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Abstract 
Pszczola, M. (2013). Optimizing genomic selection for scarcely recorded traits. 
PhD thesis, Wageningen University, the Netherlands 

Animal breeding aims to genetically improve animal populations by selecting the 
best individuals as parents of the next generation. New traits are being introduced 
to breeding goals to satisfy new demands faced by livestock production. Selecting 
for novel traits is especially challenging when recording is laborious and expensive 
and large scale recording is not possible. Genetic improvement of novel traits may 
be thus limited due to the small number of observations. New breeding tools, such 
as genomic selection, are therefore needed to enable the genetic improvement of 
novel traits. Using the limited available data optimally may, however, require 
alternative approaches and methodologies than currently used for conventional 
breeding goal traits. The overall objective of this thesis was to investigate different 
options for optimizing genomic selection for scarcely recorded novel traits. The 
investigated options were: (1) genotype imputation for ungenotyped but 
phenotyped animals to be used to enlarge the reference population; 
(2) optimization of the design of the reference population with respect to 
the relationships among the animals included in it; (3) prioritizing genotyping 
of the reference population or the selection candidates; and (4) using easily 
recordable predictor traits to improve the accuracy of breeding values for 
scarcely recorded traits. Results showed that: (1) including ungenotyped animals 
to the reference population can lead to a limited increase in the breeding 
values accuracy; (2) the reference population is designed optimally when the 
relationships within it are minimized and between the reference population and 
potential selection candidates relationships are maximized; (3) the main gain in 
accuracy when moving from traditional to genomic selection is due to genotyping 
the selection candidates, but preferably both reference population and selection 
candidates should be genotyped; and (4) including the predictor traits in the 
analysis when it is recorded on both reference population and selection 
candidates can lead to a significant increase in the selection accuracy. The 
key factors of successful implementation of a novel trait in a breeding scheme 
are: (1) maximizing accuracy of genotype prediction for ungenotyped animals 
to be used for updating the reference population;  (2) optimizing the design 
of the reference population; (3) determining easy to record indicator traits that are 
also available on the selection candidates; (4) developing large scale phenotyping 
techniques; and (5) establishing strategies and policies for increasing the 
engagement of farmers in the recording of novel traits. 
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1 General introduction 

 
 

1.1 Animal breeding 
Animal breeding aims to genetically improve animal populations by selecting the 
best individuals as parents of the next generation. Best individuals are chosen by 
ranking the animals according to the breeding goal. The breeding goal is a set of 
criteria expected to be important in the next 5-10 years and therefore changes over 
time. Decades ago, the main breeding goal was production (Miglior et al., 2005; 
Neeteson-van Nieuwenhoven et al., 2013). Later, however, breeding goals were 
revised and new traits included. Presently, in some countries dairy cattle breeding 
goals include up to 40 commonly recorded traits (Banos, 2010). As a consequence 
of the increased number of traits, the relative importance of production traits in 
the breeding goal has dropped (Miglior et al., 2005) and is predicted to reduce 
further in the future (Neeteson-van Nieuwenhoven et al., 2013). New traits are 
being introduced to breeding goals to satisfy new demands faced by livestock 
production (Boichard and Brochard, 2012; Merks et al., 2012). However, 
introducing a new trait and starting selection for such a trait may be difficult when 
the trait is novel in the sense that it has not previously been widely recorded. 
Selecting for such novel traits is especially challenging when recording phenotypes 
is laborious and expensive.  
 
1.2 Novel traits 
The potential for the genetic improvement of several novel traits is currently being 
investigated on the grounds that they are economically, environmentally or 
societally important. Because of laborious and expensive recording, for some novel 
traits, large scale recording in the near future is not possible and recording may 
therefore be limited to research herds. Two examples of novel traits that most 
likely will not be measured on a large scale in the near future are dry matter intake 
and methane emission in dairy cattle. These two traits are economically and 
societally important for the dairy industry, because they are both related to 
production efficiency and environmental footprint (Veerkamp, 1998; de Haas et al., 
2012a). Genetic improvement of such traits is desirable, but may be limited due to 
the small number of observations available. As a result, novel traits often cannot be 
improved directly by conventional breeding tools, as these require large numbers 
of observations, measured on many close relatives of each selection candidate. 
New breeding tools are therefore needed to enable the genetic improvement of 
novel traits. 
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1.3 Genomic selection for novel traits 
Genomic selection (GS) is a new breeding tool that uses single-nucleotide 
polymorphism (SNP) markers spread across the genome that are expected to be in 
linkage disequilibrium (LD) with quantitative trait loci (QTL) influencing a trait of 
interest (Meuwissen et al., 2001; Hayes et al., 2009a). SNP markers also allow for 
describing relationships between the animals on a genomic rather than pedigree 
level (Nejati-Javaremi et al., 1997; VanRaden, 2008, Yang et al., 2010), which results 
in more accurate estimates of relationships. For example, genomic relationships 
allow for the differentiating of breeding values among full-sibs before their 
offspring’s performance is known, which is not possible with pedigree information. 
The main benefits of introducing GS in dairy cattle breeding, therefore, are a 
reduced generation interval and lower number of phenotypes required for 
accurate breeding value estimation (Schaeffer, 2006). Because of these benefits, 
the uptake of GS by the dairy breeding industry has been rapid (for reviews see: 
Sellner et al., 2007; Ibañez-Escriche and Gonzalez-Recio, 2011; Bouquet and Juga, 
2012; Pryce and Daetwyler, 2012a). 
 To perform GS, two steps are needed. In the first step, a set of animals are 
genotyped and phenotyped to form the so-called reference or training population. 
In the reference population, phenotypic values are matched with corresponding 
genotypes to calibrate prediction equations. In the second step, these prediction 
equations are matched with genotypes of animals under evaluation, such as 
selection candidates, to predict their genomic breeding values. To predict these 
breeding values, no phenotypes of the selection candidates or their offspring are 
required. Usually, the selection candidates are juveniles and their genomic 
breeding values are much more accurate than when estimated with conventional 
breeding tools that rely only on parent average information (Meuwissen et al., 
2001).  

The accuracy of GS depends on several factors. First, GS accuracy increases 
together with the size of the reference population (Daetwyler et al., 2008; 
Goddard, 2009a). Second, the level of GS accuracy depends on heritability of the 
trait (Daetwyler et al., 2008; Goddard, 2009a). Likewise, in traditional selection, 
higher heritability results in higher accuracy. Two other important factors affecting 
GS accuracy are SNP chip density and effective population size (Daetwyler et al., 
2008; Goddard, 2009a). In short, more dense SNP chips and a lower effective 
population size lead to higher accuracy. Finally, family relationships also play an 
important role in the accuracy of GS. Selection candidates that are closely related 
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to the reference population will be evaluated more accurately than those distantly 
related (Habier et al., 2007; Habier et al., 2010; Wolc et al., 2011). 

An important feature of GS, which makes it especially interesting to apply 
to novel traits, is that the expensive or laborious measurements do not have to be 
taken on a routine scale. Even with a reference population of limited size, GS was 
shown to be a promising tool for starting selecting for novel traits (Calus et al., 
2013). As reported by the authors, genetic progress can already be made with 
breeding values of low accuracy. Although low accuracy of breeding values results 
in relatively inaccurate ranking of the individuals, at the level of the breeding 
program, genetic progress can be achieved. Of course, higher accuracy will lead to 
higher genetic progress. Using the limited available data optimally may require 
alternative approaches and methodology than currently used for conventional 
breeding goal traits.  
 
1.4 Objective 
The overall objective of this thesis was to investigate different options of optimizing 
genomic selection for scarcely recorded traits. The investigated options were: 
genotype imputation for ungenotyped but phenotyped animals to be used to 
enlarge the reference population; optimization of the design of the reference 
population with respect to the relationships among the animals included in it; 
prioritizing genotyping of the reference population or the selection candidates; and 
using easily recordable predictor traits to improve the accuracy of breeding values 
for scarcely recorded traits.  
 
