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Spectral reflectance can be used to assess large-scale performances of plants in the field based on plant
nutrient balance as well as composition of defence compounds. However, plant chemical composition is

Accepted 30 January 2013 known to vary with season - due to its phenology - and it may even depend on the succession stage of
its habitat. Here we investigate (i) how spectral reflectance could be used to discriminate successional
Keywords: and phenological stages of Jacobaea vulgaris in both leaf and flower organs and (ii) if chemical content
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estimation by reflectance is flower or leaf dependent.

We used J. vulgaris, which is a natural outbreak plant species on abandoned arable fields in north-
western Europe and studied this species in a chronosequence representing successional development
during time since abandonment. The chemical content and reflectance between 400 and 2500 nm wave-
lengths of flowers and leaves were measured throughout the season in fields of different successional
ages. The data were analyzed with multivariate statistics for temporal discrimination and estimation of
chemical contents in both leaf and flower organs.

Two main effects were revealed by spectral reflectance measurements: (i) both flower and leaf spectra
show successional and seasonal changes, but the pattern is complex and organ specific (ii) flower head
pyrrolizidine alkaloids, which are involved in plant defence against herbivores, can be detected through
hyperspectral reflectance.We conclude that spectral reflectance of both leaves and flowers can provide
information on plant performance during season and successional stages. As a result, remote sensing
studies of plant performance in complex field situations will benefit from considering hyperspectral
reflectance of different plant organs. This approach may enable more detailed studies on the link between
spectral information and plant defence dynamics both aboveground and belowground.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spatial and temporal variation in plant chemical properties
results from exposure to biotic and abiotic factors in the environ-
ment. To study how plant interactions with the environment result
in vegetation patterns, ecological research develops hypotheses
based on observations in temporal or spatial transects such as
occurring in field chronosequences. These hypotheses are tested by
experimental manipulations of plants under controlled conditions
in fields, greenhouses or in the laboratory (Clements, 1963; Kardol
et al., 2006; van Dam et al., 1993). However, studies on changed
species interactions through time are often laborious and difficult
to carry out on a large spatial scale. Visible and near infra-red (VNIR)
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spectroscopy offers the opportunity to study the biochemical and
phenological state of plants and investigate how spectral input can
aid the understanding of plant temporal processes that vary with
ecosystem succession (Liu et al., 2008; Knox et al., 2010; Zeng et al.,
2010; Rautiainen et al., 2009).

Hyperspectral sensors provide comprehensive spectral infor-
mation of plants that allow for e.g. identifying species (Mutanga
et al,, 2003; Asner and Martin, 2011; Martin et al., 1998; Schmidt
and Skidmore, 2001; Buddenbaum et al., 2005), analyses of plant
chemical content (Knox et al., 2010; Ramoelo et al., 2011a; Card
et al., 1988; Wessman et al., 1988; Fourty and Baret, 1998; Curran
etal,, 1992) and soil nutrient impact on a plant’s (Asner and Martin,
2011; Pretoriusetal.,2011). So far, few studies have addressed tem-
poral spectral variation as a result of species responses to stages
of vegetation succession. Although many temporal studies have
discerned seasonal impacts on issues such as vegetation quality
for food for mammals (Knox et al., 2010; Zeng et al., 2008, 2010;
Gilmore et al., 2008; Hall-Beyer, 2003; Lechowicz and Koike, 1995;
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Mutanga et al., 2004; Cartelat et al., 2005; Skidmore et al., 2010),
the lack of such succession-seasonal studies in other trophic levels,
such as insects and soil herbivores, is certainly constrained by ele-
gant detection methods that reveal the nature and strength of these
biotic stressors in the field. Nevertheless soil microorganisms and
insects are drivers of ecosystem changes (de Beurs and Townsend,
2008) and using hyperspectral reflectance could be an interesting
avenue to study this more concealed biotic effects on plant perfor-
mance (Carvalho et al., 2012). One such site currently available is a
chronosequence of abandoned, ex-arable fields in the Netherlands,
that has been studied and monitored in order to study the role of
soil biota in secondary vegetation succession (van de Voorde et al.,
2012).

