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Preface

Invisible life

Up to the 17th century the existence of microorganisms, like bacteria and viruses, was unknown 

as they are invisible to the naked eye. The exploration of the wonder world of microorganisms 

could only begin after the development of a microscope with sufficient resolution. The pioneer 

Anthony van Leeuwenhoek constructed many self-made microscopes and was the first to 

visualize bacteria, which he observed in the material that he had scraped from his teeth (1). 

Another milestone was the discovery of non-cellular pathogens (later called viruses) by Martinus 

Beijerinck (2). Although viruses infecting bacteria were already described in the beginning of the 

20th century independently by Frederick Twort and Felix d’Hérelle, it took until the 1950s and 

required the development of the electron microscope before the morphology of viruses was 

revealed (3-6). 

Viruses are the most abundant biological entities on this planet and were isolated from practically 

all habitats. They can infect many (if not all) different cells, including microorganisms. Viruses 

infecting bacteria were instrumental for development of the discipline of molecular biology and 

served as tools to discover many basic aspects of cellular life (4). The subsequent progress of 

DNA sequencing techniques was one of the developments that led to overwhelming supporting 

evidence that life on earth is divided in three domains: Archaea, Bacteria and Eukarya (7). 

Archaea are the least characterised domain as archaea frequently thrive in extreme habitats and 

their cultivation may be a challenge (8, 9).

Life under extreme conditions

Extreme habitats are dominated by archaea (9). The first representatives of this domain were 

described in the 1970s and they appeared to form a bizarre collection of microbes, which were 

marked by their preference for particularly harsh environments (e.g. hyperthermic, hypersaline, 

acidic, alkaline). Because of these characteristics, archaea have attracted wide attention from 

astrobiologists in their search for extraterrestrial life (10-12). Later, archaea were also discovered 

in moderate environments where they were found to play key roles in biochemical cycles. Archaea 

are now recognized a major component of global ecosystems (13). It has been estimated that 

archaea constitute 20% of all microbial biomass in the sea (14).

Morphologically archaea resemble bacteria, since they lack distinctive intracellular organelles. 

Because of the lack of a nucleus, Archaea and Bacteria are named prokaryotes, in contrast 

to eukaryotes, which all contain a nucleus. This division refers to distinct levels of cellular 

organization rather than biological classification.

Archaea display numerous eukaryotic features, and the archaeal replication, transcription and 

translation machineries are for example basic versions of their eukaryotic counterparts (15, 16). 
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Because archaeal genomes code a mosaic of bacterial and eukaryotic functions, studies on 

archaea are important for understanding of the evolution of early life (17, 18).

Viruses of Archaea are unique

Similar to members of the other two domains of life, also archaea are infected by viruses. Although 

some early reports on virus-like particles from haloarchaea exist (19), archaeal viruses have only 

been intensively studied in the last two decades, concomitantly with the general recognition of 

Archaea as a separate domain (7). The hunt for archaeal viruses was pioneered by Wolfram Zillig 

and coworkers. Up to date it has resulted in about a hundred isolated viral species, which likely 

represent only the tip of the iceberg of archaeal viral diversity, since microscopical observation of 

archaeal habitats revealed a wealth of diverse virus-like particles (20, 21). 

Ever since their discovery, archaeal viruses have intrigued scientists because of their unusual 

shapes, of which many are unique, including bottles, eggs and droplets (22). The majority of 

isolated archaeal viruses have dsDNA genomes (22). However, recently some ssDNA archaeal 

viruses were isolated (23-25). As for their structures, also genome sequences of archaeal viruses 

are typically very diverse and they share hardly any homology with sequences from extant 

databases (26). Due to the exceptional nature of archaeal viruses, they have already been assigned 

to ten different viral families, and this number is increasing rapidly as more archaeal viruses 

are being discovered and characterized (22). Especially viruses which are infecting extremophilic 

Crenarchaeota display an extraordinarily high morphological and genomic diversity in contrast to 

viruses from Euryarchaeota, which generally are thriving at moderate environments (27). Viruses 

of extremophilic archaea are stable under the same harsh conditions as the cells they infect, and 

therefore these viruses and their proteins are potentially very suitable for bionanotechnological 

applications (28). Furthermore, the study of archaeal viruses has proven instrumental for 

understanding viral diversity and evolution (29, 30).

Remarkable features of archaeal virus-host interactions

The described structures and genomes of archaeal viruses provide little insight in their infection 

cycle, due to the limited similarity of their gene sequences with those of viruses infecting Bacteria 

or Eukarya (26). For the majority of the archaeal viruses, aspects of interaction with the cells 

they infect remain obscure, including virion entry, exit, replication and interplay with anti-virus 

defense mechanisms. To tackle this issue, several archaeal viruses have emerged as suitable 

models, amongst which is Sulfolobus islandicus rod-shaped virus (SIRV)2 (31). This rod-shaped 

virus infects the hyperthermophilic S. islandicus, which thrives at high temperature (80 °C) and 

acidity (pH 3) (31). SIRV2 has been the focus of many recent studies, because of its remarkable 

proliferation cycle. Infection by this virus results in a degradation of the host genome. Moreover, 

formation of pyramidal shaped virion egress structures completes the infection cycle. In this 
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thesis, details of this exceptional virus-host interaction are described and in the last chapter 

comparisons are made with other known systems for virus release. In the first chapters focus 

is on characteristics of the unusual virion egress structure, including its unperceived geometry 

and features of its protein component. These chapters are followed by a whole transcriptome 

analysis aiming at identifying novel functions of SIRV2 genes important for interaction between 

virus and host. This analysis has revealed the wide spread activation of archaeal anti-viral defense 

systems, including the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas 

(CRISPR-associated) system.

Anti-viral defense system

In recent years it has been demonstrated that prokaryotes, in analogy to eukaryotes, have an 

extensive set of defense systems at their disposal to counteract viral attack. The CRISPR-Cas 

system is the most recently discovered example and shares some analogy with eukaryotic RNAi 

systems (32, 33). This system is present in about half the sequenced bacterial and almost all 

archaeal genomes. CRISPR-Cas defense relies on the incorporation of short sequences of foreign 

genetic elements between characteristic repeat sequences on prokaryotic genomes (34). These 

spacer repeat arrays are transcribed and the RNA processed, such that a small RNA molecule 

serves as a guide to recognize specifically the particular foreign element from which it was 

derived. Recognition of the foreign element occurs by a surveillance protein complex encoded by 

cas genes, which are associated with the CRISPR arrays. After its recognition, the foreign element 

is neutralized by binding and/or cleavage (34). Thus, the CRISPR-Cas system functions as both an 

adaptable and inheritable immune system.

Many different CRISPR-Cas systems exist, of which some target DNA and others RNA. Several 

types are exclusively present in archaeal genomes, while others are more universal. The various 

CRISPR-Cas systems all encode functional complexes of which the composition slightly differs. A 

common feature of these complexes is that they consists of several Cas proteins which typically 

display an uneven stoichiometry, i.e. the type I-E system consists of five subunits present in 

the ratio 1:2:6:1:1 (34, 35). Like most prokaryotic protein complexes, cas genes are encoded 

by operons. The founders of the operon concept, Monod, Jacob and Lwoff have described an 

“operon as a coordinated unit of genetic expression”, which thus allows for co-transcription and 

co-translation (36). Therefore the mechanism by which differential expression of all subunits of 

the Cas complex is achieved remained a question which is addressed in Chapter 6 of this thesis. 

A regulatory mechanism is described which allows for differential production of Cas complexes 

and operon encoded proteins in general.
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Thesis outline

This thesis is about the interaction between viruses and archaea and aims to reveal details of 

these interactions using SIRV2 as a model. The described studies address questions concerning 

the uniqueness of infection cycles of archaeal viruses and possible resemblance to other systems. 

Moreover, many of these findings have broad implications. Examples are the discovery of a 

universal membrane remodeling system, which can be exploited in a biotechnological setting, 

and the description of a prokaryotic regulatory mechanism for the production of operon encoded 

protein complexes.

Chapter 1

In the first chapter the archaeal virus SIRV2 is introduced. SIRV2 is a model for the study of 

archaeal virus-host interactions. An overview of characteristics of its infection cycle is presented. 

Flow cytometry experiments demonstrate that infection of Sulfolobus islandicus by SIRV2 results 

in degradation of the host genome, indicating that the rod-shaped virus is lytic. Analysis with 

electron microscopy of infected cells reveals that in the cytoplasm of each cell approximately 

100 virions are assembled in several bundles, which fill almost the complete cell. More striking 

is the observation of several pyramidal shaped virion egress structures on the host cell surface. 

These Virus Associated Pyramids (VAPs) protrude with their tips into the extracellular medium 

and perforate the protective surface layer (S-layer) of the host cell. The cytoplasm is continuous 

in the interior of the VAPs. As the last stage of the infection cycle the VAPs open outwards, like 

the petals of a flower. In this fashion, apertures in the cell membrane are created, through which 

SIRV2 virions can escape from their host cell. After release of SIRV2 virions, these cells remain as 

empty ghosts.

All viruses face the challenging task of crossing the cell membrane at the end of the infection 

cycle. Different viruses have come up with various solutions to tackle this issue (e.g. by using 

the endolysin-holin system, or budding) (37, 38). However, the novel virus release mechanism 

described in this chapter is fundamentally different from all other reported strategies for virion 

egress and has therefore important implications for understanding the development and 

evolution of these systems.

Chapter 2

The discovery of the unusual archaeal virion egress structure raises questions concerning its 

composition. This is the focus of the second chapter of this thesis. The isolation of proteins from 

S. islandicus is described, which reveals specific accumulation of a 10 kDa protein in the membranes 

of SIRV2 infected cells. Using mass spectrometry, this protein is identified as the product of the 

viral gene ORF98. Accumulation of this protein, named SIRV2_P98 (PVAP), is so pronounced that 
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after infection it is the most abundant membrane protein as can be judged by visualization on 

SDS gels. Apart from accumulation of PVAP, the protein composition of membranes of infected 

cells seems to remain unmodified. Results of Edman degradation are presented, which show 

that the N-terminus of PVAP remains intact without any indication of (cleavage of) a signal 

sequence. PVAP has only a few homologues, mostly amongst the Rudiviridae, the viral family to 

which SIRV2 belongs. Strikingly, the only other PVAP homolog outside the Rudiviridae is present 

in the genome of Sulfolobus Turreted Icosahedral Virus (STIV)1 (39), apart from SIRV2 the only 

archaeal virus which has been demonstrated experimentally to employ the VAP based egress 

mechanism (40). Apart from PVAP, STIV1 and SIRV2 share only two other genes. Surprisingly, 

PVAP is not present in all rudiviral genomes and is also absent in the genome of STIV2, a close 

relative of STIV1. This indicates that during the evolution driven by the on-going arms race with 

host defense systems, morphological and egress systems in archaeal viruses likely are exchanged 

horizontally and evolve independently.

Chapter 3

The third chapter of this thesis deals with the elegant architecture of the VAPs. In addition, 

the composition of this structure is presented in detail. The findings described in Chapter 2 

are the basis for the experimental setup in this chapter. Conveniently, VAPs can exist as stable 

discrete particles. These particles are isolated from crude membrane extracts using antibodies 

raised against PVAP. An electron microscopical survey of the particles, unveiled that isolated 

VAPs are present as intact polyhedra displaying a sevenfold rotational symmetry. Although not 

totally unheard of (e.g. 20S proteasome, scallop muscle myosin, alpha-hemolysin, chaperonin 

heat shock protein Hsp10 (41-44)), sevenfold symmetry is rare in nature. The geometry of isolated 

VAPs is always similar, although their sizes can differ considerably, suggesting that they develop 

by outwards growth of their facets.

Study of these isolated VAP particles allows the discovery of more aspects of its biology. 

Analysis of the composition of the isolated VAP, demonstrates that it consist exclusively of PVAP. 

Immunolabelling with antibodies raised against PVAP show the specific presence of this protein 

in VAPs of infected cells. PVAP is not only required but also sufficient for VAP formation, and it is 

likely that no viral or archaeal specific factors are required for this process. This is demonstrated 

by heterologous expression of this protein in Escherichia coli and Sulfolobus acidocaldarius. 

Astoundingly, in both systems, PVAP leads to the formation of pyramidal structures on the inner 

membrane and cell envelope respectively.

Thus, PVAP is capable of self-assembly into VAPs under the distinct growth conditions 

of hyperthermophilic acidophilic archaea and mesophilic bacteria. This is even more striking 

because of the fundamentally different lipid and protein composition of archaeal and bacterial 

membranes.
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Chapter 4

The detailed supra-molecular structure and assembly process of the VAP are focus of Chapter 4. 

First of all, it is demonstrated that PVAP displays a high flexibility to form VAPs in virtually 

all biological membranes and can act as a universal membrane remodeling system. PVAP is 

expressed in several heterologous systems, including the eukaryote Saccharomyces cerevisiae. 

This demonstrates that VAPs can successfully assemble even in eukaryotes. In S. cerevisiae 

PVAP expression leads to VAP formation in different cellular membranes, including the Golgi, 

nuclear envelope and mitochondrial membranes. This suggests that PVAP does not follow the 

conventional pathways for membrane targeting. Correct insertion in membranes likely solely 

depends on the hydrophobicity of its N-terminal transmembrane segment.

Next, the ultrastructure of VAPs is described as observed with whole cell cryo-electron 

tomography. This analysis reveals the presence of two layers in VAPs, both in natural and in 

heterologous systems. The outer VAP layer appears continuous with the cell membrane, 

while the inner layer represents a protein sheet, which is facing the cytoplasm. In addition, 

the early development of VAPs is monitored, which shows nucleation of the structure on the 

cell membrane. When first formed, the VAPs are small (tens of nanometers). As the infection 

proceeds the VAPs grow by the expansion of their seven triangular facets, eventually reaching 

diameters of up to 250 nm.

Insight in particular functions of distinct PVAP domains is provided by analysis of several 

genetically modified versions of the protein. The three predicted C-terminal α-helices of PVAP 

monomers likely interact to form a dense protein sheet, which is visualized as the inner VAP layer. 

The N-terminal transmembrane segment of PVAP is important for interactions between PVAP 

monomers and the membrane. The existence of PVAP oligomers is demonstrated by analysis of 

purified PVAP on SDS-PAGE, which revealed the presence of several oligomers, including one 

with the estimated mass of a heptamer. Based on these results a model for VAP assembly is 

presented. The ability of PVAP monomers to interact with each other in various configurations 

seems a distinctive feature of this protein which might account for the unique assembly and 

geometry of the archaeal virion egress structure.

Chapter 5

In the fifth chapter of this thesis a transcriptome analysis of SIRV2 infection is presented. 

These results, in combination with a study of interactions between SIRV2 proteins, are used to 

advance current understanding of archaeal viral functions. This study provides a global map, 

defining host and viral gene expression during prokaryotic viral infection. As such, it provides 

in depth information on the expression profiles of all viral and host genes during a time series 

after SIRV2 infection. This approach is combined with yeast two-hybrid assays to analyze all 

possible interactions of viral proteins. The comprehension of the SIRV2 infection cycle is currently 
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hampered by the lack of predicted or confirmed functions for the majority of the encoded 

proteins. This is a common challenge for most archaeal viruses, due to low homology of their 

gene products with proteins from extant databases. To provide clues on the functions of SIRV2 

genes in the infection cycle, the expression pattern of viral and host genes is monitored by RNA 

sequencing analysis. This high resolution analysis reveals some previously unrecorded events, 

such as the start of transcription of viral genes simultaneously from both ends of the SIRV2 

dsDNA genome. The effect of SIRV2 infection on the host cell is severe and S. islandicus reacts to 

this threat by the massive activation of anti-viral defense systems, notably CRISPR-Cas and toxin 

anti-toxin systems. CRISPR-Cas systems are particularly abundant in archaea and typically the 

archaeal CRISPR arrays are very long, implying an important physiological role. This study reports 

on activation of archaeal CRISPR-Cas systems. In addition, it provides some first clues on a role of 

archaeal toxin anti-toxin systems in anti-viral defense. The observed different degree of activation 

of various defense systems highlights the specialized functions they perform. The presented 

information on individual gene expression and activation of all anti-viral defense systems of 

S.islandicus is expected to aid future studies, which are aiming to establish the function and 

interplay of the different systems in vivo.

Chapter 6

The peculiar stoichiometry of some anti-viral Cas defense complexes has provided the basis of 

the findings described in Chapter 6. In the previous chapter it is demonstrated that the functional 

complex of CRISPR-mediated defense is activated during SIRV2 infection. The subunits of the 

Sulfolobus Cas-related ribonucleoprotein complexes are composed of different subunits that 

are present in an uneven stoichiometry. This stoichiometry is particularly puzzling since cas 

genes are organized as operons. Evidently this is advantageous in case a protein complex with 

even stoichiometry is encoded. But expression of protein complexes with uneven stoichiometry 

requires an additional mode of control. Transcription analysis (Chapter 5) indicates at most minor 

differences in the transcription of subunit-encoding genes, not sufficient to explain the required 

differences at protein level. This suggests that regulation might take place by differential translation. 

These CRISPR associated complexes are not the only prokaryotic protein complexes with uneven 

stoichiometry. In fact, several operon encoded complexes with uneven stoichiometry perform 

roles in important cellular processes, like translation, energy production and secretion (45-47). 

Thus, regulation of the stoichiometry of such complexes seems very important for all prokaryotes. 

The recent advancement in development of high throughput techniques like RNA-sequencing 

and ribosome profiling, have provided a huge data set that can be used to gain further insight 

into the prokaryotic transcription and translation processes. Fifty years after the first description 

of the operon by Jacob and Monod, analysis of these datasets urge to refine the operon concept 
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and acknowledge the wide prevalence of differential translation to fine tune protein production 

from genes organized in operons.

A group of operon-encoded protein complexes with known stoichiometry is selected for this 

study and features influencing the efficiency of transcription and translation of their genes are 

assessed in a selection of >350 prokaryotic genomes. In agreement with the transcription analyzes 

of the Sulfolobus Cas complexes, this reveals that typically differential transcription cannot 

explain fluctuating protein levels. However, a clear correlation with factors influencing translation 

efficiency is observed, both at the level of initiation (RNA secondary structure, ribosome density 

profiles) and elongation (codon bias, codon co-occurrence). Since highly abundant subunits are 

not necessarily encoded by the first gene of the operon, de novo translation initiation of any 

cistron may occur irrespective of its position on a polycistronic mRNA. Experimental evidence for 

de novo translation initiation on intercistronic sites is provided using synthetic operons encoding 

reporter proteins. The findings described in this chapter suggest that tuning of the translation 

efficiency is a universal mode of control in bacteria and archaea, which allows for differential 

production of operon encoded genes.

Chapter 7

In the last chapter of this thesis a summary of the presented work is given. This is followed by a 

discussion of the state of the art of research on archaeal egress systems. The VAP-based egress 

system is compared with other (bacterial) systems and possible evolutionary advantages are 

discussed. Lines for future research and biotechnological applications are suggested. Due to the 

unique nature of the VAPs it is proposed to classify these non-capsid virus-encoded independent 

structures as ‘virodomes’.

Next, the potential of SIRV2 as model to study archaeal viral biology is discussed followed by 

suggestions to study SIRV2 replication and the interplay with anti-viral defense mechanisms in 

more detail. Codon bias in combination with other factors is suggested as an in silico predictor of 

protein subunit stoichiometry. The chapter is concluded with a short discussion on the significance 

of archaeal anti-viral defense systems for the virus-host interplay in the natural environment.
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Chapter 1
Introduction to the archaeal virus model: 

Sulfolobus islandicus rod-shaped virus 2

Ariane Bize, Erik A. Karlsson, Karin Ekefjärd, Tessa E. F. Quax, Mery Pina,  

Marie-Christine Prevost, Patrick Forterre, Olivier Tenaillon, Rolf Bernander, David Prangishvili

‘A Unique Virus Release Mechanism in the Archaea’

Proceedings of the National Academy of Sciences USA. 2009 July 7. 106(27):11306-11
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Abstract

Little is known about the infection cycles of viruses infecting cells from Archaea, the third domain 

of life. Here, we demonstrate that the virions of the archaeal Sulfolobus islandicus rod-shaped 

virus 2 (SIRV2) are released from the host cell through a novel biological mechanism, involving 

the formation of unique cellular structures. Large pyramidal virus-induced protrusions transect 

the cell envelope at several positions, rupturing the S-layer; they eventually open out, thus 

creating large apertures through which virions escape the cell. We also demonstrate that massive 

degradation of the host chromosomes occurs due to virus infection, and that virion assembly 

occurs in the cytoplasm. Furthermore, intracellular viral DNA is visualized by flow cytometry 

for the first time. The results show that SIRV2 is a lytic virus, and that the host cell dies as a 

consequence of elaborated mechanisms orchestrated by the virus. The generation of specific 

cellular structures for a distinct step of virus life cycle is known in eukaryal virus-host systems but 

it is unprecedented in cells from other domains.
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Introduction

As for organisms belonging to the Bacteria and Eukarya, members of the domain Archaea are 

infected by specific viruses. The majority of archaeal viruses isolated so far contain dsDNA as the 

genetic material and infect hyperthermophilic hosts from the phylum Crenarchaeota (48). The 

diversity and uniqueness of these viruses at both the morphological and genetic levels are such, 

that they have been classified into seven new viral families (49). The knowledge on the biology 

of this exceptional group of viruses is still limited, partly due to the unique genetic content: very 

few genes have detectable functions or homologs in the databases (26).

In particular, little is known about relationships of crenarchaeal viruses with their hosts. 

Except for a few isolated cases (50-52), it is generally presumed that these viruses persist in the 

host cell in a carrier state, a non-lytic relationship in which virions are continuously secreted by 

the still-dividing cells (53). However, the classification of crenarchaeal viruses as chronic is based 

on indirect experimental evidence, such as a lack of optical density (OD) decrease and absence of 

cellular debris in infected cultures (e. g. (54, 55)). Detailed characterization of the infection cycle 

and the carrier state have not been specifically addressed in the scarce reports on crenarchaeal 

host-virus interactions (see e. g. (56)).

To study the nature of host-virus relationships in crenarchaea, we selected the non-enveloped, 

rod-shaped virus SIRV2 and its hyperthermophilic and acidophilic host, Sulfolobus islandicus. 

SIRV2, originally described as a carrier state, non-lysogenic virus (31), belongs to a common 

crenarchaeal virus family, the Rudiviridae (31, 55, 57-59), and contains a linear 35.5 kb dsDNA 

genome (60). The host belongs to a well-characterized crenarchaeal genus, Sulfolobus(61, 62), 

from which also other viruses are known (49). We describe detailed in vivo effects of the virus 

on its host and, unexpectedly, demonstrate that SIRV2 is a cytocidal, lytic virus. Remarkably, an 

entirely novel virus release mechanism was encountered during the characterization, involving 

generation of unique pyramidal structures which, by opening out, cause local disruption of 

the cell envelope and allow virion escape. In addition, intracellular viral DNA was visualized by 

flow cytometry, and the technique was also used to demonstrate chromosome degradation in 

infected cells.

Results

Growth kinetics of SIRV2-infected cultures

OD and CFU values from uninfected and infected (multiplicity of infection (m.o.i.) about 7) cultures 

of S. islandicus were monitored over time. The effects of the virus were visible already 1.5 h post-

infection (Fig. 1). Whereas uninfected cultures pursued normal growth with a generation time 
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around 13 h, the OD in infected cultures remained constant for about 60 h (Fig. 1A and 1C), after 

which growth resumed (Fig. 1C). During this time period, the CFU values of uninfected controls 

remained constant or increased slightly. In contrast, the CFU values decreased dramatically in 

infected cultures, resulting in an about 1000-fold reduction at 6 h post-infection (Fig. 1B, 10.5 h). 

The CFU values also revealed growth of a minor cell population in infected cultures starting 

at early time points (Fig. 1D, from 15 h). This growth was initially not detectable in the OD 

measurements (Fig. 1C), due to the low concentration of this cell population at early time points. 

Thus, infection by SIRV2 has a pronounced effect on the host cultures, preventing growth of a 

majority of the cells.

To exclude the possibility that the results were linked to the high m.o.i. employed, or to the 

specific growth conditions, similar experiments were performed at low m.o.i. (about 10-3), at 

different temperatures (70°C; 75°C; 78°C), pH (3.0; 3.5), medium richness (standard medium 

or 5-fold less rich medium), and with different host strains (S. islandicus strains KVEM10H3, 

Figure 1. Impact of SIRV2 infection on the growth kinetics of S. islandicus cultures. Cultures infected at a 
moi of ≈7 (filled circles, continuous line) and uninfected cultures (empty circles, dotted lines), were launched 
in triplicates. Averages of the replicates ± 1 SD are shown. The vertical arrows in A and B correspond to 
virus addition (4.5 h). (A) OD595 nm, detail of the first hours. (B) Log transformation of the CFU titres, detail 
of the first hours. (C) OD595 nm over the entire time course. (D) Log transformation of the CFU titers over the 
entire time course.
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HVE10/4 and LAL14/1). No significant differences were observed (data not shown), indicating 

that the effects occurred independently of these parameters.

The cell population growing in the presence of SIRV2 consisted of cells completely resistant to 

SIRV2 infection, not producing any detectable infectious virions nor carrying the SIRV2 genome 

(data in Supporting Information (SI): Text and Fig. S1). This was consistent with the observation 

that the SIRV2 genome does not integrate into the host chromosome (31), and also excluded 

the possibility that SIRV2 established a carrier state relationship with its host. The high initial 

proportion of resistant cells suggested that specific mechanisms could be involved in their 

generation, in addition to random mutations, such as CRISPRs-related mechanisms (33).

Flow cytometry analysis of infected cells over a time course

The cell size and intracellular DNA content in uninfected and SIRV2-infected cultures (m.o.i. 

about 10) over a time course were monitored by flow cytometry (Fig. 2, and Figs. S2 and S3).

The relative lengths of the S. islandicus cell cycle periods in the control cultures were found to 

be similar to those of other Sulfolobus species (61, 63), with the post-replicative phase occupying 

a large fraction of the generation time (68%, Fig. S4). Based on the results of flow cytometry, 

the genome size was roughly estimated to 2.6 Mb (Fig. S5). The average cell size (Fig. 2A left, 

Fig. S2) progressively decreased when the cultures approached stationary phase. In the infected 

cultures (Fig. 2B, left column), a cell size increase initially occurred in part of the cell population, 

evident as an extension of the distribution towards the right (6 - 8 h). Subsequently, the average 

cell size gradually decreased over time.

The DNA content distributions of the control cultures (Fig. 2A right, Fig. S2) were typical for 

exponentially growing Sulfolobus cells (63), with a majority of the cells containing 2 chromosomes. 

In the infected cultures (Fig. 2B, right column), cells with a very low DNA content (<<1 genome 

equivalent) started to appear at 0.5 h post-infection and then increased in proportion over time, 

while the proportion of cells containing 1 - 2 genome equivalents decreased. Thus, at 12 h, a 

large majority of the cell population contained no detectable intracellular DNA. The SIRV2 latent 

period is 8 - 10 h (below) and chromosome degradation, thus, occurred before virus release in 

a significant fraction of the cell population. Interestingly, the populations of chromosome-less 

cells and cells containing DNA were clearly separated and well defined (Fig. 2B, right column, 

Fig. S6). Thus, for a given infected cell, chromosome degradation must have occurred within a 

brief time interval.

In parallel to chromosome degradation, an increase in the total DNA content occurred in part 

of the cell population, evident as an extension of the 2-genome equivalents peak towards the 

right (Fig. 2B, right column, 2 h and onwards). This corresponded to newly synthesized viral DNA 

(below), and the increase was estimated to about 0.5 genome equivalents on average (Fig. 2C, 

arrow), at 3 h after infection.
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Figure 2. Flow cytometry time-course analysis of 
S.  islandicus cells infected by SIRV2. (A) Representative 
cell size and DNA content distributions from an uninfected 
culture. (B) Cell size and DNA content distributions 
from a culture infected with SIRV2 (moi ≈10). The virus 
was added just after time point 0 h. (C) Visualization of 
intracellular SIRV2 DNA by flow cytometry at 3 h after 
infection. The DNA content distribution from an infected 
S. islandicus culture is shown against the distribution 
from an uninfected culture (translucent gray). The arrow 
indicates additional DNA in infected cells.

The results demonstrate that infection by 

SIRV2 causes massive degradation of the host 

chromosome in virtually all infected cells during the 

first 12 h of infection, excluding the possibility that 

SIRV2 genomes are vertically transmitted between 

cell generations.

Links between the virus infection cycle, the 

kinetics of host chromosome degradation, 

and cell death

To discriminate between host chromosome and viral 

DNA, uninfected and infected cultures (m.o.i. about 

15) were monitored by dot blot hybridizations, in 

addition to flow cytometry (Fig. S6). In an uninfected 

control culture, the percentage of chromosome-

less cells did not exceed 5% (Fig. 3A), and tended 

to decrease over time. In infected cultures, 

chromosome-less cells began to accumulate in 

the first hours, and after 5 h, the percentage was 

about 40%, confirming that significant degradation 

occurred before virion release (at about 8 - 10 h, 

see below) and, at 11 h, more than 80% of the cells 

were chromosome-less. Subsequent degradation 

occurred at a lower rate and finally reached 97%, 

confirming that genome degradation occurred in 

most cells.

The intracellular amount of SIRV2 DNA (Fig. 3B 

and 3D) increased gradually and reached a 
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maximum around 8 h, followed by a large decrease up until 14 h. The initial increase presumably 

corresponded to viral DNA replication, and the decrease to virus release, indicating a latent 

period of about 8-10 h. Thus, a single round of infection occurred in the cultures at the high 

m.o.i. employed. To relate viral DNA production to the dynamics of chromosome degradation, 

the percentage of DNA-less cells appearing between successive time points was superimposed 

(Fig. 3B). A small peak of degradation, visible at 0.5 h post-infection, was most likely an artifact 

caused by the low signal-to-noise ratio for DNA-less cells in the very early time points. The major 

peak occurred at 11 h, in the middle of the virus release period. The use of a 16S rRNA gene 

probe combined with similar data analysis confirmed the chromosome degradation observed by 

flow cytometry (Fig. 3C and 3E).

To confirm the latent period of 8 - 10 h and to estimate the burst size, a one-step growth 

experiment was performed (Fig. S7). Virus release was shown to begin at around 8 - 10 h post-

infection, confirming that no infectious virions were released prior to this time point, consistent 

with all other data. The burst size was estimated to 30±10 viruses per cell, in agreement with the 

estimates of intracellular SIRV2 DNA by flow cytometry. Finally, a membrane potential-sensitive 

probe (data in SI: text and Fig. S8) was used to confirm that cell death occurred in connection 

to virus release.

In conclusion, a single round of infection occurred when a high m.o.i. was used, and the SIRV2 

latent period was about 8 - 10 h under the conditions employed. Massive host chromosome 

degradation occurred throughout the infection cycle, starting from the early stage, and cell 

death took place concomitantly with virus release. Thus, SIRV2 is a lytic virus that kills the host 

cell during the process of virus production and release.

Identification of novel cellular ultrastructures induced by SIRV2 infection

To obtain insights into the details of the virus-host interactions, infected cells were analyzed 

by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The cells 

were fixed at 10 h (just before virion release), 13 h (middle of release period) and 26 h (after 

release) post-infection. Uninfected cells in mid-exponential growth phase were used as control. 

For analysis with TEM, ultrathin sections of samples were prepared.

The irregular coccoid morphology of uninfected cells was typical for Sulfolobales species, 

with the cell envelope consisting of a lipid membrane and an S-layer (Figs. 4A1, 4A2). At 

10 h post-infection, multiple pyramidal protrusions were observed on the cell surface by SEM 

(Fig. 4B1, arrows), which were absent in uninfected control cells. In thin sections these structures 

were observed by TEM as large angular protrusions associated with a local absence of S-layer at 

the cell envelope, (Figs. 4B2, 4B3, 4B4). Both with SEM and TEM, several such virus-associated 

pyramids (VAPs) were usually visible per cell (Figs. 4B1, 4B2). The pyramidal structure of the VAPs, 

suggested by SEM, was confirmed by TEM, showing a polygonal base in a plane parallel to the 
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Figure 3. Links between the kinetics of 
host chromosome degradation and the 
SIRV2 infection cycle. Infected cultures 
and uninfected cultures were launched in 
triplicates. SIRV2 was added (moi ≈15) just 
after time point 0 h. Averages of 3 infection 
replicates ± 1 SD are shown in A–C. (A) 
Percentage of DNA-less cells in uninfected and 
infected cultures. The values were obtained 
by flow cytometry analysis, using data from 
2-parameter distributions, gating them 
as illustrated in Fig. S6B. (B) Radioactivity/
cell (filled triangles, discontinuous line, left 
axis), indicative of SIRV2 intracellular DNA in 
infected cultures, over a time course. Values in 
arbitrary units were obtained by quantifying 
the hybridization signal from each spot in the 
image shown in D. The percentage of DNA-
less cells appearing between 2 successive 
time points (empty circles, dotted line, right 
axis) was also plotted, using the data from A. 
(C) Radioactivity/cell indicative of intracellular 
16S rDNA amounts in uninfected cultures 
(empty circles, dotted line) or infected cultures 
(filled circles, discontinuous line). Values in 
arbitrary units were obtained by quantifying 
the hybridization signal from each spot in 
the image shown in E. (D)  Autoradiogram 
of hybridization of spots of cells sampled 
from infected cultures with a SIRV2-specific 
probe. Each spot corresponds to the same 
approximate number of cells, based on OD 
measurements. The time course corresponds 
to horizontal lines, with the 3 replicates 
shown vertically for each time point. 
(E)  Autoradiogram of hybridization of spots 
of cells sampled from uninfected and infected 
cultures with a 16S rRNA gene-specific probe. 
See D for additional explanations.
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cell envelope (Fig. 4B5). In thin sections the VAPs often contained regions producing a denser 

staining (Fig. 4B2, arrows), localized at the tip of the pyramidal structure.

