Are growing media a must in organic greenhouse production?

Organic Greenhouse Soil Health, COST WP2D3, Bleiswjik 24-26/06/2013

Chris Blok, Wageningen UR Greenhouse Horticulture

Alternatives for soil

Rooting MediaWater Culture

Criteria

- 1. Nutrient control
- 2. Disinfection

WAGENINGE

- 3. Growth of micro organisms
- 4. Oxygen supply
- 5. Plant Hydraulic Conductivity

Substrate 1. Nutrient control

- +10% FW yield by refreshment (> 10 cycles a day)
- Speedy aeration: required 2mg/h/ gr FW root mass or
- Mass flow in water and air with discontinuous supply
- Because Ca/Mg are not as easily taken in: start schedule required and possible
- Adaptions are on the root within 1-3 cycles
- NH₄ must be regulated dynamically

Number of irrigation cycles (I.F.)						
Harvest	IF	Stem length	Shoot fresh	Number	Root fresh	Root/shoot
	(day ⁻¹)	(cm)	weight (g)	of roots	weight (g)	(FW) ratio
2	1	10.5 ± 0.9^{a}	2.0 ± 0.2^{a}	36 ± 19^{a}	0.27 ± 0.06^{a}	0.13 ± 0.03^{b}
2	6	12.0 ± 0.9^{ab}	2.4 ± 0.1^{b}	41 ± 19^{a}	0.28 ± 0.05^{a}	0.12 ± 0.02^{ab}
2	24	13.3 ± 0.8^{b}	2.7 ± 0.3^{c}	47 ± 16^{a}	0.25 ± 0.06^{a}	0.09 ± 0.02^{ab}
2	96	13.5 ± 1.3^{b}	2.9 ± 0.2^{c}	43 ± 10^{a}	0.22 ± 0.04^{a}	0.08 ± 0.01^{a}

The uptake of K is easier than for Ca. Thus:

In a free drain system you supply extra calcium.
In a closed system you supply what is consumed.
In both cases the slab ratio is about equal

NB also applies for Mg

Ammonium is preferred over K

Sonneveld en Voogt, 2009

WAGENINGEN UR For quality of life

Water 1. Nutrient control

- +10% FW yield by better refreshment
- Pumping is more effective than bubbles
- Mass flow in water and air with pumping
- Because Ca/Mg are not as easily taken in: start schedule required but not possible with high volumes
- Adaptions are on the root within 1 hour (M. vd Knaap)
- NH₄ must be regulated dynamically
- Supply must be symmetrical for each single plant

PLANT ASPECTS: standard root system

PLANT ASPECTS: water root system

Rooting reduced by high water content

WAGENINGEN UR For quality of life

Substrate 2. Disinfection

- Phytophtora, nematodes, clavibacter
- Methyl Bromide: almost globally banned now
- Steam sterilising: 140 MJ or 4 m³ gas equivalents per m²
- Limited depth (70-100 cm) and uniformity
- Re infestation with dust, water and young plants

Water 2. Disinfection

Phytium, phytoptora, Fusarium

- Chemicals visibly harm the crop AND do not always solve the problem (visible particles protect disease)
- Steam sterlising: 4200 MJ or 126 m³ gas equivalents per m³ i.e. 42 MJ per 10 l per m²
- Material deformation with heat and peroxide
- UV capacity for continuous disinfection
- UV capacity for batched disinfection

Substrate 3. Micro Organisms

Steam fungi

- Bacteria 10^6 10^8 CFU in mineral media
- Bacteria and Funghi 10—8-10^10 CFU in organic media
- Jump tails (fungi), worms (), nematodes (saprophytes)
- Poorly described/communicated succession
- Much easier controled than in soils
- Easier to learn to understand than in soils

Broadcasted Mycorrhiza on chrysanthemum

Fig. 1. Soil food web diagram. Arrows represent feeding links and points at the predator. TL = trophic level, R = recalcitrant organic matter L = labile organic matter, S = water soluble sugars and cr = cryptostigmatic (From: Holterkamp et al.)

Wet, bacterial mix added and dry rockwool

Water 3. Micro Organisms

Root hairs and cortex cells
Bacteria, later Rotifera, single Nematodes
Paramecium, later Dinellas, Vorticera

Bacteria predators and super predators

Substrate 4. Oxygen supply

- Root length growth stops
- Nutrient uptake and water uptake stop
- Roots die of, starting with root hairs and cortex
- Pythium arrives, 3-7 days AFTER root die
- Speedy aeration: required 2mg/h/ gr FW root mass or
- Mass flow in water and air with discontinuous supply
- A saturated layer is inevitable, its thickness is a choice

Water 4. Oxygen Supply

- Root length growth stops
- Nutrient uptake and water uptake stop
- Roots die of, starting with root hairs and cortex
- Pythium arrives, 3-7 days AFTER root die
- Speedy aeration: required 2mg/h/ gr FW root mass or
- Mass flow in water and air with discontinuous supply
- Supply must be symmetrical for each plant

Substrate 5. Plant Hydraulic Conductivity

Steam funghi

- Bacteria 10^6 10^8 CFU in mineral media
- Bacteria and Funghi 10—8-10^10 CFU in organisc media
- Jump tails (fungi), worms (), nematodes (saprophytes)
- Poorly described/communicated succession

Disappearance of Emboli \rightarrow physical process

Root substrate water content

Low water content High water content many wide xylem vessels

Good recovery of air emboli

Bad recovery of air emboli

WAGENINGEN UR For quality of life

Water 5. Plant Hydraulic Conductivity

Possible wider vessels so vase life might differ.

- Carbon Dioxide dosing is essential (or production becomes -30%).
- In instable substrates: CO2 dosing is substantial and related to temperature (and moisture and N-supply)
- Peroxides clean. Batch dosing is required.
- Supply water must be clean
- T influences root formation
- T influences max oxygen content in the water

25 degrees C versus 20 degrees C.

Conidia germination

At temperatures < 5°C condensed water has to be present at > 10 hrs

 WAGENINGENUR

 For quality of life

Wageningen UR Greenhouse Horticulture

Innovations for the horticultural sector