1.5 Thesis outline 
Chapter 2 of this thesis investigated whether the accuracy of genomic selection can 
be improved by supplementing a small reference population by ungenotyped but 
phenotyped animals. A dairy cattle population was simulated from which a 
reference population was sampled. This reference population consisted of 1,000 
phenotyped and genotyped individuals. In the subsequent scenarios, the reference 
population was supplemented by an additional 1,000 ungenotyped or genotyped 
animals. Genotypes of the ungenotyped animals were predicted based on the 
genotypes of their relatives and pedigree information. The accuracy of breeding 
values for all the scenarios were compared among each other to answer the 
question of whether there is a positive effect of enlarging the reference population 
by ungenotyped but phenotyped animals on the accuracy of genomic selection.  
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Chapter 3 investigated the impact of different family designs in terms of 
the relationships within the reference population, as well as the relationship of 
selection candidates to the reference population on accuracy of genomic selection. 
A dairy cattle population structure was simulated. Scenarios differed by the level of 
relationships among the animals in the reference population. Differences in 
predicted accuracy of breeding values were compared between scenarios. The 
analysis allowed for determining the optimal design of the reference population 
and association between relationships to the reference population and predicted 
breeding values accuracy. 

Breeding values estimated by using genomic information are more 
accurate than pedigree based ones. The aim of the study as described in Chapter 4 
was to investigate whether this increase is mainly due to genotyping reference or 
the animals evaluated. For this purpose, a simulated dataset reflecting a dairy 
cattle population was used. Four scenarios were considered in which genomic 
information on different groups of animals was available. The genomic information 
was available on (1) no animals; (2) reference population; (3) evaluated animals; or 
(4) reference population and evaluated animals. For each of the scenarios, 
breeding value accuracies were predicted using selection index theory. 

Next, to optimize the reference population with respect to its design or 
size, predictor traits can be used to increase the accuracy of genomic selection for a 
novel trait. This option was evaluated using real data in Chapter 5 by investigating 
the effect of using predictor traits on the accuracy of genomic breeding values for a 
trait recorded on a limited cow reference population. The analyzed scenarios 
assumed that one or two predictor traits were available on the reference 
population only, or both on the reference population and the evaluated animals. 
The novel trait was dry matter intake and fat-protein-corrected milk yield and live 
weight was used as the predictor traits. 

The general discussion focused on several aspects related to the genetic 
improvement of novel traits. First, the importance of female reference populations 
for novel traits was discussed. Next, the accuracy of genomic selection for novel 
traits at different project budgets was analyzed to indicate a break-even point 
between the costs of genotyping and phenotyping. Finally, foresight 
concerning the future challenges for selection of novel traits was given, including: 
development of cheap phenotyping techniques for currently difficult to measure 
traits, use of sequence data in the process of selecting for novel traits and farmers' 
participation in the phenotyping of novel traits. 
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Abstract 
Genomic selection (GS) permits accurate breeding values to be obtained for young 
animals, shortening the generation interval and accelerating the genetic gain, 
thereby leading to reduced costs for proven bulls. Genotyping a large number of 
animals using high-density single nucleotide polymorphism marker arrays is 
nevertheless expensive, and therefore, a method to reduce the costs of GS is 
desired. The aim of this study was to investigate an influence of enlarging the 
reference population, with either genotyped animals or individuals with predicted 
genotypes, on the accuracy of genomic estimated breeding values. A dairy cattle 
population was simulated in which proven bulls with 100 daughters were used as a 
reference population for GS. Phenotypic records were simulated for bulls with 
heritability equal to the reliability of daughter yield deviations based on 100 
daughters. The simulated traits represented heritabilities at the level of individual 
daughter performance of 0.3, 0.05, and 0.01. Three scenarios were considered in 
which (1) the reference population consisted of 1,000 genotyped animals, (2) 1,000 
ungenotyped animals were added to the reference population, and (3) the 1,000 
animals added in scenario 2 were genotyped in addition to the 1,000 animals from 
scenario 1. Genotypes for ungenotyped animals were predicted with an average 
accuracy of 0.58. Additionally, an adjustment of the diagonal elements of the 
genomic relationship matrix (G) was proposed for animals with predicted 
genotypes. The accuracy of genomic estimated breeding values for juvenile animals 
was the highest for the scenario with 2,000 genotyped animals, being 0.90, 0.79, 
and 0.60 for the heritabilities of 0.3, 0.05, and 0.01, respectively. Accuracies did not 
differ significantly between the scenario with 1,000 genotyped animals only and 
the scenario in which 1,000 ungenotyped animals were added and the adjustment 
of the G matrix was applied. The absence of significant increase in the accuracy of 
genomic estimated breeding values was attributed to the low accuracy of predicted 
genotypes. Although the differences were not significant, the difference between 
scenario 1 and 2 increased with decreasing heritability. Without the adjustment of 
the diagonal elements of the G matrix, accuracy decreased. Results suggest that 
inclusion of ungenotyped animals is only expected to enhance the accuracy of GS 
when the unknown genotypes can be predicted with high accuracy.  
 
Key words: genomic selection, accuracy of genomic breeding value, prediction of 
genotypes, dairy cattle  
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2.1 Introduction 
Different approaches of including genomic information into breeding value 
estimations have been presented (Meuwissen et al., 2001; Kolbehdari et al., 2007; 
Long et al., 2007; Muir, 2007). One of them is the genomic BLUP procedure (G-
BLUP), in which equal variances are assumed for all SNP effects (Meuwissen et al., 
2001). The accuracy of the obtained genomic estimated breeding values (GEBV) for 
juvenile animals that have no phenotypic observations is higher than the accuracy 
of pedigree indexes (Meuwissen et al., 2001). In the G-BLUP procedure, the 
genomic relationship matrix (G; VanRaden, 2008) can be used. Modeling SNP with 
equal variance is equivalent to using a genomic relationship matrix (VanRaden, 
2008; Goddard, 2009a; Strandén and Garrick, 2009). The G matrix contains 
relationship coefficients among evaluated animals estimated based on genomic 
information. Genomic relationship coefficients are estimated with higher accuracy 
than when using pedigree information, because genomic information allows the 
capture of Mendelian sampling across the genome. 

The accuracy of GEBV for juveniles increases with the number of animals 
included in the reference population used to estimate SNP effects (Meuwissen et 
al., 2001; Goddard, 2009a; Hayes et al., 2009a). Enlarging the reference population, 
however, implies the genotyping of additional animals, which increases the costs of 
GS. Enlarging the reference population with ungenotyped animals for which 
genotypes can be predicted might be an inexpensive method to increase the 
accuracy of GEBV. Gengler et al. (2007) proposed a method that treats (unknown) 
genotypes as (missing) phenotypes and uses the additive relationship matrix, based 
on pedigree information, to predict genotypes. Although this is a promising and 
easy to implement strategy, the eventual influence of using predicted genotypes in 
the reference population on the accuracy of GEBV has not yet been studied. 

The objective of this study was to investigate the effect of GEBV of 
enlarging the reference population in a dairy cattle breeding program by adding 
bulls with known or predicted genotypes on the accuracy. 
 
2.2 Materials and methods 
Simulation 
A dairy cattle population was simulated using similar assumptions as in Villumsen 
et al. (2009) and Calus et al. (2008). Data sets were simulated for daughter yield 
deviations (DYD) based on observations of 100 daughters of traits with high (0.3), 
moderate (0.05), and low (0.01) heritability. The first 1,000 generations had an 
effective population size of 400, consisting of 200 sires and 200 dams. All loci had 
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alleles 1 and 2 segregating in the first generation, both with an allele frequency of 
0.5. Linkage disequilibrium was established by performing random mating for the 
first 1,000 generations. Inheritance of parental chromosomes was in accordance 
with Haldane's (1919) mapping function. The mutation rate was 2 × 10−5, where a 
mutation in allele 1 (2) yielded an allele 2 (1). 

