
Contents

- 1. RIKILT Institute of Food Safety
- 2. Tropane alkaloids
- 3. Methods of Analysis
 - a) LC-MS/MS
 - b) Chiral LC separation
 - c) Dipstick test
- 4. Results survey 2006-2011

SAC AOAC

5. Conclusions

Effects of Tropane alkaloids

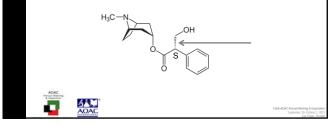
Humans:

- Medicine: arthritis, nausea, motion sickness, intestinal cramping and ophthalmic purposes (dilatation)
- Drug: hallucinogenic effects
- Poison: 10 berries of deadly night-shade (Atropa belladonna)

Effects of Tropane alkaloids

Animals:

- Pigs are most sensitive species, poultry least sensitive
- Hyposalivation, tachycardia, hyperventilation, pupil dilatation, restlessness, nervousness, muscle tremor, hypothermia, convulsions, delirium and death from asphyxia


Off-taste milk

· Carry over: little evidence

Tropane alkaloids

- Occurrence of enantiomers:
 - (DL)-hyoscyamine =atropine (produced by chemical synthesis)
 - L-hyoscyamine (S-enantiomer) is the active form
 - L-hyoscyamine occurs naturally while D-hyoscyamine (Renantiomer) can be formed during isolation

Levels in plant materials (µg/g) DW Preliminary literature compilation

	atropine/hyoscyamine		amine	scopolamine			total			ratio hyoscyamine/scopolam		
	leaves	stem	seeds	leaves	stem	seeds	feaves	stem	seeds	leaves	stem	seeds
datura stramonium	1038	1371	1534	412	878	374	1450	2249	1908	2,5	2,6	4,1
datura stramonium tatula	1969	5315	676	818	2320	684	2786	7635	1359	2,4	2,3	1,0
latura inoxia	185	400	1529	1129	1950	614	1314	2350	2143	0,2	0,2	2,5
datura metel	873	350	1179	1188	1715	1713	2061	2065	2891	0,7	0,2	0,7
datura ferox	75		14	1312	900	1065	1387	900	1078	0,1	0,0	0,0
all datura stramonium	1135	2160	1166	593	1166	613	1728	3326	1779	1,9	1,9	1.9
all datura samples	975	1969	1199	1034	1377	800	2009	3346	1999	0,9	1,4	1,5
■ Si	• In D	atura	stramor	in all p <i>ium (</i> tho opolami	rnapp) L-hy	oscyam	ine is m	ore	
	nror	ninent										
						moro in	nortant					
	• In of	ther sp	oecies s	copolam orts: aro	ine is							

EU Legislation on Tropane alkaloids

- No EU legislation for Tropane alkaloids
- EU Regulation on *Datura* seeds in feed (Dir. 2002/32/EC):
 Limit: 1 g plant material / kg feed 12% moisture
- Netherlands: List with banned herbal preparations from food (2001), will be updated in 2012
- Belgium: Royal Decree concerning the manufacture of and trade in foods from plants or preparations made from or containing plants, 1997
- EFSA opinion Tropane alkaloids (from Datura sp.) in feed, 2008
- EFSA opinion on Tropane alkaloids in food expected Q2 2013

26th ADAC Annual Meeting & Exposi September 30- October 3, 2

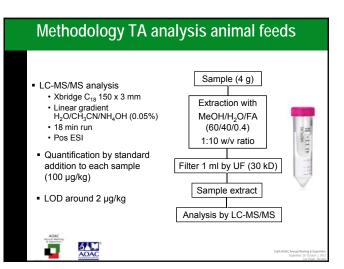
Tropane alkaloids - EU RASFF notifications

- 17 Notifications since 2006
 - Datura stramonium seeds (10 notifications)
 - in cereals: millet (6) mostly from Austria
 - In (canned) vegetables (3)
 - In sunflower seeds (1)
 - Reported levels: 1.86 2.76 g/kg (0.19-0.27%) for feed applications
 - Atropine and scopolamine (4 notifications)
 - In buckwheat flour (4) from Eastern Europe
 - Total concentration: 26 to 157 µg/kg
 - Henbane seeds (Hyoscyamus niger) (3 notifications) - In blue poppy seeds (3) from Czech Republic
 - Levels between 1.3 and 4.2 g/kg (0.13-0.42%)