Dense aggregates of virions were visible by TEM within numerous cells from the infected 

culture (examples in Figs. 4B4, 4B6), showing that virion assembly occurred in the cytoplasm. Up 

to 3 densely packed aggregates, together containing up to about 150 virions, were detected in 

the cell sections, and occupied a high fraction of the intracellular volume. The higher number of 

virions compared to the estimates from the flow cytometry and one-step growth experiments 

(above), could be due to that viral DNA tightly packaged into virus particles is poorly stained, and 

that virions may still have been aggregated after release in the one-step experiments.

At 13 h post-infection, together with cells resembling the examples shown in Figs. 4B1 and 

4B2, cells lacking VAPs and displaying numerous perforations on cell surface were observed 

(not shown, similar to Figs. 4C1, 4C2), and 26 h post infection almost all cells were perforated 

and empty (Figs. 4C1, 4C2). The perforated cells appeared to have spherical morphotype, 

different from the native phenotype, suggesting alteration of intracellular organization. Thin 

section analysis of perforated cells displayed virion remains (Fig.4C2, inset) and disappearance 

of most of the cytoplamic content (Fig.4C2). The cell perforations were heterogeneous in size, 

and their majority visible in thin sections had a diameter in the range of 200 nm. TEM analysis 

of thin sections revealed that the perforations were delimited by C-shaped structures (Figs. 4C2, 

4C3). Most likely, these represented the remains of VAPs. Apart from the perforations, the cell 

envelope appeared to be intact, with both the S-layer and the membrane visible (Figs. 4C2, 4C3). 

Notably, the characteristic structures at the boundary of the perforations of the lysed cells were 

sometimes observed detached from the cell envelope (Fig. 4C4, 4C5, 4C6). The resemblance of 

polygonal shapes in Figs. 4B5, 4C5 and 4C6, as well as the similarity of the structures in Figs. 4B3 

and 4C3, supports the hypothesis that the structures in panel C represented remains of the VAPs 

shown in panel B. Thus the VAPs were apparently involved in perforation of the cell envelope. 

Since ongoing virus release could not be detected, this must have occurred within a brief time 

interval.

Discussion

We report the first detailed cellular study of the infection cycle of a crenarchaeal virus, and 

demonstrate that SIRV2 is a lytic virus. The virions are assembled in the cytoplasm of the host cell 

and, 8 - 10 hours post infection, start to be released through well-defined apertures in the cell 

envelope. Remarkably, formation of these openings is preceded and facilitated by the generation 

of virus-induced cellular structures of pyramidal shape, VAPs, located at the cell envelope and 

pointing outwards. The VAPs perforate the membrane and S-layer, and after disruption leave 
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Figure 4. VAPs, detected 
by SEM and TEM on SIRV2 
infected Sulfolobus cells. 
A1, B1, and C1 micrographs 
were obtained by SEM, all 
other micrographs are TEM 
images from thin sections. 
(A) Uninfected cells. (B) Cells 
10 h after infection. (B2, B3, 
B4, and B6) Thin sections 
in a plane perpendicular to 
the cell envelope. (B5) Thin 
section in a plane parallel 
to the cell envelope. (B1 and 
B2) arrows indicate VAPs. (B6 
Insets) Details of intracellular 
virion aggregates, sectioned 
according to a parallel (up) 
or perpendicular (down) 
plane. (C) Cells 26 h after 
infection. (C2, C3, and C5) 
Thin sections in planes 
perpendicular to the cell 
envelope. (C5) Disrupted 
VAP partly detached from 
cell envelope. (C4 and C6) 
Thin sections of disrupted 
detached VAPs in different 
section planes. (C2 Inset) 
Virion remains inside a lysed 
cell. (Scale bars, 200 nm.)
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behind apertures delimited by a ring structure of polygonal shape (Fig. 4C5, 4C6). Intracellular 

viral DNA was visualized by flow cytometry, and the same technique was used to show that 

host chromosome is completely degraded during the viral infection cycle. The combination of 

the data from one-step growth experiment, flow cytometry and TEM showed that chromosome 

degradation most likely occurred before the virion release, in the majority of the cell population. 

Together, all our results demonstrate that the host cells die as a consequence of specific and 

unique mechanisms orchestrated by the virus, rather than from general deleterious effects of the 

infection. The deduced viral life cycle is schematically illustrated in Fig. 5.

It is likely that a set of viral genes must control the formation of the VAPs and the generation 

of the apertures through which the virions are released. The genes might either directly code 

for the proteins involved, or modulate host-encoded mechanisms. The timing of VAP disruption 

and virus release must also be controlled by virus-encoded functions, such that cell lysis does 

not occur until the virions have been assembled, as for any lytic virus. Further, host chromosome 

degradation could also be an active mechanism, encoded by viral genes.

To our knowledge, the virus release mechanism identified here is unprecedented in virus 

biology. In lytic bacteriophages, the two main lysis strategies rely on the direct degradation of 

peptidogycan, e. g. with the holin-endolysin system (64), or on the inhibition of cell wall synthesis 

(65). Both strategies result in complete cell disruption, and do not involve a modification of the 

cell envelope in several localized regions, as reported here. To our knowledge, also for eukaryotes 

there are no reports on generation of distinct structures for cell perforation and viral release. 

Modification of intracellular membranes (endoplasmic reticulum, Golgi complex) does occur as a 

result of infection with certain eukaryotic RNA and DNA viruses, but this appears to be linked to 

viral replication rather than release (66). Recently, alteration of the Sulfolobus S-layer as a result 

of infection with the lytic icosahedral STIV virus was reported (67). It would be highly interesting 

if viruses that display little similarity in morphology and gene content would share a related 

mechanism for extrusion from the host cell.

The number and extent of elaborate modifications caused by SIRV2 on the host cell result 

in a radically transformed cell which can hardly be contemplated as the archaeon Sulfolobus. 

The whole infected cell rather appears to be converted into a complex viral factory, conceptually 

identical to those built by some eukaryotic viruses inside infected cells. In such cases, the structures 

of the factory are enclosed by a membrane to exclude cellular organelles. Ribosomes are however 

present and the factory is dedicated to viral genome replication and virion assembly (68, 69). 

The eukaryotic viral factories were suggested to constitute the genuine identity of viruses (70), 

which thus might be considered as a specific type of living organisms(70, 71). A weakness of this 

concept was the failure to observe viral factories in cells from other domains. SIRV2, as described 

above, constitutes a first example archaeal virus producing a transient viral factory, consisting of 

the whole transformed infected cell.
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Our results show that lytic cycles may be more common for crenarchaeal viruses than previously 

assumed (53), and that lytic properties may have been overlooked in other crenarchaeal viruses. 

The original notion that the carrier state host-virus relationship is dominant in crenarchaea was 

consistent with the suggestion that this life style would provide a durable intracellular refuge for 

the virus population in the harsh physico-chemical conditions at which cultured representatives 

of the Crenarchaeota thrive (T ~60-90°C, pH ~3.0 – 6.0). In contrast, our findings imply that 

virus particles can persist in such extreme ecosystems long enough to encounter a new host 

cell. The SIRV2 virions are well adapted to harsh environments, being extremely stable in various 

solvents and other inhospitable conditions (28, 59), and almost as stable at 80°C (unpublished 

data) as phages of mesophilic bacteria are at 37°C (72). Geothermal environments are extremely 

heterogeneous, due to a variety of gradients, dynamic movements and changes over time, and 

viruses may be trapped and preserved for long time periods in different environmental refuges 

in the absence of potential hosts. Finally, the fact that virus particles are apparently able to travel 

across the globe (73-75) also suggests that they are robust to variable environmental conditions, 

and display stability over very extended time periods in a variety of biotopes.

Figure 5. Schematic representation of the major stages of SIRV2 infection cycle in the Sulfolobus host cell. 
Times after infection are indicated in hours. At 0 h, 2 chromosomes of Sulfolobus are shown in blue. Later 
between 0 and 8 h, they degrade concomitantly with viral DNA synthesis (gray helices). At 10 h, the VAPs 
(shown in red) and the intracellular clusters of assembled virions are shown. Finally, at time points between 
10 and 14 h, the VAPs open (remains of VAPs shown in red), the cell lyses, and the virions are extruded. 
The gradual opening out of VAPs (at time points between 10 and 14 h) is illustrated in more details with 
fragments from the TEM of thin sections.
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Experimental procedures

Virus, host strains and cultures

Virus stocks were prepared by PEG precipitation of the virions from the culture supernatants, 

followed by concentration and purification on Cesium chloride density gradients, as described 

in (76). The cells of S. islandicus LAL14/1 were grown in shaken 50 mL flasks at 78°C, pH 3.0, in 

rich medium as previously described (59). Colonies were obtained on Gelrite plates as described 

in (59). To infect cultures, the appropriate volume of virus solution was dialyzed against medium 

or water on 0.025 µm or 0.05 µm MF membrane filters (Millipore) and directly added to the 

liquid cultures during the early exponential phase (OD600nm between 0.09 and 0.25). For the time-

course experiments (growth kinetics, flow cytometry, dot blot hybridization, DiBac4(3) staining), 

all conditions were tested in triplicates. Six identical 50 mL cultures were launched by dilution 

of a same preculture. After overnight growth, SIRV2 was added to 3 of them at the appropriate 

m.o.i..

Titrations, OD and fluorescence measurements

To determine CFU values, culture samples were submitted to serial dilutions and 5 µL of each 

dilution were spotted on plates. After incubation, the colonies were counted in the last or last 

two positive spots. To determine the PFU values, the same method was used, except that 5 µL 

of each dilution were spotted on a fresh cell lawn. When required, the cells were removed by 

centrifugation before spotting. The cell lawns were prepared as described in (31), using a soft 

Gelrite overlay. After incubation, single plaques were counted in the last or last two positive 

spots. ODs were measured in 96-well round-bottomed culture microplates (TPP) in a Multiskan 

Ascent microplate photometer (Thermo LabSystems) at 595 nm, using 200 µL of culture.

Flow cytometry

Sampling and flow cytometry were performed as described in (63): the cells were fixed in 70% (v/v) 

ethanol and the intracellular DNA was stained with mithramycin A and Etd bromide. Samples were 

analyzed in a A40 Analyzer (Apogee, 25 mW solid-state laser, 405 nm wavelength). S. islandicus 

cell cycle was characterized preliminarily to the study of infected cultures (Fig. S2 and S3). For the 

study of infected cultures, a high m.o.i. was used (~10-15) to obtain as synchronous an infection 

as possible. At each time point, OD595nm was measured and CFU titres were determined to control 

that the usual growth pattern was obtained. The distinct cell populations were identified based 

on the cell size distributions, DNA content distributions and 2D diagrams of cell size and DNA 

content. The data were gated, and several contours tested, to ensure the robustness of the 

analysis and of the identified cell populations. The proportion of empty cells over time was 

computed by gating the 2D-diagrams, similar to what is shown in Fig. S6. In Fig. 3A, the total 
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percentage of chromosome-less cells in the culture is shown. In Fig. 3B, for the curve related to 

chromosome-less cells, the difference between the values at time points T and T-1 is plotted, 

reflecting the production of empty cells between two successive time points.

Dot blot hybridization

Cells were washed once in cold medium, pelleted by low-speed centrifugation and stored at 

-20°C until further use. Cell pellets were resuspended in Tris-acetate pH 6.0 pre-cooled at 

4°C. The suspension volume was adjusted for cell concentration to be roughly constant in all 

samples, on the basis of OD measurements. 4 µL of each sample were spotted on Hybond-N+ 

nylon membranes (Amersham Biosciences). The membranes were further prepared as for 

colony hybridization (77). The probes were generated by PCR. A ~240bp SIRV2 DNA fragment 

was generated using primer combination [5’-ACATGAAAAGTTAGAGAGATACAAACG(3872) 

5’-TGGTTACCACTAGCTTCGCTAC(4086)] and a ~1300bp fragment of the 16S rDNA of 

S.  islandicus LAL14/1 was generated by using primers 8aF and 1512uR (78). The probes were 

[32P]-end-labelled with EasyTide [α-32P]-dATP (PerkinElmer) using a random-primed DNA labeling 

Kit (Roche Applied Science), according to manufacturer’s instructions. All hybridization steps 

were performed at 65°C in prewarmed solutions. After a minimum of 2h prehybridization 

followed by overnight hybridization, both performed in Church Buffer (7% SDS (w/v), 0.5M 

sodium phosphate pH 7.2, 1mM EDTA), membranes were washed 2 times 15 min in a solution 

of 2X SSC- 0.1% SDS, and 2 times 15 min in a solution of 0.5X SSC - 0.1% SDS. Membranes 

were exposed on a GP Phosphor Screen (Amersham Biosciences). The screen was scanned in a 

Molecular Dynamics Storm 860 (Amersham Biosciences). The images were analyzed with the 

ImageQuantTL software (Amersham Biosciences). After contrast and brightness adjustment, the 

radioactivity of each spot on the membranes was quantified, using the background removal 

option (local average). The images of Fig. 3D and 3E were processed with ImageQuantTL for 

contrast and brightness adjustment and with ImageJ software (http://rsbweb.nih.gov/ij/) for 

background removal, using the “sliding paraboloid” function.

Transmission Electron Microscopy

Cells were pelleted by low speed centrifugation. The cell pellet was fixed overnight at 4°C with 

2.5% (w/v) glutaraldehyde in 20 mM Tris-acetate pH 6 buffer, post-fixed for 1h in 1% (w/v) OsO4, 

and dehydrated in a graded series of ethanol solutions (25% to 100%). The cells were embedded 

in an epoxy resin and polymerized at 60°C for 48 h. Ultrathin sections (~60 nm) were cut on a 

Leica Ultratuc UCT microtome and deposited on carbon-coated copper grids. They were stained 

for 30 min with 2% (w/v) Uranyl acetate and for 5 minutes with 2.5% (w/v) Lead citrate. The 

grids were examined under a JEOL JEM-1010 transmission electron microscope (Tokyo, Japan) 
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operated at 80 kV. Images were recorded using an Eloise Keen View camera and the Analysis Pro 

software version 3.1 (Eloïse SARL, Roissy, France).

Scanning Electron Microscopy

Cells were pelleted by low-speed centrifugation and fixed overnight at 4 ˚C with 2.5% (w:v) 

glutaraldehyde in 0,1 M Tris buffer pH 6. Cells were adsorbed to polylysine-coated coverslips and 

post-fixed 1 hour in 1% osmium tetroxide solution. Samples were dehydrated through a graded 

series of ethanol dilutions (25% to 100%) and critical point dried using a Leica EM CPD030 

device. The dried coverslips were sputtered with 15 nm gold palladium in a GATAN Ion Beam 

Coater prior to examination with a JOEL JSM-6700F field emission Scanning Electron Microscope 

(Tokyo, Japan) operated at 5 kV. Images were acquired from the upper SE detector (SEI).
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Supplemental text

Controls for the noncontamination of the host strain

Specific controls were designed to verify that the S. islandicus LAL14/1 strain stock was not 

contaminated by a distinct SIRV2 insensitive strain. It could have explained the growth of 

resistant cells in S. islandicus LAL14/1 cultures infected by SIRV2. The 16S rRNA gene of a 

SIRV2 resistant clone isolated from an infected culture was sequenced and verified to be 100% 

identical to the sequence obtained from an uninfected culture, over the 1,372 amplified bp. 

The Eco RI restriction patterns of genomes of 4 resistant clones isolated from infected cultures 

were verified to be identical to the pattern obtained using some uninfected S. islandicus LAL14/1 

cells; as a reference, other closely related Sulfolobus strains were included and always produced 

distinguishable patterns. As a last control, the reference strain S. islandicus LAL14/1 was 

repurified: 4 clones were randomly selected after 5 successive streaking steps. The OD 595 nm 

of SIRV2 infected minicultures of these clones was monitored over time. It was verified that a 
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growth was detectable after a few days, indicating that repurifying the strain had not eliminated 

the presence/appearance of SIRV2 resistant cells. From these 3 controls, it was concluded that 

the resistant cells are variants of S. islandicus LAL14/1 strain.

Characterization of the cell population growing in the presence of SIRV2

To discriminate between the possibilities that cells growing in the presence of SIRV2 are either 

virus-resistant or contain virus in a carrier state, 23 clones were colony-purified from each of three 

SIRV2-infected S. islandicus LAL14/1 cultures and from uninfected control culture, resulting in 

total of 92 clones. To assess the production of infectious virions, supernatants from minicultures 

were spotted on a fresh cell lawn. No growth inhibition zones were detected, indicating that none 

of the 92 clones produced a detectable amount of virus, disfavoring the carrier state hypothesis. 

The sensitivity of the same 92 clones to SIRV2 infection was tested by growth in minicultures in 

the presence of SIRV2 added at a low moi (10-3). In late exponential phase, the OD was measured 

and the virus concentration in the supernatants assessed by a spot test. As expected, the control 

clones from the uninfected culture were highly sensitive to SIRV2 infection: growth was strongly 

inhibited by the virus (Fig. S1A) and the spot tests were positive (Fig. S1B, clearings in the left 

column), each clone thus having produced a high amount of infectious virions. In contrast, the 

clones from the Inf1–3 cultures displayed no growth reduction (Fig. S1A) and the spot tests did 

not reveal an increase in virus concentration in the supernatants (Fig. S1B right columns). Thus, 

the cells able to grow in the presence of SIRV2 were totally resistant to reinfection and did not 

produce new infectious virions.

One-step growth curve

A 1-step growth experiment was performed to confirm the latent period and estimate the burst 

size. A low m.o.i. was used, such that the effect of infection by a single virus could be monitored. 

Virus release was shown to begin at 8–10 h after infection (Fig. S7), consistent with all other 

data. Although the precision of the PFU assay is limited, it clearly showed that virus production 

was significantly reduced after 13–15 h.

Kinetics of cell mortality after viral infection

Infected cells might remain metabolically active for some time despite a degraded genome. To 

determine when cell death exactly occurred, the membrane potential-sensitive dye DiBAC4(3) 

was used. The dye penetrates depolarized cells and binds to intracellular proteins and lipids, 

causing enhanced fluorescence. The ratio of fluorescence/OD in stained culture samples of 

constant volume was measured over time in uninfected and infected (m.o.i. 3) cultures (Fig. S8). 

The high ratios obtained at the initial time points in both controls and infected cultures were 

due to the low initial OD, and not to a high proportion of depolarized cells (Fig. S8). In infected 
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cultures only, a moderate peak was observed at 11 h (Fig. S8), corresponding to the middle of 

the virus release period as assessed by hybridization (Fig. S8). Surprisingly, the higher ratios in 

infected cultures were transitory, despite the persistence of chromosome-less cells as shown by 

flow cytometry. It is possible that intracellular macromolecules were degraded shortly after virion 

release, such that the fluorescence signal emitted by dead cells decreased strongly. The results 

suggest that the cells died concomitant with virus release, and that damage was not restricted 

to chromosome degradation.

Supplemental experimental procedures

Growth of isolated clones

For their growth in minicultures, 24-well flat-bottomed microplates (Corning-Costar) were used. 

The microplates were incubated at 78 °C and shaken at 150 rpm (Infors dry incubator) in a humid 

atmosphere.

Primers and PCRs

Six primer pairs specific for SIRV2 genome were used for the detection, by PCR, of SIRV2 genome 

potentially present in cells of isolated clones (each time, the 5 position in SIRV2 genome is indicated): 

[5’-ACATGAAAAGTTAGAGAGATACAAACG (3872); 5’-TGGTTACCACTAGCTTCGCTAC 

(4086)] was used to generate a probe for the dot blot hybridization experiments; 

[5’-GAGACGCAAAAGCAAGTCAAA (1707); 5’-TCCACTTCCCATATCTCCGA (2221)], 

[5’-AAAACAAATTGGAATAACGCC (10071); 5’-CTGCAATTTCATGTGGATCA (10616)], 

[5’-GAAATGCGGAAAGCGAGTTA (22972); 5’-TGGAGTTCTTGTGGAATCTGG (23482)], 

[5’-ATCTCCTGGCAAAATGGGA (27018); 5’-GCGGGCTTTATTGGAACTG (27479)], 

[5’-CTTCCATCTTGAACCCCTGA (32635); 5’-GAACTTGCGGAATTTTACGGA (33183)].

One-step growth curve

The virus was added to 1mL S. islandicus LAL14/1 culture in early exponential phase at a low m.o.i. 

(10-3). After a 1.5h–2h incubation at 78 °C for adsorption of almost all viruses, the preparation 

was diluted in 200 mL prewarmed medium to prevent the occurrence of new adsorptions in the 

course of the experiment. The obtained diluted culture was further incubated at 78 °C. PFU titres 

of samples were regularly determined. The burst size was estimated by averaging the PFU titers 

from time points 0h–9h (before release) and from time points 13h–17h (after virus release), and 

then by dividing the latter value by the former one.
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DiBAC4(3) staining

DiBAC4(3) was selected based on Beck and Huber (79) and purchased from Molecular Probes. 

It was verified by fluorescence microscopy (video inverted microscope Leica DM IRE2 HC FLUO, 

Metamorph software) that the growth medium was suitable for the probe, not causing any 

background nor suppressing the cell fluorescence; it was also verified that fluorescence from 

dead cells was significantly stronger than that of living cells, and that unstained cells were not 

autofluorescent. Afterwards, the changes in cell mortality were assessed by measuring the ratio 

fluorescence/OD 600nm of constant-volume culture samples. ODs were measured at 600 nm in 

the Infinite M200 microplate reader (Tecan). Fluorescence was measured in the same apparatus, 

the excitation wavelength was 490 nm, the emission wavelength 550 nm, and the manual 

gain was set to 120. Culture samples of 1.6 mL volume were allowed to cool down to room 

temperature for 10 min 1µL of DiBAC4 in ethanol (0.5 mg/mL) was added to each and the 

samples were incubated for 5 min in the dark. 200 µL of each sample were transferred into wells 

of a 96-well round-bottomed culture microplate (TPP) for OD and fluorescence measurements 

(see above). The ratio fluorescence/OD 600nm is strongly OD-dependent (Fig. S7); but for a given 

OD, the ratio is higher for higher rates of dead cells, so that the method is convenient.
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Figure S1. Sensitivity to SIRV2 infection of clones isolated from infected cultures. To obtain the clones, 
23 colonies were isolated from an uninfected culture (control) and from each of 3 heavily infected cultures 
(Inf1, Inf2, and Inf3), resulting in a total of 92 clones. (A) OD 595 nm measurements after a 3-day growth of 
the clones in the presence of SIRV2 added at a m.o.i. of ~10-3. Averages corresponding to the 23 clones 1 
SD are shown. (B) Spot test on a lawn of S. islandicus LAL14/1 cells of 20-fold diluted supernatants obtained 
after growth of the clones in presence of SIRV2 (A). A clearing indicates the presence of infectious virions in 
the supernatant. The results for 4 of 23 clones are shown for each culture; identical results were obtained 
for all clones.

Supplemental figures

Figures S2 to S6. See online figure at http://www.pnas.org/content/suppl/2009/06/19/0901238106.
DCSupplemental/0901238106SI.pdf
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Figure S7. One-step growth curve of SIRV2 infection of S. islandicus LAL 14/1 cells. The virus was added at 
a m.o.i. of ~10-3, and the experiment was repeated twice.

Figure S8. Impact of SIRV2 infection on cell mortality. Comparison of infected and noninfected cultures 
over time. The ratios of fluorescence/OD600 nm for infected (filled circles, continuous line) and uninfected 
(empty circles, dotted line) cultures reflect the changes in cell mortality. For the infected culture, the 
radioactivity/cell (filled triangles, discontinuous line, right axis) indicative of SIRV2 intracellular DNA amount 
was also plotted. Infected (moi ~5) and uninfected cultures were launched in triplicate, and averages of the 
replicates 1 SD are shown. In infected replicates, the virus was added at time point 0 h.
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Abstract

Recently a unique mechanism of virion release was discovered in Archaea, different from lysis and 

egress systems of bacterial and eukaryotic viruses. It involves formation of pyramidal structures 

on the host cell surface that rupture the S-layer and by opening outwards, create apertures 

through which mature virions escape the cell. Here we present results of a protein analysis of 

Sulfolobus islandicus cells infected with the rudivirus SIRV2, which enable us to postulate SIRV2-

encoded protein P98 as the major constituent of these exceptional cellular ultrastructures.
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Introduction

Viruses of the Archaea, one of the three domains of life, are morphologically distinct from viruses 

of the Bacteria and Eukarya (48). In addition, they carry genomes where more than 90% of the 

genes are without predictable functions and detectable homologues in other viruses or cellular 

life forms (26). The lack of knowledge about gene functions can be partly attributed to very 

limited knowledge about life cycles of archaeal viruses and specific features of their interactions 

with the host cells. That these interactions have specific features has been recently demonstrated 

by revealing the novel mechanism of virion release employed by the two hyperthermophilic 

archaeal viruses, Sulfolobus rod-shaped virus 2, SIRV2 (83), and Sulfolobus turreted icosahedral 

virus, STIV (40).

Infection with the viruses SIRV2 and STIV leads to the formation of pyramid-shaped 

ultrastructures, virus-associated pyramids (VAPs), on the Sulfolobus host cell. They are localized 

on the cell envelope, and point outwards, perforating the S- layer ((40, 83), Fig. 1B). Such 

projections have not been documented for any bacterial or eukaryal virus-host system. Moreover, 

the pyramids appear to have seven-fold rotational symmetry, representing a peculiar case in the 

living world.

At later stages of infection, the VAPs open and the virions that have been preassembled in 

the cytoplasm are released through the apertures. The lysed cells persist in the form of empty 

spheres which, apart from the apertures, appear to be intact, with both the S-layer and the 

membrane being visible on electron micrographs ((40, 83), Fig. 1C). The apertures are delimited 

by polygonal shaped ring structures, which sometimes detach from the cell envelope (83). The 

observations indicated that the VAPs represent a distinct proteinatious structure. The large 

number of the VAPs per cell, a dozen or more (83), suggested a high abundance of their protein 

constituents within the membrane fraction of infected cells. We aimed at their identification by 

analyzing protein content of SIRV2-infected cells of Sulfolobus islandicus, as a function of cellular 

fraction and time.

Results and Discussion

Growth and infection of S. islandicus with SIRV2 were performed as described by Bize et al. (83), 

and the previous characterization of the viral life cycle guided the selection of time points for 

protein analysis and electron microscopy. Samples were collected at following time points post 

infection (p. i.): 0 h (start of infection), 3 h, 7 h (prior to virion release), 10 h (middle of virion release 

period) and 26 h (after virion release). At each time point the uninfected cell culture was used as 

a control. After mechanical disruption of cells by French press, three fractions were collected for 

Quax.indd   39 29-10-2013   11:30:02



40  |  Chapter 2

Figure 1. Coomassie-stained SDS-PAGE gels of different protein fractions of S. islandicus cells infected with 
the virus SIRV2. Proteins from the three fractions, (“membrane”, “total”, and “cytotosol”) from uninfected 
control cells (“c”) and infected cells (“i”) were prepared as described in the text, and analyzed at time points 
post infection indicated on the top of each gel. Positions of proteins with known molecular masses (in kDa) 
are indicated with bars. Asterisks highlight protein bands in membrane and cytosol fractions which appear 
as a result of infection. Electron micrographs of thin sections of infected cells (A, B, and C) are displayed at 
corresponding time points. Bars, 100 nm.
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protein analysis: the total cell lysate, the membrane fraction and the cytosol fraction. The latter 

two fractions were separated from each other by high-speed centrifugation at 100.000 x g, as 

described by Albers et al. (84). Proteins in each fraction were solubilized by incubation for 2 h at 

37 ̊C in the presence of 1% n-Dodecyl β-D-maltoside. Following heat denaturation (90°C, 10 min, 

0.5% SDS, 1.25% β-mercaptoethanol), proteins were separated by electrophoresis on 4-12% Bis-

Tris polyacrylamide gradient gel (InvitrogenTM), with 2-(N-morpholino)ethanesulfonicacid (MES) 

SDS running buffer (InvitrogenTM) and visualized with Coomassie-based Instant BlueTM staining 

(Expedeon) according to the manufacturer’s protocol. The SDS-PAGE gels are shown in Fig. 1, 

along with transmission electron micrographs of representative cells.

At time point 0, no difference was observed in protein patterns of infected and uninfected 

control cells (Fig. 1). However, at later time points, additional protein bands appeared in all 

fractions of infected cells. The most dramatic change was observed in the membrane fraction, 

where from 3 h p.i. onwards, an abundant protein with an apparent molecular mass of 10 kDa 

was detected in infected cells (Fig. 1). The relative intensity of this band, in comparison with the 

total protein content of the membrane fraction, increased from 0 at the time of infection to 

about 1.0 at 3 h p.i. and gradually reached about 2.0 at 26 h p.i., when all cells were perforated. 

This protein was identified as a product of SIRV2-ORF98 (NCBI RefSeq ID: NP_666583) by trypsin 

digestion and Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)-mass 

spectrometry (MS) as well as MS/MS analysis. MS was performed as described by Stingl et al. (85), 

and protein identifications were obtained using a combination of MS and MS/MS data from a 

4800 Proteomics Analyzer (Applied Biosystem, USA) and the NCBI (20100119) protein database.

The protein P98 was not observed in the cytosol fraction. However, on an SDS-PAGE gel 

of this fraction, four protein bands appeared from 10 h p.i. onwards, in SIRV2 infected cells. 

The four proteins had estimated molecular masses of ~ 124, 35, 16, and 15 kDa (Fig. 1) and 

were analyzed by MALDI-TOF-MS and MS/MS. The 35 and 16 kDa proteins were identified as 

host proteins: The thermosome and the S-adenosyl-L-methionine-dependent methyltransfease 

of S. islandicus (NCBI RefSeq ID: YP_002829404 and YP_002829621, respectively). The 15 and 

124 kDa proteins were SIRV2-encoded: The product of ORF131b, without putative function, but 

conserved in all rudiviruses, and the product of ORF1070, a minor structural protein of the virion 

(NCBI RefSeq ID: NP_666551 and NP_666572, respectively).

Edman degradation (86) was used to determine the N-terminal sequence of the protein P98 

at 10 h p.i.. This confirmed the identity of the protein, and also revealed that P98 starts with 

AITLLE and therefore lacks the initiator methionine, as is often the case for archaeal proteins (87). 

We also found that P98 at 10 h p.i. is not glycosylated, as determined using the Pro-Q® Emerald 

300 Glycoprotein Gel Stain Kit (Invitrogen) (Supplementary material). By contrast, virion proteins 

of the Rudiviridae family, to which SIRV2 belongs, are known to be extensively glycosylated (58).
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In order to establish whether P98 is exposed on the surface of SIRV2-infected cells, its 

accessibility to externally added proteases was tested. Infected and uninfected cells were harvested 

at 10 h p.i. and washed twice with 100 mM Tris-HCl, pH 7.5, resuspended in the same buffer and 

incubated with α-chymotrypsin from bovine pancreas (Sigma-Aldrich® ; 50 ng per 1.5 x 1010 cells) 

for 3 h at 37 ˚C. After incubation, the protease was inactivated by heating for 10 min at 80 ˚C. 

The cells were washed twice with 20 mM bis-Tris propane, pH 6, and mechanically disrupted 

by French press. The cellular proteins were analyzed by SDS-PAGE (Fig. 2A). As a result of the 

protease treatment, P98 was no longer detectable among proteins of infected cells (Fig. 2A). 

In a control experiment, where SIRV2-infected cells were mechanically broken prior to protease 

treatment, all proteins were completely digested by α-chymotrypsin (Fig. 2B). These results 

demonstrate that intracellular content of the infected cells was not accessible to α-chymotrypsin 

in the course of the “protein shaving” experiment, and that P98 was degraded apparently due 

to its exposure on the cell surface.

Based on the data reported above, it appears highly likely that P98 of SIRV2 is the major 

constituent of the virus-associated pyramids. Firstly, it is the only protein to appear specifically 

in the membrane fraction of infected cells, where its accumulation throughout the viral cycle 

correlates well with the emergence of the VAPs, as can be judged from the TEM analysis 

(Fig. 1). Secondly, the protein is exposed on the cell surface and is not covered by the S-layer, in 

accordance with the data on rupturing of the S-layer by the VAPs (Fig. 1B).

