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The basis of this study is a Stochastic Programming (SP) model derived for a practical case of a speci�c
inventory control problem for a perishable product. As it contains chance constraints describing the service
level, deriving policies for this model is a challenge. In order to �nd parameter values in an order-up-to
level policy, we derive a conventional Monte Carlo based MC-MILP model. It is shown that this problem
is practically equivalent to a nonconvex MINLP model with binary variables describing when to order and
continuous variables providing the order-up-to levels. A speci�c algorithm is designed to solve the problem
by enumeration and bounding and iterative nonconvex nonlinear optimization. A second policy is outlined
that takes the age distribution in the model into account. After deriving the optimal timing of the orders,
every order quantity is generated by sampling the review period. As the MINLP based policy is easier for
the decision maker, our question is for which cases that policy is su�cient.

Key words : Inventory control, Perishable products, MINLP, stochastic programming, Monte Carlo

1. Introduction
The basis of our study is a SP model published in Pauls-Worm et al. (2013) for a practical pro-
duction planning problem over a �nite horizon of T periods of a perishable product with a �xed
shelf life of J periods. The demand is uncertain and non-stationary such that one produces to stock.
The model aims to guarantee the customer that the probability of not being out-of-stock is higher
than a required service level α in every period t∈ {1,2, ..., T}. The latter implies being mathemat-
ically confronted with a chance constraint. It is known, that this may lead to challenging Global
Optimization problems. For a recent overview, see Parpas et al. (2009) and the references therein.
The solution for such a model is a so-called order policy. Given the inventory situation I at

the beginning of period moment t, an order policy should advice the decision maker on the order
quantity Qt. For the decision maker, simple rules are preferred. Therefore, Pauls-Worm et al. (2013)
generate a simple so-called YS policy that consists of a list of order periods Y with order-up-to
levels St, i.e. each order period the manager replenishes the inventory to a level St. An MILP
approximation is described in that paper that provides a list St in a short time, but unfortunately it
does not exactly ful�ll the service level constraints for all instances. Therefore, the research question
is how to generate values for St such that the chance constraints are ful�lled for all instances and
expected costs are minimized. We show that �nding the timing Y and such values for S based on
(smoothed) Monte Carlo sampling requires an MINLP problem to be solved. A speci�c algorithm
is designed that uses enumeration and bounding for the integer part Y of the problem leaving us
with iteratively solving an NLP problem in the continuous variables S.
Moreover, we investigate the generation of a policy that also looks for the best order moments

Y to �x, but in the decision of the order quantity Qt takes the distribution of the age of items in
stock into account. The decision support enhances a far more complicated rule, as now a simple list
of levels is not su�cient anymore. Our question is how to generate such a policy and whether the
simple policy is doing much worse than this policy.

1
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The e�ectiveness of a policy can be investigated by simulation. Using pseudo-random series of
the demand, one measures how well the required service levels are met and estimate the expected
cost. This paper is organised as follows. Section 2 describes the underlying SP model with chance
constraints. Section 3 describes the generation of the quantities St via the MC-MILP and MINLP
problems and Section 4 provides the elaboration of a policy that does take the age distribution into
account. In Section 5, we numerically compare the performance of the policies derived from the
di�erent approaches with several instances. Section 6 summarizes our �ndings.

2. Stochastic Programming Model
The stochastic demand implies that the model has random inventory variables Ijt apart from the
initial �xed levels Ij0. If the order decision Qt depends on the inventory levels at the beginning of
the period

I = (I1,t−1, . . . , IJ−1,t−1), (1)

then Qt is also a random variable. In the notation, P (.) denotes a probability to express the chance
constraints and E(.) is the expected value operator for the expected costs. Moreover, we use x+ =
max{x,0}. The formal SP model is given in detail.

Indices
t period index, t = 1, . . . , T , with T the time horizon
j age index, j = 1, . . . , J , with J the �xed shelf life

Data
dt Normally distributed demand with expectation µt and variance (cv×µt)2

where cv is a given coe�cient of variation.
k �xed ordering cost
c procurement cost
h inventory cost
w disposal cost, is negative when having salvage value
α service level

Variables
Qt ≥ 0 ordered and delivered quantity at beginning period t
Ijt Inventory of age j at end of period t, initial inventory �xed Ij0 = 0,

I1t free, Ijt ≥ 0 for j = 2, . . . , J .

