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1  Foreword 
This manual describes a stochastic (or Monte Carlo) model for dietary risk assessment of chemical 
compounds based on monitoring data concerning the quality of foods and agricultural products. Intake 
(exposure) assessment is an important step in risk assessment of chemical compounds, such as 
agricultural chemicals (pesticides, veterinary drugs), toxins (e.g. mycotoxins) and environmental 
contaminants (e.g. dioxins). Occasionally, we use the term residue when we refer to compound and 
the term individual when we refer to consumer. The use of multiple names is avoided as much as 
possible.  
 
The methods for probabilistic modelling described here are implemented in the program Monte Carlo 
Risk Assessment (MCRA). MCRA is a computational tool for dietary risk assessment. MCRA can 
calculate intake distributions for both short-term (acute) and long-term (chronic) intakes. Basically, it 
simulates daily consumptions by sampling a food consumption database and combines these with a 
random sample from either a compound database (empirical distribution) or a parametric distribution 
of compound concentrations. The result is a full distribution of intakes, rather than traditional 
deterministic methods which only provide a point estimate. Percentiles of the intake distribution can 
be used to assess risks by relating them to e.g. an acute reference dose (ARfD). In a chronic risk 
assessment, MCRA calculates the distribution of the usual intakes based on the average concentration 
and the empirical distribution of consumption between consumers and between different consumption 
days of the same consumers. Percentiles of this usual intake distribution can then be related to e.g. the 
acceptable daily intake (ADI). Uncertainty of percentiles can be established by bootstrapping. MCRA 
allows including processing factors (e.g. the effect of cooking on the concentration) and variability 
factors (to correct for the fact that monitoring data are obtained from composite samples, whereas 
consumers may eat individual units). Analyses can be done for a total population or for a 
subpopulation (e.g. children, males or females or consumption-days only). The effects of 
concentration below analytical reporting limits (LOR) can be assessed. Large portion consumption 
and the highest compound or median compound in case of bulking or blending in the composite 
sample is used in IESTI calculations. 
 
The current MCRA system is internet-based and can be used by registered users at 
http://mcra.rikilt.wur.nl. It consists of a basic program to do the computations, written in the statistical 
package GenStat (2005), and of additional database selection possibilities implemented in HTML and 
Active Server Pages (ASP). MCRA runs with Component One Chart (1999) which offers the 
possibility to manipulate graphical output after it has been obtained. An earlier version of the GenStat 
MCRA program, as well as an implementation of the Monte Carlo method in @Risk (1996), have 
been described in van der Voet et al. (1999), and further elaboration was given in de Boer & van der 
Voet (2000, 2001) and van der Voet et al. (2001).  
 
This manual gives a complete description and justification of the statistical methods used in the 
program MCRA and offers an introduction to assist with the practical application of MCRA in dietary 
risk assessment. The documentation describes MCRA Release 5. It covers the current release 5.0 
(release 5 version 0) and all future updates starting with the same release number. Major updates of 
the program, encompassing new or improved facilities will be released with an increased release 
number and a new manual. 
 
MCRA is a result of an ongoing co-operation between RIKILT and Biometris since 1998. RIKILT co-
ordinates the Dutch KAP programme (Quality of Agricultural Products) where results of monitoring 
programs for chemical compounds in food are gathered in a national database. RIKILT also has a 
recipe database to link food codes from the Dutch food consumption table to primary agricultural 
products. Biometris contributes statistical models and programs for quantitative risk analysis. 
Since 2005, the program is extended in collaboration with RIVM to include the models similar to 
those available in the STEM (Statistical Exposure Modelling) software. 

http://mcra.rikilt.wur.nl/
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2  Getting started with MCRA 

2.1 Introduction 
The MCRA system (Monte Carlo Risk Assessment) can be used for assessment of risks due to the 
intake of compounds on foods. MCRA provides the following options: 
• Acute probabilistic risk assessment: MCRA will calculate the intake distribution (mg or 

microgram compound per kg body weight) from input data on consumption and compound 
concentrations in the food.  

• In addition, age dependent percentiles and bootstrap confidence intervals may be estimated using 
simulated acute intakes as input data. 

• Percentiles: the intake distribution can be characterised by percentiles, i.e. compound 
concentration levels exceeded with only a small specified probability (for example the 99th 
percentile p99 is exceeded only in 1% of the cases). 

• Uncertainty due to small samples: bootstrap sampling of Monte Carlo (MC) variation, of 
consumers and of compound concentrations to assess the uncertainty of the percentiles in the form 
of an approximate confidence interval. 

• Diagnostics on the amount of MC-variation and the amount of variability due to bootstrapping 
consumption and compound concentration data. 

• Calculation of point estimates (IESTI) and comparison with MC-results. 
• Decomposition of foods into ingredients using the composition, e.g. convert pizza consumption to 

consumption of wheat, tomato, cheese, etc. 
• Decomposition of foods into marketshares, e.g. for apple marketshares are specified for Jonagold, 

Granny Smith and Golden Delicious. 
• Parametric or empirical modelling of concentrations: MCRA can resample the compound 

concentration data directly (empirical model), or it can sample from a binomial-lognormal model 
fitted to the concentration data (parametric model). Note: consumption data are always re-
sampled empirically from the consumer data set. 

• Modelling of processing effects: sometimes it is known that concentrations are reduced by food 
processing, e.g. cooking, and frying. MCRA can incorporate processing factors as fixed effects or 
by sampling from a processing factor distribution. The latter possibility requires the specification 
of a nominal and an upper value for the processing factor. 

• Modelling of unit variability: compound concentrations are often measured in large composite 
samples, thus hiding part of the variability that exists between individual units. MCRA has 
extensive possibilities to model unit variability e.g. sampling from a Beta, Bernoulli or Lognormal 
distribution. 

• Modelling of non-detects levels: compound concentrations are often only known above a certain 
limit, the Limit Of Reporting (LOR). In a worst-case analysis, all non-detect measurements may 
be replaced by the LOR value.  

• Subset selection: extensive possibilities to select data on age, weight or sex of consumers, day of 
consumption, consumed and derived foods, year, country and sampling type of concentration 
data. 

• Insertion of worst case values for foods without concentration measurement values. 
• Calculate intake distribution for consumption-days only 
• Chronic risk assessment: MCRA calculates the usual intake distribution or chronic exposure when 

the total number of consumption days per consumer is 2 or more. In MCRA, basically, two 
methods are implemented: the first method (parametric) is using the betabinomial distribution to 
model the intake frequency. The lognormal distribution is used to model logarithmically 
transformed intake amounts. Both distributions are integrated to estimate the usual intake 
distribution for the entire population. In an extended version, the usual intake is related to age and 
age-dependent percentiles and bootstrap confidence intervals are estimated. The second method 
(discrete/semi-parametric), follows an approach proposed by Nusser et al. (1996, 1997) and Dodd 
(1996). The chronic intake distribution is characterised by percentiles and bootstrap confidence 
intervals on these percentiles. 
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2.2 Registration 
To use MCRA, navigate the web browser to http://mcra.rikilt.wur.nl. The opening screen gives some 
general information, as well as links to fixed versions of the Manual of the latest release. Find the 
latest developments and most recent information in the On Line Manual. 
 
As a potential new user, you first have to fill in a registration form. Click registration form to get the 
form displayed in Figure 1. Here, specify your name, organisation, address and email address. Choose 
a username (no spaces allowed) and a password for use of the MCRA system. Click the ‘OK’ -button 
tol send the request to the MCRA webmaster at RIKILT, and you will get a response by email as soon 
as possible. 
 

 
Figure 1: Registration form  

Registered users login by clicking Login to MCRA for registered users in the first line of the home 
page. Specify username and password, and the first screen of the MCRA website is shown: MCRA 
Main Menu.  

2.3 MCRA Main menu 
In Figure 2, options within the Main menu are shown: 
 
 
 
 

http://mcra.rikilt.wur.nl/
http://mcra.rikilt.wur.nl/mcra/
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Figure 2: MCRA Main Menu 

 
• Click ‘MCRA 5.0’ to start preparations needed to do an MCRA analysis. 
• Click ‘Manage input/output’ to upload (and download) your own data (see 2.4 ) or to 

download output from a former MCRA analysis. 
• Click ‘Older versions’ to run old releases of the program. However, older versions are not 

supported anymore. 
• Click ‘MCRA 5.0 (field trial data and Dutch consumption data)’ to run MCRA with features 

to edit your own compound concentration data. 
• Click ‘Registered user information’ to view which information about you is stored in the user 

database.  
• Click ‘Help’ for explanation about options in the Main menu. 
• Click ‘Logout from MCRA website’ to leave the MCRA website. Your personal data files, 

latest output files and the latest input options remain stored for later use. 

2.4 Data needed 
What data are needed to run MCRA? All data for MCRA are stored in Microsoft Access database 
tables according to a fixed format. For use of own data, you need to prepare your database off-line 
and upload it to your personal user area on the MCRA website. The ‘MCRA 5.0 (field trial data and 
Dutch consumption data)’ option in the Main menu (see 2.3 ) offers some possibilities to edit data on-
line. However, on-line editing is restricted to compound concentration values, unit variability, 
processing factors, acute reference dose (ARfD) and average daily intake (ADI) (see Ch. 7 ). 
  
In Chapter 9 , a full description of the format is given how data should be saved in a MS Access 
databases.  
Basically, input data for MCRA originate from two sources: food consumption surveys and 
monitoring programs on compound concentration data. Often, additional tables are needed to link 
consumption data to compound concentration data or to implement model options like unit variability. 
In Figure 3, a short outline is presented how tables are linked to each other: consumption data are 
linked directly to compound concentration data or in an indirect way, through the use of food 
composition data, food marketshare data, processing data or by the use of a supertype algorithm. 
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Figure 3: Links between consumption and compound concentration data 

 
The MCRA system has a central database with example data. You may run example analyses without 
having data yourself. However, MCRA is primarily designed to work with user databases, or with a 
mixture of user data and centrally supplied data. For example, provide your own data on compound 
concentrations and combine these with the centrally supplied consumption survey data. Be careful 
when using tables from different databases: the codes of foods of the centrally supplied data and your 
own data should be consistent with each other. 
Consumption data are portions of food (consumed at different days) of consumers of whom the age, 
weight and sex is known. The second type of data, compound concentration data, are the amounts of 
compound found on monitoring samples of food. The third category, additional tables, provides 
information that links consumption data to compound concentration data or store information for 
more sophisticated analyses like unit variability (see Figure 3).  
Food composition data specifies the composition of foods. So, speaking about pizza, the composition 
specifies proportions for e.g. wheat, tomato, cheese etc. Food marketshare data specifies the 
proportion of subtypes, so for apple, marketshares are e.g. Jonagold, Granny Smith, Golden Delicious 
etc. Processing data specify the unprocessed food, the processed food and the corresponding 
processing factors, e.g. for grapes raisins are specified. The supertype of a food is, if needed, 
automatically determined. So the supertype of e.g. Granny Smith is apple. 
As a registered MCRA user you have complete control over the file management in your personal 
area by starting ‘Manage input/output’ in the Main menu (see 2.5 ). 

2.5 Manage input/output 
The ‘Manage input/output’ option in the Main menu brings you to a screen where you can upload 
your data files (see Figure 4). Each user has a personal data area with two subdirectories named ‘IN’ 
and ‘OUT’. The ‘IN’-directory is used to upload your own MS Access databases. Databases are 
uploaded directly or in zipped form. Other options in this menu are e.g. zip, rename or delete files. 
MS Access databases and zip-files can also be downloaded. Note: never delete subdirectories ‘IN’ and 
‘OUT’. 
  

Consumed foods in table: 
- FoodConsumption 
 

Measured foods in table: 
- ConcentrationValues 
- ConcentrationSummaryStatistics 
- ConcentrationDiscreteValues 
- ConcentrationWorstCaseValues 

Foods in table: 
- Processing 
- FoodComposition 
- FoodMarketshare 
- supertype algorithm 
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Figure 4: Manage input/output 

 
Output from MCRA is written to the personal ‘OUT’-directory. To download output for off-line 
viewing do the following. Go to the central menu (see Figure 7), click the ‘View-output’-button and 
click DownloadOutput (see Figure 5). Output files are downloaded in a zipped format. The download 
includes a file ‘viewoutput.htm’ which gives the same options to study output as available on the 
website.  
Occasionally, after pasting ComponentOne Charts into Word the chart is not displayed (at all) and 
instead, an icon appears. To our experience, pasting charts from the clipboard encounters no 
difficulties when the Word document is opened first, then press the 'Copy to Clipboard'-button and 
paste the contents of the clipboard into the Word document. 
Occasionally, system faults occur due to errors like incorrect database contents, queries giving empty 
subsets, subset selections combining inconsistent levels or scripting errors. The best way to proceed is 
to log out and enter the website again (login). Then, click the ‘Manage input/output’ link in the main 
menu, click your personal directory link or the ‘IN’ or ‘OUT’-subdirectory links (a number of buttons 
appear) and click the ‘Clear history’-button: all system files (files created by MCRA, but not visible) 
are deleted from the personal directory. Files on the ‘IN’ or ‘OUT’-subdirectory are not cleared. 
 

 
Figure 5: Download output for off-line viewing 
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2.6 Starting the MCRA program 
To start MCRA, click the ‘MCRA 5.0’ option in the Main menu (see Figure 2). Then, depending on 
whether you are a new user or not the screen in Figure 6 or Figure 7 is shown. Each activity is started 
from the MCRA central menu window. After finishing the activity, the user returns to the MCRA 
central menu to start a new activity.  
New users are automatically brought to the MCRA central menu in Figure 6. Click the ‘go’-button to 
start selection of data.  
 

 
Figure 6: MCRA central menu, start selection of tables, survey and compound 

 
In all subsequent cases, the menu in Figure 7 is shown. 
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Figure 7: MCRA central menu 

 
First, start selecting the data. In Figure 6, this is the only possibility. When a selection already exist, 
continue with the same selections as before by clicking the MCRA-input-form ‘go’-button (see Figure 
7). For selecting new data, click the selection-of-data ‘clear’-button and enter the screen in Figure 6. 
Click the to-overview-of-conversion ‘go’-button, to enter an overview of the latest conversion made.  

2.6.1 Selection of the tables 
Select tables from remote data servers or supply own data by clicking the selection-of-data ‘go’ or 
‘clear’-button in the MCRA central menu (see Figure 7). Then, the screen in Figure 8 displays a list of 
data servers that are sharing data with you (according to your user credentials). Select one or more 
data servers and click the ‘go’-button. In Figure 8, data server ‘Rikilt (NL)’ and ‘Your own databases’ 
are checked.  
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Figure 8: Selection of data servers 

 
In Figure 9 all databases that are available to you are shown. From here select databases for further 
use in the MCRA analysis. Click the compound-and-survey-selection ‘go’-button for selection of a 
new compound or survey if data are retrieved on a earlier occasion. 
As mentioned before, the coding used in various tables should be consistent. Therefore, the safest way 
to select data is using data from one and only one source. If not, convince yourself that data coming 
from different sources are consistent and suited for your purposes. 
On each of these sources, find some information by clicking the ‘info’-button and, next screen (not 
shown), by clicking the buttons with country names.  
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Figure 9: Selection of databases 

 
Figure 10 displays the selected databases and shows which tables are available. Select whole 
databases at once (check ‘All Tables’) or make combinations of tables from different databases as 
done in Figure 10.  
By scrolling the mouse over the checkboxes, tablenames are displayed in red, green or grey textboxes.  

• It is compulsory to select all tables for which red textboxes appear (Foodconsumption, Foods, 
Individual, Compounds and Country).  

• It is also compulsory to make a choice between one of the tables containing compound 
concentration data (ConcentrationValues, ConcentrationSummaryStatistics and 
ConcentrationDiscreteValues). These tables have their name displayed in green textboxes (see 
also 3.2.1 ).  

• All tables with grey textboxes are optional (Foodproperties, Processing, Processingtype, 
ConcentrationWorstCaseValues, AgriculturalUse, VariabilityProd, VariabilityCompProd, 
VariabilityProcCompProd).  

 
Make sure to select all compulsory tables otherwise the menu keeps returning with warnings about 
missing tables. Make also sure that in the selection, each type of table is represented once.  
To use an alternative language for labeling foods, check ‘Use alternative foodnames (foodname2))’. 
 
Click the ‘go’-button to select the checked tables. 
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Figure 10: Table selection for MCRA analysis 

2.6.2 Selection of food consumption survey and of compound 
After clicking the select-tables ‘go’-button, the screen of Figure 11 is shown. Checkboxes for ‘allow 
marketshares not summing to 100% (step 4)’ and ‘allow worstcase concentrations (step 7)’ are only 
shown when table FoodMarketshare and ConcentrationWorstCaseValues are selected. Here, table 
ConcentrationWorstCaseValues is not selected (checkbox not shown). When checkbox ‘allow 
marketshares not summing to 100% (step 4)’ is not checked, all derived foods not summing up to 
100% are ignored in the analysis. 
If more than one survey is available, select a surveyname from the scroll-down menu. MCRA works 
on single compounds. Select a compoundname from the scroll-down menu (see Figure 11). 
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Figure 11: Selection of consumption survey and of compound 

 
MCRA performs a check whether all necessary columns are available in the selected tables. If not, a 
report of errors is produced.  
 

 
Figure 12: Error report on missing columns 

 
In the continuation of the example, all tables of the ‘MCRA_5.mdb’ database are selected.  

2.6.3 Selection of foods 
After selecting your tables, information on the number of consumed and derived foods is displayed. 
For consumed foods, three situations may occur:  
1. on some foods only positive concentration values are measured, 
2. on some foods only non-detects are found, 
3. on some foods only worstcase values are found. 
 
Further output is: 
4. on some derived foods no information is found, 
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5. on some consumed foods no information is found. 
 
Now, three options are available (see Figure 13):  

1. continue with only foods for which positive concentration measurements are available, 
2. continue with foods for which concentration data are available i.e. positive concentrations 

and/or non-detects, 
3. continue with all foods i.e. also foods for which worstcase values are found (not shown). 
 
 
 

 
Figure 13: Food selection for MCRA analysis 

 
Check one of the radio buttons and click the ‘go’-button to enter the MCRA central menu (see Figure 
7). Click the MCRA-input-form ‘go’-button to enter the MCRA options menu treated in Chapter 3 . 
 
More information about selection of the consumer population and foods is found in Chapter 5 . 
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3  Specifying MCRA options and running a job 

3.1 Overview 
In this chapter, all options of the input form are discussed with references to paragraphs in Chapter 5 
for more theoretical background. 
Click the MCRA-input-form ‘go’-button of the central menu (see Figure 7). When MCRA is entered 
for the first time, the screen in Figure 14 (default options) is entered.  
 

 
Figure 14: MCRA input form. 

 
The input form is divided into a top, left and right section in which model options are specified: 

• In the top section, the type of analysis, acute or chronic, is chosen together with the option to 
perform an uncertainty analysis or not.  

• In the left section, a number of options related to the choices made in the top section are 
specified. If an acute risk model is chosen, three more specifications have to be made 
concerning the concentration and unit variability model for the concentrations and the intake 
model which may be extended with a parametric function for the age effect. For a chronic risk 
assessment two models have to be specified: the concentration and intake model. Note that  
unit variability is not relevant for chronic risks. 

• The right part of the screen displays a number of special option blocks depending on the 
choices made in the top and left section. E.g. for an acute risk model at least 3 option blocks 
are displayed: Concentration Data, Additional and Output. For a chronic risk model 
Concentration Data and Output are shown and, depending on the chosen intake model, an 
option block Intake model. In Figure 14 a fourth option block is shown: Uncertainty Analysis, 
because in the top section uncertainty analysis is set to yes. By clicking a change-options-
button, the options of that block become visible (see Figure 15, default options). 

 
After clicking any (radio) button or any item in a scroll-down menu, the screen is rebuilt to implement 
the choice. After changing a value in a text box, leave the field (move the mouse/replace pointer) to 
implement the value. 
Each description (like ‘risk type’, ‘uncertainty analysis’, ‘concentration model’ etc. in Figure 14) has 
its own mouse-over function revealing a screen-tip. By double-clicking the description name, the On 
Line User Manual is opened for more information.   
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Save your settings by clicking the save-user-defaults-button in the top section.  
The scroll-down menu Choose-default-option-setting has 4 settings: Current, Previous, System and 
User.  

• ‘Current’ is shown when one of the input options is changed.  
• ‘Previous’ recalls all program settings from the last performed MCRA analysis.  
• ‘System’ sets all default settings.  
• ‘User’ implements all user defaults.  

 
When no MCRA analysis has been performed in the past, setting ‘Previous’,’User’ and ‘System’ are 
identical. 
 

 
Figure 15: Right section after clicking the ‘change options'-buttons in the input form. 

 
Click the yellow ‘submit MCRA job’-button in the top section to start MCRA (see 3.6 ) 

3.2 Acute risk analysis 
If acute risk is specified, find the specifications in the left section of the screen (see Figure 16, default 
options). Scroll-down menus for the concentration model (see 3.2.1 ), the unit variability model (see 
3.2.3 ) and the intake model (see 3.2.5 ) are shown together with some numerical specifications.  
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Figure 16: Left section of the MCRA input form if type of analysis is Acute 

 
Number of Monte Carlo iterations 
Days of consumption are randomly sampled from the consumer database. Each time a consumption 
day is sampled, it contributes to the probability distribution of intakes. Each individual contribution is 
called an iteration. So, in Figure 16, the total number of MC-iterations is 100,000 divided over 10 
chunks (10.000 MC-iterations per chunk). Keep in mind that the number of foods, certainly when the 
processing and unit variability model are applied, determine to a large extend what amount of 
iterations per chunk is feasible. 
 
Number of computational chunks 
In general, the capacity of the internal memory restricts the size of the simulation. To overcome this 
problem, MCRA is performed in computational chunks. The results of each chunk are stored for later 
use. The chunk size (= iterations/chunks) is equal to the total number of MC-terations divided by the 
number of chunks. Chunk size and number of chunks affect processing time. When the number of 
iterations within a chunk is too high, the performance of the computer is seriously degraded and 
swapping will occur. You can observe this after clicking ‘show progress’ (see Figure 33) by an 
extremely large processing time. Advised is to rerun the simulation with a higher number of chunks. 
The estimated CPU-time in the progress bar may be an indication to determine the optimal number of 
chunks. Best strategy is to keep the number of chunks as low as possible conditional upon chunk size. 
Factors influencing the chunk size are: the total number of foods and/or the total number of 
combinations of foods, processing types and unit variability.  
The number of MC-terations per chunk determines the maximum possible value for the number of 
iterations per bootstrap. When this value is higher than the number of iterations per chunk, the value is 
overruled by the program and reset to the maximum possible value. 
 
Random seed 
The MC-simulation uses a pseudo-random number generator that is initialised by setting the seed. To 
get time-based values, set seed to zero and the generated sequence of random numbers is based on a 
default value which is printed in the program output. Using this value in a second run will result in 
identical simulation results provided that the model or number of iterations did not change. 
 
Number of bootstrap samples 
If an uncertainty analysis is chosen, specify the number of bootstrap samples. In Figure 16 the number 
is 100.  
 
Number of iterations per bootstrap sample 
If an uncertainty analysis is chosen, specify the number of iterations per bootstrap sample. In Figure 
16 the number of iterations per bootstrap sample equals the number of MC-iterations per chunk (is 
10.000). The size of a bootstrap sample never exceeds the chunksize. 
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3.2.1 Concentration model options 
Settings are: 

• empirical (only shown for full data) [default for full data] 
• binomial/lognormal (no pooling) 
• binomial/lognormal with pooling 
 

Compound concentration data are present as full data (a list of compound concentrations is available), 
summary data (only some summary statistics, for example means, percentiles or maxima are 
available) or histogram data (only numbers of observations classified in intervals are available). Select 
the type of concentration data in the selection of tables menu in 2.6.1 .  
In the probabilistic model, a distribution of compound data is used to sample from. A choice is made 
between a parametric and a non-parametric (empirical) approach. Compound data may be used as 
such (empirical modelling, only with full data) or fitted by binomial/lognormal distributions e.g. 
parametric modelling, based on full data, summary data or histogram data.  
Parametric modelling becomes important in data-scarce situations. The lognormal distribution with 
parameters μ and σ has been selected as being both theoretically sensible and practically useful 
(Shimizu & Crow 1988, Van der Voet et al. 1999). The non-parametric approach requires more data 
to obtain a satisfying representation of the full distribution.  
Summarizing, for concentration data we have: 
 
Type of concentration data full data summary data histogram data 
Option settings in concentration model    
Non-parametric: empirical x - - 
Parametric: binomial/lognormal 
 (with or without pooling) x x x 

Table 1: Possible combinations of option settings with type of concentration data. 

See also: How to deal with limited information 

3.2.1.1 Empirical 
In the non-parametric approach, choose ‘empirical’: concentrations are sampled at random from the 
available data and combined with food consumption data to generate the intake distribution of intake 
values. 
See also: Non-parametric modelling of concentrations (empirical) 

3.2.1.2 Binomial/lognormal (no pooling) 
In the parametric approach, compound concentrations per food are sampled from parametric 
distributions based on full, histogram or summary data. Parameters μ and σ of the lognormal 
distribution are estimated using the log-transformed non-zero compound concentrations (full data) or 
condensed data (summary or histogram data). Choose this setting only, when enough data are 
available to estimate μ’s and σ’s for all foods. 
Estimation of the variance and/or mean may fail because compound measurements on specific foods 
are sparse or even missing. In case of missing parameters, a warning message is printed. Re-run  
MCRA with setting ‘binomial/lognormal with pooling’. 
A related question is the reliability of estimates based on a few degrees of freedom. To overcome 
these problems, basically, concentration data on other foods are used to give sufficient data to base 
estimates upon. Foods are classified into groups of similar foods and missing or unreliable parameters 
are estimated using all concentration data in a group. This process of using concentration data on 
similar foods to base estimates for μ and σ upon is called pooling (see 3.2.1.3 ) 
See also: Parametric modelling of concentrations (binomial/lognormal no pooling) 
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3.2.1.3 Binomial/lognormal with pooling 
Specifying pooling means that foods are automatically assigned into groups and pooled. The 
identification of groups is based on the CODEX system, using the first 2 characters of the code. When 
the code contains information on supertypes e.g. indicated by the presence of symbol ‘$’, then the 
supertype is used to form groups. Foods with equal first 2 characters or equal supertypes are placed 
into the same group. 
 
Pooling is performed in a two step procedure following the next scheme: 
1. Test homogeneity of variances within the groups 

if variances are homogeneous, 
 pool variances.   

test homogeneity of means within the groups 
if means are homogeneous, 
 pool means. 

2. Test homogeneity of variances of foods with df < 10 against overall-variance  
if variances are homogeneous, 
replace variances with overall-variance. 

 
Results of step 1 and 2 are (sub) groups with: 
a) pooled variances and pooled means,  
b) pooled variances and the original (unpooled, heterogene) means,  
c) the original (unpooled, heterogene) variances and original means. 
 
An example of pooling is given in 10.7 . 
See also: Parametric modelling of concentrations (binomial/lognormal with pooling) 

3.2.2 Concentration data options 
Find in the right section of the input form, option block Concentration data (see Figure 17, default 
options). Specify settings for missing data and non-detects and how to model processing effects. 
 

 
Figure 17: Option block Concentration data 

3.2.2.1 Replacement of non-detects 
Settings are: 

• no replacement of non-detects [default] 
• replace all non-detects 
• replace non-detects based on crop treated 
 

In many cases of compound risk assessment (e.g. pesticides) the majority of the monitoring 
measurements are non-detects, i.e. no quantitative measurement is reported. Only values higher than 
the Limit Of Reporting (LOR) are reported. When a compound enters the food chain only via crop 
treatment and the percentage crop treated is (approximately) known, this knowledge is used to infer 
that some of the monitoring measurements should be real zeroes, contributing nothing to the intake, 
whereas other non-detects in the monitoring data could have any value below the limit of reporting.  
Non-detects (all non-detects or a specified fraction) are replaced with 0 or the LOR multiplied by a 
multiplication constant. If percent crop treated data are available (see table AgriculturalUse, 9.5.9 ), 
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then replacement by LOR is restricted to an appropriate fraction of the non-detects by specifying 
‘Replace non-detects based on crop treated’.  
See also: Modelling of missing data and replacement of non-detects 

3.2.2.2 Modelling processing effects 
Settings are: 

• no processing [default] 
• processing (fixed factors) 
• processing (distribution based) 

 
Concentrations in the consumed food may be different from the monitoring compound due to 
processing such as peeling, washing and cooking. Usually, processing lowers the concentration in the 
consumed food compared to the concentration in the unprocessed food. The effect of processing is 
modelled by multiplying the monitoring compound by a factor fk which will typically be between 0 
and 1. Occasionally, the processing factor may also be > 1, e.g. for drying. Often, processing factors 
are not exactly known or information is of limited quality. These uncertainties may be entered into the 
model by specifying two values:  

• fk,nom, the nominal value, typically some sort of mean;  
• and, fk,upp, an upper 95% confidence limit.  
 

Distribution based processing factors require both values whereas for fixed factors only fk,upp need to 
be specified. No processing implies that fk = 1. 
 
