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ABSTRACT 

Focus formation by plant pathogens dispersed by 

air-borne spores was studied by means of a "diffusion 

theory'. The theory was derived from a set of simple 

assumptions summarizing existing phytopathological 

knowledge. The theory is a subset of the 

Diekmann-Thieme theory. It is formulated as a system of 

two partial differential equations: (1) the diffusion 

equation and (2) the generalized Vanderplank equation. 

A 'diffusion model' is built on the basis of the 

'diffusion theory' to simulate a particular situation, 

which can be programmed in FORTRAN and linked to PODESS 

(Partial and/or Ordinary Differential Equation Systems 

Solver). The theory was validated by comparison to 

other epidemiological models and to experimental data. 

Sensitivity analysis, of a type new in agriculture, 

examined the influence of various parameters on the 

model's output. The "diffusion model' permits dynamic 

simulation of focus expansion of air-borne plant 

disease in the horizontal plane and in a 

three-dimensional multilayer crop. Disease development 

in a non-uniform crop, generation of daughter foci, and 

focus development under the influence of wind can be 

simulated. The model shows convincingly that epidemic 

development from a single focus proceeds more 

efficiently if at least two dispersal mechanisms with 

different parameters concur; disease spread is most 

rapid when the partitioning of spores over the two 

mechanisms reaches an optimum value. 
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PREFACE 

Conversations between the authors, a physicist and a 

plant pathologist who met by chance, led to the 

question whether the toolbox of the physicist could 

contribute to better understanding of focus development 

in plant disease. The present volume answers that 

question. 

A ^diffusion theory' was developed and a numerical 

^diffusion model' derived. The diffusion model has the 

form of a dynamic simulation model, adaptable to a 

variety of situations. These situations should be 

limited, for the time being, to foci in the crop canopy 

caused by fungal plant pathogens dispersed by air-borne 

spores. 

The development of the ^diffusion theory' does not 

stand alone. The mathematicians 0. Diekmann and H.R. 

Thieme found an integro-differential equation for focus 

development. F. van den Bosch and others applied the 

Diekmann-Thieme theory to focus development in plant 

disease, making the general theory more specific. Along 

the ruler connecting the general and the specific, the 
vdiffusion theory' is placed near the specific end. The 

simulation model can handle parameter variation in time 

and space. It is specifically suited to situations with 

an inhomogeneous distribution of the host plants and 

with multiple dispersal. 

Several institutions and individuals contributed to 

the present volume. The Institute for Plant Breeding 

and Acclimatization, Cereals Department, at Cracow, 

Poland, allowed the first author prolonged leaves of 

study in The Netherlands. The Food and Agriculture 

Organization of the United Nations, the Ministry of 

Agriculture and Fisheries of The Netherlands (by way of 

the International Agricultural Centre, Wageningen) and 



the Wageningen Agricultural University, The 

Netherlands, accorded fellowships to the first author. 

The Department of Phytopathology provided working 

space, library services, and computer facilities. A.J. 

Koster of the Computer Centre, Wageningen Agricultural 

University, was quite liberal in the accounting of 

computer time, not calculated in seconds but in days. 

The vAgricultural University of Wageningen Papers' 

kindly accepted to publish this volume. 

The version of this volume presented as a Ph.D. 

thesis was made possible by the Foundation vFonds 

Landbouw Export Bureau 1916/1918'. 

The authors acknowledge with great pleasure the 

assistance of J.A.J. Metz, Professor of Mathematical 

Biology at the Leyden State University, The 

Netherlands, and his invaluable contribution to the 

mathematical aspects of the Kdiffusion theory', 

especially his efforts to place the ^diffusion theory' 

in a wider mathematical context. F. van den Bosch and 

J.A.P. Heesterbeek showed their continued and 

stimulating interest. 
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1 INTRODUCTION 

A conspicuous and important phenomenon in plant 

disease epidemiology is the hot-spot or focus. It was 

defined by the British Mycological Society (Anonymous, 

1953). Since 1963, the year when Van der Plank 

published his ideas on botanical epidemiology, 

mathematics occupies an important position in the 

description of focus development. But mathematics was 

used mainly as a tool to help with the formulation or 

generalization of experimental data (Gregory, 1968; 

Gregory, 1973; Aylor, 1978; Aylor, 1987). Computer 

simulation was used extensively (Kyosawa, 1976; 

Kampmeijer and Zadoks, 1977; Minogue and Fry 1983a, b). 

Mathematicians also made their contributions to 

epidemiology. Starting from Kermack and McKendrick's 

1927 paper the work was continued by Kendall (1948, 

1965), Mollison (1977), Diekmann (1978; 1979) and 

Thieme (1977; 1979). The Diekmann-Thieme theory in a 

certain sense is the most general theory of disease 

development in time and space. Starting from the 

minimum collection of assumptions, it already leads to 

the mathematical explanation of focus formation. The 

theoretical concepts of Diekmann and Thieme were put 

into a phytopathological context by Van den Bosch et 

al. (1988a, b, c). 

The study presented here takes a different path, one 

which is usually followed by physicists. Its basis is a 

set of assumptions about the details of the underlying 

processes, which assume nothing but 'common' knowledge. 

On this basis a theory is built. This is first of all a 

theory about interacting physical entities. In a 

mathematical sense, this theory is subsumed under the 

Diekmann-Thieme theory. The mathematical description is 

supported by a physical picture of the processes 



involved. Moreover, and possibly even more important, 

the fact that the theory is phrased in terms of 

differential equations which are easy to solve 

numerically makes it easy to study i.a. focus 

development for short periods of time, inhomogeneous 

space, and parameter dependence on time. 

Having a proper description of focus development in 

time and space, which is a characteristic element of 

many epidemics, a great variety of situations met in 

agricultural practice can be described. Thus the study 

presented below can be summarized by the following 

flowchart (Fig. 1.1). 

Empirical 

knowledge 

Assumptions 

Definitions 

'Diffusion theory' 

Focus 

'Diffusion model' 

Application 

Fig. 1.1. Flowchart of the present study on focus 

development. 



2 OUTLINE OF THIS STUDY 

The objective of this study is to present a theory, 

and practical applications of the theory, on focus 

development of plant disease in space and time. The 

book continues a tradition to formulate problems of 

botanical epidemiology in mathematical terms, as 

initiated by Van der Plank in his famous 1963 book and 

elaborated in e.g. EPIMUL by Kampmeijer & Zadoks 

(1977), in the Simulation Monographs. Analytical 

studies done in the late seventies by Diekmann (1978, 

1979) and Thieme (1977, 1979), followed recently by the 

phytopathological interpretations of Van den Bosch et 

al. (1988a, b, c), shed new light on the application of 

mathematics to epidemiology. The aim of the present 

publication is to provide a theory, deeply rooted in 

physics and mathematics, which leads to models suitable 

for computer simulation of epidemics in time and space. 

The theory borrows the conceptual approach from 

physics, modified where necessary. The language of this 

study is mathematics, but no great mathematical 

experience is required to understand the biological 

aspects of this study. As the theory deals with complex 

phenomena, analytical solutions are possible only in 

simple cases, usually too simple for application in 

agricultural practice. Therefore, numerical analysis 

and computer simulation are applied throughout. Some 

knowledge of FORTRAN is useful to understand and 

utilize the models presented, but the less experienced 

reader, who regards the programs as vblack boxes', will 

be able to understand the results. 

The theory is elaborated at several levels of 

complexity, gradually approaching the complexity of 

biological phenomena. Chapter 3 presents the 

"diffusion' model - based on the diffusion equation 



in two-dimensional space and time. Chapter 4 tries to 

validate the theory, comparing its results to the 

results of other models and to experimental data. 

Throughout chapters 3 and 4, the equations are solved 

either by analytical or by numerical methods. 

Chapter 5 performs a sensitivity analysis in a way 

new to agriculture. Chapter 6 describes the 
vtelegrapher's' theory as a possible extension of the 

* diffusion' theory. Comparison of the two theories 

indicates if it is worthwhile to use this extension. 

Another extension, incorporation of a wind effect on 

focus development, is described in Chapter 7. 

The vertical distribution of spores and lesions, and 

the dependence of the distribution parameter values on 

height cannot be neglected. The models use parameters, 

which in reality are quite complex, so that they must 

be treated as empirical functions of time and 

environmental conditions. Stochasticity of some 

processes must be taken into consideration. Many 

diseases are spread by multiple mechanisms. Models, 

simulating these phenomena, are introduced in Chapter 

8. Their realization using the principles of dynamic 

computer simulation is described in Chapter 9. Examples 

of the simulation models which show some of possible 

applications simulate inhomogeneity in crop 

distribution, multiple dispersal mechanisms, and 

three-dimensional crop distribution with developing 

leaf layers and variable wind. 

„ Chapter 10 gives a general discussion with 

indications for future work. 

This study is concluded by a brief description 

(Appendix A) of the computer package PODESS (Partial 

and/or Ordinary Differential Equations Systems Solver), 

written in FORTRAN, which is the base for the numerical 

treatment and the simulation programs. The flexibility 

of this package allows the user to run the programs 

discussed and to develop programs for his own needs. 

10 



3 DIFFUSION THEORY OF FOCAL DISEASE DEVELOPMENT 

- THE APPROXIMATE THEORY FOR SPECIAL CASES 

3.1 INTRODUCTION 

The approach developed in this chapter describes 

disease development in time and space by means of 

equations which represent the governing processes. The 

solutions of the equations are functions, which are 

interpreted as densities of spores or lesions. This 

approach needs an assumption that these functions are 

continuous, so that the results are valid only for high 

lesion and spore densities. One cannot say exactly how 

many spores will be produced and liberated, where every 

one of them will be deposited, and whether the 

infection will be successful. But if one deals with 

high numbers of events, "acts of dispersal' as 

Vanderplank (1975) called them, the "average' behaviour 

of the spores can be determined by means of 

distribution functions associated with the process of 

dispersal. At the population level, spore dispersal can 

be treated as a deterministic process. Similarly, the 

other processes mentioned above can be treated as 

deterministic processes. The deterministic approach has 

proved especially fruitful in the description of spore 

dispersal proper (Gregory, 1973; Kiyosawa, 1976; 

Kampmeijer and Zadoks, 1977; Aylor, 1978; McCartney and 

Fitt, 1985; Van den Bosch et al., 1988a, b, c). 

For low densities the stochastic nature of the 

process must be taken into consideration. If the 

density of spores is high and the chance of 

initialization of a lesion by a deposited spore is low, 

then spore production and dispersal are nearly 

deterministic, but the lesion production process is 

stochastic. A certain local spore density gives rise to 

infections according to a Poisson process with a rate 

1 1 



proportional to the product of the densities of 

susceptibles and spores. Therefore, the function, which 

in the deterministic approach is treated as the lesion 

density, must now be interpreted as the mean number of 

lesions initialized at a certain position (this number 

itself is a variable with a Poisson distribution). 

In this chapter a model of focus development in time 

and in two spatial dimensions will be developed. The 

theory presented is valid for short distance dispersal. 

Plant height is neglected, and a crop is seen as a 

horizontal plane. The starting point of the present 

approach is the diffusion equation. Considering 

comparable processes in different branches of science, 

many authors derived the diffusion equation. They often 

used different methods, but the result was always the 

same (Okubo, 1980). As some information on its 

derivation could be useful to phytopathologists (it is 

good to know where and why one can use the diffusion 

equation), a derivation will be given here. In addition 

the situations considered in epidemiology are sometimes 

different from those encountered in other branches of 

science, so that a diffusion equation on itself is not 

always satisfactory. 

3.2 FOUNDATION OF THE THEORY 

3.2.1 Definitions and assumptions 

The first step into the world of equations, which 

describe disease focus development in time and space, 

is an exposition of definitions and assumptions, which 

in strict statements capture the available knowledge 

about the basic phytopathological phenomena. These are 

the foundation of the theory of interacting entities : 

sites and dispersal units. Because the assumptions are 

nothing but a concise summary of empirical knowledge, 

the theory which builds upon them should lead to a 

1 2 



proper description of focus formation (as confirmed in 

Chapter 4). 

2 

Definition D.I. A site is a limited area [L ] of host 
tissue, which can exist only in one of two states: 
non-infected (0) and infected (1). 

In phytopathological literature, the terms 'occupied' 

and 'non-occupied' were used (Zadoks, 1971). The 

empirical counterpart of a site is a 'lesion' or the 

area (to be) occupied by it, therefore the two terms 

will be treated as equivalents. 

Definition D.2. A dispersal unit is an entity, which 
can change the state of a site from non-infected to 
infected (0 •* 1). 

The empirical counterpart of the dispersal unit is a 

'spore', therefore the two terms will be treated as 

equivalents. 

Assumption A.l. The epidemic is described using two 
kinds of elementary units * sites' and "dispersal 
units '. 

These elementary units demonstrate a set of properties. 

The properties allow to describe the behaviour of the 

units in a field situation. 

Assumption A.2. The site properties are: 
i . The transition between the classes of sites from 

non-infected to infected (0 -» 1) is one-way only, 
and it is due to an outside influence, 

ii. Once a site is infected, it is not a subject to an 
outside influence any more. 

Hi. A site from class 1 (infected site) can produce 
dispersal units. 

13 



iv. Infected sites can belong to one of three 

subclasses: before production of dispersal units 

(subclass called "latent', denoted 1A), during 

production of dispersal units (called 

^infectious', denoted IB), and after production of 

dispersal units (called ^removed', denoted 1C), 

allowing only a one way transition between them 

(1A -*• IB •* 1C) . 

v. Sites do not move, 

vi. The density of sites is finite. 

Ad. A.2.iv) The only subclass of infectious sites of 

which the contents cannot decrease in number is 1C 

(removed). 

Ad. A.2.vi) The density of sites is limited by their 

size and by the leaf area index. For the 

deterministic theory it is necessary to assume that 

the number of sites in any finite area is infinite. 

In real life situations, the number of sites cannot 

be infinite, but a large number of sites allows the 

application of deterministic theory as a good 

approximation. 

Corollary. C.l. The sum of the densities of sites in 

classes 0 and 1 is equal to the total density of 

sites. The sum of the densities of sites in 

subclasses 1A, IB and 1C is equal to the density of 

sites in class 1. 

Assumption A.3. The properties of dispersal units are: 

i . Dispersal and deposition of a dispersal unit are 

governed by physical processes only, 

i i . After its deposition on a non-infected site (0), a 

dispersal unit can, but does not necessarily, move 

the site to the infected class (1). 

Hi. A single dispersal unit can infect only one site, 

vi. A deposited dispersal unit disappears, 

v. There is no external source of dispersal units. 

14 



Ad. A.3.i) The dispersal unit can be moved (by air 

turbulences, wind, etc.) in a uniformly random 

direction, which changes continuously. During this 

movement, the dispersal units are deposited at a 

uniform rate. 

Ad. A.3.H) This change will be called ^infection'. 

Ad. A.3.v) The rate of change of the local density of 

dispersal units is equal to the rate of their local 

production minus their rate of emigration from a 

local area element plus their rate of immigration 

from neighbouring area elements minus their rate of 

deposition\ The mathematical expression of this 

statement is: 

ds 
g = Production + Net migration effect + 

Deposition (3.1) 

where S is the density of spores and t is time, 

dS/dt is the rate of change of spore density S and 

"net migration effect' stands for "immigration' 

"emigration'. 

Definition D.3. An epidemic is a process, limited in 

time and space, which leads to an increase in the 

number of sites in state 1, substate C, at the cost 

of the number of sites in state 0. 

3.2.2 Phytopathological context 

The basis of the theory was formulated above. As the 

theory will be applied to focal spread of plant 

disease, a phytopathological context must be presented. 

Spread of disease (sensu Vanderplank, 1975) takes 

place "when diseased plants occur where they did not 

occur before, either in the immediate past or at any 

time previously. The spread of disease implies the 

migration of pathogens." This is the phytopathological 

15 



formulation of the spore properties A.3.i, and A.3-H 

in assumption A. 3. The words: host, disease, and 

pathogen are used as defined by the British Mycological 

Society (Anonymous, 1953). 

The other spore properties are explained as follows. 

The spore properties A.3.Hi and A.3.iv mean, that a 

deposited spore either germinates and infects (and then 

a single site becomes infected) or dies. There is no 

third possibility. Property A.3.v means, that an 

epidemic is treated as a closed system. The only source 

of spores is production by sporulating lesions, the 

only removal is by dispersal and deposition (in the 

language of physics 'absorption'). 

The site properties are explained as follows. 

Properties A.2.L and A.2.H mean, that an infected site 

cannot recover. Properties A.2.Hi and A.2.iv are 

equivalent to the existence of non-zero duration of the 

latency and infectious periods (sensu Van der Plank, 

1963). They lead to Vanderplank's or similar (as will 

be seen in Section 3.4.6) equations. Property A.2.vi is 

equivalent to the statement by Van der Plank (1963, p. 

20) "As x increases, the proportion (1-x) of 

susceptible tissue still healthy and available for 

infection decreases" (here x is the proportion of 

infected tissue density, i.e. the ratio of the density 

of infected sites to the density of all sites (vacant + 

infected). The word 'density' was added to 

Vanderplank's explanation, because here we deal with 

space dependent models). 

3.2.3 Terminology 

The present theory requires its own terminology, 

which is introduced here, with symbols of variables and 

parameters (in italics) and their dimensions (in square 

brackets ) : 

1.x = the first space coordinate [L] 
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2. y = the second space coordinate [L] 

3. t = time [T] 

4. r = (x,y) - a position vector in 

2-dimensional space (see below) 

[L,L] 

5. v = velocity of spores (see below) 

[LT-1, LT_1] 

6. c0 = velocity of focus expansion (see 

below) [LT-t,LT_1] 

1. S = S(r,t) - area density of spores at 

r and t [N
S

L_Z] 

8.1/ = L(r,t) - area density of lesions at 

r and t [N
L
L~2] 

9. F = F(r,Sft) - local density of spores 

at r and t moving in direction ö 

[Nslf2] 

10. J = ( J" (r, t), J (r, t) ) - spore density 

current at r and t; it is the net 

number of spores per unit of time 

flowing through a unit of length 

perpendicular to the x- and 

y-direction) [N
S
L~ T~ 'N

S
L~ T~ ] 

11. C = the macroscopic cross section for a 

given process (see below) [L ] 

12. ̂  = the mean free path for scattering; 
S >- = 1/C where C is the s s s 

macroscopic cross section for 

scattering [L] 

13. ̂  = the mean free path for absorption; 
*• = 1/C where C is the a a a 
macroscopic cross section for 

absorption [L] 
2 -i 

14. D = diffusion coefficient [LT ] 

Ad. 4. The value (length) of the vector r 

will be denoted r [L]; r = \r\ . 

Ad. 5. The value (length) of the vector v 
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will be denoted v [L]; v = | v| . 

Ad. 6. The value (length) of the vector c 

will be denoted c [LT-1]; c = \c \. 

3.3 DIFFUSION EQUATION 

3.3.1 Introduction 

The following derivation of the diffusion equation 

is based on the method used in the theory of nuclear 

chain reactors (Glasstone and Edlund, 1956). Roughly 

speaking, the nuclear chain reaction is the process of 

production of new neutrons by nuclei which absorbed old 

neutrons. During their movement, neutrons are scattered 

and absorbed by nuclei at standstill. Absorption of a 

neutron by a nucleus causes division of this nucleus 

with production of energy and 2 or 3 new neutrons. The 

process of plant disease focus development is rather 

similar. Here and there, we deal with moving particles 

which randomly change direction of their movement, are 

removed from the population, and which can multiply 

their numbers by reaction. Of course, the differences 

in mechanisms involved in the two processes are 

considerable. During their flight, spores follow air 

turbulences rather than move along straight lines and 

then suddenly change the direction of their movement by 

scattering. Removal of a spore from the population is 

not due to absorption but to deposition, which takes 

place because local eddies around leaves are 

sufficiently small that frictional drag is less than 

inertia, so that spores move towards the surface 

instead of being sidetracked with an air flow. 

Generally, three processes are involved in the movement 

of spores: gravity, air turbulence, and inertia. 

Gravity can usually be neglected. When air speed 

becomes sufficiently high, spores leave their host 

plant and follow air turbulences. In general, air drag 



dominates inertia except when the air flow changes 

direction very fast. Fast changes happen only in the 

transition layer from the boundary layers of the 

leaves. 

Forgetting for some time the differences mentioned 

and keeping in mind a simplified picture of spore 

movement will lead to notions and equations which 

adequately describe plant disease development. 

In the beginning, only spore dispersal will be 

considered. The deposition and production processes 

will be discussed later. 

3.3.2 Continuity equation 

The continuity equation is an elementary concept in 

physics, used here as a starting point. For simplicity, 

the continuity equation will be derived for spore 

movement in the x-direction only. After this simplified 

derivation, results will be generalized to an 

arbitrary-direction motion. 

Imagine a small area element cLA = dx dy, where dx 

and dy are small line elements in the x and y 

directions (Fig. 3.1). The element dA embraces a point 

with coordinates r = (x,y). A stream of spores flowing 

in the positive x-direction can be described by the 

x-component of the spore density current J = J (x,y,t), 

Jx(x,y,t Jx(x+dx,y,t) 

Fig. 3.1. Spore density current J flows through the 

area element dA. 
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the number of spores flowing in the x-direction and 

crossing a unit length during a unit of time [NI T ]. 

The number of spores which flow into dA, during the 

time dt (dt being a short period of time), from the 

left side with position x is equal to the spore density-

current's x-component at x, J (x,y,t), multiplied by 

the length of the left side of dA, dy and the 

time-period dt. Therefore, the number of spores flowing 

into to dA is : 

Nln = J^'Y't) UV d t (3-2) 

The number of spores, which flow out of dA during dt 

through the right side of dA (this side is at the 

position x+dx) is equal to the spore density current's 

x-component at x+dx, J (x+dx,y,t), multiplied by the 

length of the right side of dA, dy and by the 

time-period dt. Therefore the number of spores leaving 

dA is: 

Nout = Jx(*+d*,y,t) dy dt (3.3) 

At time t, the number of spores inside dA was S(r,t) 

dA, where S(r,t) is the area density of spores (treated 

as a constant in dA, because dA is very small) at time 

t. At time t+dt, the number of spores inside dA was 

S(r,t+dt) dA. Therefore, during dt, the change of the 

number of spores in dA equals S(r,t+dt) dA - S(r,t) dA 

on one hand and N. - N . on the other hand. Then m out 
using (3.2) and (3.3) the following equation is formed: 

(S(r, t+dt) - S(r, t) ) dx dy = 

(Jx(x,y,t) - Jx(x+dx,y,t)) dy dt (3.4) 

where dA was replaced by dx dy. Dividing both sides of 

(3.4) by dx dy dt and passing to the limits dt = 0 and 

dx = 0, equation (3.4) becomes : 
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dS(r,t) 

St àx 
m 

*J_(r,t) 
(3.5] 

If spores move in an arbitrary direction, the 

analogs to equation (3.5) can be derived for each of 

the x- and y-directions. Therefore, the rate of change 

of the spore density due to movement in an arbitrary 

direction is: 

*S(r,t) sJx(r,t) àJyÇr,t) 

St »x 
•'m 

= - V-J(r,t) (3.6) 

where V' is an abreviated notation for the two terms 

appearing in the middle. V is the differential operator 

(called vnabla'): 

V = ̂ F^^3' (3.7) 

with i and j as the unit vectors in the x- and 

y-direction, respectively. In physics, equation (3.6) 

is called the xcontinuity equation'. In common words 

this equation means: 

If there is no production or absorption of spores, 

the local rate of change in the density of spores will 

be due to the local difference between inflow and 

outflow. 

3.3.3. From Fick's law to the diffusion term 

Assume that spore movement is independent over 

infinitesimally small time and space scales. In that 

case net movement in the x-direction over a length 

element dy perpendicular to the x-direction, J , 

equals : 
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D 
J = x 

dx 
S(x,y,t) -

dx 
S(x+dxry, t) (3.8) 

where O is a proportionality coefficient. The first 

term refers to the movement from left to right and the 

second term to the movement in opposite direction (Fig. 

3.2). If spores move purely at random, both terms of 

(3.8) are proportional to S and the division by dx 

results from the assumption that if a spore is nearer 

to x, the chance that it will cross the line segment dy 

in x, in the nearest infinitesimal time interval, 

increases. This increases as 1/dx, because the result 

should be finite and non-zero. 

Passing to the limit dx = 0 and using the definition 

of the first derivative, (3.8) becomes: 

J = x D 
dS(x,y,t) 

dx 
(3.9) 

Analogous to (3.9), the equation for the y-component, 

J , can be established. Finally 
y * 

J = (J 
x' 

J ) 
y' 

-D a 
Sx 

i + 

-D 7 s (3.10) 

D 
air s(x>y't) ^ - S(x+dx,y,t) 

dx 

Fig. 3.2. Spore stream flows through the line element 

dy at x and at x+dx points. 
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where V S is the gradient of S. Equation (3.10) is 

known as Fick's law (Okubo, 1980; Hallam and Levin, 

1986). In common words it means: 

The net spore density current is proportional to the 
gradient of the spore density i.e. the net stream of 
spores flowing between two points is proportional to 
the difference between spore densities at these two 
points. 

Substitution of (3.10) into the continuity equation 

(3.6) results in: 

âS 

at 
= D 

d 

2 2 

à S às 
+ àx2 ay2 

D V2 s (3.ii; 

where V is the Laplace operator. The subscript d 

indicates that the rate of change of spore density is 

due to diffusion (dispersal). Equation (3.11) is known 

as the ^diffusion equation' and D as the sdiffusion 

coefficient' (Okubo, 1980; Hallam and Levin, 1986). 

This form of the diffusion equation is applicable to 

the situations without production and deposition of 

spores. 

3.3.4 A note on the scattering process 

To give some notion what vrandom and infinitesimally 

small' really means and therefore to establish the 

range of applicability of the diffusion equation 

(3.11), equation (3.9) will be derived once more. This 

derivation is based on a particular process, simple and 

exemplary, which is not random on an infinitesimally 

small scale. It is not intended as a proper discription 

of real turbulent diffusion but rather as a didactical 

example to sharpen the reader's intuition. 

Imagine a small segment di on the y-axis around the 

origin and a small surface element dA around a point 
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with polar coordinates (r,a), where r is the radius 

(the distance from the origin of the coordinate frame 

to the point) and 01 is the angle between r and the 

x-axis (Fig. 3.3). Let F(x,y,9,t) denote the local 

density of spores at (x,y) moving in the S direction. 

The x-component of the spore density current can be 

expressed as: 

J J (3.12) 

where the spore density currents are defined: J is 

the number of spores crossing a unit segment 

(perpendicular to the direction of flow) per unit time 

in the positive x-direction, J is the number of 

spores crossing a unit length (perpendicular to the 

direction of flow) per unit time in the negative 

x-direction. 

Fig. 3.3. Spores are scattered in dA in all directions. 

Some spores can pass through di. How many (on average)? 

Explanation in text. 

Ik 



The density current of spores flowing from the right 

hand half-plane is: 

TÎ/Z 

Jx- = v F(0,0,-<x,t) cos(-oi) doi (3.13) 

-n/z 

where v is the spore velocity. To calculate 

F(0,0,-a,t) cos(-oi) we look at the last scattering 

event experienced by a spore before it passed through 

di. Assume that this scattering happened r away from 

the origin in dA around a point whose Cartesian 

coordinates are (x,y). They can be expressed in polar 

coordinates (r,«): 

x = r cos«, 

y = r sin«. 

Therefore, a spore experienced its last scattering 

event at position (r cos«, r sin«) at time t-r/v (where 

v is the spore velocity). At this time there happened 

in an infinitesimal area dA 

2n 

Cg F(r cosa,r sin«,9, t-r/v) aß dA (3.14) 

scattering events. C is a proportionality constant 

called the macroscopic cross section for scattering; it 

measures the ^intensity' of scattering (the concept of 

the macroscopic cross section is better explained in 

Appendix B; formula (3.14) is the two-dimensional 

counterpart of (B.l)). Assuming that the scattering is 

isotropic, the outflow from dA in every direction is 

equally probable. The probability that a spore will be 

scattered in such a direction that it will pass through 

the segment di is: 
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v = c° s^:y (3.15) 

because cosa dl is the projection of dl on a normal to 

the direction of flow, and 2 n r is the length of the 

circle with its centre in dA and with radius r. Because 

of continuous scattering of spores on their way to dl, 

only the fraction exp(-C r) of them will arrive at dl 

without having undergone another scattering event (see 

equation (B.3) in Appendix B). The product of (3.14), 

(3.15) and exp(-C r) integrated over all radii from 0 

to infinity, gives the flux of spores moving in the -« 

direction flowing through dl at t 

où 2n 

F(0,0,-a,t) cos(-a) = — f(rcosc*,rsinoi,e, t-r/v) 

0 0 

de cos« exp(-C r) dr (3.16) 

as in polar coordinates dA = r dr da. Substitution of 

(3.16) into (3.13) leads to 

co TT/2 2TC 

v C 
Jv_ = — F(r cos<a,r sina,e, t-r/v) 

2n 
0 -n/2 0 

de coscx dot exp(-C r) dr (3.17) 

Assume that both v and C are very large; in the limit 

case v •+ », c -» co, but in such a way that v/C •* 2D, 

where D is the diffusion coefficient. Then, (1) t-r/v 

may be replaced by t, and (2) since the term exp(-C r) 

•* 0 for other than infinitesimally small values of r, 

only the values of F near to the origin must be 

considered. Therefore, the spore density, F, can be 

expanded into a Taylor series. Restricting this 

expansion only to the first order terms, the expansion 
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can be written: 

F{x,y,e,t) = FQ + x 
3F 

âx 
+ y 

o 

OF 

By 
(3.18) 

Jo 

where the subscript 0 refers to the evaluation at the 

origin i.e. at the element di. Introduction of (3.18) 

into (3.17) leads to: 

2n r oo n/2 
v C. 

—^— FQ e x p ( - C r ) coset d a d r + 

0 L 0 -n/2 

oo n/2 
OF 

Ox 

SF 

r e x p ( - C r ) c o s oi dot d r + 

ôy 

JJ 
0 0 -n/2 

» n/2 

r e x p ( - C r ) s inoi cosoi d « d r 

°0 -n/2 

do 

(3.19) 

After evaluation of these integrals, the spore density 

current in the negative x-direction can be expressed 

as : 

2n 

'W v F, 

4-C 
s '-

3F 

ax 

de (3.20) 

V 

The equation for the spore density current, J , can be 

derived after similar calculations (but integration 

over the angle <*• is now from n/2 to 3^/2, and the sign 

is changed, because the current flows in the positive 

x-direction): 

27 



2rr 

"J 
v JF", 

4-C 
O s •-

dp 

3x 
de (3.21) 

J0J 

Substitution of (3.20) and (3.21) in (3.12) leads to 

2n 

" ƒ 
ÔF 

3x 
d© (3.22) 

where D = v/2C = v *- 12. s s 
The number of scattering events experienced by a 

spore during a small time interval goes to infinity 

under the limiting operation described above (v -» », C 

•> oo) . After a scattering event a spore necessarily has 

a random orientation of its movement, in a limit 

F = 

m 
(3.23) 

Substitution of (3.23) into (3.22) leads to: 

J = -D x 

SS(x,y,t) 

àx 

This equation is identical to (3.9). 

3.3.5 Diffusion formulation of the balance of spores 

Apart from the diffusion term, the balance equation 

(3.1) containes absorption and production terms. These 

three terms together constitute the diffusion equation 

for dispersion, production and deposition of spores. 

Assuming that airborne spores are deposited with 

probability <5 per unit of time, the rate of change in 

the number of spores per unit area due to absorption is 

expressed by the following equation: 
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öS 

dt 
= -S s (3.24] 

J a 

where subscript indicates absorption. The 

proportionality constant, &, is called the rate of 

deposition (absorption) [T ]. 

The population of spores flowing through an 

absorbing medium with velocity v decreases 

proportionally to the distance passed and to the 

density of absorbing places. Therefore, the rate of 

change of spore density per unit of time should be 

proportional to v and to the macroscopic cross section 

for absorption, C (Appendix B). Equation (3.24) can be 

written in our particular scattering model as : 

âs 

ôt 
= -v C S a 

v 

TT (3.25) 

where X. - the mean free path for absorption can be 

defined as the distance at which 1/e spores is not yet 

absorbed. 

Denoting the rate of spore production per unit area 

and per unit of time as P (the production term, 
—2 —1 

[NL T ]) and substituting this term together with the 

equations (3.11) and (3.25) into equation (3.1), the 

following "balance' equation for the rate of change of 

the number of spores per unit area is written: 

àS 

St 
= D 

2 

à S 
2 

à S 
- & S + P (3.26) 

Equation (3.26) is also called the "diffusion 

equation'. As written, it applies to the combination of 

dispersion, production and deposition of spores, but 

only when scattering is strong relative to production 

and deposition. 
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3.3.6 Discussion 

The derivation of the diffusion equation presented 

above emphasized aspects relevant to phytopathologists. 

In addition to the assumptions stated in Section 3.2.1, 

other assumptions (purely random movement at an 

infinitesimally small scale, isotropy of space, and 

fast scattering) were made on the way. These 

assumptions permitted the derivation of the diffusion 

equation, but their consequences somewhat limit the 

range of applicability of this equation (they will be 

discussed in Section 3.5). 

The relation between the physics of spore dispersal 

and both the diffusion and the scattering model 

presented above may pose a problem. The concept of mean 

free path for scattering cannot be applied directly to 

spore movement, because spores follow air turbulences 

rather than move along straight lines and change their 

direction of movement by scattering. Yet, spore 

movement is not purely random; there is some 

persistence in their movement due to inertia. 

Therefore, the mean free path for scattering is defined 

here as "the distance passed when 1/e spores move in a 

direction effectively independent from the old 

direction of spore movement". This parameter is 

identical to the ^mixing length' (Goudriaan, 1977), 

which characterizes air eddies. To strike a balance 

between theory and practice the following rule should 

be applied in the application of the diffusion 

equation: 

Use the diffusion equation to describe focus 

development, if the mean free path for scattering is 

much shorter than the mean distance travelled by a 

spore during the period of interest, and if the mean 

free path for scattering is much shorter than the 

mean free path for absorption. Thus, the diameter of 

the "solution' region must be considerably smaller 
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than the distance travelled by a spore during the 
time-period of interest. 
The limitations to the application of the 

^diffusion' theory will be carefully considered in 

Section 3.5. Keeping in mind the above limitations, we 

can begin to solve the problem of disease focus 

expansion by means of the vdiffusion theory'. 

