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a  b  s  t  r  a  c  t

Spectral  reflectance  can  be  used  to assess  large-scale  performances  of  plants  in  the  field  based  on  plant
nutrient  balance  as  well  as  composition  of defence  compounds.  However,  plant  chemical  composition  is
known  to  vary  with season  – due  to  its phenology  – and  it may  even  depend  on  the  succession  stage  of
its  habitat.  Here  we investigate  (i) how  spectral  reflectance  could  be  used  to discriminate  successional
and  phenological  stages  of  Jacobaea  vulgaris  in both  leaf  and  flower  organs  and  (ii) if chemical  content
estimation  by  reflectance  is  flower  or leaf  dependent.

We  used  J.  vulgaris,  which  is  a natural  outbreak  plant  species  on  abandoned  arable  fields  in  north-
western  Europe  and  studied  this  species  in a chronosequence  representing  successional  development
during  time  since  abandonment.  The  chemical  content  and  reflectance  between  400  and  2500  nm  wave-
lengths  of flowers  and  leaves  were  measured  throughout  the  season  in fields  of  different  successional
ages.  The  data  were  analyzed  with  multivariate  statistics  for temporal  discrimination  and  estimation  of
chemical  contents  in  both  leaf  and  flower  organs.

Two  main  effects  were  revealed  by spectral  reflectance  measurements:  (i)  both  flower  and  leaf  spectra
show successional  and  seasonal  changes,  but the  pattern  is  complex  and  organ  specific  (ii)  flower  head

pyrrolizidine  alkaloids,  which  are  involved  in  plant  defence  against  herbivores,  can  be  detected  through
hyperspectral  reflectance.We  conclude  that spectral  reflectance  of  both  leaves  and  flowers  can  provide
information  on  plant  performance  during  season  and  successional  stages.  As  a result,  remote  sensing
studies  of  plant  performance  in complex  field  situations  will  benefit  from  considering  hyperspectral
reflectance  of  different  plant  organs.  This  approach  may  enable  more  detailed  studies  on  the  link  between

 plant
spectral  information  and

. Introduction

Spatial and temporal variation in plant chemical properties
esults from exposure to biotic and abiotic factors in the environ-
ent. To study how plant interactions with the environment result

n vegetation patterns, ecological research develops hypotheses
ased on observations in temporal or spatial transects such as
ccurring in field chronosequences. These hypotheses are tested by
xperimental manipulations of plants under controlled conditions
n fields, greenhouses or in the laboratory (Clements, 1963; Kardol

t al., 2006; van Dam et al., 1993). However, studies on changed
pecies interactions through time are often laborious and difficult
o carry out on a large spatial scale. Visible and near infra-red (VNIR)

∗ Corresponding author at: Netherlands Institute of Ecology (NIOO-KNAW), PO
ox 50, 6700 AB Wageningen, The Netherlands. Tel.: +31 317473595.

E-mail address: s.carvalho@nioo.knaw.nl (S. Carvalho).

303-2434/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jag.2013.01.005
 defence  dynamics  both  aboveground  and  belowground.
©  2013  Elsevier  B.V.  All  rights  reserved.

spectroscopy offers the opportunity to study the biochemical and
phenological state of plants and investigate how spectral input can
aid the understanding of plant temporal processes that vary with
ecosystem succession (Liu et al., 2008; Knox et al., 2010; Zeng et al.,
2010; Rautiainen et al., 2009).

Hyperspectral sensors provide comprehensive spectral infor-
mation of plants that allow for e.g. identifying species (Mutanga
et al., 2003; Asner and Martin, 2011; Martin et al., 1998; Schmidt
and Skidmore, 2001; Buddenbaum et al., 2005), analyses of plant
chemical content (Knox et al., 2010; Ramoelo et al., 2011a; Card
et al., 1988; Wessman et al., 1988; Fourty and Baret, 1998; Curran
et al., 1992) and soil nutrient impact on a plant’s (Asner and Martin,
2011; Pretorius et al., 2011). So far, few studies have addressed tem-
poral spectral variation as a result of species responses to stages

of vegetation succession. Although many temporal studies have
discerned seasonal impacts on issues such as vegetation quality
for food for mammals (Knox et al., 2010; Zeng et al., 2008, 2010;
Gilmore et al., 2008; Hall-Beyer, 2003; Lechowicz and Koike, 1995;