The results which postulate SIRV2-P98 as a building block of the VAPs are in line with 

comparative genomics analysis. As mentioned above, VAPs highly similar in size and shape 

to those produced by SIRV2, were also observed in STIV infected cells (40). The comparative 

genome analysis of the two viruses, highly different in morphological properties, revealed three 

pairs of proteins encoded by both viruses. Only one pair, SIRV2-P98/ STIV-C92 is exclusive for 

the Rudiviridae (SIRV1/2 (31, 60), Stygiolobus rod-shaped virus, SRV (58)) and STIV (67). The 

results imply that STIV-C92, a homolog of SIRV2-P98, would be the protein constituent of the 

VAPs produced by STIV. Fig. 3 depicts a sequence alignment of SIRV2-P98 with homologous 

proteins from the rudiviruses (SIRV1, SRV) and the virus STIV. The higher similarity of the SIRV2 

protein to its homologue in STIV than to that of the related rudivirus SRV (Fig. 3), suggests that 

the gene could have been transferred horizontally to STIV prior to the divergence of Sulfolobus 

and Stygiolobus rudiviruses. Sequence analysis of P98 revealed the presence of an N-terminal 

transmembrane domain (TMD; position 10–30; predicted with TMHMM (88) with probability 

cut-off of 0.7). P98 is predicted to be a Type II membrane protein, with the major part facing 

the extracellular side of the cytoplasmic membrane (probability of 0.92), by the Signal-Pred (89), 

a hidden Markov model-based tool trained specifically on archaeal protein sequences. These 

predictions are in accordance with the results obtained during the protease treatment of the 

surface-exposed proteins of SIRV2-infected cells (Fig. 2A).
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Figure 2. Coomassie-stained SDS-PAGE gels of proteins 
from protease treated cells of S.islandicus. (A) Proteins from 
uninfected cells (“c”) and SIRV2-infected cells (“i”) were 
separated by SDS-PAGE after incubation of intact cells with 
α-chymotrypsin (▼) or, as a control, after incubation with 
the assay mixture without the enzyme (●). (B) Proteins from 
SIRV2-infected cells were incubated with α-chymotrypsin 
after mechanical disruption of cells. Conditions of protease 
treatment in (A) and (B) were identical. Positions of proteins 
with known molecular masses (in kDa) are indicated with 
bars. An asterisk highlights the position of P98.

The virion release mechanisms exploited by SIRV2 and STIV apparently are not universal 

for hyperthermophilic archaeal viruses. Except for STIV and the Rudiviridae (SIRV1/2, SRV), no 

other archaeal virus carries a homologue of the SIRV2-ORF98. Moreover, even in the family 

Rudiviridae, one out of the four known species, the Acidianus rod-shaped virus 1, ARV (55), lacks 

a homologue of the gene. A homologous gene is also absent from the genome of STIV2, a close 

relative of STIV(90). It appears that in archaeal viruses morphogenetic and egress systems could 

be evolving independently. This situation resembles the one observed for bacterial viruses, where 

morphologically related viruses exploit different lysis systems, and vice versa, morphologically 

distinct viruses exploit similar lysis systems (37, 91).

The identification of the major player in the VAP-based archaeal virus release is crucial for 

initiating studies on the molecular mechanisms of this unique process. These studies promise to 

shed light on unknown aspects of membrane biology and basic questions regarding virus-host 

relationships.
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Figure 3. Sequence analysis of the P98-like proteins. The multiple sequence alignment was generated using 
PROMALS3D (92), manually edited and visualized using JalView (93). The alignment is coloured according 
to the standard ClustalX colouring scheme. The sequence conservation at each position is indicated at 
the bottom of the figure (the height of each bar is proportional to the conservation of physico-chemical 
properties for each column of the alignment). The transmembrane domain (TMD) is indicated above the 
alignment, while the pairwaise identity values of the aligned sequences to the SIRV2-P98 protein are 
indicated on the right of the alignment. The unequal distribution of conservation along the sequence of 
P98-like proteins is indicated under the multiple alignment for the P98 homologue of SRV. Virus name 
abbreviations and protein accession numbers: SIRV2, Sulfolobus islandicus rod-shaped virus 2 (NP_666583); 
SIRV_XX, Sulfolobus islandicus rudivirus 1 variant XX (CAG38861); SIRV1_II, Sulfolobus islandicus rod-
shaped virus 1 variant II (CAG28292); SIRV1, Sulfolobus islandicus rod-shaped virus 1 (NP_666630); STIV, 
Sulfolobus turreted icosahedral virus (YP_024995); SRV, Stygiolobus rod-shaped virus (CAQ58475).
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Supplemental figure

Figure S1. SDS-PAGE gel of membrane-associated proteins of S. islandicus cells infected with the virus 
SIRV2, 10 hours p.i. After electrophoresis, glycosylated proteins in the gel were selectively stained and 
visualized under UV light using the Pro-Q® Emerald 300 Glycoprotein Gel Stain Kit (Invitrogen) (1); later the 
same gel was stained by Coomassie, to visualize all proteins (2). Positions of proteins with known molecular 
masses (in kDa) are indicated with bars.’ Asterisks highlight the position of P98.
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Abstract

Some viruses of Archaea employ an unusual egress mechanism that involves the formation of 

virus-associated pyramids (VAPs) on the host cell surface. At the end of the infection cycle, these 

structures open outwards and create apertures through which mature virions escape from the 

cell. In the present study, we describe in detail the structure and composition of VAPs formed 

by the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) in cells of its hyperthermophilic archaeal 

host. It was shown that the VAP is a stable and autonomous assembly that can be isolated 

from membranes of infected cells and purified without affecting its structure. The purified VAPs 

were heterogeneous in size, which reflects the dynamics of VAP development in a population of 

infected cells. However, they had a uniform geometry and consisted of seven isosceles triangular 

faces, which form a baseless pyramid. Biochemical and immuno-electron microscopic analyzes 

revealed that the 10-kDa P98 protein encoded by the virus SIRV2 is the sole component of the 

VAP. By heterologous expression of the SIRV2-P98 gene, the VAPs were produced in Sulfolobus 

acidocaldarius and Escherichia coli. The results confirmed that P98 is the only constituent of the 

VAP and demonstrated that no other viral protein is involved in the assembly of pyramids. P98 

was able to produce stable structures under conditions that ranged from moderate to extremely 

high temperatures (80 °C) and from neutral to extremely acidic pH conditions (pH 2), which is 

another remarkable property of this exceptional viral protein.

Quax.indd   48 29-10-2013   11:30:07



3

The simple and elegant design of an archaeal virion egress structure   |  49

Introduction

The vast majority of known archaeal viruses carry double-stranded (ds) DNA genomes and differ 

morphologically from dsDNA viruses of the two other domains of life, Bacteria and Eukarya; an 

exception are archaeal head-and-tail viruses, related to the bacterial Caudivirales (48). Moreover, 

the genomes of the majority of archaeal viruses are also unique. The functions of more than 

90% of putative genes cannot be identified, due to the lack of homologues in the extant 

databases (48) and limited knowledge of the biology of archaeal viruses. Archaeal viral cycles 

can have unusual features, which was recently demonstrated by the discovery of a unique virion 

release mechanism exploited by the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) (83) and the 

Sulfolobus turreted icosahedral virus (STIV) (40).

Among archaeal viruses, SIRV2 and STIV are the best studied with respect to host cell 

interactions. It was demonstrated that both are lytic viruses and that SIRV2 causes massive 

degradation of the host chromosome. Virion assembly takes place in the cytoplasm and coincides 

with the appearance of numerous prominent virus-associated pyramids (VAPs) on the host cell 

surface, which point outwards and rupture the S-layer. Shortly after their formation, VAPs open 

to the outside and create large apertures through which the virions escape from the cell (83).

The discovery of this unique virion release system raised questions regarding the nature of 

the VAP and mechanism of its formation. Here, we report the isolation and purification of the 

VAPs formed by SIRV2 in S. islandicus. We provide a detailed characterisation of the morphology 

and constituents of the VAP and show that it is an individual stable structure formed by multiple 

copies of a single 10 kDa virus-encoded protein. Moreover, by heterologous expression of 

the corresponding viral gene, we were able to produce VAPs in Sulfolobus acidocaldarius and 

Escherichia coli.

Results

VAP isolation

The shape of the pyramidal egress structures, VAPs, which were reported to be found on the 

surface of SIRV2-infected S. islandicus cells (83), suggested that they might represent individual 

structures. To test this hypothesis, we analyzed the membrane fraction of infected cells that 

were disrupted using a French press. By transmission electron microscopy (TEM) we observed 

numerous individual particles which had pyramidal shapes and heptagonal bases (Fig. S1). The 

resemblance of their shape to that of VAPs observed in vivo (Fig. S2), supported the notion 

that VAPs represent autonomous structures. We isolated the particles using antibodies against 

protein 98 (P98) encoded by SIRV2, which we had previously postulated to be a constituent of 

Quax.indd   49 29-10-2013   11:30:07



50  |  Chapter 3

Figure 1. Negative contrast electron micrographs of isolated VAPs. (A) Top view and (B) side view of intact 
VAPs. (C) A single triangular face detached from a VAP. (D) Top view of a VAP in the open conformation. 
(E) Partially broken VAP in the open conformation (Scale bars, 100 nm.)
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the VAP (94). Polyclonal antibodies were fused to magnetic beads and used to bind VAPs in crude 

membrane extracts of infected cells collected 10 hours post infection (h.p.i.), which corresponds 

to the start of virion release. In agreement with our expectations, it was indeed possible to 

precipitate and purify the VAPs in this manner. In the purified preparation, no structures other 

than VAPs were observed, except for a small proportion of S-layer fragments from the host 

cells. Moreover, the majority of the isolated structures appeared to be intact and similar in 

shape to the VAPs on the surface of the infected cells (83) (Fig. 1 A, B, and S2A). The intact 

purified VAPs could either be observed from the top, which revealed the seven-fold rotational 

symmetry of the structure (Fig. 1A), or from the side, in which case only three to four of the 

seven triangular faces of the VAPs were visible (Fig. 1B). Along with the intact VAPs, in the 

purified preparation single triangular subunits were also found to be detached from the structure 

(Fig. 1C). In addition, a small proportion of the VAPs were present in an “open” conformation 

(Fig. 1D and E). Characteristically, in the latter case, the seven faces of the VAPs were not strictly 

triangular but rather were slightly curved (Fig. 1D and E) and resembled the structure of the VAP 

in vivo after it opens (Fig. S2B). To exclude the possibility that this curvature was an artefact of 

sample preparation for negative staining, the VAPs were analyzed using cryo-EM. The faces of 

the open VAPs that were fixed in vitreous ice were also curved (Fig. 2A). The VAPs were best 

observed from the top, which revealed the heterogeneity of the diameter of the VAPs (Fig. 2B).

Figure 2. Cryo-electron micrographs of isolated VAPs. (A) Single curved face of a VAP. (B) Two VAPs in from 
the top (Scale bars, 100 nm.)

VAP constituents

The ability to isolate intact VAPs allowed us to study their constituents. The protein composition 

of the VAPs was analyzed by SDS-PAGE followed by SYPRO Ruby staining (Fig. 3A). The three 

visible bands in the purified VAP preparation were identified by Matrix-assisted laser desorption/

ionisation (MALDI)-time-of-light (TOF) mass spectrometry (MS) and MS/MS analyzes. The two 

larger proteins represented the light and heavy chains of the anti-P98 antibody used to purify the 

VAPs. The smallest protein (approximately 10 kDa, indicated by an asterisk) was identified as the 

product of SIRV2-ORF98 (NCBI RefSeq ID: NP_666583) (Fig. 3A).
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To test the presence of phospholipids in the purified VAPs, a duplicate of the gel shown 

in Fig.  3A was stained using Sudan Black (Fig. 3B). Phospholipids could be observed in the 

membrane fraction and the first two washes of the precipitate but were not detectable in the 

purified VAP preparation.

Immunolabelling of VAPs

The localisation of SIRV2-P98 in the VAPs was verified by immuno-electron microscopy using 

polyclonal P98 antibodies and 10-nm protein A-gold particles (Fig. 4). The purified VAPs were 

labelled evenly across the structure, without concentration of the label in a particular area 

(Figs. 4A, B and C). As a control, similar labelling was performed on a crude membrane fraction 

of infected cells, which, in addition to VAPs, contained fragments of S-layers, membranes and 

virions. In this case, only VAPs were specifically labelled. Another control was performed by 

labelling purified VAPs with pre-immune serum and 10-nm protein A-gold particles. In this case, 

very low background labelling was observed (Fig. S3A).

The specific localisation of P98 in the VAPs was also confirmed in S. islandicus cells infected 

with SIRV2 h.p.i. Thawed ultrathin cryo-sections of chemically fixed cells were immunolabelled. 

VAPs in the ultra-thin sections had either an heptagonal appearance if the section was in the 

plane parallel to the cell surface and the base of the VAP or a triangular appearance if the 

sections were in other planes (83). As a result of labelling, the gold particles were arranged in 

Figure 3. Isolation and constituents of VAPs. (A) SDS-PAGE of fractions obtained during immunoprecipitation 
and purification of VAPs. “M”, crude membrane extract; “V”, immunoprecipitated fraction; “W1-W4”, four 
successive washes of the immunoprecipitate. Proteins were stained with SYPRO Ruby. (B) The same as in A 
but stained for phospholipids using Sudan Black. The P98 band in lane “V” is indicated with an asterisk (*). 
The positions of proteins with known molecular masses (in kDa) are indicated with bars.
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Figure 4. Negative contrast electron micrographs and P98 immunolabelling of VAPs. (A, B, and C) Purified 
VAPs seen from different angles. (D and E) Thawed cryo-sections through SIRV2-infected cells. The arrows 
in C indicate three individual VAPs, visualised from the side (empty arrows) and from below (filled arrows). 
(Scale bars in A-C, 100 nm; Scale bars in D and E, 200 nm.)
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either a quasi-heptagonal shape (Fig. 4D) or along two sides of a VAP triangle (Fig. 4E). As a 

control, thawed ultra-thin cryo-sections of uninfected S. islandicus cells were labelled in a similar 

manner, and no labelling of any specific structure was observed.

VAP structure

Electron microscopy of isolated VAPs was used to produce a detailed description of their structure. 

Images of 150 intact or partially disrupted VAPs were measured. Independent of the sizes, the 

geometry of all VAPs was identical and represented a baseless pyramid with a heptagonal 

perimeter. Each of the seven faces of the pyramidal structure was an isosceles triangle, i.e., two 

sides were equal in length. The two angles at the base of the pyramid were 74°± 8°, and the 

one at the tip was 32° ± 3°. The structure shown in Fig. 5A represents a VAP in the closed form 

that was disrupted only along one seam between two of the seven faces. A two-dimensional 

schematic of the VAP, based on this image, is presented in Fig. 5B. Its folding, results in the 

three-dimensional structure shown in Fig. 5C. The structure perfectly matches all of the electron 

microscopic images of the VAPs taken from different angles.

Figure 5. VAP structure. (A) Negative contrast electron micrograph and P98 immunolabelling of a partially 
disrupted VAPs. (B) Schematic representation of the image in A. (C) Schematic 3D reconstruction of the 
native VAP structure based on the images in A and B. The lengths and angles were measured from the image 
in A. (Scale bar, 100 nm.)

The data derived from isolated VAPs allowed us to conclude that the VAP is a baseless, hollow, 

pyramidal structure (Fig. 5C). This interpretation agrees with earlier reports of the structure of 

the VAP in vivo. Thin sections of infected cells suggest that cytoplasm is present in the interior of 

the VAP (Fig. S2A) (83).

The VAPs in the analyzed preparation were isolated from a quasi-synchronous population 

of host cells 10 h.p.i., and although they had identical geometries, they differed significantly in 

size. The lengths of the sides of the regular heptagonal perimeter of the VAP were measured 

using 150 images of isolated closed structures and ranged from about 15 nm to about 175 nm. 
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These structures were grouped into four size classes: (I) 0-50, (II) 50-100, (III) 100-150 and (IV) 

150-200 nm (Fig. S4). The following percentages of VAPs in each class were found: class I, 22%; 

class II, 25%; class III, 47%; and class IV, 7% (Fig. S4). The most likely cause of the observed size 

distribution and the low percentage of class IV structures appears to be the proximity of the 

latter to the open state. This suggestion is based on the measurements of the side lengths of 

20 open VAPs, of which 95% were in the range of 125-180 nm.

Overexpression of SIRV2-ORF98 in Sulfolobus acidocaldarius

Although P98 was found to be the sole constituent of the VAPs, it remained unclear whether 

it was sufficient for the formation of the pyramidal structure. To examine this possibility and to 

exclude the involvement of any other SIRV2-encoded factors in VAP assembly, SIRV2-ORF98 

was expressed heterologously in the hyperthermophilic archaeon Sulfolobus acidocaldarius. This 

member of the genus Sulfolobus is resistant to SIRV2 and does not carry any extrachromosomal 

Figure 6. Heterologous expression of SIRV2-ORF98 in S. acidocaldarius. (A, B) SDS-PAGE of membrane 
fractions from the following samples: (1-3), uninfected S. islandicus; (4-6) SIRV2-infected S. islandicus, 10 h 
p.i; (7-9) S. acidocaldarius 1059 expressing SIRV2-ORF98. The samples were loaded without diluted and with 
dilutions of 1:10 and 1:100. The positions of proteins with known molecular masses (in kDa) are indicated 
with bars. The asterisk (*) shows the band containing P98. (A) Coomassie Blue-stained gel. (B) Western 
hybridisation of a duplicate of the gel in A with antibodies against SIRV2-P98. (C) Thin section through 
S. acidocaldarius 1059 expressing SIRV2-P98. The arrow indicates a VAP (Scale bar, 200 nm.)
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element, or any genes homologous to those of SIRV2. For expression, SIRV2-ORF98 was cloned 

under the control of a maltose-inducible promoter in the pCMalLacS plasmid (95). Western blot 

revealed an approximately hundredth weaker signal than that produced by SIRV2 infection of 

S.  islandicus (Figs. 6A and B). Remarkably, the analysis of ORF98-expressing S. acidocaldarius 

cells by electron microscopy showed the presence of VAPs on the cell membranes (Fig. 6C). The 

VAPs perforated the S-layer and were similar in size and geometry to the VAPs of SIRV2-infected 

S. islandicus cells. The low number of observed VAPs, i.e., about 1 in 100 cells, corresponded 

to the low level of ORF98 expression in S. acidocaldarius. It is noteworthy that only closed VAPs 

were observed in the heterologous system, whereas in the natural virus-host system VAPs in both 

closed and open states are present (2,3).

Overexpression of SIRV2-ORF98 in Escherichia coli

To exclude the possibility that some proteins common to members of the genus Sulfolobus 

are involved in VAP formation and to further test the self-assembly capacity of P98, the SIRV2-

ORF98 gene was expressed in E. coli. The gene was cloned under a lacS promoter into the 

pSA4 plasmid  (96). Expression was confirmed by Western hybridization, and the efficiency of 

P98 production was comparable to that of SIRV2-infected S. islandicus cells (Figs. 7A and B). 

The presence of the recombinant P98 was detected primarily in the membrane fraction. To our 

astonishment, P98 was not only produced in E. coli but was also capable of forming VAPs in 

these cells. Electron microscopy analysis of thin sections of P98-expressing cells of E. coli at 3, 7 

and 21 hours after induction, revealed the presence of many pyramidal structures on the inner 

membrane, which protruded into the periplasmic space of the cell (Fig. 7C and D). The VAPs 

appeared to be similar in size and shape to those observed on the cell surface of SIRV2-infected 

S. islandicus and SIRV2-ORF98 expressing S. acidocaldarius (Fig. 7C). Only closed VAPs were 

observed. Three hours after induction, the majority of cells contained VAPs; however, the cells 

stopped growing almost immediately after induction, and the proportion of VAP-containing cells 

did not change significantly in the following 21 hours. In addition, the number of observed VAPs 

per cell did not change over time. The number of VAPs was generally very high and correlated 

with the expression levels of the viral gene. In most sections, more than 30 VAPs were observed 

per cell (Fig. 7D). The formation of VAPs seemed to increase the surface area of the inner 

membrane, and the distance between the outer and inner membranes (Figs. 7C and D).
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Figure 7. Heterologous expression of SIRV2-ORF98 in E. coli. (A, B) SDS-PAGE of membrane fractions 
from the following samples: (1) SIRV2-infected S. islandicus, 10 h.p.i.; (2) E. coli; (3) E. coli 1051 expressing 
SIRV2-ORF98. The positions of proteins with known molecular masses (in kDa) are indicated with bars. The 
asterisks (*) show the bands containing P98. (A) Coomassie Blue-stained gel. (B) Western hybridisation 
of a duplicate of the gel A with antibodies against SIRV2-P98. (C, D) Thin sections through E. coli 1051 
expressing SIRV2-P98 (Scale bars, 200 nm.)

Quax.indd   57 29-10-2013   11:30:10



58  |  Chapter 3

Discussion

The discovery of the exceptional VAP-based virion egress system exploited by some archaeal 

viruses (2, 3) has drawn attention to the underlying molecular machinery. Our finding that the 

VAPs represent separate structural units that can be isolated and purified from the membrane 

fraction of infected cells is crucial for understanding the nature and formation of these remarkable 

structures. Purification of VAPs was achieved by immunoprecipitation using antibodies against 

protein 98 of SIRV2, which was previously postulated to be a component of VAPs (94).

The VAPs were isolated and purified from a quasi-synchronised culture of SIRV2-infected 

S. islandicus at the start of virion release. The majority of purified VAPs appeared to be intact. 

Each VAP was composed of seven faces of isosceles triangles that together formed a baseless 

pyramid. In all cases, the angles of the faces were 74°± 8° and 32°± 3°. However, the diameters 

of the VAPs were heterogeneous. This heterogeneity most likely reflects the dynamics of VAP 

development in the analyzed cell culture. The observations suggest that VAP geometry does not 

change over the course of formation and that VAPs grow via gradual expansion of the triangular 

faces. It is noteworthy that structures of ordered 7-fold symmetry are extremely rare in nature (7, 

8).

In addition to VAPs in the natural closed conformation, the purified preparation contained 

VAPs that were in the open state (Fig. 1). These VAPs might have originated from perforated 

cells. Indeed, the population of infected cells that was used for VAP isolation contained a small 

proportion of perforated cells with open VAPs. Alternatively, “opening” of VAPs could have 

been caused by mechanical shearing during the purification process. The faces of VAPs in the 

open state were curved, most likely due to the characteristics of the opening process. Another 

characteristic feature of the open VAPs was their large size, with diameters exceeding 250 nm. 

This suggests that VAPs might need to reach certain dimensions before they can be opened.

The analysis of the VAP constituents revealed that the structure is composed of multiple 

subunits of a SIRV2-encoded protein, SIRV2-P98. No lipid component could be detected by the 

methods used. The absence or extremely low proportion of lipids agrees with the fact that VAPs 

could be isolated as intact structures after extensive washing of the membrane fraction with 

detergents (Materials and Methods).

The disclosure of SIRV2-P98 as a sole component of the VAPs, allows suggesting that archaeal 

viruses which encode homologues of this protein may explore the same egress mechanism as 

SIRV2. This suggestion is in line with the VAP-based egress of the virus STIV1 (3), the genome of 

which contains ORF-C92 highly similar in sequence to SIRV2-ORF98 (4). However, besides STIV1 

there are only two other viruses known to encode SIRV2-P98 homologues, both from the family 

Rudiviridae to which SIRV2 also belongs (4).
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SIRV2-P98 was confirmed to be the only constituent of the VAP also by heterologous 

expression experiments. Expression of SIRV2-ORF98 in both S. acidocaldarius and E. coli led to 

the formation of VAPs on cell membranes (Figs. 5 and 6). These results also demonstrate that 

P98 is capable of self-assembling into pyramidal structures with seven-fold rotational symmetry. 

ORF98 was the only SIRV2 gene expressed in the mutant cells of S. acidocaldarius or E. coli. It is 

remarkable that the dramatic differences in the membrane composition and chemistry between 

bacterial and archaeal cells (97) did not affect the self-assembly of recombinant P98 into VAPs 

in vivo. The ability of P98 to form VAPs under the different conditions required for the growth 

of an hyperthermophilic, extremely acidophilic archaeon and a mesophilic bacterium is also 

remarkable.

The VAPs formed by heterologous expression of SIRV2-ORF98 in E. coli and S. acidocaldarius 

were similar in size and shape to those formed in S. islandicus infected with SIRV2. However, 

in the heterologous systems, VAPs were never observed in the opened state, unlike in the 

natural system, where VAPs eventually open and cause perforation of the infected cell. These 

observations suggest that at least one special factor is required for the process of VAP opening, 

which is absent in S. acidocaldarius and E. coli.. The nature and origin, viral or cellular, of this 

factor is currently unclear.

Our results demonstrate that the rudivirus SIRV2 encodes one autonomous structure in 

addition to the capsid, i.e., the VAP. The virus-encoded constituents of both structures can 

self-assemble. The major capsid protein self-assembles into filaments with the same diameter 

as the native linear virion (58), and VAP protein P98 self-assembles into pyramids. However, 

the functions of the two autonomous structures are different. Whereas the function of the 

former is DNA packaging and the formation of virus particles, the latter is specifically designed to 

release virus particles from the host cell. The molecular simplicity and elegance of the VAP design 

revealed in this study should aid in the future analysis of the elaborate molecular mechanisms of 

this unique virion release system in archaea.

Experimental procedures

Virus and host strains

The stock of the SIRV2 virus was prepared as described in ref. (83). The growth of S. islandicus 

LAL/14 and virus infection were also described in ref. (83).

VAP isolation

S. islandicus LAL 14/1 cells infected with SIRV2 and uninfected controls were harvested 

10 h.p.i. The cells were disrupted using a French press, and the membranes were collected by 
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centrifugation at 100,000 g as described in ref. (94). VAPs were isolated from the membrane 

fraction using anti-P98 antibody. The customised P98 polyclonal peptide antibody was raised 

in rabbit against a peptide corresponding to the C-terminal region of P98 and affinity purified 

using this antigen (Eurogentec, Liege, Belgium). The specificity of the antibody was tested on a 

Western blot.

The antibodies were coupled to magnetic beads covered with protein A (Dynabeads Protein 

A, InvitrogenTM Dynal AS, Oslo, Norway) according to the manufacturer’s protocol using non-

denaturing elution. Alternatively, the membrane fraction was washed in 0.5% N-lauroylsarcosine 

(Sigma-Aldrich, St. Louis, USA) and centrifuged at 100,000 g, and the pellet was used for 

immunoprecipitation.

Protein and lipid analysis

The protein fractions were loaded onto a 4-12% polyacrylamide Bis-Tris gradient gel (InvitrogenTM 

Dynal AS, Oslo, Norway) using 2-(N-morpholino) ethanesulphonic acid SDS running buffer 

(InvitrogenTM Dynal AS, Oslo, Norway), and the proteins were visualised using either SYPRO Ruby 

(InvitrogenTM Dynal AS, Oslo, Norway) or Coomassie-based Instant BlueTM (Expedeon, Harston, 

UK) staining. The presence of lipids in the samples was detected by overnight staining in Sudan 

Black (Sigma-Aldrich, St. Louis, USA) according to the manufacturer’s protocol. MS analysis was 

performed as described in ref. (94).

For Western hybridisation, proteins were transferred onto a PVDF membrane. P98 was 

visualised using 1:10000 dilution of the anti-P98 antibody and peroxidase-coupled goat anti-

rabbit IgG (Sigma-Aldrich, St. Louis, USA) and the SuperSignal® West Pico Chemiluminescent 

Substrate (Thermo Scientific, Rockford, USA) on Amersham Hyperfilm™ ECL (GE Healthcare, 

Buckinghamshire, UK).

Negative contrast EM and immunolabelling of isolated VAPs

Purified VAPs were absorbed to grids with carbon-coated Formvar films and negatively stained 

for 1 min with 2% (wt/vol) uranyl acetate. For immunocytochemistry, after absorption on the 

grids, the samples were incubated in PBS with 1% BSA and labelled with the anti-P98 peptide 

antibody. The antibody-labelled protein was detected using 10-nm Protein A-colloidal gold 

(CMC, Utrecht, The Netherlands). All samples were observed on a Jeol 1200EX-II operated at 

80 kV. Images were recorded and measured on a MegaView or KeenView camera (Olympus-SIS, 

Munster, Germany) using the ITEM software version 5.0 (Olympus-SIS, Munster, Germany).

Cryo-EM of isolated VAPs

Purified VAPs were spread on glow discharged Quantifoil R2/2 grids (Quantifoil Micro Tools 

GmbH, Jena, Germany) and cryofixed in liquid ethane. The specimens were transferred to a Gatan 
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626 DH cryoholder (Gatan, Pleasanton, USA) and examined on a Jeol2010F electron microscope 

(Jeol, Tokyo, Japan) operating at 200 kV. Images were recorded under low-dose conditions on a 

Gatan Ultrascan 4000 with Digital Micrograph (Gatan, Pleasanton, USA) version 1.83.842.

Immunolabelling of thawed cryosections

SIRV2-infected S. islandicus cells were fixed 10 h.p.i. with 4% formaldehyde in 0.1 M HEPES 

buffer, pH 6, for 5 h at 4 ˚C. The cells were pelleted by low speed centrifugation, embedded 

in 10% gelatine, cut into small blocks and infiltrated in 2.3 M sucrose at 4 ˚C. The blocks were 

mounted on aluminium pins and frozen in liquid nitrogen. Sections were cut with a nominal feed 

of 70 nm using a 35° angle diamond knife (Diatome, Biel, Switzerland) and a FC6 microtome 

(Leica Microsystems, Vienna, Austria). To pick up the ultrathin cryosections, a 1:1 mixture of 

2.3 M sucrose and 2% methylcellulose was used.

Thawed sections were placed on formvar and carbon-coated copper grids, and sections 

were blocked in 1% BSA and labelled with the anti-P98 peptide antibody and 10-nm Protein 

A-colloidal gold (CMC, Utrecht, The Netherlands). Images were recorded on a KeenView camera 

(Olympus-SIS, Munster, Germany) using the ITEM software version 5.0 (Olympus-SIS, Munster, 

Germany).

Resin embedding of Sulfolobus cells

S. acidocaldarius MR31 pSVA1059 and SIRV2-infected S. islandicus were fixed with 2.5% (wt/

vol) glutaraldehyde in 0.1 M HEPES buffer, pH 6 and 7, respectively. Post-fixation, dehydration, 

embedding in epoxy resin, sectioning and imaging with TEM were performed as described in 

ref. (83).

High pressure freezing and freeze substitution of E.coli

E.coli cells were taken up in capillary tubes (Leica, Vienna, Austria) as described in ref. 11. The 

filled tube was placed into the cavity of a brass planchette (Agar Scientific, Stanstad, UK), filled 

with 1-hexadecen, and immediately frozen with a HPM 010 (BalTec, now Abra Fluid AG, Widnau, 

Switzerland). Freeze-substitution was performed in anhydrous acetone (EMS, Hatfield, USA) 

containing 2% osmium tetroxide (Merck, Darmstadt, Germany) and 2% water. Substitution was 

performed at -90 °C for 24h, and at -60 °C and -30 °C for 8h each in an automated freeze 

substitution device (Leica AFS, Leica Microsystems, Vienna, Austria). Afterwards the temperature 

was raised to 0 °C and the samples washed with dry acetone and embedded stepwise in Epon 

and polymerized at 60°C for 48h.
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Plasmid constructs and transformation of S. acidocaldarius and E. coli

For the overexpression of P98 in S. acidocaldarius M31, SIRV2-ORF98 (NCBI RefSeq ID: 

NP_666583) was amplified from SIRV2 genomic DNA and cloned into the lacS gene locus in the 

pSVA5 plasmid (98) using the NcoI and BamHI sites. SIRV2-ORF98 and the araS promoter were 

transferred from pSVA5 to the pCMalLacS plasmid (95) using the NcoI and EagI sites, which 

yielded pSVA1059.

S. acidocaldarius M31 was transformed with pSVA1059. The preparation of competent cells, 

methylation of the plasmid, and electroporation were carried out as described in ref. 13. The 

electroporator used was the Gene Pulser Xcell (Bio-Rad, Hercules, USA) with 1 mm cuvettes 

at 1500 V, 600 Ω and 25 μF. The cells were regenerated in Brock medium containing 0.1% 

enzymatically hydrolysed casein (tryptone, BD Biosciences, Franklin Lakes, USA) and 0.2% dextrin 

for 30 min at 75 ̊ C. The cells were then streaked onto selective Gelrite® (Sigma-Aldrich, St. Louis, 

USA) plates lacking uracil. After 5 days, a preculture was grown under selective conditions from 

a single colony; 50 mL of medium containing inducer (0.2% maltose) was then inoculated with 

1 mL preculture and grown until an OD600 of 1 was reached.

For the overexpression of SIRV2-ORF98 in E. coli Rosetta(DE3)pLys (Novagen® Merck KGaA, 

Darmstadt, Germany), the same gene was amplified from SIRV2 genomic DNA and cloned 

into the T7 promoter-driven expression vector pSA4 (96) using the NcoI and BamHI sites. The 

pSVA1051 vector contains an IPTG-inducible promoter that was used for the expression a 

C-terminal his-tagged protein.
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Supplemental figures

Figure S1. Negative contrast electron micrograph of VAPs observed in membrane extracts of SIRV2-infected 
cells of S. islandicus. VAPs as seen from top view (filled arrow) and side view (arrow) are indicated with filled 
and empty arrows, correspondingly. Parts of cellular S-layer are also visible. (Scale bar, 100 nm.)

Figure S2. Thin sections through VAPs in (A) closed and (B) open conformation on cells surface of 
S. islandicus infected by SIRV2. (Scale bar, 100 nm.)
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Figure S3. Negative contrast electron micrographs and immunolabelling of isolated VAPs with (A) pre-
immune serum and (B) P98 antibodies. (Scale bars, 100 nm.)