3.4 SOLUTIONS 

3.4.1 Introduction 

The solutions of the diffusion equation (3.26) 

depend on the form of the production term P. In the 

following pages solutions for different forms of this 

term will be discussed. These solutions will be given 

for a gradually growing complexity of the production 

term, following the stepwise refinement of the models 

by Van der Plank (1963). Therefore, not all the 

solutions presented below refer to a phytopathological 

reality. They are presented mainly as introductions to 

the final, most complex, case. The latter is the only 

phytopathologically relevant case. The reader may view 

some of these solutions as examples from population 

dynamics rather than as models of epidemics. 

3.4.2 Immediate and instantaneous spore production, 

exponential growth of lesion density 

In the simplest case, new spores are assumed to be 

produced immediately after infection (latency period is 

zero), they are all produced at the same instant 

(infectious period is infinitesimatelly small) and 

there is no exhaustion of non-infected sites. Of 

course, in real epidemics spore movement is always fast 

relative to lesion development, exactly the opposite of 
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our assumptions. 

The number of new effective spores per deposited 

effective spore (a deposited effective spore is, under 

assumptions A.3.il. and A.3. vi, equivalent to new 

lesion) will be denoted by q. 

q = R I {1 - G) (3.27) 

where R is the number of spores produced per 

sporulating lesion per unit of time, J is the 

probability of infection and G is the fraction of 

spores removed from an epidemic (fallen on the ground, 

blown outside a field, etc.). The probability of 

infection, I, can be defined as follows: 

Definition D.4. The probability of infection I equals 
the fraction of spores falling on vacant sites which 
turn these into infected sites. 

Usually, it is not possible to measure I and G 

independently. The term I (1 - G) is analogous to the 

effectiveness of a spore, E, as defined by Zadoks and 

Schein (1979). However, because I and G belong to 

completely different phenomena, they are introduced 

here explicitly. The fraction of successful spores, 

E = I (1 - G), can be determined experimentally. 

The parameter J comprises (is dependent on) three 

different phenomena: crop infectibility, pathogen 

infectivity, and suitability of the environment. It is 

a measure of the reaction of the crop to the specified 

pathogen in the specified environmental conditions. J 

varies from 0 to 1 : 

1=0 - no spore will lead to a lesion, 

J = 1 - all spores deposited on vacant sites 

will produce lesions, 

0 < I < 1 - the crop is partially resistant (and 

thus also partially susceptible) and/or 
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the pathogen is partially virulent 

and/or the environment is only partially 

favourable. 

This parameter is related to Barrett's (1980) fitness 

of the pathogen on the particular host (under the 

particular conditions). 

The probability of infection, I, is one of the 

parameters, in which vertical (J = 0) and horizontal (0 

< I < 1) resistance (Van der Plank, 1963) of the crop 

can be expressed. The parameter I can vary with space 

to describe a non-uniform crop, a non-uniform 

distribution of the pathogen, or non-uniform 

environmental conditions, and with time to describe 

crop resistance varying with plant development, time 

diversity of pathogen behaviour, or time dependent 

changes of environmental conditions. 

The number of new effective spores per deposited 

effective spore, g, is here taken to be constant during 

the epidemic (exponential growth of the lesion 

density). 

Under the assumptions stated above, the production 

term, denoted as P, is given by: 

9L 
P = R - ï ï r [NlfV1 ] (3.28) 

where R is the number of spores produced by a 

sporulating lesion, dL/&t is the rate of change of the 

lesion density L. This rate of change equals the rate 

of spore deposition multiplied by the effectiveness: 

àL 
-g^- = E 6 s. (3.29) 

Substituting (3.29) into (3.28) with application of 

(3.27) leads to: 

P = q à s. 
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Substituting this in equation (3.26) finally gives: 

at 
= D 

2 2 
a s à s 

+ — 
âx' ay 

& S + q & S (3.30) 

In Van der Plank's (1963) model, (g-1) <5 would be 

the exponential growth rate (denoted by him as r,). 

However, Van der Plank's equations deal with lesions 

rather than spores (lesions cannot disappear). Here, 

the disease is examined from a sspore point of view', 

so that the term (g-1) must be used instead of g (a 

deposited spore disappears, assumption A.3.iv). Note 

that Van der Plank considered a 'point' model (he did 

not take into account spatial aspects of disease) and 

numbers of lesions, whereas here S is interpreted as 

density of spores. 

Inserting the new variable, ft = (g-1) <5, and setting 

r = (x,y), the solution of equation (3.30), for the 

case of an initial infection with one spore at the 

point r = 0, is (Wyld, 1976; Morse and Feshbach, 1953): 

S(r,t) 
4"Dt 

exp ft t 
4Dt 

(3.31) 

If the focus was started by more spores, the right hand 

side of equation (3.31) should be multiplied by the 

number of these initial spores. 

According to equation (3.31) the spore density 

S(r,t) equals exp(ftt) times the Gauss (normal) 
2 2 

distribution with variance & = 2Dt ([L ]). The term 

exp(ft t) describes the increase of spore density. 

Equation (3.31) describes the distribution of the 

density of spores still air-borne. Substitution of 

(3.31) into (3.29) gives the rate of change of the 

lesion density: 
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= E 6 
ArzDt 

exp ß t 
ADt 

(3.32) 

The lesion density distribution function is the 

result of the Gaussian distribution of spores still in 

the air and of their deposition at a constant rate. 

In the limit for large values of time, the 

distribution of the first generation lesions in the 

horizontal plane is described by the Bessel 

distribution (Broadbent and Kendall, 1953; Williams, 

1961; Van den Bosch et al., 1988a, b). It resuls from 

diffusion and deposition of spores. When normalized, 

this distribution is called the vcontact distribution' 

(see Van den Bosch et al., 1988a, b). The result in the 

field is seen as a focus. 

To determine the velocity of focus expansion, 

additional definitions must be given. Ideally, the 

front of the focus is defined as the borderline which 

divides the plane into two different regions: (1) the 

region with disease and (2) the region free from 

disease. In the first region L(r,t) > 0, in the second 

one L{r,t) = 0. But, L(r,t) as described by the 

^diffusion theory' is a continuous function, which for 

t > 0 is greater than zero everywhere, even though L 

soon becomes very small with increasing distance. 

Therefore, this definition would always place the 

position of the front at infinity. To handle this 

situation, an operational definition (see Zadoks and 

Schein, 1979, p. 10) must be adopted: 

Definition D.5. The front of the disease focus is the 

borderline between the region where L(r,t) > L and 
the region where L(r,t) < L 

positive number. 

being a small, 

Now the position in space of the front of the 

expanding focus is the position where L(r,t) L„ . This o 
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definition can be used in mathematical considerations 

as well as in practical field work (Buiel et al., 

1989). In general, the front is not localized at a 

constant position throughout time, so that it is 

possible to determine the velocity of its movement. 

Definition D.6. The velocity of focus expansion is the 

velocity of the displacement of its front (dr/dt). 

This velocity will be denoted cQ. It is a vector 

(characterized by its value and its direction), but if 

a focus expands radially (the direction of the velocity 

cQ is the direction of r) only the length of the 

velocity vector, cQ, must be determined. 

The velocity of displacement of the spore cloud 

front (which is equivalent to the focus front), can be 

obtained by looking for the time dependence of the 

position of a constant spore density in the air. The 

appropriate method was given by Okubo (1980) (following 

Kendall, 1948). Setting S{r,t) in equation (3.31) equal 

to c, where £ is a small positive constant, and solving 

for r leads to: 

2 

r ft t = In (4 re D e t) 
4- D- t 

After a few simple mathematical operations, we obtain 

for high values of time (terms less than proportional 

to t are disregarded): 

r = 2 •/ D ft t 

The velocity of focus expansion is asymptotically 

constant. The asymptotic displacement velocity of the 

front of a focus, cQ = lim dr/dt, is found to be: 

t->°° 
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c. = 2 
o 

•/ D ß 

After translation into original symbols the last 

equation becomes : 

/ D (qr-1 cQ = 2 y D (g-1) ó , g > 1 (3.33) 

Note that necessarily g ̂  1; when absorption exceeds 

production the disease does not develop, c = 0, and 

the spore cloud disappears. 

An identical result for the velocity of displacement 

of the spore cloud front can be obtained by integrating 

equation (3.31) over the region almost free from spores 

(r > R , where R is the radius of the region in 
v max max 3 

which S(r,t) > £), and putting this integral equal to a 

very low number. Almost no spores for r > R means 
J c max 

that S(r,t) < £, where « is a positive, very low 

number. This method was also used by Okubo (1980). 

3.4.3 Immediate and instantaneous spore production, 

logistic growth of lesion density 

Starting with the same assumptions about the latency 

and infectious periods as in Section 3.4.2 but 

considering logistic growth of the lesion density, we 

should multiply the right-hand side of equation (3.29) 

by (1 - L/Lm^ ), where L = L(r,t) is the lesion 

density, and L is the maximum possible lesion 
-* ' max " 

density. The new equation multiplied by the number of 

spores produced by a single lesion, R, again describes 

the time rate of spore production. Equations (3.26) and 

(3.29) take the following form: 
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ât 
= D & S + R 

at 

SL 

At 
E à S (3.34) 

Near to the advancing front, where the lesion 

density is much lower than L , the Okubo (1980) 
J max ' v ' 

method can be applied to find the velocity of 

displacement of the focal front described by equations 

(3.34). This method leads to the following inequality 

for the velocity of focus expansion, c: 

/7 ( g - i ) (3.35) 

c is the minimum speed at which a spore cloud front 

can move. Note that cQ is equal to the speed of 

displacement determined in Section 3.4.2, equation 

(3.33). Diekmann (1978, 1979) and Thieme (1977, 1979) 

proved by a more general approach that in the case of 

focal expansion from a localized infection, only this 

minimum speed is realized. For a nice heuristic 

argument why the minimal velocity is the only one that 

counts see Van den Bosch et al. (in prep.). 

3.4.4 Latency period p, instantaneous production of 

spores, exponential growth of lesion density 

In actual situations, the latency period cannot be 

neglected. We consider a model in which the infectious 

period is still taken to be only one instant and in 

which epidemic growth is supposed not to be limited by 

exhaustion of susceptible sites. Spores are produced by 

lesions, which were created by deposited spores, one 

latency period before. Therefore, the production term 
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will refer to the density of spores, deposited one 

latency period before. The rate of change of the spore 

density is described by equation (3.26), but the 

production term is now: 

dL(r,t-p) 

at 
(3.36) 

where p is the latency period. Therefore, equation 

(3.26), after substitution of (3.36) with application 

of (3.29), takes the following form: 

aS(r,t) 

àt 
D 

2 2 

à S(r,t) a s(r,t) 
+ 

ÔK ôy 

6 S(r,t) + T) S(r,t-p) (3.37) 

where p is the latency period, and i) = q 6. 

The most interesting result of this model is the 

velocity of focus expansion, c. This velocity can be 

considered within the framework of the theory developed 

by Diekmann and Thieme. They proved generally that (as 

in Section 3.4.3) there exists a value c„ such that c 5: 

cQ. The minimum speed of focus expansion is implicitly 

defined by a pair of equations in *• and c : 

= D K c X o o 

c
r t p \ . 

r> e = 0 

df 

dK 
(\J = 2 D \ - c„ 

c p̂ . 
n c p e = 0 

(3.38) 

Again, in the case of focus expansion from a localized 

infection, only the minimum speed c is realized. 
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3.4.5 Latency period p, infectious period i, 

exponential growth of lesion density 

If both the infectious and latency periods are not 

negligibly small, and the spore population grows 

exponentially, the rate of change of the lesion density 

takes the form of equation (3.29) again, but the 

production term in (3.26) is: 

P(r,t') = 

where : 
K( t-T ) 

t' 

- J K{f 
- 0 0 

i s t 

âL(r,T) 

at 
dr 

is the function describing the time 

dependence of the number of daughter 

spores produced at time t per unit of 

time by a mother lesion, which was 

created at time t-T, 

aL(r,T)/9t is the rate of lesion production at r 

and T , which is proportional to the rate 

of spore deposition at the same place 

and time; âL(r,r)/ât = E S S(r,r). 

An equivalent, sometimes more convenient form of the 

production term is: 

r 9L(r, t-T) 
P = K(T) dr 

at 
(3.39) 

The diffusion equation (3.26) takes the form: 

*S(r,t) 

at 
= D 

2 2 

a S{r,t) a S(r,t) 
+ 

ax ay' 
6 S(r,t) + 

I 
aL(r,t-T) 

K(T) dr 
at 

(3.40) 
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Again, this is a special case of the Diekmann-Thieme 

theory. 

Looking for the velocity of focus expansion, c, a 

method analogous to the one of Section 3.4.4 can be 

used. The analog of the system of equations (3.38) is: 

df 

( \ J = o 
cA 

fc ( \>) = 0 ( 3 .41) 

where 

f ( X ) = D X 2 - c >•--& + K(c *•) = 0 

wi th 

K(p) = e _ p r r K(r) dT 

the so-called Laplace transform of the spore production 

kernel. 

As in Section 3.4.4, it is possible to prove within 

the framework of the Diekmann-Thieme theory, that the 

velocity of focus expansion c 2: cQ obtained from 

(3.41), and that for the case of a localized initial 

infection only this minimal velocity cQ is realized. 

3.4.6 The general case 

In a realistic approach, the latency and infectious 

periods cannot be neglected, and the growth of the 

lesion density is bounded by a maximum value (the 

density of sites). In the usual point model (the model 

which does not take into account the spatial 

development of the disease), the development in time is 

described by Van der Plank's equation (Van der Plank, 

1963, p. 100) here rendered as: 
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^ ^ - = Ro f L(t-P) - Ht-p-1)] [ 1 - -JP- ) 
dt L J L m*- J 

(3.42) 

where : 

L(t) - the number of lesions at time t, 

R - the number of daughter lesions per 

sporulating mother lesion per unit of time = 

the basic infection rate corrected for 

removals, 

p - the latency period, 

i - the infectious period, 

L - the maximum number of lesions. 
max 

Note that in this case L and L are numbers and not 
max 

densities. Equation (3.42) cannot be used here because 

the diffusion equation deals with spores and not with 

lesions. Therefore, we will try to find an equation 

analogous to (3.42), which describes the development of 

an epidemic in time, and which takes into account that 

lesions are produced by spores, whose distribution is 

described by the diffusion equation (3.26). 

Not every spore deposited on a vacant site will 

change it to the infected state (Section 3.4.2.). The 

rate of production of new lesions at point r and time t 
-2 -1 

is equal to the spore deposition rate [NL T ] on 

non-infected sites of leaves, f(r,t), multiplied by the 

probability of infection J. 
**-<*, t) = j . f ( + i t ) ( 3 - 4 3 ) 

dt 

The right hand side of this equation is the 

deposition rate of effective spores, spores which will 

produce new lesions. 

The rate of spore deposition, [#S(r,t)/&t] , at r 

and t is stated by equation (3.26). This rate should be 

corrected for removal of spores from the epidemic 

(spores that are dead, fall on the soil, etc.) and for 
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spores which fall on infected sites (and cannot infect 

them again, assumption A.2). The deposition rate of 

spores which can produce new lesions is : 

f(r,t) = (1 - G) & S(r,t) [ Lfr,t) (3.44) 

where G is the fraction of spores removed from the 

epidemic, and the term (1 - L/L ) is the correction 

factor for multiple infection (the fraction of vacant 

sites, as in Van der Plank's equation), where now, the 

number of lesions depends on a point in space r. 

Substituting equation (3.44) into (3.43), the 

deposition rate of effective spores which will produce 

new lesions is obtained. 

*Llr.t) 

et 
E à S(r,t) L(r,t) (3.45) 

where E = I (1-G) is the effectiveness (Zadoks and 

Schein, 1979). 

Because the new spores are produced by lesions, the 

production term of the diffusion equation takes the 

form (3.39). Substitution of (3.39) into equation 

(3.26) gives: 

*S(r,t) 

at 
= D 

âx 

S(r,t) S(r,t) + 

J 
0 

8L{r,t-r) 
K(r ) dr 

dt 
(3.46) 

Equations (3.45) and (3.46) constitute the system of 

partial differential equations, for spores and lesions 

respectively, which is the mathematical formulation of 

the "diffusion theory' for focus development in time 
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and space. 

In the most simple case K(t-r) is a block function: 

K(T) = 
R for p ^ T < p+i 

0 for T < p or T > p+i 
(3.47) 

where Ä is the number of spores produced by one 

sporulating lesion per unit of time. After substitution 

of (3.47) in (3.39) and calculation of the integral, 

the source term is written as: 

R [ L(r, t-p) - L(r,t-p-i " ] (3.48) 

Substituting (3.48) in equation (3.26), the 

following diffusion equation can be written: 

*S(r.t) 
àt 

= D 

ax 
S(r,t) - 6 S(r,t) + 

L(r,t-p) - L(r,t-p-i) (3.49) 

This form of the diffusion equation together with 

equation (3.45) constitute a system of partial 

differential equations analogous to (3.45), (3.46). 

The asymptotic velocity of focus expansion is one of 

the results, which can be obtained from the system 

(3.45), (3.46) by analytical methods. Van den Bosch et 

al. (1988a, b) discuss these results in detail. In 

other cases of practical importance, the system (3.45), 

(3.46) is too complex for an analytical solution. A 

numerical solution can be obtained by means of the 

computer package PODESS (Partial and/or Ordinary 

Differential Equations Systems Solver), written to this 

purpose (Appendix A ) . Some of its results will be 

discussed in the following chapters. 
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3.5 CONSIDERATIONS FOR THE APPLICATION 

OF THE DIFFUSION MODEL 

3.5.1 A guide-line for the application 

of the diffusion model 

The limitations of the theory presented in the 

Sections 3.3 and 3.4 should be remembered and carefully 

considered before applying the theory. 

The diffusion equation is only exactly valid in the 

limit for: (1) a large velocity of spores, (2) a small 

mean free path for scattering, and (3) a large mean 

free path for absorption. These quantities should tend 

to their respective limits in such a way that D = v 

^ /2 = constant, and <5 = v A = constant. Of course, s a 
the limit is not realized for real plant disease foci. 

Therefore, the guide-line in application should be the 

following: 

Use the diffusion equation to describe focus 

development, if 

1. the mean free path for scattering (*mixing 

length') is much shorter than the distance 

travelled by a spore during the time-period of 

interest, 

2. the mean free path for absorption is much higher 

than the mean free path for scattering. 

Actually, the mean free path for absorption should be 

of the order of magnitude of the spore velocity 

multiplied by the time-period of interest. The diameter 

of the vsolution' region must be considerably smaller 

than the distance travelled by a spore along its 

trajectory during the time-period of interest. 

The approach of the ^diffusion theory' describes 

only those processes which are continuous in time and 

space. Therefore, the theory is applicable to focus 

development, but it is not applicable to stochastic 
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processes which deal with low numbers of spores or 

lesions and which also are a part of an epidemic. For 

instance, the description of daughter focus formation 

will require a different, stochastic approach. This 

approach will be discussed in Section 8.5, some of its 

results will be presented in Chapter 9. 

3.5.2 Restrictions to be imposed on parameter values 

The diffusion equation (3.46) was derived with 

assumptions which limit the ^diffusion theory' 

parameter values. 

The constancy, over space of the value of the 

diffusion coefficient restricts the field size to 

values low enough to neglect spatial variation of D. In 

the simulated field, the crop should be uniform. 

Theoretically, the diffusion equation describes 

situations when spore movement is completely at random 

on an infinitesimally small scale. In reality, it 

should be applied to situations when the mixing of the 

spores is strong enough to assume that, within one 

time-step of integration of the numerical solution, the 

direction of a spore's movement can be changed to 

another independent direction. 

The derivation of the diffusion equation used an 

approximation of the spore flux by the first order 

Taylor expansion terms. Therefore, the rates of 

production and deposition must be low enough to keep 

the higher order terms negligibly small. 

The restrictions stated above do not indicate the 

exact limits of the parameter ranges allowed by the 

diffusion approximation. These limits depend on a 

particular application and on the required degree of 

realism of the ^diffusion model'. Thus, the limits must 

be set separately for every application. The following 

section discusses this problem using a few real-life 

examples. 
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3.5.3 Real parameter values 

In the case of focus development of an airborne 

plant disease, where spore dispersal takes place inside 

the crop canopy, the above restrictions usually are of 

no great consequence. The mean free path for scattering 

inside a crop (also called "mixing length') varies from 

0.016 m for grass to 0.23 m for maize (Goudriaan, 1977, 

p. 112). The velocity of spores is the wind speed, 

according to Chamberlain (1967, p. 140). He showed, 

that the relaxation time - "...the time for the 

particle to accommodate itself to the motion of 

surrounding air..." - is a few milliseconds for large 

spores; as it is proportional to the square of the 

spore radius, the relaxation time for smaller spores is 

even shorter. For light and moderate winds, wind speeds 

vary from 0.4 to 2.6 m/s at 1 m above ground level 

(Chamberlain, 1967, p. 149). Inside a crop, wind speed 

is lower but, excluding the layer just above the soil 

surface, it is usually in the order of tens of 

centimetres per second (McCartney and Fitt, 1985, pp. 

118 - 119). During tens of seconds spores can travel 

distances much longer than the mean free path for 

scattering. This is equivalent to strong mixing of 

air-borne spores during such periods: "... at least 

two-thirds of the eddying energy is associated with 

eddies of less than 5 seconds..." (P.H. Gregory, 1973, 

p. 73). 

The requirement of a low deposition of spores poses 

a problem. Low deposition is indeed the case with 

Puccinia polysora in maize, examined by Cammack (1958; 

also Van der Plank, 1963, p. 282, and Gregory, 1968). 

His data show a decrease of the average number of 

pustules per plant with distance from the point of 

initial inoculation. The curve representing the primary 

gradient (10 days after inoculation) allows to assess 

the parameters of the Bessel distribution which in this 
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case describes the pustule distribution. The variance 

of the Bessel function, which equals D/S = A. \ , 

(Broadbent and Kendall, 1953; Van den Bosch et al., 

1988a, b) is estimated to be a few meters (the method 

of calculation is given in detail by Williams, 1961). 

Together with Goudriaan's (1977) statement that his 

"mixing length' (which is equivalent to our mean free 

path for scattering *• ) is in the order of magnitude of 

centimetres to decimetres, this value of variance 

suggests a high value of the mean free path for 

absorption in comparison to the value of the mean free 

path for scattering. The direction of a spore's motion 

can be changed many times before the spore is 

deposited. Thus a spore is deposited at site "chosen' 

at random. The mixing process is far more intensive 

than the deposition process (the rate of changing a 

direction of movement is high compared to the 

deposition rate). 

Not always is the situation so nice. In the case of 

stripe rust (Puccinia strllformis) on wheat Zadoks 

(1961, p. 102) stated "The first-generation focus 

consists of one infected leaf only, the 

second-generation focus counts up to ten leaves and 

covers a drill length of 10 cm.". In this case, the 

mean free path for absorption is in the order of 

magnitude of centimetres, about equal to the the mean 

free path for scattering. The place of a spore's 

deposition is not independent from its original 

direction of motion immediately after take-off. Thus, 

the "diffusion theory' is no longer valid. In the case 

of stripe rust, described above, spores were dispersed 

by rubbing and splash mechanisms rather than by 

turbulent diffusion. The example shows why the 

"diffusion theory' can be used only for analysis of 

air-borne plant diseases. 

The mean free path for absorption depends strongly 

on crop density. The numerical analysis of Tyldesley 
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(1967, p. 28) for a crop-free region showed that for 

particles of 10 /̂ m diameter the fraction still airborne 

at 100 m from the source varies from 0.90 to 0.98, 

depending on the model of spore deposition used. In 

such a situation the mean free path for absorption is 

in the order of magnitude of hundreds of meters. Thus 

assuming the size of eddies in the air above crop layer 

to be of the order of magnitude of 1 m, the diameter of 

the region of solution can be hundreds of meters. Such 

a large size of the solution region allows to solve the 

problem of focus expansion in the range of hundreds of 

meters by spore dispersal above a crop. This point is 

taken up again in Section 8.4 and in Chapter 9 

(multiple dispersal mechanism). 

3.5.4 Technical aspects of the numerical solution 

The time period of interest for phytopathologists is 

an hour or a day. But, in the case of a numerical 

solution of the system of equations (3.45) and (3.46), 

the period of interest is the time-step of integration. 

Usually, a system of "diffusion theory' equations is 

solved by a method with a self-adapting time-step of 

integration, whose value is chosen so as to keep the 

error of numerical integration at a low level 

(specified by the user). This requires the time-step of 

the numerical integration to be of the order of 

magnitude of the shortest time constant of the system. 

If the time-step of numerical integration is a few 

minutes only, the hour or day of phytopathological 

interest is obtained by solving the system of equations 

during as many time-steps as is necessary to complete 

that hour or day. 

In the runs of the "diffusion model' the space 

representing a field is finite. Therefore, some spores 

travel to the space's boundary, where their further 

story is "decided' by the boundary conditions imposed 
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on the solution of the diffusion equation. There are 

three possibilities: (1) Dirichlet conditions (boundary 

conditions specify the function), (2) Neumann 

conditions (boundary conditions specify the normal 

derivative, and (3) mixed conditions (Ames, 1977). The 

choice of the boundary conditions depends on the 

situation to be simulated. In our simulations, the 

boundary conditions were specified by equating the 

second normal derivative at the boundary point to the 

one at the nearest grid point in the direction normal 

to the boundary. When the initial infection is placed 

at the centre of the field, this condition means that 

the values of the spore and lesion densities at the 

boundary and at the nearest point are equal. The 

influence of this boundary condition, which is of 

Dirichlet type, on the result of the numerical solution 

of the vdiffusion model' will by studied in Section 5.5 

by means of sensitivity analysis. 
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4 VALIDATION OF THE vDIFFUSION THEORY' 

IN THE HORIZONTAL PLANE 

4.1 INTRODUCTION 

Plant disease development in space and time can be 

treated by a variety of methods: deterministic computer 

simulation (Zadoks and Kampmeijer, 1977; Kiyosawa, 

1976), stochastic computer simulation (Minogue and Fry, 

1983), analytical treatment of integro-differential 

equations (Kermack and McKendrick, 1927; Diekmann, 

1978, 1979; Thieme, 1977, 1979; Van den Bosch et al., 

1988a, b, c) or the "diffusion theory' (Chapter 3). The 

technical aspects of these methods may be very 

different, but their results should be consistent; they 

have to reflect the nature of the process described. 

This chapter compares the results of some computer 

simulation models and some experimental data to the 

results obtained by numerical solution of a system of 

partial differential equations (Chapter 3). 

4.1.1 Parametrization 

The parameters required by the vdiffusion model' 

belong to distinct groups. The elements within each 

group are related by similarities in their meaning for 

the theory and in their method of measurement. 

Sometimes they cannot be measured separately from other 

parameters belonging to the same group. 

1. Spore production parameters : 

a. E - effectiveness - is the proportion of spores 

produced which after deposition on healthy 

plant tissue will produce lesions. 

b. R - reproductivity - is the number of spores 

produced per sporulating lesion per day. 

c. p - latency period - is the time in days from the 
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deposition of a successful spore until the 

start of spore production by the ensuing 

lesion, 

d. i - infectious period - is the period in days 

during which a lesion produces spores. 

Choice of these parameters assumes that the 

reproductivity can be described by a block function, 

with its non-zero value between two time points : the 

beginning and the end of the infectious period of a 

lesion. If this is not the case, R, p and i should be 

replaced by a function describing the time dependency 

of spore production by a lesion. 

Often, it is not possible to measure R and E 

separately. When spore production can be described by a 

block function, the number of daughter lesions per 

mother lesion per day can be used i.e. the infection 

efficiency, E, multiplied by the reproductivity, R. In 

the case of another time dependency of the spore 

production function, time dependent function for E and 

R or for E-R should be determined experimentally. 

2. Spore movement parameter : 

a. D - diffusion coefficient. 

In the scattering model (Section 3.3.4) 

D = X v I 2 s 

where *. is the mean free path for scattering 

(analogous to the mixing length (Goudriaan, 1977)), and 

v is the spore velocity. 

3. Spore vsurvival' parameter: 

a. <5 - the rate of spore deposition. 

In the scattering model 

6 = v I X 
<3 

where v is the spore velocity and X- is the mean free 

path for absorption. 
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Sometimes, D and <5 are experimental results, which 

can be used directly in a simulation run, but it is 

difficult to measure these parameters separately. 

Experimental determination of the contact distribution 

(sensu Van den Bosch et al., 1988a, b, c) gives the 

ratio, D/S (Williams, 1961). 

4. vCrop' parameters: 

a. number of available sites, 

b. spatial distribution of a crop and its variation 

with time. 

The values of all parameters described in Section 

4.1.1. are subject to regular or stochastic variation. 

The use of constant values is adequate for a 

preliminary analysis, but a more detailed analysis 

requires determination of changes of these parameter 

values with time and/or space. 

4.2 COMPARISON WITH OTHER MODELS 

4.2.1 Minogue and Fry's model 

- one spatial dimension and time 

Minogue and Fry modelled disease development in time 

and one-dimensional discretized space. In their model, 

sporulation and spore dispersal are stochastic 

processes. At low population density, the total number 

of offspring produced per parent lesion during its 

lifetime, n, has a Poisson distribution: 

h{n) = oT exp(-oi) / n! 

where « is the mean number of daughter lesions per 

parent lesion. Daughter lesions are produced by a 

mother lesion of age p till p+i, where p is the latency 

period and i is the infectious period. The distribution 

of times at which daughter lesions occur is a block 

function: 
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z(t) 
i _ 1 , f o r tQ+p ^ t ^ tQ+p+i 

0, f o r t < t +p o r t > t +p+i 

where t is the time at which a mother lesion was o 
initialized. Assuming that spores moved straight away 

from this point of origin, the only mechanism leading 

to a decrease of the density of airborne spores being 

deposition with probability a at each crossing of a 

space cell, Minogue and Fry took the distribution of 

deposited spores to be a double geometric one: 

|v| 

f(x) = [ a I (2 - a)] (1 - a) (4.1) 

where | x\ is the absolute value of the distance from 

the plant of origin, and f(x) is the probability that a 

spore will travel that distance before landing. The 

probability of infection, conditional on a spore being 

deposited, of the j plant was assumed to be 

proportional to the noninfected proportion of its 

tissue: 

Q. = 1 - (y. / K) 

where y. is the number of lesions on plant j and K is 

the maximum number of lesions that can occur on a j' 

plant. 

Gradients of the lesion distribution in a field, the 

displacement velocity of the disease front, and their 

dependence on the values of the parameters were 

examined. The spore distribution function (4.1), 

arbitrarily chosen by Minogue and Fry, happens to 

correspond to the one derived on theoretical grounds 

for the decay of spores with distance due to diffusion 

and eventual deposition, by Williams (1961) and 

Broadbent and Kendall (1953) (see also Van den Bosch et 

al., 1988b). However this correspondence is not 
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immediate, because Minogue and Fry disregarded the 

influence of diffusion on the spore density 

distribution. Luckily, this difference between the two 

models compared can be overcome, because the double 

geometric distribution can be directly translated to 

the double exponential one (i.e. the marginal 

distribution resulting from the vdiffusion theory'). 

A Parameters 

Minogue and Fry used several parameters in their 

simulations. Some were estimates of vdisease 

parameters', others were parameters of the functions 

which govern sporulation of lesions and dispersal of 

spores. The ^diffusion model' uses parameters which are 

not always consistent with the parameters of Minogue 

and Fry. So, some parameters were used without change, 

some were reinterpreted, and others had to be 

translated. 

1. Unchanged parameters. 

- p - latency period [T] 

- i - infectious period [T] 

- L - the maximum number of lesions per 
max c 

unit of length [NL ] 
Ad L Minogue and Fry's K (the maximum number of 

max , -* J v 

lesions that can occur on a plant) is equivalent to 

the maximum lesion density L , as a plant occupies 

a unit of length. 

2. Reinterpreted parameters. 

- R - number of spores produced by a 

single sporulating lesion per unit 

of time [NN^T-1] 

- E - infection efficiency [1] 

Ad R, E. Minogue and Fry use M - the mean number of 

offspring produced per infectious lesion per unit of 

time at low population densities. It almost equals 

R-E of the vdiffusion theory' or R defined by Van 
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der Plank (1963). The only difference is that in 

Minogue and Fry's model the realized number of 

offspring is a Poisson random variable, whereas we 

assume that this random variable can be safely 

replaced by its mean, as we are always dealing with 

large numbers of sites. 

3. Translated parameters. 

- D - diffusion coefficient [L T ] 

- <5 - rate of spore deposition [T ] 

Minogue and Fry used & (the variance of the spore 

dispersal function) as the parameter measuring the 

distribution of daughter lesions. They assumed that 

spores move straight away from their point of origin 

and land on a plant with probability a, which is 

constant for all plants, and that their dispersal in 

either direction from the source plant is equally 

likely. Minogue and Fry derived that the variance of 

the resulting double geometric distribution function 

equals 

c? = 2 (1 - a) I a (4.2) 

Before trying to relate Minogue and Fry's a to our D 

and <5 it should be noted that, in Minogue and Fry's 

view, spore dispersal is instantaneous. For the 
vdiffusion theory' it corresponds to both D and <5 being 

infinite, but they tend to infinity in such a way that 

Dl& takes a finite value. In the case of 

one-dimensional diffusion and deposition, the 

distribution of spores not yet deposited can be derived 

in the same manner as (3.31) was derived for 

two-dimensional space. The result is: 

S(x,t) = — exp 

T4iDt 
-6 t 

2 
X 

4Dt 

The number of spores landing at a distance x from the 
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source is the integral of S(x,t) with time, t, 

calculated from 0 to infinity. The result is exactly 

equal to the one-dimensional marginal distribution of 

spores deposited in two-dimensional space (see Van den 

Bosch et al., 1988b): 

~S(x) = 1/2 Y ó/D exp - / 6/D (4.3) 

Because a fraction of the deposited spores E initialize 

lesions, equation (4.3) multiplied by this correction 

factor describes the lesion distribution at low lesion 

densities (when the fraction of tissue already infected 

has little influence). 

Comparing formulas (4.1) and (4.3), the approximate 

values of D/& corresponding to Minogue and Fry's values 

of o can be calculated: 

D/6 = | In (1 - a) 1 (4.4) 

where a can be calculated from (4.2) with the values of 

<y chosen by Minogue and Fry. 

B Results 

Results were obtained by running the programme 

PODESS (Appendix A) on a VAX 8600. The solution 

interval (a unit of xsolution' time) was one day. As in 

Minogue and Fry's model, the field was one-dimensional 

(one line of crop). Its length was 40 units (a unit of 

length is a distance occupied by a single plant). 