To use processing factors fk , choose Processing (fixed factors) or Processing (distribution based). 
Processing factors are read from table ‘Processing’ (fk,nom = proc_nom, fk,upp = proc_upp) and 
processing codes and labels from table ‘ProcessingType’. Note that specifying no processing is a 
worst case scenario (fk =  fk,upp = 1). 
The program multiplies concentrations with fixed processing factors (in which case the conservative 
value fk = fk,upp is used), or with random values sampled from a normal distribution with parameters μ 
and σ. The mean and standard deviation are based on transformed values of fk,upp and fk,nom. The type of 
transformation for each processing type is specified in the last column of table ProcessingType. 
Choose disttype = 1 for a logistic-normal distribution or disttype = 2 for a log-normal distribution. To 
process simultaneously some foods using fixed factors and others distribution based, choose 
‘Processing (distribution based)’. Now, fixed factors fk are obtained by providing only fk,upp whereas 
random factors fk are sampled when both fk,upp and fk,nom are given.  
It is not necessary to fill out a complete list of processing factors for all foods. Missing values of fk,nom 
and fk,upp are, by default, replaced by the value 1. 
See also: Modelling of processing effects 

3.2.3 Unit variability model options 
Settings are: 

• no unit variability [default] 
• beta distribution 
• lognormal distribution 
• bernoulli distribution 

 
Monitoring measurements are typically made on homogenised composite samples. Each sample is 
composed of nuk units with nominal unit weight wuk each. The weight of a composite sample is often 
larger than a daily consumer portion. This implies that the mean level of the monitoring compound 
may be a fair estimate of the mean level of the food, but the variability of the monitoring 
measurements is certainly not appropriate to estimate the variance. Therefore, acute risks may be 
higher than would follow from a direct use of the composite sample data. This problem has been 
addressed by modelling unit variability.  
In MCRA, the following three models for unit variability are available: 
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1. Beta model, requires knowledge of the number of units in a composite sample, and of the 
variability between units (realistic or conservative estimates); 

2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results 
are always conservative); 

3. Lognormal model requires only knowledge of the variability between units (realistic or 
conservative estimates). 

See also: Modelling of unit variability 

3.2.3.1 Estimated parameters for unit variability 
When parameters for unit variability based on empirical studies are available, these are used to 
simulate concentrations for a unit, assuming a parametric form for the unit-to-unit variability within a 
batch e.g. the beta or lognormal distribution. 
Table 2 describes the four options when a parametric form for unit variability is specified. 
Compounds are simulated for a new unit in the batch using a lognormal distribution or for a unit 
belonging to the composite sample leading to the use of the beta distribution. 
 

 Simulate for new unit in batch  
 

(lognormal distribution) 

Simulate for unit belonging to 
composite sample 
(beta distribution) 

Estimates of unit 
variability  are 
realistic (R) 

• no censoring at cmk 
• no upper limit to the unit 

concentration 

• no censoring at cmk 
• unit values never higher than 

kk cmnu ⋅   
Estimates  of unit 
variability are 
conservative (C) 

• unit values will be left-censored 
at cmk 

• no upper limit to the unit 
concentration 

• unit values will be left-censored at 
cmk 

• unit values never higher than 
kk cmnu ⋅   

Table 2: Choices for estimated variability factors. cmk =  value of composite sample 
concentration, nuk  =  number of units in composite sample. 

See also: Approaches to unit variability in probabilistic modelling: specifying distributions 

3.2.3.2 Beta distribution 
Find in the right section of the input form, option block Unit variability: Beta distribution (see Figure 
18, default options). 
 

 
Figure 18: Option block Unit variability: Beta distribution 

 
The parameter for unit variability is specified as a variability factor v or as a coefficient of variation cv 
of the unit values in the composite sample. Variability factors v (97.5th percentile divided by mean), 
coefficient of variation cv (standard deviation divided by mean) and number of units nu in the 
composite sample are retrieved from table VariabilityProd when unit variability is independent of the 
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compound and processing type. If the variability factor is dependent on compound and/or processing 
type data are expected in tables VariabilityCompProd or VariabilityProcCompProd, respectively.  
 
The following variability factors v are recommended:  

• for large crops (wuk > 250g) value v = 5;  
• for medium crops (wuk 25- 250g) v = 7;  
• for small crops (wuk ≤ 25g) v = 1 (FAO/WHO, 1997).  
• and for foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, 

v = 1.  
 
The latter information is specified in field bulkingblending of table ProcessingType (see 9.4.4 ). If the 
parameter for variability is missing, zero variability is assumed, and the unit concentrations are equal 
to the sampled composite sample concentrations. 
A choice to be made is whether the supplied values for variability are realistic or conservative 
estimates. In the latter case, unit values are left-censored at the value of the mean (composite sample 
concentration). If there are no user-defined values for the number of units in the composite sample 
these are taken using a default scheme of nominal unit weights. This scheme follows in principle the 
definition of FAO/WHO (1997), as illustrated in Figure 18, but can be modified by the user. 
See also: Beta model for unit variability 

3.2.3.3 Lognormal distribution 
Find in the right section of the input form, option block Unit variability: Lognormal distribution (see 
Figure 19, default options). 
 

 
Figure 19: Option block: Unit variability: Lognormal distribution 

 
In Figure 19 a parametric form for the unit-to-unit variability is specified. Concentrations are 
simulated for new units in the batch leading to the lognormal distribution.  
The parameter for unit variability is specified as: 

• a coefficient of variation cv, 
• or as a variability factor v. 
 

The conversion of a variability factor into parameters of the lognormal distribution requires an exact 
definition of what is meant. Here, the variability factor is defined as the 97.5th percentile of the 
concentration in the individual measurements divided by the corresponding mean concentration seen 
in the composite sample.  
Finally a choice is made whether: 

• a realistic, 
• or a conservative approach is modelled.  

 
In the conservative approach, unit concentrations of the composite sample are left-censored at the 
value of the monitoring compound. When a realistic approach is defined, the unit value may be lower 
than the value of the monitoring compound. 
See also: Lognormal model for unit variability 
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3.2.3.4 Bernoulli distribution 
Find in the right section of the input form, option block Unit variability: Bernoulli distribution, (see 
Figure 20, default options). 
 

 
Figure 20: Option block Unit variability: Bernoulli distribution 

 
In practice, measurements on individual units to obtain a measure for unit variability are not very 
common. Therefore, the number of units nuk in the composite sample is used to define the parameter 
for unit variability (see van der Voet et al. 2001). When the number of units nuk in the composite 
sample is missing, the nominal unit weight wuk is used to calculate the parameter for unit variability. 
The following variability factors v are recommended:  

• for large crops (wuk > 250g) value v = 5;  
• for medium crops (wuk 25- 250g) v = 7;  
• for small crops (wuk ≤ 25g) v = 1 (FAO/WHO, 1997).  
• and for foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, 

v = 1.  
 
The latter information is specified in field bulkingblending of table Processing (see 9.4.4 ). The 
number of units within a consumption is calculated and for each unit a Bernoulli distribution is used 
to sample the monitoring compound itself with probability (v-1)/v or a multiple v of it with probability 
1/v (see Figure 20). 
See also: Bernoulli model for unit variability 

3.2.4 Additional options concerning IESTI and consumption days 
For the acute risk model, find in the right section of the input form, option block Additional options 
that handles IESTI and consumption days (see Figure 21, default options). 
 

 
Figure 21: Option block Additional in the third section of the MCRA input form screen 
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The IESTI (International Estimated Short-Term Intake) is a prediction of the short-term intake of a 
compound on the basis of the assumptions of high daily food consumption per consumer and highest 
compounds and, in case of blending and bulking, the median compound from supervised trials. The 
IESTI is expressed in microgr/kg body weight/day and estimated per food. 
IESTI estimates are requested when estimation of IESTI is set to yes. Standard unit variability factors 
and a standard body weight of 60 kg are specified. The IESTI is compared with estimates of a 
specified percentile (per foodt) of the MC-simulation.  
In the output (not shown) two kinds of estimates of the MC-percentile are given: one for “All days” 
and one for “Consumption days only”. Be aware that specification of option ‘consumption days only’ 
may alter the interpretation (and estimate) of the percentile for “All days”. In the latter case the 
estimate refers to a smaller subset containing consumption days only. However, note that still not 
every food is eaten on every consumption day. The interpretation and estimate of the percentile for 
“Consumption days only” is not affected by setting option ‘consumption days only’. 
The IESTI calculations correspond to the definition of FAO/WHO (2002) that may be considered as 
the deterministic counterpart of the probabilistic approach used in MCRA. 
In 10.3 output of IESTI calculations are shown. 
See also: Additional: Comparison of probabilistic with deterministic estimates of acute risk 

3.2.5 Intake model options 
Settings are: 

• only empirical estimates [default] 
• empirical estimates and betabinomial/lognormal with age 

3.2.5.1 Only empirical estimates 
This is a straightforward acute risk analysis.  

3.2.5.2 Empirical estimates and betabinomial/lognormal with age 
Find in the right section of the input form, option block Intake model (see Figure 22, default options). 
 

 
Figure 22: Option block Intake model in the right section of the MCRA input form screen 

 
Note that estimation of an age effect for an acute risk assessment is additional to the standard analysis. 
The simulated intake values of an acute analysis are used as input and:  

• an intake frequency function is estimated with a betabinomial model using a spline or 
polynomial function to model age effects;  
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• non-zero intakes are log transformed and the transformed intake amounts are analysed using 
REML, again, using a spline or polynomial function to model age effects, and;  

• the information of both analyses is combined to estimate an age dependent acute intake 
distribution and to derive the requested age dependent percentiles. 

See also: Empirical estimates and betabinomial/lognormal with age 
 
Intake frequency 
The intake frequency function models the probability of consumers of having an intake. Depending on 
the consumption pattern, we have regular, less regular and incidental consumers. So each consumer 
has his own probability of having an intake. For many foods, there may be a relation with age (or sex 
or, if available, other demographic data). So the probability of having an intake may be related to the 
age of the consumer. The betabinomial distribution is very suited to sample consumer probabilities of 
having an intake using age as explanatory variable. 
In Figure 22, first, we have to decide on modelling the age effect or not. The next choice is between 
using a spline function or a polynomial. A smoothing spline is a complicated function, constructed 
from segments of cubic polynomials with constraints to ensure smoothness. A polynomial function is 
based on orthogonal quadratic, cubic or quartic curves. The degree of smoothness of the spline or 
polynomial function is controlled by increasing or decreasing the degrees of freedom. A spline with 
the maximum degrees of freedom is less smooth than a spline with the minimal degrees of freedom. 
We also have to decide on the method of testing: backward means that testing starts with a spline or 
polynomial of the highest degree. In each elimation round the number of degrees of freedom was 
decreased one at a time, and was stopped when the resulting decrease in fit was significant at the 
specified significance level as judged on the basis of a deviance test. Forward selection means that the 
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. In 
all evaluations the testing level is 0.01 (see Figure 22). 
See also: Modelling the intake frequency distribution 
 
Intake amount distribution 
The non-zero intakes are logarithmically transformed and the ln(intakes) are analysed with REML 
using a spline or polynomial function to model age effects. The analysis provides us with age 
dependent mean intakes and the standard deviation of the ln(intake) distribution. In Figure 22, second 
part, we decide on modelling the age effect or not; the use of a spline or polynomial function; 
backward or forward selection; the degrees of freedom; and the testing level. For the ln(intake) 
amount model choosing the spline function implies that the degree is automatically selected by the 
algorithm. For a polynomial function, the user has to decide on the degrees of freedom and method. 
See also: Modelling ln(intake) amounts 
 
Estimation of age dependent percentiles 
The intake frequency is used to sample age dependent intake probabilities. Together with the age 
dependent mean ln(intakes) and the estimated standard deviation of the second analysis, we now have 
all what is nessecary to estimate an acute intake distribution with a parametric age effect. The number 
of simulated age dependent intakes is set equal to the number or iterations supplied in the MCRA 
input form. After simulating the age dependent intake distribution, the requested percentiles are 
estimated. 
See also: Estimating the acute intake distribution 

3.3 Chronic risk analysis 
Specify in the top section (see Figure 14) chronic risk and uncertainty. Specifications in the left 
section (see Figure 23, default options) are: 
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Figure 23: Left section of the MCRA input form if type of analysis is Chronic 

 
In dietary risk assessment, chronic exposure is defined as the long-run average of daily intakes of a 
dietary component by an individual consumer. In the MCRA program, for chronic risk assessment, 
the intake is calculated as the consumption on each day of each consumer multiplied by the average 
value of the compounds (non-detects and detects) divided by body weight and, if specified, applying 
processing and/or replacing zeros with the LOR (based on percent crop treated). Note, unit variability 
is not relevant in chronic risk assessment. Compound data for a chronic risk assessment may be 
present as full, summary or histogram data. For full data, a choice can be made between a parametric 
and a non-parametric (empirical) approach. For summary or histogram data a parametric approach is 
obligatory. Note, that option consumption-days only is not relevant for chronic risks and that chronic 
risk assessment is only performed when the total number of days per consumer is 2 or more. 
See also: Chronic risk assessment 
 
Random seed 
This option is only visible when uncertainty is specified. Settings are the same as for the acute risk 
model. See 3.2  
 
Number of bootstrap samples 
This option is only visible when uncertainty is specified. Settings are the same as for the acute risk 
model. See 3.2  

3.3.1 Concentration model options 
Settings are: 

• empirical [default] (see 3.2.1.1 )  
• binomial/lognormal (no pooling) (see 3.2.1.2 )  
• binomial/lognormal with pooling ( see 3.2.1.3 ) 
 

For options of Concentration data (see 3.2.2 ) 

3.3.2 Intake model options 
Settings are: 

• betabinomial/lognormal [default] 
• betabinomial/lognormal (with age) 
• discrete/semiparametric (Nusser) 

3.3.2.1 Betabinomial/lognormal 
Input for a chronic risk assessment is the intake calculated as the consumption on each day of each 
consumer multiplied by the average value of the compounds divided by body weight (see 3.3 ). 
Applying the betabinomial/lognormal model  

• an intake frequency function is estimated using the betabinomial model;  
• non-zero intakes are log transformed, the transformed intake amounts are analysed using 

REML and parameters of the usual intake distribution are estimated;  
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• the information of both analyses is combined to estimate a usual intake distribution which is 
used to derive the requested usual intake percentiles.  

See also: Betabinomial/lognormal 
 
Intake frequency 
The intake frequency function models the probability of consumers of having an intake. Depending on 
the consumption pattern, we have regular, less regular and incidental consumers. So each consumer 
has his own probability of having an intake. The betabinomial distribution is very suited to sample 
consumer probabilities of having an intake. 
See also: Modelling the intake frequency distribution 
 
Intake amount distribution 
The non-zero intakes are logarithmically transformed and the ln(intakes) are analysed with REML 
estimating the parameters of the non-zero usual intake distribution. The total variance of the non-zero 
daily intakes is divided into a between-consumer component and a within-consumer component. The 
variance of the between-consumer variance component is the basis for the estimation of the the usual 
intake distribution. 
See also: Modelling ln(intake) amounts 
 
Estimation of usual intake percentiles 
The intake frequency is used to sample intake probabilities. Together with the non-zero usual intake 
distribution a usual intake distribution is estimated for the entire population, e.g. both consumers as 
non-consumers. This is the distribution that is used for the estimation of the usual intake percentiles. 
See also: Estimating usual intake distributions 

3.3.2.2 Betabinomial/lognormal (with age) 
Find in the right section of the input form, option block Intake model (Figure 24, default options). 
 

 
Figure 24: Option block Intake model if intake model is betabinomial/lognormal (with age) 

 
Input for a chronic risk assessment is the intake calculated as the consumption on each day of each 
consumer multiplied by the average value of the compounds divided by body weight (see 3.3 ). 
Applying the betabinomial/lognormal with age model  

• an intake frequency function is estimated with a betabinomial model using a spline or 
polynomial function to model age effects;  
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• non-zero intakes are log transformed and the transformed intake amounts are analysed using 
REML, again using a spline or polynomial function to model age effects, and;  

• the information of both analyses is combined to estimate an age dependent usual intake 
distribution and to derive the requested age dependent usual intake percentiles. 

See also: Betabinomial/lognormal with age 
 
Intake frequency 
The intake frequency function models the probability of consumers of having an intake. Depending on 
the consumption pattern, we have regular, less regular and incidental consumers. So each consumer 
has his own probability of having an intake. For many foods, there may be a relation with age (or sex 
or, if available, other demographic data). So the probability of having an intake may be related to the 
age of the consumer. The betabinomial distribution is very suited to sample consumer probabilities of 
having an intake using age as explanatory variable. 
In Figure 24, first, we have to decide on modelling the age effect or not. The next choice is between 
using a spline function or a polynomial. A smoothing spline is a complicated function, constructed 
from segments of cubic polynomials with constraints to ensure smoothness. A polynomial function is 
based on orthogonal quadratic, cubic or quartic curves. The degree of smoothness of the spline or 
polynomial function is controlled by increasing or decreasing the degrees of freedom. A spline with 
the maximum degrees of freedom is less smooth than a spline with the minimal degrees of freedom. 
We also have to decide on the method of testing: backward means that testing starts with a spline or 
polynomial of the highest degree. In each elimation round the number of degrees of freedom was 
decreased one at a time, and was stopped when the resulting decrease in fit was significant at the 
specified significance level as judged on the basis of a deviance test. Forward selection means that the 
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. In 
all evaluations the testing level is 0.01 (see Figure 24). 
See also: Modelling the intake frequency distribution 
 
Intake amount distribution 
The non-zero intakes are logarithmically transformed and the ln(intakes) are analysed with REML 
using a spline or polynomial function to model age effects. The analysis provides us with age 
dependent ln(intakes) and estimates of the parameters of the non-zero usual intake distribution. The 
total variance of the non-zero ln(intakes) is divided into a between-consumer component and a within-
consumer component. The variance of the between-consumer variance component is the basis for the 
estimation of the distribution of the usual intake. In Figure 24, second part, we decide on modelling 
the age effect or not; the use of a spline or polynomial function; backward or forward selection; the 
degrees of freedom; and the testing level. For the intake amount model, choosing the spline function 
implies that the degree is automatically selected by the algorithm. For a polynomial function, the user 
has to decide on the degrees of freedom and method. 
See also: Modelling ln(intake) amounts 
 
Estimation of age dependent percentiles 
The intake frequency is used to sample age dependent intake probabilities. Together with the age 
dependent mean ln(intakes) and the estimated between-consumer variance component of the REML 
analysis, we can estimate a usual intake distribution with a parametric age effect. The requested usual 
intake percentiles are estimated using a simulated age dependent usual intake distribution. 
See also: Estimating usual intake distributions 

3.3.2.3 Discrete/semiparametric (Nusser) 
Find in the right section of the input form option block Intake model (see Figure 25, default options). 
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Figure 25: Option block Intake model if intake model setting is discrete/semiparametric (Nusser) 

 
Input for a chronic risk assessment is the intake calculated as the consumption on each day of each 
consumer multiplied by the average value of the compounds divided by body weight (see 3.3 ). 
Before estimating the chronic percentiles of the distribution applying the discrete/semi-parametric 
(Nusser) model non-normal exposure data are transformed to approximate normality following an 
approach proposed by Nusser et al. (1996, 1997) and Dodd (1996). 
See also: Discrete/semiparametric (Nusser)  
 
Transformation: power or logarithmic 
Transformations are specified using a power transformation or a logarithmic transformation. Usually, 
a power transformation is satisfactory. 
See also: Power or log transformation 
 
Spline fit or not 
After transforming the intakes, the transformation to normality is improved by fitting a spline to the 
transformed intakes. A smoothing spline is a complicated function, constructed from segments of 
cubic polynomials with constraints to ensure smoothness.  
See also: Spline fit 
 
Number of iterations to estimate intake frequency distribution 
The algorithm to estimate the intake frequency distribution may be modified by specifying the 
number of iterations. The specified number in Figure 25 is 5 so the number of iterations is 5 x 1000 = 
5000. 
See also: Back transformation and estimation of usual intake 
 
Number of bins for discretisation 
The resolution of the probability grid for the intake frequency distribution is equal to 20. So, the 
probability mass is discretised at a grid ranging from 0 to 1 and a steplength equal to 0.05. 
See also: Back transformation and estimation of usual intake 

3.4 Uncertainty analysis 
Specify in the top section (see Figure 14) an uncertainty analysis. 
See also: Uncertainty of risk assessments: bootstrapping data sets 

3.4.1 Uncertainty analysis options for acute risks 
Find in the right section of the input form, option block Uncertainty analysis (see Figure 26, default 
options). 
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Figure 26: Option block Uncertainty analysis if an acute risk model is chosen 

 
The uncertainty of output statistics (e.g. mean or percentiles of the exposure distribution) is assessed 
by bootstrapping. The bootstrap can be applied on the level of fresh MC-samples, on the level of 
consumers and on the level of the compounds. To examine the uncertainty due to fresh MC-samples 
in each analysis only, specify ‘no’ for both bootstrap consumption data and compound data. Applying 
a bootstrap for consumption and compound data means that from each level with replacement a 
bootstrap sample is drawn and the corresponding intake distribution is calculated. Then, each 
bootstrap sample provides a mean, maximum and percentiles according to the specified percentages 
and all replicates together contain the information to make inferences from the data, e.g. to establish 
the uncertainty of mean, maximum and percentiles.  
The number of bootstrap samples and the number of iterations per bootstrap sample is specified in the 
left section of the MCRA input form (see Figure 16). There, 100 bootstrap samples are specified and 
each bootstrap sample consists of 10,000 values. The number of values within a bootstrap sample 
restricts which percentiles are displayed. Here, the highest possible percentage for which uncertainty 
information can be calculated is the 99.99th percentile, for a bootstrap-sample containing 1000 values 
this is the 99.9th percentile. Note, that the number of iterations per bootstrap sample is never higher 
than the chunksize.  

3.4.2 Uncertainty analysis options for chronic risks: betabinomial/lognormal and 
betabinomial/lognormal (with age) 
See uncertainty analysis for acute risks described in 3.4.1 . 

3.4.3 Uncertainty analysis options for chronic risks: discrete/semiparametric (Nusser) 
Find in the right section of the input form, option block Uncertainty analysis (see Figure 27, default 
options). 
 

 
Figure 27: Option block Uncertainty analysis if a chronic risk model is chosen 

 
The uncertainty is assessed using a bootstrap for consumption and compound data. Option ‘re-
estimate consumption frequency distribution’ is only relevant when consumptions are bootstrapped. 
Note that estimation of the frequency distribution is time consuming. Options ‘re-estimate power 
transformation’ and ‘re-estimate number of knots for spline’ are used in the transformation to 
approximate normality of the intake distribution. 
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3.5 Output 
Depending on the type of analysis there are different output option blocks to specify graphics and 
tables. 

3.5.1 Output options for acute risks: only empirical estimates 
In Figure 28 (default options), percentages are specified separated by a space.  
 

 
Figure 28: Option block Output if an acute risk model is chosen with only empirical estimates 

 
The next option is needed for summarising the contribution of foods to the right tail of the exposure 
distribution and to display a graph of the upper tail. A percentage may be specified, but specifying an 
exposure value instead overrules the percentage. The percentage for drill-down option  is used to 
select the nine consumers lying around the percentile of the intake distribution that corresponds to the 
specified percentage. For these consumers the age and weight are displayed, the intake, the 
consumption and the compound contents found on each consumption. To find the upper nine 
consumers, e.g. the nine consumers with the highest intake, specify percentage 100. Note that the 
information on the nine selected consumers is only approximately, giving a rough indication about the 
kind of consumers and their intake. The MCRA program performs an extra loop to gather the 
necessary information about consumers. This extra loop is only and only used to display information 
about the nine selected consumers. 

3.5.2 Output options for acute risks: empirical estimates + betabinomial/lognormal with 
age 
The upper part of Figure 29 (default options), see 3.5.1 . In the lower part, options related to age are 
shown. The minimum and maximum age are retrieved from the database, but are overuled by 
specifying own values. The steplenght is automatically determined but can be overruled. Default, 
approximately 20 steps are taken and the calculated steplength is rounded to the nearest integer. To 
get predictions for specific ages, specify your extra ages space separated. Extra ages may lay outside 
the specified range determined by the minimum and maximum age.  
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Figure 29: Option block Output if an acute risk model is chosen with empirical estimates + 
betabinomial/lognormal with age 

3.5.3 Output options for chronic risks: betabinomial/lognormal 
See Figure 30 (default options) and 3.5.1 . 
 

 
Figure 30: Option block Output if a chronic risk model is chosen with betabinomial/lognormal 

3.5.4 Output options for chronic risks: betabinomial/lognormal with age 
See Figure 31 (default options) and 3.5.1  and 3.5.2 . 
 

 
Figure 31: Option block Output if a chronic risk model is chosen with betabinomial/lognormal 
with age 

3.5.5 Output options for chronic risks: binomial/lognormal + discrete/semiparametric 
(Nusser) 
See Figure 32 (default options) and 3.5.1 . 
 

 
Figure 32: Option block Output if a chronic risk model is chosen with binomial/lognormal + 
discrete/semiparametric (Nusser) 

3.6 Running an MCRA job 
Click the ‘MCRA-submit-job’-button in the top section to run a MCRA analysis. Check the radio 
button if you wish to be notified when the analysis is completed. After submitting the form, enter the 
MCRA central menu (see Figure 33).  

3.7 Checking the processing time 
After a submit, all model specifications are passed to the server and the analysis is initiated. First, all 
data are exported to system files located on the user directory. Export of data takes only place when 
data are changed e.g. after selection of new tables or after subset selection. In all other cases, e.g. 
different model options, exportation of data is already performed and this step is cancelled. 
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Click the ‘show progress’-button to view the progress of the analysis (see Figure 33). Here, also 
information is given about the estimated CPU time. Performing an exposure assessment may take 
considerable time if the data files are large and/or if the number of iterations is high. Click the ‘update 
window’-button to refresh the screen. Click the ‘kill job’-button to end a job (with a fatal error status, 
not shown). 
 
 

 
Figure 33: Central menu, show progress 

 
When the job is completed and only after an update, a new button ‘view output’ appears (see Figure 
7). Click the ‘view output’-button to get the screen in Figure 35 (see 4.1 . 
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4  Output 
Click the ‘view output’-button in Figure 7 to view the results of the analysis. It is always possible to 
view output of the last job on a later moment. Both tabular and graphical results may be viewed. 
Depending on the type of analysis, the output window looks different (for example Figure 35 and 
Figure 40).  
In 4.1 , the output is shown of a basic acute risk analysis. In 4.2 an example is given of a chronic risk  
analysis. Other examples you can find in Ch. 10 . For downloading results for off-line viewing, see 
2.5. 

4.1 Acute risk assessment: basic analysis 
This example shows output of an acute risk assessment for organo phosphate pesticide chlorpyrifos 
which has neurotoxic effects. The Dutch MCRA_5 database from Rikilt (NL) is used. Select ‘All 
tables’, survey ‘DNFCS-3’ and compound ‘CHLORPYRIFOS’. Then, after subset selecting (see 6.2 
): STRAWBERRY, TABLE_GRAPES, MANDARINE, ORANGE SWEET, APPLE, NECTARINE, 
PEACH and PEPPER SWEET, the input form is reached (see Figure 34).  
 

 
Figure 34: MCRA input form for basic acute risk analysis 

 
Table 3 lists the main options for this basic analysis: 
 
Input form   

risk type Acute 
uncertainty analysis No 
concentration model empirical 
Number of Monte Carlo iterations   200000 
Number of computational chunks  10 
unit variability model no unit variability 
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Random seed 0 
Intake model only empirical estimates 
concentration data system defaults 
additional system defaults 
output: 
percentage for summary/graph 

 
95 

Table 3: Input form options: basic acute risk analysis 

After clicking the ‘submit MCRA job’ in Figure 34 the analysis is started. When the analysis is 
finished, view your results using the ‘view output’-button in the central menu. This gives Figure 35: 
 

 
Figure 35: View output window for basic acute risk analysis 

 
Choose ‘Logfile’ and click the ‘Submit’-button in Figure 35. In Table 4 you find the main 
characteristics concerning this analysis taken from the logfile. 
 
Log-file  

Survey name DNFCS-3 
Compound code  CHLORPYRIFOS 
Number of foods 8 
Acute reference dose (ARfD) 100 
Acceptable daily intake (ADI) 10 
Number of detects 100 
Number of non-detects 938 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
sex female, male 

Total no of consumption days 10718 

Table 4: Information taken from the log-file 
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Choose ‘Summary of Databases of Food Consumption and Compound Concentrations ’ and click the 
‘Submit’-button in Figure 35: a summary is given from the data stored in your databases (see Table 
5). The upper part of the table displays all information concerning consumption data and the lower 
part all information concerning compound concentrations. For each food you will find the code and 
label. 
In the upper part the average consumption over all consumers and all days (MeanConsum) together 
with the average consumption on consumption days only (MeanConsDays) is given. In addition, the 
number of consumption days (NconsDays) and total number of days (Ndays) are displayed also 
expressed as percentage consumption days (%ConsDays). So, there are 12500 days (2 days for 6250 
consumers). Strawberry is consumed on 6095 days (48.8%). The average consumption of Strawberry 
on these days is 17.45 x 12500/6095 = 35.8 g.  
 
  
SUMMARY OF DATABASES OF CONSUMPTIONS AND COMPOUND CONCENTRATIONS WITH RESPECT TO: 
*********************************************************************** 
 
 Compound:  CHLORPYRIFOS 
 
*********************************************************************** 
 
Code         : food code 
Food         : food label 
----------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
----------------------------------------------------------------------- 
MeanConcen   : mean concentration of all samples 
MeanPosConc  : mean concentration of samples with positive concentrations 
NSamplPos    : number of samples with positive concentrations 
NSamples     : total number of samples with concentration measurements 
%SamplPos    : percentage samples with positive concentrations 
*********************************************************************** 
 
FOOD CONSUMPTION DATA 
 
        Code         Food MeanConsum MeanConsDays NConsDays    NDays   %ConsDays 
                                 (g)          (g)                            (%) 
      FB0275 STRAWBERRY        17.45         35.8      6095    12500        48.8 
      FB1235 TABLE-GRAPES      69.51        179.7      4836    12500        38.7 
      FC0206 MANDARIN, SE      11.12         51.9      2677    12500        21.4 
      FC0208 ORANGE, SWEE      74.25        129.6      7163    12500        57.3 
      FP0226 APPLE            100.57        162.5      7737    12500        61.9 
      FS0245 NECTARINE          0.80        119.6        84    12500         0.7 
      FS0247 PEACH             11.88         42.0      3538    12500        28.3 
      VO0445 PEPPERS, SWE      13.03         64.3      2533    12500        20.3 
 
COMPOUND CONCENTRATION DATA 
 
        Code         Food MeanConcen  MeanPosConc NSamplPos NSamples   %SamplPos 
                             (mg/kg)      (mg/kg)                            (%) 
      FB0275 STRAWBERRY       0.0006       0.0433         3      225         1.3 
      FB1235 TABLE-GRAPES     0.0090       0.0795        20      176        11.4 
      FC0206 MANDARIN, SE     0.0564       0.1479        29       76        38.2 
      FC0208 ORANGE, SWEE     0.0232       0.1090        30      141        21.3 
      FP0226 APPLE            0.0016       0.0440         5      136         3.7 
      FS0245 NECTARINE        0.0112       0.1160         5       52         9.6 
      FS0247 PEACH            0.0033       0.0350         4       42         9.5 
      VO0445 PEPPERS, SWE     0.0013       0.0600         4      190         2.1 
                                                       ----     ---- 
                                  number of detects =   100     1038  = the total number of 
samples 
 
                          the number of non-detects =   938  ( 1038  -   100 ) 

Table 5: Summary of the database, consumptions and compounds 
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The lower part of Table 5 displays information concerning the compound concentrations. The mean 
concentrations of all samples (MeanConcen) and of positives only (MeanPosConc) are calculated. 
The number of positives (NSamplPos) and the total number of concentration measurements 
(NSamples) are given as well as the percentage of positive concentrations (%SamplPos). In this 
example for Strawberry 3 positive concentrations are found out of 225 samples (1.3%). The mean 
concentration of the positive samples is 0.0006 x 225/3 = 0.0433 mg/kg.  
 
