmental 
research. Bruges, Belgium 

Homolová L, Malenovský Z, Hanuš J, Tomášková I, Dvořáková M, Pokorný R 
(2007) Comparison of different ground techniques to map leaf area index of 
Norway spruce forest canopy. 10th International Symposium on Physical 
Measurements and Spectral Signatures in Remote Sensing. Davos, Switzerland 

 



PE&RC PhD Education Certificate 

177 

PE&RC PhD Education Certificate  
 
 
 
With the educational activities listed below the PhD candidate has 
complied with the educational requirements set by the C.T. de Wit 
Graduate School for Production Ecology and Resource Conservation 
(PE&RC) which comprises of a minimum total of 32 ECTS (= 22 
weeks of activities)  
 
 

Review of literature (6 ECTS) 
• Review of optical-based remote sensing for plant functional ecology 

Writing of project proposal (4.5 ECTS) 
• Mapping of plant functional groups of alpine grassland ecosystems using airborne imaging spectroscopy and soil-

vegetation-atmosphere radiative transfer modelling (2008) 

Post-graduate courses (7.5 ECTS) 
• Advanced IDL programming course; WUR-CGI, NL (2008) 
• Inverse modelling for improving environmental and ecological models; University of Amsterdam, NL (2009) 
• 2nd Hyper-I-Net summer school on Earth sciences and applications using imaging spectroscopy; WUR-CGI, NL 

(2008) 
• 3rd Hyper-I-Net summer school on hyperspectral data: from images to information; University of Pavia, I (2009) 
• 4th Hyper-I-Net summer school on calibration; DLR, D (2010) 
• Atmospheric correction over land using ATCOR; DLR, D (2011) 

Competence strengthening / skills courses (1.2 ECTS) 
• Techniques for writing and presenting scientific papers; WUR, NL (2009) 

Laboratory training and working visits (3.9 ECTS) 
• Radiometric calibration of hyperspectral sensors; Specim Ltd., FI (2008) 
• Training in atmosphere radiative transfer MODTRAN & ATCOR; RSL, University of Zürich, CH (2009) 

PE&RC Annual meetings, seminars and the PE&RC weekend (1.6 ECTS) 
• PE&RC Day: Scaling from molecules to ecosystems (2008) 
• PE&RC Symposium: 3rd remote sensing symposium of Dutch network of PhD students; Oral presentation (2011) 

Discussion groups / local seminars / other scientific meetings (4.2 ECTS) 
• Meetings of AISA research & development group; Specim Ltd., FI (2008 and 2009) 
• Hyper-I-Net mid–term review meeting; DLR, D (2009) 
• Plant facility and terrestrial LIDAR workshop; WUR-CGI, NL (2011) 
• Colloquium in Remote Sensing; RSL, University of Zürich, CH (2012) 
• “Friday’s food for thought”- an interdisciplinary discussion club; Geography department; University of Zürich, CH 

(2011 and 2012) 

International symposia, workshops and conferences (3.5 ECTS) 
• 2nd PHYSENSE workshop of the Nordic network on physically-based remote sensing of forests; Helsinki, FI (2011) 
• 9th Swiss geoscience meeting; poster presentation;  Zürich, CH (2011) 
• A European perspective on the future of biodiversity and ecosystems - final conference of the Ecochange FP6 project; 

poster presentation;  Zürich, CH (2012) 

Lecturing / supervision of practical’s/ tutorials; 1 day (0.3 ECTS) 
• Verification of remote sensing products: guest lecture; University of Warsaw, PL (2010) 

 
 


	Imaging spectroscopy for ecological analysis in forest and grassland ecosystems
	Imaging spectroscopy for ecological analysis in forest and grassland ecosystems
	Table of contents
	Introduction
	1.1 Introduction
	1.2 Vegetation ecosystems of interest
	1.2.1 Evergreen coniferous forests
	1.2.2 Montane grasslands

	1.3 Imaging spectroscopy of vegetation
	1.3.1 Imaging spectroscopy
	1.3.2 Remote sensing methods
	1.3.3 Vegetation properties from imaging spectroscopy

	1.4 Research questions
	1.5 Structure

	Review of optical-based remote sensing for plant trait mapping
	Abstract
	2.1 Introduction
	2.2 Material and methods
	2.2.1 Light-vegetation interactions
	2.2.2 Remote sensing instruments
	2.2.3 Remote sensing methods
	2.2.4 Scaling and terminology