The parameters common to all runs were: 

1. L = 50. - maximum lesion density (per 
max -* v r 

plant) [ Nif1] 

2. D = 5. - diffusion coefficient [L T~ ] 

3. E = 1. - infection efficiency [1] 
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Ad 3. The value of D was chosen to keep X. always lower 

than that X. 

X. • v/2 and <5 s 

where in the scattering model D = 
= vfK ; o n ly Dl& = X. • X. can be a' J sa 

calculated from (4.4). 

The other parameters (varied in different runs) were: 

6. R - number of spores produced by a single 

sporulating lesion per day [NN T ] 

1. p - latency period (in days) [T] 

8. i - infectious period (in days) [T] 

4. & - rate of spore deposition [T ]. 

The initial inoculation, by a single spore, occurred at 

the left end of the field (point 0.). 

Four runs for different parameter values (Table 

4.1), were performed (Fig. 4.1). Three additional runs 

were made for three values of the rate of spore 

deposition (<5 = 25.6, 2.6, 1.3), keeping other 

parameters values as for run 1. 

The curves in figures 1A to ID of Minogue and Fry 

show simulated populations of lesions as functions of 

the distance from the point of origin. These curves 

Table 4.1. A comparison of the xdiffusion model' and 

the model by Minogue and Fry. Values of the input 

parameters for the first four runs of the ^diffusion 

model'. R - number of offspring per sporulating lesion 

per day, p - latency period, i - infectious period, <5 -

rate of spore deposition. 

P a r . 

R 

P 
i 

6 

Run 1 

0 . 5 

3 . 0 

5 . 0 

4 . 8 

Run 2 

1 .0 

3 . 0 

5 . 0 

4 . 8 

Run 3 

0 . 5 

3 . 0 

1 0 . 0 

4 . 8 

Run 4 

0 . 5 

7 . 0 

5 . 0 

4 . 8 
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Fig. 4.1. Lesion density as a function of distance from 

the point of initial inoculation for various time 

instants after inoculation. The X-axis shows distance 

in units of length (plants), the Y-axis disease 

severity in percent of the maximum number of lesions. 

Parameter values are given in Table 4.1 (compare to 

Fig. 1 in Minogue and Fry, 1983a). A, results of run 1. 

B, results of run 2. C, results of run 3. D, results of 

run 4. 

were compared with the printouts of runs 1 to 4. The 

gradient values obtained by means of the "diffusion 

model' are shown in Table 4.2. The only difference is 

in the times at which similar curves of lesion density 

versus distance appear. Curves produced by the 

"diffusion model' appear earlier than those produced by 

Minogue and Fry's calculations. The initial phase of 

focus build-up in the "diffusion' model is shorter than 
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in the Minogue and Fry model. The difference seems to 

due to the deterministic nature of the "diffusion 

theory' as compared to the stochastic one of the 

Minogue and Fry model. Minogue and Fry assumed the 

number of offspring produced by a sporulating lesion to 

be a Poisson distributed random variable. Therefore, a 

low rate of deposition is usually translated into no 

Table 4.2. A comparison of the "diffusion model' and 

the model by Minogue and Fry. Values of the gradients 

(assessed for 50% of the maximum disease severity) for 

Fig. 1A - ID of Minogue and Fry's model and runs 1 - 4 

of the "diffusion model'. Gradients are expressed as 

differences in the "percent of maximum number of 

lesions per plant' at the two points nearest to 50% 

severity (these points are one unit of length apart). 

The runs of the "diffusion model' were performed with 

values of parameters as in Table 4.1 and in text. 

"Diffusion model' -

gradients constant -

model is deterministic 

Run 1 

-8.0 

Run 2 

-11.9 

Run 3 

-11.3 

Run 4 

- 7.6 

Minogue and Fry's model -

gradients are variable -

model is stochastic 

Fig. 1A 

-3.8 to -7.9 

Fig IB 

-10.0 to -15.0 

Fig. 1C 

-10.4 to -11.2 

Fig. ID 

-7.0 to -7.5 



lesion being initialized, which corresponds to an 

effective cut off of low lesion densities (of course 

there are also random jumps forwards, but these are 

rare, cut off being the usual pattern), thus slowing 

down the initial phase of the epidemic. 

The results show good qualitative and quantitative 

consistency. The gradients for runs 2 and 3 (Table 4.2) 

are much steeper than for runs 1 and 4; this reflects 

the dependence of the gradient on the number of spores 

produced per infectious lesion per unit of time, R 

(compare results of the runs 1 and 2), and on the 

duration of the infectious period, i (compare results 

of the runs 1 and 3). Both models are consistent in 

that the latency period p has little influence on the 

gradient (compare results of the runs 1 and 4). 

Runs 1, 5, and 7 were performed with values for & = 

4.8, 25.6, and 1.3, respectively. The values of the 

gradients for these runs and these of Minogue and Fry 

Table 4.3. A comparison of the sdiffusion model' and 

the model by Minogue and Fry. Gradients for different 

values of the ^dispersion' parameter. Gradients are 

expressed as differences in the vpercent of maximum 

number of lesions per plant' at the two points nearest 

to 50% severity (these points are one unit of length 

apart). Symbols are explained in the text. 

vDiffusion model' 

6 

25.6 

4.8 

1.3 

gradient 

-17.8 

-8.0 

-4.6 

Minogue and Fry's model 

Cf 

0.79 

2.00 

3.94 

gradient 

-18.0 

-8.0 

-3.5 
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Fig. 4.2. Lesion density as a function of distance from 

the point of initial inoculation for various values of 

the rate of spore deposition, 6, (25.6, 4.8, 1.3) 

produced by runs 5, 1, 7. The X-axis shows the mean 

free path for absorption in units of length (plants), 

the Y-axis is disease severity in number of lesions. 

Other parameter values are given in Table 4.1 (compare 

to Fig. 2 in Minogue and Fry, 1983a). 

are shown in Table 4.3 (compare Fig. 2 of Minogue and 

Fry to Fig. 4.2 of the present study). Again, the 

results of the two models are qualitatively and 

quantitatively consistent. This result is not a 

surprise. In the limiting case of infinitely fast spore 

dispersal, the "diffusion model' contains only one 

parameter with dimension length, VD/& , i.e. the nature 

of the solution becomes almost independent of the 

separate parameters D and <S as long as D/& is kept 

constant. 
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Fig. 4.3. Velocity of focus expansion as a function of 

the logarithm of the mean free path for absorption. 

Results for 3 = 25.6, 4.8, 2.6, 1.3 are produced by 

runs 5, 1, 6, 7. The X-axis is the square root of D/6, 

the Y-axis represents the velocity in units of length 

(plants) per vsolution' interval. Other parameter 

values are given in Table 4.1 (compare to Fig. 3 in 

Minogue and Fry, 1983a). 

Another important parameter, which characterizes 

conquest of space by the disease, is the velocity of 

travel of the epidemic wave (or of a low constant value 

of the severity). The value of this velocity depends on 

the value of the "dispersion' parameter. Fig. 3 and 

Table 1 of Minogue and Fry's paper present their 

results. Runs 1, 5, 6, and 7 show the results of the 

numerical approach by means of the "diffusion model'. 

These results are compared in Table 4.4 (compare also 

63 



Fig. 3. of Minogue and Fry and our Fig. 4.3). As can be 

expected from the theoretical study of the case with 

infinitely fast spore dispersal, both models predict 

linear growth of the wave velocity with increase of the 

value of the vdispersion' parameter, variance for the 

Minogue and Fry model and VD/6 for the "diffusion 

model'. The left side of Table 4.4 also shows the 

increase of the velocity of focal expansion with time 

until reaching a constant value. 

Table 4.4. A comparison of the vdiffusion model' and 

the model by Minogue and Fry. Traveling wave velocity 

as a function of the vdispersion' parameter *• of the 
vdiffusion' theory or o of the Minogue and Fry's model. 

1" 1 - mean velocity between points at 0. and 10. units 

from the point of initial inoculation. 

2 - mean velocity between points at 10. and 20. 

units from the point of initial inoculation. 

3 - mean velocity between points at 20. and 30. 

units from the point of initial inoculation. 

X 1 - velocity resulting from Minogue and Fry's model. 

2 - velocity as assessed from Minogue and Fry's data 

(their Fig. 3) by linear regression. 

'Diffusion model' 

ó 

25.6 

4.8 

2.6 

1.3 

t 
velocity 

1 

0.26 

0.51 

0.64 

0.81 

2 

0.30 

0.57 

0.70 

0.87 

3 

0.59 

0.74 

0.91 

Minogue and Fry's model 

a 

0.79 

2.00 

2.74 

3.94 

velocity 

1 

0.22 

0.51 

0.57 

1.07 

2 

0.20 

0.50 

0.67 

0.95 
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C Discussion 

The numerical analysis of the system of partial 

differential equations, which form the basis of the 
vdiffusion theory', presents the gradient and the 

expansion velocity of the focus as functions of a set 

of parameters. High qualitative and quantitative 

consistency with the results of Minogue and Fry was 

obtained. However, it is important to notice that this 

consistency resulted from a fortunate consistency of 

the distribution function assumed by Minogue and Fry 

and the one resulting from the "diffusion theory' 

rather than from consistency in assumptions on spore 

dispersal mechanisms. Minogue and Fry assumed that only 

deposition is "responsible' for the decrease of the 

density of deposited spores with the distance from the 

plant of origin. The "diffusion theory' assumes that 

the spore distribution is the result of two processes: 

(1) turbulent diffusion, and (2) deposition. 

Quite opposite to the results of the two models 

compared above is the opinion about the functional 

dependence of the gradient on the infection rate 

advocated by Vanderplank (1975). He writes (page 141): 

"From any given level of disease in an established 

epidemic, the gradient will be flatter as the infection 

rate is faster, other things being equal." This opinion 

is based on his equation (4.3) (Vanderplank, 1975 p. 

105) for a nonspatial model, which was derived with the 

assumption: "When there are no waves and the epidemic 

is proceeding at a steady rate and y (here the fraction 

of infected host tissue) is relatively small (and 

definitely not exceeding 0.15), R can be estimated from 

r by the equation 

e~P'r _ e-(
i+P)'r 
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Vanderplank derived his equation (4.3) from a "point' 

model (spatial development of the disease was 

completely neglected). Such an equation cannot be the 

base for sspatial' results (a gradient is a vspatial' 

phenomenon). Morever, the gradient should be measured 
von the wave', because for a focus the wave is the 

front of the'epidemic. 

The argument can be visualized by the following 

example. At the level of applicability of Vanderplank' s 

equation (4.3) (y < 0.15), disease develops almost 

exponentially. Assuming his vpoint' model at two 

points, P and P , with different disease levels, y ( 0 ) 

and y2(0) (for t = 0), these levels will grow 

exponentially with time, and so will grow their 

difference. The growth will be proportional to the 

exponent of the infection rate. Thus a higher value of 

the infection rate will result in a higher value of the 

difference between levels y±{t) and y2{t) (where t > 

0). Therefore, the gradient will be steeper for the 

higher than for lower infection rate (the gradient is 

the first derivative with respect to the space 

variable, so it is the limit of the difference between 

the disease levels divided by the difference between 

the positions of points P and P2, when the latter 

difference tends to 0.). 

Minogue and Fry interpreted the data in a paper by 

MacKenzie (1976) as if slow rusting cultivars (low 

infection rate) are characterized by steeper disease 

gradients. A detailed inspection of the paper does not 

confirm Minogue and Fry's interpretation. Table 1 and 

Fig. 3 of MacKenzie's paper, which give the gradients 

of a slow rusting wheat variety (Bonza 55) and of two 

susceptible varieties (Pitic 62 and Penjamo 62), show 

that the gradients of Bonza 55 are not significantly 

different from the gradients of Pitic 62 and Penjamo 

62. In addition, D.R. MacKenzie states: "Significant 

differences in the regression slopes for the duplicate 
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plots of Bonza 55 are considered to be the result of 

random sampling errors of remote distances from the 

point source where disease quantities were extremely 

small." Fig. 3 of MacKenzie's paper shows that the 

steeper gradient of Bonza 55 is based on 2 observations 

only, and the flatter one on 4 observations. Thus, the 

steeper gradient of Bonza 55 should be excluded from 

consideration. The flatter one is the flattest of all 

the gradients presented. 

D Conclusions 

The same result as derived here, a steeper gradient 

with an increasing infection rate, was obtained by Van 

den Bosch et al. (1988a). All models which describe 

focal disease development in time and space are 

consistent in this result. The opposite result of 

Vanderplank is due to extrapolation of the 'point' 

model beyond its 'domain of applicability'. 

The interesting result of the experimental work by 

MacKenzie (1976) is the observation, that below 50 % of 

infected host tissue the flattening of the secondary 

gradient, predicted by Gregory (1968), was not 

observed, the gradient being defined as the first 

derivative with space of the lesion density function at 

a fixed position. Only when the disease severity on the 

inoculated side of the measurement point reaches the 

saturation level, gradients will flatten. MacKenzie 

expressed the opinion that the flattening of the 

gradient can occur at high disease levels. His opinion 

is consistent with the results of our numerical 

analysis. If on the other hand we define the gradient 

as the first derivative measured at the 50 % level of 

disease severity, then the gradient is constant during 

each of the runs. 
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4.2.2 EPIMUIi 76 - two spatial dimensions and time 

One of the first models simulating focus formation 

in two-dimensional space and time was EPIMUL 

(Kampmeijer and Zadoks, 1977). Its theoretical basis is 

formed by the following assumptions: 

1. space is compartmentalized into 400 (20 x 20) 

compartments, 

2. disease develops uniformly in each compartment, 

3. spores are produced by lesions with constant rate 

(DMFR) during the period from p till p+i after 

lesion initialization, 

4. after liberation, spores are distributed over space 

during one day by turbulent diffusion, and then 

suddenly deposited, 

5. (1 - x ) of the deposited spores successfully infect 

the host, where x. is the diseased fraction of host 

plant area. 

The model was programmed in FORTRAN. A series of 

simulation runs with different sets of parameters gave 

several phytopathologically important results, such as: 

1. gradients of the disease severity in dependence of 

the spore distribution parameter HALRIB (= 

HALF/RIBB, where HALF is the distance between the 

spore source and the place where the density is half 

the density at the source and RIBB is a side of a 

compartment), 

2. displacement velocity of the focal front in 

dependence of a daily multiplication factor (DMFR, 

number of offspring produced per sporulating lesion 

per day) and of the spore distribution parameter 

HALRIB, 

3. pictures of the diseased region in dependence on 

time and on the spore distribution parameter HALRIB. 
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A Parameters 

Some of the parameters needed by the "diffusion 

model' can be directly taken from EPIMUL, the others 

must be translated. 

1. Unchanged parameters. 

- p - latency period [T] 

- i - infectious period [T] 

2. Translated parameters. 

- L - t h e maximum number of l e s i o n s 
max 

- R 

E 

D 

6 

pe r 

[Nif2] compartment 

- number of spores produced by a 

single sporulating lesion per unit 

of time 

- infection efficiency [1] 

- diffusion coefficient 

- rate of spore deposition 

[ NN'^T - 1 ] 

[L T ] 

[T_i] 

Ad i 

LAI 

AREA 
(area of compartment) (4.5) 

where LAI is the leaf area index and AREA is the 

area of a single lesion. 

Ad R, E. The number of daughter lesions produced per 

mother lesion per day, DMFR in EPIMUL, is equal to 

the product of two parameters of the "diffusion 

theory': 

DMFR R E (4.6) 

Because no spores are removed from the epidemic in 

EPIMUL and all plants are totally susceptible, E = 

1. 

Ad D. The "distribution' parameter of EPIMUL - HALF 

should be translated into terms of D. During one 

simulation day, spores are distributed according to 
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a Gauss function with variance 

c2 = 2 D 

then, 

2 
<y 

D = (4.7) 
2 

The 'dispersion' parameter of EPIMUL is HALF - the 

distance in meters between the spore source and the 

place where the density is half of the density at 

the source. The following relation between & and 

HALF can be written (rearanged equation (2.7) of 

Kampmeijer and Zadoks, 1977): 

HALF 
. (4.8) 

/ 2-(In 2) 

Substituting (4.8) into (4.7) leads to the following 

equation on D: 

HALF2 

D = (4.9) 
4 • (In 2 ) 

Ad "5. There is no assumption in EPIMUL, which allows to 

assess the value of the rate of spore deposition, 

but the obvious choice is to use & in the order of 

magnitude of 1 [day ] (almost all spores are 

deposited within 1 day). 

B Results 

To compare results of the two models, twelve runs of 

the computer programme PODESS (Appendix A) were 

performed on a VAX 8600 computer. For all runs, the 

solution field (100 m x 100 m) was discretized into 21 
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x 21 grid points. The initial infection by one spore 

occured at the centre of the field. The following 

parameters had the same values in all runs: 

8 [days], 

= 8 [days], 

= 1, 

= 2 [1/day], 

= 5, 

= 10 [mm2], 

varies with runs from 2. to 50. [spores per 

sporulating lesion per day]. 

The results of these runs were compared to the 

results of EPIMUL, Tables 2 and 3 and Fig. 13 of 

Kampmeijer and Zadoks (1977). The results of EPIMUL 

depend on the value of the parameter HALRIB. 

Substituting the value of HALF (calculated from 

HALRIB), D can be calculated from (4.9). The most 

interesting results of EPIMUL were obtained for values 

of HALRIB = 0.2, 0.4, 0.5, 1.0, 2.0, and 10.0. Applying 

1. 

2. 

3. 

5. 

6. 

7. 

8. 

P 
i 

E 

6 

LAI 

AREA 

R 

Table 4.5. A comparison of the vdiffusion model' and 

EPIMUL. Gradient values, at severity level 0.05, 

obtained by EPIMUL and by the sdiffusion model' for 

corresponding values of HALRIB (EPIMUL) and D 

(vdiffusion model'). Parameter values: R = 10, others 

as in text. 

EPIMUL 

HALRIB 

0.2 

0.5 

1.0 

2.0 

gradient 

- 0.45 

- 0.19 

- 0.065 

- 0.005 

^Diffusion model' 

D 

0.36 

2.25 

9.0 

36.1 

gradient 

- 0.86 

- 0.11 

- 0.057 

- 0.051 
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equation (4.9) the following values of the diffusion 

coefficient were calculated: D = 0.36, 1.45, 2.25, 9.0, 

36.1, and 902. 

Table 4.5 compares the results of Table 2 in 

Kampmeijer and Zadoks with the results of the 
vdiffusion model'. The two models allow to calculate 

the displacement velocities of the disease front (at 

constant severity level), Table 4.6. The plots of 

disease intensity (Fig. 4.4) made according to the 
vdiffusion' theory were compared to those of EPIMUL 

(Fig. 13 of Kampmeijer and Zadoks, 1977). These figures 

show the development of five focal epidemics for 

various values of HALRIB. The two sets of figures look 

very similar, thus indicating qualitative consistency 

of the two models. 

Table 4.6. A comparison of the Kdiffusion model' and 

EPIMUL. The velocity of frontal displacement, in 

compartments per day. Values of parameters other than R 

and D are given in the text. 

EPIMUL 

DMFR 

2.0 

10.0 

50.0 

HALRIB 

0.2 

0.4 

1.0 

0.2 

0.4 

1.0 

0.2 

0.4 

1.0 

velocity 

0.03 

0.10 

0.22 

0.08 

0.14 

0.28 

0.09 

0.17 

0.33 

vDiffusion model' 

R 

2.0 

10.0 

50.0 

D 

0.36 

1.45 

9.0 

0.36 

1.45 

9.0 

0.36 

1.45 

9.0 

velocity 

0.07 

0.10 

0.21 

0.10 

0.15 

0.27 

0.14 

0.19 

0.33 
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0.223 ) 
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1.00 ] 

T = 60 T = 70 T = 80 

Fig 4.4. Development of simulated focal disease for 

time T = 60, 70 and 80. X- and Y-axes are distances 

from 0 to 100 m, intensity of printed points reflects 

the fraction of the host surface covered by lesions. 

The "diamond' shapes of the diseased area are due to 

discretization of space by the numerical method of 

solution and by the method of plotting. Values of the 

diffusion coefficient are: A, D = 0.36; B, D = 9; C, D 

= 36.1; D, D = 902. In all cases R = 10, other 

parameter values as in text. 
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C Discussion 

The two models are essentially different in their 

assumptions about the distribution of spores, though 

both are subsumed under the Diekmann-Thieme theory. 

Therefore, qualitative rather than quantitative 

consistency of the two models should be expected. 

Comparison of the results obtained by numerical 

analysis of the equations of the "diffusion theory' and 

those presented by Kampmeijer and Zadoks (1977) 

confirms this opinion. The fundamental difference 

between the two models can be explained as follows. The 

"diffusion model' takes into account two processes that 

lead to a decrease of the density of air-borne spores 

with the distance from the plant of origin: (1) 

turbulent diffusion and (2) deposition with constant 

probability per unit of time. Diffusion and continuous 

deposition together lead to the Bessel form of the 

spore deposition density (Broadbent and Kendall, 1953; 

Van den Bosch et al., 1988a, b). EPIMUL assumes that 

all spores stay in the air for a fixed time during 

diffusion and that after that time they are suddenly 

deposited. 

The influence of different lesion distribution 

functions becomes evident in the results of Table 4.5. 

The Bessel function is more "peaked' than the Gauss 

function, which is equivalent to a steeper gradient 

near the point of origin, and a flatter one in the 

distal region. This results in a steeper gradient for 

the "diffusion model' than that of EPIMUL in the first 

row of Table 4.5, and a flatter one in the second and 

the third row. The phenomenon can be explained as 

follows. Severity level 0.05, at which the gradient 

values were calculated, is rather low, so that, in the 

cases compared at the second and the third lines of 

Table 4.5, the calculations were performed in the 

region of a flat Bessel function gradient. In the case 
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considered on the first line of this table, the 

severity function was so vpeaked', that the region of 

gradient assesment contained the steeper part of the 

Bessel function. The steeper gradient in the fourth row 

of Table 4.5 has a similar reason. 

Good qualitative consistency of the two models was 

shown by the displacement velocity of the focal front 

(Table 4.6). However, some differences can be observed 

for low values of HALRIB (for EPIMUL) and corresponding 

values of <S (for the "diffusion model'). These 

differences are due to the different spore distribution 

functions of the two models. It can be shown, using the 

perturbation expansions described by Van den Bosch et 

al. (in prep.), that for low velocities, the velocity 

of focus expansion depends only on the variance of the 

spore distribution function, and not on its shape. The 

steepness of the focal front is far more sensitive to 

the shape of the distribution function than its 

displacement velocity. 

EPIMUL and the vdiffusion model' show good 

qualitative and fair quantitative consistency. 

Differences in the assumptions on spore dispersal are 

responsible of the observed minor discrepancies. On a 

priori grounds we may state that the spore dispersal 

mechanism of the vdiffusion model' reflects reality 

better than that of EPIMUL. Van den Bosch et al. 

(1988b, c) review experimental material confirming this 

view. 

4.3 COMPARISON WITH EXPERIMENTAL RESULTS 

4.3.1 Experimental results of downy mildew on spinach 

Comparison of the vdiffusion model' to the models 

known from the literature may be good, experimental 

validation is better. Numerical results of the 
vdiffusion model' were compared to experimental data 
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for downy mildew (Peronospora farinosa) on spinach 

(Spinacia oleracea), and to analytical results obtained 

by applying the Diekmann-Thieme theory (Van den Bosch 

et al., 1988c). On the basis of field experiments with 

spinach (cv. Noorman) performed in 1983 on 1.5 m x 1.5 

m plots inoculated at the centres and a similar 

experiment performed in the greenhouse in 1984 with cv. 

Huro, Van den Bosch et al. (1988c) assessed the 

necessary parameter values and the velocity of focus 

expansion. Using the Diekmann-Thieme theory together 

with experimentally determined parameter values, they 

calculated the expected velocity of focus expansion. 

The difference between the two velocity values, 

observed and predicted, is within the experimental 

error. Similarly, the velocity of focus expansion was 

calculated by the vdiffusion model' using the parameter 

values given by Van den Bosch et al. (1988c). The 

calculated velocity was compared to the observed one, 

and to the velocity calculated by numerical solution of 

the Diekmann-Thieme speed equation. 

A Parameters 

Van den Bosch et al. (1988c, and personal 

communication), used the following parameter values 

which here are used as input data for the numerical 

solution of the equations of the ^diffusion theory': 

1. p - latency period = 7 days [T] 

2. R(t-p) E - number of daughter lesions 

produced per sporulating 

mother lesion = 0.041, 1.44, 

0.33, 0.65, 0.20, 0.18, 

0.13, 0.15, 0.055 (spores 

per sporulating lesion per 

day) for the lBl till 9th 

day of sporulation, 

respectively [NN~ T~ ] 
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3 . 

4 . 

5 . 

6 . 

LAI 

AREA 

D 

6 

- leaf area index = 5 [1] 

- area of a single lesion = 1 
2 2 

cm [L ] 
2 -1 

- diffusion coefficient [L T ] 
- rate of spore deposition [T ]. 

The last two parameters, D and &, cannot be 

estimated separately from available data. One 

dispersion parameter, the width, p, of the Bessel 

contact distribution was measured by Van den Bosch et 

al. (1988c). According to Williams (1961) the parameter 
2 

P as measured by the mean square value of the distance 

from the source of spores equals: 
4 D 

P = (4.13) 

where D is the diffusion coefficient and "5 is the 

deposition rate of spores. With p = 0.163 ± 0.047 m 

(see Table 1 of Van den Bosch et al., 1988c), this 

leads to 

D I <5 = 0.0066 [m2] 

Taking into account the standard deviation of the 
2 

estimation of p, this ratio varies from 0.0034 m to 

0.011 m2. 

Because only the ratio D/& influences the solution, 

arbitrary values of D and &, which keep this ratio 

constant, can be chosen. The values <5 = 2 [1/day] and D 
2 

= 0.013 [m /day] were used in the run of the xdiffusion 

model' discussed above. This choice leads to an 

adequate value of D/à while the equations do not yet 

become stiff, so that their numerical solution is 

relatively fast. 
B Results 

The numerical solution of the equations of the 
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"diffusion theory' was performed on a VAX 8600 

computer, using the computer programme PODESS (Appendix 

A ) . 

The vsolution' region was a field of 1.5 m x 1.5 m, 
vinoculated' at the centre with 100 spores. During 100 

"solution days' the results were printed and plotted 

every tenth day. They allow calculating the velocity of 

displacement of the focal front. The calculated 

velocity was 0.024 m/day (for D = 0.013 [m2/day]), For 

p = 0.163 ± 0.047 m, the confidence limits are 0.014 

m/day (for D = 0.0068 [mVday]) and 0.041 m/day (for D 

= 0.022 [m /day]). The velocity is close to the result 

obtained by Van den Bosch et al. (1988c) calculated on 

the basis of the Diekmann-Thieme theory, 0.03 ± 0.024 

m/day, and - more important - with the experimental 

result, 0.023 ± 0.002 m/day. The discrepancy between 

the result of the "diffusion model' and the result 

obtained by Van den Bosch et al. is due to the 

discretization error inherent in the fit of the spore 

production kernel used by the "diffusion model'. 

4.3.2 Mixtures of susceptible and resistant varieties 

Vulnerability of crops can be decreased in a variety 

of ways. One is mixing resistant and susceptible 

varieties. The effectiveness of such mixtures was 

studied experimentally (e.g. Zadoks, 1958; Mundt et 

al., 1986a) and by computer simulation (Kampmeijer and 

Zadoks, 1977; Mundt et al., 1986b, c). The rate of 

disease progress can be measured by the velocity of 

focus expansion, c . The dependence of c on the 

fraction of susceptibles in a mixture was determined 

experimentally (Buiel et al., in prep.) and 

analytically (Van den Bosch, personal comm.). Results 

of the two approaches were consistent; the velocity of 

focus expansion increases linearly with the logarithm 

of the percentage of suscepts in a mixture. 



The experiment (Buiel et al., in prep) was performed 

in 1987 with twelve plots of 3 m x 3 m. Four 

combinations of mixtures of susceptible (cv. Okapi) and 

resistant (cv. Sarno) wheat were planted in three 

replications. The proportions of susceptible to 

resistant plants in the mixtures were: 1:0, 1:1, 1:2, 

and 1:4 (percentages of suscepts: 100%, 50%, 33%, and 

20%). Each plot contained 11 x 11 wheat hassocks. Plots 

were inoculated in the center by planting 2 additional 

clumps of the susceptible cultivar inoculated by stripe 

rust (Puccinia striiformis); after a few days these 

clumps were removed. The velocity of focus expansion, 

c , was assessed for each plot on the basis of lesion 

counts per hassock. The relation between c and the 

logarithm of the percentage of suscepts was determined. 

A Parameters 

Some parameters required by the vdiffusion' theory 

were measured during the experiment. The values of the 

others were guesstimated. 

Directly measured were latency period, p = 17 days, 

and infectious period, i = 21 days. Using the contact 

distribution, assessed from the distribution of the 

first generation lesions, the parameter of the Bessel 

distribution i.e. the mean square value of the 

distance, p , was estimated by the method of Williams 

(1961). Then, using equation (4.16), the ratio D/& was 

calculated. The third column of Table 4.7 gives the 

values of p for each plot. Assuming a constant value of 
2 

the diffusion coefficient D = 0.015 [m / day], the 

value of the rate of deposition, &, was estimated. The 

values of D and <5 were chosen to maintain an 

appropriate value of D/& and to use a relatively low 

value of & (the value of <5 influences computing time). 

The estimated values of 6 are shown in column 4 of 

Table 4.7. As the reproductivity parameters were not 
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measured, the value of 10 daughter lesions per mother 

lesion (Zadoks, 1961) was assumed for plots with 100% 

suscepts. This value gives approximately R = 0.5 

daughter lesions per mother lesion per day. Infection 

efficiency E was then assumed to be equal to the 

fraction of suscepts in a mixture. Therefore, E = 1., 

0.5, 0.33 and 0.2 for 100%, 50%, 33% and 20% of 

suscepts in a mixture, respectively. 

The constant parameters for all the runs were: 

1. p = 1 7 [ days ], 

2. i 

3. D 
21 [days], 

0.015 [m /day], 

Table 4.7. Experiment on focus expansion in cultivar 

mixtures of wheat (Buiel et al., in prep.). The 

percentage of suscepts in a mixture, the parameter of 

the Bessel distribution, p, and the rate of spore 

deposition, &, for the twelve plots of the experiment. 

Plot nr. 

1 

7 

11 

2 

5 

10 

3 

6 

9 

4 

8 

12 

% of suscepts 

100 

100 

100 

50 

50 

50 

33 

33 

33 

20 

20 

20 

P 

68 

80 

66 

52 

66 

56 

48 

40 

56 

30 

38 

48 

6 

4.4 

3.8 

4.5 

5.8 

4.5 

5.4 

6.3 

7.5 

5.4 

10.0 

7.9 

6.3 



4. R = 0.5 [daughter lesions per mother lesion 

per day], 

5. AREA = 1 [mm ] - area of a single lesion, 

6. LAI = 4 - leaf area index. 

For the first twelve runs, the values of <5 are given 

in Table 4.7, and the infection efficiency is equal to 

the fraction of suscepts in a mixture. For three 

additional runs <5 = 4.4 (as for the first run) and E = 

0.5, 0.33 and 0.2, respectively. 

B Results 

The ^diffusion model' was run fifteen times. Twelve 

runs were made with the values of <S derived from the 

experimental determination of the parameter p of the 

contact distribution, while D was assumed fixed. Three 

additional runs were performed to study the influence 

of varying the fraction of suscepts in a mixture, while 

<5 was kept fixed. The results produced by these runs 

allowed to calculate the velocity of focus expansion, 

c . Mean values for replications with the same 

fractions of suscepts were calculated for the first 

twelve runs. Then, the ratio of this mean velocity to 

c for plots with susceptibles only was calculated 

(column 2 of Table 4.8). For the experimental results, 

see column 1 of Table 4.8. Results of additional runs 

together with the result of run 1 are shown in column 3 

of Table 4.8. 

Values in column 4 of Table 4.8 are lower than those 

in column 3, a result which disagrees with that of 

Section 4.2.1: The velocity of focus expansion should 

be proportional to the logarithm of the mean free path 

for absorption. The discrepancy seems to result from 

the low level of disease severities at which the 

calculations were performed, leading to values 

calculated for the initial phase of focus formation, 

when the velocities are not yet stable. 



Table 4.8. Relative velocities of focus expansion for 

four proportions of susceptibles in a mixture of 

susceptible and resistant wheat plots. Results were 

calculated from experimental data (Buiel et al., in 

prep.), for twelve simulation runs with estimated 

values of S (runs 1 to 12), and from four runs (1, 13, 

14 and 15) with constant value of 6. Data in columns 2 

and 3 are means of 3 replications. 

Percentage of 

susceptibles 

100 

50 

33 

20 

Experimental 

results 

1.00 

0.66 

0.48 

0.25 

Calculated 

results, 

6 varies 

with runs 

1.00 

0.70 

0.45 

0.29 

Calculated 

results, 

6 = 4.4 

1.00 

0.62 

0.37 

0.20 

C Discussion 

The 'diffusion theory' and the Diekmann-Thieme model 

are not fundamentally different. The Diekmann-Thieme 

model encomposes a family of models of which the 

'diffusion theory' is just one member. Both models 

produce results consistent with experimental data. 

The velocity of focus expansion gives information 

about the effectiveness of mixtures of resistant and 

susceptible varieties. Therefore, the Diekmann-Thieme 

model or the "diffusion theory' can be used to predict 

the performance of mixtures. Application of the 

Diekmann-Thieme model (which is much simpler 

numerically) gives the best approximation of the 

velocity of focus expansion. The same result can be 
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obtained by the vdiffusion theory', but it needs 

considerable amount of computer time. Therefore, the 

above calculations were done only for the purpose of 

validation. The real advantage of the ^diffusion 

theory' is in its ability to deal with transients, non 

uniform crop distribution, stochasticity, and so on. 

Examples will be given in Chapter 9. 

4.4 DISCUSSION 

The numerical analysis of the system of partial 

differential equations, which constitute the base of 

the vdiffusion theory', showed qualitative consistency 

of theory and experimental data. Quantitative 

consistency with EPIMUL was fair. As special cases of 

the Diekmann-Thieme theory (a possible translation was 

presented in Chapter 3), the vdiffusion theory' and the 

model of Van den Bosch et al. (1988a, b, c) are 

mutually consistent. The ^diffusion theory' more 

accurately handles the processes governing spore 

distribution than Minogue and Fry's model or EPIMUL. 