Choose ‘Summary of Simulated Consumptions and Compound Concentrations’. In Figure 35 you find 
essentially the same kind of information but all statistics are calculated using simulated data (see 
Table 6). The simulation is performed by sampling N (in Table 6 200,000) times from the days in the 
food consumption database (with replacement) irrespective of consumer. For each consumed food per 
day a concentration is sampled from the distribution of concentrations of that food. Multiplying 
consumptions and concentrations gives the intake per food. Summing up the intakes over the foods 
and dividing the sum by the bodyweight of the consumer of the sampled day gives the total intake of 
the compound (here CHLORPYRIFOS) expressed in microgram per kg bodyweight per day. For both 
the consumption and concentration part you will find one additional statistic, DeltaC and DeltaR 
respectively. This statistic displays the difference expressed as percentage between the mean 
(MeanCons resp. MeanConc) of the simulated data and the mean of the data as found in your 
database. The better the simulation resembles the database the lower the percentages indicating the 
deviation between simulated data and input data. 
 
 
SUMMARY OF SIMULATIONS OF CONSUMPTIONS AND COMPOUND CONCENTRATIONS WITH RESPECT TO: 
*********************************************************************** 
 
 Compound:  CHLORPYRIFOS 
 
*********************************************************************** 
 
Code         : food code 
Food         : food label 
----------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
DeltaC       : difference (%) compared to average consumption 
               in database 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
----------------------------------------------------------------------- 
MeanConcen   : mean concentration of all samples 
DeltaR       : difference (%) compared to average concentration 
               in database 
NSamplPos    : number of samples with positive concentrations 
NSamples     : total number of samples with concentration measurements 
%SamplPos    : percentage samples with positive concentrations 
ProcFact     : mean processing factor 
*********************************************************************** 
 
FOOD CONSUMPTION DATA 
 
        Code         Food MeanConsum   DeltaC MeanConsDays  NConsDay    NDays %ConsDays 
                                 (g)     (%)           (g)                         (%) 
      FB0275 STRAWBERRY        17.41  ( -0.2)        35.75     97397   200000     48.7 
      FB1235 TABLE-GRAPES      69.35  ( -0.2)       179.47     77282   200000     38.6 
      FC0206 MANDARIN, SE      10.96  ( -1.4)        51.47     42580   200000     21.3 
      FC0208 ORANGE, SWEE      73.96  ( -0.4)       129.31    114387   200000     57.2 
      FP0226 APPLE            100.49  ( -0.1)       162.41    123748   200000     61.9 
      FS0245 NECTARINE          0.88  (  9.0)       120.45      1454   200000      0.7 
      FS0247 PEACH             11.88  (  0.0)        42.05     56512   200000     28.3 
      VO0445 PEPPERS, SWE      12.93  ( -0.8)        63.78     40535   200000     20.3 
 
COMPOUND CONCENTRATION DATA 
 
        Code         Food MeanConcen   DeltaR NSamplPos NSamples %SamplPos ProcFact 
                             (mg/kg)     (%)                          (%) 
      FB0275 STRAWBERRY       0.0006  (  3.3)      1337    97397      1.4     1.00 
      FB1235 TABLE-GRAPES     0.0089  ( -1.3)      8647    77282     11.2     1.00 
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      FC0206 MANDARIN, SE     0.0571  (  1.1)     16350    42580     38.4     1.00 
      FC0208 ORANGE, SWEE     0.0234  (  1.0)     24536   114387     21.4     1.00 
      FP0226 APPLE            0.0016  ( -1.1)      4513   123748      3.6     1.00 
      FS0245 NECTARINE        0.0098  (-12.3)       123     1454      8.5     1.00 
      FS0247 PEACH            0.0034  (  1.7)      5477    56512      9.7     1.00 
      VO0445 PEPPERS, SWE     0.0012  ( -2.7)       845    40535      2.1     1.00 
 

Table 6: Summary of simulated intakes 

 
In the upper left part of Figure 35 five icons are displayed. Clicking the upper icon gives a histogram 
of the simulated total intakes (see the left plot in Figure 36). Clicking the icon, two icons lower, shows 
you the upper tail of this intake distribution (see the right plot of Figure 36). Here, the specified 
percentage is 5%, corresponding with an intake of 0.324 microgr/kg_bw/day. The acute reference 
dose (ARfD) for Chlorpyrifos is equal to 100 microgr/kg bw/day.  
 
 

0.0001 0.001 0.01 0.1 1 10 100

 

Intake (microgr/kg bw/day)

CHLORPYRIFOS
total intake distribution
positive intakes (26.7%)
ARfD:   100.00

0.1 1 10 100

 

Intake (microgr/kg bw/day)

CHLORPYRIFOS
upper intake distribution
upper tail is 5.0% (>0.324 microgr/kg bw/day)
ARfD:   100.00

Figure 36: Total intake distribution and upper tail (1%) 

 
If the intake distribution exceeds the ARfD, that part of the intake distribution is displayed in red. This 
is obvious not the case in Figure 36. 
 
Choose ‘Summary of Total Distribution of Intakes’ and see Table 7. Here the contributions are 
expressed as percentages (RelContr) of each food to the total intake distribution. A pie chart of the 
foods with the 9 largest contributions can be displayed by clicking the second icon from the top in 
Figure 35. This pie chart is shown in the left plot of Figure 37. Also the mean, median and the 
percentiles of the 2.5% and 97.5% (p2.5% and p97.5%) point of the total intake distribution per food 
are given in Table 7. The last column (%Zeros) shows the number of zero intakes per food. If %Zeros 
is greater than 97.5% the p97.5% is lower than the mean! 
Let’s take Orange as an example. It contributes 53.1% to the total intake distribution and its average 
concentration is 0.033 microgr/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the total intake 
distribution of Orange are: 0.000, 0.000, 0.344 microgr/kg bw/day and 87.7% respectively.  
 
 
 
Compound:  CHLORPYRIFOS 
 
***************************************************************************** 
Contribution (%) per food to the total distribution 
RelContr: relative contribution (%) per food 
p2.5%   : 2.5% perc. of intake distr. per food(microgr/kg bw/day) 
Mean    : mean of intake distr.per food (microgr/kg bw/day) 
Median  : median of intake distr.per food(microgr/kg bw/day) 
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p97.5%  : 97.5% perc. of intake distr. per food(microgr/kg bw/day) 
%Zeros  : percentage zeros per food 
***************************************************************************** 
Food RelContr 

% 
Mean 

(microgr/kg 
bw/day) 

Median 
(microgr/kg 

bw/day) 

p2.5% 
(microgr/kg 

bw/day) 

p97.5% 
(microgr/kg 

bw/day) 

%Zeros 
% 

STRAWBERRY  
TABLE-GRAPES  
MANDARIN, SE  
ORANGE, SWEE  
APPLE         
NECTARINE     
PEACH         
PEPPERS, SWE 

 0.3 
18.3 
20.6 
53.1    
 5.6         
 0.2         
 1.4         
 0.4    

0.000  
0.011    
0.013    
0.033        
0.003        
0.000        
0.001   
0.000        

0.000   
0.000   
0.000   
0.000        
0.000        
0.000        
0.000   
0.000        

0.000   
0.000     
0.000    
0.000        
0.000        
0.000       
0.000      
0.000     

0.000    
0.051     
0.140   
0.344        
0.000        
0.000        
0.001    
0.000    

99.3 
95.7    
91.8   
87.7 
97.7 
99.9 
97.3 
99.6   

Table 7: Contribution to the total intake distribution  

Choose ‘Summary of Upper Tail of Intakes’ and see Table 8. Here you find the contributions 
expressed as percentages (RelContr) of each food to the upper tail according to the specified 
percentage (here 5%). A pie chart of the foods with the 9 largest contributions to the upper 5% of the 
intake distribution can be displayed by clicking the fourth icon from the top in Figure 35. This pie 
chart is shown in the right plot of Figure 37. Also the mean, median and the percentiles of the 2.5% 
and 97.5% (p2.5% and p97.5%) point of the upper 1% of the intake distribution per food are given in 
Table 8. This table shows the same statistics for that part of the intakes per food that correspond with 
the upper 5% of the intake distribution. So this table represents a drilldown of the upper 5% of the 
intake distribution and shows statistics for the intakes per foods that constitutes the upper 5%. See 
also Figure 38, where the mean intake for each food in the upper tail is graphically displayed. The last 
column (%Zeros) shows the number of zero intakes per food.  
Let’s take Orange again as an example. It contributes 57.5% to the upper 5% of the intakes and its 
average concentration is 0.499 microgr/kg_bw/day. The p2.5%, median, p97.5% and %Zeros of the 
upper 5% of the intakes are: 0.000, 0.343, 2.637 microgr/kg bw/day and 38.7% respectively. Note that 
Mandarin has the second largest contribution to the total intake distribution (see Table 7) whereas 
Table-Grapes has the second largest to the upper 5% of the intake distribution. 
 
 
Compound:  CHLORPYRIFOS 
 
***************************************************************************** 
Characteristics per food of the upper 5.0% of the distribution, 
corresponding with a total intake higher than 0.3240(microgr/kg bw/day) 
RelContr: relative contribution (%) per food 
p2.5%   : 2.5% perc. of intake distr. per food(microgr/kg bw/day) 
Mean    : mean of intake distr.per food(microgr/kg bw/day) 
Median  : median of intake distr.per food(microgr/kg bw/day) 
p97.5%  : 97.5% perc. of intake distr. per food(microgr/kg bw/day) 
%Zeros  : percentage zeros per food 
***************************************************************************** 
Food RelContr 

% 
Mean 

(microgr/kg 
bw/day) 

Median 
(microgr/kg 

bw/day) 

p2.5% 
(microgr/kg 

bw/day) 

p97.5% 
(microgr/kg 

bw/day) 

%Zeros 
% 

STRAWBERRY  
TABLE-GRAPES  
MANDARIN, SE  
ORANGE, SWEE  
APPLE         
NECTARINE     
PEACH         
PEPPERS, SWE 

 0.1 
20.7 
16.5 
57.5    
 4.4         
 0.2         
 0.4         
 0.2   

0.001   
0.180   
0.143  
0.499        
0.038        
0.002        
0.003   
0.002       

0.000   
0.000   
0.000   
0.343        
0.000        
0.000        
0.000   
0.000        

0.000   
0.000   
0.000   
0.000        
0.000        
0.000        
0.000   
0.000        

0.000   
1.440   
1.036  
2.637        
0.480        
0.000        
0.020   
0.000        

98.8 
75.7    
70.9   
38.7 
91.8 
99.6 
95.8 
99.3  

Table 8: Contribution to the upper tail (1%) of the intake distribution 

 
In Figure 37 you find a graphical display of the figures in Table 7 and Table 8. These are obtained by 
clicking the two icons in Figure 35 with a pie chart.  
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characteristics of the total intake distribution
statistics of the 8 largest contributions
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CHLORPYRIFOS
characteristics of the upper 5.0% of the intake distribution
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statistics of the 8 largest contributions

57.5%
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Figure 37: Relative contribution of foods to the total intake distribution and upper tail (5%) 

 
By scrolling your mouse over the piechart, you find the contribution of each food at the bottom of the 
chart. Here, the relative contribution for Orange is displayed.  
 
Choose ‘Percentiles’ and see Table 9. The percentiles of the acute intake distribution for the 
percentages specified in the first line of the Output options in the MCRA input form (see Figure 34) 
are shown. In this example, 0.01% of the population has an intake higher than 7.28073 microgr/kg 
bw/day. Also the mean and maximum are given.  
 
*********************************************************************** 
Random sampling is based on seed :        0 
Number of iterations (consumers):   200000  out of   6250 
CHLORPYRIFOS (microgr/kg bw/day)  consumption:   200000 out of 200000 
*********************************************************************** 
 
 Compound:  CHLORPYRIFOS 
 
*********************************************************************** 
     Percentiles, maximum and average intake 
*********************************************************************** 
 
   Percentage     Percentiles of CHLORPYRIFOS  (microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.13733 
        95.00        0.32396 
        99.00        1.07677 
        99.90        3.65245 
        99.99        7.61810 
         mean        0.06194 
      maximum       12.62322 
 

Table 9: Percentiles for the acute intake distribution 

 
In the left plot of Figure 38 you find a graphical display of the figures in Table 9. This is obtained by 
clicking the corresponding icon in Figure 35. The right plot of Figure 38 is obtained by clicking the 
lowest icon in Figure 35 and shows the mean intake per food in the upper tail (the third column of 
Table 8). 
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Figure 38: Percentiles and mean intake per food of the acute intake distribution 

 
Choose ‘Consumption: characteristics of nine consumers’, ‘Concentration: characteristics of nine 
consumers’ or ‘Intake: characteristics of nine consumers’, respectively. This gives the summaries 
displayed in Table 10, Table 11 and Table 12. A drill down of consumers according to a specified 
percentage (here 97.5%) are displayed. For the nine consumers around the specified percentage the 
sampled consumption, compound concentration and intake are displayed (as well as the consumer 
number, weight and age for the intake in Table 12). So for consumer number 363571 (86 kg, 33 
years), the total intake is 0.664 microgr/kg bw/day. This consumer consumed 2 foods (Potatoes 429.0 
gr, Grapefruit 150.3 gr). Only on Grapefruit a compound was found (0.380 mg/kg), so the total intake 
for this consumer is 150.3 x 0.380/86 = 0.664 microgr/kg bw/day. 
 
 
Compound:  CHLORPYRIFOS 
 
Drill down: consumption (g/day) per food of the 9 consumers 
around the specified percentage (97.50%) for the intake distribution 
                   -4       -3       -2       -1        0       +1       +2       +3       +4 
food 
 STRAWBERRY         .        .        .        .     34.2    30.36        .        .        . 
 TABLE-GRAPES       .        .        .        .     29.1    31.80    418.8        .        . 
 MANDARIN, SE       .        .        .        .     55.0        .        .        .        . 
 ORANGE, SWEE   278.0    278.0    248.0    140.0     34.7    29.04        .    240.0   200.00 
 APPLE          145.9    145.9        .        .    569.7   315.79    200.0    108.0    24.50 
 NECTARINE          .        .        .        .        .        .        .        .        . 
 PEACH              .        .        .        .     29.8    30.10        .        .        . 
 PEPPERS, SWE       .        .        .        .        .        .     49.0        .    28.80 

Table 10: Drill down of consumers for the acute intake distribution: consumptions 

 
 
Compound:  CHLORPYRIFOS 
 
Drill down: compound concentrations (mg/kg) per food of the 9 consumers 
around the specified percentage (97.50%) for the intake distribution 
                    -4       -3       -2       -1        0       +1       +2       +3       +4 
food 
 STRAWBERRY          .        .        .        .    0.000    0.000        .        .        . 
 TABLE-GRAPES        .        .        .        .    0.000    0.000    0.040        .        . 
 MANDARIN, SE        .        .        .        .    0.340        .        .        .        . 
 ORANGE, SWEE    0.040    0.040    0.210    0.280    0.000    0.000        .    0.190    0.190 
 APPLE           0.000    0.000        .        .    0.000    0.050    0.000    0.000    0.000 
 NECTARINE           .        .        .        .        .        .        .        .        . 
 PEACH               .        .        .        .    0.040    0.000        .        .        . 
 PEPPERS, SWE        .        .        .        .        .        .    0.040        .    0.000 

Table 11: Drill down of consumers for the acute intake distribution:concentrations  
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Compound:  CHLORPYRIFOS 
 
Drill down: the 9 consumers around the specified percentage (97.50%) for the intake 
distribution (microgr/kg bw/day): 
                    -4       -3       -2       -1        0       +1       +2       +3       +4 
     Consumer   370605   370605    70281   349112   274043   313764   362114   192562   178881 
  Body Weight       19       19       89       67       34       27       32       78       65 
          Age        2        2       27       55       11        7       11       54       23 
        Total    0.585    0.585    0.585    0.585    0.585    0.585    0.585    0.585    0.585 
Food 
 STRAWBERRY          .        .        .        .    0.000    0.000        .        .        . 
 TABLE-GRAPES        .        .        .        .    0.000    0.000    0.524        .        . 
 MANDARIN, SE        .        .        .        .    0.550        .        .        .        . 
 ORANGE, SWEE    0.585    0.585    0.585    0.585    0.000    0.000        .    0.585    0.585 
 APPLE           0.000    0.000        .        .    0.000    0.585    0.000    0.000    0.000 
 NECTARINE           .        .        .        .        .        .        .        .        . 
 PEACH               .        .        .        .    0.035    0.000        .        .        . 
 PEPPERS, SWE        .        .        .        .        .        .    0.061        .    0.000 
 

Table 12: Drill down of consumers for the acute intake distribution: intake 

4.2 Chronic risk assessment: betabinomial/lognormal 
In this example, output is shown for a chronic risk assessment for antibioticum lasalocide. The 
example concerns the intake via eggs. This database is not centrally supplied. 
Find in Figure 39 the MCRA input form: 
 

 
Figure 39: MCRA input form for chronic risk analysis betabinomial/lognormal 

 
Table 13 lists the main options: 
 
Input form   

risk type chronic 
uncertainty analysis no 
concentration model empirical 
intake model betabinomial/lognormal 
concentration data system defaults 
output system defaults 

Table 13: Input form options: betabinomial/lognormal 

After clicking the ‘submit MCRA job’ the analysis is started. View your results using the ‘view 
output’-button in the central menu. This gives the screen of Figure 40: 
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Figure 40: View output window for chronic risk analysis betabinomial/lognormal 

 
In Table 14 you find the main characteristics concerning this analysis taken from the logfile. The 
intake frequency function is estimated with a betabinomial model with smoothing parameter phi. The 
model for the logarithmically transformed intake amounts is based on REML.   
 
Log-file  

Number of foods 1 
Acute reference dose (ARfD) * 
Acceptable daily intake (ADI) 5 
Number of detects 31 
Number of non-detects 219 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
sex female, male 

Total no of consumption days 8630 
Replace all non-detects  
Multiplicationfactor for LOR 0.5 

 
Intake Frequency: Betabinomial model 
===================================== 
Estimates of parameters 
----------------------- 
Parameter                     estimate         s.e.      t(*) 
Mean probability                0.6904     0.004481    154.07 
Overdispersion                  0.1811      0.01295     13.99 
 
Intake (amounts): REML model 
============================ 
Estimates of parameters 
----------------------- 
Parameter                     estimate         s.e.      t(*) 
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Mean ln(intake)                 -2.578      0.02017   -127.77 
Between consumer variance       0.4590      0.05614      8.17 
Within consumer variance         2.723      0.06470     42.09 

Table 14: Information in log-file 

 
The Dutch National Food Consumption Survey is used, which has 2 days for 6250 consumers, so 
12500 days in total. Lasalocide measurements in eggs were made in 250 samples, 31 of which had a 
positive value. In this analysis the other 219 non-detects were replaced by 

025.005.02
1

2
1 ==LOR mg/kg. Choose ‘Summary of database’ and see Table 15. 
 
Compound:  LASALOCIDE 
*********************************************************************** 
SUMMARY DATABASE 
Code         : product code 
Product      : product label 
MeanCons     : average consumption, all consumers, all days 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%PosCons     : percentage consumption days 
MeanConc     : mean concentration all samples (after processing) 
MeanPosConc  : mean concentration positives (after processing) 
NPosConc     : number of positive concentrations 
NConc        : total number of concentration measurements 
%PosConc     : percentage positive concentrations 
*********************************************************************** 
     
    FOOD CONSUMPTION DATA 
 
        Code      Product   MeanCons MeanConsDays NConsDays    NDays %PosCons 
                                 (g)          (g)                         (%) 
    &NL001   WHOLE EGG C       18.00         26.1      8630    12500     69.0 
 
     
    COMPOUND CONCENTRATION DATA 
 
        Code      Product   MeanConc  MeanPosConc  NPosConc    NConc %PosConc 
                             (mg/kg)      (mg/kg)                         (%) 
    &NL001   WHOLE EGG C      0.4825       3.8910        31      250     12.4 

 

Table 15: Summary of the database, consumptions and compounds 

 
So on average everyone consumes 18 g of egg per day. This is an average consumption of 26.1 g on 
8630 consumption days and 0 g on 12500 - 8630 = 3870 non-consumption days. The average 
concentration of the 31 positive lasalocide samples and 219 non-detects (=0) samples is 0.4825 
mg/kg. 
Choose ‘Summary of intake days’ and see Table 16.  
 
Compound:  LASALOCIDE 
LONG TERM EXPOSURE  (USUAL INTAKE) 
Summary of intake days in the data 
proportion and number of consumers with positive intake on: 
                            0  days    0.1346    841 
                            1  days    0.3501   2188 
                            2  days    0.5154   3221 
 
                                All  Positive 
                            intakes   intakes      % 
   Number of observations     12500      8630   69.0 
      Number of consumers      6250      5409   86.5 

Table 16: Summary of intake days 

 
Choose ‘Summary of intake distribution’ and see Table 17. 
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Compound:  LASALOCIDE 
LONG TERM EXPOSURE  (USUAL INTAKE) 
Summary of all intake data (zeros included) 
     Number of observations =      12500 
                       Mean =      0.154 
                     Median =      0.031 
                    Minimum =      0.000 
                    Maximum =      6.368 
             Lower quartile =      0.000 
             Upper quartile =      0.181 
 
Summary of positive intake data (without zeros) 
     Number of observations =       8630 
                       Mean =      0.223 
                     Median =      0.095 
                    Minimum =      0.000 
                    Maximum =      6.368 
             Lower quartile =      0.026 
             Upper quartile =      0.322 

Table 17: Summary statistics of the calculated daily intakes 

 
In the upper left part of Figure 40 seven icons are displayed. Clicking the upper icon gives the 
empirical distribution of the non-zero daily intake values, calculated as daily consumption values 
times average concentration (0.4825 in this case) divided by body weight (see the left plot in Figure 
41). Note the spike near 0 (note that true zero intakes are already excluded here), and the bimodal 
character of the rest of the distribution (possibly related to the consumption of one or two whole 
eggs?). This distribution is definitely non-normal. A logarithmic transformation is requested for the 
non-zero daily intakes.  
Clicking the second icon from above shows you the intake distribution after a logarithmic 
transformation (see the right plot of Figure 41). There is a better symmetry, but clearly the non-
normal character of the data is not removed by a simple logarithmic transformation. Compare this 
figure also with the power transformed distribution in the right plot of Figure 78.  
 

0 1 2 3 4 5 6 7

 

Daily intake (microgr/kg bw/day)

LASALOCIDE
distribution of positive daily intakes (69.0%)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

 

Daily intake after ln transformation

LASALOCIDE
distribution of ln transformed positive daily intakes (69.0%)

Figure 41: Untransformed and ln transformed intake distribution 

 
Clicking the third icon from above shows you the intake frequency distribution (see Figure 42). The 
mean probability for a consumer to have an intake is equal to 0.69 but dispersion parameter phi (= 
0.181) of the betabinomial distribution provides that each consumer has its own probability to have an 
intake.  
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Figure 42: Intake frequency 

 
Clicking the fourth and the fifth icon from above shows you respectively the left and the right plot of 
Figure 43. The left plot is the cumulative usual intake distribution (black line). The green boxes 
indicate the percentiles of the usual intake distribution for the entire population as requested in the 
input form of Figure 39. The right plot is the density of the usual intake distribution for positives only. 
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Figure 43: Cumulative usual intake and density function 

 
Choose ‘Percentiles’. The percentiles of the usual intake distribution for the entire population are 
shown (see Table 18). 
 
  
Compound:  LASALOCIDE 
 
LONG TERM EXPOSURE  (USUAL INTAKE) 
  Percentage   Entire population 
       50.00             0.19760 
       90.00             0.50817 
       95.00             0.66043 
       99.00             1.07493 
       99.90             1.84598 

Table 18: Percentiles of the usual intake distribution 
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Clicking the sixth and the seventh icon from above shows you respectively the left and the right plot 
of Figure 44.  In the left plot the percentiles of Table 18 are graphically displayed whereas in the right 
plot percentages derived from percentiles are shown. 
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Figure 44: Percentiles and percentages 

4.3 HELP on CHARTs 
To view ComponentOne Charts, an ActiveX-aware browser is needed. Users can manipulate the chart 
they view by right-clicking the chart, which brings up the Property Editor (see Figure 45). Some more 
information is available under the link InfoCharts on the View Output screen. ComponentOne Chart 
graphs can be printed, or copied to the Windows clipboard, for later inclusion in documents. 
Occasionally, after pasting ComponentOne Charts into Word the chart is not displayed (at all) and 
instead, an icon appears.To our experience, pasting charts from the clipboard encounters no 
difficulties when the Word document is opened first, then press the 'Copy to Clipboard'-button and 
paste the contents of the clipboard into the Word document. 
Tabular output is available in separate ASCII output text files in the output directory. Alternatively, 
text can be copied and pasted from the ‘view output’ window into another document. In order to 
obtain a proper lay-out the function Paste Special from the Edit menu should be used, selecting 
“Unformatted text”.  
ComponentOne Chart is comprised of a 2D Control (ActiveX) for use in Windows applications. The 
control is stored in a so-called Cabinet-file, Olectra.CAB. A licence pack file Olectra.LPK is needed 
to register the control. To be able to view a ComponentOne Chart, the cabinet file and license pack 
have to be downloaded. Depending on the security level of your Internet Explorer, you may get the 
chart. You can change the security settings by doing the following: 

• In Internet Explorer select {Tools | Internet Options} and choose the "Security" tab.  
• Then select the Web zone "Internet" or "Local Internet" depending on whether you view the 

MCRA charts on the internet or local disk. Click the "Custom Level" button, and use the 
following settings (you may not see all of these settings): 

1. Automatic prompting for ActiveX Controls: Enable  
2. Binary and script behaviors: Enable  
3. Download signed ActiveX controls: Prompt  
4. Download unsigned ActiveX controls: Prompt  
5. Initialize and script ActiveX controls not marked as safe: Disable  
6. Run ActiveX controls and plug-ins: Enable  
7. Script ActiveX controls marked safe for scripting: Enable  

 
To be sure that changes to the charts (after re-running the program) are displayed by the browser, you 
may need to do the following. Click: 
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1. Tools. 
2. Internet Options. 
3. General. 
4. Settings. 
5. Check: every visit to the page. 
6. OK 
7. OK  

The setting for "Download unsigned ActiveX controls" is probably the most critical one. The first 
time you display an MCRA chart, you will get the Security Warning displayed here about installing 
OLECTRA.CAB. Click "Install" and you are done.  
 
On some computers another version of the "Chart" ActiveX component might be installed, giving 
spurious error messages and/or no graphs when viewing this website. You then have to delete the file 
"olch2x7.ocx" from the "WINDOWS\system32" directory, and restart the website. This will copy the 
correct version of "olch2x7.ocx" to the "WINDOWS\system32" directory. 
 
In Internet Explorer 6, after selecting an icon to display a chart in the View Output Menu, you may 
see an "active contents" security warning in the Internet Explorer Information Bar on top of your 
screen. Click on the warning, select Allow Blocked Contents and choose YES in the Security 
Warning displayed on the right. 

4.3.1 To display the Property Editor 
Click the right mouse button over any part of the chart and select properties of the pop-up menu. 
Select the tab that corresponds to the element of the chart that you want to edit. 
Click the ‘OK’ or ‘Cancel’-button to close the Property Editor (see Figure 45). 
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Figure 45: Property editor 

 
Interacting with Chart 
You can interact with the chart as it is running to examine data more closely or visually isolate a part 
of the chart. The interactions described here affect the chart displayed inside the ChartArea; other 
chart elements like the header are not affected. ComponentOne Chart provides users with 2 different 
mechanisms for zooming the chart: Graphics zoom and Axis zoom. Performing a Graphics zoom 
enlarges the selected area of a chart, while not necessarily showing the axes. Performing an Axis 
zoom changes the minimum and maximum data values to those selected, and redraws only that data 
with axes. Scaling, moving, or graphics zooming the chart sets the PlotArea margin properties, so the 
chart will not automatically control margins anymore when other chart properties change. 
  
To Scale the Chart: 
1. Press CTRL, and hold down both mouse buttons (or middle button on 3-button mouse). 
2. Move the mouse down to increase chart size, or move the mouse up to decrease chart size. 
 
To Move the Chart: 
1. Press SHIFT, and hold down both mouse buttons (or the middle button on 3-button mouse).  
2. Move the mouse to change the positioning of the chart inside the ChartArea. 
 
To Graphics Zoom an Area of the Chart: 
1. Press CTRL, and hold down left mouse button. 
2. Drag mouse to select zoom area and release the mouse button. 
 
To Axis Zoom the Chart: 
1. Press SHIFT, and hold down left mouse button. 
2. Drag the mouse to select the zoom area and release the mouse button. 
 
To Rotate the Chart (Bar/pie charts displaying 3D effect only): 
1. Hold down both mouse buttons (or middle button on 3-button mouse). 
2. Move mouse up or down to change the 3D inclination. 
3. On bar charts, you can also move mouse left or right to change the 3D rotation angle. 
 