Numerous studies have been undertaken to understand the eco-
logical processes driving vegetation succession (Walker and del
Moral, 2003). More recently, the role of soil biota (such as fungi,
bacteria and invertebrate root herbivores) and their impact on
plant quality and community composition have been taken into
account (Kardol et al., 2006; Bezemer et al., 2006; Van de Voorde,
in press). Jacobaea vulgaris has been a model species for many of
these ecological studies, amongst others because of its hepato-
toxic characteristics towards humans, cattle and invertebrates. It
is known that J. vulgaris biomass changes throughout seasons and
succession and can be affected by soil nutrient and microbial com-
position (Joosten et al., 2009; Kostenko et al., 2012; Macel et al.,
2004). According to Kardol et al. (2006) species succession in the
chosen chronosequence may depend substantially on the accumu-
lation of harmful and beneficial organisms in the rhizosphere and
not only on abiotic soil properties. Such rhizosphere communities
may cause negative soil feedback in early succession, neutral in mid
succession and positive feedback to late succession plants (Kardol
et al., 2006).

Plant-soil biota interactions may affect the leaf chemical prop-
erties and canopy structural properties of a plant, which then
possibly translates into a change in spectral reflectance. In a recent
greenhouse study we found that such soil biotic effects can, to some
extent, affect leaf chemical composition and spectral reflectance
(Carvalho et al., 2012). Examining hyperspectral reflectance might
provide researchers with further avenues to study plant exposure
to ecological processes such as competition, plant diseases, inva-
siveness and soil biological control of plant abundance, through
the, so far, limited temporal scale.

Itis essential to understand if the spectral changes that may take
place in plants through time could relate to the ecological changes
that have already been demonstrated in these plants. As such, we
investigated the potential of spectral reflectance to discriminate
temporal variation of J. vulgaris during the secondary succession
stages of abandoned fields. We studied hyperspectral reflectance
of both leaves and flowers in order to determine if these two plant
organs separately can provide additive information on plant fitness.
We tested the hypotheses that: (i) Seasonality and succession stage
of J. vulgaris are expressed in spectral reflectance of both leaf and
flower organs and (ii) the chemical variation resulting from suc-
cessional and seasonal plant development can be detected in both
leaves and flowers.

2. Materials and methods
2.1. Species description

Although native to the Netherlands, J. vulgaris is considered a
noxious outbreak weed as it is toxic towards humans and live-
stock and highly dominant in recently abandoned arable fields
(Bezemer et al., 2006; Mattocks, 1986). When time of aban-
donment increases, J. vulgaris dominance declines and it largely

disappears from the vegetation (van de Voorde et al.,, 2012).
Its toxicity is mainly due to its pyrrolizidine alkaloids (PA) that
are present in all organ types, from leaves to flower heads and
seeds. In spring this species has a rosette structure, it flowers
via a single central stem throughout the summer, if conditions
are favourable (Fig. 1). The circular rosette has basal stalked
leaves obovate to pinnately lobed, generally 2-6 cm wide. Dur-
ing early and late summer the rosette leaves senesce and stems
develop with pinnate lobed leaves. Flower heads are the charac-
teristic Asteraceae capitulum with bright yellow flowers and green
bracts.

2.2. Field sampling

The selected fields belong to a chronosequence of abandoned
arable-fields (Kardol et al., 2006). We used information on site char-
acteristics and responses of J. vulgaris to soil biota (Kardol et al.,
2006; Bezemer et al., 2006; van de Voorde et al., 2011; van der
Wal et al., 2006) to selected 6 fields (Table 1). These fields were
all located on south Veluwe, Gelderland Province, the Netherlands.
Agricultural production had stopped between 5 and 30 years ago
and the fields are currently part of a large nature reserve (Bezemer
et al., 2006).