The total expected costs over the �nite horizon is to be minimized.

E

(
T∑

t=1

(
h

J−1∑
j=1

I+
jt + g(Qt)+wIJt

))
=

T∑
t=1

E

(
g(Qt)+h

J−1∑
j=1

I+
jt +wIJt

)
, (2)

where procurement cost is given by the function

g(x) = k + cx, if x > 0, and g(0) = 0. (3)

The chance constraint expressing the required service level is

P (I1t ≥ 0)≥ α, t = 1, . . . , T (4)

and the dynamics of the inventory of the items of di�erent ages is described by

I1t = Qt− (dt−
J−1∑
j=1

Ij,t−1)+, t = 1, . . . , T (5)
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and

Ijt =

(
Ij−1,t−1− (dt−

J−1∑
i=j

Ii,t−1)+

)+

, t = 1, . . . , T, j = 2, . . . , J. (6)

These dynamic equations describe the FIFO issuing policy and imply that I1t is a free variable,
whereas Ijt is nonnegative for the older vintages j = 2, . . . , J . Notice that the oldest inventory IJt

perishes and becomes waste. A feasible order policy Qt(I) of the SP model ful�ls the nonnegativity
aspects and equations (4), (5) and (6). An optimal policy also minimises (2).
For a nonperishable, a common way to deal with the planning is to de�ne so-called order-up-to

levels St, e.g. Silver et al. (1998). Each period where a replenishment takes place, one aims to cover
the demand of R(t) periods. This policy is easy to grasp for the decision maker and is called here a
policy with a replenishment cycle R(t) and stock age independent order-up-to level St. The question
is how to generate good values for St in case we are dealing with a perishable product and part of
the inventory will become waste. We deal with this question in Section 3.
In a replenishment cycle concept, taking the age distribution into account, requires supplying the

decision maker with an information system that advices on the order quantity Qt(I). In Section 4,
we investigate how order quantities can be derived. As this policy is wider, it should provide lower
expected cost than the case where the age distribution is not taken into account.

3. YS: replenishment cycle R(t), stock age independent order-up-to level St

Literature on inventory control e.g. Silver et al. (1998) applies the concept of a replenishment
cycle, i.e. the length of the period R for which the order of size Q is meant. For non-stationary
demand, the replenishment cycle R(t) depends on the period. We model this here as to provide the
decision maker a list Y ∈ {0,1}T of periods when to order, such that in fact Yt = Yt+R(t) = 1 and
Yk = 0, k = t+1, .., t+R(t)−1. Another important concept is that of the so-called order-up-to level
St. When ignoring the age distribution of the inventory, the decision maker replenishes in the order
period the inventory up to a level St:

Qt(I) = (St−
J−1∑
j=1

Ij)+, t = 1, . . . , T, (7)

where values for the order-up-to level St should be determined. If no order takes place, one can
de�ne St = 0 which co-incides with Yt = 0.
In the determination of the best values, we �rst �x the list of order periods Y and then try to

�nd the best values for St. This seems an easy problem for a nonperishable product, i.e. no waste is
generated. A replenishment cycle starting at period t of length R(t) is dealing with a total demand
dt + .. + dt+R(t)−1. Let Gt,R(t) be the cumulative distribution function (cdf) of this total demand.
The chance constraint is ful�lled by taking as order-up-to level the value σt,R = G−1

t,R(α). One of the
challenges is that even this level may be too high in a model with non-stationary demand. Namely,
the order quantity in the former cycle may have been so high, that there is a positive probability
that also the current replenishment period is covered. In that case, the order-up-to level can be
taken a bit lower than σt,R.
Moreover, for a perishable product, one has to take into account that items in stock may perish

and one may like to order more than that level, i.e. St ≥ σt,R. Given Y , we are dealing with an NLP
problem NLP (Y ) in the continuous variable S minimising (2) with constraints (4), (5), (6) and (7).
The di�culty is, that the chance constraint (4) is not an analytical expression in S that can easily
be evaluated. Therefore we will discuss in Sections 3.1 and 3.2, how Monte Carlo simulation may
be used as an approximation.
The next question is how to deal with the integer part Y of the solution. Pauls-Worm et al. (2013)