dx.doi.org/10.1016/j.jag.2013.01.005
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:s.carvalho@nioo.knaw.nl
dx.doi.org/10.1016/j.jag.2013.01.005
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utanga et al., 2004; Cartelat et al., 2005; Skidmore et al., 2010),
he lack of such succession-seasonal studies in other trophic levels,
uch as insects and soil herbivores, is certainly constrained by ele-
ant detection methods that reveal the nature and strength of these
iotic stressors in the field. Nevertheless soil microorganisms and

nsects are drivers of ecosystem changes (de Beurs and Townsend,
008) and using hyperspectral reflectance could be an interesting
venue to study this more concealed biotic effects on plant perfor-
ance (Carvalho et al., 2012). One such site currently available is a

hronosequence of abandoned, ex-arable fields in the Netherlands,
hat has been studied and monitored in order to study the role of
oil biota in secondary vegetation succession (van de Voorde et al.,
012).

Numerous studies have been undertaken to understand the eco-
ogical processes driving vegetation succession (Walker and del

oral, 2003). More recently, the role of soil biota (such as fungi,
acteria and invertebrate root herbivores) and their impact on
lant quality and community composition have been taken into
ccount (Kardol et al., 2006; Bezemer et al., 2006; Van de Voorde,
n press). Jacobaea vulgaris has been a model species for many of
hese ecological studies, amongst others because of its hepato-
oxic characteristics towards humans, cattle and invertebrates. It
s known that J. vulgaris biomass changes throughout seasons and
uccession and can be affected by soil nutrient and microbial com-
osition (Joosten et al., 2009; Kostenko et al., 2012; Macel et al.,
004). According to Kardol et al. (2006) species succession in the
hosen chronosequence may  depend substantially on the accumu-
ation of harmful and beneficial organisms in the rhizosphere and
ot only on abiotic soil properties. Such rhizosphere communities
ay  cause negative soil feedback in early succession, neutral in mid

uccession and positive feedback to late succession plants (Kardol
t al., 2006).

Plant–soil biota interactions may  affect the leaf chemical prop-
rties and canopy structural properties of a plant, which then
ossibly translates into a change in spectral reflectance. In a recent
reenhouse study we found that such soil biotic effects can, to some
xtent, affect leaf chemical composition and spectral reflectance
Carvalho et al., 2012). Examining hyperspectral reflectance might
rovide researchers with further avenues to study plant exposure
o ecological processes such as competition, plant diseases, inva-
iveness and soil biological control of plant abundance, through
he, so far, limited temporal scale.

It is essential to understand if the spectral changes that may  take
lace in plants through time could relate to the ecological changes
hat have already been demonstrated in these plants. As such, we
nvestigated the potential of spectral reflectance to discriminate
emporal variation of J. vulgaris during the secondary succession
tages of abandoned fields. We  studied hyperspectral reflectance
f both leaves and flowers in order to determine if these two plant
rgans separately can provide additive information on plant fitness.
e tested the hypotheses that: (i) Seasonality and succession stage

f J. vulgaris are expressed in spectral reflectance of both leaf and
ower organs and (ii) the chemical variation resulting from suc-
essional and seasonal plant development can be detected in both
eaves and flowers.

. Materials and methods

.1. Species description

Although native to the Netherlands, J. vulgaris is considered a

oxious outbreak weed as it is toxic towards humans and live-
tock and highly dominant in recently abandoned arable fields
Bezemer et al., 2006; Mattocks, 1986). When time of aban-
onment increases, J. vulgaris dominance declines and it largely
Observation and Geoinformation 24 (2013) 32–41 33

disappears from the vegetation (van de Voorde et al., 2012).
Its toxicity is mainly due to its pyrrolizidine alkaloids (PA) that
are present in all organ types, from leaves to flower heads and
seeds. In spring this species has a rosette structure, it flowers
via a single central stem throughout the summer, if conditions
are favourable (Fig. 1). The circular rosette has basal stalked
leaves obovate to pinnately lobed, generally 2–6 cm wide. Dur-
ing early and late summer the rosette leaves senesce and stems
develop with pinnate lobed leaves. Flower heads are the charac-
teristic Asteraceae capitulum with bright yellow flowers and green
bracts.

