Microfluidic tools to study stability of proteinstabilised emulsions and foams

Kelly Muijlwijk, Thomas Krebs, Claire Berton-Carabin and Karin Schroën Food Process Engineering Group - Wageningen University

Microfluidic tools like the micro-channel and micro-centrifuge have been used before to study the stability of surfactant-stabilised emulsions.[1,2] The current work shows that the methods are also suitable for protein-stabilised emulsions and foams that are intrinsically more complex in behaviour than the relatively simple systems investigated previously. This opens up a new field of application of microfluidics in food technology.

Emulsions studied with the micro-channel

<u>Micro-channel</u>: Oil droplets are produced at the T-junction (width = 100 μ m), droplets collide and possibly coalesce in the larger channel (width = 500 μ m, length = 3 cm), the rectangles indicates the regions from which images were recorded.

Foams studied with the micro-centrifuge

<u>Micro-centrifuge</u>: a dead end chamber is filled with sample and placed in a centrifuge mounted on a microscope, triggered pictures are made of the chamber during centrifugation.

Images of 0.005 w/v % WPI at the entrance and outlet of the coalescence channel

The stability of oil droplets with low % WPI was lower than without

any proteins. A possible explanation could be an insufficient double

layer thickness resulting in an increased attractive interaction.

Stability of WPI foams is concentration dependent as expected.

Acknowledgements

This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

(min)

time

6

4

Food Process Engineering Group P.O. Box 8129, 6700 EV Wageningen Contact: kelly.muijlwijk@wur.nl T + 31 (0)317 482240 www.wageningenur.nl

References

T. Krebs, K. Schroën, and R. Boom, *Soft Matter*, **2012**, *8*, 10650-10657.
T. Krebs, D. Ershov, C.G.P.H. Schroen, and R.M. Boom, *Soft Matter*, **2013**, *9*, 4026-4035.