Figure S4. Size distribution of isolated VAPs in closed state. (X) Lengths of sides of the heptagonal perimeter 
of closed VAPs are divided in four size classes. (Y) The relative abundance of VAPs in each size class.
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Abstract

Viruses have developed a wide range of strategies to escape from host cells in which they 

replicate. Some archaeal viruses employ for egress a pyramidal structure with sevenfold 

rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from 

the virus-encoded protein PVAP, and open at the end of the infection cycle. We characterize this 

exceptional supramolecular assembly using a combination of genetic, biochemical and electron 

microscopic techniques. By whole-cell electron cryo-tomography, we monitor morphological 

changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By 

heterologous expression of PVAP in cells from all three domains of life we demonstrate that 

the protein integrates indiscriminately into virtually any biological membrane, where it forms 

sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP 

truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into 

pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our 

findings allow us to propose a model of how PVAP arranges to form sevenfold pyramids and 

suggest how this small, robust protein may be used as a universal membrane remodeling system.
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Introduction

Release of virus particles from infected cells is the last essential step of the viral replication cycle. 

In the course of this process, virions face the challenging task of crossing the cell envelope. 

Viruses have developed an arsenal of diverse strategies to overcome this problem. Most bacterial 

viruses induce lysis of the infected cell with help of the holin-endolysin system (99), while others 

disrupt the host cell envelope via inhibition of the murein biosynthesis pathway (100). The 

exceptional morphological and genomic properties of archaeal viruses (22, 27) suggested that 

their exit from host cells may also have unusual traits that are different from those of bacterial 

viruses. Indeed, it was shown that some lytic viruses of hyperthermophilic archaea, Sulfolobus 

islandicus rod-shaped virus 2 (SIRV2) and Sulfolobus turreted icosahedral virus 1 (STIV1), exploit 

a particularly exotic mechanism of virion egress (40, 101-104). During the infection cycle of 

these viruses, pyramidal protrusions with sevenfold rotational symmetry form in the host cell 

membrane. As the final step of the infection cycle the VAPs open outwards along the seams 

of their seven facets, creating large apertures through which the newly formed virions escape 

from the host cell (101, 102). VAPs consist of multiple copies of a ~10 kDa virus-encoded protein, 

which we term PVAP (SIRV2_P98) (102, 103, 105). Surprisingly, PVAP assembles into pyramidal 

structures even when expressed heterologously in archaeal and bacterial expression systems, 

demonstrating that no other viral proteins are required for VAP formation (102). The detailed 

mechanisms by which VAPs self-assemble in the membrane have remained obscure.

In the present study we used electron cryo-tomography to investigate morphological 

features of SIRV2 replication and the formation of VAPs at different time points after infection. 

By subtomogram averaging, we determined a first 3D map of the VAP. This map, in combination 

with secondary structure predictions of PVAP and expression of wild type PVAP or a variety 

of truncation mutants in archaeal, bacterial and eukaryotic cells allows us to propose a model 

of how PVAP arranges to form the sevenfold pyramids. These insights are fundamental for 

understanding how this intriguing mechanism can be exploited as a universal tool to engineer 

the formation and controlled opening of large pores in biological or artificial lipid bilayers.

Results

SIRV2 induces morphological changes of the host cell

We analyzed morphological changes in S.islandicus during SIRV2 infection and the time points 

of VAP formation and opening by whole cell electron cryo-tomography at 0.5, 3, 6 and 12 hours 

post infection (h.p.i.). This allowed us to monitor morphological changes at high resolution and 

to compare these with previous results obtained by thin sectioning of chemically fixated cells 
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during the final stages of SIRV2 infection (83). Up to 3 h.p.i. the morphology of S. islandicus cells 

resembled that of uninfected control cells and no virions were visible in the cytoplasm (Figs. 1A). 

This suggests that SIRV2 infects its host by DNA injection rather than by entering the cell as 

an intact virus particle. Electron-dense ~100 nm globules were the only conspicuous features 

observed in the cytoplasm of controls and infected cells (Fig.1A), similar to those reported for 

S. solfataricus cells (106). Each cell, infected or not, contained one or a few of these globules, 

which are therefore unrelated to virus replication. Their size and density above the cytoplasmic 

background indicates that they may be storage granules (107).

Figure 1. Morphological changes of S. islandicus during infection with SIRV2. Tomographic slices of typical 
archaeal cells at 0.5 (A), 3-6 (B) and 9 (C) hours post infection with SIRV2. Black arrowheads, closed VAPs; 
white arrowheads, open VAPs. Scale bars, 500 nm.

At 3-6 h.p.i., about half way through the infection cycle, newly assembled virions became visible 

in the cytoplasm as observed earlier (83). They were organized in up to three bundles per cell, 

each consisting of roughly 50 rod-shaped particles (Fig.1B). Starting from 3 h.p.i., VAPs of various 

sizes formed in the plasma membrane of the host cells, most of which had penetrated the 

S-layer (Fig. 1B, 2 A-D). The height of the VAPs (measured from the membrane to the tip of the 

pyramid) ranged from ~20nm to 150nm. At an early stage of formation, the VAPs in the plasma 

membrane had not yet punctured the S-layer of the host cell (Fig. S1), but they already had the 

distinct features of hollow heptagonal pyramids, corroborating the earlier assumption that VAPs 

grow by gradual expansion of their triangular facets (102). Very occasionally, VAPs contained a 

spherical storage granule (Fig. 2C). These granules likely correspond to the previously described 

intra-pyramidal bodies (IPB) in STIV-induced VAPs (106). Analysis of cells at several moments 

during the infection cycle, showed that at 6 h.p.i. a number of VAPs had opened. The fraction 

of open VAPs increased, until at 12 h.p.i. all VAPs had unfolded, similar to petals of a flower (Fig 

1C, 2E-H). The VAPs appeared to open as the pyramidal structures broke along the seams of 

the triangular pyramid faces (Fig 2F). The VAP facets curved outwards with counter-clockwise 

handedness when viewed from the cell exterior (Fig. 2F), as had already been suggested by 

Quax.indd   68 29-10-2013   11:30:13



4

Supramolecular organisation and assembly of the heptagonal pyramid for virion egress in archaea   |  69

Figure 2. VAPs in closed and open conformation. (A, C, E, G) Tomographic slice and segmented, surface-
rendered volumes (B, D, F, H) of VAPs in the membrane of SIRV2-infected S. islandicus cells. VAPs are either 
closed (A-D) or open (E-H). The S-layer is purple, the cell membrane blue and the VAP is yellow. Scale bars, 
200nm
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electron micrographs of isolated VAPs (102). As the VAPs opened, the virion bundles disintegrated 

and egress of individual virions through the open VAPs was observed (Fig. 3).

VAP structure

The shape of isolated VAPs has previously been studied by negative staining and electron 

microscopy (102). To gain insight in the structure of VAPs in situ, closed or open VAPs were imaged 

by whole-cell electron cryo-tomography (Fig. 4A-C). This revealed that all VAPs, irrespective of 

their conformation or stage of assembly, consisted of two distinct layers. The ~4.5±1 nm outer 

layer was continuous with, and indistinguishable from, the cell membrane. The inner layer had 

Figure 3. SIRV2 virion egress. Rendered tomographic volume of a SIRV2-infected S. islandicus cell, 12 h 
post infection. SIRV2 virions (orange, brown, purple) are released trough open VAPs (yellow) that create 
~ 100 nm apertures in the plasma membrane and S-layer (green). Orange, virions inside the cell; purple, 
virions escaping from the cell; brown, virion outside the cell. Transparent blue, viral or host DNA.
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a thickness of ~4.0±1 nm (Fig. 4). The centre-to-centre distance between the two layers was 

10.0±1 nm, leaving a 5.8±1 nm gap of lower density. At the base of each VAP, the inner layer 

extended up to 15 nm beyond the outer layer into the cytoplasm. This suggests that the inner 

layer consists of a protein sheet that is attached and runs parallel to the cytoplasmic membrane 

surface (Fig. 4).

In order verify that both layers of the VAP consist only of PVAP protomers, we analyzed 

archaeal (S.  acidocaldarius) or bacterial (E. coli) PVAP expression mutants constructed in a 

previous study (102). Whole-cell electron cryo-tomography of transformed cells revealed the 

Figure 4. VAP structure. Tomographic slices of SIRV2-induced VAP of S.islandicus (A) and VAPs formed 
after PVAP expression in E.coli (C), indicating two layers, one of which is continuous with the cell membrane 
(black arrowheads), while the other (white arrowheads) forms a sheet at the cytoplasmic surface of the 
membrane. VAPs in S. islandicus protrude trough the S-layer (white arrows). (D-K) 3D map of VAP obtained 
by subtomogram averaging, with sevenfold symmetry applied. Tomographic slice perpendicular to the 
pyramid base (D) and successive tomographic slices parallel to the base (E) show the two layers in the walls 
of the pyramid. (F) Top-view of the 3D map in solid representation (128) shows that the edges of the of 
the seven pyramidal facets are slightly curved counter-clockwise (dotted lines). (G-K)Different orientations 
of the 3D map in surface representation. Transparent mesh and golden surface show different threshold 
levels. Black and white arrowheads indicate outer and inner layer, respectively. Red arrowhead indicates low 
density region at the edges of inner facets. Open arrowheads indicate connections between inner and outer 
layers of the VAP. Scale bars, 200 nm (A-C), 50 nm (D-K).
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distinctive two layers in all VAPs (Fig. 4C, S3), indicating that both are formed solely by the PVAP 

(Fig. S3).

Subtomogram averaging of VAPs

A 3D map of the VAP was obtained by averaging 57 tomographic subvolumes of closed VAPs in 

the membrane of PVAP-expressing E. coli cells. Sections through the averaged volume parallel to 

the membrane showed clear sevenfold symmetry (Fig. S4), which was then applied to the final 

average, which further improved the signal-to-noise ratio (Fig. 4D-K movie S1). Since VAPs had 

different sizes, only the upper parts of the pyramids, up to a height of ~62 nm and an outer 

diameter of ~96 nm, were used for averaging. At the tip, the inner opening angle of the pyramid 

was ~72°(Fig. 4D). As observed in tomographic slices, the structure consisted of two layers 

(Fig. 4D, E, I-K). The outer layer formed a continuous envelope, consisting of seven triangular 

facets (Fig. 4F-K). As seen from the outside, the facets had a perceptible counter-clockwise 

handedness (Fig. 4F) and each facet was slightly convex towards the inside (Fig. 4F, G, J, K). The 

angle at the tip of the triangular facets was 35°, in accordance with previous measurements on 

isolated VAP fragments (102). Overall, the entire structure had the appearance of a tent or teepee 

(Fig. 4 G).

The inner, cytosolic layer of the pyramid consisted of seven triangular sheets parallel to the 

membrane on the outside (Fig. 4I-K). At the junction of two triangular sheets, the structure was 

perforated (Fig. 4I, J), suggesting weak interactions along the inner edges. The perforated seams 

may serve as predetermined breaking points when the VAPs open. Cross-sections through the 

sevenfold averaged volume revealed narrow connections between the two layers of the pyramid, 

suggesting that they are physically linked (Fig. 4K).

Membrane remodelling by PVAP

In silico secondary structure predictions (108) and hydrophobicity analysis (88) of PVAP suggest 

that the protein consists of an N-terminal transmembrane helix (residues 5-34), followed by 

three hydrophilic α-helices of two to three turns each, separated by short linker regions (Fig. S2). 

The PSORT-server (109) indicated that PVAP does not contain a pre-sequence. This is consistent 

with a previous study of the N-terminal amino acid sequence of purified PVAP of SIRV2 with 

Edman degradation (86), which did not indicate a cleavable signal sequence (105). Thus, we 

assumed that the hydrophobicity of its predicted N-terminal transmembrane segment drives the 

spontaneous insertion of PVAP into the lipid bilayer. To test this hypothesis, PVAP was expressed 

in the eukaryote Saccharomyces cerevisiae. Cells were harvested 16 hours after induction of PVAP 

expression, high-pressure frozen and freeze-substituted. In addition, chemically fixed Tokuyasu 

sections were immunolabeled with antibodies raised against PVAP. All samples were analyzed 

by transmission electron microscopy. Surprisingly, VAPs were found in most, if not all, cellular 

Quax.indd   72 29-10-2013   11:30:16



4

Supramolecular organisation and assembly of the heptagonal pyramid for virion egress in archaea   |  73

membranes. PVAP-specific antibodies labeled VAPs in the nuclear envelope, the endoplasmic 

reticulum, Golgi apparatus, intracellular vesicles and mitochondria (Fig. 5).

Role of PVAP domains in VAP assembly

To identify which parts of the PVAP are required for VAP assembly, truncated mutants lacking 

the last 10, 20, 30, 40 or 70 C-terminal residues (∆C10, ∆C20, ∆C30, ∆C40 or ∆C70) were 

constructed (Fig. 6). EM analysis of E.coli cells transfected with these constructs revealed VAPs 

only in case of the ∆C10 mutant (Fig. 6).

By contrast, VAPs did not form after truncation of 20 to 70 C-terminal residues (PVAP∆C20, 

∆C30, ∆C40 or ∆C70, Fig. 6), corresponding to one to three C-terminal α-helical segments. 

Instead, expression of these constructs resulted in protein aggregates in most cases. In addition, 

constructs lacking 20-40 C-terminal residues caused the inner membrane of E.coli to form large 

invaginations, suggesting that these variants still interact with the membrane (Fig 6B). The effect 

was most pronounced for PVAP∆C20. In contrast, PVAP∆C70 did not produce any membrane 

invaginations (Fig 6B).

Expression of a PVAP construct lacking the predicted N-terminal transmembrane helix 

(PVAP∆N30) likewise did not result in VAP formation and no membrane interaction was evident 

(Fig. 6B), indicating that the N-terminal transmembrane domain is indeed required for membrane 

insertion of PVAP protomers.

We asked if the PVAP transmembrane domain is essential for VAP formation or could 

be replaced by any other transmembrane domain. To characterize the role of the PVAP 

transmembrane domain in VAP formation we constructed a chimera by fusing the E. coli flagellar 

regulator Flk, a gene encoding a single trans-membrane helix inner membrane protein (110, 111) 

to PVAP∆N30, replacing the N-terminal transmembrane helix (residues 1-30) of PVAP (110, 111). 

After expression, this fusion construct (PVAPtmFlk) was indeed inserted into the membrane, as 

judged by Western blot analysis of cell fractions with SIRV2-PVAP antibody (Fig S5). However, 

there was no evidence of VAPs in these cells (Fig 6B).

Taken together these findings indicate that the N-terminal domain is essential for membrane 

insertion of PVAP and for the interaction between PVAP protomers, which results in the assembly 

of a protein sheet on the inner membrane surface. The C-terminal domain of PVAP (except the 

last 10 residues, which are predicted to be disordered) is required for VAP formation. Without 

this domain, the protein aggregates instead of forming VAPs.
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Figure 5. VAP formation in S. cerevisiae. PVAP expression in S. cerevisiae causes VAP formation in various 
cellular membranes. (A, B) Immuno-labelling of unfrozen cryo-sections with anti-PVAP antibodies. (A) VAP in 
the endoplasmic reticulum. (B) VAPs in mitochondrial membranes (C) Freeze-substituted cell with VAP in the 
nuclear envelope. The inset shows an enlarged VAP. P, plasma membrane; CW, cell wall; M, mitochondrion; 
N, nucleus. Arrows indicate VAPs. Scale bars, 200 nm.
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Figure 6. Expression of PVAP variants in E.coli. Several PVAP truncation mutants were constructed. 
(A) Schematic representation of PVAP constructs expressed in E.coli. (PVAP) wild type PVAP. (PVAP∆C10) 
PVAP lacking 10, (PVAP∆C20) 20, (PVAP∆C30) 30, (PVAP∆C40) 40, or (PVAP∆C70) 70 C-terminal residues. 
(PVAPtmFlk) PVAP construct in which the transmembrane segment is replaced by that of the E.coli membrane 
protein Flk. (PVAP∆N30) PVAP lacking the N-terminal transmembrane segment. (B) Electron micrographs of 
thin sections trough E.coli cells expressing PVAP constructs as in A. VAPs (open arrows) and invagination of 
the membrane (black arrow) are shown; Bars, 200 nm; bar in inset, 100 nm.
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PVAP oligomers

To characterize the oligomerization of PVAP in vitro, we fused a His-tag to the C-terminus and 

expressed the protein heterologously in E. coli. Isolated membranes were solubilized with the 

detergent N-laurylsarcosine. PVAP was purified by nickel affinity chromatography and size 

exclusion chromatography. The single peak in the gel filtration profile corresponds to a molecular 

mass of ~70 kDa (Fig S6). SDS-PAGE analysis of peak fractions show discrete PVAP bands at ~10, 

20, 30 and 70 kDa (Fig S6), indicating that in detergent solution PVAP forms different oligomers, 

the largest of which is most likely a heptamer. A PVAP heptamer is also suggested by gel filtration 

chromatography.

Discussion

The VAP, an archaeoviral egress structure that takes the shape of a large sevenfold pyramid in 

the host membrane, is without precedent or parallel in biology. It consists of multiple copies of 

PVAP, a 10 kDa membrane protein, which forms VAPs in the membrane, evidently without the 

need for any other cellular component.

How can a small, simple protein like PVAP assemble unaided into such an elaborate structure? 

To address this intriguing question, we have investigated the VAP structure itself by electron cryo-

tomography, and have studied the membrane insertion and biochemical properties of PVAP. We 

have demonstrated that PVAP forms VAPs in archeal, bacterial and eukaryotic membranes, into 

which it inserts indiscriminately, and that, with the exception of the last 10 C-terminal residues, 

the entire length of the protein is required for VAP assembly. Finally, we have shown that PVAP 

forms oligomers, most likely heptamers, in detergent solution.

PVAP is a universal membrane remodeling system

Sequence analysis of PVAP suggested that the protein does not contain a signal sequence and 

thus most likely integrates spontaneously into the archaeal membrane. A similar mechanism 

of membrane insertion has been found for tail-anchored (TA) proteins (112) and for bacterial 

pore-forming toxins (bPTFs) (113). TA proteins are indigenous proteins, which contain a single 

C-terminal transmembrane segment. They are inserted into their target membrane in a Sec-

independent, but organelle-specific manner, occasionally aided by cytoplasmic chaperones (112). 

Similar to PVAP, bPTFs are expressed as monomers and insert into the target membrane, where 

they assemble into pore-forming oligomers, either to kill other bacteria or, in case of pathogens, 

to lyse the host membrane and thus to aid bacterial proliferation (113).
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Overexpression of PVAP in the archaeon S. acidocaldarius, the bacterium E. coli and the eukaryote 

S. cerevisiae resulted in the formation of VAPs in the plasma membranes of all hosts. Even more 

remarkably, VAPs were observed in virtually all cellular membranes of the eukaryote S. cerevisiae, 

including the nuclear envelope, the ER, the mitochondrial outer membrane and the plasma 

membrane. This demonstrates that, in contrast to other known type of protein spontaneously 

integrating into membranes, PVAP is able to insert into practically any biological lipid bilayer, 

solely by virtue of its N-terminal transmembrane segment. Once inserted into the bilayer, it forms 

sevenfold pyramids, irrespective of fundamental differences in lipid or protein composition of the 

target membrane. These characteristics render PVAP a unique, universal membrane remodeling 

tool.

Supramolecular organisation of VAPs

Whole-cell electron cryo-tomography and subtomogram averaging revealed that the VAPs 

consist of the same two layers of roughly equal thickness in all endogenous and heterologous 

expression hosts. The outer layer was continuous with the plasma membrane, whereas the inner 

layer formed a discontinuous sheet at the cytoplasmic membrane surface. As PVAP must insert 

with its N-terminal TM segment into the plasma membrane, the outer layer most likely consists 

of multiple copies of this part of PVAP plus interspersed membrane lipid. In turn, the cytoplasmic 

protein sheet must consist of the tightly associated C-terminal domains of the protein. The low-

density region between the two layers would then account for the linker region between the 

cytoplasmic domains and the N-terminal trans-membrane segments (Fig. 7A).

Recently it was suggested that the opening of STIV-induced VAPs depends on polymerization 

of ESCRT-III homologs, resulting in the ‘stripping’ of VAPs from their cytoplasmic membrane (114). 

Our observation that the outer layer of the double-layered VAP structure is continuous with the 

plasma membrane (Fig 4) does not support this model. Moreover, global analysis of host gene 

expression during the SIRV2 infection cycle documented that ESCRT-III-like proteins were down-

regulated in infected cells (115). Thus, it is possible, although not very likely, that mechanisms of 

VAP opening differ in SIRV2-infected and STIV-infected cells.

Our tomograms of closed and open VAPs offer intriguing insights into the mechanism by 

which the pyramids open to facilitate viral egress. The seven edges of the closed pyramid are 

slightly curved in a right-handed fashion (Fig. 4 F). In the open state, the edges of the seven 

individual facets are curved in the same way (Fig. 4 F). In the open VAP, each facet curls outwards 

(Fig. 4 F). This suggests that in the closed state, the VAP structure is under mechanical tension. 

This tension is likely to provide the energy required for VAP opening, which occurs along the 

seams of the pyramid. At these seams, the inner layer of the VAP is perforated (Fig. 4 I-K), most 

likely to provide predetermined break points for VAP opening.
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VAP assembly and opening

We propose a model for VAP assembly (Fig. 7). Upon synthesis in the cytosol, PVAP integrates 

spontaneously into the cell membrane, depending solely on the hydrophobicity of its N-terminal 

transmembrane helix segment. In the membrane, intimate interactions between PVAP protomers 

result in the formation of protein sheets, which consist of the observed two layers. We propose 

that this interaction involves both the N-terminal transmembrane helices and the C-terminal 

hydrophilic PVAP domains, as indicated by the expression of truncation constructs.

In order to assemble into a pyramid instead of a fl at sheet, at least two different kinds of 

interactions between PVAPs are necessary, one in-plane interaction within the triangular facets, 

and one out-of-plane interaction, at the edges of the pyramid. The interaction at the edges is 

Figure 7. Model of VAP assembly. (A) Predicted secondary structure of PVAP, with N-terminal trans-
membrane helix and three short C-terminal α-helices. (B) Schematic top view of the VAP, with its seven 
facets in different colours. Strong interactions between individual PVAP protomers stabilise the integrity of 
each facet, whereas weak interactions at the seams (white dashed lines) between two neighbouring facets 
form predetermined break points. The black dashed indicates the cross section through the VAP in in C. 
(C) PVAP protomers (green) insert spontaneously into the plasma membrane (blue), with the short C-terminal 
helices exposed to the cytoplasm. Close contacts between PVAP molecules in each facet (aqua and orange 
outline) exclude S-layer proteins (grey), and combine into a protein sheet below the plasma membrane. 
Addition of PVAP units at the base pushes the pyramid outwards.
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evidently weaker than the in-plane interaction, so that the pyramids open at these pre-formed 

seams.

At present it is unknown if the pyramids are built in a one-by-one self-assembly process from 

individual PVAP protomers or if, instead, protomers first assemble into heptamers upon membrane 

insertion, and that the heptamers then combine into pyramids in a second stage of assembly. The 

prior formation of heptamers in the membrane is suggested by the gel filtration experiments, 

which show one homogenous peak of ~70 kDa in detergent solution. Given that detergent 

mimics the hydrophobic membrane environment, it is not unlikely that the same interactions that 

give rise to the heptamer in a detergent micelle would also promote the formation of heptamers 

in the membrane, which may thus be the building blocks of the pyramids.

VAP opening presumably involves a host or virus-specific factor, since the pyramids only 

open in virus-infected Sulfolobus cells but remain closed in PVAP-expressing bacteria and yeast. 

With this factor, the PVAP system can be developed into a universal system for the controlled 

opening of large, ~100 nm apertures in any lipid bilayer. Such a system would evidently have 

great potential for basic research, biotechnological applications, and therapy.

Experimental Procedures

Virus and host strains

The SIRV2 virus stock was prepared and the S. islandicus LAL 14/1 strain grown as described 

previously (101). For analysis of morphological changes upon viral infection, cells were synchronized 

by dilution of precultures in fresh medium. The cultures were grown for ~12 hours until an OD of 

0.1-0.2 was reached and SIRV2 was added directly to the cultures as described (101).

Plasmid constructs and transformation of S. acidocaldarius

For the expression of PVAP in S. acidocaldarius M31, SIRV2_ORF98 (NCBI RefSeq ID: NP_666583) 

was amplified from SIRV2 genomic DNA and cloned into the lacS gene locus in the pMZ1 

plasmid (116) using the NcoI and BamHI sites. SIRV2_ORF98 (PVAP) and the araS promoter were 

transferred from pMZ1 to the pSVA1450 plasmid (117) using the NcoI and EagI sites, which yielded 

pTQ26. pTQ26 was transformed to S. acidocaldarius M31. The preparation of competent cells, 

methylation of the plasmid, and electroporation were carried out as described (118) using a Bio-

Rad Gene Pulser Xcell electroplater with 1-mm cuvettes at 1,500 V, 600 Ω, and 25 μF. Selection 

of PVAP expressing colonies and induction of expression were performed as before (102).
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Plasmid constructs and transformation of E.coli

For the overexpression of SIRV2_ORF98 (PVAP) C-terminal truncation mutants in E. coli 

Rosetta(DE3)pLys (Novagen Merck), SIRV2_ORF98 was amplified from SIRV2 genomic DNA with 

different reverse primers resulting in PCR products of 297 (full length), 267 (-10 AA), 237 (-20 

AA), 207 (-30 AA), 177 (-40 AA), 87 (-70 AA) bp. PCR amplification of a 216 bp product starting 

81 bp downstream of the ATG resulted in a PVAP mutant lacking the N-terminal transmembrane 

domain. The same sequence was used for a fusion with the 75 bp transmembrane segment of 

the E.coli Flk gene, preceded by the 27 N-terminal bp of PVAP. This oligonucleotide sequence 

was synthesized by GeneArt® (Invitrogen). All PVAP gene mutants were cloned into the T7 

promoter–driven expression vector pSA4 using the NcoI and BamHI sites(119). The pSA4 vector 

contains an isopropyl β-d-1-thiogalactopyranoside–inducible promoter that was used for the 

expression of a C-terminally His-tagged protein. Analysis of PVAP expression cultures by high 

pressure freezing and freeze substitution was performed as described  (102). The location of 

the Flk-PVAP fusion was analyzed by isolation of membranes as described in ref (105), followed 

by SDS PAGE, western blotting and immunolabelling with antibodies raised against PVAP as 

described (102).

Plasmid constructs and transformation of S. cerevisiae

For the overexpression of SIRV2_PVAP (PVAP) in Saccharomyces cerivisiae, SIRV2_PVAP was 

amplified from SIRV2 genomic DNA and cloned in the expression vector pCM190 (120) using PstI 

and XbaI sites. S. cerivisiae was transformed with the plasmid according to Gari et al (120). After 

selection on plates without uracil a single colony was picked and grown at 30 °C overnight in a 

pre-culture in selective uracil-free medium, and with 10 microgram/ml doxycyclin. After one day, 

cells were diluted 1/1000 in medium without doxycyclin.

Immuno-electron microscopy

Yeast cells were fixed with 4% paraformaldehyde in 0.1M Hepes, pH 5.4 for 2 h at RT. The cells 

were then washed with 50 mM NH4Cl in PBS to quench free aldehyde groups and pelleted in 

12% gelatin in PBS. The gelatine pellet was solidifed on ice and cut into small blocks, which 

were infiltrated over night at 4°C with 2.3M sucrose for cryoprotection, mounted on aluminium 

pins and frozen in liquid nitrogen. Thin sections were cut with a UC6/FC6 (Leica microsystems, 

Vienna, Austria) and picked up in a 1:1 mixture of 2.3M sucrose and 2% methylcellulose (121). 

Labelling for PVAP was done as described previously (102).

High-pressure freezing and freeze-substitution

E.coli cells were taken up in cellulose capillary tubes (Leica Microsystems GmbH, Vienna, 

Austria) as described in (122). S. cerevisiae cultures were concentrated by filtration. Tubes or 
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cell concentrates were placed into brass planchettes filled with 1-hexadecen (Agar Scientific, 

Stansted, United Kingdom). Samples were frozen in a HPM 010 freeze-fracture device (Baltec, 

Switzerland).

Freeze-substitution was performed in anhydrous acetone containing 2% osmium tetroxide 

(Merck, Germany). Small cracks were introduced under liquid nitrogen in solid 1-hexadecen by 

pre-cooled fine point forceps (No 5, Dumont, Switzerland) to allow perfusion of the substitution 

mix. Freeze-substitution was carried out at -90°C for 24h, and at -60°C and -30°C for 8h each 

in a freeze substitution device (Leica Microsystems GmbH, Vienna, Austria). Afterwards the 

temperature was raised to 0°C and the samples were washed with dry acetone and embedded 

stepwise in EPON. After heat polymerization thin sections were cut with an Ultracut UCT 

microtome (Leica Microsystems GmbH, Vienna, Austria). Sections were collected on 200 mesh 

Formvar-coated copper grids and post-stained with 4% uranylacetate and Reynold’s lead citrate. 

Images were recorded with a JEOL 1010 electron microscope at 80 kV equipped with an Olympus 

Keen View camera (Olympus Soft imaging systems, Münster, Germany).

Whole cell cryo-tomography

Cells were harvested shortly after infection, concentrated by low-speed centrifugation (3000 

rpm for 10 min) and plunge-frozen directly in the growth medium. For this, cell pellets were 

resuspended in an equal volume of fresh medium. Before freezing, suspensions were mixed 

with an equal volume of 10 nm colloidal protein-A gold suspension (Aurion, Wageningen, The 

Netherlands). 3 μl of this mixture were added to a 300 mesh R2/2 glow-discharged Quantifoil 

grid, blotted and rapidly injected into liquid ethane.

Tomograms were recorded with a Polara G2 Tecnai field emission transmission electron 

microscope (FEI, Hillsboro, USA) operated at 300 kV, equipped with a Gatan Tridiem energy filter 

and 2x2 k CCD camera (Gatan Inc., Pleasanton, USA). Zero-loss filtered images were collected 

using the Digital Micrograph software (Gatan Inc., Pleasanton, USA). Tomographic tilt series 

were recorded with the FEI tomography software (FEI Company, Hillsboro, USA). Tilt series were 

generally collected in a range of -60° to +60° in steps of 1.5° or 2°, at 6-9 μm defocus and 

magnifications of 41.000x, 34.000x or 27.500x, corresponding to a pixel size of 0.5766nm, 

0.709nm or 1.073nm, respectively. Tomograms were reconstructed using the IMOD software 

package (123) and de-noised by non-linear anisotropic diffusion (NAD) (124).

Subtomogram averaging

For subtomogram averaging of VAPs, 57 pyramid volumes were cut out, aligned and averaged 

using the PEET software (125, 126) as described before (127). The average volumes were averaged 

further by applying 7-fold rotational symmetry. 3D maps obtained by subtomogram averaging 

were displayed and analyzed in 3Dmod (IMOD,(123)) or UCSF chimera (128).
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PVAP purification

The codon-optimized gene coding for PVAP was synthetized (Genscript) and inserted in to 

the expression plasmid pET26b (Novagene) using the restriction sites NdeI and XhoI. E. coli 

BL21DE3/Rosetta/pLysS cells were transformed with the resulting plasmid and transformants 

were selected using kanamycin (Kan, 50µg/ml) and chloramphenicol (Cam, 34µg/ml). An 

overnight pre-culture of a single colony was transferred to 12L “terrific broth” (TB) medium 

containing Kan and Cam and incubated in the shaker at 160 rpm until the optical density at 

600nm (OD600) reached 0.8 - 1.0. Protein expression was induced with 1mM IPTG (isopropyl-β-D-

1-thio-galacatopyranoside) at 37°C. After 2 hours, cells were pelleted, resuspended in lysis buffer 

(50 mM Tris pH 7.0, 300 mM NaCl, 0.5 mM PMSF) and disrupted with a Microfluidizer (M-110L, 

Microfluidics Corp., Newton, MA). Unbroken cells were removed by 30 min. centrifugation at 

14,000g. The membrane fraction was pelleted by centrifugation of the supernatant at 100.000g 

for 90 min. at 4°C ,resuspended in 50 mM Tris pH 7.0, 300 mM NaCl and diluted to a protein 

concentration of 5 mg/ml. Membranes were solubilized by adding of N-laurylsarcosine to a final 

concentration of 1.5%. Non-solubilized protein was removed by centrifugation for 60 minutes at 

100.000g. The supernatant containing the His-tagged protein was loaded onto a Ni-NTA column 

and unspecifically bound proteins were removed in several washing steps. The protein was eluted 

in buffer containing 500 mM imidazole and concentrated with a 30 kDa cutoff prior to loading 

onto a gel filtration column (Superdex75). Purified protein was eluted using 50 mM Tris pH 7.0, 

300 mM NaCl and 0.05 % N-laurylsarcosine as running buffer.
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Supplemental figures

Figure S1. Early stage of VAP assembly. Consecutive tomographic slices through nascent VAP at 3 h.p.i. in 
S. islandicus host cell. Black arrows indicate VAP. PM, plasma membrane. Scale bar: 100 nm

Figure S2. Secondary structure prediction of PVAP. Sequence of wild type PVAP (black lettering) with 
predicted secondary structure as indicated. Blue, predicted α-helices (a); yellow, coils (c); red, strands (e). TM 
segment, predicted trans-membrane segment.
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Figure S3. VAPs in E. coli and S. acidocaldarius. Tomographic slices through E. coli (upper panel) and 
S. acidocaldarius (lower panel) cells expressing PVAP. VAPs in E.coli remain closed for longer than 2 weeks. 
VAPs in S. acidocaldarius open ~72 hours after PVAP induction; bars, 500 nm.
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Figure S4. Unsymmetrised subtomogram average of VAPs. Average of 57 VAPs obtained from E. coli 
cells overexpressing PVAP. Slices run perpendicular (A) or parallel (B) to the base of the pyramid. The 
unsymmetrized average shows clear 7-fold symmetry around an axis perpendicular to the base. Scale bars: 
50 nm.
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Figure S5. Flk-PVAP fusion protein localizes to E.coli membranes. SDS/PAGE of: 1, marker; 2, SIRV2-infected 
S. islandicus, 10 hpi; 3-4, membrane fraction of E. coli expressing Flk-PVAP fusion (PVAPtmFlk); 5-6 cytosolic 
fraction of E.coli expressing PVAPtmFlk. The E. coli samples were loaded undiluted or diluted 1:10. The 
positions of proteins with known molecular mass (in kDa) are indicated by bars based on the marker loaded 
in the first lane. (A) Coomassie Blue–stained gel. (B) Western blot of a duplicate gel with antibodies against 
SIRV2-PVAP. Mem, membrane fraction; Cyt, cytosolic fraction
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Figure S6. Analytical size exclusion chromatography of PVAP. Elution profile of PVAP on the Superdex75 
column shows a symmetrical peak eluting at 70 kDa. SDS-PAGE of the peak fraction and Western-Blot 
analysis with antibodies against PVAP indicate 4 protein bands at the level expected for the PVAP monomer, 
dimer, trimer and heptamer.
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Abstract

Archaeal viruses display unusually high genetic and morphologic diversity. Studies of these viruses 

proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The 

Sulfolobus islandicus Rod Shaped Virus 2 (SIRV2) is a model to study virus-host interactions in 

archaea. It is a lytic virus that exploits a unique egress mechanism based on formation of remarkable 

pyramidal structures on the host cell envelope. Using whole transcriptome sequencing we present 

here a global map defining host and viral gene expression during the infection cycle of SIRV2 in 

its hyperthermophilic host S. islandicus LAL14/1. This information was used, in combination with 

a yeast two hybrid analysis of SIRV2 protein interactions, to advance current understanding of 

viral gene functions. As a consequence of SIRV2 infection, transcription of more than one third 

of S. islandicus genes was differentially regulated. While expression decreased of genes involved 

in cell division, those playing a role in anti-viral defense were activated on large scale. Expression 

of genes belonging to Toxin-Antitoxin and Clustered Regularly Interspaced Short Palindromic 

Repeat (CRISPR)-Cas systems was specifically pronounced. The observed different degree of 

activation of various CRISPR-Cas systems highlights the specialized functions they perform. 