2.2. Field sampling

The selected fields belong to a chronosequence of abandoned
arable-fields (Kardol et al., 2006). We  used information on site char-
acteristics and responses of J. vulgaris to soil biota (Kardol et al.,
2006; Bezemer et al., 2006; van de Voorde et al., 2011; van der
Wal  et al., 2006) to selected 6 fields (Table 1). These fields were
all located on south Veluwe, Gelderland Province, the Netherlands.
Agricultural production had stopped between 5 and 30 years ago
and the fields are currently part of a large nature reserve (Bezemer
et al., 2006).

Since the fields were of different sizes, in each field we set a
W-shaped transect that covered the field central area of 30 m by
100 m.  We  sampled one plant every 5 m to a total of 20 plants
per field. This process was  repeated two times throughout the
Summer season. As such we covered 2 phenological stages: the
flowering and the senescing stage. At each sampling date in all
fields, of each individual plant five leaves were measured pos-
itioned from base to top of the stem. Five flower heads (the full
capitulum, Fig. 1) in the centre of the inflorescence were measured
in a lateral perspective to incorporate both the flower petals and the
bracts of the capitulum. Both leaves and flowers of each plant were
measured still intact and attached to the plant. We  used a plant
probe and leaf-clip attached to the ASD Fieldspec 3 fieldspectrom-
eter (ASD inc., Boulder CO, USA) to collect the spectral reflectance
data. The measured leaves and flowers were immediately col-
lected and stored in ice for chemical extractions in the laboratory
thereafter.

2.3. Leaf spectral measurements and processing

Spectral data were collected with an ASD Fieldspec 3 spec-
trometer with an ASD plant-probe and leaf-clip device (ASD inc.,
Boulder CO, USA). The instrument has a spectral range between 350
and 2500 nm with 3 nm spectral resolution in the 350–1000 nm
and 10 nm between 1000 and 2500 nm wavelengths. The plant-
probe was designed for non-destructive data collection from live
plants with heat sensitive halogen light bulb (colour and tem-
perature 2901 ± 10◦% K) and spectral measurement spot size of
10 mm radius. The leaf-clip has a gentle gripping system designed
for the plant-probe to hold the sample in place without inflict-
ing damage or removing the sample. Since we were interested
in spectral reflectance measurements the black panel face of the
leaf-clip was  used in each measurement. In each leaf or flower 4
single reflectance measurements were undertaken resulting in a
20-fold composite leaf or flower spectral sample per plant (Ramsey,
1997). All spectral measurements were calibrated with the white
reference face of the leaf-clip. The reflectance measurements were
ViewSpec Pro 5.6.10 (ASD inc. Boulder, USA). In pre-processing we
realized that a technical error occurred with the first season mea-
surements, requiring the rosette leaf measurements to be removed
from further analysis.
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Fig. 1. Representative leaf and flower heads of Jacobaea vulga

.4. Chemical extraction

Chlorophyll a and b (mg  g−1), nitrogen (%), carbon (%) and
he defence compounds pyrrolizidine alkaloids (mg  g−1) were
xtracted from the five leaves (base to top) while in the flower-
eads chlorophyll content was not considered.

The chlorophyll extraction was done using four leaf discs of
0 mm diameter each. The leaf discs were immersed in 3 mL  of
ymethyl sulfoxide (DMSO) and stored in a dark room for three days
t constant room temperature. In a spectrophotometer (Genesys 20
pectrophotometer 4001/4, Thermo Fisher Scientific Inc., Waltham,
SA) the 649 nm and 665 nm absorbance (Abs) was measured and
hlorophyll concentrations were calculated.

A fine homogenized powder from freeze-dried samples was
sed for pyrrolizidine alkaloids, nitrogen (N) and carbon (C) estima-
ions. Metal cups of 6 mm diameter were used with 3–5 mg  sample
owder for combustion-reduction in a C:N analyzer (Thermo flash
A 1112, Thermo Fisher Scientific Inc., Waltham, USA) to estimate
:N percentage.
Pyrrolizidine alkaloids (PAs) were extracted according to
oosten et al. (2009) and quantified as described by Cheng
t al. (2011).  The PA content was determined by liquid
hromatography–tandem mass spectrometry (LC–MS/MS) using a

able 1
ames of fields selected, code names, time since abandonment (in years) its classified succ

n  (van de Voorde et al., 2012) and (Kardol et al., 2006).