Since the fields were of different sizes, in each field we set a
W-shaped transect that covered the field central area of 30 m by
100 m. We sampled one plant every 5m to a total of 20 plants
per field. This process was repeated two times throughout the
Summer season. As such we covered 2 phenological stages: the
flowering and the senescing stage. At each sampling date in all
fields, of each individual plant five leaves were measured pos-
itioned from base to top of the stem. Five flower heads (the full
capitulum, Fig. 1) in the centre of the inflorescence were measured
in alateral perspective to incorporate both the flower petals and the
bracts of the capitulum. Both leaves and flowers of each plant were
measured still intact and attached to the plant. We used a plant
probe and leaf-clip attached to the ASD Fieldspec 3 fieldspectrom-
eter (ASD inc., Boulder CO, USA) to collect the spectral reflectance
data. The measured leaves and flowers were immediately col-
lected and stored in ice for chemical extractions in the laboratory
thereafter.

2.3. Leaf spectral measurements and processing

Spectral data were collected with an ASD Fieldspec 3 spec-
trometer with an ASD plant-probe and leaf-clip device (ASD inc.,
Boulder CO, USA). The instrument has a spectral range between 350
and 2500 nm with 3 nm spectral resolution in the 350-1000 nm
and 10nm between 1000 and 2500 nm wavelengths. The plant-
probe was designed for non-destructive data collection from live
plants with heat sensitive halogen light bulb (colour and tem-
perature 2901 £ 10°% K) and spectral measurement spot size of
10 mm radius. The leaf-clip has a gentle gripping system designed
for the plant-probe to hold the sample in place without inflict-
ing damage or removing the sample. Since we were interested
in spectral reflectance measurements the black panel face of the
leaf-clip was used in each measurement. In each leaf or flower 4
single reflectance measurements were undertaken resulting in a
20-fold composite leaf or flower spectral sample per plant (Ramsey,
1997). All spectral measurements were calibrated with the white
reference face of the leaf-clip. The reflectance measurements were
offset corrected and its composite average calculated with software
ViewSpec Pro 5.6.10 (ASD inc. Boulder, USA). In pre-processing we
realized that a technical error occurred with the first season mea-
surements, requiring the rosette leaf measurements to be removed
from further analysis.
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Fig. 1. Representative leaf and flower heads of Jacobaea vulgaris. Top row characterizes early Summer bottom row late Summer.

2.4. Chemical extraction

Chlorophyll a and b (mgg-!), nitrogen (%), carbon (%) and
the defence compounds pyrrolizidine alkaloids (mgg~!) were
extracted from the five leaves (base to top) while in the flower-
heads chlorophyll content was not considered.

The chlorophyll extraction was done using four leaf discs of
10mm diameter each. The leaf discs were immersed in 3 mL of
dymethyl sulfoxide (DMSO) and stored in a dark room for three days
at constant room temperature. In a spectrophotometer (Genesys 20
spectrophotometer 4001/4, Thermo Fisher Scientific Inc., Waltham,
USA) the 649 nm and 665 nm absorbance (Abs) was measured and
chlorophyll concentrations were calculated.

A fine homogenized powder from freeze-dried samples was
used for pyrrolizidine alkaloids, nitrogen (N) and carbon (C) estima-
tions. Metal cups of 6 mm diameter were used with 3-5 mg sample
powder for combustion-reduction in a C:N analyzer (Thermo flash
EA 1112, Thermo Fisher Scientific Inc., Waltham, USA) to estimate
C:N percentage.

Pyrrolizidine alkaloids (PAs) were extracted according to
Joosten et al. (2009) and quantified as described by Cheng
et al. (2011). The PA content was determined by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) using a

Table 1

Waters UPLC system (Waters, Milford, USA) coupled to a Waters
Premier XE tandem mass spectrometer (Waters, Milford, USA).

2.5. Statistical analysis

2.5.1. Analysis of variance (ANOVA test) and Tukey post hoc test
One-way ANOVA was performed in the spectral measurements,
first with season and succession classes and secondly with season
and field as factors. After a significant ANOVA test, a post hoc test
Tukey honestly significance difference (Tukey HSD) was performed
to test each wavelength in a pairwise manner. This test is conser-
vative for unequal sample sizes and accounts for type I errors by
reducing the significance level («) of each test so that the group-
wise type I error rate stays at the chosen level, in this case, o« =0.05
(Quinn and Keough, 2002). This multiple comparison permits to
find those wavelengths that are significantly different between
succession groups (young vs medium, young vs late, medium vs
late) and seasons with reduced error. The ANOVA analyses were
performed for both leaves and flower, using R 2.13.2 for Windows.