Generated genome length was 6 M and the genome consisted of 12 
chromosomes, each 0.5 M long. This corresponds, approximately, to 20% of the 
actual cattle genome (Ihara et al., 2004). Marker loci (5,002) were spaced at fixed 
distances of 0.12 cM across the genome. After 1,000 generations of random 
mating, on average 4,500 markers were still segregating (i.e., on average 7.5 
SNP/cM). Between 198 and 208 SNP (1 every 20 SNP) were removed from the 
segregating loci and used as QTL. Parameters used in the simulation are 
summarized in Table 2.1. 

 
Table 2.1 Simulation parameters. 
 

Parameter Value 

Effective population size of the first 1,000 generations   400 

Simulated genome length, M   6  

Number of simulated chromosomes   12 

Length of simulated chromosomes, M   0.5 

Distance between adjacent markers in generation 1,008, M   0.0012  

Number of SNP markers per cM   ~ 7.5 

Number of QTL per cM   ~ 0.33 

Minor allele frequency   0.29 

 Trait 1 Trait 2 Trait 3 

Heritability of phenotype 0.3 0.05 0.01 

Heritability for DYD 0.89 0.56 0.20 

 
After the first 1,000 generations (i.e., in generation 1,001), the population 

was extended to 800 individuals. In generations 1,001 to 1,008, no mutations were 
simulated. In generations 1,001 to 1,007, 50 males and 200 females were randomly 
chosen as parents of the next generation. The matings were restricted such that 
there were no full-sibs among the 800 offspring. For generations 1,002 to 1,008, 
genotypes, true breeding values (TBV), and phenotypes of the males were 
simulated. Generation 1,008, containing juvenile animals, was simulated with 
unknown phenotypes. Pedigree was stored for all animals from generations 1,002 
to 1,008. The outline of the simulation is presented in Figure 2.1. 
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2 Ungenotyped animals in reference population 

Figure 2.1 Simulation scheme. 

To simulate TBV, QTL effects were randomly drawn from a normal 
distribution, 𝑁(0,1). All QTL effects were summed per animal to obtain TBV, 
assuming that QTL were independent. The total variance of the TBV was calculated 
(denoted as 𝜎𝑇2𝐵𝑉) as a variance of TBV across all animals. Phenotypes were 
obtained by adding a random residual term, 𝑁(0, 𝜎𝑒2), to the TBV; 𝜎𝑒2 was derived 
as: 

𝜎𝑒2 = 𝜎𝑇𝐵𝑉
2 (1−ℎ2)

ℎ2
[2.1] 

where ℎ2 is the simulated heritability (see Table 2.1). Phenotypic records were 
simulated for bulls, with ℎ2 equal to the reliability of DYD. This reliability (𝑟𝐼𝐻2 ) for 
progeny-tested bulls was calculated according to the formula of Mrode (2005): 

𝑟𝐼𝐻2 =
1
4� 𝑛ℎ2

1+1 4� (𝑛−1)ℎ2
 [2.2] 

where n is the number of daughters, which was considered to be 100. As a result, 
heritabilities of 0.3, 0.05, and 0.01 at the phenotypic level yielded heritabilities of 
0.89, 0.56, and 0.20 at the DYD level, respectively (Table 2.1). 

Scenarios 
To meet the goal of this study the described simulation was performed for all 3 
heritability levels, and each simulation was replicated 10 times. Three scenarios 
were considered with, on the one hand, different sizes of the reference population 
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and, on the other hand, different numbers of animals with known or predicted 
genotypes. In the first scenario, GEBV were estimated using a reference population 
consisting of 1,000 genotyped sires chosen randomly from genotyped bulls within 
generations 1,002 to 1,007 (200 sires out of 400 available genotyped bulls) with 
phenotypes based on DYD. 

In the second scenario, GEBV were estimated with an additional 1,000 
ungenotyped bulls. Those bulls were the remaining 200 bulls per generation after 
choosing bulls for scenario 1 and had no offspring. A particular genotyped bull was 
mated only once with a particular cow, resulting in one offspring; the highest 
possible degree of relationship among the ungenotyped and genotyped animals 
was therefore half-sib or parent-offspring. The unknown genotypes were predicted 
using the method of regression on gene content, proposed by Gengler et al. (2007). 
This method treats (missing) genotypes as (unknown) phenotypes and uses the 
additive genetic relationship matrix (A) to predict them using the following model 
for each SNP separately: 

 
𝑔𝑐𝑖 = 𝜇𝑔𝑐 + 𝑑 + 𝑒𝑔𝑐𝑖       [2.3] 
 

where 𝑔𝑐 is the observed (missing) gene content for (un)genotyped animal i, 𝜇𝑔𝑐  is 
an overall mean, d is EBV for gene content, and 𝑒𝑔𝑐 is the residual of gene content. 
The A matrix contained animals from generations 1,002 to 1,008. The heritability 
used in the mixed model equations was 0.99. The ASREML software (Gilmour et al., 
2002) was used to solve the mixed model equations. 

The third scenario was similar to the second one, except that all 2,000 
bulls were considered genotyped. A traditional BLUP (scenario 4) was also 
performed using phenotypes for the same 2,000 bulls considered in scenario 3. 
 
Estimation of GEBV 
After each simulation, genotypes of the animals were used to create the G matrix 
according to VanRaden (2008): 
 

𝑮 = 𝒁𝒁′

2∑𝑝𝑖(1−𝑝𝑖)
       [2.4] 

 
where 𝑝𝑖  is the frequency of the second allele at locus i, and Z is derived by 
subtracting 2 times the allele frequency expressed as a difference of 0.5; that is, 
2(𝑝𝑖 − 0.5), from matrix M that specifies the marker genotypes for each individual 
as −1, 0, or 1 (VanRaden, 2008). In this study the allele frequencies 𝑝𝑖  were 
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considered to be 0.5; therefore, Z was the same as M. The value for 𝑝𝑖  of 0.5 
reflects the allele frequency in our simulated base population. In preliminary 
analysis, we found limited differences when using 0.5 instead of the allele 
frequency in the current population for 𝑝𝑖 . VanRaden (2008) found that using 
different values for 𝑝𝑖  hardly affects the accuracy of the GEBV. However, Aguilar et 
al. (2010) and Christensen and Lund (2010) found that using different allele 
frequencies does influence the accuracy of GEBV. Results of Aguilar et al. (2010) 
indicated that allele frequencies of 0.5 actually gave the highest accuracy. These 
different results indicate that the effect of used allele frequencies for 𝑝𝑖  appears to 
be different for different data sets. 

Subsequently, GEBV were estimated with G-BLUP using the following 
model: 

𝑦𝑗 = 𝜇 + 𝑎𝑗 + 𝑒𝑗,  [2.5] 

where 𝜇 is an overall mean, 𝑎𝑗  is an estimated breeding value and 𝑒𝑗  is the random 
error term. The estimated breeding values were assumed to be distributed as 
𝑁(0,𝑮𝜎𝑎2) and the residuals were assumed to be distributed as 𝑁(0,𝜎𝑒2). The 
genetic variance 𝜎𝑎2 and residual variance 𝜎𝑒2 were estimated using restricted 
maximum likelihood (REML) implemented in ASReml software (Gilmour et al., 
2002). 

In G-BLUP an inverse of the G matrix is required. To avoid singularities in 
G, the latter was weighted by A as follows: 𝑮𝜔 = 𝜔𝑮 + (1 − 𝜔)𝑨 (VanRaden, 
2008), using a weighting factor (ω) of 0.99, meaning that a relatively low weight 
was given to the A matrix. The A matrix used to weight the G matrix contained only 
animals that were present in G. 

Comparison of GEBV 
The 10 replicates were analyzed by calculating the accuracies of GEBV, regression 
of simulated breeding values on GEBV, and mean squared errors of prediction 
(MSEP) for each group of animals. Furthermore, estimated heritabilities were 
compared with the simulated values. 