Therefore, it is closer to reality than earlier models, 

as confirmed by good quantitative consistency with 

experimental data. 

Chapter 4 discusses validation using existing 

information. The conclusion is that the xdiffusion 

model' - and therewith the "diffusion theory' - is 

valid, that is vsound, defensible, well-grounded' 

(Concise Oxford Dictionary). Verification, i.e. 

providing proof that the vdiffusion model' gives a 
vtrue' picture of reality, was not the objective of the 

present study. 

The foregoing analysis shows the usefulness of the 
vdiffusion theory' of focus development. To improve 

consistency between theory and experimental results, 

careful measurements are needed of all parameters 

required by the theory. The great number of high 



precision measurements needed seems to be a 

disadvantage of the theory. The problem can be solved 

by determining which parameters are most important to 

the vdiffusion theory'. Treating only the measurements 

of these parameters with special care and using 

approximate values for the other parameters may 

decrease the effort needed to apply the ^diffusion 

theory'. An attempt in this direction will be made in 

Chapter 5. 
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5 NSENSITIVITY' ANALYSIS BY MEANS 

OF A UNIFORM ROTATABLE CENTRAL COMPOSITE DESIGN 

5.1 INTRODUCTION 

The phenomena which constitute the real world can 

often be formulated in the language of mathematics, 

i.e. in terms of a model consisting of a set of 

equations. The power of this approach is in its 

generality. Apart from independent variables, which 

change their value regularly, the equations contain 

parameters, which take certain values in particular 

cases. The mathematical model is used to xsimulate' the 

behaviour of a system. A particular case is simulated 

by solving the equations with appropriate values of the 

parameters. From the simulation output we extract one 

or more numbers, which can be compared to experimental 

results. These numbers can be considered as the 

response of the model for the parameter values under 

consideration. The effect of a parameter on a result of 

a simulation run can vary from one parameter to 

another. The effect of any parameter does not only 

depend on the value of that parameter itself, but also 

on the values of other parameters. If, for given ranges 

of parameter values, the response cannot be decomposed 

into additive contributions of the separate parameters, 

the parameters are said to interact. 

To assess the effect of a parameter on a response 

and to compare the relative effects of different 

parameters, a method is used called vsensitivity 

analysis'. Sensitivity analysis by means of varying 

individual parameters has been applied frequently in 

simulation studies (Zadoks, 1971; Rabbinge, 1976; de 

Wit and Goudriaan, 1978). A modeler varies a single 

parameter's value a little up and down (for example 

10%) keeping other parameters constant and observes the 



changes in a response relative to the variations in the 

test parameter. When applied to a completely 

deterministic model, * sensitivity analysis' helps to 

judge the relative importance of a single measured 

parameter in determining the response under the ceteris 

paribus hypothesis. This kind of analysis can be also 

done for the ^diffusion theory', but because it 

disregards interactions between parameters, another 

method is proposed. 

For the application of simulation methods to 

agricultural systems, we have to consider carefully to 

what extent the assumption of complete determination is 

applicable. Basically, there are three types of 

indeterminacy, (1) measurement noise in the response, 

(2) stochasticity inherent in the process itself, and 

(3) uncertainty in the model parameters. Measurement 

noise is not considered here. Process stochasticity 

takes two forms: (a) stochasticity due to a limited 

number of individuals, and (b) variability of physical 

circumstances (parameters) over time and space. The 

first type of stochasticity is considered in Sections 

8.5 and 9.3. The second type is addressed in Section 

8.2 and throughout Chapter 9. Here, we deal with the 

effect of changes of fixed parameters. The approach is 

analogous to one followed by statisticians but it is 

elaborated in a fully deterministic context. 

The formal methods of sensitivity analysis as 

developed by engineers do not help much. Usually, we 

are interested in aspects of the response which do not 

bear a simple relation to the first variation of the 

solution of our equation with respect to the parameter 

chosen. Morever, we want robust estimates over fairly 

large ranges of the parameters, instead of purely local 

results. Therefore, we fit a quadratic response surface 

to the observed relation between an output quantity and 

the parameter values under consideration. As a first 

step we will carefully plan a number of simulation runs 
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which is as small as possible and yet allows to proceed 

to the next step. Then we will fit a nonlinear function 

to the results, and finally we will determine the 

"importance' of each coefficient of the fitted 

function. 

5.2 THE METHOD 

The method presented here assesses the coefficients 

of a nonlinear function relating the variation of a 

response to the single, squared and combined effects of 

variations in parameters. The scaled uniform rotatable 

central composite design (Box and Hunter, 1957; 

Petersen, 1985) will be used to derive a series of 

necessary simulation runs. 

A linear function of parameters does not account for 

the dependence of responses on possible interactions 

between parameters. Therefore, a nonlinear function 

must be used. The simplest one is the second order 

function: 

N NN 

1=1 1=1 j=l 
Pi 

0 

where hn, b. and b. . are coefficients, x, (k = 1 or k = 
0'th l ij ' k v 

1) is a k independent variable (parameter), N is the 

number of independent variables (parameters), and y is 

the dependent or response variable. By means of a 

multiple regression procedure (Draper and Smith, 1966; 

Mosteller and Tukey, 1977; Jennrich, 1977), the 

coefficients b. and b. . can be determined. Taking into 

account their biological meaning and the influence on 

the model's numerical response, the "importance' of the 

terms appearing in the expression (5.1) can be 

determined. The model parameters (independent 

variables) present in the "important' terms are treated 



as those with proven effect on the model. Special 

attention must be devoted to their estimation from 

field data. 

5.3 THE EXPERIMENTAL DESIGN 

How well we can choose the coefficients of the 

function (5.1) depends on the range of variation of 

parameter values, treated here as values of independent 

variables, and on the design of the set of simulation 

runs chosen. The qualification vwell', defined relative 

to the quality of the ensuing predictions, can be 

measured by the sum of squared deviations of 

predictions from measured responses. An appropriate 

design decreases the influence of the prediction errors 

of the parameter contributions on the quality of the 

values of the coefficients. A variety of experimental 

designs can be found in the literature (Cochran and 

Cox, 1957; Manczak, 1976; McLean and Anderson, 1984; 

Petersen, 1985). 
2 

As function (5.1) contains quadratic terms, b. .• x. 

(for i = j), the multilevel design is to be used (Box 

and Hunter, 1957; Manczak, 1976, Petersen, 1985). The 

uniform rotatable central composite design will be used 

here. It consists of: 

1. a two-level factorial design which can be performed 

in one of two possible versions, (a) a full design 

(called 2 , N being the number of parameters) with 

2 experiments, or (b) a fractional design (called 

2 , where N is the number of parameters and M 

takes some value < N) with 2 experiments, in 

combination with 

2. 2'N experiments at the vaxial points', and 

3. N~ experiments at the vcentral point' 

The terms vaxial point' and vcentral point' will be 

explained in Section 5.3.1. Therefore, the complete 

uniform rotatable central composite design consists 



either of 

L = 2N + 2 • N + NQ (5.2) 

simulation runs (experiments) for a full two-level 

design as the basic central composite design, or of 

L = 2 N _ M + 2 • N + NQ (5.3) 

simulation runs (experiments) for a fractional 

two-level design as the basic central composite 

design. 

5.3.1 Theory 

In this section a short description of the uniform 

rotatable central composite design is given. 

The 'behaviour' of a simulation model in the 

vicinity of a point in the JV-dimensional parameter 

space, ip = [x;, ••-, XJAI i-s t o be examined. This point 

is the 'central point' of the experiment. Its 

neighbourhood (the region of the parameter space), 

where the response of the model must be examined, is an 

itf-dimensional hyper-cuboid [x.-Ax., x. +Ax. 1, where x. 

is the i coordinate of îp and Ax. is a change of x.. 

The particular value of Ax. depends on the modeler's 

choice: the section fx.-Ax. x.+Ax.1 should cover the 

range of values of the i parameter which are 

interesting from a scientific point of view. Therefore, 
o 

x. and Ax. take values which are determined by their 

biological context. 

Normalization of variables 

o 
X . - X . 

x. •* z. = —± ^ , i = 1, ..., N (5.4) 
1 1 Ax. 

l 

simplifies the notation, because z. varies from -1 to 
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+1 and equals 0 for x. = x.. Points z. = ±1 lay on the 

surface of a hypercube in the parameter space. Function 

(5.1) becomes : 

N NN 

y = cn + ) c.• z. + > ; c. .• z .• z . (5.5) 

i=l i=l j=l 
'0 

where cn, c. and c. . are new coefficients. 
0' l ij 

Function (5.5) contains 

m = 1 + N + * • ( * + ! ) ( 5.6 ) 

coefficients, which are to be determined. This requires 

at least 3T simulation runs. A full two-level design 

consists of 2 experiments for all combinations of z . = 

±1 (i = 1, ..., N) . A complete set of simulations for 
N 

all combinations requires 2 simulation runs (for 

instance for N = 10 we should make 1024 runs), though 

only St are needed. Fortunately, this design can be 
N—M 

reduced to a fractional two-level design with 2 

runs, for some value of M (Cochran and Cox, 1957; Cox, 

1958; Finney, 1960). For M = 1 only one half (2N-± ) of 

the number of runs required by a complete design is to 

be made, for M = 2 one quarter (2 ), and so on. Plans 

for these and other designs can be found in Cochran and 

Cox (1957). Two-level designs allow to estimate the 

coefficients in linear (containing z .) and mixed 

nonlinear (containing z .• z . for i * j) terms of a 

fitted function at the points of SP included in the 

design. All quadratic terms have values z. = +1, so 

that they are linearly dependent on a vvirtual 

variable' z„ = 1, which is introduced to calculate cn 

in (5.5)). 

Determination of the coefficients of the quadratic 

terms needs more points than only z. = ±1, because two 
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points allow for the determination of straight line 

coefficients only. A quadratic term describes a 

curvilinear vbehaviour' of a function. Therefore, 

determination of its coefficients needs at least three 

data points. A good choice is to use the central 

composite design with five points, because it allows to 

fulfil some additional requirements. 

A special case of the central composite design is 

the uniform-rotatable design (Box and Hunter, 1957; 

Manczak, 1976; Petersen, 1985). The latter design 

ensures equal mean square errors of the response 

estimated by the fitted function in every direction on 

an iV-dimensional sphere with center at z. = 0 (i = 1, 

..., N) . This means that the estimated response is a 

function only of the distance of a point from the 

center of the design. It also ensures that for the 

central point and the sphere with radius 1, the mean 

square errors of the values estimated by the function 

(5.5) are equal. Therefore, the mean square error is 

almost constant for all spheres with radii between 0 

and 1. This implies an approximately uniform precision 

over the parameter space spanned by radii p = 0 to P 

1. The uniform rotatable central composite design 

requires, in addition to the requirements of a 

two-level design, 2-N simulation runs at the so called 
vaxial point' for every single parameter, whereas other 

parameters are at their centers (z . = 0 for j * i ) , and 

Nn runs at the center (z. = 0 for i = 1, ..., N) . The 
vaxial point' is a point in parameter space, of which 

the distance from the center (z. = 0, i = 1, •••, N) 

allows to fulfil the condition of rotatability. The 

number of runs at the central point, Nn, is needed to 

fulfil the condition of uniform precision. Therefore, a 

uniform-rotatable design consists of L runs, where L is 

determined by equation (5.2) or (5.3). If, as in the 

present situation, parameters (independent variables) 

are determined without random variation, all N~ runs at 
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the central point will give exactly the same result. 

Therefore, these runs can be replaced by one run at the 

central point, of which the result will be used in the 

analysis with the weight N~. 

It can be proven (Box and Hunter, 1957) that, for a 

rotatable (not necessarily uniform) design, the vaxial 

point' is the point (z . = «; z . = 0 for all j * i) with 

r .N 
(5.7) 

for a full two-level design as the basic central 

composite design, and 

/ „N-M 

a = y 2 ;5.8) 

for a fractional two-level design as the basic central 

composite design. 

A long derivation (Box and Hunter, 1957) leads to 

the equation for N- (the number of runs at the central 

point or the weight of the result of a single run at 

the central point): 

„ N - M „<N-M>/2+2 , „ »N-M _ „ , 
J V 0 = A J ( 2 + 2 + 4) - 2W - 2 ( 5 . 9 ) 

where p is a coefficient, depending on N, to be 

calculated with the assumption that the mean square 

errors of the values estimated by function (5.5) in the 

center of the design and on the sphere with radius 1 

around the center are all equal. This condition 

characterizes uniform designs. The value of the 

coefficient /J is slightly below 1. It is tabulated by 

Box and Hunter (1957, Table 1) for values of N from 2 

to 8. 
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5.4 THE DESIGN FOR THE "DIFFUSION THEORY' 

The results of simulation runs applying the 

"diffusion theory' depend on six parameters. These are: 
2 -1 

1. D - diffusion coefficient [L T ] 

2. à - deposition rate [T ] 

3. R - number of spores produced by a 

sporulating lesion per unit of time [T ] 

4. p - latency period [T] 

5. i - infectious period [T] 

6. E - infection efficiency [1] 

7. U - linear size of a square field [L]. 

These six parameters can be combined into three 

dimensionless quantities. The following combinations 

are made : 

1. 9t = R • E • i (number of daughter lesions produced 

per sporulating mother lesion), 

2. 3 = i / p (ratio of infectious to latency period), 

3. W = U I V D/ó (ratio of field length to the width 

of the contact distribution). 

The contact distribution (sensu Van den Bosch et al., 

1988a, b) measures the range of the spore dispersal. 

Another dimensionless quantity must be chosen as the 

response of the "diffusion model'. Two values measuring 

the diseases spread are good candidates: (1) the scaled 

velocity of focus expansion and (2) the total number of 

lesions present in a field at a certain time. 

5.4.1 The number of simulation runs 

The number of coefficients of function (5.5) is 

given by (5.6). For the 'diffusion theory' N = 3 (St, 3, 

U ) , so that 

9T = 1 + 3 + ~ - = 10. (5.10) 

Determination of 9Î coefficients needs L ̂  10 simulation 

93 



runs. 

5.4.2 The design 

A uniform rotatable central composite design of an 

experiment (with a full two-level design as its basic 

part) consists of 

L = 2N + 2-N + N0 (5.11) 

simulation runs, where N is the number of parameters, 

and N^ is the number of simulation runs which will be 

performed at the center (z . = 0, i = 1, . . . , N) . N 

will be calculated in the present section. For N = 3, L 

from (5.11) becomes 

L = 2S + 6 + N0. (5.12) 

Assessment of all the coefficients of function (5.5) 

needs at least 10 simulation runs (equation (5.10)). 

Therefore 

L Ï 10 (5.13) 

S u b s t i t u t i n g ( 5 .12 ) i n ( 5 .13) we o b t a i n 

23 + ffo > 4 ( 5 .14 ) 

N0 is nonnegative, so that inequality (5.14) is 

satisfied for any arbitrary value of N . 

The next step is the determination of NQ. Equation 

(5.9) with N = 3 and M = 0 gives 

No = V (23 + 2'/Z + 4) - 6 - 23 

= 23.31-/U - 14 = 19.55 - 14 % 6 (5.15) 

where v for N = 3 equals 0.8385 (Box and Hunter, 1957). 
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The last unknown is the vaxial point' value «, which 

can be calculated from (5.7): 

V 2 % 1.68 (5.16) 

Introducing N 

of simulation runs L 

3 and N0 = 6 into (5.11 the number 

20 is obtained (Table 5.1). 

For these simulation runs independent variables x. 

are used, which are determined from the values z. in 

Table 5.1 by the reverse transformation of equation 

(5.4): 

x. 
o 

X . + z . 
1 1 

Ax. (5.17) 

Table 5.1. Sensitivity analysis. The uniform-rotatable 

design for the ^diffusion theory'. 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 - 20 

zl 

-1 

-1 

-1 

-1 

+ 1 

+1 

+ 1 

+ 1 

-OL 

+ot 

0 

0 

0 

0 

0 

z2 

-1 

-1 

+ 1 

+1 

-1 

-1 

+ 1 

+ 1 

0 

0 

-a 

+a 

0 

0 

0 

z3 

-1 

+ 1 

-1 

+1 

-1 

+1 

-1 

+1 

0 

0 

0 

0 

-Ol 

+01 

0 
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5.5 THE RESULTS 

Using empirical knowledge, the following ranges of 

the three dimensionless combinations of parameters of 

the vdiffusion theory' were chosen (for an explanation 

of the symbols used, see Section 5.4): 

1. K: 3 - 27, 

2. 3: 0.6 - 2, 

3. tt: 10 - 1000. 

The ranges of 3t and 3 are easy to interpret for 

epidemiologists. The range of XI was determined by 

choosing a field side length of 100 m under the 

assumption that dispersal distances from 0.1 to 10 m 

are to be considered for focus formation. 

As the values of Ut and U grow exponentially rather 

than linearly, logJK and log U were used. Finally, the 

ranges become : 

1. logJR: 1 - 3, 

2. 3: 0.6 - 2, 

3. log10U: 1 - 3. 

Transformation (5.4) changed these ranges into the 

standard ranges from -1 to +1. According to (5.16), the 
vaxial points' were in -1.68 and +1.68. The values: 

-1.68, -1, 0, 1, and +1.68 were transformated, by 

application of (5.17), to: 

1. K: 1.4, 3, 9, 27, 57, 

2. 3: 0.1, 0.6, 1.3, 2, 2.5, 

3. «: 2.1, 10, 100, 1000, 4786. 

These values were used to design 20 runs of the 
vdiffusion model' according to Table 5.1. Translation 

into the original parameters of the "diffusion theory' 

gave the actual values used (Table 5.2). The space grid 

of 11 x 11 points was used. 

The total number of lesions present in the field, S, 

at time T = 13, 25, and 50, was used as the response of 

the vdiffusion model'. These time values were chosen 

because they are 1.3, 2.5 and 5 times higher than the 
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Table 5.2. Sensitivity analysis. The values of the 

^diffusion theory' parameters used in 20 runs of the 

uniform-rotatable design for sensitivity analysis. 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15-20 

E 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

R 

0.5 

0.5 

0.15 

0.15 

4.5 

4.5 

1.35 

1.35 

0.11 

4.38 

9 

0.36 

0.69 

0.69 

0.69 

i 

6 

6 

20 

20 

6 

6 

20 

20 

13 

13 

1 

25 

13 

13 

13 

P 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

D 

100 

1 

100 

1 

100 

1 

100 

1 

10 

10 

10 

10 

229 

0.1 

10 

6 

1 

100 

1 

100 

1 

100 

1 

100 

10 

10 

10 

10 

0.1 

229 

10 

U 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

value of the latency period, p. The variable S. was used 

as the dependent variable and 9t, 3, and U were used as 

the independent variables in fitting of function (5.1). 

The values of these input variables and the resulting 

response values for 15 runs are shown in Table 5.3. 

As the parameter values for runs 15 to 20 are 

identical, the results of the 15 run, that of the 
vcentral point', were used N' = 6 times in the least 

square fitting procedure. The runs were performed on a 

VAX 7 85 computer using the software package PODESS 
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Table 5.3. Sensitivity analysis. The values of the 

independent variables, 9t, 3, and tl, and three values of 

the dependent variable, «(13), «(25), and «(50) at time 

T = 13, 25, and 50, respectively, for 20 runs of the 

uniform-rotatable design for sensitivity analysis of 

the vdiffusion theory'. 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15-20 

K 

3 

3 

3 

3 

27 

27 

27 

27 

1.4 

57 

9 

9 

9 

9 

9 

3 

0.6 

0.6 

2 

2 

0.6 

0.6 

2 

2 

1.3 

1.3 

0.1 

2.5 

1.3 

1.3 

1.3 

U 

10 

1000 

10 

1000 

10 

1000 

10 

1000 

100 

100 

100 

100 

2.1 

4786 

100 

«(13) 

3 

3 

1 

2 

15 

19 

5 

6 

1 

18 

10 

2 

2 

4 

4 

«(25) «(50) 

7 67 

9 85 

4 18 

4 19 

274 152955 

451 314471 

44 5336 

61 8328 

3 6 

438 445895 

91 42243 

9 163 

9 109 

20 777 

19 744 

(Appendix A ) . The second order function (5.1) was 

fitted to the results by the least square method using 

the GLM procedure from SAS. 

Four functions of type (5.1) for the response at 

three times T = 13, 25, and 50 were tested: (1) «(T) 

depending on K, 3, and tt, (2) log10«(T) depending on St, 

3, and U, (3) «(T) depending on log1Q!Jl, 3, and log10W, 
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and (4) log1QÄ(T) dependence on log109t, 3, and log10U. 

Coefficients of the approximating functions and the 

sums of squared residuals were compared. The best fit 

was obtained for the fourth combination. Therefore the 

following second order approximaton function was 

chosen: 

log10«(T) = bQ + b1 log^R + b2 3 + b3 log10« + 

b12 (log10») 3 + b u (log10R) (log10«) + 

b23 3 (log10W) + b1JL (log10K)2 + 

b22 ^ + b33 (lo<3±oU)2 < 5 - 1 8 ) 

where bQ, b±, b2, by b±2, biy b2JI b n , b22, bJ3 are 
coefficients which values are given in Table 5.4. 

The coefficients of all linear and quadratic terms 

differ non-negligably from zero, which indicates a 

great influence of 9t, 3 and 14 on the total number of 

lesions present in a field, ft. The coefficients of two 

interaction terms, £>., and b?->t do not differ 

non-negligably from zero, but a third one, ^i?' does. 

Sums of squared residuals are low, which means that the 

total number of lesions is vwell' described by the 

particular quadratic function chosen. 

The sign of coefficient £>, is positive what means 

that the total number of lesions present in the field 

grows with an increase of U. As U is the ratio of field 

size to the width of the contact distribution, a higher 

value of 11 is equivalent to a lower width of the 

contact distribution. The positive sign of Jb? indicates 

that some spores arriving at the field boundary are 

lost (blown outside the field). This is the result of 

the boundary condition chosen, see Section 3.5.4. A 

higher W means that a higher proportion of spores stays 

within the field, and therefore initializes more 

lesions. 

99 



Table 5.4. Values of the coefficients of function 

(5.18) fittted to the results of simulation runs 

planned according to the uniform rotatable design for 

sensitivity analysis of the "diffusion theory'. Symbols 

are as in function (5.18), SSR stands for the 'sura of 

squared residuals'. One asterisk means significance at 

P ̂  0.05, two asterisk mean significance at P ^ 0.01, 

if the prediction errors would have been due to 

independent Gaussian distributed measurement noise. 

Coefficient 

b0 
bl 
b2 
b3 
b12 
b13 
b23 
bll 
b22 
b33 

SSR 

Values at time 

T = 13 

0.16 

0.34 
** 

-0.38 
* 

0.25 
* 

-0.16 

0.027 

-0.0083 
** 

0.27 
** 

0.11 
** 

-0.049 

0.032 

T = 25 

* 
0.35 

** 
0.94 

** 
-0.39 

** 
0.25 

** 
-0.37 

0.056 

-0.027 
** 

0.45 
** 

0.15 
** 

-0.048 

0.024 

T = 50 

0.66 
** 

2.64 
** 

-1.17 

0.65* 
** 

-0.68 

0.1 

-0.035 
** 

0.6 
** 

0.39 
** 

-0.14 

0.22 

The influence of % on & is easy to understand, 

because K is the total number of offspring produced by 

a lesion. 3 is inversly proportional to 8, as shown by 

negative values of i>_. This means that a shorter 

infectious period, when the total number of daughter 

lesions per mother lesion is constant, leads to a 

higher disease severity at any time. The negative and 
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significantly higher than zero value of £>,_ indicates a 

negative interaction between the total number of 

offspring and the duration of the infectious period 

(relative to the latency period). As runs up to T = 50 

did not last long enough to exhaust available sites, 

the saturation level did not influence this analysis. 

Table 5.4 shows that i>7 has the highest absolute 

value among the coefficients of function (5.18). Thus, 

the outcome S of the 'diffusion model' is most 

sensitive to 9Î. The model's sensitivity to input 

parameters decreases in the order 9Î, 3 and U. Thus, 

special attention must be devoted to experimental 

measurements of the number of daughter lesions produced 

per mother lesion and to duration of the infectious and 

the latency period. The influence of U was less than 

that of K or 3. However, as the runs lasted only 50 

simulation days, the position of XX relative to 9? and 3 

may change with higher values of time; as the focus 

boundary moves towards the field boundary, more spores 

will be lost from the field at higher values of time. 

As a second candidate for the 'diffusion model' 

response we mentioned the scaled velocity of focus 

expansion. Because of the short simulation run time (T 

^ 50), this response could not be determined for runs 

with a high value of tl; the foci developed only in 

close proximity of the point of initial inoculation. 

5.6 DISCUSSION 

The present method of sensitivity analysis, applied 

to computer simulation, allows to evaluate linear, 

quadratic and mixed influences of input parameters on 

model output. Due to the uniform rotatable central 

composite design, the coefficients of the fitted second 

order function are determined with equal mean sqare 

errors within the desired ranges of the input 

parameters. This function gives a good approximation of 
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the response of the vdiffusion model' and thus allows 

inferences about the influence of the input parameters 

on the model output. 

The results of the sensitivity analysis of the 

'diffusion theory' can be summarized in a few simple 

rules : 

1. It is 'profitable' for a disease to have a high 
number of offspring, if the ratio of infectious to 
latency period is kept constant. 

2. A low value for the ratio of infectious to latency 
period leads to a higher lesion number within a 
field of given size, if the total number of 
offspring is kept constant. 

3. The total number of offspring and the ratio of 
infectious to latency period interact; a high number 
of offspring together with a short duration of the 
infectious period lead to higher numbers of lesions 
than if both factors act separately. 

4. 'Short' dispersal is 'profitable' for a disease in 
the early stages of focus formation, when the effect 
of exhausting noninfected sites is not yet 
important. 

These rules are valid for the initial p h a s e of focus 

formation. They cannot be applied to later s t a g e s , when 

the disease reaches its saturation level in the centre 

of the focus. 

One possible effect of saturation on d i s e a s e , the 

optimal partitioning of spores between 'short' and 

'long' d i s p e r s a l , when two dispersal mechanisms 

interact, will be discussed in Chapter 9. 
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6 TELEGRAPHER'S THEORY 

OF FOCUS DEVELOPMENT IN PLANT DISEASE 

6.1 INTRODUCTION 

Chapter 4 has shown that focal epidemics developing 

within a single field (zero order epidemics sensu 

Heesterbeek and Zadoks, 1987) can be simulated by 

numerically solving the equations of the ^diffusion 

theory'. However, the spatial scale of applicability of 

this theory is unknown because this theory is based on 

an idealized picture: During their flight, spores 

change the direction of their movement an infinite 

number of times within an arbitrarily short time span 

(the mean free path for scattering tends to zero and 

the spore velocity tends to infinity in such a way that 

the diffusion coefficient is constant). In reality, 

there is some persistence in the direction of a spore 

movement. To decide about the spatial scale of 

applicability of the Kdiffusion theory', it should be 

compared to a theory which assumes some persistence in 

the direction of a spore's movement. The xtelegrapher's 

theory', which emerges from replacement of the 

diffusion equation by the telegrapher's equation, can 

serve for this purpose, because it assumes that a 

moving spore has some xmemory' of its direction of 

flight. 

6.2 FOUNDATION OF THE THEORY 

6.2.1 Assumptions and definitions 

The set of definitions and assumptions underlying 

the vtelegrapher's theory' is the same as that 

presented in Section 3.2.1. In Section 3.2.2 the 

definitions and axioms were put in a phytopathological 
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context, indicating the relation with the 

phytopathological literature (Plant Pathology 

Committee, 1950; Anonymous, 1953; Van der Plank, 1963; 

Vanderplank, 1975). 

6.2.2 Terminology 

The theory requires its own terminology, which is 

introduced here, with symbols of variables and 

parameters (in italics) and their dimensions (in square 

brackets): 

1.x = the first space coordinate [L] 

2. y = the second space coordinate [L] 

3. z = the third space coordinate [L] 

4. t = time [T] 

5. r = (x,y,z) - a position vector in 

3-dimensional space [L] 

Note: The value (length) of the 

vector r will be denoted r; r = \r\ . 

6. » = a unit vector of a direction in 

space [1] 

7. v = velocity of spores [LT ] 

Note: The value (length) of the 

vector v will be denoted v; v = |v|. 

8. s = s(r,n,t) - volume density of spores 

at r and t flowing in the O, 
-a 

direction [NL ] 

9 . 5 = S(r,t) - volume density of spores at 

r and t [NL-3] 

10. Xr = L(r,t) - volume density of lesions 

at r and t [Nif9] 

11. j = j(r,n,t) - flux at r and t of spores 

flowing in the direction "; j' = |j'| 

[ NL^T"1, Nif 2 T - 1 , Nif 2 T - i ] 

12. J = J(r,t) - spore flux at r and t; 
, -* , - 2 - 1 - 2 -1 -2 -1 

J = | j \ [NL T ,NL T ,NL T ] 
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13. C = the macroscopic cross section for a 

given process [L ; 

Note: The concept of the macroscopic 

cross section in 2-dimensional space 

was explained in Section 3.3.4. In 

3-dimensional space, this 

explanation is still valid, after 

some reinterpretation due to the 

extra spatial dimension. 

14. X = the mean free path for absorption; 

^ = 1/C where C is the 
a a a 

macroscopic cross section for 

absorption [L] 

15. *-. = the mean free path for 

transportation; *• = 1/C. where C 

is the macroscopic cross section for 

transportation [L] 
2 -1 

16. D = diffusion coefficient [L T ] 
6.3 ON THE TELEGRAPHER'S EQUATION 

6.3.1 Introduction 

The basic equation of the theory to be presented is 

the telegrapher's equation, which will be derived from 

the Boltzmann equation. The Boltzmann equation is 

frequently used in the transport theory of dilute gases 

and in the theory of the nuclear chain reactor. As 

indicated in Section 3.3.1, the process of neutron 

diffusion and multiplication by reaction, and the 

process of spore diffusion and multiplication by 

lesions are analogous, but the two processes also 

differ in many important details. Therefore, the main 

points of derivation of the 'telegrapher's' equation 

and its epidemiological interpretation will be 

discussed here. The derivation follows those by 

Weinberg and Wigner (1959) and Ash (1979). 
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6.3.2 Integral formulation - the Boltzmann equation 

The continuity equation (3.6) describes the spore 

flux resulting from a straight-line motion of spores. 

It can easily be extended to the three-dimensional 

case. If spores move in the direction *, equation (3.6) 

can be rewritten to the direction dependent 

three-dimensional form: 

âsCrfi.tj 

àt 
V-j(rAt) (6.1) 

m 

where s(r,n,t) is the density of spores at r and t 

flowing in the n direction, j'(r,n,t) is the flux at r 

and t of spores flowing in the * direction, and the 

subscript m means that equation (6.1) applies to the 

straight line motion of spores. The following relation 

links s and j: 

*j(rA,t) = v & sCrA.t) (6.2) 

where v is the mean velocity of spores. 

Apart from a straight-line spore motion, the spore 

density s(r,*lt) changes because of 'scattering' 

(changes of the direction of spore movement due to air 

turbulence, collisions with plant surfaces, and so on). 

The parameter measuring the intensity of this process 

is called the cross section for scattering (see Section 

3.2.4.). The cross section for scattering which changes 

the direction of spore movement from O' to the 

"interval' [fi, fi+d*] (where d^ is the element of the 

solid angle *) will be denoted C (","') d". We assume 

that the cross section is constant all over the field. 

The rate of change of the density of spores at r 

flowing in the " direction due to 'scattering' is 

expressed by the following equation: 
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'0s(r,^/û)" r 

= J j(rA',t) CS(Ä,Ä') dfc' 3t 

| j(rAt) Cfl(Ô',A) d̂ ' (6.3) 

where the subscript d means that the rate of change of 

the spore density is due to dispersion. The value 

j'(r,n,t) = |_7(r,n,t)| = v s(rfi,t). The integrals are 

calculated over all directions (full range of * ' ) . The 

first term at the right hand side of (6.3) describes 

the vscattering' events, which change the direction to 

» from any arbitrary direction "'. The second term 

describes the ̂ scattering' events, which change the 

direction from * to any arbitrary direction «'. In 

common words, equation (6.3) means : 

The rate of change of the density of spores moving 

in the n direction equals the sum of all spore density-

currents having moved previously in the O' direction 

(where fi' is an arbitrary direction different from O) 

which changed their direction to » , minus the sum of 

the spore density currents traveling previously in fi 

direction which changed their direction to an arbitrary 

n' direction. 

Any sscattering' event from » changes the direction 

of a spore and removes it from j'(r,£i,t), so that the 

second term of the right-hand side of (6.3) can be 

written as j'(r,*,t) C (*), where 

Cs(&) = J Cg(&'A) dÄ' (6.4) 

is the cross section for arbitrary vscattering' from 

the n direction. 

Another cause of changes in the spore density is 

spore deposition (absorption). The rate of change of 

the spore density due to deposition is : 
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•<?S(rAt)-| ^ 
= - & s(r,0,t) (6.5) 

at Ja 

where <5 is the rate of spore deposition and the 

subscript a means that the rate of change of the spore 

density is due to absorption. The minus sign means that 

the deposition decreases the spore density. 

In addition to straight-line motion, ^scattering' 

and deposition, a change in the density of spores in r 

and t moving in the S direction results from the 

production of spores by sporulating lesions. The 

production term, giving input of spores in r and ", 

will be denoted as Pn = Pn(r,nlt) . 

Finally, inserting (6.1), (6.3), (6.5) and the 

production term into the spore balance equation (3.1), 

the total rate of change of the spore density is : 

âS(r,&,t) 

St 
= - V-j(rAt) - .5 s(rA,t) -

Cs(&) j(r,&,t) + jj(r£',t) Cs(Ü£') da' + 

Pn(r,Ü,t) (6.6) 

where relation (6.4) was applied to the second integral 

from (6.3). Equation (6.6) is known in physics as the 

Boltzmann equation. It is the mathematical formulation 

of the following sentence: 

The rate of change of the density In r at t of 

spores, which flow in the " direction, is the sum of 

the contributions of five processes: 

1. straight-line motion in the O direction (the first 

term), 

2. absorption (the second term), 

3. scattering from the n direction to every other * ' 

direction (the third term), 

4. scattering to the * direction from every other 

direction * ' (the fourth term), and 

5. production of spores (the fifth term). 
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6.3.3 Differential formulation 

- the telegrapher's equation 

The Boltzmann equation is the general equation 

describing the sbehaviour' of spores in a 'scattering' 

(turbulent), "absorbing' (deposition), and multiplying 

(a single spore infects a site, which then produces 

many spores) medium such as a crop canopy. The equation 

is unwieldy. For numerical analysis, its approximate, 

differential form - the vtelegrapher's' equation - is 

more convenient. This equation will be derived below, 

but only the main points of the derivation will be 

presented. A more detailed derivation can be found in 

Ash (1979) and Weinberg and Wigner (1959). 