2.5.2. Discriminant analysis
While ANOVA tests for differences between groups, discrimi-
nant analysis can be applied to generate a combination of features

Names of fields selected, code names, time since abandonment (in years) its classified succession class and geo-location. Soil and plant community characteristics are available

in (van de Voorde et al., 2012) and (Kardol et al., 2006).

Field Field code Time since abandonment Year of abandonment Succession class Latitude (°N) Longitude (°E)
Oud Reemst OR 5 2005 Young 52.02 5.48
Reyerskamp R 5 2005 Young 52.01 5.47
Mossel M 15 1995 Medium 52.03 5.45
Nieuw Reemst NR 20 1990 Medium 52.04 5.47
Wolfheze w 22 1988 old 51.6 5.47
Dennenkamp D 27 1982 old 52.02 5.48
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that maximizes the probability of correctly assigned objects to
their defined groups (Quinn and Keough, 2002; Naes et al., 2002).
Additionally, the discriminant analyses can be used to classify
observations into the groups of interest. In this study we applied
quadratic discriminant analysis (QDA) since it does not assume
equal within-group covariance. The spectra can be highly collinear
and QDA is sensitive to such effects (Naes et al., 2002). To correct
for multicollinearity the spectral reflectance was mean-centred and
principal component analyses (PCA) was computed (Naes et al.,
2002). The resulting PCA scores were then used for performing the
QDA. We used 20 principal components as it explained 99.9% of the
variance, thus including all the information existent in the origi-
nal data. Discriminant analysis can have a problem with unequal
number of samples per group, overestimating a correct classifica-
tion, thus prior probabilities were calculated based on the observed
group sizes to reduce the random correct classification. The prior
probability of the groups describes what is known a priori about
the groups to be estimated in the analysis, is based on the Bayes’
theorem and is integrated in the discriminant analysis to infer the
posterior probabilities (Naes et al., 2002). Success of the classi-
fication of the QDA equation was assessed by the quality of the
cross-validation confusion matrix and by its success to classify new
observations into the groups. The first discriminant function is the
combination of variables that maximize the ration between-group
to within-group variation in MANOVA, so that the analysis was con-
sidered to test statistical significant differences between the groups
(Quinn and Keough, 2002).

By chance classification of samples (also called the error of
commission or specificity) is often raised as a problem in spec-
tral data analysis. Different measures of accuracy consider different
assumptions and one standardized method to overcome all prob-
lems is still challenging (Foody, 2002). By considering the MANOVA
statistical test alongside the discriminant analysis we allocate a
statistical power to the groups discriminant functions. Highly sig-
nificant functions should assure that groups compared have lower
by-chance classifications. Additionally the Tau index was computed
as it provides a standardized measure of the proportional improve-
ment over a model’s classification error rate established by chance
(Klecka, 1980). The formula applied was:

~ Ne— Y07 PiNi

T =
Nc— 3¢ PiNi

Nc is the number of samples correctly classified, N; is the number
of samples in the ith group, N is the total number of samples, G is
the number of groups and P; is the by chance probability of allocat-
ing the sample to that group. The groups of interest in this study
were the succession classes (Table 1). The QDA was analyzed in
Unscrambler X 10.1 and the MANOVA was processed in SPSS 17.0
for Windows.

2.5.3. Partial least square regression (PLSR)

While discriminant analysis tests the possibility for classifica-
tion of samples into the groups of interest (in this case succession
class), with partial least square regression (PLSR) we tested if spe-
cific spectral band data can be used as predictors of chemical
concentrations in individual samples (Naes et al., 2002). There-
fore we examine the linkage between the sample chemical content
and its spectral signature. The cross-validation procedure selected
was ‘leave-one-out’ sampling that iteratively generates regression
models with 1 random sample reserved for validation of the model.
This was done in a training-set with approximately 70% of the sam-
ples to determine the optimal number of factors and lowest root
mean square error (RMSEcv) of cross-validation. The accuracy of
the model for prediction of chemical concentrations was assessed
in terms of minimum root mean square error of prediction (RMSEp)

and the highest coefficient of regression (r2) of the test-set (i. e the
reserved 30% of the samples). The entire procedure was done in
Unscrambler X 10.1 for Windows.