Adjustment of diagonal elements of the G matrix 
Initial analyses (Figure 2.2) showed that the diagonal elements of the G matrix for 
ungenotyped animals using predicted gene contents were much lower than 1.0. 
This is in conflict with the expectation of diagonal elements of a relationship matrix, 
which is 1 plus the inbreeding coefficient of the animal (Wright, 1922). Although 
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the expectation of the diagonal elements of the G matrix is >1, the diagonal 
elements in the G matrix can be lower for some animals (VanRaden, 2008). 
However, in our case, the average diagonal element of G for ungenotyped animals 
was only 0.73. The low values for the diagonal elements of the G matrix were 
caused by the fact that the predicted gene content is regressed back to the mean 
for ungenotyped animals. This regression to the mean is due to the nature of BLUP 
and leads to an excess of expected heterozygotes. Both off-diagonal and diagonal 
elements were affected by the regression to the mean; nevertheless, in absolute 
terms the effect was largest on diagonal elements. The mean absolute difference of 
predicted and true values of the off-diagonals was only 0.03. Because the diagonal 
elements of G, based on the number of homozygous loci of an animal (VanRaden, 
2008), were too low, we proposed an adjustment of the diagonal elements for 
ungenotyped animals. In this adjustment, the diagonal elements for ungenotyped 
animals are calculated, assuming no other relationships between sire and dam 
except between sire and maternal grandsire, as 

𝑔𝑗𝑗 = 1 + 0.25 ∗ 𝑔(𝑠𝑗 ,𝑚𝑔𝑠𝑗) [2.6] 

where 𝑔𝑗𝑗  is the diagonal element for the ungenotyped animal j, and 𝑔(𝑠𝑗 ,𝑚𝑔𝑠𝑗) is 
the genomic relationship coefficient between the genotyped sire (s) and genotyped 
maternal grandsire (mgs) of animal j. Results obtained after this adjustment were 
denoted as an additional scenario (scenario 2a), whereas the results obtained 
without the adjustment were presented as scenario 2. 

2.3 Results 
Characteristics of the simulation 
In each replicate, animals with genotypes were simulated. The average distance 
between adjacent loci across the whole genome, calculated in generation 1,008, 
was 0.13 cM (Table 2.1). The average LD between adjacent markers measured as r2 
(Hill and Robertson, 1968) was 0.41. Minor allele frequency, averaged across all 
marker loci in generation 1,008, was 0.29. Gene contents for 1,000 animals were 
predicted with an average accuracy of 0.58. 

Estimated heritabilities 
Estimated DYD heritabilities averaged over 10 replicates for scenarios 1, 2, 3, and 4 
(Table 2.2) were always slightly higher than the simulated values. Differences 
among the estimated DYD heritabilities for the different scenarios, apart from 
scenario 2 for high and moderate heritability, were not statistically significant from 
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the simulated value. Estimated heritability in scenario 2 for high and moderate 
heritability traits was significantly lower from the simulated value. The adjustment 
of the diagonal elements of the G matrix in scenario 2a resulted in estimated 
heritabilities not significantly different from the simulated values. 

Table 2.2 Estimated heritabilities of daughter yield deviation across different scenarios and 
simulated heritabilities. 
 

  High simulated 
heritability 

 Moderate simulated 
heritability  Low simulated 

heritability 
Scenario1  h2  SE  h2  SE   h2  SE  
Simulated 
heritability  0.89  -  0.56  -  0.20  - 

  1  0.90a  0.04  0.58c  0.01  0.22e  0.05 
  2  0.63b  0.03  0.48d  0.03  0.23e  0.04 
  2a  0.92a  0.04  0.60c  0.01  0.24e  0.04 
  3  0.91a  0.03  0.61c  0.03  0.25e  0.03 
  4  0.92a  0.03  0.57c  0.03  0.21e  0.04 

 
a–e Values with identical superscripts did not differ significantly among scenarios (P > 0.05); 
standard errors of 10 replicates ranged from 0 to 0.012;  
1 Scenario 1 consisted of 1,000 genotyped animals; scenario 2 consisted of 1,000 genotyped 
and 1,000 ungenotyped animals with unadjusted diagonal elements of the genomic 
relationship matrix for ungenotyped animals; scenario 2a consisted of 1,000 genotyped and 
1,000 ungenotyped animals with adjusted diagonal elements of the genomic relationship 
matrix for ungenotyped animals; scenario 3 consisted of 2,000 genotyped animals; scenario 
4 consisted of 2,000 genotyped animals analyzed with use of traditional BLUP;  
2 Standard error of estimated heritability averaged over 10 replicates. 
 
Evaluation of G matrix 
The diagonal elements of the G matrix, without adjusting the coefficients for 
predicted genotypes, were considerably lower when compared with the same 
coefficients for genotyped animals (Figure 2.2). The adjustment proposed in the 
present study resulted in diagonal elements that were closer to their expectations, 
as can be seen from Figure 2.3. Those coefficients were, nevertheless, still lower 
than for genotyped animals; the coefficients for the group of the additional animals 
were generally lower in the G matrix based on predicted gene contents than the 
corresponding coefficients when genotype data were available (Figure 2.3). The 
coefficients in the G matrix were higher than pedigree-based coefficients, for 
genotyped as well as the additional 1,000 bulls with predicted genotypes (Figures 
2.4 and 2.5). 
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Evaluation of GEBV 
The accuracy of GEBV for the first 1,000 animals for all simulated heritability levels 
was the highest in scenario 3 (0.96 for high, 0.88 for moderate, and 0.72 for low 
heritability; Table 2.3). The lowest values were obtained in scenario 2 for high 
heritability (0.93) and for scenario 4 for moderate (0.81) and low (0.60) heritability. 
The accuracy of GEBV in scenarios 1 and 2a did not differ significantly from each 
other (P > 0.05) within high and moderate heritability and was significantly 
different for low heritability (P < 0.05). 

The highest accuracies for the additional group of the animals were 
observed in scenario 3 for high (0.96), moderate (0.87), and low (0.70) 
heritabilities; these estimates were significantly different from the accuracies in 
scenario 2, 2a, and 4 (P < 0.05). For all heritability levels, accuracies of scenarios 2 
and 4 were significantly different from each other, whereas the accuracy in 
scenarios 2a and 4 were not significantly different (P > 0.05). 

Adjusting the diagonal elements of the G matrix (scenario 2a) resulted in a 
significant increase of the accuracy of GEBV for the additional group of animals for 
low and moderate heritability, and for all groups of animals for high heritability 
when compared with the results of the scenario with no adjustment (scenario 2). 
For low heritability, a significant decrease was observed in the group of the first 
1,000 animals. 
 
Evaluation of GEBV 
The accuracy of GEBV for the first 1,000 animals for all simulated heritability levels 
was the highest in scenario 3 (0.96 for high, 0.88 for moderate, and 0.72 for low 
heritability; Table 2.3). The lowest values were obtained in scenario 2 for high 
heritability (0.93) and for scenario 4 for moderate (0.81) and low (0.60) heritability. 
The accuracy of GEBV in scenarios 1 and 2a did not differ significantly from each 
other (P > 0.05) within high and moderate heritability and was significantly 
different for low heritability (P < 0.05). 

The highest accuracies for the additional group of the animals were 
observed in scenario 3 for high (0.96), moderate (0.87), and low (0.70) 
heritabilities; these estimates were significantly different from the accuracies in 
scenario 2, 2a, and 4 (P < 0.05). For all heritability levels, accuracies of scenarios 2 
and 4 were significantly different from each other, whereas the accuracy in 
scenarios 2a and 4 were not significantly different (P > 0.05). 

Adjusting the diagonal elements of the G matrix (scenario 2a) resulted in a 
significant increase of the accuracy of GEBV for the additional group of animals for 
low and moderate heritability, and for all groups of animals for high heritability 
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when compared with the results of the scenario with no adjustment (scenario 2). 
For low heritability, a significant decrease was observed in the group of the first 
1,000 animals. 
 
Table 2.3 Accuracies (Acc.), regression coefficients (Reg.), and mean squared error of 
prediction (MSEP) of genomic estimated breeding values for groups of 1,000 first, additional 
and juvenile animals for heritability of 0.3 (0.89 daughter yield deviation) for all scenarios.  
 