The information on individual gene expression and activation of anti-viral defense systems is 

expected to aid future studies aiming at detailed understanding of functions and interplay of 

these systems in vivo.
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Introduction

The knowledge on virus-host interactions in the third domain of life, the Archaea, remains 

limited despite increasing numbers of described archaeal viruses. The available information 

mainly concerns unusual morphological and genomic properties of these viruses and structures 

of proteins they encode (129, 130). Several viruses infecting hyperthermophilic Crenarchaeota 

have emerged as suitable models to study molecular details of the life cycle of archaeal 

viruses, e.g. Sulfolobus turreted icosahedral virus (STIV) (39), Sulfolobus spindle-shaped virus 

(SSV) (131) and Sulfolobus islandicus rod-shaped virus (SIRV) (31). They cover examples of lytic 

(STIV and SIRV2) and temperate (SSV) viruses and fundamentally differ from each other in virion 

morphology and genome organization. For these viruses and their hosts, attempts have been 

made to analyze patterns of gene expression in the course of the infection cycle (51, 132-134). 

The temperate spindle-shaped virus SSV1 has a circular dsDNA genome, which can integrate 

into the host genome, establishing a lysogeny which can be reverted by UV-irradiation (135, 

136). A chronological regulation of transcription of viral genes was observed during a microarray 

study following induction of SSV1 replication caused by UV irradiation. In this case, hardly any 

differences of host gene expression were detected (132). A completely different situation was 

encountered when studying transcription of the lytic viruses STIV and SIRV2 after infection of 

Sulfolobus host cells, by microarray and Northern hybridization analysis, respectively (51, 134). In 

both cases, little temporal control of viral gene expression was detected. During STIV infection, 

a high proportion of host genes was either up or down regulated (133). Genes involved in 

transcription, translation and anti-viral defense mechanisms were over represented amongst the 

differentially expressed genes (133).

The virus SIRV2 is an appealing model for the study of archaeal virus-host interactions, since 

the infection has a pronounced and clear effect on the host cell (83, 102, 105). SIRV2 is a member 

of the family Rudiviridae and infects the hyperthermophilic archaeaon S.islandicus LAL14/1, 

which thrives at 80 °C and pH 3. The virus genome is dsDNA of ~35 kb and encompasses 

54 open reading frames (ORFs) (60, 137). SIRV2 is a lytic virus and degradation of the host DNA 

occurs after infection, i.e. 5 hours post infection (h.p.i.) in ~40% of cells the chromosome is 

degraded (83). At late stages of the infection cycle, multiple pyramidal shaped structures of up 

to 200 nm in diameter are observed on the surface of each infected cell. These Virus Associated 

Pyramids (VAPs) comprise sevenfold rotational symmetry and consist of multiple copies of the 

viral encoded protein SIRV2_P98 (NP_666583.1) (102, 105). At this stage of the infection cycle, 

mature virions are present in the cell in 2-3 bundles of up to 50-100 virions (83). As the final step 

of the infection cycle, the VAPs open up outwards creating large apertures through which the 

mature virions escape the host cell (83). Thus, cell morphology and metabolism are dramatically 

affected by SIRV2 infection.
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We studied the interplay between SIRV2 and its host by monitoring changes in expression 

of the viral and host genes during the infection cycle using deep transcriptome sequencing 

(RNAseq). In addition, we performed a yeast two hybrid screen, the results of which could be 

used in combination with gene expression profiles to predict roles of viral proteins in currently 

unknown processes. This approach uncovered a mild temporal regulation of viral gene expression, 

but dramatic changes of gene expression of the host. More than one third of all host genes were 

differentially transcribed, with a clear bias towards genes involved in cell division and defense 

against foreign genetic elements.

Results

SIRV2 infection of S.islandicus and RNA isolation

Cells of S. islandicus LAL14/1 were infected by the virus SIRV2 in conditions causing infection 

of 95% of the cell population (5) and resulting in severe retardation of cell growth (data not 

shown). Electron microscopical analysis of a time series of cells after infection revealed typical 

morphology of SIRV2 infected cells, with bundles of mature virions in the cytoplasm and the 

virion egress structures, VAPs, appearing on the cell surface (Fig. 1).

Figure 1. Time scale of SIRV2 infection cycle in the Sulfolobus host cell, indicating time points of RNA 
isolation (white dots) in hours post infection. Above the time scale are shown electron micrographs of thin 
sections of representative SIRV2 infected S.islandicus cells at each stage of infection. During the first hours 
after infection (t<3 h.p.i) cells appear similar to uninfected control cells. Later bundles of virions assemble in 
the cytoplasm (t=3-6 h.p.i), followed by VAP formation (t= 6-9 h.p.i.) and eventually opening of the VAPs 
and release of the virions (t= 10-12 h.p.i.). Bars, 500 nm.

Quax.indd   92 29-10-2013   11:30:24



5

Transcriptome analysis of the SIRV2 infection cycle   |  93

Time points for RNA analysis were selected based on the available information on the SIRV2 

infection cycle (83). Total RNA was isolated 0, 1, 2, 3, 5, 7 and 9 h.p.i. from two biological 

duplicates. For control experiments, RNA was isolated at the same time points from two 

independent uninfected control cultures. Whole-transcript sequencing was applied using the 

Illumina RNAseq technology. The resulting reads were mapped to coding sequences of the 

S.islandicus LAL14 and SIRV2 genomes. Reads that mapped to ribosomal RNAs were discarded 

(Methods). The fraction of reads mapping to rRNA sequences was approximately the same for 

all samples. This yielded a total of ~4 million whole-transcript reads per sample mapped to viral 

and host genomes.

Identification of differentially regulated genes

For each gene, the mapped reads of biological duplicates were averaged and the accumulation 

levels of specific RNAs were compared between all samples of each time point/condition using 

both DEseq and EdgeR analysis programs (138, 139). Very similar sets of significantly differentially 

expressed genes were obtained with both programs. Differences were only observed for poorly 

expressed genes or for genes that displayed little change in expression. Genes marked as 

significantly differentially expressed by both programs were retained for further analysis.

Uninfected control samples of each time point had highly similar gene expression profiles. In 

contrast, pronounced variations of gene expression were observed between the control and 

infected samples. More than one third of all S. islandicus genes were significantly up or down 

regulated in infected cells, when compared with control cells (Fig. S3). The gene expression 

profiles of biological duplicates displayed extensive similarity, indicating that the differential 

expression is not a direct consequence of the SIRV2 induced chromosome degradation. In 

addition, a prominent variation was observed between gene expression of infected cells sampled 

at various time points after infection. Comparing infected samples harvested at different times, 

between 10 and 50% of all genes was differentially expressed (Fig. S3).

In figure 2, a heat map is presented which shows gene expression profiles of S.islandicus 

genes of all analyzed samples. The control samples cluster together, which demonstrates the 

extended similarity in gene expression between uninfected samples. The infected samples also 

cluster, but at a very different position, stressing the variation in gene expression profile with 

respect to the control cultures (Fig. 2). One exception is the first harvested infected sample 

(t=0 h.p.i.) of which RNA was isolated just after addition of the virus; as expected, this sample 

closely resembles the uninfected samples. Divergence is observed between expression patterns 

of infected samples collected at different time points, which is indicative of extensive temporal 

regulation of expression in the course of the infection cycle (Fig. 2).
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Figure 2. Heat map of S.islandicus gene expression patterns of uninfected control (blue line) and SIRV2 
infected (red line) cells. Up and down regulated genes are showed in yellow and red respectively. Genes 
are clustered according to their expression profile in all samples. t, the time (hours) after infection RNA was 
isolated. C, uninfected control cells. I, SIRV2 infected cells.

Viral genes

Substantial numbers of reads mapping to the SIRV2 genome were identified in infected samples, 

but never in control samples. The number of viral reads increased steadily in the course of infection, 

reaching a plateau around 5 h.p.i. at which time point ~20% of all transcripts (excl. rRNA hits) 

mapped to the viral genome (Fig. 3). Although the total number of reads mapping to the viral 

genome was still relatively low in the first sample taken after infection (t=0 h.p.i.), a clear trend 

could be observed in the genomic location. Viral reads at t=0 h.p.i. mapped typically to ORFs at 

the distal ends of the linear dsDNA genome, indicating that transcription starts simultaneously 

from both ends of the SIRV2 genome (Fig. 4 and Table S2). Expression was exclusively observed 

from the predicted open reading frames (ORFs) and hardly any reads mapped to the non-coding 

terminal repeat regions of the genome. ORF83a (NP_666535.1) and ORF83b (NP_666588.1) were 

the highest expressed genes at this time point and are located on either end of the linear dsDNA 

genome. They have identical nucleotide sequences and could only be distinguished by differing 

sequences in their untranslated regions, showing that ORF83a and b are expressed approximately 

in 2:1 ratio. All other expressed genes at t=0 h.p.i. were located close to the genome termini: 

ORF119a (NP_666536.1), ORF103a (666537.1) and ORF119b (NP_666587.1), of which the former 

codes a protein with unknown function and the latter two code a proteins belonging to the 

DUF1374 superfamily, of which several members are present in the genomes of SIRV2 and other 
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archaeal viruses. In samples from all time points (except t=0 h.p.i.), signifi cant expression of 

practically all viral genes was detected. Very poor expressed genes (<250 RPKM) were ORF76 

(NP_666559.1) and ORF119c (NP_666550.1), of which the former is coding for a protein of 

unknown function and the latter for a Rep protein proposed to initiate SIRV2 replication (140). 

A negligible number of reads mapped to regions outside annotated ORFs, besides those from 

intergenic regions on polycistronic messengers. However, there were a few exceptions: the region 

between ORF119c (NP_666550.1) and ORF131b (NP_666551.1), and the region between ORF156 

(NP_666563.1) and ORF64 (NP_666564.1). A moderate number of reads mapped in the 5’ to 

3’ direction to both regions. Both transcripts likely contain protein coding genes, which were 

not predicted in the original annotation due to their short length (<150 bp) (137). Expression of 

the majority of viral genes increased in the course of infection. A few reached the highest level 

of expression at one or two h.p.i. and decreased later during infection (Fig. 3, Table S2). In all 

infected samples (except t=0 h.p.i.) the gene expression appeared to be randomly distributed 

over the SIRV2 genome. At one h.p.i., the most abundantly transcribed genes were: ORF83a, 

ORF83b , ORF56b (NP_666549.1), ORF108 (NP_666585.1) and ORF103a (NP_666537.1) (Fig 4 

and Table S2). ORF56b encodes the transcriptional regulator SvtR, which acts as a repressor of 

a number of viral genes, most importantly ORF98 and ORF1070 (NP_666572.1) that code for 

Figure 3. Percentage of viral transcripts increases in time. A plot is shown in which reads mapping to the 
viral genome are shown as the percentage of the total number of detected reads. Depicted are control (dark 
grey) and SIRV2 infected (light grey) samples of different time points after infection.
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the VAP and tail fibre proteins respectively (141). ORF103a and ORF108 code for proteins with 

unknown functions.

At late stages of infection, expression of genes coding for structural proteins increased, 

such that at the end of infection cycle ~35% of viral reads mapped to the gene encoding the 

major coat protein, ORF134 (NP_666560.1) and ~13 % to the VAP gene, ORF98, encoding the 

component of the pyramidal egress structures. Other abundantly expressed genes at this stage 

were ORF83a and b and ORF110 (NP_666566.1), a gene of unknown function.

Yeast two hybrid screen of viral proteins

An array-based yeast two hybrid screen was performed, to provide additional information about 

possible functions of viral gene products. All 54 SIRV2 genes and six truncated genes lacking 

trans-membrane domains were cloned to both bait and prey vectors and transferred to yeast 

for an ORFeome array-based screen. Yeast two hybrid screens were performed for each gene 

both in prey and in bait vector to limit the number of false positive interactions and quantified 

by a standard α-galactosidase assay. Several protein interactions between SIRV2 proteins were 

Figure 4 Transcription profiles of SIRV2 genes during viral infection. (A) RNA was isolated from S. islandicus 
cells at several hours post infection, indicated by the numbers on the left associated with each transcription 
map. On the top a schematic representation of the SIRV2 genome is shown, of which the numbers above 
indicate the base pair position. Arrows represent ORFs. The Reads per kilobase of transcript (RPKM) mapping 
to the SIRV2 genome are depicted in light grey on a log scale. Minimum and maximal values of the y-axis of 
each transcription map are shown on the right. (B) Detail of SIRV2 gene expression directly after infection 
(t=0). RPKM are depicted on the y-axis for all 54 annotated genes shown on the x-axis in the order which they 
reside on the SIRV2genome. For detailed information on expression of individual viral genes see Table S2.
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identified (Table 1). The majority of them reflected intramolecular associations of SIRV2 proteins. 

In addition, some interactions between different SIRV2 proteins were identified. The proteins 

of unknown function from ORF95 (NP_666580.1) and ORF73 (NP_666584.1) were found to 

interact. Binding was observed also between two different predicted glycosyltransferases, 

encoded by ORF356 (NP_666578.1) and ORF335 (NP_666562.1). Interestingly, interactions were 

detected between the highly expressed predicted DNA binding proteins from ORF83a\b and the 

Holliday junction resolvase encoded by ORF121 (NP_666569.1).

Table 1. Yeast two-hybrid interaction analysis of SIRV2.

Confirmed heterotypic interactions

ORF83a DNA binding protein ↔ ORF121 Holliday junction resolvase

ORF335 GT1 glycosyltransferase ↔ ORF356 glycosyltransferase

ORF121 Holliday junction resolvase ↔ ORF83b DNA binding protein

ORF95 Unknown protein ↔ ORF73 Unknown protein

Confirmed homotypic interactions

ORF103a Unknown protein

ORF90 With transmembrane domain (ORF90 without TMD shows no interaction)

ORF131a Unknown protein

ORF84a Unknown protein

ORF91 Unknown protein

ORF154 GCN5 acetyltransferase

ORF69 Unknown protein

ORF108 Unknown protein

Host gene response to viral infection

After infection with SIRV2, extensive changes in S.  islandicus gene expression were observed. 

About 30-50% of all host genes were differentially expressed in infected samples compared to 

uninfected control cultures, and these differences were very pronounced (Table S3). The numbers 

of up and down regulated genes were approximately the same. However, the degree of increase 

in expression was much higher amongst the up regulated genes compared to the degree of 

decrease in expression of down regulated genes (Table S3). In datasets from all time points, a 

relatively high fraction (~50-80%) of identical genes were marked as significantly differentially 

expressed (Fig 5). Venn diagrams, representing the extent of similarity between samples, show 

slightly more uniformity in the down regulated compared to the up regulated genes from distinct 

time points (Fig 5).

An analysis was performed with GOseq on differentially regulated genes (142), to detect 

over- represented functional categories of genes. One functional category was significantly 

over represented amongst genes of which expression increased after infection (from one to five 
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h.p.i) . Genes involved in ‘defense mechanisms’ belong to this category (Table S3). Among the 

down regulated genes (from one to three h.p.i.) a single functional group was significantly over 

represented. Its members are genes involved in ‘cell cycle control, cell division and chromosome 

partitioning’ (Table S3). Both these functional categories are discussed in more detail below.

Proteins involved in cell division

Genes belonging to the functional category ‘cell cycle control, cell division and chromosome 

partitioning’ were down regulated after infection. This category has a fairly small number of 

members, with only 14 genes present on the S.islandicus LAL14/1 genome. Half of these genes 

are annotated as ATPases involved in chromosome partitioning. However, four out of these seven 

genes encoding ATPases were up regulated after infection and evidently did not contribute to 

the over representation of this category amongst the down regulated genes (Table S3). The 

majority of the other genes from this category share sequence similarity with eukaryotic genes 

that code members of the ESCRT-III sorting complex. In S.islandicus these genes are part of 

the cdv operon that comprises cdvA, cdvB and cdvC and codes for the Sulfolobus cell division 

machinery, responsible for the constriction of dividing cells (143, 144). Interestingly, the complete 

cdv operon was down regulated around tenfold as a result of infection (Table S3). Moreover, the 

three other cdvB paralogs present in different regions on the S.islandicus LAL14/1 genome, were 

down regulated three to tenfold as a consequence of infection (Table S3).

CRISPR-Cas

Following SIRV2 infection, expression augmented of genes belonging to the functional category 

‘defense mechanisms’ (Table S3). Many members of this category, encode CRISPR (Clustered 

Regularly Interspaced Short Palindromic Repeats)-Cas systems; operons I-A SiL_0385-0392, 

I-A SiL_0393-0397, I-D SiL_0606-0609, I-D SiL_0610-0613, III-Bα SiL_0786-0793 and III-Bβ 

SiL_0600-0605 (Table S3) (145). The CRISPR-associated (cas) genes play essential roles in the 

CRISPR mediated prokaryotic adaptive immune system that can protect cells against invasion 

of mobile genetic elements, i.e. plasmids and viruses (32-34). The S. islandicus LAL14/1 genome 

contains five complete and one incomplete CRISPR-cas arrays. The complete CRISPR-cas 

arrays consist of a CRISPR array and adjacently located cas genes. Unique spacer sequences 

matching specifically to foreign genetic elements, are located in-between the CRISPR repeat 

sequences  (34). Six cas operons are encoded: two I-A subtypes, two III-B subtypes (III-Bα 

SiL_0786-0793 is incomplete, lacking the CRISPR array) and two I-D subtypes consisting of two 

adjacent gene clusters coded in opposite direction (145, 146). In uninfected control cells reads 

mapping to all individual cas genes were detected, although the expression levels of cas operons 

differed considerably. One I-A (SiL_0385-0392) and the III-Bα SiL_0786-0793 operons are highly 
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Figure 5 Correspondence between sets of differentially regulated genes harvested at various time points, 
comparing SIRV2 infected and uninfected control cells. Venn diagrams depict the percentage of identical 
and unique genes amongst the differentially regulated groups taken at 1 to 9 h.p.i. (t=1 to t=9). (A, B) down 
and (C, D) up regulated genes.

Figure 6 CRISPR-cas expression increases after SIRV2 infection. Schematic representation of the six cas 
operons and five associated CRISPR arrays present on the S.islandicus LAL14/1 genome. Operons of type I-A 
(red), I-D (green) and III-B (blue) are present. Numbers within arrows indicate the gene names of all genes of 
which each operon consists. Number above the arrows represent the number of reads mapping to genes of 
the represented operon in control (left) and SIRV2 infected (right) cells. Colours of these numbers indicate 
expression increase (green) or decrease (red) upon infection.
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expressed, the other type III-B operon (III-Bβ SiL_0600-0605) and one I-D operon (I-D SiL_0606-

0609) are moderately expressed (Fig 5, Table S5). Under these conditions, expression of the other 

I-A operon (I-A SiL_0393-0397) and part of the I-D operon (I-D SiL_0610-0613) could hardly be 

detected (Fig 5, Table S7). The CRISPR arrays located adjacent to each cas operon were expressed 

to roughly similar degree as the cas genes that they are clustered with (Fig 6, Table S4). All CRISPR 

arrays contain several spacers matching to different viruses, mostly Rudiviridae. Only the CRISPR 

array 2, adjacent to operon I-A SiL_0393-0397, contains in addition to viral matching spacers, 

many which target plasmids (145). This CRISPR array is hardly expressed (Fig 6, Table S4).

Interestingly at one h.p.i., expression of the majority of cas operons strongly increased. 

The I-A SiL_0385-0392 and I-D SiL_0606-0609 operons were up regulated around tenfold, 

the I-A SiL_0393-0397 and I-D SiL_0610-0613 operons approximately fivefold, and the III-Bβ 

SiL_0600-0605 operon twofold. Expression of the I-D SiL_0606-0609 operon increased during 

infection, while expression of the other cas operons reached the highest level already one h.p.i. 

and remained stable in the course of the infection cycle (Table S4). Expression of cas genes as 

a result of SIRV2 infection was so pronounced that 3.7% of all mapped reads originated from 

cas operons. The incomplete III-B α SiL_0786-0793 operon, without CRISPR array adjacent to it, 

represents the only cas operon which is slightly down regulated after infection (~twofold) (Fig 6, 

Table S4). Thus, expression of all CRISPR arrays increased after SIRV2 infection and typically 

expression kept increasing during the viral infection cycle, in contrast to the adjacent cas genes 

which usually reached highest expression levels quickly after the onset of infection (Table S4).

Toxin-antitoxin

Together with the CRISPR-cas systems, toxin-antitoxin (TA) systems belong to the functional 

category ‘defense mechanisms’. Many TA genes were abundantly up regulated in SIRV2 infected 

cells (Table S3). Prokaryotic TA systems are widespread mobile two-gene elements, which are 

subdivided in three families based on the nature and mode of action of the antitoxin  (147). 

The family II TA systems consist of an antitoxin protein that counteracts the negative effect 

of the toxin protein, which is usually a nuclease that is more stable than the antitoxin (148). 

Family II TA operons are widespread in archaea and especially amongst members of the order 

Sulfolobales (147). The genome of S.islandicus LAL14/1 carries 16 TA operons of the family II 

type VapBC (virulence-associated protein) (145). In addition 6 TA operons are present of another 

recently described family: HEPN-NT (Higher Eukaryotes and Prokaryotes Nucleotide-binding - 

nucleotidyltransferases) (145, 147). Of this HEPN-NT family, fifteen separate antitoxin coding 

genes are found on the S.islandicus LAL14/1 genome and they do not appear to be associated 

with toxins. In uninfected S.islandicus LAL14/1 cells the majority of TA loci are moderately 

transcribed, although expression levels between loci can differ considerably (Table S5). In SIRV2 

infected samples of different time points (except t=0 h.p.i.) expression increased of 11 out of 16 
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VapBC and 3 out of 6 HEP-NT loci. In most cases both the genes coding for the antitoxin and the 

toxin, were up regulated and expressed to similar extent. Gene expression of only two antitoxins 

decreased after SIRV2 infection.

Since gene expression of TA gene clusters previously was reported to increase after heat 

shock together with stress response genes (149), we checked for changes in expression of known 

stress response genes (i.e. HSP, USP, proteasome). After SIRV2 infection, expression of these 

genes decreased (~threefold), or the genes appeared non responsive and expression remained 

constant (Table S3).

Insertion Sequence elements

Just one functional category was marked as over represented amongst up regulated genes after 

viral infection. It is possible that specific sub groups were not scored as over represented in 

the GOseq analysis, because they are part of a large functional category to which many genes 

belong. Therefore, over representation of sub groups was checked manually. Amongst the 

genes of which expression increased after infection, a high proportion of insertion sequence (IS) 

elements was detected (12-15% of all up regulated genes). These belong to the large functional 

category ‘replication, recombination and repair’ (Table S3).

The S.islandicus LAL14/1 genome contains a high number of IS elements, similar to the 

genomes of S.islandicus strains HVE10/4 and REY15A, and of Sulfolobus solfataricus. The 

latter genome contains approximately 200 IS elements, of which active transposition has been 

observed (150). In the S.islandicus LAL14/1 genome 53 predicted IS elements are present of which 

only seven encode intact transposases. However, since IS elements with mutated transposases 

can be mobilized by transposases of the same family acting in trans, a total of 31 IS elements 

in the S. islandicus LAL14/1 genome could potentially be mobile (145). In uninfected cells the 

majority of IS elements were transcribed. As a result of infection, expression of many IS elements 

from different families increased, such that they formed the largest group of up regulated genes 

(Table S3). Most actively expressed were members of the IS1048 group (IS630 family) (Table S3).

Induction of transcription of IS elements after virus infection is peculiar and has not been 

reported previously. However, pronounced increase of expression of IS elements of S. solfataricus 

has been observed as a result of a heat shock and UV irradiation (151) Therefore, high 

expression of IS elements was suggested to be associated with the general stress response of 

S. solfataricus (149).
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Discussion

Using in-depth transcriptome analysis, we have monitored the dramatic changes in gene 

expression occurring during infection of the archaeon S.islandicus with the virus SIRV2. The 

amount of viral transcripts increases in time, until it constitutes approximately 20 % of all mRNA 

in the infected cells. Transcription of these genes has significant impact on host cell morphology 

and metabolism. The host responds to this threat by a vast change in gene expression (~50% of 

genes). Most of the host genes that are strongly activated upon infection are implied to function 

in defense against viruses, thus unveiling a regulatory mechanism that aims at counteracting the 

viral attack.

Viral gene expression

SIRV2 gene transcription starts from the two distal ends of the SIRV2 linear dsDNA genome. For 

some bacterial viruses a slightly similar situation is reported and early transcription was observed 

from genes located on the termini of linear dsDNA genomes of the viruses phi29 and PRD1, 

from the families Podoviridae and Tectiviridae respectively (152-154). In the case of SIRV2 this 

pattern of gene expression might be a consequence of the mode of viral infection that remains 

currently obscure. Since the two ends of the SIRV2 virion are identical, the binding of the virion 

and entry of the viral genome could potentially occur from both sides. In this case, it would 

be advantageous when ORF83a and b, obviously important at early stages of infection, are 

located at either end of the genome and are readily available for transcription. Alternatively, the 

location of genes with identical complementary sequences on both ends of the genome might 

be advantageous for SIRV2 genome replication, which includes formation of head-to-head and 

tail-to-tail replicative intermediates (60). The exact nucleotide identity between SIRV2_ORF83a 

and b and between their homologues in SIRV1 suggests the presence of selection pressure to 

maintain this trait.

The genes highly transcribed later during SIRV2 infection are distributed evenly across the 

viral genome. Little temporal regulation is observed and expression of the majority of genes 

starts immediately after infection and subsequently steadily increases. This is in contrast to the 

viral gene expression of the temperate archaeal virus SSV, of which the expression pattern during 

the first hours after UV induction is dominated by only one early transcript (132). The qualitative 

results of previously performed Northern blot hybridization and primer extension analysis of 

genome transcription of the rudiviruses SIRV1 and SIRV2 correspond with our finding that almost 

all viral genes are transcribed after infection (134).
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Implications for comprehension of viral gene functions

In general, the expression of SIRV2 genes corresponds very well with predicted or confirmed 

gene functions. Transcripts of structural genes (encoding proteins of the viral capsid or egress 

structure), like ORF98, ORF134 and ORF1070 are most abundant late in the infection cycle, while 

expression of the transcriptional regulator SvtR, which represses ORF98 and ORF1070, peaks 

soon after infection (141). Indeed expression of ORF98 and ORF1070 is inversely proportional to 

that of SvtR .

Yeast two-hybrid analysis uncovered several homotypic interactions of SIRV2 proteins, 

all of them without predicted functions. Two different glycosyl transferases were found to 

interact and correspondingly, glycosyl transferases are known to be capable of protein complex 

formation (155, 156).

ORF119c encodes a Rep protein that was implied to initiate viral genome replication and 

aid in resolution of replicative intermediates (140). The viral encoded Holliday junction-resolving 

enzyme was suggested to be required for recovery from situations in which linear SIRV2 genome 

replicative intermediates are generated by Rep cleavage failure (140). Surprisingly, expression of 

ORF119c peaks at the end of the infection cycle, is very poor and is approximately 3000-fold 

lower than that of the Holliday junction resolvase ORF121 (NP_666569.1). This suggests that the 

Rep protein is not required for the analyzed mode of viral replication and might be implemented 

in currently unknown aspects of the viral cycle.

In addition to confirming already proposed functions of genes, the here presented expression 

data also suggest an important role for some uncharacterized viral genes. Most of early expressed 

genes located on the genome termini have unknown functions. SIRV2_ORF103a and SIRV2_

ORF119b have a homologue in Acidianus Filamentous Virus 1 (AFV1), AFV1_ORF99, of which 

the crystal structure was determined (157). AFV1_ORF99 displays a completely novel fold from 

which no function prediction could be derived (157). Interestingly, ORF83a and ORF83b are the 

first transcribed genes after infection. These genes have identical nucleotide sequences and 

are located in opposite direction on each outer end of the genome. Although the expression 

decreases after one h.p.i., the number of transcripts mapping to ORF83a and ORF83b remains 

very high. Since ORF83 encodes a protein with predicted DNA binding capacity and is the first 

gene to be transcribed, it is tempting to speculate that it might have an essential function in 

viral genome replication. In the closely related SIRV1, the ORF83 homologues SIRV1_ORF56a 

and b are also located on the extremities of the linear genome (60). The crystal structure has 

been determined for the ORF83 homolog in SIRV1 (ORF56a), which is lacking 27 amino acids 

on the N-terminus compared to ORF83 (158). The protein has a hexameric configuration and it 

contains an unusually conserved C-terminal cysteine, which might be involved in subunit-subunit 

cross linking. The C-terminal half of the protein displays a classical HTH domain, which is often 

found amongst DNA binding proteins and specifically transcriptional regulators (158). This is 
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reconcilable with a function in genome replication, although the DNA binding activity of ORF83 

has not been experimentally characterized. For initiation of SIRV2 replication nicking activity 

would be required as well. The potential involvement of ORF83 in SIRV2 genome replication is 

enforced by the detected interaction between ORF83 and ORF121 by yeast two-hybrid screen. 

ORF121 is coding for the Holliday junction resolvase that is implied in the resolution of replicative 

intermediates (159). Thus, there seems to be a link between ORF83 and the late steps of genome 

replication.

Host response to viral infection

The consequence of SIRV2 infection could be detected by the adaptation of the S. islandicus 

gene expression profile. Specifically, there was intensive decrease of expression from genes 

involved in cell division, notably ESCRT-III homologs and components of the cdv operon. CdvB 

and cdvC have homologues in the ESCRT-III complex involved in budding of luminal vesicles 

in eukaryotes (160). The decrease in expression of these genes is likely to result from the DNA 

degradation caused by SIRV2 infection, since the cdv proteins are shown to be under control of 

checkpoint systems, which inhibit cell division in response to DNA damage (143). Interestingly, 

it was reported that after infection with the archaeal virus STIV, cdv genes were significantly up 

regulated in the host Sulfolobus solfataricus (51), implying an important function in the STIV 

infection cycle.

Activation of CRISPR-Cas systems

Recent discoveries of novel prokaryotic anti-viral defense mechanisms have raised awareness that 

‘simple’ prokaryotes, in analogy to eukaryotes, have a range of sophisticated immune systems at 

their disposal. The CRISPR-Cas system is of this the most recently described example (34, 161). 

CRISPR-Cas systems are very abundant amongst archaea and often multiple different systems 

are present on the same archaeal genome. The repeat spacer arrays are relatively long and 

can make up 1% of archaeal genomes (132, 162), which indicates the importance of these 

systems for the fitness of archaeal cells. Hyperthermophilic archaeal CRISPR-Cas systems have 

been studied extensively using Pyrococcus furiosus and S. solfataricus as models (163, 164). Both 

organisms encode various Cas complexes, a subset of which has been analyzed in vitro (163-165). 