3. Results
3.1. Spectral reflectance differences in leaf and flowers

It was possible to significantly differentiate between leaves and
flowers by spectral reflectance patterns (Figs. 2 and 3). The analy-
sis of J. vulgaris leaves and flowers revealed statistical significant
differences, which were more prominent in the flower spectral
reflectance thanin leaves. Both leaf and flower spectral reflectances
showed variations in relation to succession stage and season.

Hyperspectral reflectance of leaves from plants in old suc-
cession stages was significantly different from young succession
stages both in the visible range (500-650 nm) and in the inflec-
tion between the visible and near-infrared (700 nm region) (Fig. 3).
Flowers of plants from younger fields reflected significantly less in
the 500-650 nm range than flowers from medium or old succes-
sion stages (Fig. 3). No significant differences were found between
flower reflectance of medium and old succession classes (p > 0.05).

There were differences between early and late summer in the
red edge area (690-710nm region) of leaves (Fig. 3, p<0.05).
Flower spectrain early and late summer were significantly different
through the entire visible and infra-red region (Fig. 3, p <0.05).

3.2. Succession class discrimination

It was possible to discriminate successional classes with high
accuracy (of cross-validation) for both flower and leaf spec-
tral reflectance patterns. The successional classes underlying
dimensions of the cross-validated model were highly significant
(p<0.001) in explaining differences. In addition, Tau results indi-
cate that the classification analysis obtained between 90% and 100%
fewer errors than what would be expected by chance.

The succession classes discrimination analyses with both sea-
sons together resulted overall classification accuracy, by the
quadratic discriminant analysis, of 92.3% for the leaf cross-
validation model and 94.4% for the flowers (Table 2). Even so,
succession had only moderate prediction accuracy in the test-
set with 56.1% for leaf and 65% for flower correct prediction of
unknown samples.

The discrimination analyses with early and later Summer
separately resulted in 100% overall correct classification in the
cross-validation model, for both leaves and flowers (Table 3). How-
ever early Summer provided a low prediction accuracy for the
validation samples for flowers (32.5%) and leaves (50%) while late
Summer was low to moderate with 52.6% for leaves and 60% for
flowers correct prediction for the validation samples.

3.3. Chemical content estimation in leaves and flowers

There were significant differences in chemical content between
the seasonal and successional classes (Figs. 4 and 5). The PA con-
centrations were affected by both season and succession stage,
whereas nitrogen was significantly affected only by season. This
pattern was found in both leaf and flower organs, and partial least
square regression (PLSR) was successful in the estimation of several
chemical concentrations.

The most successful foliar estimates occurred in the primary
compounds, nitrogen and chlorophyll (Table 4). The prediction
of unknown samples by such models resulted in moderate cor-
rect estimations of foliar content with root mean square errors of
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prediction (RMSEp) in the 12-15% range of the mean. The PLSR was obtained for estimates of the defense compounds (Table 4).
failed prediction of foliar PA content (Table 4). Using PLSR we were able to estimate unknown samples between

While the most accurate estimations of leaf chemicals con- 38 and 61% accuracy. The best estimation accuracies were 23%
cerned the primary compounds, in flowers the highest accuracy and 29% of the mean for total PA and N-oxides, respectively.

NS TN CIIURITY et G 0 P 3 o W R S e

OlU VS YOUNQ |- S, e -

Leaves

Medium vs Young | S T

Early vs late Summer - - -

Old vs Medium -

Old vs Young s — —

Flowers

Medium vs Young

Early vs late Summer

S L O ] [ S N T N RS NN N S VL L O P o RN P S L I T DL
600 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm)

Fig. 3. One way ANOVA and Tukey HSD test results for leaf and flower reflectance measurements. Dark circles indicate wavebands that were significantly different (p <0.05)
in each pair comparison. Early Summer vs late Summer - early Summer and late Summer comparison; Old vs Young-0Old succession vs Young succession fields. Old vs
Medium-0ld and Medium succession comparison; Medium vs Young-Medium and Young succession comparison.