Field Field code Time since abandonment Year of aba

Oud Reemst OR 5 2005 

Reyerskamp R 5 2005 

Mossel M 15 1995 

Nieuw Reemst NR 20 1990 

Wolfheze W 22 1988 

Dennenkamp D 27 1982 
p row characterizes early Summer bottom row late Summer.

Waters UPLC system (Waters, Milford, USA) coupled to a Waters
Premier XE tandem mass spectrometer (Waters, Milford, USA).

2.5. Statistical analysis

2.5.1. Analysis of variance (ANOVA test) and Tukey post hoc test
One-way ANOVA was performed in the spectral measurements,

first with season and succession classes and secondly with season
and field as factors. After a significant ANOVA test, a post hoc test
Tukey honestly significance difference (Tukey HSD) was  performed
to test each wavelength in a pairwise manner. This test is conser-
vative for unequal sample sizes and accounts for type I errors by
reducing the significance level (˛) of each test so that the group-
wise type I error rate stays at the chosen level, in this case,  ̨ = 0.05
(Quinn and Keough, 2002). This multiple comparison permits to
find those wavelengths that are significantly different between
succession groups (young vs medium, young vs late, medium vs
late) and seasons with reduced error. The ANOVA analyses were
performed for both leaves and flower, using R 2.13.2 for Windows.
2.5.2. Discriminant analysis
While ANOVA tests for differences between groups, discrimi-

nant analysis can be applied to generate a combination of features

ession class and geo-location. Soil and plant community characteristics are available

ndonment Succession class Latitude (◦N) Longitude (◦E)

Young 52.02 5.48
Young 52.01 5.47
Medium 52.03 5.45
Medium 52.04 5.47
Old 51.6 5.47
Old 52.02 5.48
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hat maximizes the probability of correctly assigned objects to
heir defined groups (Quinn and Keough, 2002; Naes et al., 2002).
dditionally, the discriminant analyses can be used to classify
bservations into the groups of interest. In this study we applied
uadratic discriminant analysis (QDA) since it does not assume
qual within-group covariance. The spectra can be highly collinear
nd QDA is sensitive to such effects (Naes et al., 2002). To correct
or multicollinearity the spectral reflectance was mean-centred and
rincipal component analyses (PCA) was computed (Naes et al.,
002). The resulting PCA scores were then used for performing the
DA. We  used 20 principal components as it explained 99.9% of the
ariance, thus including all the information existent in the origi-
al data. Discriminant analysis can have a problem with unequal
umber of samples per group, overestimating a correct classifica-
ion, thus prior probabilities were calculated based on the observed
roup sizes to reduce the random correct classification. The prior
robability of the groups describes what is known a priori about
he groups to be estimated in the analysis, is based on the Bayes’
heorem and is integrated in the discriminant analysis to infer the
osterior probabilities (Naes et al., 2002). Success of the classi-
cation of the QDA equation was assessed by the quality of the
ross-validation confusion matrix and by its success to classify new
bservations into the groups. The first discriminant function is the
ombination of variables that maximize the ration between-group
o within-group variation in MANOVA, so that the analysis was con-
idered to test statistical significant differences between the groups
Quinn and Keough, 2002).

By chance classification of samples (also called the error of
ommission or specificity) is often raised as a problem in spec-
ral data analysis. Different measures of accuracy consider different
ssumptions and one standardized method to overcome all prob-
ems is still challenging (Foody, 2002). By considering the MANOVA
tatistical test alongside the discriminant analysis we  allocate a
tatistical power to the groups discriminant functions. Highly sig-
ificant functions should assure that groups compared have lower
y-chance classifications. Additionally the Tau index was computed
s it provides a standardized measure of the proportional improve-
ent over a model’s classification error rate established by chance

Klecka, 1980). The formula applied was:

 = Nc −
∑G

i=1PiNi

Nc −
∑G

i=1PiNi

c is the number of samples correctly classified, Ni is the number
f samples in the ith group, N is the total number of samples, G is
he number of groups and Pi is the by chance probability of allocat-
ng the sample to that group. The groups of interest in this study

ere the succession classes (Table 1). The QDA was  analyzed in
nscrambler X 10.1 and the MANOVA was processed in SPSS 17.0

or Windows.