Scenario1 First 1,000 anim.  Additional anim.  Juvenile anim. 
Acc. Reg. MSEP  Acc. Reg. MSEP  Acc. Reg. MSEP 

1 0.96a 1.02 6.79 - - - 0.84h 1.01 23.09 
2 0.93b 1.152 12.35 0.65e 1.272 45.15 0.80i 1.192 28.47 
2a 0.96a 1.00 6.50 0.95f 1.03 8.50 0.83h 0.98 22.63 
3 0.96c 1.02 5.54 0.96g 1.02 6.07 0.90j 1.01 15.09 
4 0.95d 1.01 7.79 0.95f 1.00 8.18 0.57k 1.04 52.25 

 
a–k Values with identical superscripts did not differ significantly (P > 0.05); standard errors of 
10 replicates ranged from 0 to 0.02 for Acc. and Reg., and from 0.2 to 1.77 for 
MSEP; 1 Scenario 1 consisted of 1,000 genotyped animals; scenario 2 consisted of 1,000 
genotyped and 1,000 ungenotyped animals with unadjusted diagonal elements of the 
genomic relationship matrix for ungenotyped animals; scenario 2a consisted of 1,000 
genotyped and 1,000 ungenotyped animals with adjusted diagonal elements of the genomic 
relationship matrix for ungenotyped animals; scenario 3 consisted of 2,000 genotyped 
animals; scenario 4 consisted of 2,000 genotyped animals analyzed with use of traditional 
BLUP; 
2 Reg. significantly different from 1. 
 
Evaluation of GEBV 
The accuracy of GEBV for the first 1,000 animals for all simulated heritability levels 
was the highest in scenario 3 (0.96 for high, 0.88 for moderate, and 0.72 for low 
heritability; Table 2.3). The lowest values were obtained in scenario 2 for high 
heritability (0.93) and for scenario 4 for moderate (0.81) and low (0.60) heritability. 
The accuracy of GEBV in scenarios 1 and 2a did not differ significantly from each 
other (P > 0.05) within high and moderate heritability and was significantly 
different for low heritability (P < 0.05). 

The highest accuracies for the additional group of the animals were 
observed in scenario 3 for high (0.96), moderate (0.87), and low (0.70) 
heritabilities; these estimates were significantly different from the accuracies in 
scenario 2, 2a, and 4 (P < 0.05). For all heritability levels, accuracies of scenarios 2 
and 4 were significantly different from each other, whereas the accuracy in 
scenarios 2a and 4 were not significantly different (P > 0.05). 
 

 

29 
 



2 Ungenotyped animals in reference population 

Figure 2.2 Coefficients of the genomic relationship matrix for animals with predicted 
genotypes plotted against the same coefficients calculated using their true genotypes 
without adjusting the diagonal elements. 

Figure 2.3 Coefficients of the genomic relationship matrix for animals with predicted 
genotypes plotted against the same coefficients calculated using their true genotypes with 
adjusting the diagonal elements. 
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Figure 2.4 Coefficients of the genomic relationship matrix for the animals with predicted 
genotypes and adjusted diagonal elements of genomic relationship matrix plotted against 
pedigree-based relationship coefficients. 
 
 

 
 

Figure 2.5  Coefficients of the genomic relationship matrix for the genotyped animals plotted 
against pedigree-based relationship coefficients. 
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Adjusting the diagonal elements of the G matrix (scenario 2a) resulted in a 
significant increase of the accuracy of GEBV for the additional group of animals for 
low and moderate heritability, and for all groups of animals for high heritability 
when compared with the results of the scenario with no adjustment (scenario 2). 
For low heritability, a significant decrease was observed in the group of the first 
1,000 animals. 

Similarly to the group of first 1,000 animals and the group of additional 
animals, the accuracy for the juvenile animals was the highest in scenario 3 for all 3 
heritability levels: 0.90 (high), 0.79 (moderate) and 0.60 (low), and the lowest in 
scenario 4: 0.57 (high), 0.48 (moderate), and 0.33 (low). Accuracies reached in 
scenarios 1 and 2a were somewhat lower than those in scenario 3. Accuracy 
estimates for the first 1,000 animals in scenario 2 were significantly higher (P < 
0.05) than those in scenario 1 for low heritability, lower for high heritability, and 
not significantly different from each other (P > 0.05) for moderate heritability. The 
accuracy of juvenile animals’ GEBV in scenario 2 was significantly lower (P < 0.05) 
than in scenario 1 for high and not significantly different (P > 0.05) for the other 2 
heritability levels. The adjustment of the diagonal elements of the G matrix 
(scenario 2a) resulted in significantly higher (P < 0.05) accuracy for all groups of the 
animals for high and low heritability and for the group of the 1,000 additional 
ungenotyped animals for moderate heritability when compared with scenario 2. 
The increase for the first 1,000 animals and juveniles for moderate heritability was, 
however, not significant (P > 0.05). Differences in accuracies between scenarios 1 
and 2a were not significant across all heritability levels (P > 0.05), although the 
difference in accuracy between scenarios 2a and 1 tended to increase with 
decreasing heritability. 

In summary, the accuracies of GEBV were the highest when the true 
genotypes of the additional 1,000 bulls were added to the reference population 
and were considerably lower for traditional BLUP. The accuracies of the GEBV for 
the animals with predicted genotypes were lower than for the genotyped ones and 
similar to the accuracies when applying traditional BLUP. Nevertheless, after adding 
animals with predicted genotypes and adjusting the diagonal coefficients of the G 
matrix, the accuracy of GEBV did not decline compared with the scenario when no 
animals were added. Furthermore, the accuracies of juvenile animals increased in 
scenario 2a compared with scenario 1 (Tables 2.4 and 2.5) for traits with moderate 
and low heritability, although the difference was not significantly greater than zero. 
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Table 2.4 Accuracies (Acc.), regression coefficients (Reg.), and mean squared error of 
prediction (MSEP) of genomic estimated breeding value for groups of 1,000 first, additional 
and juvenile animals for heritability of 0.05 ( 0.56 daughter yield deviation)  for all scenarios. 
 

Scenario1 First 1,000 anim.  Additional anim.  Juvenile anim. 
Acc. Reg. MSEP  Acc. Reg. MSEP  Acc. Reg. MSEP 

1 0.85a 1.02 22.76 - - - 0.70g 0.99 40.06 
2 0.85a 1.072

 
22.56 0.62d 1.232 49.67 0.70g 1.06 40.03 

2a 0.85a 1.01 20.93 0.79f 1.122 29.65 0.72g 0.96 37.79 
3 0.88b 1.00 18.01 0.87e 1.00 19.20 0.79h 0.97 30.33 
4 0.81c 0.99 27.75 0.79f 0.99 29.52 0.48i 0.99 60.95 

 

a–I Values with identical superscripts did not differ significantly (P > 0.05); standard errors of 
10 replicates ranged from 0 to 0.03 for Acc. and Reg., and from 0.88 to 2.41 for 
MSEP; 1 Scenario 1 consisted of 1,000 genotyped animals; scenario 2 consisted of 1,000 
genotyped and 1,000 ungenotyped animals with unadjusted diagonal elements of the 
genomic relationship matrix for ungenotyped animals; scenario 2a consisted of 1,000 
genotyped and 1,000 ungenotyped animals with adjusted diagonal elements of the genomic 
relationship matrix for ungenotyped animals; scenario 3 consisted of 2,000 genotyped 
animals; scenario 4 consisted of 2,000 genotyped animals analyzed with use of traditional 
BLUP;  
2 Reg. significantly different from 1. 

 
For all simulated heritability levels and across all scenarios, regression 

coefficients of true on estimated breeding values were close to 1 (Table 2.3, Table 
2.4 and Table 2.5). For the juvenile animals, regression coefficients were generally 
slightly less than 1. Regression coefficients of the animals with predicted genotypes 
were in all cases greater than 1, indicating that the variance of their GEBV was 
underestimated. This is caused by the fact that estimated gene contents were 
shrunk back toward the mean. Regression coefficients were significantly greater 
than 1 in scenario 2, especially for the group of the additional animals. These 
differences from 1 observed in scenario 2, apart from the group of additional 
animals for moderate heritability, were no longer significant when the diagonal 
elements were adjusted (scenario 2a); MSEP ranged from 5.54 to 68.88 across all 
scenarios. 