Transcription of CRISPR arrays was detected in S. solfataricus and P. furiosus (166, 167). However, 

behaviour of archaeal CRISPR- Cas systems during viral infection has hardly been studied until 

now. Nevertheless, during a recent proteomics analysis a number of Cas proteins were detected 

after STIV infection, suggesting that there might be activation of CRISPR-Cas as a consequence 

viral attack (133). The presence of so many different CRISPR-Cas systems in archaeal cells has 

raised questions about the diverse roles they might have during viral infection.
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We observed that SIRV2 infection resulted in massive activation of the CRISPR-Cas systems 

present in S. islandicus. The S.islandicus LAL14/1 genome contains six cas operons, coding for 

complexes of three different types (I-A, I-D and III-B). Expression of five out of six cas operons 

increased as a result of viral infection. Interestingly, expression of almost all cas operons 

augmented three to tenfold, just like the associated CRISPR arrays, making them by far the 

most pronounced up regulated genes after infection. All systems are activated directly after viral 

infection. Two operons, belonging to the I-A and I-D subtype respectively, were considerably 

transcribed in uninfected cells and after viral infection their activation was most pronounced 

of all Cas-operons. After viral infection, expression decreased of the type III-B Cmrα complex, 

without adjacent CRISPR array (168). The type III-B Cmrβ complex was moderately expressed in 

non-infected cells and increased slightly after infection. Thus, the type III-B operons appear to 

react to a lesser extent to SIRV2 infection. These results indicate that type I-A and I-D operons, 

which code DNA targeting Cas complexes, play a more important role during SIRV2 infection 

than the type III-B encoded complexes.

CRISPR arrays of S.islandicus LAL14/1 do not possess any spacers perfectly matching to the 

SIRV2 genome, which is probably the reason why cells do not recover from a SIRV2 infection 

despite the widespread activation of CRISPR-Cas systems.

The described findings demonstrate that the different CRISPR-Cas systems present in archaea 

probably have specialized roles which could result in a ‘tailor-made’ defense reaction for each 

different type of foreign genetic element. Some Cas operons (I-A SiL_0385-0392 and III-Bα 

SiL_0786-0793) are actively transcribed in uninfected cells indicating that the encoded Cas 

proteins might be continuously present in cells to act as ‘watchers at the gate’ which can target 

foreign genetic elements directly when they access the cell. In contrast, other Cas-systems are 

hardly expressed without activation signal arising from viral infection, which is the case for the 

I-A SiL_0393-0397 operon and adjacent CRISPR array, containing a high proportion of plasmid 

targeting spacers.

Expression of Toxin Antitoxin systems

As a result of SIRV2 infection toxin-antitoxin (TA) clusters of the host genome are activated. 

Such clusters are ubiquitously present on prokaryotic genomes (147, 169) and they are proposed 

to function in programmed cell death and in stress response (149, 170). In addition, it was 

demonstrated that bacterial TA systems play a role in abortive infection, during which cells 

commit altruistic suicide after viral infection to protect the clonal population (171, 172). TA suicide/

dormancy systems were proposed to be linked with diverse immunity systems in prokaryotes to 

provide robustness to the antivirus response (173). Indeed, in S. islandicus LAL14/1, as in many 

prokaryotes, a high proportion of TA loci are found in the close proximity of CRISPR-cas operons, 

suggesting their involvement in defense against viruses (173). However, the involvement of 
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archaeal TA systems in anti-viral defense has not yet been demonstrated, although numerous 

TA-encoding genes are present in archaeal genomes. Interestingly, the most actively transcribed 

S. solfataricus gene as a consequence of STIV infection has an unknown function (51), but 

homology searches suggest it might be an antitoxin part of a TA system. SIRV2 infection results 

in a severe increase of expression of many TA loci, of which the majority is VapBC like (Family II). 

The observation that SIRV2 infection did not cause increased expression of any of the regular 

stress response genes suggests that high TA expression in this case is not linked with basal stress 

response and might be a specific reaction to viral infection.

Here we have presented a global map defining host and viral gene expression during the infection 

cycle of the virus SIRV2 in its host, the hyperthermophilic archaeon S. islandicus LAL14/1. This 

pioneering study provides in depth information for all viral and host genes during a time series 

after prokaryotic viral infection. This work has demonstrated once more the power of the recently 

developed RNAseq approach. These findings, in combination with performed yeast two hybrid 

analysis of the viral ORFeome, have corroborated predictions for functions of some SIRV2 genes, 

while suggesting novel functions for others. Moreover, it enables the detailed study of a host 

response to a viral infection, showing massive activation of host anti-viral defense genes, most 

importantly the CRISPR-Cas and TA systems, in the presented case. This information on individual 

gene expression and activation of all the anti-viral defense systems is expected to aid future 

studies aiming to establish the function and interplay of the different systems in vivo.

Experimental procedures

Growth and infection of S. islandicus

Sulfolobus islandicus strain LAL14/1 was grown and infected by the virus SIRV2 as described 

previously (83).

Transmission electron microscopy

SIRV2 infected S.islandicus cells were prepared for electron microscopy at distinct time points after 

addition of the virus (i.e. 0, 5, 9 and 12 h.p.i.). Cells were fixed with 2.5% (wt/vol) glutaraldehyde 

in 0.1 M Hepes buffer (pH 6.5). Postfixation, dehydration, embedment in epoxy resin, sectioning, 

and transmission electron microscopy imaging were performed as described previously (83).

Yeast two hybrid

The yeast two-hybrid analysis was essentially performed as described by Rajagopala and Uetz 

(174). Briefly, open reading frames of SIRV2 were amplified (Table S1) and cloned to pENTR 

Quax.indd   106 29-10-2013   11:30:28



5

Transcriptome analysis of the SIRV2 infection cycle   |  107

vectors for GatewayTM transfer to the bait (pGBT9g) and prey (pGAD424g) vectors. The bait 

vectors were transformed to Saccharomyces cerevisiae AH109 Mata and the prey vectors to S. 

cerevisiae Y187 Matα. An auto activation assay was performed, which showed that addition of 3 

mM 3-Amino-1,2,4-triazole (3-AT) was most optimal for the reduction of background growth of 

the strains. Under these conditions none of the bait constructs resulted in autonomous activation 

of the reporter constructs. We used an eight-clone pooled, array-based mating screening. The 

reciprocal screen (exchanging bait & prey) was performed and verifications of positive interactions 

were done by sequencing and recloning of the initial constructs to S. cerevisiae strain AH109 and 

independent Y2H verification.

RNA isolation and library preparation

Four identical cultures of S. islandicus LAL14/1, were inoculated in 500 ml medium with 5 ml of 

preculture. After ~12 hours of growth, when the optical density (OD) was in the range of 0.1-0.2, 

two of the cultures were infected with SIRV2, while the other two served as uninfected controls. 

Total RNA was isolated from these cultures at different time points after addition of the virus (0, 

1, 2, 3, 5, 7, 9 h.p.i.), with the mirVana™ Isolation Kit (Ambion) using the manufacturers protocol 

for total RNA isolation. The RNA quality was checked with the 2100 Bioanalyzer (Agilent). 5 µg of 

total RNA of each sample was directly used for RNAseq library preparation. Directional libraries 

were prepared using the TruSeq SmallRNA sample prep kit, set A and B (Illumina), according 

to manufactures instructions. The total RNA was chemically fragmented with Ambion reagent 

(AM8740), followed by purification on RNeasy columns (Qiagen, #74204). After treatment 

with phosphatase and polynucleotide kinase, RNA was purified on RNeasy columns (Qiagen, 

#74204). The fragmented RNA was then ligated with 3’- and 5’- TruSeq adapters, as described 

in the manufacturers protocol. Synthesis of cDNA was performed by reverse transcription. The 

cDNA products were specifically amplified by 11 cycles of PCR and products were purified on 

Agencourt AMPure XP beads ( Beckman Coulter Genomics, # A63881). The resulting libraries 

were checked on a Bioanalyzer DNA1000 chip (Agilent). Libraries were sequenced to generate 

single-end 50 bases reads using the Illumina Hiseq 2000 in a multiplexed 51 +7 bases single read 

using a TruSeq SR cluster kit v3 cBot HS (Illumina, # GD-401-3002) and a TruSeq SBS kit v3 HS 

50 cycles (Illumina, # FC-401-3002).

Read mapping

Reads were cleaned from adapter sequences and from sequences of low quality using an in-

house program. Only sequences with a minimum length of 30 nucleotides were considered 

for further analysis. Bowtie ((175), version 0.12.7,) was used to align the reads to the reference 

genomes: S.islandicus LAL14/1 and SIRV2 (60, 145). Gene annotations for SIRV2 and S. islandicus 

LAL14/1 were downloaded from GenBank (accession numbers: NC_004086.1 and CP003928.1 
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respectively). Reads mapping to rRNA were discarded. For each gene, reproducible sites that 

overlapped its protein-coding region, as well as those residing in the intergenic region upstream 

of its beginning, were associated with the gene. Viral genes of which the maximal expression 

level did not exceed 250 Reads Per Kilobase of transcript per Million mapped reads (RPKM) were 

considered lowly expressed genes.

Statistical and GO analysis

DEseq (138) and EdgeR (139) were used to determine significantly up and down regulated genes 

comparing all samples of each time point for each condition (infected or control), and between 

all samples of each condition for each time point. Genes marked as differentially regulated by 

both methods (P<0.05) were kept for further analysis. Venn diagrams were constructed using 

BioVenn (176). For each list of up or down regulated genes between samples a Gene Ontology 

(GO) analysis was performed using GOseq (142) on the 10% of genes with the lowest P-values. 

Genes were sorted to functional groups according to the COG data available on the NCBI 

site: http://www.ncbi.nlm.nih.gov/COG/grace/fiew.cgi. ArCOGs were linked with S.islandicus 

LAL14/1 genes based on homology of these with other S.islandicus strains available in the arCOG 

database (177).

RNAseq data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under 

accession number E-MTAB-1660.
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Supplemental Tables

Table S1. Primers for amplification of SIRV2 ORFs for yeast two-hybrid screen
SIRV2ORF83aF CACCATGAAAGTCGAGAGATACAAATG
SIRV2ORF119aF CACCATGCACATATGTAAAAGTGGTGAG
SIRV2ORF103aF CACCATGAAAAAGATGAAATTCGAAACGT
SIRV2ORF90F CACCATGGATGAAGATCTTTTAGTTGAAG
SIRV2ORF109F CACCATGAATGTAGAAAATCAAGTAG
SIRV2ORF116F CACCATGAGAAATATGGGCTATCAATATA
SIRV2ORF131aF CACCATGAGTCAAAAAGTCGAATTTCC
SIRV2ORF103bF CACCATGAGTTTTTCGTATATATCAATTAGTG
SIRV2ORF111F CACCATGAGGAGAAAATTAGGAAAAAGAC
SIRV2ORF105aF CACCATGGAATTTGAAGATTTAGATGTAG
SIRV2ORF62aF CACCATGAAGATTCTAGTAGATAATG
SIRV2ORF102F CACCATGATTTTCAATTCGCCAATTGTTC
SIRV2ORF310F CACCATGAAATTAGTATTTGAAATAACATC
SIRV2ORF399F CACCATGGAATTCGAAAGAAAAAGTTCTG
SIRV2ORF56bF CACCATGCAAACTCAAGAACAATCTAAAC
SIRV2ORF119cF CACCATGGATTTGAAAAAAGTTTTAAATTTTC
SIRV2ORF119cF-TRUNC CACCATGGATACTGAAAAAATTTTTAAAAAATTTCGAC
SIRV2ORF131bF CACCATGGCCTCATTAAAACAAATAATAG
SIRV2ORF436F CACCATGAGTGAAAACACACAAC
SIRV2ORF207F CACCATGGTAAATATGAATTATGAAG
SIRV2ORF84aF CACCATGAGGAATATGAGTCAAATAGAAG
SIRV2ORF59bF CACCATGATGAAGATTATTACATTTAAAATTCC
SIRV2ORF91F CACCATGACTGATTATAAAAACGGAATAAAG
SIRV2ORF158bF CACCATGATTTTATCAGATAGAG
SIRV2ORF103cF CACCATGGAAATTGATCTAAAGAATGAATGTAG
SIRV2ORF76F CACCATGCATATCTTTGTGAATAACTTCTTG
SIRV2ORF134F CACCATGGCAAAAGGTCACACATCAAG
SIRV2ORF55F CACCATGGCACTATTAGGATATGAATGTC
SIRV2ORF335F CACCATGAAAACTGCAATTTTAACTATG
SIRV2ORF156F CACCATGGTAGCTAAAGGATTTTATATGTG
SIRV2ORF64F CACCATGATATCTTATTATTATGATGAAAAAG
SIRV2ORF84cF CACCATGAATTATCTGAGGAGGAAAGTG
SIRV2ORF84cF-TRUNC CACCATGAAAATTAAGCAAGCATTAAAAG
SIRV2ORF110F CACCATGAAAATTGAAGATCCTTTTC
SIRV2ORF488F CACCATGACACTGTATGACATTTATATAC
SIRV2ORF154F CACCATGAATCCAAAATATGAAATTGAAG
SIRV2ORF121F CACCATGAACATTAGACAATCCG
SIRV2ORF69F CACCATGTCAGAGCAAAAGAGAAG
SIRV2ORF114F CACCATGAATAAAGTCTATTTGGCAAATG
SIRV2ORF1070F CACCATGTTTATAATTTTGAAAAGAAAC
SIRV2ORF564F CACCATGATATATTATATCATGCCTTTAC
SIRV2ORF309F CACCATGTCTTCAACTTGTAATCCAATTAC
SIRV2ORF158aF CACCATGAATTATGATGATTATTTTTG
SIRV2ORF269F CACCATGAGTGTAACTTATACTTCAATTTC
SIRV2ORF269F-TRUNC CACCATGAATACTTTAAATAAGTTAACAC
SIRV2ORF176F CACCATGAAAATTTTCACTTTCGTAGG
SIRV2ORF356F CACCATGCAAAAAACTATTTTCTATGTC
SIRV2ORF94F CACCATGGTGAAAAAAATGGAGTTTGAAG
SIRV2ORF95F CACCATGAATTTGAAAAAAGTTAAACGAATTATAG
SIRV2ORF112F CACCATGAGTTTTTATATAATGTATATTAAGGTG
SIRV2ORF249F CACCATGGAGGTAAAACAGATAAAGAAG
SIRV2ORF98F CACCATGGCTATAACATTATTAGAAGGAG
SIRV2ORF98F-TRUNC CACCATGGGAGAAATTGTCCACTTATATAATG
SIRV2ORF73F CACCATGTTTTTTGAAGATTCTAATATACAAG
SIRV2ORF108F CACCATGGGGAAAAAAATGGATGATATAC
SIRV2ORF105bF CACCATGATAGATGAAAAGGCACAAG
SIRV2ORF119bF CACCATGCACATATGTAAAAGTGAGG
SIRV2ORF83bF CACCATGAAAGTCGAGAGATACAAATG
SIRV2ORF83aR CTAACAACTCTCCAAATATCTCCTA
SIRV2ORF119aR TTAATGATACTTAATCATTTCAAC
SIRV2ORF103aR TTACTTTTTGACTTTTCTCCAGAAATG
SIRV2ORF90R TCATCTCAAATTTTTCACTTTATACAG
SIRV2ORF90R-TRUNC TCAAGAATTATTATCGACAAATTTTTTATC
SIRV2ORF109R TTATTGACATTTAAATATAAGTCTTG
SIRV2ORF116R TTAGGAAATCTTATTAATAGATTTTTC
SIRV2ORF131aR TTAATATCTAGAAATCTCTGG
SIRV2ORF103bR TTAGTTTTTTATTAATTTGATCTTATG
SIRV2ORF111R TTATTTATTATTATTGTTTATCAAATTCTG
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SIRV2ORF105aR TTAAATATTGTTTTCTTCATCCTC
SIRV2ORF62aR TTAAAGAACTTTAATCCTCTTTATTCC
SIRV2ORF102R TTAGAAATATAAATTTGTTATCC
SIRV2ORF310R TTATATTTCTAATTCTATCTC
SIRV2ORF399R CTATTTTGGCATGACATTTATTTTAC
SIRV2ORF56bR TTAACCGCCTCGTTTTTGCAAATATTC
SIRV2ORF119cR TTATGACATTTTTATATCTTTTTTTG
SIRV2ORF131bR TTAAAACTCCTCCTCAACTG
SIRV2ORF436R TTACCATCCTCCTAAATTGCTAAATC
SIRV2ORF207R TTAAAAAAGTGATATAATGCATTTTTG
SIRV2ORF84aR TCATTTTAAATCACCATTCCCGAAAAC
SIRV2ORF59bR TCAGAACTTTATTTTCTCAACTTTTG
SIRV2ORF91R TCAGACATTTAAATCACCTAAC
SIRV2ORF158bR TTAATCTTCTTTTGCTAAAGTTAC
SIRV2ORF103cR TCAGTTCTTATTTTCAGTTTCTGAC
SIRV2ORF76R TTAGTTAAGCAGATAAGAC
SIRV2ORF134R TTAACTTACATATCCAGTTGGGCTTC
SIRV2ORF55R TTATTCTTCTTCAGCCTTTATTTC
SIRV2ORF335R TCATTCTAAGAATCTAGTATATAAATTTC
SIRV2ORF156R CTAAAGTAAATAAATCGTTACTTTATTTAG
SIRV2ORF64R TTACCATAATCCCCATTCCTTACTATC
SIRV2ORF84cR TCATTTTTTATCTAACCTCC
SIRV2ORF110R TCACTCATCTTCACTTTCCTCCTCAG
SIRV2ORF488R CTATCTATTTGCAATATTTTGAAAATTC
SIRV2ORF154R TCACTTATTAAGATATTTTACATAAACTTC
SIRV2ORF121R TTAGCTGTTAATTCCGTATTTAAATTTG
SIRV2ORF69R TCATTTTTCCTCACCTTCAACTG
SIRV2ORF114R TTAGTCTACAATTATCTCAAAAAATTG
SIRV2ORF1070R TTAGTAAGCACTTCTTAATTGCC
SIRV2ORF564R TCACGCGACATAAATTGTAGTTAATTG
SIRV2ORF309R TTATTGACAATTATTATTTATTATTTGTG
SIRV2ORF158aR CTATAACTTGCAAAATACAAATTCTC
SIRV2ORF269R TCATGACTGAACTACCTCAAATAAC
SIRV2ORF269R-TRUNC TCAAGCATTTATTCCAGTTTTTTGTAATTGTG
SIRV2ORF176R TTATTTCTCCATTGGAGTTTTTAC
SIRV2ORF356R TTAGTTAGTATATTTTTCTACTAC
SIRV2ORF94R TTAACTAGATCTCCAAAAATCGATTTC
SIRV2ORF95R TTATCTCTTTTCACGAAATAAATC
SIRV2ORF112R TTAACTTTCTAAAACAGATTTAACTTG
SIRV2ORF249R TTAATCATTTCCTGACCGTCTTGG
SIRV2ORF98R TTATTTAGCTTGCGTATTTGGATTTTG
SIRV2ORF73R TCACAATTTTTTAGTACGCAATATTTG
SIRV2ORF108R TTATCTTGGATATCTAATTAATTG
SIRV2ORF105bR TTATGAATTTGAAGTAATTGATTTTTCTAG
SIRV2ORF119bR TTAAATATTGTCTTCTTCATCTTC
SIRV2ORF83bR CTAACAACTCTCCAAATATCTC

Table S2. SIRV2 gene expression during the infection of S.islandicus LAL14/1.
Depicted is the absolute number of reads per kilobase of transcript (RPKM) mapping to each SIRV2 ORF. 
t=0-t=9, samples harvested 0 to 9 h.p.i.

gp 
number

GenBank 
accesion 
number

Gene t0 t1 t2 t3 t5 t7 t9

1 NP_666535.1 ORF83a 6062 234957 114130 102725 124763 122335 145288

2 NP_666536.1 ORF119a 1844 18097 18415 11469 10876 10111 15075

3 NP_666537.1 ORF103a 1579 55032 31152 22256 19755 17921 21598

4 NP_666538.1 ORF90 4 507 1158 1205 1289 1441 2145

5 NP_666539.1 ORF109 426 7488 6345 4976 5411 5708 7832

6 NP_666540.1 ORF116 7 1094 1521 1460 1339 1125 1256

7 NP_666541.1 ORF131a 1318 20975 17605 11782 10816 9846 13568

8 NP_666542.1 ORF103b 881 11264 6907 4864 4417 4423 5649

9 NP_666543.1 ORF111 15 1415 1126 644 457 460 708

10 NP_666544.1 ORF105a 105 28146 30401 24217 16604 14208 14841

Quax.indd   110 29-10-2013   11:30:29



5

Transcriptome analysis of the SIRV2 infection cycle   |  111

gp 
number

GenBank 
accesion 
number

Gene t0 t1 t2 t3 t5 t7 t9

11 NP_666545.1 ORF62a 32 10257 14635 12437 10466 7601 8116

12 NP_666546.1 ORF102 8 1851 4317 3877 3743 3191 3673

13 NP_666547.1 ORF310 3 466 3531 5612 8494 9407 11545

14 NP_666548.1 ORF399 10 2309 20762 28828 39014 36691 37579

15 NP_666549.1 ORF56b 506 119860 176877 133456 94962 65015 74368

16 NP_666550.1 ORF119c 0 31 79 79 110 154 249

17 NP_666551.1 ORF131b 98 27559 34150 28102 18297 12604 14973

18 NP_666552.1 ORF436 19 2846 3650 2924 2843 2616 3124

19 NP_666553.1 ORF207 6 1901 2803 2604 3205 3503 4165

20 NP_666554.1 ORF84a 39 7712 5906 3390 1892 1347 1976

21 NP_666555.1 ORF59b 50 14450 10386 5819 3911 3039 4725

22 NP_666556.1 ORF91 29 6406 5422 2982 2246 1987 3207

23 NP_666557.1 ORF158b 38 7832 8260 6496 5186 4419 5761

24 NP_666558.1 ORF103c 16 2220 2019 1444 1143 1093 1468

25 NP_666559.1 ORF76 0 110 108 152 104 154 188

26 NP_666560.1 ORF134 11 1632 204021 352185 500990 494474 642358

27 NP_666561.1 ORF55 15 6298 9896 8268 8152 9753 14292

28 NP_666562.1 ORF335 8 2326 6049 6090 6034 5322 5277

29 NP_666563.1 ORF156 47 9939 15146 12438 12519 12339 16213

30 NP_666564.1 ORF64 3 215 2754 3867 5249 5859 7190

31 NP_666565.1 ORF84c 4 429 5384 7465 10196 10388 13808

32 NP_666566.1 ORF110 9 1719 30817 40884 57344 63616 82868

33 NP_666567.1 ORF488 1 43 3249 4059 5243 5220 6576

34 NP_666568.1 ORF154 28 6298 7481 5776 3848 2620 3288

35 NP_666569.1 ORF121 60 16213 35186 30426 24630 20333 23433

36 NP_666570.1 ORF69 48 13629 32895 32119 30890 26281 26026

37 NP_666571.1 ORF114 64 12965 29720 26565 30049 27729 30912

38 NP_666572.1 ORF1070 2 480 10110 14126 21404 24211 30762

39 NP_666573.1 ORF564 1 190 3791 5621 8573 9382 12388

40 NP_666574.1 ORF309 1 39 780 1259 1807 1924 2521

41 NP_666575.1 ORF158a 0 269 6945 9208 13972 15128 19898

42 NP_666576.1 ORF269 2 446 12175 14788 22518 26154 31785

43 NP_666577.1 ORF176 6 857 4217 4319 4684 4201 4379

44 NP_666578.1 ORF356 1 545 4185 4970 6543 6419 6980

45 NP_666579.1 ORF94 9 2116 2588 2237 1693 1291 1446

46 NP_666580.1 ORF95 28 6684 7016 5738 3925 2604 2470

47 NP_666581.1 ORF112 944 21650 15916 11745 10063 8770 13575

48 NP_666582.1 ORF249 1477 36410 35947 24487 22987 22802 30834

49 NP_666583.1 ORF98 35 5141 64921 94658 156902 189222 239929

50 NP_666584.1 ORF73 0 291 432 401 448 392 534

51 NP_666585.1 ORF108 332 61453 49118 30234 20815 14979 19408

52 NP_666586.1 ORF105b 840 5937 4530 2846 2818 2835 4261

53 NP_666587.1 ORF119b 1525 19554 17692 10939 10603 11636 17028

54 NP_666588.1 ORF83b 3031 117479 57065 51363 62382 61168 72644
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Table S5 Predicted toxin and antitoxin genes in the S.islandicus LAL14/1 genome.
Of each gene the average amount of reads (given in RPKM) in uninfected control (C) and SIRV2 infected (I) 
cells, and their fold change in expression (FC) is depicted. Significantly up (green) or down (red) regulated 
genes are colour coded in the FC column. TA pairs are show in light/dark grey.

Toxin-antitoxin genes

Family II: VapBC like

gene arCOG control infected FC

SiL_2040 arCOG00713 211 943 4,5 toxin

SiL_2041 arCOG00815 2423 5096 2,1 antitoxin

SiL_2042 arCOG07235 298 334 1,1 antitoxin

SiL_2043 arCOG00727 34 45 1,3 toxin

SiL_2080 arCOG00820 122 148 1,2 antitoxin

SiL_2081 arCOG06028 300 412 1,4 toxin

SiL_2134 arCOG00815 2615 8314 3,2 antitoxin

SiL_2135 arCOG02730 1310 4746 3,6 toxin

SiL_2176 arCOG00729 153 104 0,7 toxin

SiL_2177 arCOG02218 636 361 0,6 antitoxin

SiL_2253 arCOG02731 173 543 3,1 toxin

SiL_2254 arCOG00824 204 626 3,1 antitoxin

SiL_2575 arCOG02222 26 87 3,3 toxin

SiL_2576 arCOG00818 3 12 3,5 antitoxin

SiL_0190 arCOG03845 10 40 4,2 antitoxin

SiL_0382 arCOG00818 85 229 2,7 antitoxin

SiL_0383 arCOG02221 42 159 3,8 toxin

SiL_0359 arCOG02219 352 269 0,8 toxin

SiL_0360 arCOG08550 294 188 0,6 antitoxin

SiL_0413 arCOG02681 288 676 2,3 antitoxin

SiL_0414 arCOG02219 45 135 3,0 toxin

SiL_0431 arCOG00726 480 2403 5,0 toxin

SiL_0432 arCOG02217 448 2325 5,2 antitoxin

SiL_0619 arCOG00729 16 60 3,9 toxin

SiL_0620 arCOG02218 129 555 4,3 antitoxin

SiL_0631 arCOG00727 52 92 1,8 toxin

SiL_0632 arCOG02217 109 235 2,1 antitoxin

SiL_0634 arCOG00815 140 216 1,5 antitoxin

SiL_0635 arCOG02730 51 73 1,4 toxin

SiL_0734 arCOG07589 363 1285 3,5 toxin

SiL_0735 arCOG08216 1333 3607 2,7 antitoxin

SiL_0914 arCOG05414 568 3151 5,5 antitoxin

SiL_0915 arCOG03706 491 3091 6,3 toxin
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Family II: HEPN-NT

gene arCOG control infected FC

SiL_0103 arCOG01191 292 603 2,1 antitoxin

SiL_0487 arCOG01203 198 251 1,3 toxin

SiL_0488 arCOG01192 63 134 2,1 antitoxin

SiL_0497 arCOG03707 40 88 2,2 antitoxin

SiL_0628 arCOG02106 27 97 3,6 toxin

SiL_0629 arCOG02109 25 94 3,7 antitoxin

SiL_0651 arCOG03721 276 520 1,9 antitoxin

SiL_0772 arCOG03721 601 2013 3,3 antitoxin

SiL_0781 arCOG03712 26 107 4,1 antitoxin

SiL_0782 arCOG01197 165 246 1,5 toxin

SiL_0783 arCOG01191 90 139 1,6 antitoxin

SiL_0784 arCOG03712 31 87 2,8 antitoxin

SiL_0795 arCOG03712 523 590 1,1 antitoxin

SiL_0798 arCOG03721 330 343 1,0 antitoxin

SiL_0885 arCOG03721 93 83 0,9 antitoxin

SiL_0925 arCOG01197 709 731 1,0 toxin

SiL_0926 arCOG01191 121 101 0,8 antitoxin

SiL_0927 arCOG01192 8 42 5,1 antitoxin

SiL_0944 arCOG01191 255 293 1,1 antitoxin

SiL_0945 arCOG07292 146 229 1,6 toxin

SiL_0947 arCOG01204 182 249 1,4 toxin

SiL_0948 arCOG01191 80 110 1,4 antitoxin

SiL_1888 arCOG04066 361 331 0,9 toxin

SiL_1975 arCOG03721 1325 316 0,2 antitoxin

SiL_2312 arCOG03712 217 373 1,7 antitoxin

SiL_2474 arCOG03721 448 1019 2,3 antitoxin

SiL_2475 arCOG03721 867 1701 2,0 antitoxin
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Abstract

Clustering of functionally related genes in operons allows for co-regulated gene expression in 

prokaryotes. This is advantageous when equal amounts of gene products are required. Production 

of protein complexes with an uneven stoichiometry, however, requires tuning mechanisms 

to generate subunits in appropriate relative quantities. Using comparative genomic analysis, 

we show that differential translation is a key determinant of modulated expression of genes 

clustered in operons and that codon bias generally is the best in silico indicator of unequal protein 

production. Variable ribosome density profiles of polycistronic transcripts strongly correlate with 

differential translation patterns. In addition, we provide experimental evidence that de novo 

initiation of translation can occur at intercistronic sites, allowing for differential translation of any 

gene irrespective of its position on a polycistronic messenger. Thus, modulation of translation 

efficiency appears to be a universal mode of control in bacteria and archaea that allows for 

differential production of operon-encoded proteins.
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Introduction

CRISPR-Cas

The whole transcriptome analysis presented in the previous chapter of this thesis, has revealed 

wide spread activation of anti-viral defense systems as a consequence of SIRV2 infection, notably 

CRISPR-Cas. Genomic CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) arrays 

consist of palindromic repeats which are regularly interspaced by short sequences which are 

matching to foreign genetic elements, like plasmids and viruses (34). These CRISPR arrays are 

transcribed and the precursor CRISPR RNA (pre-crRNA) is processed, resulting in small crRNA 

molecules that can be used as guides to specifically target complementary foreign genetic 

elements. Associated with these chromosomal CRISPR arrays, operons of cas genes are located 

that encode Cas proteins (34). Some Cas proteins are involved in the incorporation of new 

spacers in the CRISPR array and while others are required for the targeting of foreign genetic 

elements using the small processed spacers as guide. The role of CRISPR-Cas systems in adaptive 

immunity was discovered in 2005, and in the last years considerable efforts have been made 

by various groups to biochemically characterize the Cas proteins (32, 33, 178). Many different 

CRISPR-Cas systems exist, which all code for slightly different Cas proteins (146). In a single 

genome, multiple different CRISPR-Cas systems may be present, as is the case for S.islandicus 

that contains six CRISPR-cas arrays of three different types. The hallmark of type I and type III 

CRISPR systems is that the majority of their Cas proteins is forming a functional complex that 

targets invading foreign genetic elements by binding and/or cleavage of the alien DNA or RNA. 

These complexes typically contain an uneven stoichiometry; i.e. the type I-E Cascade complex 

has five protein subunits present in the ratio 1:2:6:1:1 (35). The three different S. islandicus Cas 

complexes have currently undetermined stoichiometry, Types I-A, I-D and III-B. All Cas complexes 

are encoded on operons. Whole transcriptome sequencing of S. islandicus cells shows that cas 

genes are co-transcribed as a polycistronic mRNA, consistent with the classical operon concept. 

Thus, to match requirements of the complex stoichiometry, the tuning of protein concentrations 

likely occurs on a different level.

The uneven stoichiometry of the Cas complexes is not unusual. In fact, many protein complexes 

with uneven stoichiometry play key roles in essential cellular processes (45, 179-185). The majority 

of them are, like the Cas complexes, encoded on operons, raising questions about the regulation 

of their stoichiometry. To address this question, in this chapter we perform comparative analyzes 

of prokaryotic genomes to study the possible correlation of subunit stoichiometry with features 

influencing gene expression.
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Operons

The operon concept was developed over 50 years ago by Jacob and Monod (186). Their 

pioneering analyzes revealed a fundamental and characteristic feature of prokaryotic genome 

organization, i.e. clustering of functionally related genes (187). The operon organization allows 

for co-regulated gene expression (188-190). This is evidently advantageous when equimolar 

amounts of gene products are required, for instance to generate multi-subunit complexes 

with an even stoichiometry. However, a substantial number of operon-encoded multi-subunit 

complexes have an uneven stoichiometry and many of these play key roles in cellular processes 

like protein translation, secretion, energy conservation and anti-viral defense (45, 180, 185, 191). 

Although it is anticipated that a specific tuning mechanism is required to generate subunits of 

these complexes in appropriate relative quantities, the elucidation of its molecular basis is a long 

standing issue.