provide an approximate strategy based on a MILP model that not only takes the quantities σt,R into
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account, but also the expected waste and age distribution. The elegance of the approach is that no
dedicated software is used other than standard commercially available MILP solvers that generate
in a short time a list Y of order moments and corresponding order-up-to levels S. The procedure
provides service levels that approximate the requirement α, but for some instances the levels do not
reach this requirement in some of the periods.
To �nd the optimal values ful�lling the constraints, one can in principle solve NLP (Y ) for all

feasible Y and select the best one. Notice that Y1 = 1 in the model, as we start with zero inventory
leaving 2T−1 binary vectors representing di�erent timing of the replenishment. The case we are
interested in concerns T = 12 periods, so there are 2048 possible timing vectors for ordering. In the
search for the optimal timing and for solving NLP (Y ), the following reasoning can be used.
• Review periods R > J can not take place due to perishability. Series Y with J zeros in a row

are not feasible. For J = 3, T = 12 this leaves 927 vectors Y .
• One can use a lower bound on cost to decide that Y cannot be optimal. As lower bound LBc(Y )

on the cost of NLP (Y ), one can take the necessary minimum procurement cost k
∑

Yt + c
∑

E(dt)
and a minimum inventory cost knowing that at the beginning of the period where no order takes
place, at least σt,1 has to be available. In an enumeration of Y , if LBc(Y ) is greater than the best
feasible objective value CU found so far, Y cannot be the optimal timing.
• The variables St in NLP (Y ), only correspond to the periods where Yt = 1. However, if no

inventory is available, i.e. I = 0, due to being the �rst period, or the former replenishment cycle has
length J , then one orders the minimum necessary amount St = σt,R.
This leaves us with solving NLP (Y ) for many timing vectors Y , where constraints (4) are not an
analytical expressions in S. How to deal with that?

3.1. MC-MILP approximation of the YS policy

A usual way to deal with chance constraints in stochastic programming is called scenario-based
modeling, Birge and Louveaux (1997). This enhances to use Monte Carlo (MC) simulation and
generate N samples dtr of the demand series d with pseudo-random numbers. For the objective
function this provides a simple extension, as it is expressed in the continuous variables only. However,
it is known from literature Hendrix and Olieman (2008), that when using samples to measure a
probability (service level) the resulting function is piecewise constant in the continuous variable,
here St.
Conceptually, one can also de�ne the problem in MILP terms adding in the SP model a simulation

run index r = 1, ..,N to the variables, Ijtr,Qtr and adding a binary variable δtr that speci�es whether
demand is ful�lled in period t in run r

−I1tr ≤= mt(1− δtr) r = 1, . . . ,N, t = 1, . . . , T (8)

where mt is an upper bound on the value of the out of stock −I1t. This de�nes a function at(S) :
Rn → {0, 1

N
, 2

N
, . . . ,1} representing the (approximately) reached service level. The corresponding

chance constraints read

at(S) :=
1
N

∑
k

δtr ≥ α, t = 1, . . . , T. (9)

The objective (2) is extended towards

1
N

T∑
t=1

N∑
r=1

(
g(Qtr)+h

J−1∑
j=1

I+
jtr +wIJtr

)
, (10)

with order quantity

Qtr = Yt× (St−
J−1∑
j=1

Ij,t−1,r)+, r = 1, . . . ,N, t = 1, . . . , T. (11)
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The constraints (5) and (6) are extended to each run

I1tr = Qtr − (dtr −
J−1∑
j=1

Ij,t−1,r)+, r = 1, . . . ,N, t = 1, . . . , T (12)

and

Ijtr =

(
Ij−1,t−1,r − (dtr −

J−1∑
i=j

Ii,t−1,r)+

)+

, r = 1, . . . ,N, t = 1, . . . , T, j = 2, . . . , J. (13)

Rewriting (11) and the function ()+, the complete model can be expressed in MILP terms. How-
ever, solving is practically impossible due to the large number of binary variables δ and many
solutions δ that represent the same obtained service levels a(S). Instead, we will investigate a Monte
Carlo smoothing approach as suggested in Hendrix and Olieman (2008) following the MC-MILP
model.