.5.3. Partial least square regression (PLSR)
While discriminant analysis tests the possibility for classifica-

ion of samples into the groups of interest (in this case succession
lass), with partial least square regression (PLSR) we tested if spe-
ific spectral band data can be used as predictors of chemical
oncentrations in individual samples (Naes et al., 2002). There-
ore we examine the linkage between the sample chemical content
nd its spectral signature. The cross-validation procedure selected
as ‘leave-one-out’ sampling that iteratively generates regression
odels with 1 random sample reserved for validation of the model.

his was done in a training-set with approximately 70% of the sam-

les to determine the optimal number of factors and lowest root
ean square error (RMSEcv) of cross-validation. The accuracy of

he model for prediction of chemical concentrations was assessed
n terms of minimum root mean square error of prediction (RMSEp)
Observation and Geoinformation 24 (2013) 32–41 35

and the highest coefficient of regression (r2) of the test-set (i. e the
reserved 30% of the samples). The entire procedure was done in
Unscrambler X 10.1 for Windows.

3. Results

3.1. Spectral reflectance differences in leaf and flowers

It was  possible to significantly differentiate between leaves and
flowers by spectral reflectance patterns (Figs. 2 and 3). The analy-
sis of J. vulgaris leaves and flowers revealed statistical significant
differences, which were more prominent in the flower spectral
reflectance than in leaves. Both leaf and flower spectral reflectances
showed variations in relation to succession stage and season.

Hyperspectral reflectance of leaves from plants in old suc-
cession stages was significantly different from young succession
stages both in the visible range (500–650 nm) and in the inflec-
tion between the visible and near-infrared (700 nm region) (Fig. 3).
Flowers of plants from younger fields reflected significantly less in
the 500–650 nm range than flowers from medium or old succes-
sion stages (Fig. 3). No significant differences were found between
flower reflectance of medium and old succession classes (p > 0.05).

There were differences between early and late summer in the
red edge area (690–710 nm region) of leaves (Fig. 3, p < 0.05).
Flower spectra in early and late summer were significantly different
through the entire visible and infra-red region (Fig. 3, p < 0.05).

3.2. Succession class discrimination

It was possible to discriminate successional classes with high
accuracy (of cross-validation) for both flower and leaf spec-
tral reflectance patterns. The successional classes underlying
dimensions of the cross-validated model were highly significant
(p < 0.001) in explaining differences. In addition, Tau results indi-
cate that the classification analysis obtained between 90% and 100%
fewer errors than what would be expected by chance.

The succession classes discrimination analyses with both sea-
sons together resulted overall classification accuracy, by the
quadratic discriminant analysis, of 92.3% for the leaf cross-
validation model and 94.4% for the flowers (Table 2). Even so,
succession had only moderate prediction accuracy in the test-
set with 56.1% for leaf and 65% for flower correct prediction of
unknown samples.

The discrimination analyses with early and later Summer
separately resulted in 100% overall correct classification in the
cross-validation model, for both leaves and flowers (Table 3). How-
ever early Summer provided a low prediction accuracy for the
validation samples for flowers (32.5%) and leaves (50%) while late
Summer was  low to moderate with 52.6% for leaves and 60% for
flowers correct prediction for the validation samples.

3.3. Chemical content estimation in leaves and flowers

There were significant differences in chemical content between
the seasonal and successional classes (Figs. 4 and 5). The PA con-
centrations were affected by both season and succession stage,
whereas nitrogen was significantly affected only by season. This
pattern was  found in both leaf and flower organs, and partial least
square regression (PLSR) was  successful in the estimation of several
chemical concentrations.
The most successful foliar estimates occurred in the primary
compounds, nitrogen and chlorophyll (Table 4). The prediction
of unknown samples by such models resulted in moderate cor-
rect estimations of foliar content with root mean square errors of
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Fig. 2. Mean spectral reflectance of (a) succession class in leaves, (b) succes
rediction (RMSEp) in the 12–15% range of the mean. The PLSR
ailed prediction of foliar PA content (Table 4).