Multiplying equation (6.6) by d", integrating over 

all solid angles, and noting that: 

l c
s & ) J(rA,t) d& = J Jcs(Ä,ft') cfl 

= J Jcs(Ä',Ä) d& 

j{r,Ù',t) d&' 

j(rA.t) dÙ 

leads to: 

#S(r,t) 

at 
+ V-J(r,t) + & S(r,t) = P 6.7' 

where : 

S(r,t) = s(rft,t) d& 

5(r,t) = J j(rfi,t) ft-dft = J j ( r A t ) dft 

P(r,t) = j P n ( r A t ) da 

and Pn(r,n,t) is assumed to be isotropic. Equation 
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(6.7) is the continuity equation formulated in the 

presence of absorption and production. It should be 

read: 

The rate of change of the spore density at r and t 

(dS/dt) Is equal to the rate of spore production (P) 

minus the net rate of spore outflow (V J(r,t)) minus 

the rate of spore deposition (absorption) (à S(r,t)). 

Multiplying equation (6.6) by ft dft and integrating 

over all solid angles and assuming that C (ft) = C (C 

is independant of ft; scattering is the same from every 

direction) leads to: 

9S{r,t) -

St 
ft + f 7 - j ( r A t ) ft dft + & S(r,t) ft 

Cg1r(r,t) = J ï j ( r , cV, t ) Cs(à£') d?i' 6 d6 (6.8) 

where 

Ù(r,t) s(r,ti, t) ft dft / S(r,t) 

Further analysis needs the assumption that j(r,*,t) 

and C (*,ft') are almost isotropic, so that they can be 

expanded in Legendre polynomials. This assumption 

implies that: 

1. the volume of interest is many mean free paths away 

from anisotropic sources or sinks (e.g. the boundary 

of the field from which spores cannot be scattered 

back into the field), 

2. almost isotropic diffusion is the main phenomenon 

occurring. In other words, the spore density current 

is almost isotropic and its magnitude changes only 

slightly within one mean free path for scattering. 

Under the assumptions stated above, the spore 

density current and the cross section for scattering 

can be expanded in Legendre polynomials. Retaining only 
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the first two terms of these expansions, and performing 

some mathematical operations (see Ash, 1979, pages 

13-15), leads to: 

*S(l,t) ^ + 1 + 
a + C. J(r,t) + V J(r,t) = 0 

öt ü 3 
(6.9) 

where C. = C (1 - ß) (P is the average cosine of the 

scattering angle) is the transportation cross section 

(Weinberg and Wigner, 1959; Ash, 1979). In the case of 

spore dispersal C is an empirical parameter. The 

inverse of C., the mean free path for transportation, 

*-., can be measured in the same way as its ^diffusion' 

analog, the mean free path for scattering or the 

^mixing length' (Goudriaan, 1977). Equation (6.9) was 

derived from (6.8). 

Using (6.9), the term V• J(r,t) can be eliminated 

from (6.7) (see Weinberg and Wigner, 1959, page 235). 

Finally applying the definition of J{r,t), this leads 

to: 

3-D <?2S(r, t) 

9t 

3- D-6 
1 + 

as(r,t) 

at 

D 7 S(r,t) - 6 S{r,t) + P (6.10) 

where the diffusion coefficient D = v *-./3, and the 

mean free path for transpc 

the differential operator 

mean free path for transportation *. = 1/Ct, and 7 is 

2 a* a2 a 

7 =-4— + -4— + a ax ay az 
(6.11) 

Equation (6.10) is called the ^telegrapher's' equation. 

It is a combination of the wave and the diffusion 
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equation. This equation can be explained as follows: 

Spores are dispersed like a dissipating wave; the 

first term of the left-hand side and the first term of 

the right-hand side are the wave equation. However 

after passing of the wave front, a ^residual 

disturbance' (spores still air-borne) due to the 

diffusion equation remains; the second term of the 

left-hand side and the first term of the right-hand 

side are the diffusion equation. In addition, spores 

are deposited (the second term of the right-hand side) 

and produced (the third term of the right-hand side). 

The rate of spore deposition can be interpreted in 

the scattering model (see Chapter 3) as <5 = v *• , where 

*• is the mean free path for absorption (the distance 

of spore displacement at which 1/e spores is not yet 

absorbed). 

Translation to the two-dimensional space can be done 

by reinterpretation of S, replacing the factor 3 by 2 

in equation (6.10) and in the definition of the 

diffusion coefficient, and by replacing (6.11) by its 

two-dimensional counterpart: 

2 a 2 a 2 

7 0 O 

The solution of the stelegrapher's' equation shows 

the phenomenon of v retardation', i.e. the solution at 

time t takes non-zero values only for those points of 

space which are less distant from the origin of the 

focus than the distance travelled by a spore with 

velocity v during t. In addition to vresidual 

disturbance' (non-zero value of the density of spores 

S), which persists at all points passed by the wave 

front, the vtelegrapher's' equation has a well-defined 

front. In the region beyond the distance travelled by a 

spore during the time span considered, the solution of 

equation (6.10) is zero. 

Letting the spore velocity v grow without limit, and 
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the mean free path for transportation tend to zero in 

such a way that D remains finite, and the mean free 

path for absorption tends to infinity in such a way 

that à = v A remains finite, the asymptote to equation 
â 

(6.10) is obtained: 

9S(r,t) 2 + v 
• = D 7 S(r,t) - -1— S{r,t) + P 

St 
(6.13) 

Equation (6.13) is the diffusion equation (3.28) 

introduced in Chapter 3. 

6.4 EQUATIONS FOR FOCUS DEVELOPMENT 

Solutions of equation (6.10) depend on the 

production term P. In Chapter 3, the general form of 

this term, equation (3.39), was derived. The equation 

describing the time dependency of production of new 

lesions by spores was presented above as equation 

(3.45). 

Substitution of (3.39) into equation (6.10) leads to 

the following telegrapher's equation: 

A-D S S{r,t) 

dt" 
l + 

A- D-6 

2 
V 

*S(r,t) 

dt 

2 p 

D V S(r,t) - à S(r,t) + 

0 

àUr,t-r) 

àt 
K(T) dr (6.14) 

A = 
2 

2, the diffusion 

is the differential 

In two-dimensional space 

coefficient D = v ̂ ./2 and V 

operator (6.12). In three-dimensional space A = 3, D = 
2 

v X /3 and V is the differential operator (6.11). 

Equations (6.14) and (3.46) constitute the system of 

partial differential equations, for spores and lesions 
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respectively, which are the mathematical formulation of 

the "telegrapher's theory' of focus development in time 

and space. 

The system described above is too complex for an 

analytical solution to be used in practical 

applications. A numerical solution is needed, for which 

the computer package PODESS was written (Appendix A ) . 

6.5 A NUMERICAL COMPARISON TO THE "DIFFUSION' THEORY 

The "diffusion' (Chapter 3) and the "telegrapher's' 

theories attempt to describe focus development. The 

"diffusion theory', based on the diffusion equation, is 

the asymptote to the "telegrapher's theory', based on 

the telegrapher's equation. The equations of the 

"telegrapher's theory' are more complex (the 

telegrapher's equation is second order in time) than 

the equations of the "diffusion theory' (the diffusion 

equation is first order in time), so that they need 

more computer time and more computer memory for their 

solution. Therefore, it is preferable to use the 

"diffusion theory' whenever its results are consistent 

with the results of the "telegrapher's theory'. 

The parameter playing a crucial role in the decision 

which theory should be used is the spore velocity. The 

following numerical example compares the results of the 

two theories in dependence on the spore velocity. 

Results were obtained by six runs of the computer 

program PODESS (Appendix A ) , three runs for the 

"diffusion model' and three for the "telegrapher's 

model'. The independent variable, spore velocity, was 

given the values 0.02 m/day, 0.2 m/day, and 2 m/day. 

Theoretically, the ratio of this velocity to the 

diameter of the "solution' region multiplied by the 

time-period of interest decides which theory gives the 

best approximation of reality. The period of simulation 

between two succesive outputs (so called "communication 
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interval') was one "simulated' day, so that this period 

was used as the time-period of interest. The diameter 

of the "simulated' field was 10 m x 10 m. As the 

initial conditions, (1) one lesion at the centre of the 

field, (2) no spores within the field, and (3) zero 

value of the first time derivative of the spore 

density, were chosen. 

Table 6.1. A comparison between the "diffusion theory' 

and the "telegrapher's theory'. Results of the two 

theories in dependence of the spore velocity. 

1" Distance from the point of initial inoculation. 

t The lesion density (number of lesions per grid point; 

one grid point represents an area of 0.5 m x 0.5 m ) . 

Spore 

veloc. 

in m/day 

0.02 

0.2 

2. 

Dist. 
t 

in m 

0. 

0.5 

1. 

1.5 

2. 

0. 

0.5 

1. 

1.5 

2. 

0. 

0.5 

1. 

1.5 

2. 

"Diffusion' 

theory 

result 

1852. 

33. 

0.36 

0.0029 

0.000019 

271640. 

30778. 

1673. 

64.3 

1.98 

1086800. 

606150. 

95202. 

7474. 

445. 

"Telegra

pher 's' theory 

result 

1770. 

30. 

0.32 

0.0024 

0.000014 

272650. 

30790. 

1664. 

63.6 

1.95 

1089500. 

614180. 

97405. 

7669. 

458. 

Diffe

rence 

in % 

4.6 

9.2 

12.5 

20.8 

35.7 

-0.4 

-0.04 

0.5 

1.1 

1.5 

-0.25 

-1.3 

-2.3 

-2.6 

-2.7 
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The results (Table 6.1) show no great differences 

between the two theories. The difference tends to 

decrease with increasing value of the spore velocity. 

The increase in the differences for the spore 

velocity of 2 m/day relative to those for the spore 

velocity of 0.2 m/day seems to be an effect of the 

single precision calculations, which are not always 

sufficiently accurate. For high values of the spore 

velocity the equations become vstiff' (Gear, 1971); 

they require shorter time steps of integration, and 

thus lead to an accumulation of so called vrounding-off 

errors'. If a higher accuracy is required, double 

precision calculations should be used. 

6.6 DISCUSSION 

The vtelegrapher's theory' of focal disease 

development results from a picture of the reality of 

spore dispersal different from that of the ^diffusion 

theory'. The stelegrapher's theory' resulting from the 

underlying simplified picture of spore dispersal 

(spores move along straight lines and suddenly change 

the direction of their movement by scattering), also 

has its limitations. They result from the assumptions 

made in the derivation of the telegrapher's equation. 

The first assumption (the volume of interest is many 

mean free paths away from anisotropic sources or sinks; 

Section 6.3.3), may lead to some trouble near the 

boundary of the ssolution' region and near the field 

boundaries (if the vsolution' region contains separate 

fields). The second assumption (almost isotropic 

diffusion is the main phenomenon occurring) is not a 

very rigid restriction in the case of air-borne fungal 

spores, because their mean free path for transportation 

is a few centimetres to a few decimetres long 

(Goudriaan, 1977), whereas the mean free path for 

absorption, derived from the variance of the Bessel 
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distribution of lesions (Williams, 1961; Van den Bosch 

et al., 1988 b) is usually many times longer. 

The numerical analysis of the system of equations 

(6.14), (3.55) is more difficult than the analysis of 

the system of equations constituting the mathematical 

formulation of the "diffusion theory'. Equation (6.14) 

is a second order, in the time derivative, partial 

differential equation. To treat this equation by 

PODESS, it must be decomposed into a system of two 

first order, in the time derivative, partial 

differential equations. Together with equation (3.46) 

these equations constitute the system of three partial 

differential equations, which consume more computer 

time and memory, during a solution run, than the system 

of "diffusion theory' equations. The comparison of the 

numerical results of the "diffusion' and the 

"telegrapher's' theories helps to answer, if and when 

the "diffusion theory' is adequate to describe focal 

disease development. 

The vtelegrapher's theory' exhibits an important 

conceptual consequence, a well-defined front of the 

disease (the border-line between the regions where 

S(r,t) > 0 and S{r,t) = 0). However, this front of the 

disease moves with a velocity which is much larger than 

the velocity of movement of the contours of constant 

non-zero severity movement. So it is not of much use in 

practice. 

From a theoretical point of view, the "diffusion 

theory' is the limit to the "telegrapher's theory', 

based on the following assumptions: (1) the spore 

velocity tends to infinity and the mean free path for 

transportation tends to zero in such a way, that their 

product is constant, (2) the mean free path for 

absorption tends to infinity in such a way that its 

ratio to the spore velocity is constant. These 

assumptions lead to the hypothesis, that the difference 

between the results of the two theories should decrease 
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with growing value of the spore velocity. This 

conclusion was confirmed by calculations, but the 

differences were never large, even far from the 

limiting situation. 

It may be concluded that the "diffusion theory' will 

provide adequate results, at least for qualitative 

analysis, even when the spore velocity is relatively 

low. Thus, computer time can be saved by using the 

"diffusion theory'. 
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7 SIMULATION OF WIND EFFECTS ON FOCUS DEVELOPMENT 

7.1 INTRODUCTION 

Many authors tried to explain the effect of wind on 

the development of epidemics. Fundamental work was done 

by Schroedter (1960). Okubo (1980) presented, as an 

example, an elliptical shape of the region with 

disease, if there was a prevailing wind. Zadoks et al. 

(1969) described an experiment with smoke pufs, seen as 

models of spore clouds, and discussed their behaviour. 

Gregory (1968) determined gradients downwind and upwind 

of a source of infection. In his 1973 book, Gregory 

also discussed dispersal under the influence of wind. 

The effect of wind on deposition of Lycopodium spores 

in wind tunnel experiments was shown by Chamberlain and 

Chadwick (1972). Studies on the influence of wind gusts 

on particle liberation and deposition were made by 

Aylor (Aylor, 1987; Aylor et al., 1981). Pedgley (1982) 

and Jeger (1985a, b) gave many examples of the 

long-range spore transport by wind. Though the 

literature on wind and plant disease is vast, few 

papers refer specifically to the effect of wind on 

focus development. 

The objective of this chapter is to generalize the 

diffusion equation to situations of focus development 

under the influence of wind. 

7.2 THE STRANGE WORLD OF MOVING SYSTEMS 

For a few hundred years, systems with moving 

coordinates have been used in physics. They help to 

solve complicated problems in a comparatively simple 

way, if we only know the rules of behaviour of a group 

of objects in one coordinate system (often the best 
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system is the "resting system' in which a group of 

objects as a whole is at rest). Only a short 

description of moving coordinate systems will be given 

here. More information can be found in handbooks of 

physics (see Kittel et al., 1965). 

If one coordinate system {x,y,z,t), where x,y,z 

describes a space and t measures a time, is at rest for 

the observer and another system (x' ,y',z', t' ), where 

x',y',z' describes a space and t' measures a time, 

moves with velocity w which is constant in value and 

direction, then such systems are called vinertial'. 

According to the Galilei principle, all physical laws 

are equal in inertial systems, after ^Galilean 

transformation' of the coordinates. The mathematical 

form of this transformation is: 

t' = t 
x' = x - w t 

X 

y' = y - w t 
* * y 
z' = z - w t (7-1) 

z v ' 

where x, y, z, and t are the space-time coordinates of 

the resting system, x', y', z', and t' are the 

space-time coordinates of the system which moves with 

constant velocity w and w , w , w are the x-, y-, and 

z-components of w, respectively. The last three lines 

can be expressed together by 

r' = r - w t 

where r' = (x' ,y' ,z' ) and r = {x,y,z). The 

transformation is visualized in Fig 7.1, where the only 

non-zero component of w is w . 

If we know the law governing a process in the 

resting system, we can describe the same process in a 

moving system by changing the coordinates according to 

(7.1). 
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Wt" •x'- X X' 

Fig. 7.1. Two-dimensional picture to demonstrate the 

Galilean transformation in the x-direction. Directions 

z and z' are perpendicular to the surface of the paper. 

They can be treated like y and y', because the 

direction of movement is perpendicular to y, y' and z, 

z' . In the resting system, the coordinates of a point P 

are x, y, t (t is the current time in the resting 

system) and in the moving system they are x' = x - w t, 

y', t' (t' is the current time in the moving system). 

Because P is arbitrary, the transformation is valid for 

every point. 

Conversely, if the law is given for a moving system 

and we want to know the law for a resting system, we 

use the inverse transformation: 

t = t' 
x = x' + w t' 

X 
y = y' + w t' 
1 J y 
z = z' + w t' z 

(7.2) 
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7.3 WIND AND THE DIFFUSION EQUATION 

If the wind blows with velocity w, the whole air 

mass and everything in it moves with the velocity w in 

the direction of the wind, but the spore sources stay 

put. The air eddies (air turbulences) move with 

velocity w. In the resting system of the wind (the 

system in which the air mass as a whole does not move), 

the system of equations (3.45) and (3.46) describes 

disease development. 

The foregoing can be visualized by means of the 

following analogy. In a train, moving at a velocity of 

100 km/h, the passenger can describe the route followed 

by a fly in his compartment taking into consideration 

only the velocity of the fly relative to the walls of 

his carriage. However, for an observer standing on a 

platform of a railway station, the velocity of the fly 

is one hundred kilometers per hour higher. 

Standing in a wheat field, we are in the situation 

of the observer on the platform. If we want to describe 

disease development in a three-dimensional space, 

including wind effects, we should use the 

three-dimensional analog of equation (3.46), replacing 

x, y, z and t by x' , y' , z' and t', respectively 

(because the system, in which the equation is valid, 

moves relative to the field) and apply transformation 

(7.1). Equation (3.45) should be left unchanged because 

the wind does not influence lesion formation. 

As densities do not depend on a coordinate system in 

which they are measured 

S'(r',t') = S(r,t) 

L'(r',t') = L(r,t) (7.3) 

where S'(r',t') and S(r,t) are the spore densities 

expressed as functions of the moving and the resting 
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coordinates, and L'(r',t') and L(r,t) are the lesion 

densities expressed as functions of the moving and the 

resting coordinates, respectively. As the production 

term is expressed in numbers per day, the same relation 

applies to it: 

P'(r',t') = P(r,t) (7.4) 

where P'(r',t') is the production term expressed as 

function of the moving coordinates and P{r,t) is the 

production term expressed as function of the resting 

coordinates. 

From the resting system point of view, the values of 

space coordinates in the moving system are t dependent 

(see (7.1)). Therefore, the partial derivative of the 

spore density, with respect to time, must be replaced 

by the so called material derivative, which can be 

expressed in the resting system by: 

a at à dx a ay a az 

+ + + 

a 
— + w 
at x 

a a 
+ w + w 

ax
 y ay

 z 

a 
az 

dt' #t âf ax at' ay at' &z at' 

(7.5) 

where transformation (7.2) was applied. Therefore, 

dS'(r'rt') = as(r,t) + w âS(r,t) + w aS(r,t) + 

dt' at x ax
 y ay 

as(r,t) ._ ,. 
w — * — < — L (7.6) 

Z dz 

where relation (7.3) and (7.5) were used. 

For space derivatives : 
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àx' àx 

ây'' »y 

dz- dz' 
(7.7; 

Finally, we apply (7.3), (7.4), (7.6) and (7.7) to the 

diffusion equation, formulated in the moving coordinate 

system, in order to translate it to the resting system. 

The new equation including the effect of the wind is: 

*S(r.t) = D 

at àx" •y 
S(r,t) 

*S(r,t\ 

àx 

àsÇr,t) _ àSÇrrt) 

y 9y z 
àz 

6 S(r,t) + °L(r,t-r) R(T) ^ (1 Q) 

J at 

*L(r.t) 

àt 
E 

L(r,t) 6 S{r,t) (7.9) 

The system of equations (7.8), (7.9) generalizes the 

system (3.46), (3.45), including the wind effect on 

disease development. 

By varying w , w and w we can use the system of 

equations (7.8) and (7.9) to describe focus development 

as affected by a wind variable in time. In the field 

situation, when the wind changes all the time, this is 

the most interesting case. 

In the case of a constant wind, asymptotic focus 
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shape and asymptotic velocity of focus extension can be 

obtained analytically in the framework of an extension 

of the Diekmann-Thieme theory (Van den Bosch et al., in 

prep.). 

As in previous cases, the system of equations (7.8), 

(7.9) can be treated numerically by PODESS (see 

Appendix A ) . 

7.4 LEAF RUST ON WHEAT - THE TWO-DIMENSIONAL CASE 

The results obtained by the numerical solution of 

the "diffusion model', based on the "diffusion theory', 

were extended by adding a wind effect. The results were 

compared to experimental data. The experiment, designed 

according to the microfield technique (Zadoks and 

Schein, 1979), was performed in 1986, with 10 identical 

plots 1.8 x 1.8 m where 7 x 7 hassocks of a susceptible 

wheat (cv. Marksman) were planted. The centre hassocks 

were inoculated in a greenhouse with leaf rust 

(Puccinia recondita f.sp. tritici) and then transfered 

to the field at 21 April. Measurements were made four 
si th th rd 

times in July: 1 , 9 ,17 , and 23 . Severity per 

hassock for each of three leaf layers was assessed 

according to the Peterson B-scale (Zadoks and Schein, 

1979). The means of these measurements (Fig. 7.2C) were 

used for comparison with the numerical results of the 

diffusion model'. 

7.4.1 Parameters 

Unfortunately, no parameters required by the 

"diffusion theory' were measured. Therefore some 

parameters values were estimated from data available in 

the literature, the others were guesstimated. Focus 

development was simulated with the following parameter 

values: 

1. D - diffusion coefficient = 0.03 [m /day], 
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<5 - rate of spore deposition = 0.7 [1/day], 

E - effectiveness = 1, 

R - productivity = 3.5 [number of daughter lesions 

per mother lesion per day], 

p - latency period = 22 [days], 

i - infectious period = 15 [days], 

10 [mm2], A - area of a single lesion 

LAI - leaf area index = 1.5, 

w - the velocity of wind is given in Table 7.1; for 

the intermediate days, the wind velocity was 

calculated by linear interpolation from the two 

nearest dates. 

Ad 8. The value of LAI is the effective leaf area index 

available for infection (the experimental data 

were measured in Peterson B-scale for which 100% 

severity is given to 37% of infected leaf area; 

see Zadoks and Schein, 1979) 

The crop was inoculated at the centre of the field at 

time T = 0 by 1 successful spore. 

Table 7.1 The velocity of wind (in m/day) used for the 

simulation of the leaf rust focus development on wheat. 

The values are very low, but they represent the mean 

wind speed per day. 

Day 

number 

0 

70 

71 

75 

79 

100 

Wind in the 

x-direction 

0. 

0. 

-0.1 

0.1 

0.2 

0.2 

Wind in the 

y-direction 

0.06 

0.06 

0.06 

0.06 

0.06 

0.06 
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7.4.2 Results 

Results were obtained by two runs of the "diffusion 

model' on a VAX 785 computer, using PODESS (Appendix 

A ) , simulating focus development in two-dimensional 

space (the two-dimensional analog of the system (7.8), 

(7.9) was used) during 100 days. The field was 

represented by a grid of 19 x 19 points. The first run 

was a "control' and it was performed by the "diffusion 

model' based on the "diffusion theory' presented in 

Chapter 3 (without wind). In the second run, the 

"diffusion model' used the extended version of the 

"diffusion theory' with the wind effect included. 

Results of the first run (Fig. 7.2A) show a circular 

focus developing around the centre of the field. 

Results of the second run (Fig. 7.2B) are qualitatively 

different. The focus is an ellipse rather than a circle 

and its centre moved away from the field centre. 

7.4.3 Discussion 

Comparison of the numerical results to those 

obtained experimentally shows that the "diffusion 

model' without simulation of the wind effect is 

inadequate in the present case. Results of the 

"diffusion model' based on the extended version of the 

"diffusion theory' allow to simulate the directional 

effect of wind on focus development. However, 

quantitative differences were observed between the 

experimental and the numerical results obtained by the 

second run. They are probably due to wrong parameter 

guestimates. Application of more detailed models of 

computer simulation may improve these results. Chapter 

8 discusses some of the possible methods and Chapter 9 

presents some models. One of them (Section 9.4) shows 

how more realistic results can be obtained for the case 

discussed above. 
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Fig. 7.2. Focus development under the wind influence 

for time T = 71, 79 and 87. X- and Y-axes are distances 

from 0 to 1.8m. A, simulation of focus development 

without wind. B, simulation of focus development with 

wind which velocity is given in Table 7.1. C, 

experimental results of the leaf rust focus development 

on wheat. 
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8 A SIMULATION APPROACH 

8.1 INTRODUCTION 

The ^diffusion theory' combines elementary physical 

and phytopathological concepts into a set of equations, 

which can be solved numerically using a computer. The 

structured set of equations, ready for computer use, is 

called the ^diffusion model'. The results of this model 

can be compared with results of other models and - more 

important - results of experiments. By comparison, the 

^diffusion model' can be validated (Chapter 4). The 
vdiffusion model' can be solved numerically by 

application of appropriate software, in the present 

case PODESS (Appendix A). The flexibility of PODESS 

allows not only a numerical solution in a simple case 

(uniform crop, constant parameter values), but also 

simulation of more complex situations. Complicated 

cropping patterns and variable environmental conditions 

can be handled. Thus, the ^diffusion model' becomes a 

sophisticated tool in the hands of phytopathologists 

for every-day work rather than just one more model, 

which may be theoretically justified but is of limited 

practical value. In this perspective the v diffusion 

theory' becomes a framework within which a variety of 

specialized applications can b e developed. A few 

examples will be given in this chapter. 

8.2 PARAMETERS A S EMPIRICAL FUNCTIONS 

Only a theoretician, in his simplified view of 

reality, can assume that the model parameters are 

constant. In practice, they always vary, both 

deterministically in dependence on known external 

conditions and stochastically. Any model attempting to 
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reflect nature, must take this parameter variability 

into consideration. Parameter stochasticity often can 

be disregarded when looking for qualitative consistency 

of the vdiffusion model' with the experimental data. 

Then the mean value of a parameter can be used. But 

functional dependence of parameter values on external 

conditions must be simulated. As we cannot describe the 

complete environment, a system containing only the most 

relevant elements must be chosen and modelled (de Wit 

and Goudriaan, 1978; de Wit, 1982). Influence on the 

system from outside can be incorporated into the model 

by treating parameters as empirical functions of 

external conditions. Thus, the vdiffusion model' can 

simulate the effects of changes in weather (by 

functional dependence of the diffusion coefficient or 

the spore production rate on temperature, humidity, 

wind, etc.), in crop growth stages (changes in the 

probability of infection with time, etc.), or in 

spatial distribution of crop elements (changes of 

parameter values with position). Spatial variation of D 

should be treated with special care as then D cannot be 

put outside the space derivatives in the diffusion 

equation. The way to overcome this problem is 

analogical to the one proposed for the 

three-dimensional case in Section 8.3.2. 

8.3 VERTICAL SPORE DISTRIBUTION -

THE THIRD SPATIAL DIMENSION 

8.3.1 Introduction 

The vdiffusion model' for time and two-dimensional 

space was derived in Chapter 3 and validated in Chapter 

4. Good qualitative and in most cases good quantitative 

consistency with other models and with experimental 

data was achieved. But a real crop is three-dimensional 

in space. There exist: (1) a soil, on which spores are 
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deposited, (2) a host canopy, which can be infected by 

deposited spores and then carry sporulating lesions, 

and (3) an air layer above a crop, within which spores 

are transported. Under gravitation, spores fall down 

continuously. "Stokes' law describes this fall as a 

downward movement with constant velocity, usually 

called the "settling velocity' (Okubo, 1980). 

8.3.2 The "diffusion theory' 

in three-dimensional space 

The "diffusion theory' formulated for time and 

two-dimensional space (Chapters 3 and 7) can be 

extended to the three-dimensional case, with a uniform 

vertical crop distribution. To upgrade the theory, a 

three-dimensional interpretation must be given to the 

density parameters. The system of eguations (7.13), 

(7.14) must be replaced by its three-dimensional 

version. Equation (7.13) was derived to describe a wind 

effect, but in fact it applies to any situation with a 

prevailing direction of spore movement; here the 

downward direction, simulating gravitation. The new 

system formulates the basis of the three-dimensional 

"diffusion theory' for a uniform crop: 

at 
Dc 

a2 a2 a2 

+ + 
&X 3y 3z 

S(r,t) + 

' , ^ - « c « ( * . t , + 

I 
0 

anrrt-r) K(r) ^ ( 8 1 ) 

il^l = E \ 
9t { 

sL(r,t) „ I , Ur.t) 
L 
max 

6c S(r,t) ( 8 . 2 ) 
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where r = (x,y,z) represents a position in 

three-dimensional space, t stands for time, S(r,t) is 

the spore density, L(r,t) is the lesion density, D is 

the diffusion coefficient within the crop, & is the 

rate of spore deposition within the crop, and v is the 

"settling velocity' (the downward spore velocity 

resulting from gravitation and the resistive force of 

the air). D and <5 are assumed to be constant. 
' c c 

In reality, the vertical crop distribution is not 

uniform. Therefore, the system of equations (8.1), 

(8.2) applies only to appropriate parts of the 

three-dimensional space which contains the crop. Spores 

are deposited there, and a fraction of them initializes 

lesions, which produce new spores. Because of slicing 

this part of three-dimensional space to represent leaf 

layers (Goudriaan, 1977; Zadoks and Schein, 1979), 

equation (8.2) must be discretized by establishing a 

system of as many two-dimensional equations, analogous 

to (8.2), as there are leaf layers. 

For the soil layer, where the only process is spore 

deposition, the system (8.1), (8.2) is replaced by the 

absorbing boundary condition (the spore density equals 

zero); see Chamberlain (1967), Chamberlain and Chadwick 

(1972) and Aylor et al. (1981) for more information 

about spore deposition on the soil. 

Apart from a crop and a soil, the third element of 

three-dimensional reality is the air layer above a 

crop. Spores can be transported there by diffusion and 

gravitation, but they are not deposited. There are 

neither lesions nor spore production. The system of 

equations (8.1), (8.2) is replaced by the following 

equation : 
àS(r,t) 

at 
D a 

az a2 a2 

ax ay az 
S(r,t) + 

v ds^r,t) { 8 3 ) 

g az 
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where D = is the diffusion coefficient in the air, 

with other symbols as above. 

In the three-dimensional case, the vdiffusion 

theory' is represented by different sets of equations 

in each of the three regions (soil, crop, and air above 

the crop) of the vertical direction. At the boundaries 

of these regions equations change qualitatively. To 

handle this situation by numerical solution, equations 

must be solved separately in the crop region, with the 

appropriate boundary condition for soil, and in the air 

above the crop region. The assumption that D is 

constant within each of these regions is necessary. 

Then, solutions can be adjusted to each other by 

equating fluxes in the transition layer crop-air by 

appropriate boundary conditions. 

8.4 THE MULTIPLE-DISPERSAL MECHANISM 

Following other phytopathologists and mathematicians 

who studied development of plant epidemics, we assumed 

that only one mechanism is Responsible' for disease 

spread. But in practice this cannot be so. There is 

overwhelming evidence, that two or even three different 

mechanisms are involved in disease spread. 

All spores start their dispersal within the canopy. 

However, some of them can leave the canopy region and 

then they are dispersed in the air above the crop. The 

dispersal which takes place entirely within the crop 

canopy spreads spores over short distances; this 

dispersal mechanism will be called the "short 

mechanism'. Spores which left the crop are dispersed 

over medium distances in the air above the canopy 

region, by the mechanism which will be called the * long 

mechanism', before they are deposited on the crop. If 

long-range dispersal should be taken into 

consideration, as a third mechanism, the long-distance 

spore transport high up in the atmosphere (Zadoks and 
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Schein, 1979; Pedgley, 1982; Jeger, 1985a) must also be 

considered. The importance of the multiple-dispersal 

mechanism was indicated by Vanderplank in his 1975 book 

(page 137): "Either steep gradients only or shallow 

gradients only would serve the pathogen badly. ... A 

mixture of shallow and steep gradients means that the 

pathogen dispersing along steep gradients could 

colonize any susceptible plants or fields it found 

after dispersing along shallow gradients." 

Dutch elm disease caused by Ceratocystis ulmi offers 

an example, where the mechanisms involved are not only 

of different scale, but also of different nature. One 

mechanism of spread is the infection of healthy plants 

by root contact with diseased plants; a directional 

non-random dispersal. Beetles disperse the fungus from 

diseased to healthy trees over medium distances. A 

third dispersal mechanism is said to be vresponsible' 

for long-range transport. Beetles are displaced by cars 

and released at far-away petrol stations (F. Holmes, 

pers. comm.); a directional partially random dispersal 

which cannot be described as a diffusion process. 

Of course, not all of these dispersal processes are 

diffusion processes as described in the previous 

chapters. Even so, some can be mimicked by diffusion. 

In the case of the Dutch elm disease, dispersal of 

beetles can be mimicked by diffusion, as beetles 

released from a "point source' disperse in a 

diffusion-like way (Wetzler and Risch, 1984). Whether 

other dispersal mechanisms can be mimicked by diffusion 

depends on their nature and/or their pattern of 

dispersal. PODESS is so flexibe that even those 

dispersal mechanisms which cannot be described or 

mimicked by diffusion, can be handled in principle. 

The above discussion suggests that dispersal of a 

disease often is due to a multiple-dispersion 

mechanism, and that this multi-mechanism can sometimes 

be described by a vmulti-diffusion' process. A 
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'multi-diffusion' process is handled here as a 

superposition of two or more diffusion processes with 

different diffusion parameters and different 

probabilities of occurence. 

A model simulating 'multi-diffusion' can be built 

easily within the framework of the 'diffusion theory'. 

Each mechanism to be described needs one diffusion 

equation (of the (3.46) type) with its own values of 

the diffusion coefficient and the rate of deposition. 

Exchange of spores between the dispersion mechanisms 

can be simulated by an exchange term analogous to the 

deposition or production terms. If lesions resulting 

from infection by spores, which were dispersed by 

different mechanisms, should be treated diffrently by 

the 'diffusion model', separate generalized 

'Vanderplank' equations (of the (3.45) type) will be 

necessary for each dispersal process. The number of 

equation systems must be equal to the number of 

dispersal mechanisms involved, when the 'diffusion 

theory' is applied to the most general case. 