3.2. MC smoothing approach to the YS policy

We focus again on NLP (Y ) where the function a(S) in (9) and objective (10) are evaluated by a
simulation of N sample paths following the dynamics (11), (12) and (13). Let us �rst remark that
the constraints (9) only have to be evaluated for the critical periods at the end of a replenishment
cycle, reducing their number to

∑
Yt. The di�culty of applying an NLP solver for this problem is

that (9) is piecewise constant, i.e. changing the values of S a bit may not change the evaluated value
of at(S). However, one can make the approximate reached service level practically a continuous

Figure 1 Illustration of SMC from Hendrix and Olieman (2008), where the estimated probability on the y-axis depends
on varying one parameter on the x-axis

function by following the MC smoothing approach proposed in Hendrix and Olieman (2008). Let
Itottr =

∑J

j=1 Ijtr represent the total amount of product left over at the end of period t in run r. One
can measure, how close a(S) is to change value by the value of the least nonnegative total inventory
p

[in]
t (S) = minr{Itottr|Itottr ≥ 0} and the least negative inventory p

[out]
t (S) = minr{−Itottr|Itottr <

0}. The suggested smoothing function st(S) is

st(S) =
1

2N

(
2p

[in]
t (S)

p
[in]
t (S)+ p

[out]
t (S)

− 1

)
. (14)

It is shown in Hendrix and Olieman (2008), that at(S) + st(S) is continuous in the interesting
values of S, as illustrated in Figure 2. This de�nes the problem NLPS(Y ) where constraint (9) in
MC-MILP is replaced by

at(S)+ st(S)≥ α, t = 1, . . . , T (15)
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as a smooth optimization problem that in principle can be solved by a Nonlinear Optimization

routine. Notice again that only values St have to be determined for Yt = 1 and ∃i = 1, . . . , J−1, Yt−i =
1. For the chance constraints, one only has to focus on the last period of the replenishment cycle

R(t) + J − 1. As starting point for the variables St in the nonlinear optimization we use the values

σt,R(t). Algorithm 1 provides a list of order timing Y ∗ and order up to levels S∗ that ful�ls the

Algorithm 1 YSsmooth(in: samples dtr,cost data, α,σtR), out: Y ∗, S∗(x)
Set the best function value CU :=∞
Generate a set of feasible order timing Y
for all Y

if for the lower bound on cost LBc(Y ) < CU

solve NLPS(Y ) using σtR values → S and cost C
if C < CU

save the best found values CU := C,S∗ := S,Y ∗ = Y

chance constraints arbitrarily close if the number of samples N increases.

4. YQ: replenishment cycle R(t) and stock-age dependent order level Qt(I)
This policy is more general than the YS policy where now the replenishment moments Y are again

�xed, but the suggested order quantity Qt depends on the age distribution I of the items in stock.

From a decision support viewpoint, now the decision maker requires more information than a simple

order-up-to value list. Qt(I) is in fact a function that either has to be provided by appropriate

software, or represented by a table.

Considering the properties of this order quantity function, notice that in case shortage appears, i.e.

I1 < 0, the optimal quantity is Qt(I) = Qt(0)− I1 = σtR(t)− I1. For the other values of the inventory,

the values of Qt in the table can be interpolated to obtain an advice on the appropriate order level

Qt(I). We can follow again the approach of enumerating possible timing vectors Y . However, how to

determine the order quantities Qt in an order period, i.e. Yt = 1 if the inventory position is positive

Algorithm 2 YQ(in: samples dtr,cost data, α,σtR), out: Y ∗

CU :=∞
Generate a set of feasible order timing Y
for all Y

if for the lower bound on cost LBc(Y ) < CU

Determine C by simulating N sample paths
During the simulation
if Yt = 1

if starting inventory I is not positive or R(t) = 1 take Qt = σt,R(t)−
∑J−1

j=1 Ij

else simulate the replenishement period with N paths from I
Determine the order quantity Qt from (18)

if C < CU

CU := C,Y ∗ = Y
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inventory position and R(t) > 1? The order quantity may be larger than the safety level, i.e.