S. Carvalho et al. / International Journal of Applied Earth Observation and Geoinformation 24 (2013) 32-41 37

Table 2

Confusion matrix of the quadratic discriminant analysis with both seasons considered. Succession stage was used as the discrimination group. The first 20 principal components
of the spectral reflectance were used in the QDA. The bold number along the diagonal represents the number of correct classified samples. The results display the cross
validation (leave-one-out) and separate test set for classification of unknown samples for both leaf (tau=0.88) and flower heads (tau=0.92). All discriminant functions were

highly significant (p <0.001). In brackets is the number of samples used in each dataset.

Crossvalid (168)

Predict (59)

old Medium Young old Medium Young
Both seasons
Leaf
Oold 54 2 2 Old 14 6 5
Medium 1 47 0 Medium 3 9 4
Young 3 5 54 Young 5 4 9

Crossvalid (178)

Predict (60)

old Medium Young Old Medium Young
Both seasons
Flower
Old 57 2 3 old 12 2 4
Medium 2 57 2 Medium 4 14 2
Young 0 1 54 Young 4 4 13

Overall accuracy in cross-validation was 92.3% in leafs, 94.4% in flowers with predicted accuracy of 56.1% and 65% respectively.

Tertiary amines presented the highest error with 61.6% of the mean.
Contrary to the foliar PLSR, predictive models for flower contents
failed to estimate primary compounds (Table 4). The most accurate
PLSR models, both for leaves and flowers, consistently selected the
spectral regions known from literature (data not shown), such as
reported by Curran (1989), Kumar et al. (2001) and Carvalho et al.
(in press).

Table 3

4. Discussion

In this study of temporal variation in the hyperspectral
reflectance of J. vulgaris, two main effects were revealed: (i) there
are successional and seasonal variations in spectral reflectance of
leaves and flowers (ii) the defence chemical content of flowers can
be detected through hyperspectral reflectance.

Confusion matrix of the quadratic discriminant analysis per season. Succession stage was used as the discrimination group. The first 20 principal components of the spectral
reflectance were used in the QDA. The bold number along the diagonal represents the number of correct classified samples. The results display the cross validation (leave-one-
out) and separate test set for classification of unknown samples for both leaf (tau=1) and flower heads (tau = 1). All discriminant functions were highly significant (p <0.001).

In brackets is the number of samples used in each dataset.

Crossvalid (74)

Predict (38)

old Medium Young old Medium Young
Early Summer
Leaf
old 25 0 0 old 6 2 4
Medium 0 25 0 Medium 1 8 3
Young 0 0 24 Young 6 2 5

Crossvalid (80)

Predict (40)

old Medium Young old Medium Young
Early Summer
Flower
Oold 27 0 0 Oold 3 3 1
Medium 0 27 0 Medium 6 5 2
Young 0 0 26 Young 5 4 5

Overall accuracy in cross-validation was 100% in leafs and flowers with predicted accuracy of 50% and 32.5% respectively.

Crossvalid (74)

Predict (38)

old Medium Young Old Medium Young
Late Summer
Leaf
Old 25 0 0 old 6 2 4
Medium 0 25 0 Medium 1 8 3
Young 0 0 24 Young 6 2 5

Crossvalid (78)

Predict (40)

old Medium Young old Medium Young
Late Summer
Flower
old 25 0 0 old 10 2 2
Medium 0 27 0 Medium 5 6 2
Young 0 0 26 Young 3 2 8

Overall accuracy in cross-validation was 100% in leafs and flowers with predicted accuracy of 50% and 52.6% respectively.
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We had expected seasonal differences in hyperspectral
reflectance between flowers throughout the whole visible and
infrared range, as in early Summer the flower capitula were still
yellow, whereas in late Summer flowers were replaced by dry white
papus. Such clear differentiation in leaves was far less obvious. This
lack of full differentiation of spectral information between leaves
from different seasons might be influenced by spectral measure-
ments done only in live leaves. Brown and dead leaves have not
been considered in this study. Another limitation to this seasonal
study is the lack of the Spring season data, when plants were in the
rosette stage. This lack of data is due to an initial technical problem,
so that we were unable to include this early seasonal stage in our
analyses. Nevertheless, we believe that Spring season data could
very well improve the discrimination ability of our approach, as it
is a fully different ontogenetic stage of the life cycle of J. vugaris.
However, further tests are necessary.