 
2.4 Discussion 
The objective of this study was to investigate the effect of enlarging the reference 
population in a dairy cattle breeding program, by adding bulls with known or 
predicted genotypes, on the accuracy of GEBV. Four scenarios were evaluated that 
differed with regard to the number of genotyped animals and ungenotyped 
animals with predicted genotypes. As expected, the accuracies of GEBV for all traits 
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were higher for the scenario with a higher number of genotyped animals. A similar 
trend was observed by Goddard (2009a). 

 
Table 2.5 Accuracies (Acc.), regression coefficients (Reg.), and mean squared error of 
prediction (MSEP) of genomic estimated breeding value for groups of 1,000 first, additional 
and juvenile animals for heritability of 0.05 ( 0.56 daughter yield deviation)  for all scenarios. 
 

Scenario1 First 1,000 anim.  Additional anim.  Juvenile anim. 
Acc. Reg. MSEP  Acc. Reg. MSEP  Acc. Reg. MSEP 

1 0.65a 1.03 45.72 - - - 0.52i 1.01 56.14 
2 0.69b 1.02 42.04 0.51f 1.182 58.19 0.54i 0.98 54.94 
2a 0.66c 0.95 42.02 0.57g 1.08 53.04 0.56i 0.96 55.03 
3 0.72d 0.99 38.85 0.70h 0.99 40.35 0.60j 0.94 49.57 
4 0.60e 1.00 50.78 0.57g 1.00 53.53 0.33k 0.912 68.88 

 

a–k Values with identical superscripts did not differ significantly (P > 0.05); standard errors of 
10 replicates ranged from 0 to 0.07 for Acc. and Reg., and from 1.93 to 2.71 for 
MSEP; 1 Scenario 1 consisted of 1,000 genotyped animals; scenario 2 consisted of 1,000 
genotyped and 1,000 ungenotyped animals with unadjusted diagonal elements of the 
genomic relationship matrix for ungenotyped animals; scenario 2a consisted of 1,000 
genotyped and 1,000 ungenotyped animals with adjusted diagonal elements of the genomic 
relationship matrix for ungenotyped animals; scenario 3 consisted of 2,000 genotyped 
animals; scenario 4 consisted of 2,000 genotyped animals analyzed with use of traditional 
BLUP; 
 2 Reg. significantly different from 1. 

 
Accuracy of GEBV 
In general, adding animals with predicted genotypes to the reference population 
did not significantly increase the accuracy of GEBV; however, a trend of increasing 
difference in accuracy between scenarios 1 and 2a with decreasing heritability was 
observed (Tables 2.3, 2.4, and 2.5). This trend suggests that when using traits with 
low heritability or less accurate phenotypic records (i.e., own performance 
records), scenario 2a, in which animals with predicted genotypes were added, may 
become beneficial. 

Comparison of the estimates for BLUP (scenario 4) and G-BLUP in scenario 
2a showed that, in general, accuracy increased significantly for the group of the 
first 1,000 animals and did not differ for the group of additional ungenotyped 
animals. For the juvenile animals, however, superiority of G-BLUP can be seen 
clearly, as also reported by others (Meuwissen et al., 2001; Schaeffer, 2006). The 
improvement in accuracy for juvenile animals comparing G-BLUP with traditional 
BLUP was apparent and similar at all heritability levels. This is in contrast to findings 
of others, who found that use of marker information was especially beneficial for 
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low heritability traits (Meuwissen and Goddard, 1996; Meuwissen et al., 2001; 
Mulder et al., 2010). 

The coefficients of the G matrix between animals with predicted gene 
contents were clearly biased as they were shrunk toward the mean. A solution 
could be to account for the variance of predicted gene content. The bias of the 
coefficients can be judged based on Figure 2.2 as the difference between the 
values on the y- and x-axes. Although calculation of the diagonal elements in the 
G matrix using equation [2.5] increased these coefficients on average by 0.45, 
Figure 2.3 shows that the variance of those adjusted coefficients is still 
underestimated. The adjustment of the diagonals, however, did result in a clear 
improvement of the accuracy of the GEBV for scenario 2a compared with 
scenario 2. This implies that, although parts of the G matrix may still be biased, our 
ad hoc adjustment has made the G matrix overall more consistent, which resulted 
in more accurate prediction of the GEBV. Therefore, in situations where parts of 
the G matrix are dependent on different sources of information with different 
levels of accuracy, such as known versus predicted gene content, it appears to be 
important to ensure that different parts of the matrix have similar properties. 
Christensen and Lund (2010) proposed a model in which, unlike the method 
presented here, both predicted genotypes and the variance of the prediction are 
included. This strategy, therefore, directly yields a more consistent matrix. 

When the aim is to increase the accuracy of GEBV for a certain group of 
juveniles, the best strategy is probably to add animals to the reference population 
that are closely related to those juveniles (e.g., their parents; Habier et al., 2010). 
When the aim is to increase the accuracy of GEBV for juveniles throughout the 
population, one strategy may be to add animals that are not closely related to the 
reference population, and therefore add to the average relationship of the 
reference population to any given animal in the population. However, when 
animals with predicted genotypes are added to the reference population, the gain 
may be larger when those animals are more closely related to the reference 
population, because their genotypes are predicted with higher accuracy. 

Figures 2.4 and 2.5 show that coefficients of the A matrix were lower than 
those of the G matrix, which is because of the difference in the level of inbreeding 
when using pedigree or genomic information. The level of inbreeding when using 
pedigree data was calculated using the first generation in the pedigree as the base 
generation, while the genomic inbreeding level is calculated using generation 1 in 
the simulation as base generation. Therefore, inbreeding coefficients in the G 
matrix are higher, and consequently the coefficients in the G matrix are higher 
compared with the corresponding ones in the A matrix. 
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Accuracy of genomic relationship matrix with predicted gene 
contents 
In the present study, ungenotyped animals did not have offspring and therefore no 
genotype information on descendants was available. A particular bull was mated 
only once with a particular cow and, therefore, the highest possible degree of 
relationship among the ungenotyped and genotyped animals was half-sib or 
parent-offspring. This resulted in relatively low accuracy of predicted gene content 
and, thus, low accuracy of GEBV for ungenotyped and juvenile animals in scenario 
2. To increase the accuracy of the prediction of genotypes, ungenotyped animals
should be chosen that have genotyped offspring available. In such a scenario, 
ungenotyped animals could be, for instance, dams of genotyped offspring. The 
accuracy of predicted gene content is then expected to be 0.88 with 10 genotyped 
half-sib offspring, using the square root of equation [2.2] and assuming a 
heritability of 1.0 for gene content. In that case, superior accuracies of GEBV to the 
ones obtained in this study may be obtained. A disadvantage is that the phenotypic 
information of dams generally has a lower reliability compared with bulls. 

Alternatively, if available, the additional genotypic information could be 
used for prediction of genotypes. The use of this additional information could lead 
to the maximum possible accuracy of 0.707 when both parents but no offspring are 

genotyped, and assuming that the heritability is 1.0 (𝑟 = √𝒃𝑮 𝜎𝑎� = �1
2�  , where

both b and G contain values of ½ and 𝜎𝑎 = 1; Mrode, 2005). With genotyped 
offspring, this accuracy could be substantially higher; Gengler et al. (2008), for 
instance, reported an accuracy of 0.93 when Canadian Holstein data were used to 
evaluate the gene content prediction method. 