While the most accurate estimations of leaf chemicals con-
erned the primary compounds, in flowers the highest accuracy

ig. 3. One way ANOVA and Tukey HSD test results for leaf and flower reflectance measur
n  each pair comparison. Early Summer vs late Summer – early Summer and late Summ

edium–Old and Medium succession comparison; Medium vs Young–Medium and Youn
lass in flower heads (c) seasons in leaves and (d) seasons in flowers heads.
was obtained for estimates of the defense compounds (Table 4).
Using PLSR we were able to estimate unknown samples between
38 and 61% accuracy. The best estimation accuracies were 23%
and 29% of the mean for total PA and N-oxides, respectively.

ements. Dark circles indicate wavebands that were significantly different (p < 0.05)
er comparison; Old vs Young–Old succession vs Young succession fields. Old vs

g succession comparison.
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Table  2
Confusion matrix of the quadratic discriminant analysis with both seasons considered. Succession stage was used as the discrimination group. The first 20 principal components
of  the spectral reflectance were used in the QDA. The bold number along the diagonal represents the number of correct classified samples. The results display the cross
validation (leave-one-out) and separate test set for classification of unknown samples for both leaf (tau = 0.88) and flower heads (tau = 0.92). All discriminant functions were
highly  significant (p < 0.001). In brackets is the number of samples used in each dataset.

Crossvalid (168) Predict (59)

Old Medium Young Old Medium Young

Both seasons
Leaf
Old 54 2 2 Old 14 6 5
Medium 1 47 0 Medium 3 9 4
Young 3 5 54 Young 5 4 9

Crossvalid (178) Predict (60)

Old Medium Young Old Medium Young

Both seasons
Flower
Old 57 2 3 Old 12 2 4

O ted ac
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f
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O

Medium 2 57 2
Young 0 1 54 

verall accuracy in cross-validation was 92.3% in leafs, 94.4% in flowers with predic

ertiary amines presented the highest error with 61.6% of the mean.
ontrary to the foliar PLSR, predictive models for flower contents

ailed to estimate primary compounds (Table 4). The most accurate
LSR models, both for leaves and flowers, consistently selected the

pectral regions known from literature (data not shown), such as
eported by Curran (1989),  Kumar et al. (2001) and Carvalho et al.
in press).

able 3
onfusion matrix of the quadratic discriminant analysis per season. Succession stage was
eflectance were used in the QDA. The bold number along the diagonal represents the num
ut)  and separate test set for classification of unknown samples for both leaf (tau = 1) and 

n  brackets is the number of samples used in each dataset.

Crossvalid (74)

Old Medium Young 

Early Summer
Leaf
Old 25 0 0 

Medium 0 25 0
Young 0 0 24 

Crossvalid (80)

Old Medium Young 

Early Summer
Flower
Old 27 0 0 

Medium 0 27 0 

Young 0 0 26 

Overall accuracy in cross-validation was 100% in leafs and flowers with predicted accur

Crossvalid (74)

Old Medium Young 

Late Summer
Leaf
Old 25 0 0 

Medium 0 25 0 

Young 0 0 24 

Crossvalid (78) 

Old Medium Young 

Late Summer
Flower
Old 25 0 0 

Medium 0 27 0 

Young 0 0 26 

verall accuracy in cross-validation was 100% in leafs and flowers with predicted accurac
Medium 4 14 2
Young 4 4 13

curacy of 56.1% and 65% respectively.

4.  Discussion

In this study of temporal variation in the hyperspectral
reflectance of J. vulgaris, two main effects were revealed: (i) there

are successional and seasonal variations in spectral reflectance of
leaves and flowers (ii) the defence chemical content of flowers can
be detected through hyperspectral reflectance.

 used as the discrimination group. The first 20 principal components of the spectral
ber of correct classified samples. The results display the cross validation (leave-one-
flower heads (tau = 1). All discriminant functions were highly significant (p < 0.001).

Predict (38)

Old Medium Young

Old 6 2 4
Medium 1 8 3
Young 6 2 5

Predict (40)

Old Medium Young

Old 3 3 1
Medium 6 5 2
Young 5 4 5

acy of 50% and 32.5% respectively.