To Reset to Automatic Scale and Position: 
Press the “r” key to remove all scaling, moving, and zooming effects; chart regains control of 
PlotArea margins. 
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5  Model description 

5.1 Basic model 
Food consumption data may arise from different sources. Typically, national food consumption 
surveys or monitoring programs provide information on food intake in the general population. For 
example, from the Dutch Food Consumption Survey (1997) food consumption patterns (x1 ,...,xp), 
body weight (w) and age (a) are available for 6250 consumers on 2 consecutive days.  
 
When concentrations are not measured on consumed foods, a composition database is necessary to 
convert the amounts of food as consumed (e.g. pizza) to amounts of foods (x1 ,...,xp) which are used in 
the model. Van Dooren et al. (1995) provide such a conversion for the Dutch situation. 
 
Compound concentration data may be available from different sources. In some countries national 
monitoring databases exist, which are useful for the risk assessment of chemical compounds already 
in use. For example the Dutch KAP database (van Klaveren 1999) stores annually more than 200,000 
records of measurements originating from food monitoring programs for meat, fish, dairy products, 
vegetables and fruit.  
 
This chapter describes the stochastic (or Monte Carlo) models behind the MCRA program. These 
models assess acute (short-term) or chronic (long-term) risks due to the intake of chemical 
compounds from food by combining food consumption survey data and compound concentration data 
from e.g. monitoring programs.  
The model for acute risk, as opposed to the model for chronic risk, allows for effects of food 
processing between monitoring and ingestion, it can model unit variability either from available data 
or using default assumptions, and it uses information on Limit of Reporting (LOR) and percent crop 
treated to check whether non-detects present a source of uncertainty.  
The basic model for the intake of a special compound in an acute risk analysis is: 
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where yij is the intake by consumer i on day j (in microgram chemical compound per kg body weight), 
xijk is the consumption by consumer i on day j of food k (in g), cijk is the concentration of that chemical 
compound in food k eaten by consumer i on day j (in mg/kg, ‘ppm’), and wi is the body weight of 
consumer i (in kg). Finally, p is the number of foods accounted for in the model. Note that the 
definition of ‘food’ is flexible: it may represent a Raw Agricultural Commodity (RAC), e.g. ‘apple’, 
but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple, imported’. 
 
In the stochastic model for the intake in an acute risk the quantities xijk, wi and cijk are assumed to arise 
from probability distributions describing the variability for food consumption and weight, 
p(x1,...,xp,,w), and for compound concentrations in each food, pk(c). In principle, these probability 
distributions may be parametric (e.g. completely defined by the specification of some parameter 
values) or empirical (e.g. only implicitly defined by the availability of a representative sample). Given 
these probability distributions (or estimates thereof) MC-simulations can be used to generate an 
estimate of the probability distribution p(yij) to assess acute risks by intake of the compound (see 5.3 ). 
 
The basic model for the intake in a chronic risk analysis is: 
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where yij is the intake by consumer i on day j (in microgram chemical compound per kg body weight), 
xijk is the consumption by consumer i on day j of food k (in g), ck is the average concentration of the 
chemical compound in food k (in mg/kg, ‘ppm’), and wi is the body weight of consumer i (in kg). 
Finally, p is the number of foods accounted for in the model.  
 
Depending on the problem, MC-samples may be drawn from the complete data base, from a day- or 
age-restricted subset or from consumption-days only. In some cases there is insufficient information 
for specific subgroups in the population. For example, in a study on infants (age up to 12 months), a 
separately constructed food consumption database has been used (Boon et al. 2003). 
 
When dietary components are consumed on a nearly daily basis, intake values yij may be used to 
estimate the probability distribution p(yi.) for chronic risk assessment purposes (see 5.4 ). 
 

5.2 How to deal with limited information on compound concentration data 
In the probabilistic model, a distribution of food consumption data as well as a distribution of 
compound data are used. For both components of the model, a choice can be made between a non-
parametric (see 5.2.1 ) or a parametric (see 5.3.1.1.2 and 5.3.1.1.3 ) approach. In a parametric 
approach the data are modelled with an appropriate distributional form (e.g. lognormal with 
parameters σ and μ). In a non-parametric approach the empirical distribution is used to sample from 
directly. Obviously the latter approach requires more data to obtain a satisfying representation of the 
full distribution. Therefore, parametric modelling becomes important in data-scarce situations (see 
5.2.1 ). 
 
Occasionally limited information emerge not as a consequence of the amount of data but how they are 
presented: data are reported using e.g. the mean and variance (see 5.2.2 ) or data are summarised as 
counts of observations falling into a series of classes (see 5.2.3 ). It is evident that a parametric 
approach is the only way out and that the parameters of the lognormal distribution should be inferred 
using the available data. 
 
If for some foods there are far less concentration data than for others, it may be sensible to consider 
pooling procedures for means and or variances of the concentration distributions (see 5.3.1.1.3 ). 
If the amount of data is limited, this may lead to a relatively large sampling uncertainty. Bootstrap 
procedures may be used to assess the magnitude of this uncertainty (see 5.5 ). 
 
Back to: Concentration model options 

5.2.1 The choice between a parametric and non-parametric approach 
How many compound concentration data are required for a sensible calculation of upper-tail 
percentiles in the exposure distribution based on a non-parametric approach? The rule of thumb can 
be used that the chosen percentile should be contained directly in the data. For example, at least 20 
measurements are needed to estimate the 95th percentile and at least 100 measurements to estimate the 
99th percentile.  
 
More generally, the number of measurements per food (n) should at least equal 1/(1-p%/100) to allow 
a rough empirical estimate of the pth percentile of the compound concentration distribution to be 
made. Of course, the risk assessment is only coarse with this minimum amount of data and more 
measurements per food are certainly worthwhile.  
 
In situations where the number of measurements becomes a problem, an appropriate risk analysis 
should be based on further modelling. Essentially, the lack of data is compensated by a priori 
assumptions. Assuming a simple distributional form for the compound data, the number of 
measurements can be smaller in principle (at least 10, say). However, non-detect measurements 
provide no information about variability, and therefore we should now count the number of positive 



 57 

measurements. Figure 46 shows which approach could be best used depending on the total number of 
measurements and the number of non-zero measurements. In principle, such a choice could be made 
separately for each food.  

 
Figure 46: Use of non-parametric or parametric modelling for estimating the 99% percentile of 
the intake in relation to number of positive measurements and the total number of 
measurements. 

5.2.2 Estimation based on histogram data 
In EU reporting, compound data are sometimes reported in a tabulated (histogram) form: data are 
expressed as counts of observations falling into a series of groups. The observed counts are n1…nc, 
which fall into c classes with limits c1…cc. The number n1 is the number of positive samples, which are 
nevertheless below the LOR (= c1); n2 is the number of positive samples that fall in between limits c1 
and c2; nc is the number of samples that fall in between limits cc-1 and cc.  
For histogram data, parameters μ and σ of the lognormal distribution can be obtained by fitting a 
normal distribution to a set of observations n1…nc. In an iterative way, expected counts for a 
standardised normal variable are calculated using the log-transformed group limits. Each round, 
parameters are updated until the process converges.  

5.2.3 Estimation based on summary data  
Occasionally, data are reported in a very condensed form. Summary statistics like the mean, quantiles 
and dispersion measures as the variance or the coefficient of variation are used to describe 
characteristics of the underlying concentration distributions. The reported statistics are calculated 
using all values (with concentrations below LOR sometimes replaced by ½*LOR), or using positive 
values (detects) only. In order to use the binomial-lognormal model, summary statistics based on all 
values must be corrected for the values replacing the concentrations below LOR. For the mean, the 
correction is straightforward, taking a zero or the midpoint-value (½*LOR). Likewise, the standard 
deviation or any measure of dispersion is corrected for the sum of squares due to all zero values and 
taking into account the corrected mean. The median is also corrected, but instead of correcting the 
value itself, a corrected quantile zq is calculated corresponding to q, the lower fraction and zq 
satisfying: 
  
 zq = Φ-1{q} = Φ-1{(½N – n0)/(N – n0)}  
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with Φ(.), the cumulative probability function of the standard normal distribution, N, the total number 
of samples and n0, the number of zeroes.                           n0=n1 of 5.2.2 ??? 
 
The maximum is the largest order statistic. Its expected value can be approximated by taking the 
appropriate population quantile, especially in large samples. Here, the problem is the other way 
around: the population quantile corresponding to the largest value given the sample size is to be 
estimated. For sufficiently large N an approximation to E(qmax) is provided by the value of zq 
satisfying Φ(zq) = N/(N+1). Blom (1958) and Harter (1961) made the following suggestions for 
smaller sample sizes: 
 
  zq = Φ-1{(N - α)/(N - 2α + 1)} 
 
with α = .315065 + .057974u - .009776u2 and u = log10N. Over a wide range of N α approximates the 
value 3/8. This empirical formula is a very accurate approximation to the exact value of E(qmax) and is 
used to estimate appropriate population quantiles for qmax. (David, 1970; Pearson and Hartley, 1972 ; 
Blom, 1958; Harter, 1961).  
 
Three situations can be distinguished:  

1) the reported information is insufficient to estimate both μ and σ, or 
2) the reported statistics are sufficient to extract μ and σ, or  
3) the information is redundant so various estimates for μ and σ are available.  
 

Here, we first consider approaches for situation 2. Situation 1 requires additional information: a 
solution might be to use the information on comparable food-compound combinations to assess the 
necessary estimates. Situation 3, basically, is a pooling problem how to weigh and combine estimates 
that originate from different statistics.  

5.2.3.1 Moments and other characteristics 
A positive random variable X is said to be lognormally distributed with parameters µ and σ2 if Y = lnX 
is normally distributed with mean μ and variance σ2. The probability density function of X is:  
 

f(x) = 1/(√2πσx) exp(-(lnx - μ)2/2σ2).  
 
The corresponding normal distribution for Y is denoted by N(μ, σ2).  
 
Estimation of μ and σ using summary statistics is based on equations and characteristics derived from 
the moment generating function of the lognormal distribution. Required parameters are estimated by 
solving the formulas of the first two moments for μ and σ. 
The following characteristics for variable X derived from the moment generating function are given:  
 

mean: exp(μ + 1/2σ2) (1) 
variance: exp(2μ + σ2)(exp(σ2) – 1) (2) 
mode: exp(μ - σ2) (3) 
quantile (qq): exp(μ + zqσ),  (4) 
vc:  √(exp(σ2) – 1) (5) 
 

with vc the coefficient of variation, q a given lower fraction and zq the corresponding standard normal 
deviate. The 50th quantile, the median, is a special case with zq = 0. The geometric mean of X is equal 
to the median. 

5.2.3.2 Estimation 
Approach 1: estimation based on two quantiles, qq1 ≠ qq2. 
 
Using (4) gives: 
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  σ = log(qq1/qq2) / (zq1 – zq2). Substituting σ yields μ. 
 
Approach 2: estimation based on a quantile and the mean. 
 
Solving for σ using (1) and (4) gives:  
 
 σ2 – 2zqσ - 2log(mean/qq) = 0, with roots for σ according to: 
 
  zq ± √(zq

2 + 2log(mean/qq ))  (6) 
 
For moderate to small sample sizes the estimation of σ fails because the discriminant is negative, i.c. 
the argument of the square root function. Empirical simulations show that a negative discriminant 
happens more often for small sample sizes and for estimation based on extreme quantiles like the 
maximum. Figure 47 shows the empirical relation between the sample size and the fraction of failures 
for estimation methods involving the mean with respectively, the maximum and median. For the 
maximum, failures occur already at sample sizes n = 30 to 40, for the median n = 15 to 20. Negative 
discriminants occur when estimation is based on empirical (sampled) values instead of theoretical 
(calculated) values assuming a normal underlying distribution. The amount of failures for small 
sample sizes is in accordance with large sample theory. When the maximum is involved and 
estimation fails, an estimate of σ is assessed by equating the discriminant to zero. Empirical results 
show that this works out very well for sample size n > 4, although σ is slightly biased upwards being a 
conservative estimate. In case of the median no solution to this problem is available so the estimate of 
σ is set to a missing value. 
 

Figure 47: Simulated fraction of failures versus sample size for estimation of σ based on the 
mean and respectively the maximum and median 

 
In general, for n large enough, say n > 40, σ has two roots. Usually, the mean is larger than the 
median. Then, σ is estimated with: 
 
 zq + √( zq

2 + 2log(mean/median)) with condition σ > 2zq..  
 
In case of the mean and maximum σ is estimated with: 
 
 zq - √( zq

2 + 2log(mean/max )) with condition σ < 2zq..  
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Note that max is always greater than the mean. Here, the smallest root is taken as an estimate because 
empirical results show that the largest root yields unlikely high measures of dispersion and therefore 
should be rejected. 
Approach 3: estimation based on mean and variance or coefficient of variation. 
 
The coefficient of variation, vc = √(variance)/mean. Using (5), parameter σ is estimated with: 
 
  √(log(vc2 + 1))  
 
and μ is estimated solving (1). 
 
Approach 4: estimation based on a quantile and coefficient of variation. 
 
For estimation of σ, see approach 3. Using (4), parameter μ is estimated with: 
 
 log(quantile) - zqσ 
 
For the median, estimation of μ simplifies to: 
 
 log(median)  

5.3 Acute risk assessment 

5.3.1 Concentration model: modelling of compound concentrations in consumed food 

5.3.1.1 Distributional assumptions 
Compound concentrations in the various foods are independent and therefore can be modelled by 
univariate distributions. 
 
5.3.1.1.1 Non-parametric modelling of concentrations (empirical) 
In the empirical (non-parametric) approach, concentrations are sampled at random from the available 
data and combined with the consumption data to generate a new distribution of intake values. To 
assess the risk-exposure, percentiles of the intake distribution are estimated. 
Back to: Empirical 
 
5.3.1.1.2 Parametric modelling of concentrations (binomial/lognormal no pooling) 
In the parametric approach, compound concentrations per food are sampled from parametric 
distributions. A special feature of compound data is that the large majority of measured concentrations 
(often more than 80%) is recorded as zero (non-detects). These values may correspond to true zero 
concentrations (for example because the compound is never used in the specific food), or they may 
correspond to low concentrations which are below a pre-established reporting limit (LOR). In any 
case, the compound concentration distribution is very skew, with a large spike at zero and an extended 
tail to higher values. For statistical modelling a two-step procedure is chosen. First, the presence of a 
concentration ≥ LOR on food is modelled with a binomial distribution with a parameter p representing 
the probability of a reported concentration. Probability p depends on the chemical compound and the 
food and is estimated as the fraction of detects. Secondly, the non-zero compounds are modelled with 
the lognormal distribution. After consideration of several possibilities using the program BestFit, this 
distribution has been selected as being both theoretically sensible and practically useful. The 
parameters μ and σ are the mean and standard deviation of the log-transformed non-zero compound 
concentrations. 
In the basic model (see 5.1 ) 
 

 ijkijkijk cposIc ⋅=  
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with ijkI  indicating whether a compound concentration is sampled ( ijkI =1) or not ( ijkI =0), and cposijk 

the compound concentration in the subpopulation of positive values. The probability of ijkI  being 1 or 

0 depends on the number of detects found for food k and ijkI  is sampled separately for each consumer i 
on occasion j.  
Back to: Binomial/lognormal (no pooling) 
 
5.3.1.1.3 Parametric modelling of concentrations (binomial/lognormal with pooling)  
When data are limited, it may be advantageous to apply the parametric approach for modelling of the 
positive concentrations. In MCRA the positive concentrations are modelled as lognormal with 
parameters μ and σ2, representing mean and variance of the natural logarithm of the concentrations. 
However, estimation is often hampered because data on compounds in specific foods are sparse or 
even missing. In those cases, grouping of foods into food groups enlarges the number of 
measurements per group and may give sufficient data to base estimates upon. We must assume that 
concentration distributions are the same for the grouped foods. A second related question is the 
reliability of estimates, based on a few number of degrees of freedom. The following procedure is 
designed to cope with the above problems.  
1. Pooling variances within food groups. For each food the variance σ2 and mean μ is estimated. 

Then, foods are assigned to groups which are composed of related foods, e.g. a foodgroup 
containing sorts of cabbages or a group containing all kind of berries. Foods where agricultural 
use is allowed are remained separate from foods where agricultural use is not allowed. The 
homogeneity of variances in the different groups is assessed using Bartlett's test (Snedecor & 
Cochran, 1980). The test statistic determines whether variances within a group are to be pooled 
automatically (p > 0.05) or not (p  0.05).  

2. Pooling means within food groups. After pooling the variances, an overall test for differences of 
means within each group is performed, based on analysis of variance. Means within groups are 
pooled automatically if the probability p > 0.05.  

3. Using overall variance if there are < 10 degrees of freedom. Estimates of variances based on 
less than 10 df are considered not very reliable. Therefore, variances based on < 10 df are 
compared to the overall variance (pooled over all foods except the tested food itself, i.c. 
corrected) and tested for equality. Variances are replaced by the overall variance (uncorrected) 
whenever the hypothesis of equality of variances is not rejected; if rejected, the original variances 
are maintained.  

 
For a parametric risk assessment all variances and means must be present. This requirement implies 
that very often rearrangement of foods into (sub) groups preceeds the actual simulation of the intake 
distribution. 
 
To summarise, actions are: 
• calculate variances and means for each food 
• classify foods into groups 
• test homogeneity of variances and equality of means within groups of foods. Results are: not 

significant (p > 0.05) or significant (p ≤ 0.05). 
• take foods(-groups) with df < 10 
• compare variance with overall variance (corrected). Replace variance with overall variance 

(uncorrected) for non-significant test results. 
Back to: Binomial/lognormal with pooling 

5.3.1.2 Modelling of missing data and replacement of non-detects 
Missing data should be indicated by 9999 in the database tables. In principle such values are ignored 
in the analysis. 
Most monitoring measurements of chemical compounds are non-detects, i.e. no quantitative 
measurement is reported. For this reason data are entered in the Concentration table by specifying the 
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total number of measurements made together with the LOR. We use LOR to mean exactly what the 
term says: measurements below LOR are not reported, whereas values equal to or higher than LOR 
are represented by numerical values in the database. 
In the analytical and food risk fields analytical limits are often indicated as LOD (limit of detection) 
or LOQ (limit of quantification). Unfortunately, it is not always clear what is meant with these terms. 
In any case official recommendations are to always report any available numerical values even if they 
are below LOD or LOQ limits (IUPAC 1995).  
For legal applications of compounds data may be available about the percentage of the crop which 
receives treatment. When a chemical compound can enter the food chain only via crop treatment, and 
when the percentage of crop treated is (approximately) known to be 100pcrop-treated, then this 
knowledge may be used to infer that 100(1-pcrop-treated)% of the monitoring measurements should be 
real zeroes, contributing nothing to pesticide intake, whereas other non-detects in the monitoring data 
could have any value below the LOR. For 100(pnon-detect + pcrop-treated - 100)% of the monitoring 
measurements, 0 and LOR represent best-case and worst-case estimates. A simple way (tier 1 
approach) to consider the uncertainty associated with non-detects is to compare intake distributions 
for these best-case and worst-case situations.  
Back to: Replacement of non-detects 

5.3.1.3 Modelling of processing effects 
Concentrations in the consumed food may be different from concentrations in the food as measured in 
monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc. 
In general, we assume the model: 
 
 ijkkijk crfcpos ⋅=  
 
where crijk is the concentration in the raw food, and where fk is a factor for a specific combination k of 
RAC and processing. Values will typically be between 0 and 1, although occasionally the processing 
factor may also be >1 (e.g. drying as applied for grapes and figs).  
The user of the model will have to specify processing factors for each food k as defined in the food 
consumption data base. For this purpose, it is advised to maintain a data base of processing factors, 
indexed by chemical compound, RAC and processing type (e.g. washing, peeling or other 
processing). Before running the model, it may then be necessary to specify how the necessary 
processing factors are derived from the data base entries and/or other information. Example: if there 
are no processing factors known for captan in pears, it may be decided to use the corresponding 
factors for apples instead. 
Often the information will be of limited quality, and this may be entered in the Monte Carlo 
modelling by specification of uncertainties. A practical proposal is to specify for each processing 
factor two values: 
1. fk,nom: the nominal value, typically some sort of mean from an experimental study 
2. fk,upp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical 

information on variability of the factor is available, there will often be uncertainty due to the 
appropriateness of the processing study for the population of the risk assessment). The upper limit 
should be such that experts will easily agree that it is not set too low. 

A typical data base entry might thus read: 
RAC processing fk,nom fk,upp  
apple washing 0.5 0.7 

and, confronted with the need to have processing factors for pears in a specific risk assessment, an 
expert may decide upon: 

RAC processing fk,nom fk,upp  
pear washing 0.5 0.8 

 
In the MC-modelling, processing factors can be used in either of three ways (for each food k to be 
chosen by the user): 



 63 

5.3.1.3.1 No processing factor  
Just take fk = 1. This is in most (though not all) cases a worst-case assumption. No data on processing 
are needed and therefore this route is useful in a first tier approach. 
 
5.3.1.3.2 Processing (fixed factors)  
Use fk = fk,upp. Available information on specific processing effects is used, although still in a 
cautionary way (in accordance with the precautionary principle). Note that fk,nom values need not to be 
specified. 
 
5.3.1.3.3 Processing (distribution based)  
Sample fk using a normal distribution. Log or logit transformed values of fk,nom and fk,upp are used to 
define the first two moments of the normal distribution. Two situations are distinguished depending 
on the type of transformation.  

a) The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper 
confidence limit of a normal distribution. This normal distribution thus is specified by a mean 
ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. Values are drawn from this 
distribution in the MC-simulations. Processing factors fk will be nonnegative. Note: fk,upp and 
fk,nom values equal to 0 are replaced by a low user-specified value (e.g. 0.01); this is useful 
computationally to avoid problems with logarithms.  

b) The logits of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper confidence 
limit of a normal distribution. This normal distribution thus is specified by a mean logit(fk,nom) 
and a standard deviation {logit(fk,upp) – logit(fk,nom)}/1.645. Values are drawn from this 
distribution in the MC-simulations. Processing factors fk will be between 0 and 1. Note: fk,upp 
and fk,nom values equal to 0 and 1 are replaced by user-specified values (e.g. 0.01 and 0.99); 
this is useful computationally to avoid problems with logits. 

The user should keep in mind that, in case of a lognormal distribution, fk,nom defines the median, 
while fk,upp quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the 
standard transformation, but for very skew distributions (see Figure 48) occasionally values above 
1 are sampled (upper row, 1rst, 3rd and 5th plot). A logit transformation should be considered 
instead. 
 

 
Figure 48: Lognormal (upper row) and logistic (lower row) distributions for various values of 
fk,nom (= nom) and fk,upp (= upp) 

 
Back to: Modelling processing effects 
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5.3.2 Modelling of unit variability 

5.3.2.1 Introduction, variability in deterministic modelling 
Variability in compound concentrations between individual units is a relevant factor in the assessment 
of short-term dietary exposure to chemical compounds. It is addressed separately because monitoring 
measurements cmk are typically made on homogenised composite samples, both in controlled field 
trials and in food monitoring programs. Such a composite sample for food k is composed of nuk units 
with nominal unit weight wuk each. The weight of a composite sample is therefore wmk = nuk × wuk . 
This weight is often larger than a consumer portion, e.g. a typical composite sample of 20 sweet 
peppers weighs 3.2 kg, whereas daily consumer portion weights in the Dutch Food Consumption 
Survey 1997 ranged from 0.08 g to 458 g.  
How should monitoring data be used to estimate the raw food concentration levels crijk in consumer 
portions? Although the mean level of cmk may be a fair estimate of the mean level of crijk, the 
variability of cmk is not appropriate to estimate the variability of crijk. In smaller portions more 
extreme values may occur more readily, and thus acute risks may be higher than would follow from a 
direct use of the composite sample data. 
Therefore the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the 
non-probabilistic calculation of an international estimate of short-term intake (IESTI) (FAO/WHO 
1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide 
Compounds in food in 1999, and was modified in 2000 to reflect that the supply for actual 
consumption on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the 
original and the modified definition, the variability factor is used in a similar way. The basic idea is 
that the compound concentration for the first unit eaten is multiplied by v, whereas this factor is not 
applied for any remaining part of the daily consumption. 
 
In the original presentation v was meant to reflect “the ratio of a highest concentration in the 
individual product unit to the corresponding concentration seen in the composite sample” 
(FAO/WHO 1997). It was not clearly stated what was meant with “a highest concentration”. Should 
this be the maximum concentration found or should it be a high percentile, e.g. p95 or p97.5? In 
practical terms this did not matter too much, because little data were available. Therefore the 
FAO/WHO Consultation recommended to take initial values of v equal to “the number of units in the 
composite sample as given in Codex sampling protocols”. This will provide a conservative estimate of 
the compound concentration in the first unit, based on the assumption that all of the compounds 
present in the composite sample are present in this single unit. If Codex sampling protocols are used, 
then the number of units per composite sample is 5 for large crops (unit weights > 250 g) and 10 for 
medium crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor v = 1 was 
recommended. More recently, it has been proposed to replace the default value 10 with 7. For foods 
which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, a variability factor v = 
1 is proposed. To summarise: 
 
unit weight, wu FAO/WHO default variability factor, v 
< 25 g 
25 –250 g 
> 250 g 
juicing, marmalade/jam, sauce/puree 

1 
7 
5 
1 

Table 19: Default variability factors for IESTI calculations 

The Consultation specifically recommended to replace these default values with more realistic values 
obtained from studies on actually measured units. A working group of the International Conference on 
Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to 
define v, for samples taken from controlled trials, as the 97.5th percentile of the unit levels divided by 
the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the defining 
relation.  
Back to: Unit variability model options 
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5.3.2.2 Approaches to unit variability in probabilistic modelling: specifying distributions 
How should variability between units be incorporated in probabilistic modelling of acute risks? In 
probabilistic modelling we generate consumption amounts and compound concentrations which will 
be multiplied, summed over foods and divided by body weight to estimate the intake. However, the 
compound concentration cmk will usually be derived from a distribution based on measurements on 
composite samples. Assume that a batch of food contains N units (N large, for the statistics we assume 
infinite). The monitoring measurement cmk is made on a composite sample of nuk units (for example, 
nuk = 5). These units are assumed to be representative of the batch. Unit concentrations crijk are to be 
simulated for one or more units from this batch that will be part of a consumption portion in the MC-
simulation. Basically, there are three possibilities depending on the availability of data: 
1. use actual measurement data on individual units; 
2. use variability factors or other summary statistics based on measured individual units; 
3. use conservative assumptions. 
In MCRA only methods under categories 2 and 3 are implemented. The first approach has been 
pioneered in the context of a large UK survey on pesticides in fruit (Hamey 2000).  
 
In MCRA the following three models, discussed below in more detail, are implemented: 
1. Beta model, requires knowledge of the number of units in a composite sample, and of the 

variability between units (realistic or conservative estimates); 
2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results 

are always conservative); 
3. Lognormal model, requires only knowledge of the variability between units (realistic or 

conservative estimates). 
 
Preferably realistic estimates of unit variability are to be used, either expressed as coefficients of 
variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as 
97.5th percentile divided by mean). However, often such information is not directly available. In such 
cases it is customary to select high values for the variability factor, either based on collections of 
variability factors for other compounds/foods, or calculated as the theoretical maximum derived from 
the number of units in a composite sample. 
 
How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model 
a higher value of v gives a higher IESTI, but in a stochastic model a higher variability means more 
spread around a central value. In general this means that higher values, but also lower values can be 
generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated 
values below the monitoring level (cmk) with cmk itself. 
 
It is common to use default conservative values, such as the FAO/WHO variability factors in Table 
19. However, one should be aware that two entirely different interpretations are possible: 
1. The default variability factor may be defined in the same way as a data-based variability factor (v 

= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual 
data sets from trials, that a certain value v can be used as a conservative value for other situations 
(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model, 
censoring these distributions at cmk to guarantee conservative behaviour. For the beta model 
additional information on the number of units in a composite sample is needed. 

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors 
as the number of units in the composite sample (v = nuk). In this case, without other information, 
the only workable model is the Bernoulli model. 

 
Back to: Estimated parameters for unit variability 
 
5.3.2.2.1 Beta model for unit variability 
With this model MCRA will generate values for individual unmeasured units of a measured 
composite sample. If cmk is the concentration measured (or simulated) for the composite sample in 
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monitoring for food k, then the concentration in any unit can be no larger than cmax = nuk * cmk , where 
nuk is the number of units in the composite sample. Under the Beta model simulated unit values are 
drawn from a bounded distribution on the interval (0, cmax). The parameter for unit variability is 
specified as a coefficient of variation cvk of the unit values in the composite sample, or as a variability 
factor.  
The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two 
parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). Alternatively, it can be parameterised 
by the mean µ=a/(a+b) and the variance σ2=ab(a+b+1)-1(a+b)-2, or, as applied in MCRA, by the 
mean µ and the squared coefficient of variation cv2=ba-1(a+b+1)-1. Note that the coefficient of 
variation is the same for the unscaled and the scaled distributions. 
For the simulated unit values in each iteration of the program we require an expected value cmk. This 
scales down to a mean value µ = cmk/cmax = 1/nuk in the (standard) beta distribution. From this value 
for µ and an externally specified value for cvk the parameters a and b of the beta distribution are 
calculated as: 
 

( ) 11 −−= knuba  

( )( )
2

211
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kkk

cvnu
cvnunub −−−

=  

 
From the second formula it can be seen that cvk should not be larger than 1−knu  in order to avoid 
negative values for b. 

When the unit variability is specified by a variability factor 
k

k
k cm

pv 5.97
=  instead of a coefficient of 

variation cvk then MCRA applies a bisection algorithm to find a such that the cumulative probability 
975.0)],([ =baBetaP for ( )1−= knuab .  