The successional class of old field succession defined by Kardol
et al. (2006) resulted in a successful differentiation using the
hyperspectral information of flowers. This suggests that flower
composition is more sensitive to field ageing processes than that
of leaves. The hyperspectral reflectance of leaves showed signif-
icant differences between old and young succession fields in the
visible region, suggesting that differences in the photosynthetic
process may occur at larger temporal scales than usually thought.
The spectral changes in the visible wavelengths are supported by
the significant differences found in concentration of chlorophyll
a and b between these succession groups. The resulting spectral

Table 4

changes between plants found in the present study can, at least
to some extent, be related to the chemical changes in the plants.
This suggests that changes in plant chemical properties during suc-
cession possibly translate into the changes in spectral reflectance
and that plant successional position in the field might be identified
through analysis of hyperspectral reflectance data. The results sup-
port, to some extent, our hypothesis as the reflectance by flowers
was sensitive to succession stages, and both leaf and flower spectral
patterns reflected, to some degree, the plant chemistry.

Our study suggests that succession category affect, albeit
slightly, the plant spectral reflectance. The high cross-validation
results in our study and significant explained variation by the
discrimination functions suggest that even within species the sta-
tistical significant discrimination of groups (succession) is possible.
However the natural continuum range of variation has some level
of erroneous prediction of new samples due to groups that over-
lap. Since the accuracy of our cross-validation discriminant analysis
is similar to results from some other studies (Asner and Martin,
2011; Ramoelo et al.,, 2011b), we suggest that there should be
caution in the interpretation of the discrimination power based
solely on cross-validation models. A test set for prediction of
new samples should always be considered due to the continuum
variation naturally occurring in field conditions. The discrimina-
tion accuracy by the spectra of the plant organs was also season
dependent, whether we group the season or use them individu-
ally, but in general, succession class discrimination achieve similar
levels of accuracy.We demonstrated that chemical concentration

Species chemical concentration estimations by partial least square regression using leaf or flower spectral reflectance signatures. r2 calib represents r? of model calibration,
r? cv represents 2 of cross-validation (leave-one-out) and r? predict represents how good is the fit of the cross validated model to predict new samples from a separate
test-set. RMSEp is root mean square error of prediction and % RMSEp is the error as a percentage of the mean value of the chemical concentration. Num.Factors indicates the
number of factors selected by the model. Dash represents PLSR models that failed prediction and consequently the RMSE presented is of cross-validation. PA - pyrrolizidine

alkaloids, which act as defensive components in J. vulgaris.

Leaf Mean St. dev. 12 calib 2 cv 12 predict RMSEp %RMSEp Num.Factors
Nitrogen (%) 2.30 0.58 0.73 0.66 0.62 0.29 12.77 9
Carbon (%) 42.77 1.76 0.22 0.13 0.06 1.89 443 5
Chlorophyll a (mgg') 0.28 0.05 0.59 0.50 0.26 0.04 14.80 7
chlorophyll b (mgg-1) 0.15 0.06 0.65 0.60 0.60 0.03 2138 5
chlorophyll total (mgg~') 0.42 0.09 0.68 0.62 0.37 0.06 15.13 5
Total PA (mgg') 0.69 0.27 0.02 0.00 - 0.30 42.96 1
Tertiary-amines (mgg~') 0.17 0.18 0.02 0.00 - 0.15 85.96 1
N-oxides (mgg~1) 0.62 0.29 0.01 0.00 - 0.30 48.95 1
Flower