Predict (38)

Old Medium Young

Old 6 2 4
Medium 1 8 3
Young 6 2 5

Predict (40)

Old Medium Young

Old 10 2 2
Medium 5 6 2
Young 3 2 8

y of 50% and 52.6% respectively.
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ig. 4. Chlorophyll content per succession stage (young, intermediate, old) in leave
ifferences between seasons. Letters represent significant differences between succ

We  had expected seasonal differences in hyperspectral
eflectance between flowers throughout the whole visible and
nfrared range, as in early Summer the flower capitula were still
ellow, whereas in late Summer flowers were replaced by dry white
apus. Such clear differentiation in leaves was far less obvious. This

ack of full differentiation of spectral information between leaves
rom different seasons might be influenced by spectral measure-

ents done only in live leaves. Brown and dead leaves have not
een considered in this study. Another limitation to this seasonal
tudy is the lack of the Spring season data, when plants were in the
osette stage. This lack of data is due to an initial technical problem,
o that we were unable to include this early seasonal stage in our
nalyses. Nevertheless, we believe that Spring season data could
ery well improve the discrimination ability of our approach, as it
s a fully different ontogenetic stage of the life cycle of J. vugaris.
owever, further tests are necessary.

The successional class of old field succession defined by Kardol
t al. (2006) resulted in a successful differentiation using the
yperspectral information of flowers. This suggests that flower
omposition is more sensitive to field ageing processes than that
f leaves. The hyperspectral reflectance of leaves showed signif-
cant differences between old and young succession fields in the
isible region, suggesting that differences in the photosynthetic
rocess may  occur at larger temporal scales than usually thought.

he spectral changes in the visible wavelengths are supported by
he significant differences found in concentration of chlorophyll

 and b between these succession groups. The resulting spectral

able 4
pecies chemical concentration estimations by partial least square regression using leaf o
2 cv represents r2 of cross-validation (leave-one-out) and r2 predict represents how go
est-set. RMSEp is root mean square error of prediction and % RMSEp is the error as a perc
umber  of factors selected by the model. Dash represents PLSR models that failed predict
lkaloids, which act as defensive components in J. vulgaris.

Leaf Mean St. dev. r2 calib r2

Nitrogen (%) 2.30 0.58 0.73 0
Carbon (%) 42.77 1.76 0.22 0
Chlorophyll a (mg  g−1) 0.28 0.05 0.59 0
chlorophyll b (mg  g−1) 0.15 0.06 0.65 0
chlorophyll total (mg  g−1) 0.42 0.09 0.68 0
Total  PA (mg  g−1) 0.69 0.27 0.02 0
Tertiary-amines (mg  g−1) 0.17 0.18 0.02 0
N-oxides (mg  g−1) 0.62 0.29 0.01 0

Flower
Nitrogen (%) 2.09 0.35 0.26 0
Carbon (%) 44.50 3.37 0.06 0
Total  PA (mg  g−1) 0.65 0.26 0.73 0
Tertiary-amines (mg  g−1) 0.19 0.16 0.41 0
N-oxides (mg  g−1) 0.60 0.25 0.63 0

ardol et al. (2005).
oth early (black bars) and late Summer (grey bars). Asterisk represents significante
 categories (p < 0.05). Error bars are standard errors.

changes between plants found in the present study can, at least
to some extent, be related to the chemical changes in the plants.
This suggests that changes in plant chemical properties during suc-
cession possibly translate into the changes in spectral reflectance
and that plant successional position in the field might be identified
through analysis of hyperspectral reflectance data. The results sup-
port, to some extent, our hypothesis as the reflectance by flowers
was sensitive to succession stages, and both leaf and flower spectral
patterns reflected, to some degree, the plant chemistry.

Our study suggests that succession category affect, albeit
slightly, the plant spectral reflectance. The high cross-validation
results in our study and significant explained variation by the
discrimination functions suggest that even within species the sta-
tistical significant discrimination of groups (succession) is possible.
However the natural continuum range of variation has some level
of erroneous prediction of new samples due to groups that over-
lap. Since the accuracy of our cross-validation discriminant analysis
is similar to results from some other studies (Asner and Martin,
2011; Ramoelo et al., 2011b),  we suggest that there should be
caution in the interpretation of the discrimination power based
solely on cross-validation models. A test set for prediction of
new samples should always be considered due to the continuum
variation naturally occurring in field conditions. The discrimina-
tion accuracy by the spectra of the plant organs was also season

dependent, whether we  group the season or use them individu-
ally, but in general, succession class discrimination achieve similar
levels of accuracy.We demonstrated that chemical concentration

r flower spectral reflectance signatures. r2 calib represents r2 of model calibration,
od is the fit of the cross validated model to predict new samples from a separate
entage of the mean value of the chemical concentration. Num.Factors indicates the
ion and consequently the RMSE presented is of cross-validation. PA – pyrrolizidine