Sampled values from the beta distribution are rescaled by multiplication with cmax to unit 
concentrations crijk on the interval (0,cmax).  
In the case that variability has been estimated by a conservative high value, all sampled values lower 
than cmk are replaced by cmk. 
In Figure 49, for several values of the coefficient of variation and number of units the beta distribution 
is shown with estimated parameters a and b. When the parameter for unit variability is high (upper 
left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at crijk = cmk and 
25% probability at crijk = cmax. In the upper right plot, the parameter for unit variability is smaller and 
some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which 
is according to the number of units in the composite sample. In the lower left plot, variability is low 
and unit values are sampled around the monitoring compound. In the extreme case, when unit 
variability is close to zero the monitoring compound itself is sampled and a spike occurs (not shown ). 
The lower right plot shows an intermediate situation, moderate to high variability. 
  

 
cvk =1.732; nuk=4; a=0.00005; b=0.00015 

 
cvk =1.20; nuk=6; a=0.4; b=2
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cvk=0.62; nuk=6; a=2; b=10 

 
cvk =1.46; nuk=4; a=0.1; b=0.3

Figure 49: Standard Beta distribution for different values of the coefficient of variation cvk and 
number of units nuk in the composite sample. x axis from 0 to 1.  

Back to: Beta distribution 
 
5.3.2.2.2 Lognormal model for unit variability 
With the Beta and Bernoulli models, MCRA simulates concentrations for units in the composite 
sample, such that the concentration of an individual unit can never be higher than the monitoring 
measurement multiplied by the number of units in the composite sample cmax = nuk * cmk . 
With the Lognormal model for unit variability MCRA simulates concentrations for new units in the 
batch from which the composite sample was taken. Effectively the number of units in a batch is very 
large, so in this case there is no practical upper limit to the concentration that can be present.  
The lognormal distribution is considered as an appropriate model for many empirical positive 
concentration distributions. With the Lognormal model MCRA assumes a lognormal distribution for 
unit compound concentrations. Let this distribution be characterised by μ and σ, which are the mean 
and standard deviation of the log-transformed concentrations. The unit log-concentrations are drawn 
from a normal distribution with mean ( )ikcmln=μ .  
Also for the Lognormal model MCRA allows two choices to specify the parameter for the unit 
variability. The parameter is specified as a coefficient of variation (cvk) or as a variability factor (vk). 
The coefficient of variation cv is turned into the standard deviation σ on the log-transformed scale 
with: 
 σ = √ln(cv2 + 1) 
 
A variability factor v is converted into the standard deviation σ as follows: 
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with μ and σ representing the mean and standard deviation of the log-transformed concentrations. So 

 
 ln(v) = 1.96σ – 1/2σ2 

 
Solving for σ gives: σ2 – 2*1.96σ – 2log(v) = 0, with roots for σ according to: 

 
 σ = 1.96 ± √(1.962 +2log(v)) 
 

The smallest positive root is taken as an estimate for σ (see also 5.2.3.2 ). 
 
In the case that variability has been estimated by a conservative high value, all sampled values lower 
than cmk are replaced by cmk. 
Back to: Lognormal distribution 
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5.3.2.2.3 Bernoulli model for unit variability 
The Bernoulli model is a limiting case of the Beta model, which can be used if no information on unit 
variability is available, but only the number of units in a composite sample is known. As a worst case 
approach we may take cvk as large as possible. When cvk is equal to the maximum possible 
value 1−knu , the (unstandardised) Beta distribution simplifies to a Bernoulli distribution with 
probability (nuk – 1)/nuk for the value 0 and probability 1/nuk for the value cmax = nuk * cmk..  
In MCRA values 0 are actually replaced by cmk, to keep all values on the conservative side. For 
example, with nuk = 5, there will be 80% probability at crijk = cmk and 20% probability at crijk = cmax.. 
Back to: Bernoulli distribution 
 
5.3.2.2.4 Estimation of intake values using the concept of unit variability 
• For each iteration i in the MC-simulation, obtain for each food k a simulated intake xik , and a 

simulated composite sample compound concentration cmik . 
• Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to unit 

weight wuk, except for the last partial intake, which has weight ( ) kikikikl wunuxxw 1−−= . 
• For the Beta or Bernoulli distribution: draw nuxik simulated values κikl from a Beta or Bernoulli 

distribution. Calculate concentration values as cikl = κikl * cmk, max = κikl * cmk * nuk. Sum to obtain 
the simulated concentration in the consumed portion: 
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• For the Lognormal distribution: draw nuxik simulated logconcentration values lcikl from a normal 

distribution with mean ( )ikcmln=μ  and standard deviation σ. Back transform and sum to obtain 
the simulated concentration in the consumed portion: 
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5.3.2.3 Additional: Comparison of probabilistic with deterministic estimates of acute risk 
The IESTI (International Estimated Short-Term Intake) is a deterministic estimate of the short-term 
intake of a compound on the basis of the assumptions of high daily food consumption per consumer 
and highest compounds from supervised trials. The IESTI is expressed per kg body weight and has 
only been defined for single foods. 
MCRA calculates IESTI for comparison with MC-percentiles.  
Calculations of IESTI (according to FAO 2002) recognise four different case (1, 2a, 2b and 3). In 
cases 1 to 3 the following definitions are used: 

LP:  Highest large portion reported, calculated as the 97.5th percentile of the distribution of  
consumed portions on days with positive consumption of the food (kg food/day) 

HR:  Highest residue (=compound) in composite sample, mg/kg 
bw:  Mean body weight, kg; in MCRA values may be input by the user, or weighted means 
 are calculated over consumers with the number of days on which they consumed the 

food as weights  
U:  Unit weight of the edible portion, kg. 
v:  Variability factor – the factor applied to the composite compound to estimate the 

concentration in a high-compound unit 
MR:  Median residue (=compound) in food, mg/kg 

Although the FAO Manual refers to supervised trials only, MCRA calculates concentrations (HR or 
MR) from any compound concentration data set supplied (may also be monitoring data). 
Concentrations (HR or MR) may be multiplied with a processing factor on beforehand, in MCRA this 
depends on the options chosen for processing. 
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Case 1: 
The compound in a composite sample reflects the concentration in meal-sized portion of the food 
(unit weight is below 25 gr). 
 

 IESTI = 
bw

HRLP *
 

 
Case 2: 
The meal sized-portion, such as a single fruit or vegetable unit might have a higher concentration than 
the composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into 
case 2a and 2b. 
 
Case 2a:  
Unit edible weight of raw food is less than large portion weight. 
 

 IESTI = 
bw

HRULPvHRU *)(** −+
 

 
The formula is based on the assumption that the first unit contains compounds at the HR*v level and 
the next one contains compounds at the HR level, which represents the compound in the composite 
from the same lot as the first one. 
 
Case 2b: 
Unit edible weight of raw food exceeds large portion weight. 
 

 IESTI = 
bw

vHRLP **
 

 
The formula is based on the assumption that there is only one consumed unit and it contains 
compounds at the HR*v level. 
 
Case 3: 
For those processed foods where bulking or blending means that the median represents the likely 
highest concentration. 
 

 IESTI = 
bw

MRLP *
 

 
When an acute reference dose is available, the calculated IESTI values are also expressed as a 
percentage of the acute RfD. 
 
IESTI is a deterministic estimate to reflect the unit variability within a composite sample. In the 
probabilistic approach, unit variability is explicitly modelled and the result is an estimate of the intake 
distribution (per food). These two different approaches handle the same problem, but it is undefined to 
which MC-percentile the IESTI value should be compared. In MCRA the user is free to choose a 
percentage point for this comparison. 
 
A point to note is that IESTI is calculated from positive consumptions on each separate food. To 
allow a fair comparison, the MC-percentiles are calculated in the same way. Note, however, that in a 
multi-food MC-analysis, even if one restricts the attention to consumption days only, the percentiles 
are typically based on consumption data which are partly zero (days with consumption zero for some 
but not all foods). 
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Back to: Additional options concerning IESTI and consumption days 

5.3.3 Intake model 

5.3.3.1 Only empirical estimates 
This is an acute risk assessment using empirical compound data. 

5.3.3.2 Empirical estimates and betabinomial/lognormal with age 
An acute risk assessment may be followed by a parametric model where the intake frequency and 
logarithmically transformed intake amounts are related to a spline or polynomial function of age. The 
betabinomial distribution is used to estimate the intake frequency and a lognormal distribution to 
model the ln(intake) amounts. 
Back to: Empirical estimates and betabinomial/lognormal with age 
 
5.3.3.2.1 Monte Carlo data generation of intake 
Through MC-sampling, a large number of intakes is generated by combining randomly chosen 
consumption patterns of consumers i on day j with randomly chosen concentrations in the consumed 
foods. The replicates generated for consumer day ij are further indexed by k to represent differences 
due to concentration variability. We ignore the finiteness of the concentration data, that is, we ignore 
the identity of the chosen concentration values in the original concentration dataset. 
Back to: Empirical estimates and betabinomial/lognormal with age 
 
5.3.3.2.2 Modelling the intake frequency distribution 
Let in and inpos be the total number of simulated intakes per consumer, and the number of simulated 
positive intakes, respectively. Then inpos  is modelled as a function of age (and/or other consumer 
characteristics), using a betabinomial distribution with binomial totals in  and overdispersion 
parameter φ  (independent of age). The fitted binomial probabilities are ( )ix xf=π̂  , where xi is the 

age of consumer i, and the estimated overdispersion parameter is φ̂ . 
Back to: Empirical estimates and betabinomial/lognormal with age 
 
5.3.3.2.3 Modelling ln(intake) amounts 
For the positive intakes, consider the log-transformed values yijk. Average over replicates to obtain 
consumer day averages yij.. These values are modelled in a REML analysis with random terms 
consumer and consumer.day as a function of age (and/or other consumer characteristics), with the 
number of values per consumer day (nij) as weights wij to correct for differences in the precision at the 
consumer day stratum. The fitted values from the model are ( )ix xf=μ̂ , where xi is the age of 
consumer i. 
Back to: Empirical estimates and betabinomial/lognormal with age 
5.3.3.2.4 Estimating the acute risk variability of positive intake amounts 
Correct the full set of simulated positive intakes by )(ˆ' ixijkijk yy μ−= . Estimate the variance 2

'yσ  of 

ijky' . We denote the estimated variance as 2
'ˆ yσ . Now for each selected age x the logarithmic 

transformed positive intake distribution is modelled as normal with mean ( )xfx =μ̂  and variance 
2

'ˆ yσ . 
Back to: Empirical estimates and betabinomial/lognormal with age 
 
5.3.3.2.5 Estimating the acute intake distribution 
The age-dependent acute intake distribution is obtained by integrating the betabinomial ( )φπ ˆ,ˆx  and the 

lognormal ( )2
'ˆ,ˆ yx σμ  distributions. 
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Back to: Empirical estimates and betabinomial/lognormal with age 

5.4  Chronic risk assessment 
In the MCRA program we have 3 models available to assess chronic risks:  

1) the beta-binomial/lognormal model without covariable (see 5.4.2 , 5.4.3 and 5.4.4 );  
2) in the extended version of this model, spline or polynomial functions are used to model the 

effect of a covariable like age (see 5.4.5 ) and;  
3) the discrete/semi-parametric model according to Nusser without covariable (see 5.4.6 ).  

5.4.1 Introduction 
In a chronic risk assessment the main interest goes to the fraction of consumers with a usual intake per 
day higher than an exposure limit.  Usual intake is defined here as the long-run average of daily 
intakes of a (chemical) compound by a consumer.  
Usually, food consumption data are available for consumers on 2 (or more) consecutive days. We 
assume an equal number of days for each consumer. This is in confirmity with our method of data 
entry for consumption (see 9.4.1 ). As a consequence, days without consumptions do have zero intake.  
Through the assumed independence of consumption data and compound concentration values (a most 
reasonable assumption) the daily intake of consumer i on day j can be calculated as the sum over 
foods of consumption amount per kg body weight times average concentration. See the basic model in 
5.1. The average concentration of all available concentration measurements on a food is taken, with 
non-detect measurements entered as zero, LOR2

1 or LOR , or any other fraction of LOR as specified 
in the input options.  
To calculate the usual intake in the first 2 available models two aspects will be taken into account: the 
number of days that a consumer eats that compound and if so, the amount of that compound. The 
number of days will be assumed to have a binomial distribution with a probability p different for each 
consumer. These probabilities will be assumed to come from a beta distribution. The eaten compound 
will be assumed to have a lognormal distribution. In the next paragraphs the modelling will be further 
discussed. 

5.4.2 Modelling the intake frequency distribution 
Let n and npos be the total number of days per consumer (for all consumers equal) and the number of 
days with a positive intake, respectively. Then npos is modelled using a beta-binomial distribution 
with binomial totals n and probabilities p. The probabilities, p, are assumed to follow a beta 
distribution: 
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This distribution is known as the betabinomial distribution. 
 
The mean and variance of a beta distribution are: 

 
 )/( βαα +   
and )]1()/[()( 2 +++++ βαβαβααβ n , respectively. 
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Re-parameterizing by )/( βααπ += and )1/(1 ++= βαϕ  is a more stable and interpretable 
parameterization. It can be shown that the mean and variance of npos are equal to  

nπ   
and n ])1(1)[1( ϕππ −+− n , respectively.  

 
Note that the first part of the variance n )1( ππ −  equals the binomial variance; the second part is the 
so-called overdispersion factor.  
Fitting the beta-binomial model with maximum likelihood gives estimates π̂  and ϕ̂  for the 
parameters π and φ. Back-transformation  gives the following estimates for α and β: 

ϕϕπα ˆ/)ˆ1(ˆˆ −=  and ϕϕπβ ˆ/)ˆ1)(ˆ1(ˆ −−=  
 
The distribution of the probability that a consumer eats a compound at a certain day is then: 

Beta(α̂ , β̂ ). 
Back to: Chronic risk analysis 

5.4.3 Modelling the positive ln(intake) amounts 
For the positive intakes, consider the log-transformed values yij (the natural logarithm is used). These 
values are modelled in a REML analysis with random terms consumer and interaction consumer.day 
to estimate the between-consumer and within-consumer variance component: 
 
 ln(yij)= μ + yi + uij 
 
where yi and uij are the consumer effect and interaction effect respectively. These effects are assumed 
to be normally distributed N(0, σ2

between) resp. N(0, σ2
within). 

It can be shown that the expectation and variance of the positive intake per consumption day of a 
random consumer y  are: 
 
 E(y)  = exp(μ + ½ σ2

within) 
 Var(y)  = σ2

between 

5.4.4 Modelling usual daily intake  
To obtain the usual intake (that is the average daily intake over both consumption and non-
consumption days) the E(y) from 1.3 has to be multiplied by the probability π from 1.2. If π was 
constant for all consumers the usual intake would have a lognormal distribution with mean ln(π) + μ + 
½ σ2

within and variance σ2
between. But because we have assumed in 1.2 that consumers have different p’s 

coming from a beta distribution, the probability that a consumer has a usual intake lower than say a 
exposure limit z equals: 
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where Φ is the cumulative normal distribution. In the MCRA program this integral is calculated with 
a Fortran-program using 2 ISML routines DZREAL and DQDAGS. 
 
Back to: Betabinomial/lognormal 
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5.4.5 Covariables in the models 

5.4.5.1 Intake frequencies depending on covariable(s) 
Intake frequencies can be modelled to be dependent of a covariable, like age. In that case the 
following regression model can be specified: 
 
 logit(π) = γ0 + γ1 f(x1;df), 
 
where x1 is the covariable, f is a spline or polynomial function and df the degrees of freedom of the 
spline or the degree of the polynomial. In the program the optimal df can be calculated by a backward 
or forward search. 
After the analysis the fitted probabilities π̂  can be plotted against the covariable. 

5.4.5.2 Positive amounts depending on covariable(s) 
Also the positive amounts can be modelled to be dependent of a covariable. The model for the 
ln(amount) is then: 
 
 ln(yij)= γ0 + γ1 f(x1;df) +yi + uij, 
 
with the the same notation as in 1.2 and 1.5.1.  
The fitted values from the model are ( )ix xf=μ̂ , where xi is the age of consumer i. 

5.4.5.3 Usual intakes depending on covariable(s) 
When one (or both) of the two models of intake frequency depends on a covariable the usual intake 
depends on that covariable too. The probability that a consumer has a usual intake lower than say a 
exposure limit z will in that case also plotted against the covariable. 
The percentage of consumers  
Back to: Betabinomial/lognormal (with age) 

5.4.6 Discrete/semiparametric (Nusser) 
Nusser et al. (1996) describe how to assess chronic risks for data sets with positive intakes (a small 
fraction of zero intakes was allowed, but then replaced by a small positive value). The modelling 
allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others 
with respect to their consumption habits. However, a disadvantage of the method was the restricted 
use to contaminated foods which were consumed on an almost daily basis, e.g. dioxin in fish, meat or 
diary products. The estimation of usual intake from data sets with a substantial amount of zero intakes 
became feasible by modelling separately zero intake on part or all of the days via the estimation of 
consumption probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In MCRA, a 
discrete/semi-parametric model is implemented allowing for zero intake and heterogeneity of variance 
following the basic ideas of Nusser et al. (1996, 1997) and Dodd (1996). 
 
Nusser et al. (1996, 1997) describe a procedure for the assessment of chronic risks using non-normal 
dietary intake data. Principally, their method consists of four steps: 
1. transforming the daily intake data to approximate normality using a power function or log 

transformation 
2. fitting a grafted polynomial function to the power or log transformed daily intakes. The 

polynomial provides some flexibility against power transformed components that are still 
deviating from normality, 

3. estimating the parameters of the usual intake distribution in the transformed scale, and 
1. estimating the percentiles of the distribution of usual intakes in the original scale. 
Back to: Discrete/semiparametric (Nusser) 
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5.4.6.1 Power or log transformation  
To achieve a better normality, daily intakes are transformed. The user can choose a logarithmic 
transformation ( ( )yyft ln)( == , no parameters to be estimated) or a power transformation 
( γyyft == )( , one parameter to be estimated). In the latter case the optimal power is determined on 
the grid { }100

1
5.3

1
3
1

5.2
1

2
1

5.1
1 ,...,,,,,,1,2,10 , with a further refinement grid search around the best fitting 

value. If a power 100
1 gives the best fit in this grid search, then the logarithmic transformation is 

selected (Note that a logarithmic transform corresponds theoretically to 0=γ ). The goodness of fit is 
determined by minimising the residual sum of squares: 2

1 ))(( γβ yiz − of a regression of normal 
Blom scores on the power-transformed daily intakes. Normal Blom scores are (Tukey 1962): 
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where i is the rank of the nth non-zero daily intake, n, the total number of non-zero intakes and ( )⋅Φ−1  is 
the inverse of the standard normal cumulative distribution function. 
Back to: Discrete/semiparametric (Nusser) 

5.4.6.2 Spline fit 
To achieve a better normality, a second transformation (optional) is performed: a spline function 

)(zgt = is fitted to the logarithmically or power transformed data t as a function of the normal Blom 
scores. The spline function is a grafted polynomial consisting of cubic polynomials between p = 3 
joint points (knots) and linear functions in the two outer regions. The daily intakes are transformed by 
interpolating from t to )(1 tgx −= , using the fitted spline function.  
After a successful transformation the daily intakes x will resemble Blom normal scores and their mean 
and total variance will therefore be approximately 0 and 1. The normality of the transformed values x 
is checked with the Anderson-Darling test. In the case of a spline transformation, if normality is 
rejected at the 85 % confidence level, then the number of knots p is increased and the spline fit is 
repeated (until a maximum of 22 knots). 
Back to: Discrete/semiparametric (Nusser) 

5.4.6.3 Estimation of the parameters of the usual intake distribution 
Variance components for between and within-consumer information are fitted to the transformed non-
zero daily intakes x using the model: 
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In this model the total variance of the daily intakes is divided into a between-consumer component 
and a within-consumer component. The within-consumer variance component can be heterogeneous, 
that is, it can be different for different consumers. In the model the between-consumer variance 

2
1σ and the mean and the variance of the within-consumer variance component distribution ( 2

Bσ and 
2
Aσ ) are estimated using standard statistical methods (ANOVA). Further , a test statistic MA4 is 

calculated to test whether the heterogeneity of variances is significant (see Dodd 1996 for details). 
The estimate 2

Bs of the between-consumer variance is the basis for the estimation of the distribution of 
usual intake. The distribution of usual intakes on non-zero intake days in the x scale is represented by 
a set of 400 normal Blom scores (which themselves represent the standard normal distribution) 
multiplied by s1: )(iBi zsx = . The same calculation is applied to user-requested percentiles 

)(1 pz p
−Φ= . 
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Back to: Discrete/semiparametric (Nusser) 

5.4.6.4 Back transformation and estimation of usual intake 
The 400+ values xi are back-transformed to the original scale. This is simple if no spline function has 
been estimated. If a spline function has been used, then it is a rather complicated procedure, because 
the spline function g was developed for daily intakes, not usual intakes. The following steps are made: 

1. First the 400+ values xi are expanded in a set of 9 x 400 values representing the distribution of 
daily intakes around each of the 400 points; 

2. These 9 x 400+ values are back transformed using the functions g and f , and the sets of 9 
values are then recombined (by weighted averaging) into 400 usual intake values yi ; 

3. A spline function g1 ,especially adapted for usual intakes, is now fitted to the 400 data pairs 
(xi, ti), where )( ii yft = ; 

4. Finally the usual intakes on non-zero intake days are represented by the back-transform using 
this improved function: ))(( 1 ii xgfy = . 

 
The user-requested percentiles py are the additional values (i > 400) in the 400+ set. The 400 yi 
values define the cumulative distribution function by: 
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The distribution is adapted in order to account for days with zero intake of consumers (defined here as 
consumers who have a positive probability of intake on any day, and therefore a non-zero usual 
intake). This is done by estimating the distribution of individual intake probabilities. This distribution 
is approximated via a number of classes (e.g. 21 or 51, can be selected by the user) arranged by the 
proportion of days on which there is a positive intake (pm). Using a binomial distribution for each 
class, the fraction of consumers in each class ( Mmm ,...,0; =θ ) is estimated by optimising the fit 
of the predicted proportions of consumers with 0, 1, 2, ... intake days to the observed proportions. The 
number of parameters to be estimated is usually higher than the number of possible outcomes for a 
consumer (e.g. 3 when there are two days per consumer), and therefore a smooth approximation is 
made using a modified minimum chi-squared estimator. See Dodd (1996) for details. Only the 
fraction of non-consumers ( 0θ ) is estimated separately with no restriction to be similar to the other 

mθ . It can be noted that the distribution of individual intake probabilities can be better estimated 
when the number of days per consumer in the consumption survey becomes higher. With only 2 days 
per consumer the procedure gives a rather artificial distribution, often with an estimated 0θ of zero 
This step can be time-consuming. Therefore, the number of iterations in the estimation procedure can 
be limited by the user. In our experience it is not generally necessary to use 50,000 iterations as in 
Dodd (1996). 
The estimated distribution of individual intake probabilities ( Mθθ ˆ,...,0̂ ) is used to transform the 
distribution of usual intake on non-zero intake days ( yF ) to the distribution of usual intake for 

consumers ( CF ) and finally to the distribution of usual intake for the entire population ( UF ). These 
transformations are based on the relation: 

 ∑
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0 )()( θθ  

which basically says that to obtain a certain level of usual intake u we should consider a different 
level ( u/pm ) for the class of consumers which consume only on a fraction pm of days. See Dodd 
(1996) for details of the computational procedure. Linear interpolation based on the 400 values of 
the yF distribution is then used to compute representations of the cumulative distribution functions for 
consumers only and the entire population. 
Back to: Discrete/semiparametric (Nusser) 
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5.5 Uncertainty of risk assessments: bootstrapping data sets 
In probabilistic risk assessment of dietary intake we use distributions which describe the variability in 
consumption within a given population of consumers and the variability of the occurrence and level of 
chemical compounds on the consumed foods. However, these calculations do not consider the amount 
of uncertainty that is due to the limited size of the underlying datasets. Typically, in a large number of 
simulations very many different combinations of consumption and compound concentrations are 
made. This leads to a smooth distribution of simulated intakes, and the impression of a very precise 
estimation of exposure percentiles or other quantities of interest. It is essential to realise that the 
accuracy of the inference depends on the accuracy of the basic data.  
 
A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron 
& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a 
dataset of n observations to obtain a bootstrap sample of again n observations (sampling with 
replacement, that is: each observation has a probability of 1/n to be selected at any position in the new 
bootstrap sample). By repeating this process B times, one can obtain B bootstrap samples, which may 
be considered as alternative data sets that might have been obtained during sampling from the 
population of interest. Any statistic that can be calculated from the original dataset (e.g. the mean, the 
standard deviation, the 95th percentile, etc.) can also be calculated from each of the B bootstrap 
samples. This generates a bootstrap distribution for the statistic under consideration. The bootstrap 
distribution characterises the uncertainty of the inference due to the sampling uncertainty of the 
original dataset: it shows which statistics could have been obtained if random sampling from the 
population would have generated another sample than the one actually observed. 
 
In MC-modelling of acute risks two datasets are combined: consumption data and compound 
concentration data. It makes sense to apply bootstrapping to both datasets separately, in order to 
characterise the uncertainty in the final exposure. In MCRA the bootstrap algorithm (when selected) is 
applied to: 
1. the multivariate consumption patterns and associated body weights: actually the data set of 

consumer identifiers is bootstrapped, and all consumer information (consumption patterns for all 
consumption days, body weight, and age) is coupled to the selected consumer identifiers.  

2. the univariate compound concentration data sets: these are bootstrapped independently for all 
foods. In principle, the bootstrap algorithm is applied to the dataset consisting of both non-detects 
and positive values; in practice, for a dataset with n0 non-detects and n1 positive values, the 
number of positive values in a bootstrap sample is obtained as a draw from a binomial distribution 
with parameter ( )101 nnn +  and binomial total 10 nn + . Then, this number of values is selected 
randomly from the set of n1 positive values. 

 
In MCRA the resulting bootstrap distribution of percentiles of the exposure distribution is summarised 
by specifying empirical 2.5th , 25th, 75th and 97.5th percentiles. The outer percentiles constitute a 
central 95% confidence interval for the variability percentiles. However, for this it is necessary that 
the number of bootstrap samples B is high enough. The number of bootstrap samples should be 
chosen depending on the confidence level wanted for the uncertainty interval. Typically 500-2000 
bootstrap sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993, pp. 14-15, 
275). 
 
The same bootstrap algorithm can also be applied to deterministic estimates which are calculated from 
data sets. For example the maximum concentration found in a bootstrap sample will be different, if 
the actual maximum value in the original dataset has not been selected. Also data-based estimates of 
large portion and average body weight will vary. 
Back to: Uncertainty analysis 
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5.6 Binning 
Binning is a method to summarise the simulated data (total intake, intake per food, consumption per 
food, concentration per food) in frequency intervals for further use in deriving the exposure 
distributions. The alternative would be to store observations for subsequent use, but this would require 
for moderate simulations already a large amount of storage capacity and an excessive administration. 
The mean value of the observations in the first chunk of the simulation (mean) is used to define the 
left limit of the central bin. For values above the mean, 1100 bins are used for storage. The upper 
limits of the upper bins are defined as 1 % higher than the lower limit. So, for upper bin i the upper 
limit is calculated as mean x 1.01i. For values below the mean also 1100 bins are defined with lower 
limits defined by mean x 1.01-i. After the process of binning is completed, the quantile value of a 
specific percentile is determined by linear interpolation between the bin limits. These 2200 bins 
together provide efficient storage for numbers spanning more than 9 decades (1.012200=3.2x109), 
which should be amply sufficient for most practical problems. 
To get accurate results, it is rather important that the mean value in the first chunk represents, 
approximately, the true mean of the sampled distribution. Therefore, chunk size (defined as the total 
number of simulations divided by the number of chunks) should not be chosen too small. During the 
simulation, the maximum of the sampled observations in each chunk is calculated. When this value is 
higher than the upper limit of the last bin, representing a potential maximum, this bin limit is replaced 
by the new maximum, and a warning is issued. When the mean value is missing, e.g. due to zero 
intakes, the program resorts to an average mean value, e.g. the average of the mean values of foods 
with nonzero intakes. Also in this case a warning is given. 
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6  Selection of consumers and foods 
In the next sections, the centrally supplied database ‘mcra_5.mdb’ is used. All tables are selected and 
data for survey DNFCS-3 and compound CHLORPYRIFOS are retrieved from the database. Find in 
Figure 50 the outcome of the selection. In total, 1194 foods are eaten. Application of the conversion 
algorithm shows that the number of derived foods is 19 + 54 = 73. Note that the selected foods do not 
depend on the choice of the compound. The retrieved foods are entirely determined by consumption 
patterns, e.g. the choice of a survey.  
The information in the lower part of the screen is related with the choice of the compound. Here, 
chlorpyrifos is selected and this compound is found on 19 derived foods. This means that there is at 
least one sample of each of the 19 foods with a positive concentration. On 54 derived foods only non-
detects are found. This means that for each of the 54 foods all samples were negative, i.e. no 
chlorpyrifos found. No worstcase values were found in the database.  
Checking one of the two radio buttons to specify which foods must be used in the risk analysis. Press 
the ‘go’-button in Figure 50 to enter the central menu. If you want to do the same type of analysis for 
one of the other options, click the to-overview-of-conversion ‘go’-button in the centralmenu. 
 
 

 
Figure 50: Selected foods for survey DNFCS-3 and compound CHLORPYRIFOS 
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If non-detects are not replaced by the LOR (see input form), the first and second radio button in 
Figure 50 are equivalent. Note that the first button is computationally more efficient because less 
foods are involved. 
 
With the subset-selection ‘go’-button in the MCRA central menu (see Figure 51) subset selections are 
made on the consumer population or on the foods. Through the use of scroll-down menus the user 1) 
selects ages, weights and sexes to define the population of consumers; 2) selects day(s) of 
consumption, foods, year, country and sampling type of the compound concentration data. In Figure 
51 the subset-selection ‘show’-button shows all selected levels for those variables on which selections 
are active. The corresponding ‘clear’-button removes all selections already made. 
 