A similar strategy to include ungenotyped animals is to combine genotypic 
and pedigree information in a modified relationship matrix. Such an approach was 
proposed by Legarra et al. (2009) and Christensen and Lund (2010), who used 
genomic information to enrich the A matrix whenever this information was 
available. This approach does not require explicit prediction of the unknown 
genotypes, but directly predicts the genomic relationships using pedigree and 
genomic information from relatives, and therefore provides a one-step genetic 
evaluation with use of genomic information. This alternative approach may be able 
to overcome the problems encountered due to shrinkage of estimated gene 
content in the method applied here. An important advantage of this approach is 
that breeding values can be estimated in a single step including records of all 
genotyped and ungenotyped animals, in contrast to our 2-step approach in which 
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DYD are used to predict GEBV. In the simulation presented by Christensen and Lund 
(2010), a higher accuracy of GEBV was obtained for the 1-step approach compared 
with the 2-step approach. This suggests that part of the information in the 2-step 
approach is lost due to errors in DYD prediction, thereby leading to lower accuracy 
of the GEBV. 

Inversion of G matrix 
G-BLUP implemented in a traditional mixed model equations procedure requires 
the inverted G matrix. When the number of animals in the dataset is large, direct 
inversion of G may not be possible due to computational difficulties. Furthermore, 
possible singularities in the G matrix makes unique inversion impossible. 
Singularities in the G matrix may appear among the animals with predicted 
genotypes when full-sibs are present or genotypes were predicted for the animals 
that do not have offspring and have unknown parents. In both cases, the method of 
Gengler et al. (2007) gives the same estimates for these groups of the animals. 
Therefore, no full-sibs were simulated among the ungenotyped animals in the 
present study. To deal with any further singularities, the final G matrix was a 
weighted sum of the G and A matrix following VanRaden (2008). Another method 
to eliminate singularities from the matrix is to modify the diagonal of the 
relationship matrix by adding a small number to it, for example 10-6 (Zhong et al., 
2009). 

An alternative method which does not require the inversion of the 
relationship matrix was recently proposed by Misztal et al. (2009a). In this method, 
the additive genetic relationship matrix is modified by a matrix accounting for 
genomic information as in Legarra et al. (2009) and then used in an asymmetric set 
of mixed model equations (Harville, 1976; Henderson, 1984, 1985) solved with the 
algorithm proposed by Misztal et al.(2009a). This method resolves the problem 
related to singularities in the relationship matrix by avoiding the inversion step. 

Implications for animal breeding 
This study confirmed that G-BLUP is more beneficial than traditional breeding value 
estimation. When ungenotyped animals are to be used to enlarge the 
reference population in order to increase accuracy of GEBV, animals should be 
chosen whose genotypes can be predicted with sufficiently high accuracy and 
have phenotypes of high quality. Fulfilling these conditions may lead to 
achieving high accuracy of predicted genotypes and making it worthwhile to 
enlarge the reference population with ungenotyped animals.  
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2.5 Conclusion 
This study showed that inclusion of animals with predicted genotypes in the 
reference population did not significantly increase GEBV accuracies for juvenile 
animals. This lack of significance was mainly attributed to the low accuracy of 
predicted genotypes. Therefore, inclusion of ungenotyped animals is only expected 
to enhance the accuracy of GS when the unknown genotypes can be predicted with 
high accuracy. 
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Abstract 
Accuracy of genomic selection depends on the accuracy of prediction of single 
nucleotide polymorphism effects and the proportion of genetic variance explained 
by markers. Design of the reference population with respect to its family structure 
may influence the accuracy of genomic selection. The objective of this study was to 
investigate the effect of various relationship levels within the reference population 
and different level of relationship of evaluated animals to the reference population 
on the reliability of direct genomic breeding values (DGV). The DGV reliabilities, 
expressed as squared correlation between estimated and true breeding value, 
were calculated for evaluated animals at 3 heritability levels. To emulate difficult or 
expensive to measure trait, such as methane emission, reference populations were 
small and consisted of females with own performance records. A population 
reflecting a dairy cattle population structure was simulated. Four chosen reference 
populations consisted of all females available in the first genotyped generation. 
They consisted of highly (HR), moderately (MR), or lowly (LR) related animals, by 
selecting paternal half-sib families of decreasing size, or consisted of randomly 
chosen animals (RND). Of those 4 reference populations, RND had the lowest 
average relationship. Three sets of evaluated animals were chosen from 
3 consecutive generations of genotyped animals, starting from the same 
generation as the reference population. Reliabilities of DGV predictions were 
calculated deterministically using selection index theory. Average reliabilities 
increased when average relationship within the reference population decreased 
and the highest average reliabilities were achieved for RND (e.g., from 0.53 in HR to 
0.61 in RND for a heritability of 0.30). A higher relationship to the reference 
population resulted in higher reliability values. At the average squared relationship 
of evaluated animals to the reference population of 0.005, reliabilities were, on 
average, 0.49 (HR) and 0.63 (RND) for a heritability of 0.30; 0.20 (HR) and 0.27 
(RND) for a heritability of 0.05; and 0.07 (HR) and 0.09 (RND) for a heritability of 
0.01. Substantial decrease in the reliability was observed when the number of 
generations to the reference population increased [e.g., for heritability of 0.30, the 
decrease from evaluated set I (chosen from the same generation as the reference 
population) to II (one generation younger than the reference population) was 0.04 
for HR, and 0.07 for RND. In this study, the importance of the design of a reference 
population consisting of cows was shown and optimal designs of the reference 
population for genomic prediction were suggested. 
 
Key words: genomic selection, reference population design, reliability, direct 
genomic value  
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3.1 Introduction 
Practical applications of genomic selection (GS; Meuwissen et al., 2001) are 
becoming more popular in animal (Hayes et al., 2009a) and plant breeding (Heffner 
et al., 2009; Jannink et al., 2010). Several countries use genomic information as one 
of the sources of information for selection in breeding programs. Genomic 
selection uses genome-wide SNP markers. Due to high marker density, all QTL are 
assumed to be in linkage disequilibrium (LD) with markers on the SNP chip 
(Meuwissen et al., 2001). This implies that a single SNP marker or a group of 
markers can be associated with QTL effects (Grapes et al., 2004, 2006; Yu et al., 
2005). Based on those associations, genotypic information can be used as an 
additional source of information to increase the reliability of EBV, thereby 
increasing the accuracy of selection. 

The accuracy of GS depends on 2 factors (Daetwyler et al., 2008; Goddard, 
2009a): (1) the accuracy of estimated SNP effects and (2) the proportion of the 
genetic variance explained by the markers. The accuracy of estimated SNP effects is 
influenced by the size of the reference population; that is, the number of animals 
with genotypes and phenotypic records used to estimate SNP effects and the 
heritability of the considered trait. The proportion of genetic variance explained by 
the markers is influenced by the effective size of the considered population (Ne) 
and the density at which the SNP chip covers the genome. The effective population 
size influences the proportion of genetic variance explained by the markers. At low 
Ne, the number of independent segments present in the genome is expected to be 
lower (Goddard, 2009a). Fewer independent segments implies that fewer markers 
are needed to tag all segments and fewer records are needed to estimate effects of 
these segments (Goddard, 2010). Therefore, the accuracy of GS is expected to be 
higher in a population with smaller Ne than in a population with large Ne. 

The reliability of direct genomic values (DGV) increases together with an 
increase of the reference population size, as the accuracy of estimating SNP effects 
increases. This was shown in theoretical studies (Goddard, 2009a; Meuwissen, 
2009), simulation studies (Meuwissen et al., 2001; Pszczola et al., 2011), and real 
data analysis (Lund et al., 2010; for reviews, see Hayes et al., 2009a; Calus, 2010a). 
Furthermore, it was suggested that use of a reference population comprising 
animals with a wide range of phenotypes and genotypes would yield reliable 
predictions across the range of genotypes included in the reference population 
(Calus, 2010a). In addition, the family structure of the reference population may 
influence the reliability of GS, as shown by Pérez-Cabal et al. (2010). 
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The information content of phenotypes of animals in the reference 
population depends on their accuracy; for example, their correlation with the true 
breeding value of the animal. For example, in dairy cattle, bulls are usually included 
in the reference population using their daughter yield deviations (Gonzalez-Recio et 
al., 2008) or deregressed breeding values that are estimated with high reliability 
(Berry et al., 2009; Schenkel et al., 2009; VanRaden et al., 2009). This in turn 
requires numerous measurements on close relatives for those animals. Routinely 
recorded traits may easily meet this requirement; however, for traits difficult or 
expensive to measure, the number of observations may be limited and therefore 
daughter yield deviations (DYD) or deregressed EBV may not be available. 
Considering, for example, methane emission, where measuring a single observation 
is much more expensive than the genotyping costs per animal, it may be cost 
inefficient to phenotype many daughters per sire. To balance genotyping and 
phenotyping costs in such cases, we expect that genotyping cows that are 
phenotyped would be more efficient than genotyping only bulls and aggregating 
cow phenotypes at the bull level. In such a scenario, however, the reference 
population will consist of a limited number of animals with phenotypes that have 
lower heritability than DYD or deregressed EBV. When the reference population is 
small and the heritability of phenotypes is low, the reliability of predictions based 
on estimated SNP effects is expected to be low as well. The design of such a small 
reference population may be, therefore, important to maximize the reliability of 
predictions. 