cv r2 predict RMSEp %RMSEp Num.Factors

.66 0.62 0.29 12.77 9

.13 0.06 1.89 4.43 5

.50 0.26 0.04 14.80 7

.60 0.60 0.03 21.38 5

.62 0.37 0.06 15.13 5

.00 – 0.30 42.96 1

.00 – 0.15 85.96 1

.00 – 0.30 48.95 1

.25 – – – 1

.02 – 3.45 – 1

.67 0.61 0.15 23.55 3

.40 0.38 0.11 61.62 2

.56 0.47 0.18 29.77 3
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grey  bars). The asterisk represents significante differences between seasons. Letter
tandard errors.
stimation using spectral data is possible for both leaves and
owers. The cross-validation results obtained for foliar estimation
f nitrogen and chlorophyll were consistent with earlier studies,
ncluding the spectral features selected for the models (Knox et al.,
diate, and old) in leaves and flowers, for both early (black bars) and late Summer
sent significant differences between succession categories (p < 0.05). Error bars are
2010; Asner and Martin, 2011; Ramoelo et al., 2011b; Darvishzadeh
et al., 2008; Curran et al., 2001). Its accuracy provided a moderate
predictive ability of chemical concentration in new leaf samples,
showing that even in controlled field measurements such chemical
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oncentration estimations by hyperspectral reflectance are chal-
enging. The flower estimation results were the reverse of results
n leaves. Nitrogen contents could not be predicted in flowers,
hereas estimations of PA compounds were moderately accurate.
oncentration wise both flowers and leaves were relatively sim-

lar in nitrogen concentration variation. The differences between
owers and leaves were therefore unexpected. Both Asner and
artin (2008) and Kokaly and Clark (1999) highlighted that vege-

ation structure can affect spectral features and influence chemical
etection. It could be that the flower structure (i.e. the capitu-

um shape) affects the spectral features associated with nitrogen
stimations resulting in such estimation inconsistencies between
rgans. The flower structure combined with lower water content
n flower could have aided the features associated with PA esti-

ations. However, using the same technology, Carvalho et al. (in
ress) were able to estimate foliar PAs with moderate accuracy in

aboratory conditions. Other studies might be necessary to analyze
hat could cause such leaf and flower predictive differences. Nev-

rtheless, the two plant organs can affect the chemical estimation
y spectral features differently. This is important to study further
s upscale and temporal studies are foreseen in remote sensing.

Differences in J. vulgaris successional position might be detected
y spectral reflectance and this old-field chronosequence has been
roposed to be driven, at least in part, by soil biota (Kardol et al.,
006; van de Voorde et al., 2012). Our results show that spectral
eflectance could add information to temporal studies in the field
n complex ecological processes driven by for example cryptobiota
hat influence plant performance, which go beyond the impact of
arge vertebrate herbivores. Moreover, we show that different plant
rgans may  vary in an organ-specific way during secondary succes-
ion. More insight into plant–soil interactions and their impacts
n spectral reflectance patterns might be considered as having
otential for studies on biological control of invasive species or
oil-borne diseases. An important issue to solve is the multiple
nformation aspect of spectral signals in imagery. In imagery both
eaf and flower information will be detected during flowering sea-
on. What the spectral signal of a plant as a whole may  tell about
nteractions, successional situation, its adaptation, etc., needs to be
stablished in subsequent studies to improve the development of
ccurate extrapolations to imagery.

. Conclusion

We addressed the capacity of spectral reflectance to discrimi-
ate succession stages (by age category) and season as well as the

mportance of the plant organ for J. vulgaris. There are important
emporal aspects of plants affected by (a)biotic factors relevant to
cology. The cross-validation models showed potential for detec-
ing seasonal and successional differences in plant performance
sing hyperspectral reflectance patterns. However, the predictive
ccuracy of new samples was low. The results were organ depend-
nt and spectral overlap may  be the main reason for some of the
owest outcomes. Yet the spectral variation in both flowers and
eaves is supported by the variation in chemical concentration of J.
ulgaris. Defence compounds could be estimated more reliably in
owers, whereas of leaves primary compounds could be predicted
est. As such we suggest that remote sensing studies should con-
ider the effect not only of phenology but also of different organs.
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