Control of subunit stoichiometry can theoretically be established at three levels: transcription, 

translation, and/or protein turnover. Only a few proteolysis substrates have been recognized 

to date and comparison of the protein degradation rates proteins awaits the generation of 

comprehensive proteomic pulse-chase databases (192). Although a minor contribution of 

different protein half-life values cannot be ruled out, it is considered most likely that prokaryotes 

avoid substantial energy loss by controlling different rates of subunit biosynthesis in order to 

obtain the appropriate relative quantities. Hence, uneven subunit stoichiometry of operon-

encoded protein complexes is likely to be controlled by fine tuning of differential transcription 

and/or translation rates. In the classical operon model multiple genes/ cistrons are transcribed 

on a single polycistronic messenger, resulting in the same levels of mRNA segments that are part 

of the operon mRNA (186). Indeed, many full length polycistronic mRNAs have been identified 

experimentally, and in these cases differential transcription or stability cannot account for 

uneven protein output. The recent development of whole transcriptome sequencing has allowed 

for a more detailed analysis of operon transcription, which has revealed widespread internal 

transcription initiation and/or termination sites (193, 194).

Another possibility for differential production of operon-encoded proteins involves regulation 

of translation efficiency. Translation efficiency dependins on a range of features hidden in the 

non-coding and coding fragments of transcripts’ nucleotide sequences and tuning may occur at 

the level of translation initiation and translation elongation (195-205).

Besides analysing relative production of the polypeptide end products, until recently no 

high throughput methods were available for the direct monitoring of translation efficiency. The 

recent development of a ribosome density profiling method provides insight into transcriptome-

wide translation efficiency and offers the exciting possibility to study operon-encoded protein 

translation in greater detail (202, 206). In this Report, we present results of a comparative genomic 
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analysis of operon-encoded proteins showing that differential translation is a key determinant of 

modulated expression of individual genes that are part of operons.

Results

Selection of datasets

Expression of a given gene is influenced by many determinants, each of which plays a role 

in producing appropriate levels of the encoded proteins (199, 207-209). To understand how 

differential production of operon-encoded proteins is achieved, one should assess the relative 

contribution of each of these key controlling features to the expression of the individual 

genes within an operon. Apart from the rapidly growing database of archaeal and bacterial 

genomes (http://www.ncbi.nlm.nih.gov/genome/ ) the recent availability of several prokaryotic 

transcriptome data sets (194, 210-214) as well as bacterial ribosome density profiles (202, 206), 

provide the data that is required for addressing the issue of tuning uneven subunit stoichiometry.

A set of well-conserved operon-encoded protein complexes from prokaryotes was selected 

to allow for the identification of factors that correlate best with, and thus may be causative 

for, differential protein production. Ten operons were chosen on the basis of their established 

uneven protein stoichiometry, and because they are conserved in many bacterial or archaeal 

genomes. In addition, two operons were included as controls because they encode complexes in 

which all subunits are present in equal amounts (Tables S1 and S2). Comparative analyzes were 

performed on a set of 1055 bacterial and archaeal genomes, of which we selected a subset 

of 383 to avoid biases caused by the close relationships among some of the available genomes, 

e.g. at the species or sub-species level (Tables S1 and S2). All selected operons encode protein 

complexes that play key roles in important cellular processes (e.g. translation, secretion, energy 

production and defense) (45, 179-185, 191, 215).

Differential transcription

We first assessed whether differential transcription or, more specifically, different levels of mRNA 

segments encoding the cistrons in the selected set of operons, reflects differential production 

of subunits of complexes with uneven stoichiometry. To this end we used the high-throughput 

whole transcriptome sequencing data and tiling-array expression data for representative 

microbes including three bacteria and an archaeon (194, 210-214). Differences in the mRNA 

levels corresponding to genes within an operon could arise from internal transcription initiation/

termination and/or processing and differential decay of polycistronic mRNA (216). In addition, 

experimentally determined transcription start-site (TSS) maps for each organism were analyzed to 

identify potential alternative transcriptional units within the selected clusters. In the majority of 
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the analyzed operons (90%), deep transcriptome sequencing data showed that genes encoding 

different proteins were transcribed to similar levels (Table S1, Fig. S1). Thus, modulation at the 

transcription level, i.e. generating non-stoichiometric mRNA segment levels, may contribute to 

some extent, but does not appear to be a dominant factor in tuning the differential production 

of proteins.

Differential translation- in silico analysis

As the minor effect observed at transcription level cannot account for drastically different protein 

output from operons, we set out to analyze the contribution of differential translation. Previous 

analysis of (mono-cistronic) transcripts in prokaryotes has shown that several factors could 

contribute to the overall efficiency of the translation process. We analyzed the correlation of 

each of the factors with protein subunit stoichiometry, using the aforementioned dataset of well 

characterized complexes.

Translation initiation

Conventional translation initiation in bacteria involves binding of the 30S ribosomal subunit to 

the ribosome binding site (RBS) of an mRNA. This is generally dependent on the Shine-Dalgarno 

(SD) sequence which base-pairs with the anti-SD sequence in 16S rRNA to guide selection of the 

correct start codon. The rate of translation initiation depends on, (i) the strength of interaction 

of SD/anti-SD base-pairing (217), and on (ii) the accessibility of the ribosome binding site 

(involving primarily SD and/or the start codon), which is negatively affected by stable secondary 

structure (205). In the absence of a canonical SD-motif, the codon following the initiation codon 

may affect translation initiation efficiency (200).

By calculating the RNA hybridization energy between the SD sequences and the anti-SD 

sequences (G) of the genes within the selected operons, the majority of the RBS’s failed to 

reveal statistically significant differences between genes in operons (Table S2). Similarly, analysis 

of adenine enrichment of the second codon showed no association with stoichiometry of 

the complex subunits (Table S2). These observations suggest that the affinity of the SD/anti-

SD interaction and the nature of the second codon do not play major roles in differentiating 

translation efficiency.

Next, the propensity of forming secondary RNA structure (E) in RBS regions of genes (-20 

to +20 bp relative to the start codon) of selected operons was calculated. To compute the 

operon-specific values, accounting simultaneously for genome-specific and operon-specific 

biases, the mean for the respective operon was subtracted from individual gene values (∆E 

value) and the differential was adduced over the complete set of operons of the given type. 

This analysis revealed a moderate but significant correlation between subunit stoichiometry and 

mRNA folding (∆E: rSpearman=0.57, P=0.0092; Figs. 1A and B, S2, S3 and Table S2). In addition, we 
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calculated the propensity of forming secondary RNA structure in the region -4 to +37 bp relative 

to the start codon which showed a similar trend as the calculations for the other region (∆E: 

rSpearman=0.47, P=0.0188; Table S2). These results indicate that the structural accessibility of RBS 

might contribute to the differential gene expression in several of the selected operons.

Translation elongation

The efficiency (accuracy and/or rate) of translation elongation depends on the coding sequence 

of a gene (196, 201). Codon bias reflects differences between isoacceptor tRNAs with respect 

to abundance, amino acid charging, and kinetics (197, 218, 219). In addition, translation is 

enhanced by co-occurrence of isoaccepting codons (195, 204), i.e. codons that are recognized by 

the same tRNA (by Watson-Crick base pairing or by wobbling, which allows non Watson-Crick 

base pairing between two nucleotides of interacting RNA molecules). A comparative analysis of 

codon usage and co-occurrence was performed in genes of the selected operons (Table S2). For 

each analyzed genome, the frequency of optimal codons (220), the classical Codon Adaptation 

Index (CAI) (203), the percentage of optimal codons (F) and codon co-occurrence (Co) (195) 

were calculated. A significant correlation was observed between protein subunit stoichiometry 

and family-averaged scores for codon co-occurrence (∆Co: rSpearman=0.63, P=0.0099) (Figs. 1A 

and D, S2, S3 and Table S2). The results obtained for CAI and F were in excellent agreement 

and indicated that, in all selected operons, the genes encoding the most abundant proteins 

(>2 copies per complex) contain the highest percentage of optimal codons and display the 

highest CAI values (Figs. 1A and C, S2, S3 and Table S2). A threshold value of 0.02 for the 

family average value ∆F was determined to minimize the error rate for the prediction of high-

stoichiometry subunits, resulting in prediction accuracy of 96% for the analyzed set of operons 

(Fig. S4). Overall, for all selected operons, there was a strong correlation between codon usage 

and protein stoichiometry (for ∆F: rSpearman=0.75, P=0.0002; for ∆CAI: rSpearman=0.71, P=0.0002; 

Experimental procedures).

Ribosome profiling

To determine in vivo translation rates, we analyzed ribosome density profiles of Escherichia 

coli and Bacillus subtilis that were recently reported by Weissman and colleagues (202). The 

ribosome profiling strategy allows for quantitative monitoring of protein production in vivo 

because ribosome density values closely correlate with translation efficiencies if the cross-linked 

ribosomes are evenly distributed over the coding sequence (206). On the other hand, local peaks 

in density characterize sequences with lower translation efficiency due to ribosome stalling (202). 

For the selected operons, we found a strong correlation of ribosome density with protein subunit 

stoichiometry (Figs. 1A and E, S5 and Table S2). This finding is in perfect agreement with our 

conclusion that uneven production of subunits of operon-encoded protein complexes is tuned 

by differential translation.
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Figure 1. Cistron properties correlated with stoichiometry of operon-encoded protein complexes. The 
analysis of the ribosomal protein operon L7/L12 (high expression), the F-type ATPase (moderate expression) 
and the Type I-E Cascade complex (low expression) are depicted. (A) selected operons (block arrows), and 
the stoichiometry in the corresponding protein complexes; (B) predicted mRNA folding energy (∆E) of the 
RBS region of each cistron (-20 to +20 bp relative to the start codon). (C) codon bias; ∆F (optimal codon 
usage) is shown by dark grey, and ∆CAI (Codon Adaptation Index) is shown by light grey; (D) codon co-
occurrence (∆Co); (E) ribosome density profiles per gene. Error bars indicate standard deviations. The green 
arrows represent genes in each operon that encode the most abundant subunit(s), and green rectangles 
denote the corresponding positive deviations in codon bias (∆F>0.02), codon co-occurrence (highest value), 
low RNA folding potential (highest energy value) and/or ribosome density (highest value). See also Figs. S1-
S5 and Table S2.
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Figure 2. Translation efficiency influences protein expression from individual genes within 
operons. (A) expression constructs under control of the T7 promoter (grey arrow) encoding different 
combinations of two identical GFP polypeptides, with synonymous mutations, resulting in low (yellow 
block arrow, gfpL) or high (green block arrow, gfpH) translation efficiency; the single genes, as well as the 
downstream gene of the operons are translational fusions to a Strep-tag (white block arrow; in construct 
name indicated by an asterisk, *); SD, SD-sequence (Fig. S6). (B) Quantification of Western blot with GFP 
antibody on whole cell lysates of the variant GFP-expressing constructs after expression in E.coli; equal total 
amounts of cellular proteins were loaded in order to allow comparison between different samples (Fig. S6).
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De novo translation initiation

The fact that genes coding for abundant subunits do not necessarily occupy the first position in 

the respective operons (Figs. 1, S2, S3 and S5) implies that internal translation initiation is required 

to allow for elevated translation rates of a downstream cistron. To investigate the possibility of 

internal initiation of translation, we used operons consisting of two synthetic Green Fluorescent 

Protein (GFP)-encoding genes with synonymous mutations (gfpL and gfpH, with Low and High 

expression, respectively, Figs. 2A and S6). After induction of expression in E.coli, detection by 

Western blot analysis showed that moderate levels of GFP variants were produced (Figs. 2B 

and S6). When gfpL and gfpH were combined in one operon, the expression level of gfpH was 

substantially higher than that of gfpL, irrespective of its position in the operon (Figs. 2B and 

S6), confirming that the position of a cistron in the operon does not appreciably affect protein 

expression levels. It is concluded that the differential protein production of GFP-L and GFP-H 

resulted from differences in translation efficiency, in accord with internal de novo translation 

initiation.

Discussion

In line with the definition of an operon, our analyzes indicate that differential expression of 

individual genes in the selected operons shows only limited dependence on differential 

transcription. Rather, we provide evidence that expression of genes in operons is predominantly 

controlled at the translation level. While protein degradation may not be the most economical 

method for a cell to balance protein ratios, we cannot rule out its importance.

Elevated overall translation of a cistron, potentially at any position on a poly-cistronic mRNA, 

requires enhanced translation initiation rates. Indeed, in several instances we found significant 

correlations between subunit stoichiometry and the mRNA folding energy in the RBS region of 

the analyzed genes (Figs. 1, S2, S3 and Table S2). However, a relatively high number (~20%) of 

false positives was obtained, i.e. genes with the highest folding energy that did not code for 

the most abundant subunit. This might be a consequence of difficulties to predict the correct 

mRNA structure, since the setting of the RNA fold analysis (i.e. the selected sequence window 

to be analyzed) has a strong influence on the outcome of the structure prediction (221). Instead, 

subunit abundance showed the strongest correlation with the fraction of optimal codons in a 

gene (Figs. 1, S2, S3 and Table S2). Thus, codon optimization is the most reliable in silico indicator 

of subunit stoichiometry of operon-encoded complexes.

Complementary to the in silico analyzes, a meta-analysis of experimentally determined 

ribosome density profiles confirms the widespread occurrence of differential translation that 

explains operon-encoded protein expression. The observation of increased ribosome densities 
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Figure 3. Models describing tuning of the translation process. Five scenarios are depicted with different 
rates of translation initiation and/or translation elongation. The corresponding ribosome density profiles 
and the expected protein yield are based on the assumption that differential transcription is insignificant (as 
has been demonstrated experimentally for the majority of the operons analyzed in this study). Scenario-1 
relatively little protein is produced (e.g. single subunit per operon-encoded complex), scenario-2 relatively 
little expression is required (no significantly different codon bias). Scenario-3 a hypothetical case when 
high translation initiation results in ribosome jamming as the elongation rate is not optimized. Scenario-4 
relatively much protein is produced (e.g. multiple subunits per operon-encoded complex): high translation 
initiation (low RNA fold), elevated but not maximal elongation rate (codon adaptation), elevated but not 
maximal ribosome densities (experimental profiles), and high protein yield (experimental protein complex 
stoichiometry values). Scenario-5 might also lead to high protein yields, but the detected elevated ribosome 
densities suggest that elongation rates are not maximal, favouring scenario 4 (box) as approaching the in 
vivo situation of translation-controlled overexpression.

implies that translation initiation is significantly increased for genes encoding highly abundant 

proteins in the selected operons. The correlation between codon adaptation and subunit 

stoichiometry reflects enhanced translation elongation rates in the cistrons coding for abundant 

subunits (201) (Fig. 3). The increased rate of translation elongation could contribute to the 

avoidance of ribosome crowding (198). These findings suggest that internal translation initiation 

and termination are essential for differential translation of cistrons at any position within 

polycistronic transcripts (Fig. 4 and movies S1 and S2). The occurrence of de novo translation 

initiation at inter-cistronic RBS’s has previously been deduced from the analysis of some bacterial 

operons, and translational coupling was only demonstrated for a subset of the genes in an 

operon (222, 223). In the present study we provide in silico and in vivo data that indicate the 

frequent occurrence of de novo inter-cistronic initiation of translation (Fig. 1 and Table S2). 

Moreover, we demonstrate that uncoupled translation of polycistronic messengers allows for 

differential translation (Figs. 2 and S6). This initial experimental support for the model can serve 
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Figure 4. Model for translation of polycistronic messengers in prokaryotes. (A) Transcript consisting of 
two cistrons, each preceded by a SD-sequence. (B) Translational coupling where the 30S ribosomal subunit 
remains associated (red arrow) after termination, and 50S joins for re-initiation, resulting in stoichiometric 
output from both cistrons (Movie S1). (C) de novo internal recruitment (red arrows) of both 50S and 
30S subunits allows for differential translation initiation rates between cistrons; depending on the translation 
elongation rate (codon bias) of each cistron, this may result in different ribosome density profiles (Movie S2); 
yellow and green cistrons have low and high translation efficiency, respectively (Fig. 2).

as a prelude to wider, subsequent experimental testing using both natural operon sequences and 

synthetic biology approaches.

Apart from the selection of 10 widespread operons analyzed in this study, it should be 

emphasized that many more (if not all) prokaryotic protein complexes with uneven stoichiometry 

are likely to rely on differential translation for tuning of their protein levels. Similarly, operons 

that encode enzymes of metabolic pathways might employ differential translation in case the 

enzymes are required in uneven quantities. Overall, we conclude that modulation of translation 

efficiency is a universal mode of control in bacteria and archaea that allows for differential 

protein expression of operon-encoded multi-subunit complexes with uneven stoichiometry. 

This fundamental principle can be applied to predict the ratios between protein subunits of 
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uncharacterized complexes (e.g. CRISPR-Cas complexes) as well as for design of synthetic 

operons.

Experimental procedures

Transcriptome analysis

The expression of genes and their division to transcriptional units were extracted from 

studies providing high-throughput cDNA-sequencing data (for E. coli, S. solfataricus, and 

P. aeruginosa), transcription start-sites (TSS) maps (for E. coli, S. solfataricus, P. aeruginosa, and 

L. monocytogenes), and tiling array data (L. monocytogenes) (194, 210-214). High-throughput 

cDNA sequencing reads were mapped to the corresponding genome (Genbank: NC_000913, 

NC_002754, NC_008463 for E. coli, S. solfataricus, and P. aeruginosa PA14, respectively) with 

Novoalign V2.07 with default parameters, as previously described (224). Gene coordinates were 

extracted from the reference genomes, and gene expression values were calculated as the 

number of mapped sequencing reads that overlapped the gene normalized by library size and 

gene length, previously described as reads per kilobase of gene model per million sequencing 

reads (RPKM) (225). Genes were assigned to different transcriptional units according to the 

available TSS-maps and cDNA sequencing data (194, 213, 214). When a TSS was found upstream 

to a gene or when previous transcriptome annotation indicated that a gene begins an operon it 

was allocated to a new transcriptional unit (TU). The genes downstream to it, without TSSs, were 

assigned to the same TU (212).

SD/anti-SD

Genes constituting 12 different operons encoding multi-subunit complexes of known 

stoichiometry were obtained from the NCBI database. Of 1055 available prokaryotic genomes 

a selection was made to avoid a bias due to the close resemblance of the available genomes, 

so that 383 genomes remained for further analysis. The RNA hybridization energy (kcal/mol) 

between the potential Shine-Dalgarno sequences located at position (-17) to (-1) relative to the 

start codon of the gene, and the ten 3’-terminal nucleotides of the 16S rRNA was predicted using 

the UNAfold program (226) . In addition, we estimated the scores for the occurrence of adenine 

at the 1st, 2nd and 3rd codon position (0.40, 0.23 and 0.15, respectively) (G) from previously 

reported data (200), and scored the 2nd codon of each gene in the operons. Family-specific score 

shifts were calculated in the same manner as for codon bias values (∆G).

Quax.indd   129 29-10-2013   11:30:35



130  |  Chapter 6

mRNA secondary structure

The same genes of the selected operons were extracted from the NCBI database from the set 

of 383 prokaryotic genomes as described for the SD/anti-SD analysis. The correlation between 

protein subunit stoichiometry and the accessibility of Shine-Dalgarno sequence (227) and of 

the start codon of each cistron was computed using the UNAFold program (226) for positions 

(-20) to (+20) relative to the CDS start codon and (-4) to (+37) as suggested previously (205). The 

lowest energy (kcal/mol) of predicted structure(s) was used to characterize the folding propensity 

of the RBS region of each cistron in the mRNA. Family mean folding energy shift values were 

calculated in the same manner as the codon bias values.

Codon bias

The potential correlation of codon bias with differential translation of polycistronic messengers 

was computed relative to the codon composition of annotated ribosomal protein genes in each 

organism. Genes constituting 12 different operons encoding multi-subunit complexes of known 

stoichiometry were obtained from the NCBI database from the set of 383 prokaryotic genomes 

as described for the SD/anti-SD analysis. For each analyzed genome, ribosomal protein genes 

were used to identify ‘optimal’ codons for each of the 18 amino acids with multiple synonymous 

codons. The relative frequency of occurrence of these codons within individual genes was 

calculated (220). To compute the family-specific codon bias, accounting simultaneously for 

genome-specific and operon-specific biases, the mean for the respective operon was subtracted 

from this frequency (∆F value) and adducted over the complete set of operons of the given type. 

In similar fashion the Codon Adaptation Index (CAI) (203) values were computed for each coding 

sequence in the selected operons and family specific values were calculated by subtracting the 

mean of the operon from values of individual genes.

Codon co-occurrence

On the same set of genes from selected operons mentioned above, analysis of codon co-

occurrence was performed as described before (195). Briefly, for each series of codons, coding 

for the same amino acid, the frequency of consecutive pairs (isoaccepting codons recognized 

by identical tRNA’s) was computed across the genome (ignoring codons that code for different 

amino acids). For each such pair the score characterizing the deviation of the observed frequency 

from its random independent expectation was calculated; then scores for all genes were 

calculated using these score tables. Family mean codon co-occurence shift values were calculated 

in the same manner as the codon bias values.
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Statistical analysis

Spearman rank correlation coefficients were calculated for stoichiometry and either the ∆F, ∆CAI, 

∆Co or ∆E values; p-value was estimated by permuting the data. The optimal threshold values 

were determined by minimizing the error rate (the sum of false positives and false negatives) in 

the dataset of operons with uneven stoichiometry.

Plasmid constructs and protein detection

An oligonucleotide sequence was synthesised by GeneArt (Germany), which contained a 

bicistronic operon under control of the T7 promoter. The two cistrons were C-terminally his 

tagged gfp genes differing in synonymous codon usage, with an additional C-terminal Strep-tag 

attached to the second cistron. The SD-motifs were identical for both cistrons. The sequences 

of gfpL, translated with low efficiency, and gfpH, translated with high efficiency, are identical 

to GFP_156 and GFP_182 of a previous study, respectively (205). The % optimal codons (0.35 vs 

0.55) and codon co-occurrence (2.23 vs 4.71) values differ considerably between both genes. 

For the complete sequence of the synthetic oligonucleotide, see Fig. S6. This synthetic operon 

was cloned in the vector pET-52b(+) (Novagen) using SphI and AvrII/NheI sites. Restriction sites 

creating compatible overhangs 5’and 3’of each gfp gene, enabled cloning of six constructs 

containing one or two gfp genes in different combinations. We used pET-52(b) containing a 

commercial gfp gene optimized for high expression and the empty pET-52(b) plasmid as positive 

and negative controls, respectively. Each construct was transformed into E.coli BL21(DE3) and 

induced with IPTG. After two hours, cell pellets were harvested, resuspended in 50 mM TrisHCl, 

150 mM NaCl pH7.4, sonicated and centrifuged 30 min at 10000 rpm. Protein concentrations 

in the cell free lysate were determined using Roti®-Nanoquant and equal amounts of protein 

were loaded on 15% SDS TrisHCl gels and run in Tris-Glycine buffer. ColorPlus Prestained Protein 

Marker Broad Range #7709 (New England Biolabs) was used as a marker. Total proteins were 

detected with Coomassie Brilliant Blue R250 staining. A duplicate of the gel was used for Western 

hybridization and proteins were transferred onto a PVDF membrane. GFP was detected using a 

1:1000 dilution of mouse anti-GFP IgG (Roche) and peroxidase-coupled sheep anti-mouse IgG 

(GE Healthcare) and the SuperSignal West Pico Chemi-luminescent Substrate (Thermo Scientific). 

Visualisation was done on a ChemiDoc XRS+ imaging system (Bio-Rad) and quantification was 

performed with Image Lab software.
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Supplemental information

Supplemental Figures

Figure S1. Transcription of operons. Analyses of mRNA levels of the following operons are depicted; 
(A) ribosomal protein operon L7/L12 (180), the F-type ATPase (45) and the Type I-E Cascade complex (185). 
(B) the Type I-F Cascade complex (P. aerugionosa) (228), the V-type ATPase (179), the archaeal flagellum 
(S.solfataricus). (C) the FtsZ operon (182), the Type II secretion system (191), TAT secretion system (184). (D) 
the ribosomal protein operon L5 (180) and the NADH dehydrogenase (181). I, the selected operons (block 
arrows), and the stoichiometry in the corresponding protein complexes are shown. II, RNAseq data shown 
in Reads Per Kb per Million (RPKM) from three representative prokaryotes. All RNAseq data shown in this 
figure is originating from E.coli unless specified otherwise. The light grey arrows are genes in each operon 
that encode the most abundant subunit(s), and light grey rectangles highlight corresponding positive 
transcription values (RKPM).
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Figure S2. Cistron properties correlated with stoichiometry of operon-encoded protein complexes. 
Translational factors that contribute to fine tuning of uneven stoichiometry potentially occur. As 
representative examples are depicted the analyses of the (A) Type I-A, I-B, I-C Cascade complex (229), 
Type I-F Cascade complex (228), the archaeal flagellum (183) (B) the V-type ATPase (179), the FtsZ operon 
(182). I, selected operons (block arrows), and the stoichiometry in the corresponding protein complexes. 
II, mRNA folding energy in the region around the RBS (-20 to +20 bp relative to the start codon) (∆E) as 
measured by UNAFold program. III codon bias (∆F optimal codons (dark grey), and ∆CAI (light grey)), IV 
codon co-occurrence (∆ Co) Error bars indicate standard deviations. The light grey arrows represent genes 
in each operon that encode the most abundant subunit(s), and light grey rectangles highlight corresponding 
positive deviations in codon bias (∆F > 0.02), codon co-occurrence (highest value) and/or low RNA folding 
potential (highest energy value).
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Figure S3. Cistron properties correlated with stoichiometry of operon-encoded protein complexes. 
Translational factors that contribute to fine tuning of uneven stoichiometry potentially occur. As representative 
examples are depicted the analyses of the (A) the ribosomal protein operon L5 (180) and the TAT secretion 
system (184) (B) the NADH dehydrogenase (181) and Type II secretion complex (191). I, selected operons 
(block arrows), and the stoichiometry in the corresponding protein complexes. II, mRNA folding energy in 
the region around the RBS (-20 to +20 bp relative to the start codon) (∆E) as measured by UNAFold program. 
III codon bias (∆F optimal codons (dark grey), and ∆CAI (light grey)), IV codon co-occurrence (∆ Co) Error bars 
indicate standard deviations. The light grey arrows represent genes in each operon that encode the most 
abundant subunit(s), and light grey rectangles highlight corresponding positive deviations in codon bias (∆F 
> 0.02), codon co-occurrence (highest value) and/or low RNA folding potential (highest energy value); false 
positives (∆F > 0.02, stoichiometry < 2; see Figure S4) are indicated with dark grey rectangles.
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Figure S4. Codon bias and subunit stoichiometry in bacterial and archaeal operons. The horizontal axis 
shows the family mean codon usage shift (∆F), i.e. the fraction of optimal codons; Fig. 1C); the vertical 
axis shows the (approximate) number of subunits in the complex. Diamonds show genes belonging to 
the complexes with uneven stoichiometry; crosses show genes belonging to the complexes with even 
stoichiometry. The dotted lines show the ∆F and stoichiometry thresholds providing the best separation 
between 13 true positives (upper right quadrants), 41 true negatives (lower left quadrants, respectively) and 
2 false positives (lower right quadrant; discussed in text). Details on the selected complexes are provided in 
Table S2.
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Figure S5. Ribosome density profiles of polycistronic transcripts coding for protein complexes with uneven 
stoichiometry. The analysis of selected E.coli operons. Depicted are (A) the ribosomal protein operon 
L5 (180) and the TAT secretion system (184). (B) The NADH dehydrogenase (181) the FtsZ operon (182). 
I, selected operons (block arrows), and the stoichiometry in the corresponding protein complexes; II, Density 
of ribosomes per cistron; The light grey arrows represent genes in each operon that encode the most 
abundant subunit(s), and light grey rectangles denote the corresponding positive deviations of ribosome 
density.
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Figure S6. Expression of synthetic operons. (A) Sequence of synthetic operon as depicted in Fig. 2a, 
with two GFP genes with synonymous mutations which was cloned in pET52b (LH*). Relevant features are 
indicated: gfpL (low efficiency of translation; yellow), gfpH (high efficiency of translation; green), cloning 
sites (purple; GCATGC, SphI; Compatible GAATTC/ CAATTG, EcoRI/ MfeI; Compatible ATGCAT/ CTGCAG, 
NsiI/ PstI; CCTAGG, AvrII; GCTAGC, NheI ), T7-promoter (blue) SD- motif (bold, red), start/stop codons 
(bold, underlined), His-10-tag (light gray), strep-tag (dark gray). Theoretical molecular weights are: 28.6 kDa 
(GFP-L) and 29,8 kDa (GFP-H+strep-tag). (B) Coomassie stained SDS-PAGE gels of whole cell lysate of 
E. coli containing pET52b-based expression constructs (Fig. 2A) encoding different combinations of two 
identical GFP polypeptides, with synonymous mutations, resulting in low (gfpL) or high (gfpH) efficiency of 
translation. The SDS-PAGE gel is a replicate of the one used for Western blot (C). Based on a marker (#7709, 
NEB®) molecular masses (kDa) are indicated. (C) Western blot with GFP antibody on whole cell lysates of 
the variant GFP-expressing constructs after expression in E.coli; the upper band corresponds to the slightly 
larger Strep-tagged GFP-variant (*).
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Supplemental Movies

Supplemental Movie S1- follow the link: http://vimeo.com/surfrender/protein-synth-even

Even stoichiometry by translational coupling. This movie shows transcription of an operon consisting 
of two genes (yellow and orange), and translation of the polycistronic messenger. Translational coupling 
results in even stoichiometry of the produced proteins.

Supplemental Movie S2- follow the link: http://vimeo.com/surfrender/protein-synth-uneven

Uneven stoichiometry by de novo internal translational initiation. Like movie 1, this movie shows 
transcription of an operon consisting of two genes (yellow and green, like the one described in Fig. 2), 
and translation of the polycistronic messenger. Because of intercistronic initiation involving both newly 
recruited 30S and the 50S ribosomal subunits, and because of optimal translation efficiency in the second 
cistron, this results in higher protein output from to the second reading frame of the operon mRNA: uneven 
stoichiometry.
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Summary and general discussion
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Summary

The work presented in this thesis provides novel insights in several aspects of the molecular 

biology of archaea, bacteria and their viruses.

Three fundamentally different groups of viruses are associated with the three domains of life. 

Archaeal viruses are characterized by a particularly high morphological and genetic diversity. Some 

archaeal viruses, such as Sulfolobus islandicus rod-shaped virus 2 (SIRV2), have quite remarkable 

infection cycles. As described in Chapter 1, infection with SIRV2 results in the formation of 

large virus associated pyramids (VAPs) on the host cell surface. The structures open in the final 

step of the infection cycle, creating large apertures to release the rod-shaped viruses that have 

matured in the cytoplasm. This virus release mechanism is unique and does not resemble egress 

mechanisms of bacterial and eukaryotic viruses. Analysis of the protein composition of SIRV2 

infected cells, as outlined in Chapter 2, revealed the strong accumulation of the virus encoded 

protein PVAP in membranes after infection, suggesting involvement in VAP formation. The 

VAPs can be isolated as discrete particles, as demonstrated in Chapter 3. Electron microscopic 

survey of these particles showed that they are baseless pyramids with a heptagonal perimeter. 

This geometry is exceptional and especially the sevenfold symmetry is very rare in nature 

(20S proteasome, myosin). The structures can have various sizes, probably reflecting different 

developmental stages. This suggests that they grow by the gradual expansion of the triangular 

facets. Analysis of the protein composition of the structures revealed the exclusive presence of 

PVAP and anti-bodies raised against this protein labeled specifically the VAPs on thin sections 

of infected cells as observed in electron microscopy. PVAP is sufficient for VAP formation, which 

was demonstrated by expression of the protein and successful assembly of pyramidal structures, 

in the archaeon S. acidocaldarius and the bacteria Escherichia coli. Further analysis of PVAP 

truncation mutants as outlined in Chapter 4, showed that besides the 10  C-terminal amino 

acids, all domains of the protein are essential for VAP formation. PVAP can form oligomers of 

several sizes, including those of a heptamer, which probably act as nucleation points for VAP 

formation on the cell membrane. Analysis of the truncation mutants indicated that both the C 

and N terminal domain are important for interaction between monomers. Detailed observation 

with whole cell cryo-electron tomography of VAPs formed in the natural and heterologous 

system, revealed the presence of two layers in the structure. The outer one is continuous with 

the cell membrane. The inner layer facing the cytoplasm, presumably represents a protein sheet 

formed by tight interactions between the C-terminal domain of PVAP connected with a short 

linker region to the membrane. The sheets are slightly bended, giving the complete structure the 

appearance of a teepee. At the junction of two triangular sheets, the structure is perforated, 

creating predetermined breaking points. Furthermore, in this chapter data is presented which 

underlines the unique nature of this protein, since it is able to form VAPs successfully in 
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archaeal, bacterial and eukaryotic membranes, which all fundamentally differ in protein and 

lipid composition. In case of expression in Saccharomyces cerevisiae, VAPs are formed on all 

membranes, including those of mitochondria, suggesting that the protein inserts spontaneously 

in membranes. Thus, PVAP serves as a universal membrane remodeling system, which might be 

exploited for biotechnological purposes, such as the development into a universal system for the 

controlled opening of ~100 nm apertures in any lipid bilayer.

Production of VAPs is one of the dramatic consequences that SIRV2 infection has on the 

host cell. Whole transcriptome sequencing allowed determination of a global map of virus 

and host gene expression during the infection cycle, which is presented in Chapter 5. Directly 

after infection, transcription of viral genes starts simultaneously from both genome termini. All 

possible protein interactions between all SIRV2 proteins were assayed with yeast two-hybrid 

and these results were used to advance current knowledge on SIRV2 genes functions, of which 

the majority is still unidentified. The host cells respond to viral infection by adapting expression 

of more than 30% of its genes. Genes involved in cell division are down regulated, while those 

playing a role in anti-viral defense are activated. Specifically, for the first time massive activation 

of toxin anti-toxin and CRISPR-Cas systems is observed in an archaeal system. The different 

degree of expression and activation of the various systems highlights the specialized functions 

they perform.