	2.3 Remote sensing of plant traits
	2.3.1 Plant growth and plant life forms
	2.3.2 Plant flammability properties
	2.3.3 Plant photosynthetic pathway and photosynthesis
	2.3.4 Plant height
	2.3.5 Lifespan and phenology
	2.3.6 Specific leaf area and leaf dry matter content
	2.3.7 Leaf and canopy nitrogen
	2.3.8 Leaf and canopy phosphorus

	2.4 Concluding remarks
	Acknowledgements


	Measurement methods and variability assessment of the Norway spruce total leaf area: implications for remote sensing
	Abstract
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Study area and needle sampling
	3.2.2 Estimation of needle LAT and CF
	3.2.3 Measurement of needle biochemical properties and upscaling to a crown level

	3.3 Results
	3.3.1 Accuracy of LAT estimating methods
	3.3.2 Variability of total to projected leaf area conversion factor for method I
	3.3.4 Impact of LAT on upscaling of foliar biochemistry from leaf to crown level

	3.4 Discussion
	3.4.1 Accuracy of LAT estimating methods
	3.4.2 Variability of total to projected leaf area conversion factor for method I
	3.4.3 Impact of LAT on upscaling of foliar biochemistry from leaf to crown level

	3.5 Conclusions
	Acknowledgements


	Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer
	Abstract
	4.1 Introduction
	4.2 Material and methods
	4.2.1 Experimental test site
	4.2.2 Processing and classification of the airborne AISA Eagle spectral images
	4.2.3 Reflectance continuum removal and selection of the suitable spectral range
	4.2.4 PROSPECT-DART radiative transfer modelling
	4.2.5 Retrieval of leaf chlorophyll content using optical indices and artificial neural network
	4.2.6 Validation of leaf chlorophyll content estimates using ground truth measurements
	4.2.7 Statistical analysis assessing the accuracy of chlorophyll content estimates

	4.3 Results and discussion
	4.3.1 Sensitivity of continuum removed crown reflectance to Cab and LAI
	4.3.2 Design of a continuum removal based Cab optical index
	4.3.3 Chlorophyll estimation using optical indices and ANN
	4.3.4 Comparison of airborne Cab estimates with ground measurements

	4.4 Conclusions
	Acknowledgements


	Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands
	Abstract
	5.1 Introduction
	Material and methods
	5.2.1 Study site and in-situ measurements
	5.2.2 Remote sensing data
	5.2.3 Estimation of ecosystem properties
	5.2.4 Estimation of ecosystem services
	5.2.5 Comparison of remote sensing and modelling approaches

	Results
	5.3.1 Ecosystem properties: comparison of remote sensing and modelling approaches
	5.3.2 Ecosystem services: comparison of remote sensing and modelling approaches

	5.4 Discussion
	5.4.1 Quality of empirical RS models of ecosystem properties
	5.4.2 Alternative RS solutions for ecosystem properties estimation
	5.4.3 Assessing ecosystem services from RS data
	5.4.4 Comparison of remote sensing and modelling approaches

	5.5 Conclusions
	Acknowledgements


	Synthesis
	6.1 Main results
	6.2 General conclusions
	6.3 Reflection and outlook

	Appendices
	Appendix A1 Literature review of remote sensing of leaf biochemical traits
	Appendix A2 Relationship between leaf chlorophyll and nitrogen content in montane grass species.
	Appendix A3 Chlorophyll sensitivity of ANCB650-720 and other three optical indices in the case of broadleaf canopies
	Appendix A4 Comparison of the ANCB650-720 – Cab relationship for sunlit and shaded spruce crowns parts simulated with PROSPECT and DART
	Appendix A5 Descriptive statistics: comparison of the remote sensing and the modelling approaches to estimate ecosystem properties per land use class.
	Appendix A6 Descriptive statistics: comparison of the remote sensing and the modelling approaches to estimate ecosystem services per land use class.
	Appendix A7 Ecosystem properties and services estimated from the remote sensing and the modelling approachs at a spatial resolution of 100 m.

	References
	Summary
	Samenvatting
	Shrnutí
	Acknowledgements
	Short biography
	List of publications
	PE&RC PhD Education Certificate