 
Figure 51: MCRA central menu, subset selection 

6.1 Subset selection: consumers 
After clicking the subset-selection ‘go’-button in the MCRA central menu (see Figure 51) the first 
subset selection screen is shown (see Figure 52). Here, the consumer population is defined using 
characteristics on consumers (age, weight, sex). The first time, the characteristics of the total 
population are shown, so for age the minimum and maximum values are 1 and 97 year (both current 
selection as database). Note that combining levels of variables occasionally results in empty subsets 
e.g. the combination of ages within the range 1 to 8 and weights in the range 70 kg to 150 kg is an 
empty subset. So avoid making combinations of variables that yield empty subsets. The number of 
consumers currently selected is always mentioned in the screen, e.g. 6250 (see Figure 52). 
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Figure 52: MCRA subset selection: consumer population 

 
To make a selection of consumers, check one or more of the checkboxes and click the upper ‘go’-
button. The screen in Figure 53 appears. Choose values for age and weight (the unit depends on the 
survey you are currently using, see table FoodSurvey in 9.4.3 ) and levels of sex. Change some levels 
and implement the changes by clicking the subset-selection-based-on-chosen-levels ‘go’-button. The 
system automatically adjusts the levels of all variables. 
 

 
Figure 53: MCRA subset selection: select levels for consumers 

 
For example, select a population between 1 and 6 years. The minimum and maximum weight is 8 and 
30 kg, respectively. The selected number of children is 530 (screens are not shown). If you want to 
include previously excluded levels in a further selection step, just click the radio button labeled 
‘database’ in the ‘select from:’ column and the original levels in the database are retrieved again. Note 
that age and weight are related, so results may be unexpected when combinations are selected which 
are inconsistent. So, in the children example, if you want to return to your original population, check 



 81 

for both age and weight the radio button ‘database’, check both checkboxes and press the ‘go‘-button 
again. Then, your original population with 6250 consumers is selected again.  

6.2 Subset selection: consumption and concentration data 
Select the total population. The next screen shows you the current selected levels of each variable (see 
Figure 54). Also the levels of each variable stored in the database are shown. In our example, the 
number of derived foods with positive concentration values is 19 and these foods are derived from 
197 consumed foods.  
 

 
Figure 54: MCRA subset selection: consumption data and concentrations 

 
The subset selection screen for consumption and concentration data is used to select levels for a 
number of variables. Variables on which subset selection can be made are: 
• consumed foods: to restrict the analysis to specific consumed foods; 
• derived foods: to restrict the analysis to specific derived foods; 
• (consumption) day: to restrict typical consumption survey data to specific days (e.g. only the 

first); 
• year: to restrict the compound concentration data to specific years; 
• samplingtype: to include only compound concentration data from a specific samplingtype (i.e. 

monitoring); 
• country: to include only compound concentration data from foods originating from specific 

countries. 
 
In general, do not select combinations of levels which may result in empty subsets, e.g. grapefruits are 
not grown in the Netherlands. So, combination of these levels for foodname and country results in 
empty subsets. In this example, it is quite clear why things go wrong. Often it is less clear what you 
might expect from a combination of levels, especially when ‘current selection’ is combined with 
‘database’ in order to retrieve the original levels for a variable, so be aware of empty subsets.  
The example is continued by checking the checkboxes for derived and consumed foods.Click the 
upper ‘go’button. A new screen appears with scroll-down menus for derived and consumed foods(see 
Figure 55) Choose the three BAMI GORENG foods in the first scroll-down menu and click the upper 
‘go’-button.  
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Figure 55: MCRA subset selection: select levels 

 
The system automatically adjusts the levels of all variables: all foods that are not an ingredient of a 
BAMI GORENG food are removed as you can check by pressing the ‘show’-button in the central 
menu. Here, the steps above are repeated (check foodname checkbox and press upper button). In 
Figure 56, the selected foods are shown: LEMON, CELERY and SWEET PEPPER are ingredients of 
BAMI GORENG foods. 
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Figure 56: MCRA subset selection: select levels 

7  On-line editing of data (not implemented for Release 5) 
Instead of choosing data from already formed databases as discussed in 2.6.1 , it is also possible to 
edit data on-line. Choose ‘MCRA 5.0 (field trial data and Dutch consumption data)’ in the MCRA 
main menu (see Figure 2). A series of menus is reached where you can add and edit on-line your own 
concentration data. This is a safe way to combine your concentration data with centrally supplied food 
consumption data because food codes for the concentration data are automatically generated from the 
food consumption data. 
From the central menu (see Figure 6), click the start-selection-of-consumption-and-compound-tables 
‘go’-button. Then the available databases are shown (see Figure 57).  
 

 
Figure 57: Database selection menu, MCRA for field trial data 

 
Check one or more databases and click the ‘go’-button. The table selection menu appears (see Figure 
58). Note that its layout is being changed displaying only tables related to consumption e.g. 
Foodconsumption, Foods and Individual. It is compulsory to select these three tables (see also 2.6.1 ). 

http://mcra.biometris.nl/mcra/_3.5/ft/usertype.asp
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Tables related to concentration data are not being displayed. After checking ‘All Tables’ here the 
menus for on-line adding and editing data are reached. 
 

 
Figure 58: Table selection menu, MCRA for field trial data 

The first time a user has chosen the field trial menu a new database has to be created. Select create- 
new-database from the scroll-down menu (see Figure 59). In all subsequent cases, on-line created 
databases are shown in the scroll-down menu. Note that for a proper functioning of the editing menus 
only buttons and links in the window screen should be used. Do not use the 'back'-button in the 
toolbar during editing: this will mess up the order of the foods and a proper functioning of the menu is 
not guaranteed anymore. 
 

 
Figure 59: Select database for concentration, create new database 

 
Specify the name of the database (see Figure 60 ) and press the ‘go’-button. Note you should only use 
letters and digits, no other characters are allowed. 
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Figure 60: Select database for concentration, specify a new database name 

 
This brings you to Figure 61 if you entered concentrations values in the past. If not the ‘list or add  
variability factors’, ‘list or add processing factors’ and ‘list or edit ARfD or ADI’-buttons are not 
available.  
By clicking the ‘list-or-add-concentrations’-button brings you to a screen with an add-records link and 
a message ‘*** Concentration database is empty, add records ***’ if you did not enter concentration 
values before. 
 

 
Figure 61: Select data 

7.1 List or add concentrations 
For adding concentration values, click the ‘list or add concentrations’-button. You are requested to 
specify the name of a compound (see Figure 62) if you are entering values for the first time.  
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Figure 62: Specify compound name 

 
If your selected database contains concentration values, the menu for specifying a compound name is 
skipped and you are brought directly to a screen where you can choose your foods. Choose one of 
foods in the scroll-down menu for which you want to add values (see Figure 63 ) and click the enter-
food ‘go’-button. 
 

 
Figure 63: Select food 

 
In Figure 64, for food ORANGE and compound CHLORPYRIFOS, the number of samples and the 
concentration value is entered. After saving this record a message ‘*** one record added ***’ appears 
and another concentration value may be entered. Alternatively, click the select-new-food ‘go’-button 
for entering values for a new food. 
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Figure 64: Enter concentration data 

 
Click the list-records link (see Figure 64) for an overview of the concentration values in the database  
(see Figure 65).  
 

 
Figure 65: List concentration values 

 
Click one of the grey buttons displaying the primary key of the rows in the database.The record is 
retrieved and the value for the number of samples or the concentration value may be changed. Save or 
delete the record or choose a new food (see Figure 66). 
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Figure 66: Edit concentration value 

7.2 List or add variability factors 
After supplying all concentrations values, click the back-to-fieldtrial-data-menu link (see Figure 64), 
the user is brought back to the select data menu (see Figure 61). At this stage, all foods are known and 
adding of variability factors, processing factors and ARfD/ADI doses may be started. After entering 
all values, it is still possible to supply new concentrations values for old and/or new foods. The 
process of entering variability factors and/or processing factors for new foods is repeated as well.  
Click the ‘list or add variability factors’-button. If you did not enter variability factors before, a 
message ‘*** Variability database contains no records yet ***’ is displayed. Click the add- records 
link, to enter the menu for adding variability factors (see Figure 67). The variability factor itself and 
the number of units of the composite sample should be specified. For each food in the concentration 
table, values should be supplied. Only foods for which no values are supplied are displayed and the 
process of supplying values is repeated until all necessary values are given. Then and only then, the 
message ‘*** Variability factors are specified for all foods present in the concentration table ***’ or 
‘*** For all foods, variability factors are already specified ***’ is displayed. Records may be changed 
afterwards by clicking one of the grey buttons in table displaying a listing of all values in the 
database.  
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Figure 67: Variability factors 

7.3 List or add processing factors 
In Figure 68 the menu for entering processing factors is displayed. If you did not enter any values 
before, a message ‘*** Processing factor database contains no records yet ***’ is displayed. Then, 
click the add-records link. Choose from the scroll-down menu a processing type, enter a processing 
factor and save the record. Repeat this step until the message ‘All factors for ORANGE are specified’ 
appears and click the select-next-food ‘go’-button. 
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Figure 68: Processing factors 

 
To finish on-line editing for a food, click the ‘select-next-food’-button and continue entering values 
for the next food. There is no need to enter values for all combinations of foods and processing types: 
missing processing factors are by default replaced by value 1 (no processing).  
To enter processing factors for only a few number of foods and processing type combinations, enter 
your values and click repeatedly the ‘select-next-food’-button until the message ‘*** Processing 
factors for foods are specified ***’ is displayed. If you want to enter values at a later stage, just click 
the ‘list or add processing factors’-button in the select data menu. A list of processing factors found in 
the database is given and after clicking the add-records link, new processing values may be entered. 
Note that the scroll-down menus are dependent on the food and contain only those processing types 
for which no values are supplied. Records may be changed afterwards by clicking one of the grey 
buttons in table displaying a listing of all values in the database.  

7.4 List or edit ARfD or ADI 
Click the ‘list or edit ARfD or ADI’-button in Figure 61 to enter values for the acute reference dose 
(ARfD) or average daily intake (ADI). This brings you to Figure 69. 
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Figure 69: ARfD and ADI  
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9  APPENDIX A: Preparing the data 

9.1 Overview 
MCRA requires that all information needed for a risk assessment is stored in MS Access databases. 
Data are organised into tables which are divided into 3 groups with information on  

• food consumption data;  
• compound concentration data, and  
• linking and additional data.  

 
See Table 20 for an overview. To run MCRA, tables called ‘required’ should always be supplied. 
Selection of ‘additional’ tables depends on subset requirements (see Ch. 5 ) and model specifications 
(see Ch. 3 ).  
 
Required tables (minimal configuration) 
Food 
 
Food consumption 
FoodConsumption 
Individual 
 
Concentration of compounds 
Compound 
 
Country 
 
One and only one of: 
ConcentrationValues 
ConcentrationSummaryStatistics 
ConcentrationDiscreteValues 

food codes and labels (see 9.3.1 ) 
 
Description 
consumption of foods (see 9.4.1 ) 
consumer characteristics (see 9.4.2 )  
 
Description 
compound codes, labels, agricultural and toxicological limits (see 
9.5.1 ) 
country codes, labels (see 9.5.2 ) 
 
 
compound concentration data (full data) (see 9.5.3 ) 
compound concentration data (as summary statistics) (see 9.5.4 ) 
compound concentration data (table of frequency counts) (see 9.5.5 ) 
 

Additional tables (for querying or specific options) 
FoodProperties 
FoodComposition 
FoodMarketShare 
 
Food consumption 
FoodSurvey 
ProcessingType 
Processing 
 
Concentration of compounds 
VariabilityProd 
VariabilityCompProd 
VariabilityProcCompProd 
 
AgriculturalUse 
 
ConcentrationWorstcaseValues 

food codes and labels, and food specific information(see 9.3.2 ) 
food codes and labels, compositions (see 9.3.3 ) 
food codes and labels, marketshares (see 9.3.4 ) 
 
Description 
Name of survey (see 9.4.3 ) 
processing codes and labels (see 9.4.4 ) 
processing factors (see 9.4.5 ) 
 
Description 
unit variability factors (see 9.5.6 )  
unit variability factors, compound-specific (see 9.5.7 ) 
unit variability factors, processing- and compound-specific  
(see 9.5.8 ) 
information on the agricultural use of compounds (e.g. use allowed, 
percent crop treated) (see 9.5.9 ) 
information on worstcase values (e.g. compound and food specific 
worstcase values) (see 9.5.10 ) 

Table 20: Overview of tables 
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Tables are organised into columns (fields) and rows (records). In the next paragraphs, the format of 
tables is described.  
 
General remarks: 
• Table and column names should be exactly as indicated in the sections below and each table 

should contain all fields, except for tables ConcentrationSummaryStatistics (see 9.5.4 ) and 
ConcentrationDiscreteValues (see 9.5.5 ). 

• Missing values are indicated with code 9999, unless stated otherwise. In general, an empty cell 
is also interpreted as a missing value. Occasionally, the use of empty cells leads to errors in 
retrieving data. Therefore, it is advised to use the code 9999 to indicate missing values 
 

In sections 9.3 , 9.4  and 9.5  the format is explained: the table name is given followed by field names 
and a description with in parentheses the datatype. Each section ends with some notes and an 
example. 

9.2 Harmonised CODEX codes 
In the MCRA program we use harmonised CODEX codes in the interest of Pan-European risk 
assessment. This coding offers flexibility to enter food consumption data and chemical concentration 
data at any desired level of food coding (e.g. food as eaten, ingredient, raw agricultural commodity, 
processed food, brand level, etc.). 

9.2.1 Definitions 
A food code is a string consisting of symbols: 

• letters (case-unsensitive, so x and X are the same letter),  
• digits, and/or  
• special symbols, such as ~!#$^&*()+-=[]{};’:”,./<>?` 

 
Some special symbols are reserved for special use (see below), and can not be used freely in own 
codes: 

• & 
• $ 
• - 
• * 

 
Some symbols are not allowed at all, because this would interfere with the way the strings are 
analysed: 

• % 
• _ 
• @ 

 
The first symbol should be: 

• a letter (indicates a CODEX code or a code derived from a CODEX code), or 
• & followed by a 2-letter country code (indicates a national food code) 

 
CODEX codes start with two letters and four digits, and should comply with the CODEX 
Classification of foods and animal feeds. The code XX9999 (usually followed by a subtype code) can 
be used for all foods which cannot be placed in the Codex classification system. 
 
Any code (CODEX code or national code) can be followed by: 

• $ plus a subtype code, and/or 
• - plus a processing code 
• *- plus a processing code. Here the asterisk (*) serves as a wildcard for the preceding code: 

the processing information is valid for all codes that start with the code preceding the *. 
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Subtype codes and processing codes can have any format. Multiple levels of subtype code are allowed 
(e.g. &NL00$123$456). Only one level of processing code is allowed (e.g. FP0226-2). Subtype codes 
should precede processing codes (e.g. &NL00$123$456-2).  
 
Within EU-Safefoods we will harmonise subtype codes and processing codes as far as they apply to 
CODEX codes. For this purpose lists will be maintained at RIKILT, and any new subtype code or 
processing code is checked against this list, and when found appropriate added to this list. 
 
The table Food has to contain descriptive names for all food codes that occur in the tables 
FoodConsumption and Concentration..... and that the user wants to include in the analysis. Names 
will be in English, but an additional column with alternative names can be used. 

9.2.2 Conversion of codes 
We distinguish 3 types of food code conversion, which may be provided in three different tables: 

1. Food processing (table Processing) 
Processing factors will be applied to concentration data. 

2. Food composition (table FoodComposition) 
Composition percentages will be used to transform the consumed amounts. 

3. Subtypes/ Market share (table FoodMarketShare) 
Market share percentages will be used for as probabilities of selecting concentration data for 
each of the subtypes. 

9.2.3 Conversion rules 
• For each code in the FoodConsumption data set try to find the most appropriate 

concentration information by searching information in a specific order according to the steps 
in the scheme below.  

• If a code is converted into one or more other codes, then for any such other code re-start the 
search scheme before continuing to the next step or substep in the scheme with the old code.  

• The search is ended if concentration data have been found for code or as many as possible 
derived codes. When a code is converted to multiple new codes (composition, subtypes), then 
the search continues for all these new codes. 

• If no link can be made to concentration data, then the consumption of this code is considered 
irrelevant for the current exposure assessment. 

 
In 9.2.4 a scheme is given to link the food consumption and compound concentration data.  
 

9.2.4 Scheme to link food consumption and compound concentration data 
Find in Figure 70, an schematic outline of the search for food codes. After a successful search, the 
code is found in one of the concentration values tables. If the code is not found, searching starts in one 
of the link tables. If the code is found, the search starts again in one of the concentration values tables 
and the search is repeated. If a code is not found at all, the search for a code is unsuccessful. 
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Figure 70: Link scheme to find CODEX codes 

 
Step 1. (Identical code) 
Try to find code in the field foodmeasured of the ConcentrationValues (9.5.3 ), 
ConcentrationSummaryStatistics (9.5.4 or ConcentrationDiscreteValues (9.5.5 ) table. If found, 
the search is ended successfully. (Note that one and only one of these tables should be present. These 
were formerly referred to as full data, summary data and histogram data, respectively) 
 
Step 2. (Processing link) 

a. Try to find code in the field foodprocessed of the Processing table (9.4.5 ), and convert to 
the code specified in the field foodunprocessed. 

b. (wildcard match) Try to find a wildcard match code in the field foodprocessed of the 
Processing table. Wildcard match codes consist of an initial string (startcode, may be empty), 
an asterisk (*), and possibly a processing part (-processingtype). * may be any string endcode 
(not containing a -) such that code equals startcodeendcode or startcodeendcode-
processingtype. 

a. If code contains a processing part (-processingtype), then the wildcard match code 
should also end with -processingtype. Convert to the code specified in the field 
foodunprocessed, where endcode is substituted for any * in the new code. 

b. If code contains no processing part, then the wildcard match code should also contain 
no processing part. Convert to the code specified in the field foodunprocessed, 
where endcode is substituted for any * in the new code. 

 
Step 3. (Food composition link) 

a. Try to find code in the field food of the Foodcomposition table (9.3.3 ), and convert to one or 
more ingredient codes found in the field ingredient 

b. If code contains a processing part (maincode-processingtype), then try to find maincode in the 
field food of the Foodcomposition table. Convert to one or more ingredient codes and add -
processingtype to the new codes. 

 

 not found found

Consumed foods 
- FoodConsumption 
 

unsuccessful 
search 

Measured foods (step 1, Identical code) 
- ConcentrationValues 
- ConcentrationSummaryStatistics 
- ConcentrationDiscreteValues 

linking information: 
- Processing link (step 2) 
- Food composition link (step 3) 
- Subtype link (step 4) 
- Supertype link (step 5) 
- Default processing factor 1 (step 6) 
- Worst case value (step 7) 
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Step 4. (Subtype link) 
Starting from code, try to find subtype codes equal to code$* in the field foodtype of the 
FoodMarketShare table (9.3.4 , where the strings represented by the wildcard are not allowed to 
contain a $ themselves (meaning that we look only for codes one level down in the type hierarchy). 
Check that for the selected codes the market share percentages in the field marketshare% sum to 
100%.  

If this is not OK, then the result depends on the user option “Allow conversion to subtypes 
not summing to 100% and rescale”.  

1. If this option is allowed, then the marketshare percentages are rescaled to a sum 
of 100 %.  

2. If this option is not allowed, then the search in step 4 is considered unsuccessful. 
 

Step 5. (Supertype link) 
This step will only be taken if the user has explicitly allowed this option.  

a. If code contains a subtype part but no processing part (maincode$subcode), then convert to 
maincode. 

b. If code contains a subtype part and a processing part (maincode$subcode-processingtype), 
then convert to maincode-processingtype. 

 
Step 6. (Default processing factor 1) 
If code contains a processing part (-processingtype), then remove it. 
 
Step 7. (Worst case value) 
This step will only be taken if the user has explicitly allowed this option.  
Try to find code in the field food of the ConcentrationWorstcaseValues table (9.5.10 ). If found, the 
search is ended successfully. 

9.2.5 Example of use 
The FoodConsumption table (9.4.1 ) may contain &NL070251  (Apple pie Dutch): 
 
individual dayofsurvey foodconsumed amountconsumed foodsurvey
1012 1 &NL070251   150 DNFCS 
 
If measurements are available for FP0226$Elstar (Apple Elstar), FP0226$JonaGold (Apple JonaGold) 
and GC0654 (Wheat), then we need a conversion. 
 
The FoodComposition table (9.3.3 ) may then specify the composition data that apple pie contains 
peeled apple and wheat: 
 
food ingredient proportion%
&NL070251  FP0226-2   58.09 
&NL070251  GC0654 14.52 
 
The Processing table (9.4.5 ) may contain a processing factor for peeling of apples: 
 
compound foodprocessed foodunprocessed proctype procnom procupp 
120701 FP0226-2 FP0226 2 0.3 0.5 
 
where the field proctype specifies explicitly the type of processing (2 = peeling in this case), and 
fields procnom and procupp are processing factor nominal and upper values. 
The FoodMarketShare table (9.3.4 ) may contain market shares for subtypes of apple: 
 
foodtype marketshare% 
FP0226$Elstar 30 
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FP0226$JonaGold 70 
 
Finally, the ConcentrationValues table (9.5.3 ) should then contain measured concentrations for 
FP0226$Elstar (Apple Elstar), FP0226$JonaGold  (Apple JonaGold) and GC0654 (Wheat): 
 
compound foodmeasured year month samplingtype country numberofsamples value
120701 FP0226$Elstar   2006 11 M NL 1 0.34
120701 FP0226$Elstar   2006 11 M NL 6 -0.01
120701 FP0226$JonaGold  2006 11 M NL 1 0.20
120701 FP0226$JonaGold  2006 11 M NL 1 0.05
120701 GC0654 2006 11 M NL 6 -0.01
 
The Food table (9.3.1 ) should at least contain the following entries: 
 
food foodname 
&NL070251   Apple pie Dutch 
FP0226$Elstar   Apple Elstar 
FP0226$JonaGold  Apple JonaGold 
GC0654 Wheat 
 
Note that entries for intermediate stages such as FP0226-2 or FP0226 are not obligatory. 
 

9.3 Food tables 

9.3.1 Food (compulsory) 
field name description 
food (text) 
foodname (text) 
foodname2 (text, optional) 

food code 
food label 
alternative food label, e.g. national language  

• Foodname2 is used for alternative foodnames. 
 
Example: 

 
 

9.3.2 FoodProperties (optional, (for unit variability compulsory)) 
field name description 
food (text) 
foodname (text) 
unitweight (number) 
edibleportion (number) 
largeportion (number) 

food code 
food label 
nominal weight of a unit (gr) 
edible portion (corrected large portion weight, gr) 
weight of a large portion (gr) 

• For unknown nominal unit weight use value 0. 
• Missing values for edibleportion and largeportion: 9999. 
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Example: 

 
 

9.3.3 FoodComposition (optional) 
field name description 
food (text) 
ingredient (text) 
proportion% (number) 

food code 
ingredients of the food 
proportion of each ingredient in the food (in percentages) 

• Specifies the composition of foods and corresponding proportions. 
 
Example: 

 
 

9.3.4 FoodMarketShare (optional) 
field name description 
foodtype (text) 
marketshare% (number) 

subtype of food 
market share of each subtype (in percentages) 

• Specifies food marketshares of subtypes. 
 
Example: 

 
 

9.4 Food consumption tables 

9.4.1 FoodConsumption (compulsory) 
field name description 
individual (number) 
dayofsurvey (number) 

consumer identification number  
day (sequential number in food consumption survey) 
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foodconsumed (text) 
amountconsumed (number) 
foodsurvey (text) 

food code 
consumed portion of food (g) 
name of survey 

• Contains data on consumed foods. Days without consumptions are not recorded. The number of 
available days per consumer is inferred from this table and is assumed to be the same for each 
consumer in the survey. 

• No missing values allowed. 
 

Example: 

 
 

9.4.2 Individual(compulsory) 
field name description 
individual (number) 
foodsurvey (text) 
age (number) 
weight (number) 
sex (text) 

consumer identification number  
name of survey  
age (e.g. in years, months or days) 
body weight (e.g. in kg or g) 
gender 

• Specify in table FoodSurvey (see 9.4.3 ) the unit for age and weight. 
• No missing values allowed. 
 
Example: 

 
 

9.4.3 FoodSurvey (optional) 
field name description 
foodsurvey (text) 
year (number) 
country (text) 
agein (text) 
weightin (text) 

name of survey 
year of survey  
country of survey 
unit of age  
unit of weight 

• Defines characteristics of the survey. 
• No missing values allowed. 
 
Example: 
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9.4.4 ProcessingType (optional, (for processing compulsory)) 
field name description 
proctype (number) 
procname (text) 
disttype (number) 
 
 
 
 
 
bulkingblending (number) 

code of processing type 
description of processing type 
indicator (1/2): 

• simulated processing factors are restricted to the interval 
(0,1) using a logistic-normal distribution (1),  

• or simulated processing factors are restricted to positive 
values using a log-normal distribution (2) 

indicator (0/1): 
for types of processing applied on large batches, e.g. juicing, 
sauce/puree (obligatory),  

• 0 =  no bulking/blending ;  
• 1 = bulking/blending 

• Information on bulking and blending is only relevant for modelling of processing effects in 
combination with unit variability and IESTI calculations, but should always be present in the table 
even when these effects are not explored. 

• No missing values allowed. 
 
Example: 

 
 

9.4.5 Processing (optional) 
field name Description 
compound (text) compound code 
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foodprocessed (text) 
foodunprocessed (text) 
proctype (number) 
procnom (number) 
procupp (number) 

food code processed 
food code unprocessed 
code of processing type  
nominal value (best estimate) of processing factor 
upper value (estimate of 97.5th percentile or “worst case” estimate) 
of processing factor 

• Procupp should be higher than procnom. 
 
Example: 

 
 

9.5 Compound concentration tables 

9.5.1 Compound (compulsory) 
field name Description 
compound (text) 
compoundname (text) 
arfd (number) 
adi (number) 
unit (number, optional) 

compound code 
compound label (name of compound) 
ARfD (acute reference dose), in microgr/kg bw/day 
ADI (acceptable daily intake), in microgr/kg bw/day 
-6 (default) or -9, see below 

• Missing values for ARfD and ADI: 9999. 
• Column unit contains a coding to determine the unit as used for compound concentration data and 

dietary intake. Coding is as follows:  
 
 
 
 
• If column unit doesn’t exist code -6 is assumed 
 
Example: 

 
 

9.5.2 Country (compulsory)  
field name Description 
country (text) 
countryname (text) 

code for country 
name of the country, label 

• No missing values allowed 
 
Example: 

 -6 -9 
concentration: mg/kg microgram/kg 

intake: microgram/kg bw/day nanogram/kg bw/day 
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9.5.3 ConcentrationValues  (optional) 
field name description 
compound (text) 
foodmeasured (text) 
year (number) 
month (number) 
samplingtype (text) 
country (text) 
numberofsamples (number) 
 
value (number) 

compound code 
food code 
sampling year 
number of month  
type of sampling (monitoring) 
country of sample 
count of the number of times the specified concentration or limit of 
reporting (LOR) occurs  
concentration (mg/kg) or LOR (see below) 

• The limit of reporting is specified in column value using a minus (-) sign to make the distinction 
between a measured concentrations, e.g. –0.02 (see example first row). 

• Concentration values are stored in column value and the number of times each value occurs in 
column numberofsamples, e.g. 0.21 and 1, respectively. 

• Missing LORs are reported as –9999. The MCRA program replaces missing LORs with 1) the 
maximum LOR found in the database, 2) if all LORs are missing, the lowest concentration found 
in the database. A warning is generated when 1) and 2) are not possible. 

• No missing values allowed for the other columns. 
 
Example: 

 
 

9.5.4 ConcentrationSummaryStatistics (optional) 
field name description 
compound (text) 
foodmeasured (text) 
country (text) 
limitofreporting (number) 
numberofsamples (number) 
numberofpositives (number) 
the mean: mean or meanall 
(number) 
the median: med or medall 
(number) 
max (number) 
the variance: var or varall 
(number) 
the percentile: perc or percall 

compound code 
food code 
code for country 
limit of reporting (mg/kg) 
size of sample (detects and non-detects) 
number of positive concentration values (detects) 
statistic for the mean  
 
statistic for the median 
 
statistic for the maximum 
 
statistic for the variance 
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(number) 
percentile (number) 

statistic for the percentile  
specifies the percentage of the statistics perc and percall 

• Field names mean, meanall, med, medall, max, var, varall, perc, percall and percentile are 
optional and their order is free. Not all statistics need to be present in the table. See also last 
bullet. 

• Statistics ending on ‘all’ refer to statistics based on all samples including non-detects 
(concentrations below LORs), while statistics without suffix ‘all’ relate to statistics based on 
nonzero samples (non-detects) only.  

• The use of equivalent statistics, like mean and meanall, for one food in the same row is not 
allowed.  

• Be aware that statistics should be consistent e.g.: med is always smaller than mean; the 
calculated mean (nonzero samples only) that is derived from statistic meanall should be smaller 
than max; specifying medall implies that more than half the number of samples are detects 
(numberofpositives); specifying percall implies that the number of detects (numberofpositives) is 
greater than the percentage specified in column percentile.  

• Missing LORs are reported as –9999. The MCRA program replaces missing LORs with 1) the 
maximum LOR found in the database, 2) if all LORs are missing. A warning is generated when 1) 
and 2) are not possible. 

• Missing statistics are reported as 9999. Columns containing only missing values are not allowed 
and should be deleted. 

 
Example: 

 
 

9.5.5 ConcentrationDiscreteValues (optional) 
field name description 
compound (text) 
foodmeasured (text) 
country (text) 
limitofreporting (number) 
numberofsamples (number) 
c%01 (number) 
c%02 (number) 
c%05 (number) 
c%1 (number) 
c%2 (number) 
c%5 (number) 
c1 (number) 
c2 (number) 
c<xxx> (number) 
c<xxx> (number) 
c<xxx> (number) 
cE10 (number) 

compound code 
food code 
code for country 
limit of reporting (mg/kg) 
size of sample (detects and non-detects) 

• number of samples with a concentration between the value 
extracted from the field name of the previous column 
(exception: for the first column a value 0 is taken) and the 
value extracted from the field name in the current column 
(mg/kg). 