The CRISPR-associated multi-subunit ribonucleoprotein complexes that are crucial for the 

CRISPR mediated anti-viral defense, generally have an uneven stoichiometry, i.e. the 4-6 different 

protein subunits are present in different quantities. Just as most functionally related bacterial and 

archaeal genes, the cas genes are clustered in operons, which allow for co-expression (as has 

indeed been observed in the transcriptome analysis described in Chapter 5). This is advantageous 

when equal amounts of gene products are required, such as is the case for protein complexes 

with even stoichiometry. However, a substantial number of important protein complexes 

contain uneven stoichiometry. Employing comparative genomics, in Chapter 6, it is shown 

that differential translation is a key determinant of modulated expression of genes clustered 

in operons and that codon bias generally is the best in silico indicator of unequal protein 

production. In addition, analysis of protein production from genes with synonymous mutations 

from synthetic operons, provides evidence that initiation of translation can occur at intercistronic 

sites. The widespread occurrence of modulation of translation efficiency, suggests that this is 

a universal mode of control in bacteria and archaea that allows for differential production of 

operon-encoded proteins.
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General Discussion

Archaeal virion egress

VAP assembly

In the first three chapters of this thesis, the molecular mechanism for egress of the archaeal 

virus SIRV2 is described, which relies on the formation of Virus Associated Pyramids (VAPs) 

(Fig. 1). The protein constituent of the VAPs, SIRV2-PVAP, is predicted to form a protein with 

four α-helices, of which one resides in the membrane as outlined in Chapter 4. The other three 

C-terminal α-helices are thought to undergo intimate interactions resulting in a protein sheet 

just below the cell membrane, which is visible as the inner VAP layer in cryo tomograms. Tango 

software predicts that the PVAP hydrophobic trans membrane segment can form β-sheets at the 

expense of α-helices (230). Thus, there is a possibility that PVAP acts as a prion like protein with 

amyloid character, converting from α-helix to β-sheet conformation upon multimerization. Since 

α-helical conformations form more rapidly, but β-sheets are typically more stable, this strategy 

might allow for fast and efficient formation of the unusual VAP structure.

 

Figure 1. VAPs are part of a unique virus release mechanism in archaea. Thin sections through VAPs in 
(A) and (B) closed and (C) open conformation on cell surface of S. islandicus infected with SIRV2. bars, 
100 nm.

A crystal structure of PVAP would be very valuable for future studies on the assembly mechanism 

of VAPs. Since the PVAP trans membrane segment is essential for VAP formation, it would be 

desirable to obtain a structure of the intact protein. This is a challenge due to the hydrophobicity 

of the membrane segment; therefore 2-D crystallography might be an effective alternative 

strategy.
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Flexibility of VAP based virion egress system

The tight interaction of PVAP monomers results in the exclusion of Surface (S)-layer proteins 

from the site of VAP assembly, since they are anchored in the cell membrane. This mechanistic 

approach to pinch the cell wall might provide a strategy which facilitates extension of the virus 

host range, because this mechanism is independent of enzyme specificity in contrast to the 

lysines coded by bacterial viruses. However, the VAP egress mechanism does not allow virions 

to cross the peptidoglycan cell wall of bacteria, as this requires enzymatic degradation. Indeed 

heterologous expression of PVAP in E.coli never resulted in punctured cell walls by VAPs.

Biotechnological applications

Results presented in Chapter 3 and 4 of this thesis, demonstrate that SIRV2-PVAP has the unique 

property to self-assemble into pyramidal structures of sevenfold symmetry in archaea, bacterial 

and eukaryotic cells. Therefore PVAP acts as a universal membrane remodelling system and is 

expected to form VAPs in all biological membranes.

These remarkable protein properties could be exploited in a biotechnological setting. First 

of all, VAPs could be used in targeted drug delivery, when the isolated particles are conjugated 

with specific compounds destined for transport. This method of drug delivery is already being 

explored for the SIRV2 virions and it was shown that specific compounds could be conjugated 

to the virion particles (28). Alternatively, liposomes exposing VAPs on their surface could be used 

for the same purpose. Liposomes are at present being used for targeted delivery of drugs (231). 

Specific opening of liposomes at the site of drug delivery, would provide several advantages over 

the currently used methods of membrane fusion. Alternatively, PVAP might be exploited as a 

universal cell lysis system or as an in vitro gate lock system which opens lipid layers under specific 

conditions (international patent: PCT/EP2012/050902).

VAP opening

Understanding the mechanism of VAP opening is important from a fundamental perspective, but 

also for the realization of the above mentioned biotechnological applications of the PVAP protein. 

Although the geometry and size of the VAPs in the heterologous systems were similar to those to 

SIRV2 induced VAPs, opening was never observed in these systems, except in S. acidocaldarius 

after incubation of PVAP expressing cells for more than 72 hours (Quax et al, unpublished). Thus, 

at least in Sulfolobales, PVAP seems sufficient for VAP opening in certain situations, which might 

be linked to the growth conditions of the cells. It has been suggested that the ESCRT-III like 

archaeal cell division machinery is involved in the opening of STIV induced VAPs (232). A model 

is proposed in which ESCRT-III like proteins polymerize and strip the STIV induced VAP from 

the inner membrane layer (232). Since the SIRV2 induced VAPs were clearly shown to contain a 

protein layer below the outer membrane embedded layer (Chapter 4) and ESCRT-III like proteins 
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were specifically down regulated after SIRV2 infection (Chapter 5), it may be that, at least in 

SIRV2 infected cells, opening of VAPs relies on a different mechanism. To draw a firm conclusion 

about similarities and differences, the involvement of ESCRT in VAP opening should be tested in 

the SIRV2 system as well.

Egress mechanisms of archaeal viruses

The sole building block of the VAPs has few homologues in archaeal viruses (105). Homologues 

are present in genomes of nviruses that are member of the family Rudiviridae, to which SIRV2 

also belongs, namely SIRV1 (31) and Stygiolobus rod-shaped virus ( SRV) (58), as well in the 

icosahedral virus STIV1 unrelated to the rudiviruses (39). The SIRV2_PVAP homologue of STIV1 

was also experimentally shown to be the constituent of the VAPs induced in S. solfataricus cells 

infected by STIV (103). PVAP encoded by STIV1 and SIRV2 share only ~50% sequence identity on 

the protein level, but it was demonstrated that they are functional homologues by the expression 

of chimeras of the two proteins which results in VAP formation (233). However, the two PVAP 

proteins from STIV1 and SIRV2 are not interchangeable in the context of the STIV replication 

cycle, since expression of the chimeras did not result in virion production (233).

It is likely that the VAP-based virion release system is characteristic to all viruses carrying 

the gene for SIRV2-PVAP homologue. Remarkably, STIV2, a close relative of STIV1 does not 

encode a homologue of SIRV2-PVAP (234), nor does Acidianus rod-shaped virus 1, ARV1 (55), 

a member of the Rudiviridae. Apparently, the morphogenetic and egress systems are evolving 

independently in archaeal viruses, and the VAP-based virion release mechanism is not universal 

for them. To gain insight into the diversity and evolution of virion egress mechanisms in general 

it is essential to obtain information on the mechanism of virion egress of other archaeal viruses. 

Interesting candidates for such a study would be ARV1 and STIV2, since these two viruses are the 

only members of their viral family that are not encoding PVAP and should thus rely on a different 

egress mechanism. Moreover, it can be expected that enveloped viruses, such as Acidianus 

Filamentous Virus 1, acquire their lipid envelope during a budding based egress mechanism.

Comparison with virion release mechanisms of bacterioviruses

The vast majority of bacterial dsDNA viruses under laboratory conditions escape the infected 

cell by disrupting the latter with the aid of the holin-endolysin system, named after the two 

proteins essential in this process (64). The endolysin is a muralytic enzyme capable of degrading 

the peptidoglycan cell wall surrounding the bacterial cell, and the holin is a small virus-encoded 

protein that forms large non-specific lesions in the cytoplasmic membrane of the infected 

cell (64). For many viruses of gram-negative bacteria the system also encompasses the proteins 

Rz and Rz1, which are thought to form a complex connecting the cytoplasmic and the outer 

membranes (37, 64).
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In contrast, bacterial ssDNA and ssRNA viruses encode only a single protein sufficient for 

cell lysis. This type of protein was shown to inhibit cell wall synthesis, eventually leading to cell 

disruption (65).

Not all bacterioviruses are lytic. Some, like members of the family Inoviridae, exit without 

killing or lysing their bacterial host. They establish persistent infection in which the host continues 

to grow and divide while producing and releasing virions (235). The ssDNA virus genome is 

extruded through the cytoplasmic membrane, where it is coated with capsid proteins. Following 

the assembly, virions are transported through the outer membrane of gram-negative bacteria 

through gated channels, which can be either virus (for M13-like viruses) or host (for CTXf-like 

viruses) encoded (236). In the case of the bacteriovirus f1, these channels are formed by multimers 

of the viral protein pIV, homologous to the protein EpsD, an outer membrane component of 

type  II secretion system (237). The protein is able to self-assemble and the complex can be 

isolated (238, 239).

The VAP-based virion release mechanism of archaeal viruses significantly differs in all 

molecular characteristics from the three above-described egress systems of bacterioviruses.

A new class of virus structures

The geometry of the VAP is unrecorded in the living world. Moreover, structures with seven 

fold symmetry are rare in nature and the two known examples comprise the archaeal 20S 

proteasome (42) and the scallop muscle myosin filaments (240).

Not only is the geometry of VAPs special, exceptional is also the fact that this stable 

independent structure is encoded by the virus. In addition to the capsid, the VAP is an autonomous 

structure encoded by the virus SIRV2 (Fig. 2). The constituents of both structures are able to self-

assemble in heterologous systems. The major coat protein of the rudiviruses self-assembles into 

long filaments with the same diameter as the capsid (58) and the VAP protein PVAP into pyramids 

with seven fold symmetry. The functions of the two viral structures are completely different 

though (Fig 3). The capsid serves for the packaging and protection of the viral genome, while the 

VAP is employed by the virus to escape the cell (Fig. 3). The discovery of the remarkable VAP has 

raised awareness of the existence of a class of non-capsid virus-encoded autonomous structures 

employed for virion release. It is proposed to name them “virodomes”. VAPs can represent only 

one type of archaeal “virodomes” and many more could be discovered in the course of future 

studies on archaeal virus-host interactions. In bacterial systems, the two-dimensional holin rafts 

can possibly be considered as “virodomes”.
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Figure 2. VAPs are independent particles. Negative contrast electron micrographs of isolated VAPs. (a) Top 
view and (b)  side view of intact VAPs. (c) Top view of a VAP in the open conformation. (d) Schematic 
representation of the native VAP structure based on measurements of ∼150 images of isolated VAPs. bars, 
100 nm.
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Figure 3. VAPs are non-capsid virus-encoded autonomous structures. Schematic representation of the 
SIRV2 genome. Highlighted are the two genes encoding virus structures. ORF134 encodes the major capsid 
protein of the virion protein, and ORF98 encodes the VAP protein.

Archaeal anti-viral defense

Model archaeal virus

Studies on the VAP dependent virion egress mechanism have demonstrated the power of 

SIRV2 as a model to explore archaeal virus-host interactions. Since the discovery of the first 

archaeal virus in the 1980’, the number of described archaeal viral species is steadily increasing 

and new morphotypes keep being discovered (129). This increasing number of isolated archaeal 

viruses requires standardization of studies on them and the development of suitable models to 

characterize and compare different aspects of their infection cycle in analogy with the T-series 

of bacterial viruses. Sulfolobus Spindle-shaped Virus (SSV) (131), STIV1 (39) and SIRV2 (31) 

have already emerged as models to study archaeal viral biology, because of the high virus titers 

that can be obtained and the clear effect on the host cell of infection or induction with these. 

Using these model systems several aspects of archaeal viral biology have been unraveled, which 

demonstrates both the unique nature of archaeal viruses as their relation with viruses infecting 

members of the other two domains (40, 83, 102, 240, 241).
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SIRV2 replication

The whole transcriptome analysis and yeast two hybrid assays described in Chapter 5 aid in the 

prediction of novel SIRV2 gene functions. Examples are the two identical genes located on the 

SIRV2 genome termini, which are encoding the protein SIRV2_P83. This protein is implied in 

SIRV2 genome replication or transcription, based on the expression profile and its binding to the 

viral encoded Holliday Junction Resolvase (Chapter 5). The biochemical characterization of this 

protein will be crucial for a better understanding of its possible role and the replication mechanism 

of SIRV2. The predicted DNA binding activity needs to be tested, just as possible nicking activity. 

Nicking activity would be important for initiation of replication of the linear covalently closed 

SIRV2 genome (242). SIRV2 is not coding its own DNA polymerase and other proteins are 

involved in replication such as cdc6 (cell division cycle) , MCM (mini chromosome maintenance) 

proteins and PCNA (proliferating cell nuclear antigen) (15, 137, 243). As a consequence, genome 

replication of SIRV2 relies on host factors. Although none of these host genes appears to be 

significantly up regulated after SIRV2 infection, in would be important for the understanding of 

the P83 function to assess possible interaction with these host replication proteins. A first clue to 

the possible link between P83 and host replication factors is the reported binding between P83 

and PCNA (Gardner, Prangishvili et al, personal communication).

Interplay of anti-viral defense systems in archaea

Infection with SIRV2 results in wide spread activation of anti-viral defense systems (Chapter 5). 

Specific activation of toxin-antitoxin (TA) modules after viral infection, suggests a role in anti-

viral defense. The role of TA based anti-viral defense has not yet been studied in archaea, but 

the detection of up regulation of an anti-toxin gene during STIV1 infection suggests that it is 

important to investigate the role of TA modules in archaeal virus defense in more detail (51). In 

addition it would be interesting to assess the in vivo role of the Sulfolobus TA modules during 

viral challenge. It was suggested that TA systems act in concert with other defense systems, like 

CRISPR-Cas to provide robustness to the anti-viral response and function as a ‘last rescue’ when 

all other systems fail (173). One hour after SIRV2 infection, CRISPR-Cas and TA systems were 

both highly activated. Therefore a transcriptome study of infected cells at short time intervals 

closer to the onset of viral infection might provide insight into the temporal sequence in which 

the two systems are activated. The different transcription and activation of several CRISPR-Cas 

systems during SIRV2 infection might allow for a tailor-made defense reaction depending on 

the properties of the foreign genetic element, which invades a cell. This assumption could be 

analyzed by whole transcriptome sequencing during challenge with different invading viruses 

and plasmids to gain insight into possible specialization of different defense systems. The richness 

of anti-viral defense systems encoded on the S.islandicus genome, renders the SIRV2-islandicus 

system a very suited model to study the differentiated roles and interplay of these systems in vivo. 
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Deciphering the interplay between them will be essential to provide an answer to the question 

why the majority of archaeal genomes carry so many different defense systems.

Codon usage as an in silico predictor of protein subunit stoichiometry

CRISPR anti-viral defense systems rely on Cas complexes for successful targeting of foreign 

nucleic acids. Typically, a Cas complex consist of several proteins present in uneven ratio’s 

encoded on operons, as is the case for the majority of bacterial and archaeal functionally related 

proteins. Results presented in Chapter 6 of this thesis demonstrate that differential production 

of Cas proteins, is achieved by differential translation, in order to maintain the stoichiometry 

of the complex (Fig. 4). Besides the Cas complexes many more protein complexes that play 

roles in important cellular processes contain uneven stoichiometry. The analysis presented in 

Chapter 6 indicates that differential translation is a universal mode of control for the production 

of operon-encoded complexes in prokaryotes (Fig. 5). Codon bias is a suitable in silico indicator 

to predict subunit stoichiometry of protein complexes. Analysis of codon usage in combination 

with other influential features, like prediction of mRNA structure, might prove a good strategy 

to obtain information on subunit stoichiometry, in case structural data is lacking. However, due 

to the complexity of the various factors influencing translation, currently, predictions will still 

need verification by experimental approaches, either holistic by ribosome profiling (Chapter 6) or 

specifically by biochemical/structural analysis of the protein complex.

A future challenge in synthetic biology, is the exact determination of all factors influencing 

translation efficiency in such a way that this can be employed to improve (heterologous) 

protein expression from a given gene. Currently, ‘optimization of codon usage’ is employed 

to enhance gene expression (219, 244). In practice, however, results are often not satisfying, 

probably because the artificial adaptation of codon usage interferes with other factors which 

influence protein expression, such as the mRNA folding energy, the presence of Shine Dalgarno-

like sequences in the gene and other still unidentified elements (202, 205, 219). To understand 

how the ‘perfect’ codon landscape can be constructed to improve gene expression, engineering 

approaches might be employed to construct and analyze a library of non-coding flanking regions 

and coding regions with synonymous mutations.

Since viruses are largely dependent of host factors for transcription and translation, generally 

they share similar codon usage with the cells they infect. It will be interesting to assess if viruses 

also employ a tuning mechanism relying on differential translation to achieve varying production 

levels of proteins required in different ratios. Suitable cases to test this hypothesis are the capsid 

proteins of viruses of which the virion structure has been determined. The recent development of 

the ribosome density profiling technique offers the exciting possibility to define a global map of 

all translating ribosomes and might be employed to assess the influence of differential translation 

in determining production of viral proteins (202, 206).
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Figure 4. Graphical overview of the process of differential translation of the operon-encoded Cas proteins, 
which results in a protein complex with uneven stoichiometry that is important for CRISPR-mediated anti-
viral defense.

Figure 5. Differential translation of operons is a universal mode of control for the production of operon 
encoded proteins. Schematic representation of a mRNA containing two cistrons with synonymous mutations 
resulting in translation with low (yellow) and high (green) efficiency. Ribosomes are depicted in purple.
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Arms race between archaea and viruses in the natural environment

Activation of cas genes as described in Chapter 5 of this thesis, was reported also during infection 

with the archaeal virus STIV (245). It is noteworthy is that activation of cas genes and a severe 

host response were only observed when a low susceptible host strain was used (10% of cells 

susceptible to infection) (245). In contrast, when a highly susceptible host strain was challenged 

with STIV, Cas proteins were not activated (133). Since this susceptible host strain has not been 

fully sequenced, it cannot be excluded that mutations in CRISPR-cas operons have occurred. The 

Sulfolobus host, which is typically used for studies on the STIV infection cycle, has been selected 

based on high susceptibility to the viral infection, as is the case for other archaeal model viruses 

like SIRV2 (51, 83). Important in this respect is that the S. solfataricus strain, which was selected 

based on susceptibility to SIRV2 infection, carries a large deletion spanning several CRISPR-cas 

operons (246). Infection of these strains with virus, generally results in an almost completely 

infected cell population (51, 83). This might not reflect the natural situation, since it would result 

in rapid extinction of the particular host in an environment where there is constant threat of viral 

infection. The equilibrium in which host and virus populations exists in the natural environment 

might reflect the ‘stable carrier state’ that has been proposed to be the mode in which the 

majority of archaeal viruses is maintained in host cells (48, 53). Viruses and cells constantly co-

evolve. They have to be highly inventive and yet efficient, to maintain themselves and remain 

one step ahead of the other. The remarkable virion egress structure and the CRISPR-Cas anti-

viral defense system both represent inventive and elegant products of the ongoing arms race 

between archaea and their viruses.

Concluding remarks

The discovery and characterization of the VAP-based virion release mechanism has shown 

that archaeal viruses, along with exceptional morphological and genomic properties, possess 

unusual life cycles. The VAP dependent virion egress mechanism is unique for archaeal viruses. 

On the other hand, viral infection is counteracted using anti-viral defense mechanisms, which 

are also ubiquitously present in bacteria. The role of differential translation on regulation of 

subunit stoichiometry of operon encoded Cas complexes was found to be an universal strategy 

to produce operon-encoded proteins of bacteria and archaea in appropriate quantities. Thus, the 

results described in this thesis support the notion of the domain-specific nature of the archaeal 

virosphere and yet also revealed common features shared with the other domains of life.
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Virussen zijn de meest voorkomende biologische deeltjes op deze planeet en er wordt geschat 

dat er minstens 10 keer zoveel virussen zijn dan micro-organismen. Als je alle virussen op elkaar 

zou stapelen, creëert dit een toren, die zó hoog is, dat deze 200 lichtjaren in het heelal zou reiken. 

Virussen worden op allerlei plaatsen gevonden, zelfs op plekken met een zeer extreem klimaat, 

zoals in hete geisers, waar kokend water uit het binnenste van de aarde aan de oppervlakte 

komt. De virussen, die voorkomen op deze plaatsen infecteren ‘extremofiele’ gastheer cellen 

die net als de virussen aangepast zijn aan het extreme klimaat. Al het leven op aarde wordt 

ingedeeld in drie groepen: archaea, bacteriën en eukaryoten. De meeste organismen, die leven 

in extreme milieus, zijn archaea. De virussen welke archaea infecteren vormen een aparte groep 

die gekenmerkt wordt door een hoge verscheidenheid. Over het algemeen zijn zowel de vormen 

van deze virussen, als hun genetisch materiaal zeer divers. Sommige virussen zien er zelfs uit als 

een kleine druppel of een fles.

Dit proefschrift gaat over het virus SIRV2, dat het archaeon Sulfolobus islandicus infecteert, 

een organisme dat geïsoleerd is uit een hete bron op IJsland. SIRV2 heeft een speciale infectie 

cyclus die beschreven staat in hoofdstuk 1. Na infectie vermeerdert het virus zich in de cel. 

Om uit de cel te ontsnappen heeft het virus een bijzondere strategie ontwikkeld die gebaseerd 

is op de vorming van piramide structuren (VAPs) op het celmembraan van het archaeon. 

Deze structuren openen aan het einde van de infectiecyclus, waardoor er grote gaten in het 

celmembraan ontstaan, waardoor het virus de cel kan verlaten.

In hoofdstuk 2 wordt beschreven dat de piramide structuren bestaan uit het virus eiwit 

PVAP. Deze piramides kunnen geïsoleerd worden als individuele deeltjes los van de cel. Resultaten 

uit hoofdstuk 3 laten zien dat deze deeltjes de vorm hebben van een holle piramide met een 

heptagonale omtrek en een zevenvoudige symmetrie, uniek in de natuur. De piramide vormige 

VAPs ontstaan op het celmembraan en ze worden groter door de aangroei aan de onderkant 

van de zeven driehoekige vlakken. Het eiwit PVAP kan uit zichzelf piramides vormen, zoals werd 

aangetoond door dit eiwit tot expressie te brengen in een ander archaeon en in een bacterie.

In hoofdstuk 4 wordt een model gepresenteerd voor het bouwproces van de VAP. Microscopie 

experimenten en een mutatieanalyze van het eiwit PVAP laat zien dat het N-terminale domein 

in het membraan integreert en de buitenste laag van de VAP vormt. Het C-terminale domein 

van het eiwit is essentieel om interacties aan te gaan tussen de verschillende monomeren van 

het eiwit, wat nodig is om de piramide te vormen. Dit gedeelte van het eiwit is te vinden in de 

binnenste laag van de piramides. Expressie van PVAP in de eukaryoot bakkersgist (Saccharomyces 

cerevisiae) leidt tot formatie van VAPs op alle cellulaire membranen, inclusief het kernmembraan 
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en de mitochondriën. Dit toont aan dat het eiwit spontaan in allerlei membranen kan integreren 

en functioneert als een universeel systeem om de vorm van membranen te veranderen. Dit 

systeem zou daarom gebruikt kunnen worden voor biotechnologische toepassingen, zoals de 

specifieke afgifte van medicijnen in het menselijk lichaam.

De virus-gastheer interactie wordt verder onder de loep genomen in hoofdstuk 5. Alle RNA in 

geïnfecteerde cellen wordt gesequenced om informatie te verkrijgen over expressiepatronen van 

alle genen van de gastheer en het virus. Daarnaast is er gescreend voor alle mogelijke interacties 

tussen virus en gastheereiwitten. Expressie van de virale genen begint gelijktijdig vanaf beide 

uiteinden van het lineaire virus genoom. Als reactie op de virusinfectie worden genen van de 

geïnfecteerde cel geactiveerd, welke een rol spelen bij afweer tegen virussen. Een belangrijk 

afweer mechanisme van bacteriën en archaea is het CRISPR-Cas systeem. Dit afweercomplex 

bestaat uit verschillende Cas eiwitten, die aanwezig zijn in een ongelijke aantallen. De genen, die 

coderen voor de Cas eiwitten zijn georganiseerd in operons. Genen met gerelateerde functies 

worden in de genomen van bacteriën en archaea vaak naast elkaar gegroepeerd in operons 

aangetroffen. Deze organisatie faciliteert de co-expressie van genen. Deze co-expressie is 

voordelig wanneer alle eiwitten gelijktijdig en in gelijke hoeveelheden geproduceerd moeten 

worden. Wanneer echter, zoals in het geval van het Cas complex, eiwitten in verschillende 

verhoudingen nodig zijn, moet daartoe een extra vorm van regulatie gebruikt worden. De 

resultaten van de analyze gepresenteerd in hoofdstuk 6 laten zien dat een verschil in translatie 

efficiëntie van eiwitten gecodeerd op operons, verantwoordelijk is voor de productie van deze 

eiwitten in ongelijke verhouding. In het algemeen kan een verschil in de eiwitproductie het beste 

voorspeld worden door het codongebruik in de genen binnen één operon te analyzeren. Naast 

het Cas complex zijn er nog veel meer belangrijke eiwitcomplexen met ongelijke stoichiometrie, 

die gecodeerd worden op operons. Het beschreven mechanisme blijkt geconserveerd in de 

meeste archaea en bacteriën en het zorgt voor de verschillen in productie van het merendeel van 

de eiwitcomplexen, die zijn gecodeerd op operons.
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Les résultats présentés dans cette thèse donnent un nouveau regard sur plusieurs aspects de 

biologie moléculaire des archées, des bactéries et des leurs virus. Il est admis que chacun des trois 

domaines du vivant est associé à un groupe spécifique des virus. Les virus spécifiques aux archées 

ont la particularité d’être morphologiquement et génétiquement extrêmement divers. Certains 

de ces virus, comme le virus SIRV2 infectant Sulfolobus islandicus, ont des cycles d’infection 

remarquablement complexes. Comme décrit dans le chapitre 1, l’infection par SIRV2 aboutie 

à la formation sur la surface de la cellule hôte de grandes structures pyramidales associées à ce 

virus (VAP). Ces structures s’ouvrent à la fin du cycle, produisant de larges pores qui permettent 

la libération des particules virales, en forme de bâtonnets, assemblés au cours du cycle dans 

le cytoplasme. Le mécanisme de libération du virus SIRV2 est unique et ne ressemble à aucun 

des mécanismes connus pour les virus des bactéries et eucaryotes. Comme présenté dans le 

Chapitre 2, l’analyse de la composition protéique des cellules infectées par SIRV2, a révélé une 

forte accumulation de la protéine membranaire PVAP codée par le virus, ce qui suggère son 

implication directe dans la formation des VAP. Les VAP peuvent être isolées sous forme de structures 

compactes, comme ceci a été démontré dans le chapitre 3. Étude au microscope électronique de 

ces structures a démontré qu’elles correspondent à des pyramides heptagonales creuses. Cette 

géométrie est extrêmement inhabituelle et la symétrie septuple est assez rare dans le monde du 

vivant (ex. 20S du protéasome, la myosine). Ces structures peuvent avoir des tailles différentes, 

ce qui correspond probablement aux différents stades de leur développement. Cette observation 

permet de supposer qu’elles grandissent par la croissance progressive des facettes triangulaires 

qui les forment. L’analyse de la composition protéique des VAP démontre qu’elles sont composées 

d’une seule protéine, PVAP. Les anticorps dirigés contre cette protéine marquent spécifiquement 

les VAP comme observé au microscope électronique sur les coupes fines de cellules infectées. 

La protéine PVAP est suffisante pour la formation des VAP. Les VAP en structures pyramidales 

ont été observées après l’expression hétérologue du gène viral correspondant chez l’archée 

S. acidocaldarius et chez la bactérie, Escherichia coli. Une analyse complémentaire des mutants 

portant des versions raccourcies du gène VAP, telles que décrites dans le chapitre 4, a démontré 

que, exceptés les 10 derniers acides aminés C-terminaux, tous les domaines de la protéine sont 

essentiels pour la formation de VAP. La PVAP peut former des oligomères de plusieurs tailles, y 

compris ceux d’un heptamère, qui agissent vraisemblablement comme points de nucléation pour 

la formation des VAP sur la membrane cellulaire. L’analyse des mutants de délétions a indiqué que 

les deux domaines, C – et N-terminaux, sont essentiels pour l’interaction entre les monomères 

de PVAP. L’observation détaillée à l’aide de la technique de tomographie cryo-électronique a 
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permis de conclure que les VAP formées dans les systèmes naturels ou hétérologues ont deux 

couches dans leur structure. La couche extérieure correspond à la membrane cellulaire. La 

couche intérieure tournée vers le cytoplasme représente vraisemblablement un feuillet protéique 

formé par les interactions entre les domaines C-terminal des PVAPs connectées à la membrane à 

l’aide d’une courte région linker. Les feuillets sont légèrement pliés, ce qui donne à la structure 

finale l’apparence d’un tipi. A la jonction de deux plaques triangulaires la structure est perforée, 

ce qui crée des points destinés à la rupture. En outre, les données discutées dans ce chapitre 

soulignent le caractère unique de cette protéine, car elle est capable de former des VAP tout à fait 

normales dans les membranes des bactéries, des archées et des eucaryotes malgré le fait que ces 

membranes sont fondamentalement différentes par leurs compositions lipidiques et protéiques. 

Exprimées chez Saccharomyces cerevisiae, les VAPs sont formées sur toutes les membranes, y 

compris celles des mitochondries, ce qui suggère que cette protéine s’insert dans les membranes 

de façon spontanée. Ainsi, les PVAP peuvent représenter un système universel de remodelage 

des membranes qui pourrait être exploité à des fins biotechnologiques, par exemple pour le 

développement d’un système universel permettant la formation contrôlée de grandes ouvertures 

de ~ 100 nm dans une bicouche lipidique. Production des VAP est l’une des conséquences les 

plus marquantes de l’infection par SIRV2 des cellules hôtes. L’approche de transcriptome a permis 

d’établir une carte globale de l’expression des gènes viraux et ceux de l’hôte pendant le cycle 

d’infection. Ces résultats sont présentés dans le chapitre 5. Immédiatement après l’infection, 

la transcription des gènes viraux commence simultanément à partir de deux extrémités de son 

génome linéaire. Toutes les interactions possibles entre l’ensemble des protéines codées par 

SIRV2 ont été analysées par l’approche du double-hybride chez la levure et les résultats obtenus 

ont permis de mieux comprendre les fonctions codées par le génome de SIRV2 pour lequel le 

rôle de plus de la moitié des gènes reste inconnu. Les cellules hôtes répondent à l’infection virale, 

en modifiant l’expression de plus de 30% de leurs gènes. Les gènes impliqués dans la division 

cellulaire sont régulés à la baisse, tandis que ceux qui jouent un rôle dans la défense antivirale 

sont activés. Plus précisément, pour la première fois l’activation massive des gènes codant pour le 

système anti-toxine mais également le système CRISPR-Cas a été observée chez les archées. Les 

différents degrés d’expression de ces différents systèmes mettent en évidence l’importance des 

fonctions qu’ils codent. Les complexes ribonucléoprotéiques multiproteiques associés au système 

de défense antivirale CRISPR ont généralement une stoechiométrie non proportionnelle, où les 

4-6 types de sous-unités protéiques qui le composent sont présents dans des quantités non 

proportionnelles. Comme la plupart des gènes procaryotiques impliqués dans la même fonction, 

les gènes CAS sont regroupés dans les opérons permettant leur co-expression coordonnée 

(comme cela a en effet été observé dans l’analyse du transcriptome décrit dans le chapitre 5). 

Ceci est avantageux lorsque des quantités égales de produits de gènes sont nécessaires, comme 

c’est le cas pour les complexes protéiques avec la stœchiométrie proportionnelle. Cependant, 
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les complexes CRISPR ainsi que de nombreux autres complexes protéiques cellulaires importants 

(ribosome, ATPase, le système de sécrétion de la protéine TAT) sont des complexes avec une 

stœchiométrie non proportionnelle pour sous unités qui les composent. Comme discuté dans 

le chapitre 6, à l’aide de l’approche de la génomique comparative, il a été démontré que la 

traduction différentielle est un mécanisme clef permettant l’expression modulée des gènes 

regroupés dans opérons. Egalement, le biais des codons est généralement le meilleur indicateur 

in silico et ce paramètre permet d’expliquer la production inégale des protéines à partir de la 

même molécule de l’ARNm. En outre, l’analyse de l’expression des gènes portant à la suite de 

la mutagenèse des codons synonymiques a apporté la preuve que l’initiation de la traduction 

peut se produire à partir des sites inter-cistroniques. L’universalité du phénomène de modulation 

de l’efficacité de la traduction suggère qu’il s’agit d’une voie universelle de contrôle chez les 

bactéries et chez les archées et ce mécanisme permet une production différentielle des protéines 

codées par les gènes organisés en opérons.
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