Qt(I)≥Lt := (σtR(t)−
J−1∑
j=1

Ij)+. (16)

due to the expected outdating of inventory during the replenishment cycle. One can estimate the
expected waste during the replenishment cycle by MC simulation of the �nal inventory in a replen-
ishment cycle and increase the order-up-to level with that in order to guarantee the service level.
This works as follows.
Let It+R−1,1,r be the simulated freshest product inventory of run r at the end of the cycle, then

EW (Q, I) = (−quantile({It+R−1,1,r, r = 1, . . . ,N},1−α))+ (17)

estimates the expected waste from starting inventory position I given an order quantity Q, where
quantile({}, β) is the β sample quantile of set {}. So, if the simulation predicts a negative expected
(1− α)-quantile of the �nal inventory, all of it is due to the expected waste. We can now simply
increase the order quantity with this amount to guarantee the service level:

Qt(I) = Lt +EW (Lt, I). (18)

This way of approaching the chance constraint is slightly stricter than the original service level
constraints. It forces an α probability on positive inventory from any starting inventory I. This is
also called a conditional service level constraint, see Rossi et al. (2008). On the other hand, the
possible order quantities are more free to be chosen than in the YS policy. Algorithm (2) shows how
the MC procedure can be used to identify the best timing vector Y ∗. The generated policy should
in principle provide lower expected cost. The drawback from the decision maker point of view is
that now he is provided a list of tables that require interpolation to derive a good order quantity.
In the sequel our question is, how much can be saved by taking the age distribution into account.
If one also relaxes the requirement that the decision maker is provided with a list Y of order

moments, we arrive at a policy where one can speculate on the probability of not having to order
in the following period. In Hendrix et al. (2012) this policy is aimed for by applying a Stochastic
Dynamic programming (SDP) approach.

5. Comparative Study
Not taking the age distribution into account (YS policy) provides an easier to interpret policy than
taking the age distribution into account (YQ policy). The question is, what is the quality of the
described policies in terms of how well the required service level is met and what are the expected
costs. For which instances does it pay the trouble to take the age distribution into account? For the
illustration, we start with a base case from Pauls-Worm et al. (2013) and also provide the resulting
YS policy reported in that paper. In this case the costs are k = 1500, c = 2, h = .5 and w = 0. The
required service level is α = 95%. The expected demand µt given in Table 1, and its variance is
given by (cv×µt)2 with variation coe�cient cv = 0.25.
Algorithm 1 is used to generate the order-up-to levels St of policy 1. Algorithm 2 generates the

timing for policy 2. With respect to e�ciency, both algorithms required the order of magnitude of
5 minutes in a Matlab implementation. One should notice, that for Algorithm 1, N = 1000 samples
are used, as this is su�cient to distinguish the best timing. In the simulation, for the choice of the
order quantity Q(I), simulated demand samples were based on 5000 numbers that di�er from the
series used in the MC simulation to evaluate the e�ectiveness. In both algorithms, more than 200
of the 927 feasible timings Y could be removed due to cost bounding.
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Table 1 Base case with expected demand µt. Average cost and service level sl measured in a MC simulation, 5000 runs

demand YS Policy MILP approx. YQ Policy
Cost 28882 28649 28205

t µt St sl St sl Y sl

1 800 1129 94.7% 1129 94.7% 1 1
2 950 1550 99.5% 1550 99.5% 0 98.7%
3 200 0 95.4% 0 95.4% 0 95.2%
4 900 2340 1 2350 1 1 1
5 800 0 98.5% 0 98.7% 0 98.7%
6 150 0 94.7% 0 95.3% 0 95.3%
7 650 1874 1 1874 1 1 1
8 800 0 95.3%. 0 95.3% 0 96.1%
9 900 1278 95.2% 1271 95.2% 1 94.9%
10 300 1426 1 1333 1 1 1
11 150 0 1 0 1 0 1
12 600 0 95.1% 0 88.5% 0 95.1%

For this speci�c case, notice that the policies di�er in number of orders in the time horizon
and both provide a sharp approximation of the service level constraints. This is in contrast to the
reported result of the approximating MILP model in Pauls-Worm et al. (2013), where for the last
period the α probability was not reached. The YQ policy is 2.4% cheaper than the YS policy for
this case.
In which cases is there a large di�erence in cost between the YS and YQ policy? To investigate

this question, we look into hypotheses and start varying the parameters of the base case one by one.
No di�erence is expected when the order cost k are relatively high. Any policy will order as few as
possible T/J times and no inventory goes from one replenishment cycle to the other; in our case
one should order Q1 = σ1,3,Q4 = σ4,3,Q7 = σ7,3,Q10 = σ10,3. For the base case, this policy appears
for a order cost of k = 2000. Both algorithms generated this policy in about 2 minutes, where the
cost bounding is relatively e�ective as Y = (1,0,0,1,0,0,1,0,0,1,0,0) is the �rst feasible timing and
ordering more time enhances higher order cost. The evaluation by simulation provides practically
the same expected costs of 31300.
We vary the service level to α ∈ {.9, .95, .98}. We expect that for the YQ policy which is more