 
• classes (i.e. columnnames) are free to choose so c<xxx>… 

may be replaced with any appropriate concentration e.g. 
c5, c10 etc. 

• Field names representing the number of frequency counts are constructed as follows:  
c = indicates class limit, 
% = represents the decimal point (if necessary), 
xx = is the value of the class limit. 

Thus: field name c%02 specifies class limit 0.02, field name c2 specifies class limit 2, field name 
cE10 specifies class limit 1*1010. 
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• The number of non-detects measurements is given as the difference between the 
numberofsamples and the sum of frequency counts, e.g. see example first record 377 – 1 = 376,. 

• Missing LORs are reported as –9999. The MCRA program replaces missing LORs with 1) the 
maximum LOR found in the database, 2) if all LORs are missing…... A warning is generated 
when 1) and 2) are not possible. 

• For columns numberofsamples, c%02…cE10 no missing values is allowed: classes without 
frequency counts are reported as 0. When no data are available for a food, delete the entire row.  

 
Example:  

 
 

9.5.6 VariabilityProd (optional) 
field name description 
food (text) 
varfac (number)  
coefvar (number) 
nounitcomp (number) 

food code 
variability factor 
coefficient of variation 
number of units in the composite sample 

• This table is used for specifying real empirical estimates of unit variability (e.g. from special 
studies) for the lognormal and the beta distribution and the number of units in a composite 
sample. 

• Estimates for unit variability are independent of the compound.   
• Missing values: 9999 
• When the parameter for unit variability is a coefficient of variation and the number of units equals 

1, unit variability is ignored for this food. 
 
Example: 

 
 

9.5.7 VariabilityCompProd (optional) 
field name description 
compound (text) 
food (text) 
varfac (number) 
coefvar (number) 
nounitcomp (number) 

compound code 
food code 
variability factor 
coefficient of variation 
number of units in the composite sample 

• This table is used for specifying real empirical estimates of unit variability (e.g. from special 
studies) for the lognormal and the beta distribution that are dependent on the compound. Values 
for unit variability in table VariabilityProd are replaced by the new ones.  

 
Example: 
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9.5.8 VariabilityProcCompProd (optional) 
field name description 
compound (text) 
food (text) 
proctype (number) 
varfac (number) 
coefvar (number) 
nounitcomp (number)  

compound code 
food code 
processing type code 
variability factor 
coefficient of variation 
number of units in the composite sample 

• This table is used for specifying real empirical estimates of unit variability (e.g. from special 
studies) for the lognormal and the beta distribution that are dependent on the combination of 
processing type and compound. Values for unit variability in table VariabilityProd and 
VariabilityCompProd are replaced by the new ones. This can be used for example to reset the 
variability factor to 1 for grape juice and raisins (dried grapes). 

 
Example: 

 
 

9.5.9 AgriculturalUse (optional) 
field name description 
compound (text) 
food (text) 
country (text) 
year (number) 
useallowed (number) 
 
perccroptreated (number) 

compound code 
food code 
code for country 
year 
indicator (0/1) whether use of the compound for the food is allowed (1) 
or not (0) 
maximum percentage of the food that is treated with the compound 

• For combinations of compound and foods that are not listed in table AgriculturalUse MCRA will 
assume that use is not allowed. 

 
Example: 
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9.5.10 ConcentrationWorstcaseValues (optional) 
field name description 
compound (text) 
food (text) 
country (text) 
year (number) 
worstcasevalue (number) 

compound code 
food code 
code for country 
year 
worstcase value 

• When information on detects and non-detects is missing, worstcase values may be used. 
 
Example: 
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10  APPENDIX B: Other output depending on specifications of 
options  
Appendix B shows model output (see options in Ch. 3 ). See also 4.1  and 4.2 . 

10.1 Acute risk assessment: processing fixed factors 
In this example, output is shown for an acute risk assessment and processing using fixed factors for 
organo phosphate pesticide chlorpyrifos. Table 21 lists the main options: 
 
Input form   

risk type acute 
uncertainty analysis no 
concentration model empirical 
number of Monte Carlo iterations   200000 
number of computational chunks  10 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
concentration data: 
processing factors 

 
processing (fixed factors) 

additional system defaults 
output system defaults 

Table 21: Input form options: processing 

 
In Table 22 you find the main characteristics concerning this analysis taken from the logfile. Note that 
the number of foods and processing combinations is 52 whereas the number of foods is 12. 
 
Logfile  

Number of foods 8 
Acute reference dose (ARfD) 100 
Average daily intake (ADI) 10 
Number of detects 100 
Number of non-detects 938 
Number of foods and processing 
type combinations 

 
10 

No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
sex female, male 

Total no of consumption days 10718 

Table 22: Information in logfile 

 
For a summary of the data, see Table 5. In Table 23 you find a summary of the simulated intakes. 
Compared to Table 6, this table contains a second section with information on processed foods only. 
New in the lower part is an additional column (ProcFact) with, for fixed factors, the value of the fixed 
processing factor and for distribution based factors, the mean of the sampled processing factor values.  
 
 
SUMMARY OF SIMULATIONS OF CONSUMPTIONS AND COMPOUND CONCENTRATIONS WITH RESPECT TO: 
*********************************************************************** 
 
 Compound:  CHLORPYRIFOS 
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*********************************************************************** 
 
Code         : food code 
Food         : food label 
----------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
DeltaC       : difference (%) compared to average consumption 
               in database 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
----------------------------------------------------------------------- 
MeanConcen   : mean concentration of all samples 
DeltaR       : difference (%) compared to average concentration 
               in database 
NSamplPos    : number of samples with positive concentrations 
NSamples     : total number of samples with concentration measurements 
%SamplPos    : percentage samples with positive concentrations 
ProcFact     : mean processing factor 
*********************************************************************** 
 
FOOD CONSUMPTION DATA 
 
        Code         Food MeanConsum    DeltaC MeanConsDays  NConsDay    NDays %ConsDays 
                                 (g)     (%)           (g)                         (%) 
      FB0275 STRAWBERRY        17.37  ( -0.4)        35.56     97700   200000     48.9 
      FB1235 TABLE-GRAPES      68.84  ( -1.0)       178.21     77258   200000     38.6 
      FC0206 MANDARIN, SE      11.20  (  0.8)        51.87     43195   200000     21.6 
      FC0208 ORANGE, SWEE      73.47  ( -1.1)       128.29    114530   200000     57.3 
      FP0226 APPLE            100.25  ( -0.3)       162.27    123560   200000     61.8 
      FS0245 NECTARINE          0.78  ( -2.6)       117.81      1329   200000      0.7 
      FS0247 PEACH             11.77  ( -1.0)        41.56     56622   200000     28.3 
      VO0445 PEPPERS, SWE      12.96  ( -0.5)        64.40     40247   200000     20.1 
 
 
 
 
COMPOUND CONCENTRATION DATA 
 
        Code         Food   MeanConc   DeltaR  NSamplPos NSamples %SamplePos ProcFact 
                             (mg/kg)     (%)                          (%) 
      FB0275 STRAWBERRY       0.0006  ( -3.8)      1250    97700      1.3     0.99 
      FB1235 TABLE-GRAPES     0.0092  (  3.1)      8919    77258     11.5     0.99 
      FC0206 MANDARIN, SE     0.0442  ( -0.2)      5783    45435     12.7     0.78 
      FC0208 ORANGE, SWEE     0.0230  (  0.0)     24326   114530     21.2     0.99 
      FP0226 APPLE            0.0016  ( -0.5)      4512   123560      3.7     0.99 
      FS0245 NECTARINE        0.0113  (  1.9)       121     1329      9.1     0.99 
      FS0247 PEACH            0.0034  (  1.8)      5487    56622      9.7     0.99 
      VO0445 PEPPERS, SWE     0.0012  ( -5.4)       830    40247      2.1     0.99 
 
 
 
=============================================================================================================
 
FOOD CONSUMPTION DATA 
 
        Food & Processing   MeanCons    DeltaC MeanConsDays NConsDays    NDays %ConsDays ProcFact 
                                (gr)     (%)          (gr)                         (%) 
 MANDARIN, SE:canned/cons       0.39  (  1.3)        38.31      2012   200000      1.0     0.77 
 MANDARIN, SE:juicing           0.76  (  1.6)        14.93     10154   200000      5.1     0.11 
 MANDARIN, SE:unknown          10.06  (  0.7)        60.47     33269   200000     16.6     0.99 
=============================================================================================================
 

Table 23: Summary of simulation, including processed foods 

 
For processing, all tables as found in 4.1  are extended with the additional information on the 
processed food. Note that the percentiles of the acute intake distribution after applying processing 
factors, see Table 24, are slighter lower than without processing (see Table 9) 
 
*********************************************************************** 
Random sampling is based on seed :        0 
Number of iterations (consumers):   200000  out of   6250 
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CHLORPYRIFOS (microgr/kg bw/day)  consumption:   200000 out of 200000 
 
*********************************************************************** 
 Compound:  CHLORPYRIFOS 
*********************************************************************** 
     Percentiles, maximum and average intake 
*********************************************************************** 
   Percentage     Percentiles of CHLORPYRIFOS    (microgr/kg bw/day) 
        50.00        0.00000 
        90.00        0.13440 
        95.00        0.26667 
        99.00        0.78129 
        99.90        2.80839 
        99.99        6.05685 
         mean        0.05109 
      maximum       20.40600 

Table 24: Percentiles for the acute intake distribution applying processing 

10.2 Acute risk assessment: unit variability, Beta distribution 
In this example, output is shown for an acute risk assessment and unit variability for organo phosphate 
pesticide chlorpyrifos. Table 25 lists the main options: 
 
Input form   

risk type Acute 
uncertainty analysis No 
concentration model Empirical 
number of Monte Carlo iterations   200000 
number of computational chunks  10 
unit variability model beta distribution 
random seed 0 
intake model only empirical estimates 
concentration data system defaults 
Additional system defaults 
Output system defaults 

Table 25: Input form options: unit variability 

 
In Table 26 you find the main characteristics concerning this analysis taken from the logfile. The 
logfile contains some information on unit variability like missing variability factors and the maximum 
number of units found in a consumption. 
 
Logfile  

Number of foods 8 
Acute reference dose (ARfD) 100 
Average daily intake (ADI) 10 
Number of detects 100 
Number of non-detects 938 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 10718 
Model 1 : Beta distribution of unit concentrations. 
Maximum possible unit concentration is NU times comp. sample concentration 
(NU = number of units in composite sample). 
Default values can be overruled by specifying NU values. 
                           unit weight <= 25:  1 
                     25 < unit weight <= 250:  7 
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                           unit weight > 250:  5 
Estimated variability factors are p97.5/mean. 
 
Maximum number of units in a consumption:  23 
  for product(s):                    TABLE-GRAPES 

Table 26: Information in logfile 

 
In Table 27, the percentiles of the intake distribution after applying unit variability are shown. Note 
that the percentiles are much higher (p99.99 = 14.793) than without unit variability (p99.99 = 7.618, 
see Table 9) and after applying processing (p99.99 = 6.06, see Table 24). 
 
 
Random sampling is based on seed :        0 
Number of iterations (consumers):   200000  out of   6250 
CHLORPYRIFOS (microgr/kg bw/day)  consumption:   200000 out of 200000 
*********************************************************************** 
 
 Compound:  CHLORPYRIFOS 
 
*********************************************************************** 
     Percentiles, maximum and average intake 
*********************************************************************** 
 
   Percentage     Percentiles of CHLORPYRIFOS  (microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.05363 
        95.00        0.24068 
        99.00        1.32902 
        99.90        5.71742 
        99.99       14.79337 
         mean        0.06141 
      maximum       24.26852 

Table 27: Percentiles for the acute intake distribution after applying unit variability 

10.3 Acute risk assessment: IESTI 
In this example, output is shown for an acute risk assessment and IESTI for organo phosphate 
pesticide chlorpyrifos. Table 28 lists the main options: 
 
Input form   

risk type Acute 
uncertainty analysis No 
concentration model Empirical 
number of Monte Carlo iterations   200000 
number of computational chunks  10 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
concentration data system defaults 
additional: 
estimation of IESTI 
standard body weight is  
compare IESTI with Monte Carlo-
percentile 
MC percentage for comparison with 
IESTI  
use own variability factors 

 
yes 
60 
 
yes 
 
99 
no 

Output system defaults 

Table 28: Input form options: IESTI 
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In Table 29 you find the main characteristics concerning this analysis taken from the logfile. 
 
Logfile  

Number of foods 8 
Acute reference dose (ARfD) 100 
Acceptable daily intake (ADI) 10 
Number of detects 100 
No of consumers 6250 
Number of non-detects 938 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 10718 

Table 29: Information in logfile 

 
In Table 30 IESTI estimates are displayed together with the estimate expressed as percentage of the 
ARfD (%ARfD). Also a comparison is made with the MC-percentile per food for positive 
consumption days only (ConsPos) as well as all consumption days (AllDays). For Orange the IESTI 
estimate is 1.067 microgr/kg bw/day which is slighter lower than the MC-percentiles for positive 
consumption days only (1.341 microgr/kg bw/day) and slighter higher than the MC-percentiles for all 
consumption days (0.978 microgr/kg bw/day). 
 
*********************************************************************** 
 Compound:  CHLORPYRIFOS 
*********************************************************************** 
IESTI estimates (microgr/kg bw/day) 
%ofARfD : estimates expressed as % of Acute Reference Dose 
ConsPos: percentiles per food for positive consumptions only 
AllDays : percentiles per food for all days (including days without consumption) 
 
Note that option Consumption days only restricts the total number of days to a subset. 
If one restricts attention to Consumption days Only, percentiles are typically 
based on consumption data which are partly zero (days with consumption zero for 
some but not all foods) 
 
IESTI compared with Monte Carlo Percentiles for Positive Consumption Only and All days 
 
                                                      ConsPos    AllDays 
Food                          IESTI        %ofARfD    p99.00%    p99.00% 
 
STRAWBERRY                    0.278          0.278      0.006      0.000 
TABLE-GRAPES                  1.190          1.190      0.753      0.318 
MANDARIN, SE                  1.435          1.435      0.767      0.320 
ORANGE, SWEE                  2.550          2.550      1.068      0.731 
APPLE                         0.316          0.316      0.154      0.096 
NECTARINE                     2.160          2.160      0.624      0.000 
PEACH                         0.153          0.153      0.080      0.027 
PEPPERS, SWE                  0.249          0.249      0.030      0.000 
 

Table 30: IESTI estimates 

10.4 Acute risk assessment: uncertainty  
In this example, output is shown for an acute risk assessment and an uncertainty analysis for organo 
phosphate pesticide chlorpyrifos. Table 31 lists the main options: 
 
Input form   

risk type acute 
uncertainty analysis yes 
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concentration model empirical 
number of Monte Carlo iterations   200000 
number of computational chunks  10 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
number of bootstrap samples 100 
number of iterations per 
bootstrap sample 

 
20000 

concentration data: system default 
Additional system defaults 
Output system defaults 

Table 31: Input form options: uncertainty 

 
In Table 32 you find the main characteristics concerning this analysis taken from the logfile. 
Consumptions and concentration data are bootstrapped. 
 
Logfile  

Number of foods 8 
Acute reference dose (ARfD) 100 
Average daily intake (ADI) 10 
Number of detects 100 
Number of non-detects 938 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 10718 
Total no of simulations 
(uncertainty) 

2000000 

Bootstrap consumptions             yes 
Bootstrap concentration data       yes 

Table 32: Information in logfile 

 
In Table 33, the percentiles of the intake distribution for the specified percentages are displayed 
together with the 2.5, 25, 75, 97.5% points of the percentile uncertainty distribution. In this example, 
the 95% uncertainty interval for the p99.99 (7.61810 microgr/kg bw/day) is (3.3433, 14.3831).  
 
*********************************************************************** 
Random sampling is based on seed :        0 
Number of iterations (consumers):   200000  out of   6250 
CHLORPYRIFOS (microgr/kg bw/day)  consumption:   200000 out of 200000 
*********************************************************************** 
 
 Compound:  CHLORPYRIFOS 
 
*********************************************************************** 
     Percentiles, maximum and average intake 
*********************************************************************** 
 
   Percentage     Percentiles of CHLORPYRIFOS  (microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.13733 
        95.00        0.32396 
        99.00        1.07677 
        99.90        3.65245 
        99.99        7.61810 
         mean        0.06194 
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      maximum       12.62322 
 
 
 
                 Uncertainty of percentiles distribution 
                        2.5%            25%            75%          97.5% 
        50.00         0.0000         0.0000         0.0000         0.0000 
        90.00         0.0960         0.1198         0.1628         0.2073 
        95.00         0.2138         0.2871         0.3777         0.4627 
        99.00         0.6728         0.9086         1.2553         1.6024 
        99.90         1.7681         2.6031         4.0354         5.9873 
        99.99         3.3433         5.7470         8.8052        14.3831 
         mean         0.0412         0.0522         0.0714         0.0899 
      maximum         4.4471         7.1227        12.8137        17.8488 
 
 

Table 33: Percentiles for the intake distribution and uncertainty 

 
The information of Table 33 is plotted in Figure 71. The 2.5 and 97.5% points are displayed by the 
small line segments, the thick bar indicates the 25 and 75% points of the percentile uncertainty 
distribution. As seen, percentiles for high percentages are uncertain and have a large uncertainty 
interval. 
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Figure 71: Uncertainty analysis 

10.5 Acute risk assessment: diagnostics 
In this example, output is shown for an acute risk assessment and an uncertainty analysis focussing on 
the diagnostics for organo phosphate pesticide chlorpyrifos. For input options and information in 
logfile, see Table 31 and Table 32, respectively. 
 
Diagnostics are only available after running an acute risk analysis in combination with uncertainty 
analysis. The diagnostic tools provided, focus on the stability of the percentiles, or, re-phrasing, 
quantify 1) the amount of MC-variability and, 2) the amount of variability due to bootstrapping 
consumption and compound data. By quantifying both quantities, we are able to assess the influence 
both sources of variability have on the estimated value of the percentiles. 
The diagnostics are displayed in a number of graphs (as many as the number of requested percentiles 
see input screen). For each percentile a graph is available which can be used to draw inference about 
the optimal number of MC-iterations, the number of iterations per bootstrap and the number of 
bootstrap samples used. Recall that we ran the analysis with 200.000 MC-iterations and 100 bootstrap 
samples with 20.000 iterations each.  
To make inference, we divide the total number of MC-iterations in 2 samples of 100.000 iterations 
each, 4 samples of 50.000 each, 8 samples of 25.000 each, …,  etc. By doing so, we get n partitions of 
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samples and in each partition we have 2n samples of size 200.000/2n. In each partition, we estimate the 
percentiles of the available samples and then the variance of the percentiles. So, in partition n = 1, the 
estimate of the variance is based on 2 percentiles derived from samples of size 100.000; in partition n 
= 2 the estimate of the variance is based on 4 percentiles derived from samples of size 50.000, …, etc. 
The estimated variances of each partition are plotted against the number of MC-iterations per sample 
of each partition. We expect the variance to decrease as function of sample size, so for larger sample 
sizes MC-variability decreases, Therefore, through the observed variances a monotone decreasing 
spline function is fitted. For each variance the 90% confidence limits are calculated.  
The uncertainty analysis provides an estimate of the variance of the percentiles derived from the 100 
bootstrap samples of sample size 20.000.  
Now the fitted spline function is interpolated to estimate the amount of MC-variability at 20.000 
iterations and to calculate the contribution of MC-variability to the total bootstrap variability at 20.000 
iterations. The fitted spline function can be used to estimate the MC-contribution to the total bootstrap 
variability for any arbitrary number of MC-iterations. 
 
In the left plot of Figure 72 diagnostics are displayed for percentage point 50%. We can skip this plot 
because the percentile is 0.0000 microgram/kg bw/day. For percentage point 90% in the right plot we 
have an estimate of the percentile (0.13733 microgr/kg bw/day) and we are able to make inferences 
about the stability of the estimate.  
On the x-axis the number of MC-iterations is displayed and on the y-axis the variance of the MC-
percentile. The estimated variances in each partition are shown as black dots, the fitted monotone 
decreasing spline function as a black line. For each variance, the 90% confidence interval is indicated 
by a vertical line segment. The red dotted line indicates the interpolated variance of the bootstrap 
percentiles as a function of the number of iterations in each bootstrap sample. Note the horizontal 
black line with the open red boxes at 20.000 iterations, which is the estimate of the variance of the 
bootstrap percentiles. The black dot at 200.000 iterations is the extrapolated value for the MC-
variability using the spline fit. At 20.000 iterations the MC-variability contributes 4.1% to the total 
bootstrap variability. For a theoretical bootstrap sample of size 200.000 the MC-contribution would be 
0.0%.  
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Figure 72: Diagnostic graphs for percentage 50% and 90% 

 
In Figure 73, the diagnostics for percentage point 95% and 99% are displayed. The contribution of the 
MC-variability for p95 and p99 is 3.5% and 2.3%, respectively, indicating that these higher 
percentages have stable percentiles. The confidence interval at 100.000 MC-iterations is displayed as 
an arrow for graphical reasons and indicates that a cut off is used. The real confidence interval is 
much higher.  
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Figure 73: Diagnostic graphs for percentage 95% and 99% 

In Figure 74 the diagnostics for percentage point 99.9% and 99.99% are displayed. The contribution 
of the MC-variability for p99.9 and p99.99 is 5.3% and 31.2%, respectively, indicating that, especially 
the last percentile is unstable. Extrapolation to 200.000 iterations shows that MC-variability 
contributes 0.3% to the total bootstrap variability (p99.99 right plot). Note that in Figure 74 not all 
estimated variances are displayed. As the number of samples in a partition increases, sample size 
decreases. This restricts the number of available percentiles (maximum possible percentage: (100 –
100/size)). 
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Figure 74: Diagnostic graphs for percentage 99.9% and 99.99% 

10.6 Acute risk assessment: betabinomial distribution with age 
In this example, output is shown for an acute risk assessment followed by a betabinomial/lognormal 
model to estimate age effects for organo phosphate pesticide chlorpyrifos. The estimation of an age 
effect for an acute risk assessment is additional to the standard acute risk assessment (see 4.1 ). Table 
34 lists the main options: 
 
Input form   

risk type acute 
uncertainty analysis no 
concentration model empirical 
number of Monte Carlo iterations   200000 
number of computational chunks  10 
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unit variability model no unit variability 
random seed 0 
intake model empirical estimates + 

betabinomial/lognormal with age 
concentration data system defaults 
additional system defaults 
intake model: 
age effect for intake frequency 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 
age effect for intake amount 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

 
yes 
 
spline 
backward 
0 
4 
0.01 
yes 
 
spline 
backward 
0 
4 
0.01 

Output system defaults 

Table 34: Input form options: acute risk and betabinomial/lognormal with age 

In Table 35 you find the main characteristics concerning this analysis taken from the logfile. The 
intake frequency function is estimated using a betabinomial model and a spline function with 4 
degrees of freedom to model age effects. Backward selection is applied meaning that model selection 
is started with a spline of the highest degree. The model for the logarithmic transformed intake 
amounts, ln(intake), is based on REML and a spline function to model age effects. 
 
Logfile  

Number of foods 8 
Acute reference dose (ARfD) 100 
Acceptable daily intake (ADI) 10 
Number of detects 100 
No of consumers 6250 
Number of non-detects 938 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 10718 
EXPOSURE SECTION 
Acute Risk Assessment 
 Betabinomial/Lognormal model 
  Intake frequency model is based on Beta Binomial model. 
    Include effect of covariable (age). 
    Function of covariable          : spline 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at                   : 0.01 
  Model for intake amounts is based on REML 
    Include effect of covariable (age) 
    Function of covariable          : spline 
* backward selection of degrees of freedom for spline model with Prob=0.01. 
 Df  Ncycle     Phi      _2Loglik     ResDf       Chi     ChiDf   ChiProb 
  4       1   0.0001     29064.531      6244      0.98         1     0.323 

http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
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  3       2   0.0001     29065.508      6245      1.25         1     0.264 
  2       2   0.0001     29066.755      6246      1.61         1     0.204 
  1       2   0.0001     29068.368      6247      0.03         1     0.854 
  0       1   0.0001     29068.401      6248         -         -         - 
* Degrees of freedom of spline according to backward deviance testing is 0. 
 
Regression analysis 
=================== 
Estimates of parameters 
----------------------- 
Parameter                     estimate         s.e.      t(*) 
Constant                      -1.01026      0.00506   -199.53 
Estimate of overdispersion parameter phi = 0.0001000  with s.e. = 0.0005139 
 
Intake Amounts: REML model with age 
=================================== 
* Automatic selection of spline model. 
Estimates of parameters 
----------------------- 
 
Parameter                     estimate         s.e.      t(*) 
Constant                        -2.586     0.007037   -367.44 
Age                           0.006304     0.007050      0.89 
Spline(age) variance      0.0000002643 
 
Between person variance   0.0000002643   3.3669E-09     78.51 
Within person variance           2.643      0.03367     78.51 
 
Variance of ln(intake) distibution is:        2.623 
 

Table 35: Information in logfile 

 
As seen in Table 35, no effect for age is found for the intake frequency. A spline with 0 degrees of 
freedom is fitted which is equivalent to fitting a constant. The overdispersion parameter phi is equal to 
0.0001, representing between consumer variation. The overdispersion is almost zero meaning that 
variation between consumers is negligible small and each consumer has the same probability of 
having an intake. 
The ln(intake) amounts are modelled using REML with a spline function to model the effect of age. 
The degree of the spline is automatically selected. A very small age effect is found (-0.0063) meaning 
dat the ln(intake) of chlorpyrifos increases with age but the effect is almost negligible. The variance of 
the ln(intake) distribution is 2.623. 
In the left plot of Figure 75 the intake frequency is shown. For 50 age classes, the mean intake 
frequencies are displayed (black dots). There is no age effect so a horizontal line is plotted through the 
dots. The red dotted line indicates the 95% confidence interval for the fitted age effect. The blue lines 
are the 2.5 and 97.5% percentiles of the fitted betabinomial distribution and indicate that the 
probability of having an intake is between 0.258 and 0.275 with a 0.95 probability.  
The right plot displays the ln(intake) distribution. The age effect is very small and the 95% confidence 
interval is indicated by a red dotted line. The black dots represent the mean ln(intake) per age class. 
To get some idea of the variation in the data, the standard deviation of the distribution is also shown 
by a vertical line segment with green boxes at the end. It is obvious that the dispersion of the 
ln(intakes) is large.  
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Figure 75: Age dependent intake frequency and ln(intake) distribution 

 
In Figure 76, age dependent percentiles (derived from percentages) and percentages (derived from 
percentiles) are shown. The same information is found as tabular output (not shown).  
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Find in Table 36 a short summary of an acute risk assessment using age as explanatory variable. 
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Compound: CHLORPYRIFOS 
 
SHORT TERM EXPOSURE, AGE DEPENDENT PERCENTILES  (ACUTE INTAKE) 
--------------------------------------------------------------------------- 
Function of covariable is spline 
Intake frequency model is based on Beta Binomial model 
       with overdispersion parameter phi = 0.0001 
Degrees of freedom of spline according to backward testing is 0 
The significance level is 0.01 
--------------------------------------------------------------------------- 
Model for log intake amounts is based on REML 
Function of covariable is spline 
   spline is 0.00 
--------------------------------------------------------------------------- 
Variance components (transformed scale) 
   within consumers is 2.64 
   between consumers is 0.00 
   Variance ln(intake) is 2.62 

 

Table 36: Technical information  

10.7 Acute risk assessment: binomial/lognormal  with pooling 
Example 1 
In this example, output is shown for an acute risk assessment for organo phosphate pesticide 
chlorpyrifos which can have neurotoxic effects. Table 37 lists the main options: 
 
Input form   

risk type acute 
uncertainty analysis no 
concentration model binomial/lognormal (with pooling) 
number of Monte Carlo iterations   200000 
number of computational chunks  10 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
concentration data system defaults 
Additional system defaults 
Output system defaults 

Table 37: Input form options: binomial with pooling 

 
For information in the logfile, tables and figures, see 4.1 . 
When specifying the binomial/lognormal distribution with pooling, a parametric form of modelling is 
used to simulate data and estimate the intake percentiles. For each food, the positives samples are 
taken to estimate the variance and mean on the lognormal scale. If pooling is requested, food groups 
need to be formed. Each food is characterised by a hierarchical food code. For CODEX codes, the 
first 2 characters in combination with factor Allowed define a group used in pooling. Factor Allowed 
indicates whether a chemical substance is allowed on a food or not. If the code is a subtype (e.g. X$y, 
the supertype is taken to form foodgroups (e.g. X). 
Table 38 illustrates the pooling procedure. There are 8 food groups (ProdGr): 6 groups with a single 
food and two groups with 2 and 4 foods: group VR contains foods POTATOES and CARROT; group 
FC contains LEMON, ORANGE, MANDARIN and GRAPEFRUIT. Within a foodgroup variances 
and means of foods are pooled. 
In the example, the original mean (Mean) and sigma (StdDev) are displayed together with the number 
of observations (nos). In columns Mu and Sigma, you find the result of pooling: parameters μ and σ of 
the lognormal distribution; the pooled number of degrees of freedom is in column Df.  
In group 195000, standard deviations are 0.63, 0.63, 0.62 and 0.81. A test of homogeneity of 
variances is not significant so the pooled standard deviation becomes 0.63. A test of homogeneity of 
means is significant so means are not pooled. For POTATOE (and SPINACH) no standard deviation 
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is estimated because only one positive sample is available. In a second step, standard deviations of 
foods with less than 10 degrees of freedom are replaced by the overall variance if the test of 
homogeneity is not signififcant. For these foods, the pooled or original standard deviation is replaced 
by the value 0.75. Note, that for PEACH (StdDev = 0.98, n = 6) the standard deviation is replaced by 
the overall standard deviation, but for LEMON (Sigma = 0.65, StdDev = 0.63) no replacement of 
sigma occurs: the test on homogeneity of variance is not significant due to the high degrees of  
freedom of the pooled estimate (Df  = 260). AD is the value of the Anderson-Darling test statistic for 
Normality and ER indicates if the statistic is significant or not. 
 