Nitrogen (%) 2.09 0.35 0.26 0.25 - - - 1
Carbon (%) 44.50 3.37 0.06 0.02 - 3.45 - 1
Total PA (mgg') 0.65 0.26 0.73 0.67 0.61 0.15 23.55 3
Tertiary-amines (mgg-') 0.19 0.16 0.41 0.40 0.38 0.11 61.62 2
N-oxides (mgg~") 0.60 0.25 0.63 0.56 0.47 0.18 29.77 3

Kardol et al. (2005).
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Fig. 5. Chemical content (primary and secondary) per succession stage (young, intermediate, and old) in leaves and flowers, for both early (black bars) and late Summer
(grey bars). The asterisk represents significante differences between seasons. Letters represent significant differences between succession categories (p <0.05). Error bars are
standard errors.

2010; Asner and Martin, 2011; Ramoelo et al.,2011b; Darvishzadeh
et al., 2008; Curran et al., 2001). Its accuracy provided a moderate
predictive ability of chemical concentration in new leaf samples,
showing that even in controlled field measurements such chemical

estimation using spectral data is possible for both leaves and
flowers. The cross-validation results obtained for foliar estimation
of nitrogen and chlorophyll were consistent with earlier studies,
including the spectral features selected for the models (Knox et al.,
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concentration estimations by hyperspectral reflectance are chal-
lenging. The flower estimation results were the reverse of results
on leaves. Nitrogen contents could not be predicted in flowers,
whereas estimations of PA compounds were moderately accurate.
Concentration wise both flowers and leaves were relatively sim-
ilar in nitrogen concentration variation. The differences between
flowers and leaves were therefore unexpected. Both Asner and
Martin (2008) and Kokaly and Clark (1999) highlighted that vege-
tation structure can affect spectral features and influence chemical
detection. It could be that the flower structure (i.e. the capitu-
lum shape) affects the spectral features associated with nitrogen
estimations resulting in such estimation inconsistencies between
organs. The flower structure combined with lower water content
in flower could have aided the features associated with PA esti-
mations. However, using the same technology, Carvalho et al. (in
press) were able to estimate foliar PAs with moderate accuracy in
laboratory conditions. Other studies might be necessary to analyze
what could cause such leaf and flower predictive differences. Nev-
ertheless, the two plant organs can affect the chemical estimation
by spectral features differently. This is important to study further
as upscale and temporal studies are foreseen in remote sensing.

Differences in J. vulgaris successional position might be detected
by spectral reflectance and this old-field chronosequence has been
proposed to be driven, at least in part, by soil biota (Kardol et al.,
2006; van de Voorde et al., 2012). Our results show that spectral
reflectance could add information to temporal studies in the field
on complex ecological processes driven by for example cryptobiota
that influence plant performance, which go beyond the impact of
large vertebrate herbivores. Moreover, we show that different plant
organs may vary in an organ-specific way during secondary succes-
sion. More insight into plant-soil interactions and their impacts
on spectral reflectance patterns might be considered as having
potential for studies on biological control of invasive species or
soil-borne diseases. An important issue to solve is the multiple
information aspect of spectral signals in imagery. In imagery both
leaf and flower information will be detected during flowering sea-
son. What the spectral signal of a plant as a whole may tell about
interactions, successional situation, its adaptation, etc., needs to be
established in subsequent studies to improve the development of
accurate extrapolations to imagery.

5. Conclusion

We addressed the capacity of spectral reflectance to discrimi-
nate succession stages (by age category) and season as well as the
importance of the plant organ for J. vulgaris. There are important
temporal aspects of plants affected by (a)biotic factors relevant to
ecology. The cross-validation models showed potential for detec-
ting seasonal and successional differences in plant performance
using hyperspectral reflectance patterns. However, the predictive
accuracy of new samples was low. The results were organ depend-
ent and spectral overlap may be the main reason for some of the
lowest outcomes. Yet the spectral variation in both flowers and
leaves is supported by the variation in chemical concentration of J.
vulgaris. Defence compounds could be estimated more reliably in
flowers, whereas of leaves primary compounds could be predicted
best. As such we suggest that remote sensing studies should con-
sider the effect not only of phenology but also of different organs.
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