�exible, it is easier to reach higher service levels than for the YS policy. For α = .9 both policies
provide practically the same cost of 27900 whereas for α = .95 the YQ policy was 2.4% cheaper.
Increasing the service level to α = .98 requires much larger safety stocks that let both policies choose
for far more orders (7) providing in the end a cost di�erence of only 1% in favour of the YQ policy.
From these experiements no strong trend follows that shows more advantage of taking the age
distribution into account with increasing service level requirement.
To simulate the concept of having less or more uncertainty in the demand (forecast) distributions,

we varied in the base case the coe�cient of variation cv ∈ {.1, .25, .33}. Although we expected a
similar behaviour as varying the required service level, as again the number of orders will increase
with increasing uncertainty, we observed a trend for this case. For cv = .33 again the resulting YQ
policy is 1% cheaper and both policies go for more orders. However, for less uncertainty with cv = .1
both policies again return to replenishment cycles of J = 3 periods and behave practically the same.
We observed that the cost advantage of 2.4% when taking the age distribution into account was

the largest in the base case. As well for the case where every moment an order takes place as for
the situation where replenishment periods are R = J (high order cost, low uncertainty), one may as
well use the YS policy. Does the advantage in the intermediate case hold if we have other demand
patterns? To investigate this question, we use the three variants of the demand pattern in Pauls-
Worm et al. (2013) that all have the same total expected demand of 7200 units. The patterns are
depicted in Figure 1.
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Figure 2 Di�erent demand patterns with a total expected demand of 7200

For the stationary demand, both policies have replenishment cycles of two periods and provide the
same rule; no di�erence is observed in the resulting cost. The variant of the erratic demand pattern
of the base case was constructed to provide worst case behaviour of the MILP policy. The policies
developed in this paper, however, despite di�ering in order moments, provide a good approximation
of service levels and the YQ policy appears less than 1% cheaper. The highly erratic demand scenario
attempts to model extreme case behaviour, where variation of expected demand between periods
is more than 10 times the value of demand. For such an extreme case, indeed one observes a cost
advantage of taking the age distribution into account. The advantage is 1000 over a cost of 28000,
so more than 3.5%.
Concluding, instances where the cost structure implies ordering every period, or every J periods,

one can as well apply the YS policy without any loss. Larger forecast errors, modelled here by the cv
do not seem to favour the use of taking the age distribution into account. The advantage of applying
the more di�cult to comprehend YQ policy is more worth the trouble if the expected demand has
a big variation over the periods.

6. Conclusions
We investigated how global optimization can be used to generate order policies for a speci�c chance
constrained inventory model where the order times should be �xed in advance for a �nite horizon.
Focus is on the idea that the chance constraints of the model can be approximated by a Monte
Carlo (MC) sampling approach.
When investigating the possibility of generating order-up-to levels for a so-called YS policy, one

can in principle formulate a MC-MILP problem that is practically unsolvable. We show that such
a problem can be approximated arbitrarily near by using the smoothed Monte Carlo method to
construct an MINLP problem that is integer in the timing variables Y and continuous in the order-
up-to variables S. For each to evaluate timing vector, a nonconvex continuous NLPS(Y ) problem
should be solved. A speci�c algorithm based on enumeration and bounding has been derived to
solve the problem.
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A second so-called YQ policy has been constructed where the order quantity is minimized such
that from each starting inventory for a simulated replenishment cycle the chance constraint is just
ful�lled. On one hand, this provides a more strict ful�llment of the chance constraint, but on the
other hand, the order quantity is more free to be chosen than in the YS policy. This policy is harder
to be provided to a decision maker.
Algorithms have been presented and implemented to generate the timing and order-up-to levels

of the policies. The algorithms make use of the mathematical characteristics of the problem. The
algorithms have been used to investigate the question for which instances the easier YS policy
provides (nearly) the same performance as the more complicated YQ policy. Only for very extreme
variation in demand over the planning horizon, the YQ policy that takes the age distribution into
account saves more than 1% of the costs in the tested cases.
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