Compound:   CHLORPYRIFOS 
*********************************************************************** 
Summary of calculations and input of a PARAMETRIC SIMULATION       
>0        : number of detects                                      
nos       : total number of measurements, detects and non-detects   
Frpos     : fraction of detects                                    
Mu        : parameter mu of the lognormal distribution             
Mean      : original means per product before pooling              
Sigma     : parameter sigma of the lognormal distribution          
StdDev    : original st.dev. per product before pooling            
AD        : Anderson-Darling statistic                             
ER        : significance level of AD-statistic:                    
            ns = hypothesis of Normality not rejected              
             s = hypothesis of Normality rejected                  
Df        : degrees of freedom of pooled sigma                     
Group     : combination of productgroup and allowed              
ProdGr    : foodgroup                                         
Allwd     : code if residue is allowed on product (1) or not (0) 
Food      : Foodlabels                                        
*********************************************************************** 
 
 >0  nos  Frpos     Mu   Mean Sigma StdDev    AD   ER   Df Group ProdGr Allwd  Food 
  6  218   0.03  -1.90  -1.90  1.63   1.63  0.70    s    5    1      VO   1  GREEN BEANS 
  1  158   0.01  -0.45  -0.45  0.75      .     .    .  352    2      VL   1  SPINACH 
  1  119   0.01  -2.81  -2.81  0.75      .     .    .  352    3      VR   1  POTATOES     
  2  161   0.01  -2.25  -2.25  0.75   0.40 -0.81   ns  352    3      VR   1  CARROT           
  3  256   0.01  -1.79  -1.79  0.75   0.75 -0.09   ns  352    4      HS   1  SWEET PEPPER 
 13  397   0.03  -3.17  -3.17  0.25   0.25  0.75    s   12    5      FP   1  APPLE 
  6  101   0.06  -2.72  -2.72  0.75   0.99  0.47   ns  352    6      FS   1  PEACH 
 68  689   0.10  -2.26  -2.26  0.98   0.98  0.90    s   67    7      FB   1  GRAPE 
  8   63   0.13  -2.70  -2.70  0.65   0.63  0.35   ns  260    8      FC   1  LEMON             
139  340   0.41  -2.34  -2.34  0.65   0.63  0.44   ns  260    8      FC   1  ORANGE             
 84  188   0.45  -2.23  -2.23  0.65   0.62  0.43   ns  260    8      FC   1  MANDARIN TA 
 33   82   0.40  -2.05  -2.05  0.65   0.81  0.48   ns  260    8      FC   1  GRAPEFRUIT         
 

Table 38: Pooling information 

 
In Table 39 the percentiles for a parametric model are displayed. Note that the p99.99 changed from 
7.1128 to 9.5988 microgr/kg bw/day. 
 
*********************************************************************** 
Random sampling is based on seed :        0 
Number of iterations (consumers):   200000  out of   6250 
CHLORPYRIFOS (microgr/kg bw/day)  consumption:   200000 out of 200000 
*********************************************************************** 
 Compound:  CHLORPYRIFOS 
*********************************************************************** 
     Percentiles, maximum and average intake 
*********************************************************************** 
   Percentage     Percentiles of CHLORPYRIFOS    (microgr/kg bw/day) 
        50.00        0.00000 
        90.00        0.19622 
        95.00        0.39365 
        99.00        1.21115 
        99.90        3.81640 
        99.99        9.59882 
         mean        0.07540 
      maximum       37.59130 
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Table 39: Percentiles for the acute intake distribution using the binomial/lognormal  with 
pooling 

 
Example 2 
The variances and means of foods are pooled within a food group. Food groups are formed based on 
the first two characters in combination with factor Allowed (see example, factor Levels (= food code) 
and Allowed). Factor Allowed indicates whether a chemical compound is allowed on a product or not.  
Foodgroup 10101 contains foods BEAN and SPERZIEBOON. Foodgroup 10201 is split into two 
subgroups (according to factor Allowed): one group with CHICORY, ENDIVE, CABBAGE 
LETTUCE and CURLY LETTUCE and a group with ROODLOF and SPINACH. On the last two 
foods the use of a chemical compound is not allowed.  
In the example, the original mean and sigma are displayed together with the number of observations. 
The last three columns show the parameters μ and σ of the lognormal distribution together with the 
degrees of freedom after pooling. For BEAN and SPERZIEBOON, a pooled μ (= -1.67) and σ (= 
1.31) are used. CHICORY, ENDIVE, CABBAGE LETTUCE and CURLY LETTUCE only sigma is 
pooled (σ = 1.47), the original means are maintained. For ROODLOF (1 observation) the overall 
sigma (= 1.36) is used to estimated the variance. 

Original Automatically pooling
Labels Levels Allowed Sigma Mean Nobs Sigma mean Nobs

             BEAN 10101 1 1.60 -1.17 8 1.31 -1.67 12
      SPERZIEBOON 10101 1 0.75 -2.33 6 1.31 -1.67 12

          CHICORY 10201 1 1.38 -2.69 4 1.47 -2.69 382
          ROODLOF 10201 0    * -2.3 1 1.36 -2.3 729

           ENDIVE 10201 1 1.52 -0.91 92 1.47 -0.91 382
  CABBAGE LETTUCE 10201 1 1.46 -1.44 286 1.47 -1.44 382

    CURLY LETTUCE 10201 1 1.08 -2.14 4 1.47 -2.14 382
          SPINACH 10201 0 1.18 -0.57 10 1.36 -0.57 729

  BRUSSELS SPROUT 10301 0 1.14 -2.7 2 1.36 -2.7 729
  CHINESE CABBAGE 10301 1 1.62 -2.32 21 1.62 -2.32 20
  OXHEART/CONICAL 10301 0    * -2.3 1 1.36 -2.3 729

    ONION (SMALL) 10301 1 0.08 -1.66 2 0.08 -1.66 1
           FENNEL 10301 1 0.16 -2.38 3 0.16 -2.38 2
           POTATO 10401 0 0.62 0.19 2 0.59 0.19 50

    WINTER CARROT 10401 0 0.62 -2.55 14 0.59 -2.55 50
           CARROT 10401 0 0.54 -2.71 36 0.59 -2.71 50
           RADISH 10401 1 1.52 -2.91 6 1.36 -2.91 729

         CELERIAC 10401 0 1.31 -2.07 2 0.59 -2.07 50
            GRAPE 10501 0 1.14 -1.06 25 1.14 -1.06 24

       STRAWBERRY 10501 1 1.14 -1.57 169 1.14 -1.57 168
        RASPBERRY 10501 1 1.73 -1.04 9 1.36 -1.04 729
       BLACKBERRY 10501 1 1.15 -0.89 17 1.15 -0.89 16
       BLUE BERRY 10501 1 1.83 -1.24 3 1.36 -1.24 729

          CURRANT 10501 1 1.87 -0.62 30 1.87 -0.62 29
 OTHER FRUIT, NUT 10601 0    * -1.51 1 1.36 -1.51 729  

10.8 Chronic risk assessment: discrete/semiparametric (Nusser) 
In this example output is shown for a chronic risk assessment for antibioticum lasalocide. The 
example concerns the intake via eggs. Table 40 lists the main options: 
 
Input form   

risk type chronic 
uncertainty analysis no 
concentration model empirical 
intake model discrete/semiparametric (Nusser) 
concentration data system defaults 
intake model: 
transformation 
spline fit 
number of iterations to estimate 

 
power 
yes 
10 
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frequency distribution  
number of bins for discretisation 

 
20 

Output system defaults 

Table 40: Input form options: discrete/semiparametric (Nusser) 

 
In Table 41 you find the main characteristics concerning this analysis taken from the logfile. 
 
Logfile  

Number of products 1 
Acute reference dose (ARfD) * 
Acceptable daily intake (ADI) 5 
Number of detects 31 
Number of non-detects 219 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 8630 
Replace all non-detects  
Multiplicationfactor for LOR 0.5 
EXPOSURE SECTION 
Chronic Risk Assessment 
 Discrete/semiparametric (Nusser) 
    Power transformation 
    followed by spline transformation 
     No. of iterations to estimate theta: 10000 
     No. of binomial proportions (M): 20 

Table 41: Information in logfile 

 
The Dutch national Food Consumption Survey is used, which has 2 days for 6250 consumers, so 
12500 days in total. Lasalocide measurements in eggs were made in 250 samples, 31 of which had a 
positive value. The other 219 non-detects were in this analysis replaced by 

025.005.02
1

2
1 ==LOR mg/kg. Find in Table 42 a summary of the database: 
 
Compound:  LASALOCIDE 
 
*********************************************************************** 
SUMMARY DATABASE 
Code         : product code 
Product      : product label 
MeanCons     : average consumption, all consumers, all days 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%PosCons     : percentage consumption days 
MeanConc     : mean concentration all samples (after processing) 
MeanPosConc  : mean concentration positives (after processing) 
NPosConc     : number of positive concentrations 
NConc        : total number of concentration measurements 
%PosConc     : percentage positive concentrations 
*********************************************************************** 
    FOOD CONSUMPTION DATA 
 
        Code      Product   MeanCons MeanConsDays NConsDays    NDays %PosCons 
                                 (g)          (g)                         (%) 
    &NL001   WHOLE EGG C       18.00         26.1      8630    12500     69.0 
 
    COMPOUND CONCENTRATION DATA 
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        Code      Product   MeanConc  MeanPosConc  NPosConc    NConc %PosConc 
                             (mg/kg)      (mg/kg)                         (%) 
    &NL001   WHOLE EGG C      0.4825       3.8910        31      250     12.4 

 

Table 42: Summary of the database, consumptions and compounds 

 
So on average everyone consumes 18 g of egg per day. This is an average consumption of 26.1 g on 
8630 consumption days and 0 g on 12500 - 8630 = 3870 non-consumption days.  The average 
concentration of the 31 positive lasalocide samples and 219 non-detects 0.025 mg/kg is 0.4825 mg/kg. 
 
In Table 43 some counting information about the intake calculated from the data is listed. 
 
Compound:  LASALOCIDE 
LONG TERM EXPOSURE  (USUAL INTAKE) 
Summary of intake days in the data 
proportion and number of consumers with positive intake on: 
                            0  days    0.1346    841 
                            1  days    0.3501   2188 
                            2  days    0.5154   3221 
 
                                All  Positive 
                            intakes   intakes      % 
   Number of observations     12500      8630   69.0 
      Number of consumers      6250      5409   86.5 
 

Table 43: Summary of intake days 

 
Find in Table 43 some numerical statistics. 
 
Compound:  LASALOCIDE 
LONG TERM EXPOSURE  (USUAL INTAKE) 
Summary of all intake data (zeros included) 
     Number of observations =      12500 
                       Mean =      0.154 
                     Median =      0.031 
                    Minimum =      0.000 
                    Maximum =      6.368 
             Lower quartile =      0.000 
             Upper quartile =      0.181 
 
Summary of positive intake data (without zeros) 
     Number of observations =       8630 
                       Mean =      0.223 
                     Median =      0.095 
                    Minimum =      0.000 
                    Maximum =      6.368 
             Lower quartile =      0.026 
             Upper quartile =      0.322 

Table 44: Summary statistics of the calculated daily intakes 

 
In the left plot of Figure 77 the empirical distribution of the non-zero daily intake values, calculated as 
daily consumption values times average concentration (0.4825 in this case) divided by body weight is 
shown. Note the spike near 0 (note that true zero intakes are already excluded here), and the bimodal 
character of the rest of the distribution (possibly related to the consumption of one or two whole 
eggs?). This distribution is definitely non-normal. In this case a power transformation and a spline 
transformation were requested for the non-zero daily intakes. The right plot shows the intake 
distribution after a power transformation. The optimal power was 0.169. There is a better symmetry, 
but clearly the bi- or even trimodal character of the data can not be removed by simple power or 
logarithmic transforms.  
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Daily intake after ln transformation
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distribution of ln transformed positive daily intakes (69.0%)

Figure 77: Untransformed and power transformed intake distribution 

Therefore, subsequently a spline function is fitted to the power transformed values as a function of the 
normal Blom scores, see the left plot of Figure 78. The result of a power and spline transformation of 
non-zero daily intakes is shown in the right plot. 
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Daily intake after 0.17th power and spline transformation

LASALOCIDE
distribution of power and spline transformed positive daily intakes (69.0%)

Figure 78: Transformation plot and power and spline transformed intakes 

 
The fit seems adequate, and indeed this is confirmed by the QQ plot, which shows nicely a straight 
line and the Anderson-Darling test on the transformed non-zero daily intakes, see  
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Figure 79: Normal probability plot 

 
In Table 45 you find details on the spline functions (16 knots) and the Anderson-Darling test result 
(0.52), which shows no significant deviation from normality for the transformed values (p-value = 
0.25). In the same output section you also find a test whether there is evidence for heterogeneity of 
variance between consumers, MA4=3.2620, p-value=0.2523. 
Based on the daily intake the variance components are estimated, reported as within consumers is 0.84 
and between consumers is 0.16. Therefore in this case the day-to-day variation in lasalocide intake is 
much higher than the variation between individual consumers.  
 
Compound:  LASALOCIDE 
LONG TERM EXPOSURE  (USUAL INTAKE) 
Transformation to normality 
Power transformation               :   0.169 
Number of knots spline function    :      16 
Anderson-Darling test for normality 
Test statistic                     :    0.52 
p-value                            :    0.25 
 
Heterogeneity of variance between consumers 
Test statistic (MA4)               :  3.2620    (3 for homogeneous variances) 
p-value                            :  0.2523 
Variability within and between consumers 
Variance components (transformed scale) 
       within consumers (average)  :    0.84 
                between consumers  :    0.16 
                            ratio  :    5.26 
 
Intake frequency 
Estimated fraction non-consumers (theta_0):  0.0000 

Table 45: Technical information on usual intake 

 
The next step is to estimate the intake frequency distribution. The estimated fraction of non-
consumers theta_0 (consumers with zero usual intake) is estimated to be 0.000 in this case. In output 
file theta.txt (which you get after downloading results) you find the full results, see Table 46. 
 
           p       theta 
        0.00  0.00000000 (= theta0) 
        0.05  0.00020538 
        0.10  0.00102690 
        0.15  0.00287533 
        0.20  0.00636681 
        0.25  0.01191210 
        0.30  0.01971657 
        0.35  0.02854796 
        0.40  0.03881701 
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        0.45  0.04867529 
        0.50  0.05812282 
        0.55  0.06674882 
        0.60  0.07475868 
        0.65  0.08256315 
        0.70  0.08892997 
        0.75  0.09139454 
        0.80  0.08934073 
        0.85  0.08605463 
        0.90  0.07968782 
        0.95  0.06880263 
        1.00  0.05545287 

Table 46: Estimates of the intake frequency distribution, theta 

 
Graphical results are shown in Figure 80. In this case the estimate is that a consumer never eats an egg 
(theta_0 is estimated as 0): the occurrence of non-consumers in the data set (with only 2 days per 
consumer) is easily explained as belonging to the classes of people who eat eggs in a low percentage 
(e.g. 10 % - 50 %) of days. 
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Figure 80: Intake frequency distribution 

 
Finally three cumulative distributions are estimated: for consumption days only, for consumers only, 
and for the entire population. In this case, due to the estimate theta_0 = 0.000, the two latter 
distributions coincide (there are no non-consumers), see the left plot of Figure 81. The same three 
distributions are also shown as probability densities in the right plot. 
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Figure 81: Cumulative usual intake and density functions 

 
Finally, for the entire population the percentiles are calculated and shown (see Figure 82) graphically 
as: 
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Compound:  LASALOCIDE 
 
LONG TERM EXPOSURE  (USUAL INTAKE) 
 
 
 
  Percentage   Entire population 
       50.00             0.12341 
       90.00             0.25536 
       95.00             0.30748 
       99.00             0.42032 
       99.90             0.56824 
       99.99             0.71030 

Figure 82: Percentiles usual intake distribution: entire population 

 
In Table 47 you find information on selected percentiles for the other types of distributions. 
 
Compound:  LASALOCIDE 
 
LONG TERM EXPOSURE  (USUAL INTAKE) 
   Percentage      Positives      Consumers 
                        only           only 
        50.00        0.18474        0.12341 
        90.00        0.34882        0.25536 
        95.00        0.41085        0.30748 
        99.00        0.53754        0.42032 
        99.90        0.71030        0.56824 
        99.99        0.92162        0.71030 

Table 47: Technical information on usual intake: percentiles for usual intake distribution, 
positives only and consumers only 

10.9 Chronic risk assessment: betabinomial/lognormal with age 
In this example, output is shown for a chronic risk assessment for antibioticum lasalocide. The 
example concerns the intake via eggs. Table 48 lists the main options: 
 
Input form   

risk type chronic 
uncertainty analysis no 
concentration model empirical 
intake model betabinomial/lognormal with age 
concentration data system defaults 
intake model: 
age effect for intake frequency 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

 
yes 
 
spline 
backward 
0 
4 
0.01 

http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
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age effect for intake amount 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

yes 
 
spline 
backward 
0 
4 
0.01 

output system defaults 

Table 48: Input form options: betabinomial/lognormal with age 

 
In Table 49 you find the main characteristics concerning this analysis taken from the logfile. The 
intake frequency function is estimated with a betabinomial model using a spline function with 4 
degrees of freedom to model age effects and smoothing parameter phi. Backward selection is applied 
meaning that model selection is started with a spline of the highest degree. The model for the 
logarithmically transformed intake amounts is based on REML using a spline function to model age 
effects.   
 
Logfile  

Number of products 1 
Acute reference dose (ARfD) * 
Acceptable daily intake (ADI) 5 
Number of detects 31 
Number of non-detects 219 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
sex female, male 

Total no of consumption days 8630 
Replace all non-detects  
Multiplicationfactor for LOR 0.5 

 
EXPOSURE SECTION 
Chronic Risk Assessment 
 Betabinomial/Lognormal model 
  Intake frequency model is based on Beta Binomial model. 
    Include effect of covariable (age). 
    Function of covariable          : spline 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at                   : 0.01 
  Model for intake amounts is based on REML 
    Include effect of covariable (age) 
    Function of covariable          : spline 
Intake Frequency: Betabinomial model with age 
============================================== 
* backward selection of degrees of freedom for spline model with Prob=0.01. 
  Df  Ncycle      Phi      _2Loglik     ResDf       Chi     ChiDf   ChiProb 
   4       3   0.1776     12175.564      6244      6.31         1     0.012 
   3       3   0.1781     12181.874      6245      8.54         1     0.003 
   2       3   0.1787     12190.414      6246         -         -         - 
* Degrees of freedom of spline according to backward deviance testing is 3. 
 
Regression analysis 
=================== 
Estimates of parameters 

http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
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----------------------- 
Parameter                     estimate         s.e.      t(*) 
Constant                        0.6602       0.0420     15.72 
age Lin                        0.00386      0.00103      3.75 
 
Estimate of overdispersion parameter phi = 0.1781  with s.e. = 0.01298 
 
Intake Amounts: REML model with age 
=================================== 
* Automatic selection of spline model. 
Estimates of parameters 
----------------------- 
Parameter                     estimate         s.e.      t(*) 
Constant                        -2.583      0.02144   -120.48 
Age                            -0.2497      0.03105     -8.04 
Spline(age) variance            0.2859 
 
Between consumer variance       0.3884      0.05505      7.06 
Within consumer variance         2.727      0.06468     42.17 
 

Table 49: Information in logfile 

 
The Dutch national Food Consumption Survey is used, which has 2 days for 6250 consumers, so 
12500 days in total. Lasalocide measurements in eggs were made in 250 cases, 31 of which had a 
positive value. The other 219 non-detects were in this analysis replaced by 

025.005.02
1

2
1 ==LOR mg/kg. Find in Table 50 a summary of the database. 
 
Compound:  LASALOCIDE 
 
*********************************************************************** 
SUMMARY DATABASE 
Code         : product code 
Product      : product label 
MeanCons     : average consumption, all consumers, all days 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%PosCons     : percentage consumption days 
MeanConc     : mean concentration all samples (after processing) 
MeanPosConc  : mean concentration positives (after processing) 
NPosConc     : number of positive concentrations 
NConc        : total number of concentration measurements 
%PosConc     : percentage positive concentrations 
*********************************************************************** 
    FOOD CONSUMPTION DATA 
 
        Code      Product   MeanCons MeanConsDays NConsDays    NDays %PosCons 
                                 (g)          (g)                         (%) 
    &NL001    WHOLE EGG C      18.00         26.1      8630    12500     69.0 
 
    COMPOUND CONCENTRATION DATA 
 
        Code      Product   MeanConc  MeanPosConc  NPosConc    NConc %PosConc 
                             (mg/kg)      (mg/kg)                         (%) 
    &NL001    WHOLE EGG C     0.4825       3.8910        31      250     12.4 

 

Table 50: Summary of the database, consumptions and compounds 

 
So on average everyone consumes 18 g of egg per day. This is an average of 26.1 g on 8630 
consumption days and 0 g on 12500 - 8630 = 3870 non-consumption days.  The average of the 31 
positive lasalocide concentrations and 219 times 0.025 mg/kg is 0.4825 mg/kg. 
 
In  Table 51 some counting information about the intake calculated from the data is listed. 
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Compound:  LASALOCIDE 
 
LONG TERM EXPOSURE  (USUAL INTAKE) 
 
Summary of intake days in the data 
 
proportion and number of consumers with positive intake on: 
                            0  days    0.1346    841 
                            1  days    0.3501   2188 
                            2  days    0.5154   3221 
 
                                All  Positive 
                            intakes   intakes      % 
   Number of observations     12500      8630   69.0 
    Number of consumers        6250      5409   86.5 
 

Table 51: Summary of intake days 

 
Find in Table 52 some numerical statistics. 
 
Compound:  LASALOCIDE 
 
LONG TERM EXPOSURE  (USUAL INTAKE) 
 
Summary of all intake data (zeros included) 
 
     Number of observations =      12500 
                       Mean =      0.154 
                     Median =      0.031 
                    Minimum =      0.000 
                    Maximum =      6.368 
             Lower quartile =      0.000 
             Upper quartile =      0.181 
 
Summary of positive intake data (without zeros) 
 
     Number of observations =       8630 
                       Mean =      0.223 
                     Median =      0.095 
                    Minimum =      0.000 
                    Maximum =      6.368 
             Lower quartile =      0.026 
             Upper quartile =      0.322 

Table 52: Summary statistics of the calculated daily intakes 

In the left plot of Figure 83 the empirical distribution of the non-zero daily intake values, calculated as 
daily consumption values times average concentration (0.4825 in this case) divided by body weight is 
shown. Note the spike near 0 (note that true zero intakes are already excluded here), and the bimodal 
character of the rest of the distribution (possibly related to the consumption of one or two whole 
eggs?). This distribution is definitely non-normal. A logarithmic transformation is requested for the 
non-zero daily intakes. The right plot shows the intake distribution after a ln transformation.  
There is a better symmetry, but clearly the non-normal character of the data is not removed by a 
simple logarithmic transformation. Compare this figure also with the power transformed distribution 
in the right plot of Figure 77. 
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Figure 83: Untransformed and ln transformed intake distribution 

 
As seen in Table 49, an age effect is found for the intake frequency. A spline with 3 degrees of 
freedom is fitted and overdispersion parameter phi is equal to 0.1781. Parameter phi represents 
between consumer variation. So each consumer has its own probability of having an intake. This 
probability is sampled from a betabinomial distribution with age dependent probabilities and 
dispersion factor phi. 
In the left plot of Figure 84 the intake frequency is shown. For 50 age classes the mean intake 
frequencies are displayed (black dots). The fitted age effect is plotted through the dots as a black line. 
As seen, the probability of having an intake increases with age. The red dotted line indicates the 95% 
confidence interval for the fitted age effect. Note the wider intervals at the edges of the plot showing 
the effect that for very old and young consumers less information is available. The blue lines are the 
2.5 and 97.5% percentiles of the fitted betabinomial distribution: the sampled intake probability of 
consumers according to the betabinomial are within these lines and may vary from about 0.25 till 
almost 1 for young people and about 0.4 till 1 for old people. 
The ln(intake) amounts are modelled using REML with a spline function to model age effects. The 
degree of the spline is automatically selected. A negative estimate for age is found (-0.2497) meaning 
dat the ln(intake) amount of lasalocide decreases with age. The components of variance for the 
between consumers and within consumers variation are 0.3884 and 2.727, respectively.  
The right plot of Figure 84 displays the ln(intake) distribution. The age effect is plotted as a black line 
through the observed mean ln(intake) amounts per age class. The 95% confidence interval is indicated 
by a red dotted line. The standard deviation of the between and within consumer variation are 
indicated by the vertical blue and green line segments. 
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Figure 84: Age dependent intake frequency and ln(intake) distribution 

 
In Table 36, a repport of technical information on the analysis is shown. 
 
Compound:  LASALOCIDE 
 
LONG TERM EXPOSURE, AGE DEPENDENT PERCENTILES  (USUAL INTAKE) 
Intake frequency model is based on Non Consumer model. 
Model for consumption (intake) amounts is based on REML 
Function of covariable is spline 
Variance components (transformed scale) 
   spline is 0.09 
   within consumers is 0.88 
   between consumers is 0.12 
   ratio is 7.02 

Table 53: Technical information on usual intake 

 
Figure 85 shows the age dependent percentiles and percentage for the usual intake distribution. 
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10.10 Chronic risk assessment: betabinomial/lognormal with age and 
uncertainty 
In this example, output is shown for a chronic risk assessment for antibioticum lasalocide. The 
example concerns the intake via eggs. Table 54 lists the main options: 
 
Input form   

risk type chronic 
uncertainty analysis yes 
number of bootstrap samples 1000 
random seed 0 
concentration model empirical 
intake model betabinomial/lognormal with age 
concentration data system defaults 
intake model: 
age effect for intake frequency 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 
age effect for intake amount 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

 
yes 
 
spline 
backward 
0 
4 
0.01 
yes 
 
spline 
backward 
0 
4 
0.01 

Output system defaults 

Table 54: Input form options: betabinomial/lognormal with age and uncertainty 

 
In Table 55 you find the main characteristics concerning this analysis taken from the logfile. The 
intake frequency function is estimated with a beta binomial model using a spline function with 4 
degrees of freedom to model the age effect and smoothing parameter phi. Backward selection is 
applied meaning that model selection is started with a spline of the highest degree. The model for the 
intake amounts is based on REML, also using a spline function to model the age effect.   
 
Logfile  

Number of products 1 
Acute reference dose (ARfD) * 
Acceptable daily intake (ADI) 5 
Number of detects 31 
Number of non-detects 219 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 8630 
Replace all non-detects  
Multiplicationfactor for LOR 0.5 

 
EXPOSURE SECTION 
Chronic Risk Assessment 
 Betabinomial/Lognormal model 

http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
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  Intake frequency model is based on Beta Binomial model. 
    Include effect of covariable (age). 
    Function of covariable          : spline 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at                   : 0.01 
  Model for intake amounts is based on REML 
    Include effect of covariable (age) 
    Function of covariable          : spline 
Intake Frequency: Betabinomial model with age 
============================================== 
* backward selection of degrees of freedom for spline model with Prob=0.01. 
  Df  Ncycle      Phi      _2Loglik     ResDf       Chi     ChiDf   ChiProb 
   4       3   0.1776     12175.564      6244      6.31         1     0.012 
   3       3   0.1781     12181.874      6245      8.54         1     0.003 
   2       3   0.1787     12190.414      6246         -         -         - 
* Degrees of freedom of spline according to backward deviance testing is 3. 
 
Regression analysis 
=================== 
Estimates of parameters 
----------------------- 
Parameter                     estimate         s.e.      t(*) 
Constant                        0.6602       0.0420     15.72 
age Lin                        0.00386      0.00103      3.75 
 
Estimate of overdispersion parameter phi = 0.1781  with s.e. = 0.01298 
 
Intake Amounts: REML model with age 
=================================== 
* Automatic selection of spline model. 
Estimates of parameters 
----------------------- 
Parameter                     estimate         s.e.      t(*) 
Constant                        -2.583      0.02144   -120.48 
Age                            -0.2497      0.03105     -8.04 
Spline(age) variance            0.2859 
 
Between consumer variance       0.3884      0.05505      7.06 
Within consumer variance         2.727      0.06468     42.17 
 

Table 55: Information in logfile 

 
Find in Figure 86 and Figure 87 the percentiles and percentages for the 95% and 99% points and 0.04 
and 0.06 percentiles of the uncertainty distribution. The blue dotted lines indicate the 2.5% and 97.5% 
confidence bands. Information on percentiles and percentages is also available as tabular output (not 
shown). 
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Figure 86: Age dependent percentiles derived from percentages 

 
 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 In
ta

ke
 fr

eq
ue

nc
y 

Age

LASALOCIDE
uncertainty analysis of percentages as function of age: 0.0400
black line: percentages as function of age
blue line: 2.5% and 97.5% confidence bands for percentages

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 In
ta

ke
 fr

eq
ue

nc
y 

Age

LASALOCIDE
uncertainty analysis of percentages as function of age: 0.0600
black line: percentages as function of age
blue line: 2.5% and 97.5% confidence bands for percentages
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11  APPENDIX C: Errors in displaying the page and scripting 
errors 
Occasionally, ASP-scripts crash due to inconsistencies found in tables, as a consequence of wrong 
columnnames (see 9.1 ), and combinations of levels during subset selection that lead to empty subsets.  
 
In general, the internet explorer error message is: 

 
or an ASP debug-scripting-error is displayed. 
 
When this occurs: 

• try to reach the MCRA main menu (see Figure 2), 
• go to manage input/output,  
• move your mouse to directory ‘IN’ or ‘OUT’ or any other directory and  left click,  
• click the ‘Clear history’-button (see Figure 4).  
 

If you cannot reach the MCRA main menu: 
• close the internet explorer, 
• login to the website again,  
• go to manage input/output in the MCRA main menu (see Figure 2),  
• move your mouse to directory ‘IN’ or ‘OUT’ or any other directory and  left click,  
• clear your history first by clicking the ‘Clear history’-button (see Figure 4). 
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