8.5 STOCHASTICITY ADDED TO THE MODEL 

Plant disease dispersal is a stochastic process at 

the individual level, the level of the spore and the 

lesion. Production, dispersal, and deposition of 

spores, and infection of plant tissue, are stochastic 

processes. Mathematically, they should be described in 

probabilistic terms. Numbers of spores produced per 

unit of time by a sporulating lesion, ratios of 

germination, colonization and infection, and duration 

of latency and infectious periods are all random 

variables (a.o. Mehta and Zadoks, 1970; Eisensmith et 

al., 1985). Spores are liberated by various processes 

(Ingold, 1967), which are strongly affected by the 

local environment, and thus should not be described 

deterministically. Liberated spores are moved randomly 
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by local air currents and are deposited at random 

(Tyldesley, 1967; Chamberlain and Chadwick, 1972; 

Gregory, 1973; McCartney and Fitt, 1985). One cannot 

say exactly how many spores will be produced and 

liberated, where every one of them will be deposited, 

and whether the infection will be successful. 

The 'diffusion theory' is a deterministic theory, 

though it attempts to describe a process which is 

inherently stochastic. The deterministic approximation 

is good enough in most cases, but it cannot handle some 

of the important phenomena which emerge from stochastic 

events at low inoculum densities. One of them, often 

observed in field situations, is the appearance of 

daughter foci. Vanderplank (1975, page 135) stated: 

"Dispersal over a shallow gradient starts new foci; 

dispersal over a steep gradient enlarges them". 

Therefore, an appropriate simulation model of these 

phenomena is of great importance to plant pathology. 

The deterministic approach allows to describe 

disease development at high densities of spores and 

lesions. If the density of spores 'in the air' is not 

high and/or if the probability of infection is low, 

only a low number of lesions per unit area will be 

produced. Then, a Poisson distribution with the 

appropriate mean should be used to 'decide' the number 

of lesions initialized in an area element and in a 

small time interval. When the spore production and the 

effectiveness are high, the diffusion is low and the 

deposition is strong, stochastic simulation will lead 

to a ragged boundary of the focus, though the majority 

of the newly produced lesions will appear close to 

their mother lesions. At the opposite end low densities 

of 'distant' spores combined with low probabilities of 

infection result in very low probabilities of lesion 

initialization far away from the center of a focus and, 

consequently, absence of daughter foci. This phenomenon 

was described by Vanderplank (1975, page 135) as 
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follows: "...dispersal along a steep gradient is 

unlikely to start daughter foci widely separated from 

their parents...". If, in contrast, the diffusion is 

high and the deposition is weak, the distribution of 

spores 'in the air' is nearly uniform all over the 

field. Combined with a low spore production and/or with 

a low probability of infection, this distribution will 

lead to a nearly uniform distribution of newly produced 

lesions. Because of low lesion density all over the 

field, their distribution function cannot be 

approximated deterministically. Stochasticity will 

'produce' random numbers of lesions per grid point. 

Therefore, the number of lesions in each small area 

will be a Poisson random variable with a uniform 

expected density all over the field. 

Empirical knowledge tells that a focal disease, 

initialized by point inoculation, manifests itself as a 

single mother focus (around the point of initial 

inoculation) with a nearly circular boundary, and a 

small number of daughter foci distributed more or less 

uniformly around the mother focus (Vanderplank, 1975). 

Real focal disease development looks like the 

superposition of the pictures resulting from two 

processes governed by a "short mechanism' and a 'long 

mechanism', respectively. The 'short mechanism' 

builds-up the mother focus and the 'long mechanism' is 

"responsible' for the distant spread of disease. The 

daughter foci resulting from the 'long mechanism' are 

enlarged by the 'short mechanism'. Some of the spores 

produced by the daughter foci are dispersed by the 

'long mechanism', but they form a small proportion of 

the total number of spores dispersed by the 'long 

mechanism'. 

The foregoing intuitive argument indicates that 

stochasticity of lesion initiation together with a 

double dispersal mechanism are sufficient to simulate 

focal disease development including the generation of 
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daughter foci. 

8.6 DISCUSSION 

The ^diffusion theory' originates from a simplified, 

mechanistic model of spore dispersal. This model leads 

to the system of two partial differential equations 

which is the mathematical formulation of the theory. 

The numerical solution of the equations leads to some 

phytopathologically useful results. Some of these can 

be obtained analytically by application of the 

Diekmann-Thieme theory (Van den Bosch et al., 1988 a, 

b, c). The advantage of numerical methods is in the 

combination of a thorough theoretical basis with 

computer simulation techniques, leading to a flexible 

computer simulation method. The theoretical background 

helps to adapt the simulation method to any particular 

application, and it may also help to avoid some of the 
Kdead alleys' in a modellers' work. The additional 

advantage to phytopathology offered by the vdiffusion 

theory' is its generality, which allows to build a 

particular simulation model with only slight 

modification of the original theory. The point was 

demonstrated in the Sections 8.3 to 8.5, where three 

possible simulation extensions to the vdiffusion 

theory' were indicated. 

The last but not the least advantage of the 

approach advocated here is its implementation by means 

of PODESS (Appendix A ) , a flexible programming package, 

allowing to realize a computer program simulating any 

particular model with very limited knowledge of 

FORTRAN. The next chapter shows how to convert the 

models, described above, to the computer programs which 

simulate phytopathological reality with a fair degree 

of accuracy. 
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9 APPLICATIONS 

A number of runs simulating various more or less 

realistic situations of phytopathological interest were 

performed to show some of the capabilities of the 

"diffusion model'. Many specific models, even rather 

complex ones, can be handled by the software package 

PODESS (Appendix A ) . Some programming in FORTRAN is 

necessary to vinform' PODESS about the environmental 

situation and about the equations to be used. 

9.1 RICE RESISTANCE BREEDING TRIAL 

A promising area of application of the "diffusion 

theory' of focus development is computer analysis of 

plant breeding trials. Experiments dealing with partial 

resistance need special care in analysis, because of 

the so-called cryptic error of field experiments (Van 

der Plank, 1963). This error resides in the overly high 

severity levels occurring in resistant test varieties 

(due to net influx of spores from susceptible test 

varieties), and the overly low severity levels 

occurring in susceptible test varieties (due to net 

outflux of spores from susceptible to resistant test 

varieties). 

9.1.1 The method of Notteghem and Andriatompo 

A new design for resistance breeding trials was 

proposed by Notteghem and Andriatompo (1977) for the 

selection of rice resistant to Pyricularia oryzae. The 

test varieties (cv. Iguape cateto, Kagoshima hakamuri, 

Aichi asahi, K2, 63-83, and Rojofotsy 1285) were grown 
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in plots (each plot contained three 2.0 m long rows 

with 0.1 m distance between rows), separated by similar 

plots of a highly resistant variety (cv. Daniela). The 

rows were sown parallel to the prevailing wind 

direction. Perpendicular to the row direction, at the 

upwind side, a 4.0 m long and 1.0 m wide band of 

spreader (a susceptible variety) was planted. The 

density of sowing was 3 g of seeds per meter for the 

test varieties and the resistant separating variety, 

and 5 g of seeds per meter for the spreader. The 
7 

spreader was inoculated 29 March with about 3-10 

spores of Pyricularia oryzae. The degree of severity 

was measured for each test variety in five points 

(0.25, 0.5, 1.0, 1.5, and 2.0 meters distance from the 

spreader along the rows of the test varieties) at five 
. - *»tri _ -.tri _ —tri —.—.tri , _ _ t n . 

dates in April (8 , 13 , 16 , 22 , and 26 )• 

Disease severity was expressed in degrees according to 

the "Bidaux scale'. 

The vdiffusion model' requires more parameters than 

those given by Notteghem and Andriatompo. Their paper 

gives only a general characterization of the test 

varieties, the types of lesions covering them, the 

spatial distribution of the crop, and the distribution 

of deposited spores. This information allowed only to 

estimate the area of a single lesion and two spore 

"distribution' parameters D and &. The daily rate of 

spore production by a single sporulating lesion, the 

latency period and the infectious period were estimated 

on the basis of data by Kato (1974) using the general 

characterization of the varieties given by Notteghem 

and Andriatompo. The spore distribution parameters, D 

and <5, were estimated using the method of Williams 

(1961). The other parameters (i. e. probability of 

infection, fraction of spores removed from an epidemic, 

and the leaf area index) we guestimated according to 

the susceptibility of the varieties, their spatial 

distribution and the density of sowing. The values of 
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some parameters are shown in Table 9.1. The wind speed 

w = 0.7 [m/day] (this value is very low, but it is the 

mean wind effect per day). Differences between D, 6 and 

LAI for spreader and test varieties are due to a 

relatively dense stand of the spreader (the spreader 

was sown at higher density than the test varieties and 

the separating variety). 

Table 9.1. Numerical simulation of a resistance 

breeding trial in rice (Notteghem and Andriatompo, 

1977). Entries are parameter values used. AREA - area 
2 

of a lesion [mm ], LAI - leaf area index, other symbols 

are explained in Chapter 3. 

Varie

ty 

Aichi 
asahi 

6383 

Kagos. 
hakam. 

Rojo. 
1285 

Iguape 
cateto 

K 2 

Danie
la 

Sprea
der 

Parameter 

E 

0.0098 

0.00294 

0.00588 

0.0098 

0.00588 

0.0098 

0.00098 

0.0098 

D 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.16 

6 

3.1 

3.1 

3.1 

3.1 

3.1 

3.1 

3.1 

4.0 

R 

3000 

150 

1050 

1800 

300 

3000 

0 

3000 

AREA 

20 

1 

7 

12 

2 

20 

0.5 

20 

LAI 

4 

4 

4 

4 

4 

4 

4 

5 

P 

1 

11 

9 

7 

9 

7 

13 

7 

i 

9 

5 

7 

9 

7 

9 

3 

9 
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9.1.2 Results 

Assessment of disease severity (% of foliage covered 

by lesions) was performed 10, 15, 18, 24, and 28 days 

after the first inoculation of the spreader. Results 

are presented by Notteghem and Andriatompo (1977) in 

their Fig. 3. The majority of the resulting 

experimental data and the predictions for the 

"diffusion model' are similar or only slightly 

different (Table 9.2, Fig. 9.1 and 9.2). However, in a 

few cases, a two-degree difference is observed. This 

difference reflects the poor knowledge of the parameter 

values as well as stochasticity of the real process. 

Table 9.2. Numerical simulation of a resistance 

breeding trial in rice (Notteghem and Andriatompo, 

1977). Experimental results of a resistance breeding 

trial (first entry per cell) and numerical results of 

the "diffusion model' (second entry) 28 days after the 

first inoculation of the spreader. Entries are degrees 

of the "Bidaux scale' (Notteghem and Andriatompo, 1977, 

Table III). 0 = no disease (resistant variety), 5 = 

highly diseased (susceptible variety). 

Variety 

6383 

Iguape c. 

Kagoshima 

Aichi asahi 

K2 

Rojof. 1285 

Distance from spreader 

0.00 

1 2 

3 2 

4 3 

4 5 

4 5 

5 4 

0.25 

1 1 

3 2 

4 2 

4 4 

4 5 

5 4 

0.50 

1 1 

3 2 

4 2 

3 4 

5 4 

5 3 

1.00 

1 1 

2 1 

3 2 

3 3 

4 3 

4 2 

1.50 

0 0 

2 1 

3 1 

2 2 

3 2 

4 2 

2.00 

0 0 

2 0 

2 1 

2 2 

2 2 

3 1 
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D 

Fig 9.1. Numerical analysis of a resistance breeding 

trial in rice (Notteghem and Andriatompo, 1977). 

Development of disease in a breeder's trial field 

during run 1 for 0, 18, 28 and 36 days after initial 

inoculation. Rows of the test varieties are along the 

X-axis, the spreader is placed along the Y-axis on the 

left-hand side. X-axis is a distance from 0 to 3 m, and 

Y-axis is a distance from 0 to 4.8 m. Intensities of 

printed points reflect the fractions of plant surface 

covered by lesions. A, T = 0. B, T = 18 days after 

initial inoculation. C, T = 28 days after initial 

inoculation. D, T = 36 days after initial inoculation. 
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6383 Iguape cateto 

^ - » - ^ — * H M K 

1̂* » \ * » * « 

-April 16 -«-April 26 

Kagoshima 

•— -> i ie « »v ^ * * * 

1 ^ e — - ^ * * * 

Aichi asahi 

- April e - " - April 16 -**-* April 26 --*• April 8 —*— April 16 -*-Apri l 26 

K 2 Rojofotsy 1285 

Fig 9.2. Numerical analysis of a resistance breeding 

trial in rice (Notteghem and Andriatompo, 1977). 

Simulated severity of disease on test varieties during 

run 1. Curves are printed for: 8, 16, and 26 april. The 

X-axis represents the length (in meters) of the test 

variety row, the Y-axis represents degrees of disease 

severity. Compare Fig. 3 of Notteghem and Andriatompo 

(1977) . 
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An attempt was made to assess the cryptic error, 

sensu Van der Plank (1963), of the breeding trial. The 

following runs of the program were performed: 

1. Original trial. 

2. A susceptible variety (Aichi asahi) at every 

position of the test varieties. 

3. A susceptible variety (Aichi asahi) at every 

position of the test varieties and at the positions 

of the separating variety. 

4. A susceptible variety (Aichi asahi) covers the whole 

experimental field. 

5. A resistant variety (6383) at every position of the 

test varieties. 

6. A resistant variety (6383) at every position of the 

test varieties and at the positions of the 

separating variety. 

7. A resistant variety (6383) covers the whole 

experimental field. 

Table 9.3 shows the results for runs 1, 2, 3, and 4. 

Relative progress of the disease severity can be judged 

by comparison of the runs. Replacement of all the test 

varieties by the susceptible one increases the net 

influx from the variety neighbourhood (run 2). 

Replacement of the separating variety has a similar 

effect (run 3). Replacement of the spreader by a 

susceptible variety increases its severity level at the 

observation position, because the original spreader was 

sown more densely than the test varieties, so that 

fewer spores than after replacement could diffuse to 

the part of the field originally covered by the test 

varieties (run 4). 

Analogous runs for a resistant variety (Table 9.4, 

runs 1, 5, 6, and 7), give a very different picture. 

Replacement of the test varieties by a resistant one 

(run 5) and, additionally, the separating variety by a 

resistant one (run 6) has no observable effect. The 
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Fig 9.3. Numerical analysis of a resistance breeding 

trial in rice (Notteghem and Andriatompo, 1977). 

Simulated disease severity on a breeder's trial field 

for runs 2, 3, 4, 5, 6, and 7, respectively, 36 days 

after initial inoculation. Legend as for Fig. 9.1, but 

for conditions described in the text (specified with 

the run number). A, results of run 2. B, results of run 

3. C, results of run 4. D, results of run 5. E, results 

of run 6. ¥, results of run 7. 
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result of run 5 is equivalent to a low effect of the 

susceptible test varieties on the resistant ones. The 

result of run 6, in which a resistant separating 

variety was replaced by another resistant variety, adds 

nothing to the results of run 5. In these cases the 

words "low effect' instead of "no effect' are used, 

because the scale values give only a rough picture of 

the real severities, though maybe good enough from a 

breeder's point of view. The only situation which 

influences the results is replacement of the spreader 

by a resistant variety (run 7). In this case disease 

does not develop. Severities obtained by the compared 

runs at T = 36 days after inoculation are shown on Fig. 

9.3. 

Table 9.3. Numerical simulation of a resistance 

breeding trial in rice (Notteghem and Andriatompo, 

1977). Results of the runs for the susceptible variety 

(see text), Aichi asahi, 28 days after initial 

inoculation. Replacement of the trial elements by the 

susceptible variety leads to higher disease severities. 

Entries are degrees of the "Bidaux scale' (Notteghem 

and Andriatompo, 1977, Table III). 0 = no disease 

(resistant variety), 5 = highly diseased (susceptible 

variety). - . 

Distance from 

spreader 

0.00 

0.25 

0.50 

1.00 

1.50 

2.00 

Run 1 

5 

4 

4 

3 

2 

2 

Run 2 

5 

5 

4 

3 

2 

2 

Run 3 

5 

5 

4 

4 

2 

2 

Run 4 

5 

5 

5 

4 

2 

2 
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Table 9.4. Numerical simulation of a resistance 

breeding trial in rice (Notteghem and Andriatompo, 

1977). Results of the runs for the resistant variety 

(see text), 6383, 28 days after initial inoculation. 

Entries are degrees of the ^Bidaux scale' (Notteghem 

and Andriatompo, 1977, Table III). 0 = no disease 

(resistant variety), 5 = highly diseased (susceptible 

variety). 

Distance from 

spreader 

0.00 

0.25 

0.50 

1.00 

1.50 

2.00 

Run 1 

2 

1 

1 

1 

0 

0 

Run 5 

2 

1 

1 

1 

0 

0 

Run 6 

2 

1 

1 

1 

0 

0 

Run 7 

0 

0 

0 

0 

0 

0 

9.1.3 Discussion 

Comparison of the results of the numerical 

simulation with the experimental results of Notteghem 

and Andriatompo indicates good qualitative and 

quantitative consistency. The differences are probably 

due to the simplifying assumptions about the parameters 

and to not fully correct guesses of the parameter 

values. The consistency suggests that the estimated 

parameter values are close to their true values. 

The results shown in Table 9.2 and formulated in the 

preceding section warrant a fundamental analysis of 

resistance breeding trials and an estimation of their 

cryptic error. The qualitative behaviour of the 

solutions is consistent with the opinion about the 
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cryptic error forwarded by Van der Plank (1963). 

Especially evident is the cryptic error for resistant 

variety 6383, comparing the cases with presence and 

absence of the spreader. Without spreader, disease 

severity level is nil (degree 0), whereas with spreader 

it is considerable (degrees 1 and 2). 

It should be explained why differences of 2 degrees 

between the experimental and the numerical results are 

treated as negligible in Table 9.2, whereas for the 

results shown in Tables 9.3 and 9.4 a difference of one 

degree is considered important. In the first case, 

uncertainty about the parameter values, stochasticity 

of the real process, and the possible influence of 

factors not described by the 'diffusion theory', can 

have so considerable an effect, that even a difference 

of two degrees between the experimental and the 

numerical results seems acceptable. In the second case, 

only computer results are compared. These runs were 

performed by solving the same equations with the same 

parameter values in all runs. The only differences were 

those in trial design. So, the differences observed in 

Tables 9.3 and 9.4 are treated as reflecting the effect 

of differences in trial design. 

9.2 DOUBLE DISPERSAL MECHANISM -

INTENSIFICATION AND EXTENSIFICATION OF AN EPIDEMIC 

A model simulating a double dispersal mechanism, 

i.e. a combination of the xshort' and the vlong' 

mechanisms, was realized according to the ideas 

explained in Section 8.4. The two dispersal mechanisms 

are common in air-borne plant diseases. The vshort 

mechanism' is characterized by: 

1. a low value of the diffusion coefficient, D, 

2. a high value of the rate of spore deposition, 6, and 

3. a high fraction of the spores involved. 

This mechanism models the within-crop dispersal w i t h : 
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a. a low value of the wind speed and small eddies, 

b. spores have a high chance to be deposited, as they 

are close to crop surfaces, 

c. most of spores are dispersed within the crop canopy. 

The "long mechanism' is characterized by: 

1. a high value of the diffusion coefficient, D, 

2. a low value of the rate of spore deposition, <5, and 

3. a low fraction of spores involved (those which were 

not dispersed by the "short mechanism'). 

This mechanism models the above-crop dispersal with: 

a. a high value of the wind speed and large eddies, 

b. spores can travel a long distance before they return 

to the crop layer where they are deposited, 

c. only those spores which could temporarily * escape' 

from the crop are dispersed by this mechanism. 

9.2.1 Crop pattern and parameters 

The simulated field was a square of 100 x 100 m, 

represented by a grid of 31 x 31 points. The field was 

covered uniformly by a susceptible crop. 

As the lesions "behaved' identically irrespective of 

the dispersal mechanism of the spores which generated 

them, two diffusion equations (one per mechanism) and 

one "generalized Vanderplank equation' were used. Only 

one set of parameters characterizing lesions and two 

sets of parameters characterizing spores were used. The 

parameters describing lesions were: 

1. R - reproductivity = 4 [daughter lesions per 

sporulating mother lesion per 

day], 

2. p - latency period = 3 [days], 

3. i - infectious period = 5 [days], 

4. A - area of a single lesion = 10 [mm ]. 

The "spore parameters' for the "short mechanism' were: 
2 

1. D± - diffusion coefficient = 1 [m /day], 
2. «5 - rate of spore deposition = 10 [1/day], 
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3. E± - effectiveness = 1. 

The "spore parameters' for the "long mechanism' were: 

1. Dz - diffusion coefficient = 150 [m /day], 

2. <S2 _ rate of spore deposition = 0.3 [1/day], 

3. E' - effectiveness = 1. 

The leaf area index LAI = 5. 

Thirteen runs were performed for the following 

proportions of spores dispersed by the " short 

mechanism', F= 0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 0.99 and 1. The remaining spores were 

dispersed by the "long mechanism'. For each run, the 

crop was "inoculated' at the centre of the field by a 

single successful spore at time T = 0. 

9.2.2 Results 

Results were obtained by running PODESS on the VAX 

785 computer of the Wageningen Agricultural University. 

Each run lasted 50 "simulation days'. Every 10 

"simulation days', the values of the two spore 

distribution functions and the lesion distribution 

function were printed and plotted. 

A comparison of the lesion density distributions 

produced by these runs shows the overriding influence 

of the partitioning of spores over the two dispersal 

mechanisms. For a closer examination, three functional 

dependencies of spore partitioning were examined: (1) 

the velocity of focus expansion, (2) the lesion 

densities at points with different distances from the 

focal centre, and (3) the total number of lesions 

present in the field. 

The velocity of focus expansion shows a fast 

decrease with increasing proportions of spores 

dispersed by the "short mechanism' in the range of F = 

0 to F = 0.2, a low effect of partitioning of spores in 

the range from F = 0.2 to F = 0.99, and a rapid drop 

with F changing from 0.99 to 1 (Fig 9.4). 
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Relative velocity of focus expansion 
10 EE 

0.01 

0.001 
0.2 0.4 0.6 0.8 

Proportion of spores, F 

' L = 100 lesions 10000 lesions 

Fig. 9.4. Focus expansion with a double dispersal 

mechanism in a deterministic situation. The x-axis 

represents the proportion of spores dispersed by the 

"short mechanism', F. The y-axis represents the scaled 

velocity of focus expansion (the highest velocity 

equals 1) on a logarithmic scale. The velocities were 

determined at two 'levels' of the front of the epidemic 

(see Section 3.4.2): L 

lesions. 
100 lesions and L 10000 

Lesion density at a certain time varies strongly 

with the distance of the measurement point from the 

origin. Fig. 9.5. shows results obtained for the 

"simulation time' T = 40. Lesion density at the centre 

and in its close vicinity grows with F in an S-shaped 

manner. Far from the centre, the lesion density grows 

fast with increasing F, reaches its maximum at F = 0.8 

and then decreases rapidly when F increases still 

further. 
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Relative lesion density 

0.2 

center 

0.4 0.6 0.8 
Proportion of spores, F 

1.2 

• center+4 center+8 center+12 

Fig. 9.5. Focus expansion with a double dispersal 

mechanism in a deterministic situation. The x-axis 

represents the proportion of spores dispersed by the 

"short mechanism', F. The y-axis represents the 

relative lesion density (the highest density per 

distance equals 1) at the centre and at three points 

with distances from the centre: 4, 8 and 12 units of 

distance between grid points (or 13.2, 26.4, and 39.6 

m ) . 

The total number of lesions in the focus for 

successive values of time (Fig- 9.6) increases 

exponentially with F in the early stages of epidemic 

growth. Later, an interesting phenomenon is observed; 

with growing value of F, the total number reaches a 

maximum (for F = 0.9 at T = 30 and for F = 0.8 at T = 

40) and then decreases. The curve of the total number 

of lesions for T = 50 reaches its maximum value at F = 

0.2, stays there until F = 0.99, and suddenly drops 

down with F passing from 0.99 to 1.0. 
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Relative number of lesions at time T 

10 

0.4 0.6 0.8 
Proportion of spores, F 

- T • 20 - * - T - 30 - B - T =• 40 

1.2 

T = 50 

Fig. 9.6. Focus expansion with a double dispersal 

mechanism in a deterministic situation. Relative total 

number of lesions per field at five times: T = 10, 20, 

30, 40 and 50. The x-axis represents the proportion of 

spores dispersed by the xshort mechanism', F. The 

y-axis represents the relative total number of lesions 

(of the whole field) expressed in scaled values (the 

highest value equals 1). 

After an initial phase (up to T = 20) where the 

total number of lesions increases exponentially with F, 

its response to F is visualized by a curve having a 

relative sharp peak at F = 0.9 on T = 30. With the 

increase of time, the maximum broadens, and its peak 

value is attained at lower values of F, until at T = 50 

the curve loses its peak and shows a broad maximum 

plateau from F = 0.2 to F = 0.99. 
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9.2.3 Discussion 

The phenomena shown in Fig. 9.4 to 9.6 have a common 

explanation. The lesion density at the centre grows in 

an S-shaped manner with the proportion of spores 

dispersed by the vshort mechanism', F, (Fig. 9.5); this 

region of the field is influenced almost exclusively by 

the vshort mechanism'. When the lesion density reaches 

the maximum of sites available, growth is limited by 

exhaustion of vacant sites. At the points more distant 

from the centre, the influence of the vshort mechanism' 

is weaker, as shown by the decrease of the lesion 

density with F above the maximum value, F - 0.8 at T 

40. Accordingly, the focus expansion velocity, which 

measures the spatial progress of the focus boundary at 

relatively low lesion densities, decreases fast with F 

changing from 0 to 0.2 and drops steeply when F changes 

from 0.99 to 1. This drop is the result of excluding 

the "long mechanism' from spore dispersal. Then, the 

conquest of space by a disease becomes much slower, as 

also shown by the functional dependence of the total 

number of lesions on F (Fig. 9.6). 

In an infinite field, the total number of lesions 

present in the field, £, decreases with increasing F, 

as this allows a continual exploitation of fresh sites 

which have not been exhausted yet. Therefore, the best 

strategy would be F = 0 (i.e. only the "long 

mechanism'). In a finite field, with only one dispersal 

mechanism, & decreases with growing value of U (the 

ratio of field size to the width of the contact 

distribution), as long as vacant sites are not 

exhausted. For that situation the best strategy is F 

1 (i.e. only the vshort mechanism'). Apparently the two 

mechanisms, site exhaustion and spore loss to the 

hostile environment outside the field, yield opposite 

results. 

Real fields are finite and have a finite density of 
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sites. After an initial phase, exhaustion of available 

sites in the centre becomes limiting and spatial 

effects begin to dominate. As a result of the two 

effects, (1) loss of spores blown outside a field and 

(2) exhaustion of available sites at the focus centre, 

neither F = 0 nor F = 1 are the best strategy, but a 

value of F in between. Where the total number of 

lesions grows quadratically with the radius of a focus 

and linearly with the lesion density per point, the 

total number of lesions grows exponentially with F in 

the early stages, when the lesion density at the centre 

depends exponentially on F. Later, with the exhaustion 

of available sites at the centre, spatial expansion of 

the focus becomes more important to augment S,, a large 

area covered by the focus having more influence on 

total number of lesions than the centre and its close 

vicinity. The curves of the total number of lesions, ft, 

for T = 30 and T = 40 show maxima at certain values of 

F, due to the interaction of the two dispersal 

mechanisms. The maximum for F = 0.8 at T = 40 

corresponds to the maxima shown by most curves of 

lesion density at T = 40 (Fig. 9.5). The last curve for 

total number of lesions, at T = 50, shows a wide region 

of F where it keeps its maximum value, a result of the 

exhaustion of available sites all over the field. The 

sudden drop of the total number of lesions, shown by 

this curve when passing from F - 0.99 to F = 1, proves 

once more that dispersal by the "short mechanism' alone 

is not the most efficient way of focus expansion. 

The vshort mechanism' alone causes vintensification' 

(Zadoks and Kampmeijer, 1977) of a disease within a 

relatively small area. Severity increases fast near to 

the infected point, but spatial development of disease 

is slow. Quite oposite are the results of the slong 

mechanism'. It spreads disease over a large area, with 

hardly any intensification; this is "extensification' 

(Zadoks and Kampmeijer, 1977). A real epidemic of an 
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air-borne plant disease is spread by both the "short' 

and 'long' mechanisms, which interact. New areas are 

infected by spores dispersed by the "long mechanism' 

and then the disease intensifies there by the "short 

mechanism'. Due to the interaction of the two 

mechanisms on a field of finite size with a finite 

density of sites available for infection, epidemic 

growth is much faster than summation of the results of 

the two mechanisms might suggest. The interaction 

effect is clearly illustrated by the maxima, usually at 

about F = 0.8, appearing in the Figures 9.5 and 9.6. 

The above examples relate to a dual dispersal 

mechanism. A triple dispersal mechanism can also be 

programmed. Multiple dispersal mechanisms, to use a 

general term, are well known in phytopathology but they 

have hitherto been neglected as phenomena to be studied 

per se. They considerably speed up disease progress, by 

joint extensification and intensification. One possible 

reason for the neglect of multiple dispersal is the 

very small fraction of spores needed for an effective 

"long mechanism', a fraction usually much below the 

threshold value which is one daughter lesion per mother 

lesion (the "threshold theorem', Van der Plank, 1963). 

It seems plausible that, by taking the multiple 

dispersal mechanism into consideration, the degree of 

realism of models simulating plant disease development 

will increase considerably. The next section discusses 

a model which, by applying the multiple dispersal 

mechanism in combination with randomization of lesion 

initialization, allows to simulate a real life 

phenomenon - the appearance of daughter foci. 

9.3 DOUBLE DISPERSAL MECHANISM + STOCHASTICITY = 

DAUGHTER FOCI 

The spores dispersed by the "long mechanism' are 

spread over a large area in comparison to spores 
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dispersed by the "short mechanism'. Therefore, the 

spore density and so the newly initialized lesion 

density is low, even with a high proportion of spores 

dispersed by the "long mechanism'. Under these 

conditions the deterministic approach of the "diffusion 

theory' can no longer be applied. The number of lesions 

initiated at a certain point by "long mechanism' spores 

is a stochastic variable with a Poisson distribution. 

A stochastic approach is also necessary when spores 

dispersed by the "long mechanism' remain air-borne for 

a longer period, during which they are exposed to 

environmental conditions which decrease their 

infectivity (Jeger, 1985a). Therefore, the probability 

of infection, I, for spores dispersed by the "long 

mechanism' will be lower than that for spores dispersed 

by the "short mechanism'. As J affects the fraction of 

spores which will initiate lesions, the "long 

mechanism' has a lower effectiveness, E (sensu Zadoks 

and Schein, 1979). Thus, even relatively high numbers 

of spores dispersed by the "long mechanism' can result 

in low numbers of newly-produced lesions. 

9.3.1 Crop pattern and parameters 

A simulation model was designed with a square field 

of 100 x 100 m, represented by a grid of 31 x 31 

points. The field was uniformly covered by a 

susceptible crop. The model describing superposition of 

the two dispersal mechanisms contained two systems of 

"diffusion theory' equations, analogous to the system 

(3.45), (3.46) (one system per mechanism). The spore 

dispersal for each mechanism was described by a 

diffusion equation (of (3.46) type). The stochasticity 

of lesion initialization by "long mechanism' spores was 

simulated by means of a random number generator which 

"decided' how many lesions were produced. The random 

numbers generated had a Poisson distribution with the 

158 



expected number of newly produced lesions as its 

parameter. A second random number generator, with 

uniform distribution of generated numbers, 'decided' 

the exact positions of newly initiated lesions. The 

procedure was used once per simulation day, as long as 

the number of newly produced lesions was low. If it was 

high, the deterministic approach was applied. As an 

upper limit of the stochastic approach, the number of 

10000 newly initiated lesions per day was used. This is 

an arbitrary choice. Rather than the total number the 

local density of newly initialized lesions should be 

examined to decide whether or not to use the stochastic 

approach. As spores are distributed nearly uniformly 

over the field by the "long mechanism', both ways are 

applicable, and the total number criterion is faster. 

The density of lesions initiated by "short mechanism' 

spores was treated as a deterministic function. The 

number and positions of the newly produced lesions thus 

generated, in other words the newly generated lesion 

density function, were inserted into the two 

generalized Vanderplank equations (of (3.45) type), one 

per mechanism, with a common term correcting for 

removals 

(1-(L+L)/L ) 
v v i 2 ' max ' 

L is the density of lesions initialized by the 'short 

mechanism', L is the density of lesions initialized by 

the "long mechanism' and L is the density of sites. 
-* max u 

These equations describe changes in the rate of lesion 

production. Since lesions 'behave' identically 

irrespective of the dispersal mechanism of the spores 

which generated them, only one set of parameters 

characterizing lesions and two sets of parameters 

characterizing spores were used. The "lesion 

parameters' were (see Section 9.2.1): 

1. R - reproductivity = 4 [daughter lesions per 
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sporulating mother lesion per 

day], 

2. p - latency period = 3 [days], 

3. i - infectious period = 5 [days], 

4. A - area of a single lesion = 10 [mm ]. 

The xspore parameters' for the vshort mechanism' were: 
2 

1. D± - diffusion coefficient = 1 [m /day], 

2. & - rate of spore deposition = 10 [1/day], 

3. E. - effectiveness = 1. 
1 

The vspore parameters' for the vlong mechanism' were: 
2 

1. D - diffusion coefficient = 150 [m /day], 

2. <5 - rate of spore deposition = 0.3 [1/day], 

3. E - effectiveness = 0.2. 

The leaf area index LAI = 5. 

Eight runs were performed for the following proportions 

of spores dispersed by the "short mechanism', F = 0, 

0.2, 0.4, 0.6, 0.8, 0.9, 0.99 and 1. For each run, the 

crop was vinoculated' at the centre of the field by a 

single successful spore at time T = 0. 
9.3.2 Results 

Results were obtained by eight runs of PODESS. Each 

run lasted 50 simulation days. Every tenth day, the 

values of the lesion distribution function were printed 

and plotted. 

The results showed qualitative differences between 

the lesion distribution functions obtained by runs with 

different values of F because of the appearance of 

daughter foci, scattered randomly around a relatively 

big mother focus. The pictures of the lesion density 

distribution at time T = 40 for different values of F 

indicate that daughter foci appear between F = 0.4 and 

F = 0.99 (Fig. 9.7). The most 'realistic' effect seems 

to be obtained at values of F between 0.8 and 0.99. 