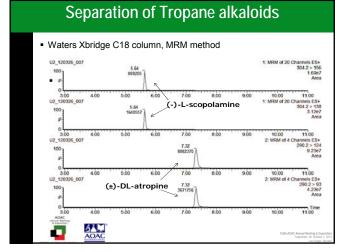
Tropane alkaloids method performance criteria

Method(s) to be developed should be fit for purpose

- · Sufficiently sensitive · Robust, intra/inter-laboratory validated
- Flexible


SAC AOAC

- As simple as possible
- · Adaptations can be made for more (or less) demanding matrices

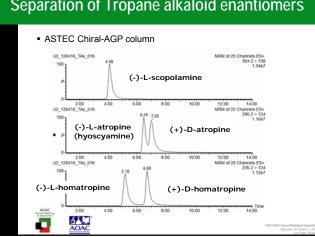

For Tropane alkaloids

- · Quick screening method required since incidence of occurrence is low
- · Followed by confirmation
- · Incorporate in existing methods e.g. pyrrolizidine alkaloids or ergot alkaloids
- · Requires reference standards/materials for quantification
- · Requires C13 or deuterium labelled standards
- Clean-up and sensitivity depends on matrix (food > feed > plant)
- · Detect both enantiomers (D- and L-hyoscyamine)

AOAC

4

_		


Separation of enantiomers

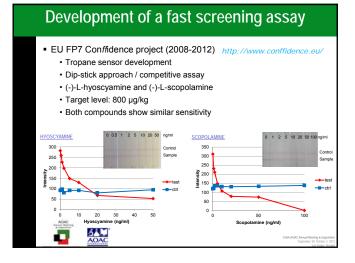
- Measure exposure of humans in case of intoxication atropine
- Metabolism studies
- Racemisation during extraction/isolation from plant/seeds
- Requires the use of chiral stationary phase columns
 - Chiralpack IA (polysaccharide)
 - Cyclobond (derivatised β-cyclodextrin)
 - Chiral-AGP (α-acid glycoprotein)
 - Chirobiotic T2 (teicoplanin)

SAC AOAC

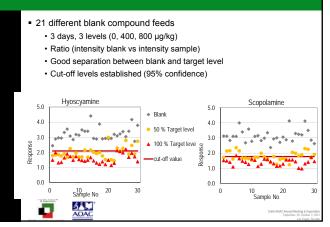
-

 Columns can be run with aqueous and/or organic mobile phase, compatible with LC-MS/MS

Separation of Tropane alkaloid enantiomers


Results Tropane alkaloids in animal feed

- Screening animal feed for Tropane alkaloids in 2006 2011
- LOD: 1-4.5 µg/kg (no correction for dry matter)


S/C

 611 samples of feed: forage, soya, seeds, herbal products, grains and compound feeds

	Results Tropane a	alkalo	oids	in anir	nal fee	d
Category 1 2 3 4 5 6 7 13 1-13	Commodity Ceral grains and products derived thereof Oli seeds, oil musts, and products derived thereof Legume seeds and products derived thereof Tobers, rotes, and products derived thereof Other seeds and futuls, and products derived thereof Other parts, algae and products derived thereof Other plants, algae and products derived thereof Compound feed All categories	Samples 121 71 13 1 5 302 32 66 611	LC 96% 77% 100% 80% 100% 88% 42% 90%	Total (ug/kg) 14,9 13,1 0,0 0,0 24,1 0,0 19,6 8,0 6,6	Atropine (ug/kg) 8,6 5,9 0,0 0,0 18,1 0,0 13,3 5,4 3,8	Scopolami (ug/kg) 6,4 7,2 0,0 0,0 6,0 0,0 6,3 2,5 2,8
	10% of samples contain Average content is lo TAs appear to concer grains, (oil) seeds an Compound feeds ofte Ratio atropine/hyoscy	w; relative ntrate in s d other pla en contain	pecific co ants traces o	ommodities, s f Tropane alk	uch as cereal aloids	
	average 1.5:1		oopolar		126th ADAC A	nnual Mosting & Export

Validation of Tropane Sensor

Conclusions - Analytical challenges

- Appropriate methods are available using LC-MS/MS
 However, not interlaboratory validated
- No TDI or therefore, unknown LOD
- Challenges:

9

- TDI will be determined by EFSA Q2 2013
- Quick screening method
- Development of reference material / internal standards
- · Validation of the method(-s)
- Proficiency test

SAC AOAC

Mycotoxins - Plant toxins

- Several presentations on plant toxins in food and feed
- Session on method development and validation: Inexpensive detection for control of exposure

(EU CONffIDENCE)

Thank you for your attention!

n? ______