The influence of F on focus development is shown by 

three characteristics of spore partitioning: (1) the 
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0.494E+07. 0.556E+07] 

Fig. 9.7. Focus expansion with a double dispersal 

mechanism in a stochastic situation. The lesion density 

distribution at time T = 40 for different values of F. 

X- and Y-axes are distances from 0 to 100 m, intensity 

of printed points reflects the number of lesions on the 

host surface. A, F = 0.4. B, F = 0.6. C, F = 0.8. D, F 

= 0.9. E, F = 0.99. F, F = 1. 
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frequency distribution of lesion densities at time T 

40, (2) the total number of lesions in three regions of 

the field at time T = 40, and (3) the total number of 

lesions present in the field at five different times. 

The range of possible lesion densities (between 0 

and the maximum lesion density) was divided into eight 

classes. A frequency distribution over these eight 

classes was based on all 31 x 31 grid points 

representing the field. The frequency distribution was 

scaled by giving the frequency of the best filled class 

the relative frequency value 1. The scaled values were 

Relative frequency per class at T = 40 

0.2 0.4 0.6 0.8 

Proportion of spores, F 
1.2 

class 1 

class 5 

class 2 

class 6 

class 3 

class 7 

class 4 

class 8 

Fig. 9.8. Focus expansion with a double dispersal 

mechanism in a stochastic situation. Relative 

frequencies of lesions per frequency class plotted as 

functions of the proportion of spores dispersed by the 

'short mechanism', F. Class 1 represents the grid 

points with low number of lesions, class 8 those with 

high numbers of lesions. F is plotted along the x-axis. 

The y-axis represents the relative frequency of lesion 

densities per class at time T = 40 (the highest 

frequency per class equals 1). 
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plotted against F (Fig 9.8). The maximum of the low 

density class (class 1) appears for low values of F and 

for F = 1. The other classes have their maxima around F 

= 0.8 or 0.9. The result indicates that a partitioning 

of the available spores over the vshort mechanism' and 

the "long mechanism' in a proportion of about 85 : 15 

is optimal for the production of highly infected 

points, under the model conditions specified. 

The dependence of the total number of lesions in the 

field on F, for different values of time, T, is shown 

in Fig 9.9, which is a stochastic counterpart of Fig. 

9.6. In the early stages of epidemic growth the total 

number of lesions per field for successive values of 

time increases exponentially with F. Later, at T = 40, 

Relative total number of lesions at T 

0.2 0.4 0.6 0.8 
Proportion of spores, F 

10 •T - 20 3 0 40 50 

Fig. 9.9. Focus expansion with a double dispersal 

mechanism in a stochastic situation. Relative total 

number of lesions per field at five times T = 10, 20, 

30, 40, and 50. See Fig. 9.6. The x-axis represents the 

proportion of spores dispersed by the vshort 

mechanism', F. The y-axis represents the relative total 

number of lesions (of the whole field) at time T. 

Compare Fig. 9.6. 
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a maximum is attained at F = 0.8, and at T = 50 the 

maximuia becomes a plateau from F = 0.6 to 0.99. The 

stochastic situation of Fig. 9.9 resembles the 

deterministic situation of Fig. 9.6, though the peaks 

or plateaux of the maxima are narrower. 

To examine the frequency distribution of lesion 

densities over the field, three curves for the total 

number of lesions were plotted versus F at time T = 40 

(Fig. 9.10): (1) for the whole field, (2) for a 
vcentral region', and (3) for the vperipheral region'. 

2000 

1500 

1000 

500 

Total number of lesions (x 1000000) 

0.4 0.6 0.8 
Proportion of spores, F 

1.2 

whole field • central region peripheral region 

Fig. 9.10. Focus expansion with a double dispersal 

mechanism in a stochastic situation. Total number of 

lesions for the whole field, for a vcentral region' and 

for a Nperipheral region' at T = 40, as functions of F. 

The proportion of spores dispersed by the vshort 

mechanism', F, is plotted along the x-axis. The total 

number of lesions is plotted along the y-axis. Compare 

Fig. 9.8. 
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The "central region' was determined by the size of the 

mother focus for F = 1 at T = 40, the "peripheral 

region' stands for the rest of the field. The total 

number of lesions per field and the total number of 

lesions of the "peripheral region' reach their maximum 

at F = 0.8. The total number of lesions of the "central 

region' has its maximum at F = 0.9. At the right hand 

side of the maximum, all three curves show a fast 

decrease. For F - 1, the number of lesions in the 

"peripheral region' approaches 0. In other words, focus 

formation is limited to a single focus without daughter 

foci, the outcome of the purely deterministic 

situation. 

9.3.3 Discussion 

A comparison of the lesion density distributions 

produced by the runs in a stochastic situation confirms 

the results described in Section 9.2 about the effect 

of interaction between the "short' and the "long' 

dispersal mechanisms. The explanation of the maximum 

effects for certain values of F is identical to the one 

presented in Section 9.2. 

Interaction between the "short' and the "long' 

dispersal mechanisms together with randomization of the 

lesion initiation by spores dispersed by the "long 

mechanism' allows to simulate not only the phenomena of 

intensification and extensification, but also the 

phenomenon of daughter foci. The latter phenomenon is 

observed only for certain values of spore partitioning 

over the two dispersal mechanisms; daughter foci become 

visible for values of F above 0.4 and they disappear 

again above F = 0.99. 

The comparison of deterministic and stochastic 

situations, as simulated above, is interesting. In the 
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deterministic situation, the effectiveness E2 = 1 for 

spores dispersed by the "long mechanism'. In the 

stochastic situation, a lower value of effectiveness iL 

= 0.2 results in higher values of F needed to reach the 

same level of the total number of lesions per field 

(see Section 9.2). The shift in the value of F is easy 

to explain, as the effectiveness influences the 

proportion of lesions initialized by deposited spores. 

The common characteristic of both situations is the 

maximum of the curves for (relative) total number of 

lesions at F = 0.8 in Fig. 9.6 and 9.9. The importance 

of the maximum at about F = 0.8 is also indicated by 

the curves of relative lesion density at points with 

different distances from the initial inoculation point 

(Fig. 9.5) and the relative frequency curves (Fig. 

9.8) . 

This comparison of the deterministic and the 

stochastic versions of the double dispersal mechanism 

suggests that a value of F between 0.8 and 0.99 has a 

great epidemiological importance. The optimum value of 

F depends on the parameters chosen to run the 

"diffusion model'. The parameters used here result from 

a compromise between "realism' of the model and speed 

of calculation. In real life, F will be a variable and 

its value may sometimes be outside the indicated range 

of 0.8 to 0.99. Fairly realistic model calculations for 

Puccinia striiformis (Rijsdijk and Rappoldt, 1980) 

arrived at values of about 0.93 for a field with an 

area of 10000 m2. 

Taking into account the finite density of sites 

available for infection and the finite field size, a 

pathogen which disperses its spores by a double 

dispersal mechanism is much more efficient in the 

conquest of space. Actually, a pathogen of the 

"wind-borne, foliar' type cannot survive without a 

double dispersal mechanism; it is an obligatory 

dispersal strategy. 
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9.4 LEAF RUST ON WHEAT - THE THREE-DIMENSIONAL CASE 

In most cases, the two-dimensional representation of 

a field is good enough for the analysis of focus 

development. If a more detailed picture is necessary, 

the influence of the third dimension, crop height, must 

be considered. The three-dimensional version of the 

"diffusion theory' is adequate for these situations. 

Generally speaking, the approach discussed in Section 

8.3 should be applied. As the model uses different 

equations for the crop region and the air above crop, a 

special time consuming procedure is needed to run the 

model. If the field size is relatively small, the 

above-crop spore dispersal can be neglected and only 

the within-crop spore dispersal is to be simulated. 

Such a simplification allows to simulate vertical focus 

development on developing leaf layers. Wind effect on 

focus development can also be included. 

As an example of the three-dimensional approach, the 

"diffusion model' for the experiment discussed in 

Section 7.4 was built. To examine additional effects, 

developing leaf layers and prevailind wind direction 

were incorporated into the three-dimensional version of 

the "diffusion model'. 

9.4.1 The simulation technique 

Five vertical layers were distinguished: (1) the 

soil, (2) three leaf layers, and (3) the upper crop 

boundary. The properties of these layers were: 

1. soil - spores are deposited, but they do not 

initialize lesions, 

2. leaf layers - spores diffuse within the crop region 

and when deposited on leaves can initialize lesions, 

3. upper crop boundary - spores diffuse into that layer 

to simulate their escape to the air above a crop 

region, where they are lost for the simulated 
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epidemie as they are transported outside the 

simulated field. 

The properties of these three regions were simulated 

by: 

a. the absorbing boundary conditions of the 

three-dimensional version of the system of equations 

according to the "diffusion theory', simulating 

strong absorption of spores, 

b. the three-dimensional version of the system of 

equations according to the "diffusion theory', 

simulating spore dispersion and deposition, lesion 

initialization, and spore production by sporulating 

lesions, 

c. the three-dimensional version of the system of 

equations according to the 'diffusion theory', with 

the value of LAI = 0 simulating spore dispersal, but 

without deposition, lesion initialization and spore 

production. 

9.4.2 Parameters 

As no parameters required by the "diffusion theory' 

were measured, parameter values similar to those in 

Section 7.5 were used. Focus development was simulated 

during 93 days with the following parameter values: 

- diffusion coefficient = 0.02 [m /day], 

- maximum rate of spore deposition = 2 [1/day], 

- effectiveness = 1, 

- productivity = 3.5 [daughter lesions per 

mother lesion per day], 

- latency period = 1 8 [days], 

- infectious period = 16 [days], 
2 

- area of a single lesion = 10 [mm ]. 

- the velocity of wind is given in Table 7.1; 

for the days between the indicated ones, the 

wind velocity was calculated by linear 

interpolation from the two nearest dates, 
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Table 9.5. The three-dimensional vdiffusion model' with 

variable leaf layers. The leaf area index, LAI, varies 

with leaf layer and time. The values are effective LAI 

available for infection (the experimental data were 

measured in the Peterson B-scale for which 100% 

severity equals 37% of infected leaf area; see Zadoks 

and Schein, 1979). 

Time 

0 

10 

20 

30 

40 

50 

60 

70 

80 

93 

LAI 

Leaf layer 1 

0.5 

0.5 

0.5 

0.5 

0.5 

0.4 

0.3 

0.2 

0.1 

0. 

Leaf layer 2 

0.1 

0.15 

0.2 

0.3 

0.5 

0.5 

0.5 

0.5 

0.4 

0.2 

Leaf layer 3 

0. 

0. 

0. 

0. 

0. 

0.1 

0.4 

0.5 

0.5 

0.3 

9. v - settling velocity = 0.5 [m/day]. 

As leaf layers develop during simulation, LAI varied 

with leaf layers and with time (Table 9.5). The actual 

rate of deposition was proportional to LAI. If LAI 

became less than 25% of its maximum value after having 

passed that maximum, the deposition rate was 25% of 6. 

The crop was inoculated at the centre of the field 

on the leaf layer closest to the soil at time T = 0 by 

1 successful spore. 

The field was represented by a grid of 11 x 11 x 7 

points, or by 7 horizontal layers of 11 x 11 points. To 
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exclude the influence of boundaries on the simulated 

results, the soil and the air above crop were 

represented by two horizontal layers each. Spores were 

dispersed in all directions and they were deposited on 

the five bottom layers. Spores deposited on the three 

middle layers, which represented the crop, could 

initialize lesions. As stated in Section 8.3.2., the 

appropriate boundary condition put the value of the 

spore density on the bottom layer equal zero. It 

simulated complete absorption of spores by a soil. The 

focus development was simulated during 87 days. 

9.4.3 Results 

Results were obtained by running the 

three-dimensional version of the xdiffusion model' on 

an Olivetti M280 personal computer, using PODESS 

(Appendix A ) . Disease severities at three times T = 71, 

79, and 87 are shown in Fig. 9.11. They show a smooth 

but not a circular boundary of the focus. The centre of 

the focus has moved away from the centre of the field. 

The focus reaches different levels of disease severity 

on different leaf layers. The simulation results of 

Fig. 9.11 can be compared to the experimental field 

results of Fig. 9.12. 

An interesting phenomenon can be observed, the delay 

in the shift of the focal centre relative to the time 

when the wind direction changed. This delay exists 

because the newly initialized lesions vwait' for a 

latency period before they sporulate. For the same 

reason, waiting or delay periods due to latency, the 

spatial shift is smaller than might be expected. The 

delays in time and space of the shift of the focal 

centre are, together, a characteristic phenomenon which 

could be indicated as vinertia' of the focus. The 

delay, though not unexpected, is demonstrated here for 

the first time by dynamic simulation. 
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Fig 9.11. Focus expansion on leaf layers at three 

times: T = 71, 79, and 87. Results of the 

three-dimensional 'diffusion model' with variable leaf 

layers and variable wind. A, T = 71. B, T = 79. C, T = 

87. 
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Fig 9.12. Focus expansion on leaf layers at three 

times: T = 71, 79, and 87. Experimental results of the 

leaf rust focus development on wheat (see Section 7.4). 

A, T = 71. B, T = 79. C, T = 87. 

172 



9.4.4 Discussion 

The objective of running the three-dimensional 

* diffusion model' was the simulation of phenomena 

observed in the field: (1) different geometries of the 

focus on different leaf layers, and (2) a shift of the 

focal centre due to wind. Both real-life phenomena can 

indeed be simulated by the ^diffusion model'. The 

quantitative differences between the simulated and the 

experimental results are due to the poor knowledge of 

parameter values and to the deterministic treatment 

inherent to the ^diffusion theory'. 

9.5 DISCUSSION 

A mechanistic approach to focus formation leads to 

the ^diffusion theory'. Expressed in mathematical terms 

as the system of equations (3.45), (3.46) it led to the 
vdiffusion model', which is the basis for computer 

simulation. A great variety of simulation models can be 

constructed within the framework of the ^diffusion 

theory' by appropriate modifications of parameters 

and/or of the original system of equations. The 

simulation models can be programmed in FORTRAN and 

handled by PODESS (Appendix A ) , which constitutes the 

numerical framework for applications of the vdiffusion 

theory'. 

Four models simulating focus formation under 

different conditions were discussed above. They are 

examples of possible applications to real-life 

epidemiological situations. The models allowed studying 

a few epidemiologically important phenomena, some 

already known, others newly discovered. New is the 

finding that the partitioning of spores over two 

dispersal mechanisms, one "short' and one ^long', has 

an optimum for maximum disease development. This 

finding needs experimental verification. 
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Epidemiologists have, of course, often observed changes 

of foci under the influence of wind, though good 

descriptions and analyses are rare. New is the 

possibility of a quantitative, numerical description 

and explanation of field observations. The phenomena 

observed were: (1) a shift of the centre of the focus 

under the influence of wind and (2) a kind of vinertia' 

of the focus in reacting to the wind. Finally, 

well-known phenomena such as the "cryptic error' of 

field experiments (Van der Plank, 1963) and the 

appearance of daughter foci, can now be studied in 

detail. The simulation models based on the vdiffusion 

theory' allow to estimate the numerical value of the 

"cryptic error', and to study the mechanism generating 

daughter foci. 
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10 GENERAL DISCUSSION 

The ^diffusion theory' of focus development should 

be placed in an epidemiological context. The 

possibilities and déficiences of the approach to focus 

development in time and space, some ways of further 

improvement, and more fundamental extensions will be 

indicated. 

10.1 THE PRESENT STATE OF EPIDEMIOLOGY 

From the beginning, man struggled with the problem 

of feeding a growing population. The usual solution was 

to produce more, by methods such as increase of 

cropping area and of fertilizer dosage. Plant disease 

epidemics can spoil the gains achieved, because a 

higher crop area and a higher crop density lead to a 

higher number of sites available for infection. Then, 

the exponential phase of the 0 order epidemic (sensu 

Heesterbeek and Zadoks, 1987) will last longer. A 

higher density of fields leads to an easy spread of 

disease over a large area, resulting in a severe 1 

order epidemic (sensu Heesterbeek and Zadoks, 1987). 

When a disease is given the opportunity to produce more 

inoculum, the starting level of the subsequent epidemic 

after a crop-free period may be high. Consequently, a 
nd 

severe 2 order epidemic (sensu Heesterbeek and 

Zadoks, 1987) will develop. 

As complete elimination of a disease from an 

ecosystem is virtually impossible, we must learn to 

live with it. A variety of methods is available, such 

as the application of chemicals, partial resistance of 

crops, eradication of inoculum sources, and so on, 

which help to keep disease severity below an 

economically harmful level (Zadoks, 1985; Zadoks and 
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Schein, 1979). These methods require much empirical 

knowledge, which takes years to collect. Extrapolation 

from existing knowledge to new situations can be 

facilitated by mathematics, which can summarize 

existing knowledge in relatively simple equations, 

allowing interpolation between the conditions for which 

the empirical experience exists. Results of equations 

can sometimes be extrapolated beyond the regions of 

experience, and thus lead to useful results. The 

greatest in this area was J.E. Vanderplank whose ideas 

and equations revolutionized plant pathology in the 

early sixties (Van der Plank, 1960; Zadoks and Schein, 

1988). His ideas led to the first simple mathematical 

models applied to plant disease epidemics. Translated 

into the language of dynamic simulation (Zadoks, 1971; 

de Wit and Goudriaan, 1978; Rabbinge, 1982; de Wit, 

1982), originally devised for engineers by Forrester 

(1961), these models gave many useful results about the 

development of disease in time. They led to warning 

systems like EPIPRE (Zadoks, 1988) which, predicting 

future levels of disease severity, allow to choose an 

economic way of plant protection. 

New steps toward a general model of plant disease 

development were made in late seventies following two 

independent approaches. One approach was the extension 

of computer simulation models to cover disease 

development both in time and space (Kiyosawa, 1976; 

Kampmeijer and Zadoks, 1977). EPIMUL, developed by 

Kampmeijer and Zadoks (1977), was applied elsewhere in 

phytopathology (Mundt et al., 1986a, b, c). Combining 

Vanderplank's temporal development with a spatial 

dispersal mechanism, EPIMUL allows disease simulation 

in time and in non-uniform two-dimensional space. The 

second approach, derived from the integro-differential 

model of Kermack and McKendrick (1927) was developed 

independently by Diekmann (1978; 1979) and Thieme 

(1977; 1979). Starting from simple and general 
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assumptions about disease, they produced an 

integro-differential equation, which describes 

spatio-temporal disease development in general terms. 

It can be adjusted to any particular situation by 

assuming specific dispersal and/or spore production 

mechanisms. The Diekmann-Thieme theory is the most 

general theory of plant disease development in time and 

space. However, being so general, the Diekmann-Thieme 

theory is difficult to apply in practice. Morever its 

main results are only valid asymptotically for large 

time, and under the restrictive conditions of a large 

field uniformly covered by a crop. The specialization 

of the Diekmann-Thieme theory needed to apply the 

results in a qualitative manner to phytopathological 

situations was provided by Van den Bosch et al. (1988a, 

b, c). These authors also discussed some of the 

quantitative predictions derived from their 

specialization of the general theory, as well as 

quantitative field test for two concrete host-pathogen 

systems. 

10.2 THE "DIFFUSION THEORY' 

OF FOCAL DISEASE DEVELOPMENT 

The "diffusion theory' tries to combine a 

theoretical and a simulation approach. Being a 

specialization of the Diekmann-Thieme theory, it has a 

thorough theoretical underpinning. Morever, the 

particular specialization chosen is backed up by 

concrete physical considerations. The "diffusion 

theory' is mathematically formulated as a system of two 

partial differential equations, which can be solved 

numerically in any special situation providing useful 

information about that situation. Following EPIMUL, the 

"diffusion theory' combines Vanderplank's temporal 

model of disease development with a spatial model of 
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spore dispersal. As spatio-temporal disease development 

is formulated by means of equations instead of 

distribution functions, the "diffusion theory' is more 

flexible and it allows more changes and extensions than 

most other simulation models in plant pathology. It 

should be seen as a general framework, which can be 

used to build special model for particular 

applications. 

Being less abstractly general than the 

Diekmann-Thieme theory, the "diffusion theory' can be 

applied more easily. The power of the "diffusion 

theory' lies not only in the flexibility of the theory 

but also in the flexibility of the accompanying 

software, PODESS. Applied to a real-life situation, the 

"diffusion theory' gives the "diffusion model' for this 

situation, which programmed in FORTRAN and linked to 

PODESS provides a simulation model specific for that 

situation. 

The simulation models derived from the "diffusion 

theory' allow to simulate many situations of 

epidemiological interest. Focus development in a 

non-uniform crop, multiple spore dispersal, 

stochasticity of lesion initialization, and wind 

effects all have been discussed above. Their study by 

means of appropriate "diffusion models' led to the 

explanation or discovery of phenomena which were known 

empirically or were not known at all. The possibilities 

(1) to calculate the value of the "cryptic error' (Van 

der Plank, 1963), (2) to partition spores between the 

"long' and the "short' spore dispersal for a maximum 

number of lesions in a field, (3) to generate daughter 

foci, and (4) to shift the centre of the focus with 

wind, can serve as examples. The sensitivity analysis 

applied to the "diffusion model' and the simulation of 

the double dispersal mechanism led to the examination 

of the influence of a finite site density and a finite 

field size on the "behaviour' of disease in foci. 
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10.3 POSSIBLE IMPROVEMENTS 

The price to be paid for the generality and the 

flexibility of the "diffusion theory' and PODESS is the 

computer time needed by the "diffusion model', applied 

to a situation of practical interest. Thus, the 

"diffusion theory' should be solved by PODESS only at 

the stage of building the "diffusion model', when new 

problems and opportunities are encountered. If the 

"diffusion model' is shown to be appropriate and 

applicable, it may become profitable to use faster but 

less general methods to solve numerically the system of 

equations of the "diffusion theory'. Therefore, PODESS 

should be extended by fast methods of numerical 

solution of special types of partial differential 

equations. 

The sensitivity analysis of Chaper 5 was applied to 

the "diffusion theory' only once for relatively short 

simulation runs. Longer duration of runs might give 

additional information about the effect of exhaustion 

of the sites available for infection on the diffusion 

model's response. All simulation models discussed above 

should be subject to sensitivity analysis for a more 

accurate examination of their results. This is 

especially true for the "diffusion model' simulating 

the double spore dispersal mechanism, as the maximum 

effect of spore partitioning should yet be examined 

in more detail. 

The "diffusion theory' has been applied to a 

situation with three dimensions in space. Now, the 

double dispersal mechanism should be included. As a 

three dimensional model necessitates spatial variation 

of the diffusion coefficient, special numerical methods 

must be applied in the transition layer between the 

regions representing the crop and the air above it. The 

equations of the "diffusion theory' must be solved 

separately within the crop and within the air above 
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crop regions and the solutions must be adjusted to each 

other by appropriate boundary conditions. 

10.4 FUTURE DEVELOPMENTS 

The vdiffusion theory' was derived and validated for 

relatively small fields, where spore dispersal is 

within the micro- or short mesoscale (Zadoks and 

Schein, 1979). This situation leads to formation of a 

single focus or at most a few foci (the 0 order 

epidemic sensu Heesterbeek and Zadoks, 1987). But plant 

disease epidemics spread over large areas (long meso-

and macroscale sensu Zadoks and Schein, 1979), 

infecting many fields (1 order epidemic sensu 

Heesterbeek and Zadoks, 1987) with transport of spores 

over medium and long distances. The necessity of 

considering long-distance dispersal was indicated by 

Zadoks and Schein (1979) and Jeger (1985a). Methods to 

monitor (Nagarajan and Singh, 1974; Nagarajan et al., 

1976; Westbrook, 1985) and study (Knox, 1974; Nagarajan 

and Singh, 1975; Nagarajan, 1977; Ermak, 1977; Pedgley, 

1982; van Egmond and Kesseboom, 1983; Pedgley, 1985; 

Sparks et al., 1985) long-distance dispersal have been 

proposed by various authors. Combination of such 

methods (applied to long-distance dispersal) with the 
vdiffusion theory' (applied to short-distance 

dispersal) seems to be in the range of possibilities. 

The introduction or appearance of new pathogens or 

strains in areas where they did not exist before, may 

lead to the problem indicated as vcrop vulnerability' 

(Horsfall at al., 1972). Zadoks and Kampmeijer (1977) 

raised the question whether crop vulnerability could be 

quantified and gave a tentative solution. vDiffusion 

models' could be used to the same purpose. They also 

permit to estimate effects of field size, distance 

between fields, gene development, and intercropping. 

Plant resistance is often of short duration due to 
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mutations in the pathogen. Simulation of this process 

might be possible by a joint solution of the equations 

describing genetical changes in populations (Crow and 

Kimura, 1970) and of the equations of the "diffusion 

theory'. As PODESS is designed to solve an arbitrary 

system of partial differential equations this joint 

solution is relatively easy, at least with respect to 

the available software. 

The "diffusion theory' was designed to model the 

focal development of foliar plant diseases caused by 

air-borne fungi. The diffusion equation (3.46) was 

derived with assumptions which hold only for these 

diseases. Nevertheless, the dispersal of other 

pathogens and pests can be also described 

approximatively by the diffusion equation. An example 

is the dispersal of beetles (Wetzler and Risch, 1984). 

Thus, the framework offered by the "diffusion theory' 

could be used to mimiek dispersal of these agents, 

extending the region of applicability of the "diffusion 

theory'. 

Following Van der Plank (1963), we repeat that 

"epidemiological analysis has come to stay'. The 

"diffusion theory' proposed in the present volume is 

another contribution, we hope, to plant disease 

epidemiology, which was given a position of prominence, 

over a quarter of a century ago, by J.E. Vanderplank. 
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SUMMARY 

Chapter 1. The "diffusion theory' of focus 

development in plant disease is introduced. Foci 

develop in space and time. The theory applies primarily 

to air-borne fungal diseases of the foliage. 

Chapter 2. The contents of the present volume are 

outlined. 

Chapter 3. The "diffusion theory' of focus 

development, intended to model phytopathologically 

interesting phenomena, emerges from a simple set of 

assumptions summarizing existing knowledge of plant 

pathologists. Using relatively easy and clear 

inferences, supported by methods used in mathematics 

and physics, this knowledge leads to a system of two 

partial differential equations (3.45), (3.46). These 

equations represent the "diffusion theory' in 

mathematical terms. 

Chapter 4. As any other new theory, the "diffusion 

theory' must be validated by comparing it to models 

known from the literature and to experimental results. 

The "diffusion theory' is a theoretical construct, 

permitting the development of a dynamic simulation 

model here indicated as the "diffusion model'. The 

"diffusion theory' is validated by comparing the 

"diffusion model' to the model of Minogue and Fry and 

to EPIMUL of Kampmeijer and Zadoks. The various models 

show good qualitative and fair quantitative 

consistency. The quantitative differences are due to 

different assumptions about spore dispersal and 

deposition mechanisms. More important, the "diffusion 

theory' was successfully validated by comparing its 

predictions to experimental data from yellow stripe 

rust (Puccinla striiformis) on wheat and from downy 

mildew (Peronospora farinosa) on spinach. 
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Chapter 5. Having derived the ^diffusion model', it 

is necessary to determine its general behaviour for 

various parameter values. A method of sensitivity 

analysis, new to phytopathology, allows a detailed 

examination of linear, quadratic and mixed influences 

of parameters on responses of the vdiffusion model'. 

The analysis indicated a few phytopathologically 

interesting relationships. As the vdiffusion theory' 

attempts to describe the reality of plant disease 

dispersal in foci, the theory may lead to new 

hypotheses susceptible to experimental verification. 

Chapter 6. The vdiffusion theory' is based on an 

idealized picture of spore movement; spore motion is 

purely random at an infinitesimally small scale of time 

and space. Reality is different. Therefore, the 
vdiffusion theory' is compared to the vtelegrapher's 

theory', more complex and derived from different 

assumptions about spore motion. Comparison of the two 

theories does not indicate differences of practical 

importance, so that the diffusion approximation seems 

to be adequate for phytopathological applications. 

Chapter 7. Wind is an important meteorological 

factor, affecting the development of air-borne plant 

disease. The extension of the sdiffusion theory' to 

situations with a prevailing wind direction is made. 

The extended ^diffusion theory' allows to build a 
vdiffusion model' which simulates focus development 

under the influence of wind. The results of computer 

simulations show a good qualitative consistency with 

experimental data from brown leaf rust (Puccinia 

recondita) on wheat. In both cases, two phenomena were 

observed, a shift of the centre of the focus in the 

prevailing wind direction and, simultaneously, a 

certain vinertia' of the centre of the focus. 

Chapter 8. The vdiffusion theory', being formulated 

in terms of partial differential equations, can easily 

be extended by modification of parameters and/or 
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equations. Thus, the appropriate 'diffusion model' for 

any specific situation can be created on the basis of 

the "diffusion theory'. Application of the "diffusion 

theory' by means of a numerical solution of the 

apropriate "diffusion model' allows to study various 

characteristics of focal epidemics. Possibilities are 

discussed to combine the "diffusion theory' with some 

of the methods of computer simulation. 

Chapter 9. Some results are given of models 

simulating phytopathologically interesting situations. 

These models allow to explain some real-life phenomena; 

the generation of daughter foci, the calculation of the 

"cryptic error' in plant breeding trials, and the 

interaction between two different mechanisms of spore 

dispersal. 

Chapter 10. The book concludes with a general 

discussion. It shows the place of the "diffusion 

theory' among other models in plant pathology and it 

proposes some improvements and further developments of 

the theory. 

Final remark. Mathematically, the "diffusion theory' 

is a special case of a more encompassing family of 

models considered by Diekmann and Thieme. The general 

results from the Diekmann-Thieme theory have been 

applied by Van den Bosch et al. in a phytopathological 

context using what amounts to a special limiting 

variant of the "diffusion theory'. These results only 

relate to the behaviour of the focal front for a large 

period of time in an area which is homogeneously 

planted in all directions. The strength of the 

"diffusion model', as implemented, is its ability to 

deal also with short periods and with environments 

which vary in time and/or space. 
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SAMENVATTING 

Hoofdstuk 1. De "diffusie theorie" van de 

haardvorming bij planteziekten wordt ingeleid in 

Hoofdstuk 1. Haarden groeien in ruimte en tijd. De 

theorie is vooral van toepassing op anemochore 

schimmelziekten van het loof. 

Hoofdstuk 2 geeft een overzicht van de inhoud van 

dit boekwerk. 

Hoofdstuk 3. De "diffusie theorie" van de 

haardvorming in ruimte en tijd, ontworpen om 

verschijnselen van fytopathologisch belang te 

modelleren, wordt ontwikkeld uit een reeks van aannamen 

die de bestaande fytopathologische kennis samenvatten. 

Relatief eenvoudige en duidelijke redenaties, 

ondersteund door methoden in gebruik bij de wiskunde en 

de natuurkunde, leiden tot een stelsel van twee 

partiele differentiaalvergelijkingen, (3.45) en (3.46). 

Deze vergelijkingen geven de "diffusie theorie" weer in 

wiskundige vorm. 

Hoofdstuk 4. De "diffusie theorie" moet, net als 

iedere andere nieuwe theorie, worden gevalideerd door 

haar te vergelijken met modellen uit de literatuur en 

met proefresultaten. De "diffusie theorie" leidt tot de 

ontwikkeling van een dynamisch simulatiemodel hier 

aangeduid als "diffusie model". De "diffusie theorie" 

werd gevalideerd door vergelijking van het "diffusie 

model" met het model van Minogue en Fry en met EPIMUL 

van Kampmeijer en Zadoks. De verschillende modellen 

tonen een goede kwalitatieve en een redelijke 

kwantitatieve overeenkomst. De kwantitatieve 

verschillen kunnen toegeschreven worden aan verschillen 

in aannamen inzake verspreiding en depositie van 

sporen. De "diffusie theorie" is met succes gevalideerd 

door toetsing van haar voorspellingen aan 
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proefresultaten met gele roest {Puccinia striiformis) 

op tarwe en valse meeldauw (Peronospora farinosa) op 

spinazie. 

Hoofdstuk 5. Als het "diffusie model" afgeleid is, 

moet zijn algemeen gedrag bepaald worden in 

afhankelijkheid van een aantal parameter-waarden. Een 

gevoeligheidsanalyse, die nieuw is voor de 

fytopathologie, maakt een gedetailleerd onderzoek 

mogelijk van lineaire, kwadratische en gemengde 

invloeden van parameters op de resultaten van het 

"diffusie model". De analyse wees op enkele 

fytopathologisch interessante verbanden. Aangezien de 

"diffusie theorie" probeert de werkelijkheid te 

beschrijven bij de verspreiding van planteziekten in 

haarden kan deze theorie leiden tot nieuwe, 

experimenteel verifieerbare hypothesen. 

Hoofdstuk 6. De "diffusie theorie" gaat uit van een 

geïdealiseerd beeld van de beweging van sporen; deze is 

volledig door het toeval bepaald op een oneindig kleine 

schaal van tijd en ruimte. De werkelijkheid is anders. 

Daarom wordt de "diffusie theorie" vergeleken met de 

"telegrapher's theorie", die voor een speciaal, meer 

gedetailleerd model, dat in de limiet tot een diffusie 

vergelijking leidt, nog een extra correctieterm 

meeneemt. Vergelijking van de beide theorieën wijst 

niet op verschillen van praktisch belang, zodat de 

diffusie benadering toereikend lijkt voor 

fytopathologische toepassingen. 

Hoofdstuk 7. Wind is een belangrijke meteorologische 

factor, die de ontwikkeling van anemochore 

planteziekten beinvloedt. De "diffusie theorie" wordt 

uitgebreid tot situaties met een overheersende 

windrichting. De uitgebreide "diffusie theorie" maakt 

het mogelijk een "diffusie model" te bouwen dat 

haardvorming onder de invloed van wind simuleert. De 

resultaten van computer simulaties tonen een goede 

kwalitatieve overeenstemming met proefresultaten van 



bruine roest (Puccinia recondita) op tarwe. In beide 

gevallen werden twee verschijnselen waargenomen, een 

verschuiving van het centrum van de haard in de 

richting van de heersende wind en, tegelijkertijd, een 

zekere "traagheid" van het centrum van de haard. 

Hoofdstuk 8. Aangezien de "diffusie theorie" 

geformuleerd is in termen van partiële 

differentiaalvergelijkingen, kan zij gemakkelijk 

uitgebreid worden door wijziging van parameters en/of 

vergelijkingen. Zo kan een passend "diffusie model" 

gemaakt worden voor iedere specifieke situatie, 

uitgaande van de "diffusie theorie". Toepassing van de 

"diffusie theorie" door middel van de numerieke 

oplossing van een geschikt "diffusie model" maakt het 

mogelijk diverse eigenschappen van focale epidemieën te 

bestuderen. Mogelijkheden worden besproken om de 

"diffusie theorie" te combineren met enkele methoden 

van computer simulatie. 

Hoofdstuk 9. Enkele resultaten worden vermeld van 

modellen, die fytopathologisch interessante situaties 

simuleren. Deze modellen maken de verklaring mogelijk 

van enkele levensechte verschijnselen, zoals de 

verwekking van dochterhaarden, de berekening van de 

"verborgen fout" in proeven van planteveredelaars, en 

de interactie tussen twee verschillende mechanismen van 

sporenverspreiding. 

Hoofdstuk 10. Het boek besluit met een algemene 

discussie. Deze bespreekt de plaats van de "diffusie 

theorie" temidden van andere modellen in de 

planteziektenkunde en doet voorstellen voor verbetering 

en voortgezette ontwikkeling van de theorie. 

Slotopmerking. Wiskundig bezien is de "diffusie 

theorie" een bijzonder geval van een meer omvattende 

familie van modellen bestudeerd door Diekmann en 

Thieme. De analytische resultaten van de 

Diekmann-Thieme theorie zijn in een fytopathologische 

context toegepast door van den Bosch et al. met 



gebruikmaking van een limiet variant van de "diffusie 

theorie". De analytische resultaten van Diekmann en 

Thieme en van van den Bosch hebben alleen betrekking op 

het gedrag van het front van de haard over lange 

tijdspannen in een in alle richtingen homogeen beplant 

vlak. De kracht van het "diffusie model" is zijn 

toepasbaarheid op korte tijdspannen en op milieu's die 

variëren in tijd en/of ruimte. 
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Appendix A 

PODESS version 3.53 

A.l INTRODUCTION 

PODESS (Partial and/or Ordinary Differential 

Equations Systems Solver) is a package for solving an 

arbitrary system of partial and/or ordinary 

differential equations. The solution is performed by 

the method of lines. Space is discretized and spatial 

derivations are calculated by utilization of Lagrange 

interpolation polynomials (Carver et al., 1978). The 

user can apply an interpolation formula based on an 

arbitrary number of points from three up to the number 

of grid points in every direction and special retarded 

and advanced two-point formulas for the calculation of 

the first derivative for hyperbolic equations (Carver 

et al., 1978). After the calculation of the spatial 

derivatives, the equations are established by the 

user-supplied subroutine UPDATE. At this moment, every 

partial differential equation becomes a system of 

ordinary differential equations. The number of ordinary 

differential equations is equal to the number of the 

grid points. This system is solved by one of five 

integration methods: Euler, Runge-Kutta-Ralston rank 4 

(Ralston, 1965), Runge-Kutta-Fehlberg rank 4 (Korn and 

Wait, 1978), Adams (Gear, 1971; Hindmarsh, 1974; 

Shampine and Gordon, 1975), or, for stiff problems 

(Gear, 1971; Hindmarsh, 1974). The methods of Adams and 

Gear are introduced by connecting to PODESS the package 

GEAR written by A.C. Hindmarsh (december 1974 version). 

PODESS 3.53 is written in FORTRAN 77; it can be run 

on the VAX computer (DEC, 1982; DEC, 1984). Version 

3.53 is working in time and/or up to three spatial 

dimensions. The package contains also input, output and 

plotting routines. The user has to link two or, for two 
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special cases, three subroutines to the package: 

INITL with initial conditions. 

UPDATE with equations and calls, output, and plot 

subroutines. 

PEDERV with Jacobian values (only with Adams or Gear 

methods with user-supplied Jacobian option). 

For his own special case, the user can add more FORTRAN 

subroutines. 

In scientific applications, on machines with a 

4-byte representation of real numbers, the DOUBLE 

PRECISION version is normally used (Shampine and 

Gordon, 1975). This version is obtained by removing the 

word C_DB_PR preceding DOUBLE PRECISION declarations 

from the files PODESS.FOR, PODESSLB.FOR. User-supplied 

subroutines should work also with DOUBLE PRECISION 

values. 

A.2 COMMUNICATION WITH THE PACKAGE 

Communication of user-supplied subroutines with the 

package is performed through COMMON blocks: 

COMMON /INTEGT/ F(MAXODE) 

F - matrix containing values of function to be 

solved (in subroutine INITL, the user 

should give its initial values), 

COMMON /DERVT/ FT(MAXODE) 

FT - matrix containing values of the first 

derivative with time (in grid points), 

For the above COMMON blocks the dimension MAXODE is 

the maximum number of ordinary differential equations. 

For VAX version MAXODE = 10000 and for PC version 

MAXODE = 1000. The actual number of ordinary 

differential equations equals the number of the 

ordinary differential equations defined by the user 

plus those arising from the decomposition of partial 

differential equations, where every partial 

differential equation is replaced by a number of 
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ordinary differential equations equal to the number of 

grid points in space. In user-supplied subroutines 

dimensions should be equal to the number of all grid 

points times the number of partial differential 

equations plus the number of ordinary differential 

equations. 

COMMON /SPACEX/ INTRPX, NPOINX, XL, XR, LX, LXX, NEQDX, 

DX, X(101) 

all variables refer to the X-direction 

INTRPX interpolation 

NPOINX 

XL 

XR 

LX 

LXX 

NEQDX 

calculated 

if .TRUE, 

calculated 

if .TRUE, 

equidistant 

n : 

the first 

(default 

the second 

(default 

then grid 

(default 

- number of points for 

formula (default = 3), 

- number of grid points (default 

- left end (default = 0 . ) , 

- right end (default = 1 . ) , 

- logical value; if .TRUE 

derivative is 

.TRUE.), 

- logical value; 

derivative is 

.TRUE.), 

- logical value; 

points are not 

.FALSE.), 

- distance of grid points (if 

.FALSE.), 

X - matrix containing values of grid points; 

dimension 101 is the maximum default 

value, should be equal to NPOINX, 

COMMON /SPACEY/ INTRPY, NPOINY, YL, YR, LY, LYY, NEQDY, 

DY, Y(51) 

variables as in /SPACEX/ but now in the Y-direction, 

dimension 51 is the default maximum value, should be 

equal to NPOINY, 

COMMON /SPACEZ/ INTRPZ, NPOINZ, ZL, ZR, LZ, LZZ, NEQDZ, 

DZ, Z(ll) 

variables as in /SPACEX/ but now in the Z-direction, 

dimension 11 is the default maximum value, should be 

DX NEQDX 
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equal to NPOINZ, 

COMMON /ADVRET/ IX, IY, IZ 

IX - middle point for advanced-retarded two 

point interpolation formula in the 

X-direction; for grid point values 

smaller than IX interpolation is 

advanced, for values greater than IX 

interpolation is retarded (default = 0 -

first derivative is calculated by 

INTRPX-point formula), 

IY - as IX but in the Y-direction, 

IZ - as IX but in the Z-direction, 

COMMON /TIME/ T, DT, TOUT, TEND, TBGN, METHOD, ERMAX, 

ERMIN, DTMIN 

T - variable representing time, 

DT - time step; can be changed by 

variable-step integrating methods, 

initial value can be established by user 

(default = 0.01), 

TOUT - communication interval; every TOUT 

results can be printed (default = 1.), 

TEND - time of ending the simulation (default = 

100.)/ 
TBGN - time of beginning the simulation 

(default = 0.), 

METHOD - variable which determines method of 

integration: 

1 = Euler variable-step, 

-1 = Euler fixed-step, 

2 = Runge-Kutta-Ralston rank 4 

variable-step, 

-2 = Runge-Kutta-Ralston rank 4 

fixed-step, 

3 = Runge-Kutta-Fehlberg rank 4 

variable-step, 

-3 = Runge-Kutta-Fehlberg rank 4 

fixed-step, 
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ERMAX 

ERMIN 

DTMIN 

10,11, 12, 13 = variable-order and 

variable-step Adams method, 

20, 21, 22, 23 = variable-order and 

variable-step Gear method. 

The second digit, for choosing the Adams 

or Gear method, allows to indicate one 

of the following options of corrector 

iteration: 

0 = fractional (fixpoint) iteration, 

1 = chord method with user-supplied 

Jacobian from PEDERV (see below), 

2 = chord method with Jacobian generated 

internally, 

3 = chord method with diagonal 

approximation to Jacobian. 

(default = 3 ) , 

- value of maximum error for integration; 

if error is greater than ERMAX, the time 

step is halved for variable-step 

methods, for fixed-step methods a 

warning message is printed at the end of 

the simulation (default = l.E-5), 

- value of minimum error for integration; 

if error is smaller than ERMIN, the time 

step is doubled for variable-step 

methods (default = l.E-7) (this 

parameter is used only with METHOD = 1, 

— 1, Z , — Z, o , — J ) / 

- value of minimum time step; if DT is 

smaller than DTMIN simulation is 

terminated (default = l.E-7), 

Subroutine PEDERV has the form: 

SUBROUTINE PEDERV(N,T,Y,PD,NO) 

This subroutine should supply the partial 
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derivatives of f(y,t) with respect to y (i.e., the 

Jacobian matrix), evaluated at T = t and Y = y. It 

must form a two-dimensional array PD, stored as an 

NO x NO array, according to 

PD(i,j) 
d f. 

1 ̂  i,j £ N 

COMMON /CONTRL/ INOUT, NODE, NPDE, NSTART, NSTEP, 

NFE, NJE, 1ER 

INOUT - variable indicating state of simulation 

(cannot be changed by the user): 

0 = the simulation is in its 

communication interval; output is 

impossible, 

1 = end of communication interval; 

output is possible, 

2 = end of simulation; output and final 

calculations are possible, 

NODE - number of ordinary differential 

equations (default = 0), 

NPDE - number of partial differential equations 

(default = 0 ) , 

NSTART - control variable 

= 0 - Gear and Adams method does not 

start at the begining of every 

communication interval from the 

begining, 

> 0 - every communication interval, 

Adams and Gear methods start from 

the begining, 

(default = 1 ) , 

NSTEP - number of time-steps, 

NFE - number of UPDATE evaluations, 

NJE - number of Jacobian evaluations, 

1ER - error indicator used by PODESS, 

208 



COMMON /BVMAT/ B(4,2,MAXBD) 

B - matrix of which the elements describe the 

boundary conditions; boundary conditions may be 

described by one of two equations: 

($) Bl * FX(b) + B2 * F(b) = B3 

($$) FT(b) = B2 

where b means the evaluation of a function in a 

boundary point. 

For element B(I,J,K): 

K - number of partial differential equation, 

J - indicates boundary point: 

1 = left point, 

2 = right point, 

I - indicates parameters : 

1 = Bl in ($) 

2 = B2 in ($) or ($$) 

3 = B3 in ($) 

4 = value of B(4,J,K) indicates type of 

condition: 

0. = condition ($); Bl, B2, B3 can 

be functions of time, Bl and 

B2 can not be zero together, 

-1. = F(b) constant, then Bl, B2, 

B3 are constants too, 

-2. = no boundary conditions, 

-3. = condition ($$) 

(default Bl = 0., B2 = 1., B3 = 0., B(4,J,K) = -1.) 

For the VAX version MAXBD = 3334 and for the PC 

version MAXBD = 334. 

Boundary conditions are sent to the package through 

/BVMAT/ only if equations are solved in one spatial 

dimension. If the equations are solved in two or three 

spatial dimensions, the boundary conditions are sent by 

the parameter list of subroutine PDER2 or PDER3, 

respectively. 

COMMON /CONS/ C(100) 

C - matrix of values of constants which are read-in 
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by the input subroutine, 

COMMON /PARS/ P(200) 

P - matrix of values of parameters which are read-in 

by the input subroutine, 

COMMON /FPLX/ NFX(20) 

NFX - matrix of names (10-character) which are 

read-in by the input subroutine (they can be 

used as names of spatial v a r i a b l e s ) , 

COMMON /FPLT/ NFT(30) 

NFT - matrix of names (10-characrer) which are 

read-in by the input subroutine (they can be 

used as names of time v a r i a b l e s ) . 

Elements of matrices C and P are read in format 

3(A10,G16.8). Format A10 may be used for descriptions 

of input data on input file, but it is not required by 

PODESS. Elements of matrices NFX and NFT are read in 

format 8A10. Indicated dimensions are the default 

maximum values. 

COMMON /LUN/ L I , LO, LPR 

LI - logical unit number of input, 

LO - logical unit number of output, 

LPR - control variable (LOGICAL): 

.TRUE. - output line contains 132 

characters, 

.FALSE. - output line contains 80 

characters. 

A.3 THE IMPORTANT PACKAGE SUBROUTINES 

SUBROUTINE PDER1 (F, FX, FXX) 

This subroutine calculates first and second 

derivatives with space for one-dimensional (in 

space) case. 

SUBROUTINE PDER2 (F, FX, FXX, FY, FYY, BX, BY) 

This subroutine calculates first and second 

derivatives with respect to the X and Y directions 

for the two-dimensional (in space) case. The 
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matrices BX and BY should contain the boundary 

conditions in the X and Y directions, respectively. 

The meaning of their elements is analogous to the 

elements of the matrix B from COMMON /BVMAT/, but 

instead of the number of partial differential 

equations the number of grid points in the 

perpendicular direction is used. Consequently BX 

should be declared as BX(4,2,NPOINY) and BY as 

BY(4,2,NPOINX) (where NPOINX is the number of grid 

points in X-direction and NPOINY is the number of 

grid points in Y-direction). Every partial 

differential equation must have its own boundary 

value matrices. 

SUBROUTINE PDER3 (F, FX, FXX, FY, FYY, FZ, FZZ, BX, BY, 

BZ) 

This subroutine calculates first and second 

derivatives with respect to the X, Y and Z 

directions for the three-dimensional (in space) 

case. The matrices BX, BY and BZ should contain the 

boundary conditions in the X, Y and Z directions, 

respectively. The meaning of their elements is 

analogous to the elements of the matrix B from 

COMMON /BVMAT/, but instead of the number of partial 

differential equations the number of grid points in 

the perpendicular directions is used. Consequently 

BX should be declared as BX(4,2,NYZ), BY as 

BY(4,2,NXZ) and BZ as BZ(4,2,NXY), where NYZ = 

NPOINY * NPOINZ, NXZ = NPOINX * NPOINZ and NXY = 

NPOINX * NPOINY (where NPOINX is the number of grid 

points in the X-direction, NPOINY is the number of 

grid points in the Y-direction and NPOINZ is the 

number of grid points in the Z-direction). Every 

partial differential equation must have its own 

boundary value matrices. 

SUBROUTINE FTZER1 (FT) 

This subroutine puts values of FT matrix elements on 

the boundary equal to zero if the boundary condition 
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is ($) (see COMMON /BVMAT/). 

SUBROUTINE FTZER2 (FT, BX, BY) 

Analogous to FTZER1, but for the two-dimensional 

case. The matrices BX and BY must be declared as 

BX(4,2,NPOINY) and BY(4,2,NPOINX), respectively 

(where NPOINX is the number of grid points in the 

X-direction and NPOINY is the number of grid points 

in the Y-direction). 

SUBROUTINE FTZER3 (FT, BX, BY, BZ) 

Analogous to FTZER1, but for the three-dimensional 

case. The matrices BX, BY and BZ must be declared as 

BX(4,2,NYZ), BY(4,2,NXZ) and BZ(4,2,NXY), 

respectively (NYZ = NPOINY * NPOINZ, NXZ = NPOINX * 

NPOINZ, NXY = NPOINX * NPOINY) (where NPOINX is the 

number of grid points in the X-direction, NPOINY is 

the number of grid points in the Y-direction and 

NPOINZ is the number of grid points in the 

Z-direction). 

SUBROUTINE 0UTRS1 (F, NAMEF, IPR) 

Output subroutine; 

F - one dimensional matrix, 

NAMEF - 10-character name of output matrix, 

IPR - control variable: 

IPR = 0 - 1 1 elements of X are printed, 

IPR > 0 - all elements of X are printed. 

SUBROUTINE OUTRS2 (F, NAMEF, IPR) 

Output subroutine; 

F - two-dimensional matrix, 

NAMEF - 10-character name of output matrix, 

IPR - control variable: 

IPR = 0 - 1 1 rows, 11 elements per row, 

of X are printed, 

IPR > 0 - all elements of X are printed, 

SUBROUTINE OUTXZ (F, NPOINX, NPOINY, NAMEF, IPR) 

Output subroutine; 

F - two-dimensional matrix, 

NPOINX - number of rows of F, 
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NPOINY - number of columns of F, 

NAMEF - 10-character name of output matrix, 

IPR - control variable: 

IPR = 0 - 1 1 rows, 11 elements per row, 

of X are printed, 

IPR > 0 - all elements of X are printed, 

SUBROUTINE FPLOT1 (M, Fl, F2, F3, F4, F5, X, NDIM, FMIN, 

FMAX, XMIN, XMAX, TITLE, NAMEX, 

NAMEC, LSCLF, LSCLX, INTERP) 

This subroutine plots the values stored in the 

matrix F versus the values stored in the matrix X. 

The plot is performed by the printer. 

M 

Fl 

F2,F3,F4,F5 

NDIM 

FMIN,FMAX 

XMIN,XMAX 

TITLE 

NAMEX 

NAMEC 

LSCLF 

- number of plotted matrices, 

- one-dimensional matrix containing 

values of the plotted function, 

- same as Fl, but if M < 5, then the 

5-M last matrices must be dummy 

parameters, 

- one-dimensional matrix containing 

the values of the grid points, 

- dimension of the matrices Fl, F2, 

F3, F4, F5 and X, 

- minimum and maximum values of the 

matrices Fl, F2 F3, F4 and F5 

respectively, if FMIN = FMAX the 

subroutine chooses its own values, 

- same, but for the matrix X, 

- 10-character title of plot, 

- 10-character name of the matrix X, 

- matrix of 10-character names of the 

matrices F1,F2, F3, F4 and F5 

(dimension M) 

- control variable: 

= 0 - the matrices Fl, F2, F3, F4, 

F5 are plotted on a linear 

scale, 

= 1 - the matrices Fl, F2, F3, F4, 
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F5 are plotted on a 

logarithmic scale, 

= 2 - the matrices Fl, F2, F3, F4, 

F5 are plotted on a logit 

scale, 

LSCLX - same but for matrix X, 

INTERP - control variable for interpolation: 

= 0 - no interpolation between data 

points, 

= 1 - linear interpolation between 

data points, 

> 1 - interpolation between data 

points by cubic splines. 

SUBROUTINE FPL0T2 (F, X, NPOINX, Y, NPOINY, FMN, FMX, 

BLV, NAMEF, NAMEX, NAMEY, LSCLF, 

INTX, INTY) 

This subroutine plots the values stored in the 

matrix F versus the values stored in the matrixes X 

and Y. Ten different intensities are used. The plot 

is performed only by the printer. 

F - two-dimensional matrix, 

X - one-dimensional matrix containing values 

of the grid points in the X-direction, 

NPOINX - number of elements of X, 

Y - the one-dimensional matrix containing 

values of the grid points in the 

Y-direction, 

NPOINY - number of elements of Y, 

FMN,FMX - minimum and maximum values of the matrix 

F respectively; if FMN = FMX the 

subroutine establishes its own values, 

BLV - level under which the values are 

represented as blank fields, 

NAMEF - 10-character name of the matrix F, 

NAMEX - 10-character name of the matrix X, 

NAMEY - 10-character name of the matrix Y, 

LSCLF - control variable: 
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= O - F plotted on a linear scale, 

= 1 - F plotted on a logarithmic scale, 

= 2 - F plotted on a logit scale, 

INTX - control variable: 

= 0 - no interpolation between the data 

points in the X-direction, 

= 1 - linear interpolation between the 

data points in the X-direction, 

INTY - control variable: 

= 0 - no interpolation between the data 

points in the Y-direction, 

= 1 - linear interpolation between the 

data points in the Y-direction, 

SUBROUTINE FPLOTT (M, Fl, F2, F3, F4, F5, FMIN, FMAX, 

TITLE, NAMEF, LSCLF) 

Subroutine stores values of up to five variables 

during the program run and plots them versus time at 

the end of the run. Values are stored for every 

communication interval. The subroutine can be called 

many times, but the number of stored values can not 

be greater than 2010. The names of the plotted 

functions are sent by COMMON /FPLT/. 

M 

F1,F2,F3,F4,F5 

FMIN,FMAX 

TITLE 

NAMEF 

LSCLF 

number of plotted functions of 

time, 

functions to plot, 

minimum and maximum values of the 

plotted functions; if FMIN = FMAX 

the subroutine establishes its own 

values, 

10-character name of plot, 

matrix of 10-character names of the 

functions Fl, F2, F3, F4, F5, 

control variable: 

= 0 - functions are plotted on a 

linear scale, 

= 1 - functions are plotted on a 

logarithmic scale, 
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= 2 - functions are plotted on a 

logit scale. 

As the Adams and Gear methods are introduced by 

connecting the package GEAR to PODESS, the user can 

also apply its subroutines, and then utilize all their 

possibilities (detailed description is in Hindmarsh, 

1974). 

FUNCTION FLININ (X, XW, FW, N) 

Function calculates a value by linear interpolation. 

X - a value of an independent variable for which 

the result is calculated, 

XW - values of an independent variable in the grid 

points (must be stored in ascending or 

descending order), 

FW - values of a dependent variable in the grid 

points, 

N - number of grid points. 

A.4 USER-SUPPLIED SUBROUTINES 

Generally these subroutines should have the form (in 

the 2- dimensional case): 

SUBROUTINE INITL 

COMMON /INTEGT/ F(...) 

1 /CONTRL/ INOUT, NODE, NPDE 

2 /CONS/... 

3 /PARS/... 

4 /SPACEX/ INTRPX, NPOINX 

5 /SPACEY/ INTRPY, NPOINY 

6 /INIUPD/ NXY 

NPDE = ... 

NODE = ... 

NXY = NPOINX * NPOINY 

DO 10 J = 1, NPOINY 
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DO 10 I = 1, NPOINX 

10 F(I,J) = initial values 

RETURN 

END 

SUBROUTINE UPDATE 

CHARACTER*10 NAMEF, NAMEX, NAMEY, NAMET, TITLE 

DIMENSION FX(...), FXX(...), FY(...), FYY(...) 

COMMON /INTEGT/ F(...) 

1 /DERVT/ FT(...) 

6 /CONTRL/ INOUT 

7 /SPACEX/ INTRPX, NPOINX, ... 

8 /SPACEY/ INTRPY, NPOINY, ... 

9 /PARS/ ... 

1 /CONS/ ... 

2 /INIUPD/ N 

3 /FPLT/ NAMET(4) 

DATA FMN, FMX, BLV /2*0., 1. /, LF, LLF/1, 0/ 

DATA NAMEF, NAMEX, NAMEY /'function F', 

1 'coordin. X', 'coordin Y'/, 

2 TITLE /'Lesion den'/ 

CALL PDER2 (F, FX, FXX, FY, FYY, N, BX, NPOINY, 

1 BY, NPOINX) 

DO 10 J = 1, NPOINY 

DO 10 I = 1, NPOINX 

10 FT(I,J) = equations 

IF (INOUT .EQ. 0) RETURN 

CALL OUTRS2 (F, NAMEF, 0) 

CALL FPLOT2 (F, X, NPOINX, Y, NPOINY, FMN, FMX, 

1 BLV, NAMEF, NAMEX, NAMEY, 0, 1, 0) 

CALL FPLOTT (4, F(l, 1), F(2, 1), F(3, 1), 
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1 F(l, 2), F5, FMN, FMX, TITLE, NAMET, 0) 

RETURN 

END 

If METHOD = 11 or 21, the user must program the 

subroutine PEDERV: 

SUBROUTINE PEDERV (N, T, Y, PD, NO) 

DIMENSION PD(N0,N0) 

PD(1,1) = ... 

PD(1,2) = ... 

PD(N0,N0) = ... 

RETURN 

END 

A.5 RUNNING PODESS 3.53 

At present, the package PODESS 3.53 exists in two 

versions : 

1. VAX version, which is working on the VAX computer of 

the Agricultural University in Wageningen, 

2. PC version (compiled by RM FORTRAN ver 2.11), which 

can work on IBM PC/XT/AT or a compatible personal 

computer under the DOS operating system version 2.11 

or later. 

A.5.1 The VAX version 

To run his program the user should use the following 

VAX commands (files are called DISEASE.ext; where .ext 

is .FOR, .OBJ or .EXE; $ is a prompt of VAX). 

1. Editing: 

$ EDIT DISEASE.FOR - editing the file containing the 

subroutines INITL, UPDATE, and 

PEDERV (if necessary). 

2. Compilation: 
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$ FORTRAN DISEASE - compilation of the FORTRAN-file 

DISEASE.FOR (extension .FOR is 

default); the compiled file has 

default name DISEASE.OBJ. 

3. Linking: 

$ LINK/EXECUTABLE=DISEASE.EXE PODESS,DISEASE,PODESSLB 

/LIBRARY 

- the file DISEASE.OBJ is linked to 

the file PODESS.OBJ, the file 

PODESSLB.OLB is searched to 

resolve all the external 

references (PODESSLB.OLB is the 

compiled library of subroutines 

used by PODESS 3.53). The output 

file has default name DISEASE.EXE. 

4. Running the program: 

$ RUN DISEASE - run the program stored on 

DISEASE.EXE file. 

The response of the program is : 

Welcome in PODESS version 3.53 

Input,Output : 

which requires indication of input and output files. 

Input can be: 

CON = terminal (default), 

Filename = input file on disk (default extension 

of filename is .DAT). 

Output can be: 

CON = terminal (default), 

LPT = output is stored on file filespec.LPT 

(where filespec is the name, without 

extension, of the input file; if the 

input is from a terminal, then 

filespec = PODESS) in a form suitable 

for the printer (132 characters per 
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line, subroutine FPL0T2 overprints 

lines for plotting different 

intensities of points), 

RES = output is stored in the file 

filespec.RES (where filespec is the 

name, without extension, of the input 

file; if the input is from a 

terminal, then filespec = PODESS) in 

the form suitable for the 

presentation on a terminal (80 

characters per line, subroutine 

FPL0T2 does not work), 

Filespec.ext = output is stored in the file 

filespec.ext according to the 

following rules: ext = LPT- form of 

output the same as for LPT, ext 

different from LPT - form of output 

the same as for RES, (default ext 

LPT). Filespec must be different from 

CON, LPT, and RES. 

A.5.2 The PC version 

To run his program the user should perform the 

following steps (files are called DISEASE.ext; where 

.ext is .FOR, .OBJ or .EXE). 

1. Editing: 

edit DISEASE.FOR - editing the file containing 

subroutines INITL, UPDATE, and 

PEDERV (if necessary), where 
vedit' stands for a name of an 

arbitrary editor which produces an 

ASCII file. 

2. Compilation: 

RMFORT DISEASE/I - compilation of the FORTRAN-file 

DISEASE.FOR (extension .FOR is 

default); the compiled file has 
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the default name DISEASE.OBJ (the 

compiler switch /I results in 

INTEGER*2 interpretation of 

INTEGER variables; also the switch 

/Y must be used on IBM AT or 

compatible machines, it forces the 

RMFORT compiler to produce INTEL 

80286 code). 

3. Linking (one from two forms): 

PLINK86 FI PODESS,DISEASE OUT DISEASE 

LIB PODESSLB,SCREEN,RMFORT 

- the file DISEASE.OBJ is linked to 

the file PODESS.OBJ, the files 

PODESSLB.LIB, SCREEN.LIB and 

RMFORT.LIB are searched to resolve 

all the external references 

(PODESSLB.LIB is the compiled 

library of subroutines used by 

PODESS 3.53, SCREEN.LIB is the 

compiled library of PC screen 

management routines and RMFORT.LIB 

is the RM FORTRAN standard 

library). The output file has the 

name DISEASE.EXE. 

The compilation and linking instructions, presented 

above, assume that the compiler (RMFORT), the linker 

(PLINK86), the main program (PODESS) and the libraries 

(PODESSLB, SCREEN, RMFORT) are on the default disk 

drive and the default directory. If this is not the 

case, these file-names should be preceeded by 

appropriate disk drive or/and directory specification. 

4. Running the program: 

DISEASE - run the program stored in the 

DISEASE.EXE file. 

As the response, the program shows its name and after 

pressing an arbitrary key, displayes a window, where it 
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(default 

.DAT). 

LPT2 or LPT2: 

LPT3 or LPT3i 

LPT 

asks for the ^working directory', the name of the 
vinput file' and the name of the voutput file'. 

The input can be: 

CON = terminal (default), 

Filename = input file on disk 

extension of filename is 

The output can be: 

CON = terminal (default), 

PRN or PRN: = printer, 

LPT1 or LPT1 : = printer number 1, 

= printer number 2 (if existing), 

= printer number 3 (if existing), 

= the output is stored in the file 

filespec.LPT (where filespec is the 

name, without extension, of the 

input file; if the input is from a 

terminal, then filespec = PODESS) 

in a form suitable for the printer 

(132 characters per line, 

subroutine FPL0T2 overprints lines 

for plotting different intensities 

of points), 

= the output is stored in the file 

filespec.RES (where filespec is the 

name, without extension, of the 

input file; if the input is from a 

terminal, then filespec = PODESS) 

in the form suitable to be 

presented on the terminal (80 

characters per line, subroutine 

FPL0T2 does not work), 

= the output is stored in the file 

filespec.ext according to the 

following rules: ext = LPT- form of 

the output the same as for LPT, ext 

different from LPT - form of the 

output the same as for RES, 

RES 

Filespec.ext 
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(default ext = LPT). The filespec 

must be different from CON, LPT, 

and RES. 

A.6 ORGANIZATION OF THE INPUT FILE 

The title of the simulation run (80-character) 

should be stored in the first line. Every next block of 

the input file must be preceded by the name of the 

COMMON block to which is referred. Every block must be 

finished by 10 spaces in the name field (format A10). 

The blocks are: 

/CONS/ 

A list of constant values in format 3(A10,G16.8). 

Format A10 is provided for the description of every 

value. Information from this field is not used by 

PODESS, except in the particular case where the 

field contains 10 spaces, which means end of block. 

Numbers should appear in the same order as in 

COMMON/CONS/ in the subroutines INITL and/or UPDATE. 

/PARS/ 

A list of parameter values. The description is 

analogous to the /CONS/ description, but now the 

values are sent to COMMON/PARS/. 

/XGRID/ 

A list of grid points in the X-direction. The 

description is analogous to the /CONS/ description, 

but now the values are sent to the matrix X in 

COMMON/SPACEX/. The number of values must be equal 

to NPOINX. 

/YGRID/ 

A list of grid points in the Y-direction. The 

description is analogous to the /CONS/ description, 

but now the values are sent to the matrix Y in 

COMMON/SPACEY/. The number of values must be equal 

to NPOINY. 

/ZGRID/ 
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A list of grid points in the Z-direction. The 

description is analogous to the /CONS/ description, 

but now the values are sent to the matrix Z in 

COMMON/SPACEZ/. The number of values must be equal 

to NPOINZ. 

/FPLX/ 

A list of 10-character names in format 8A10 which 

are sent to COMMON/FPLX/. 

/FPLT/ 

A list of 10-character names in format 8A10 which 

are sent to COMMON/FPLT/. 

The data for a single run must be ended by the command: 

/RUN/ 

which starts the run. The following lines can contain 

data in the form described above, stored for later 

runs. The end sequence of the input file must be a 

blank line and the command: 

/STOP/. 

The commands and the names of the blocks must start 

from column 1. The user can use his own input 

instructions in the supplied subroutines, but the title 

line and the command: 

/RUN/ 

must precede his data on the input file and this file 

must be ended as stated above. 

A.7 SENDING FILES FROM FLOPPY DISK TO VAX 

If files are only on floppy disk, the user should 

send by KERMIT the following files to VAX: PODESS.FOR 

and PODESSLB.FOR. After sending, all files must be 

compiled and the library PODESSLB must be created. This 

can be done by using the following VAX/VMS commands, 

which are given in detail in DEC, 1982; DEC, 1984. 

Compilation: 

$ FORTRAN PODESS,PODESSLB 
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compiled files will be PODESS.OBJ, PODESSLB.OBJ. File 

PODESSLB.OBJ should be transformed to the library 

PODESSLB.OLB, by: 

$ LIBRARY/CREATE PODESSLB PODESSLB 
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Appendix B 

Absorption and scattering 

The theory introduced here, including the derivation 

of the diffusion equation, uses some concepts which may 

not be familiar to phytopathologists. The present 

appendix introduces these concepts in a simple way. 

The macroscopic cross section can be described in 

the following way. A marksman shoots at targets having 

a density g (gis a volume density of targets [ NL ] ). 

The probability of success in hitting a single target 

is proportional to the surface T of the target. The 

probability of success in hitting a target at all is, 

moreover, proportional to the target density. The 

product of g- T is called the "macroscopic cross 

section' of the targets. The foregoing illustration 

referred to 3-dimensional space, the following 

paragraphs refer to a field crop seen as a 

2-dimensional space. 

The macroscopic cross section for absorption can be 

described more precisely in two-dimensional space. 

Imagine a flow of spores through an absorbing medium 

(Fig. B.l). Concentrate for the time being on the spore 

flux $(r,S) with 0 = 0. Inside the medium, the spore 

flux $ in the x direction (the number of spores flowing 

in the x direction per unit length per unit time) 

decreases over the distance dx by: 

d* = - g J dx * (B-l) 

where g is the area density of absorbing sites and 1 is 

the length of such a site (the 2-dimensional case is 

considered here). 
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s-dS 

,dx 

Fig. B.l. Spores fly through an absorbing medium. 

Spores from the incoming flux $ 0 are absorbed during 

their travel along x. The outcoming flux is $ , with $ 

< 5 0' 

Dividing both sides of (3.2) by $ and integrating 

from 0 to x we obtain: 

[ In $ 1 - g 1 x (B.2) 

This is equivalent tos 

% exp(-g 1 x) = * 0 exp(-Ca x) (B.3) 

where C g I is the macroscopic cross section for 

absorption. C characterizes the absorbing medium. In a 
a 

similar way the macroscopic cross section for other 

processes can be determined. 

One of the other processes to be considered is 

scattering of spores (changing the direction of their 

movement) without changing their speed and without 
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absorption. Scattering can be a result of air 

turbulence, wind gusts, or collisions with plant 

surfaces. The macroscopic cross section for scattering 

will be denoted as C . 
s 
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