When considering an evaluated animal, a close relationship to the animals 
included in the reference population is expected to give a more reliable prediction 
(Habier et al., 2007; Legarra et al., 2008; Sonesson and Meuwissen, 2009). 
Optimally, all evaluated animals should have at least some closely related animals 
in the reference population. These observations suggest that the design of the 
reference population, in terms of relationships within and to the reference 
population, has to be considered. The design of the reference population may be 
especially important when the reference population consists of a limited number of 
individuals. With a small reference population, the reliability of DGV is expected to 
be low and any increase in the reliability is desired. To date, only a few results have 
been reported on the effect of the relationships within the reference population on 
the reliability of DGV for evaluated animals (Pérez-Cabal et al., 2010). 

The objective of this study was to investigate the effect of various 
relationship levels within the reference population and the level of relationship of 
evaluated animals to the reference population on the reliability of DGV. The 
reliabilities of DGV, expressed as squared correlation between estimated and true 
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breeding values, were calculated for the evaluated animals at 3 levels of 
heritability. To represent a dairy cattle breeding program aiming to initiate a 
reference population for a new trait, which is difficult or expensive to measure, 
animals included in the reference population were females and assumed to have 
only their own performance records. The size of the reference population was 
therefore assumed to be small. 

 
3.2 Materials and methods 
In this study, a dairy cattle population structure was simulated. Four reference 
populations with different family structures were selected. Three sets of evaluated 
animals with different numbers of generations to the chosen reference populations 
were sampled from simulated animals that were not included in 1 of the 4 
reference populations. The evaluated animals were genotyped but had no 
phenotypes. The animals chosen for the reference populations and evaluated 
animals were all females. Reliabilities of DGV predictions for the evaluated animals 
were calculated and compared for 3 different heritability levels (0.30, 0.05, and 
0.01). 
 
Reliabilities of DGV calculation 
Reliabilities of DGV predictions for all evaluated animals were calculated 
deterministically for 2 scenarios, without predicting the DGV themselves: (1) 
reliability based on pedigree relationships of the animals and their phenotypes (𝑟𝐴2); 
and (2) reliability based on the approach in which pedigree relationships of the 
animals were replaced by genomic relationships (𝑟𝐺2). 

Formulas to calculate 𝑟𝐴2 and 𝑟𝐺2 can be derived from selection index 
theory (see Appendix) or from the prediction error variances of the mixed model 
equations used to estimate the breeding values. Values of 𝑟𝐴2 were calculated for 
evaluated animals as 

 

 𝑟𝐴2 = 𝒂 �𝑨 + 𝑰 �𝜎𝑒
2

𝜎𝐴
2��

−𝟏
𝒂′,      [3.1] 

 
where a is a vector with pedigree based relationships of an evaluated animal with 
the animals in the reference population; A is the additive relationship matrix for 
animals in the reference population; I is an identity matrix, 𝜎𝑒2 is the residual 
variance; and 𝜎𝐴2 is the genetic variance. The 𝜎𝑒2 𝜎𝐴2⁄  ratio reflects the heritability 
(ℎ2). 
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Calculation of 𝑟𝐺2 was similar to that in [3.1] but used genomic relationship 
coefficients instead of pedigree-based relationships (VanRaden, 2008): 

 

 𝑟𝐺2 = 𝒄 �𝑮 + 𝑰 �𝜎𝑒
2

𝜎𝐴
2��

−1
𝒄′      [3.2] 

 
where c is a vector with genomic relationships of an evaluated animal with the 
animals in the reference population; G is the genomic relationship matrix for 

animals in the reference population. G is constructed as 𝒁𝒁′
2∑𝑝𝑖(1−𝑝𝑖)

, following 

VanRaden (2008), where 𝑝𝑖  is the frequency of the second allele at locus i, and Z is 
derived from genotypes of animals in the reference population, by subtracting 2 
times the allele frequency expressed as a difference of 0.5, that is 2(𝑝𝑖 − 0.5), 
from matrix M that specifies the marker genotypes for each individual as −1, 0, or 
1, and vector c is a column of the C matrix for a particular evaluated animal. The C 

matrix is created as 𝒁𝟐𝒁′
2∑𝑝𝑖(1−𝑝𝑖)

, where 𝒁𝟐 is constructed from genotypes of 

evaluated animals (VanRaden, 2008). 
 
Simulation 
The simulated genome was 3 M long and consisted of 3 chromosomes with a 
length of 1 M each. This corresponds, approximately, to 10% of the cattle genome 
(Ihara et al., 2004). In the first generation, monomorphic marker loci (300,000) 
were spaced at fixed distances of 0.001 cM across the genome. 

De Roos et al. (2009) presented a simulation scheme mimicking different 
sizes of Ne at different stages in the historic cattle population, using inflated values 
for the frequency of mutation events and recombination rates. This simulation 
scheme was adopted in the present study. For the first phase, an historical 
population of 100 individuals was simulated and randomly mated for 600 
generations; the frequency of mutation events was 10−4 per locus per generation 
and the recombination rate was 104 per M per generation. Subsequently, 200 
generations were simulated, using a frequency of mutation events per locus per 
generation of 10−7 and a recombination rate per M per generation of 100. In the 
third phase, the number of simulated individuals was increased to 10,000 cows and 
100 sires. To mimic the third phase described by de Roos et al. (2009), each sire 
was mated to 100 randomly chosen dams for the next 50 generations. The 
recombination rate was set to 1 per M per generation and mutations were 
stopped. In the last phase, the number of sires was reduced to 25 and the number 
of randomly chosen dams per sire increased to 400. This last phase was repeated 
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for 15 generations to mimic the phase of modern cattle breed. Thereafter, another 
5 generations were simulated in which the number of sires was increased to 50 and 
the number of offspring was, on average, 200 per sire. Pedigree was stored for the 
10 last generations and genotypes for the 3 last generations. The simulation was 
performed according to the outline presented in Table 3.1 with parameters 
summarized in Table 3.2. Twenty replicates were simulated for each scenario and 
heritability combination. 
 
Table 3.1  Simulation outline: number of generations and animals, mutation and 
recombination rates, mimicked number of generations, and simulated effective population 
size (Ne)1. 

 

No. of 
generations 

No. 
of 

sires 

No. of 
females 

Mutation 
rate 

(per locus) 

Recombination 
rate 

(per M/ gen) 

Mimicked 
no. of 

generations 
Simulated Ne 

600 50 50 10-4 104 6,000,000 ~1,000,000 

200  50 50 10-7 100 20,000 ~12,500 

50 100 10,000 No 
mutation 1 50 ~400 

15 25 10,000 No 
mutation 1 15 ~100 

5 50 10,000 No 
mutation 1 5 ~200 

 
1 Simulation outline adopted from de Roos et al. (2009) 

 
 

Table 3.2  Simulation parameters. 
 

Parameter Value 

Simulated genome length (M)  3  

Number of simulated chromosomes  3  

Length of simulated chromosomes (M)  1  

Distance between adjacent markers in the last generation (cM)  ~0.03  

Number of SNP markers per cM  ~ 39.1  

Minor allele frequency  0.25  

 Trait 1 Trait 2 Trait 3 

Heritability 0.30 0.05 0.01 
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Scenarios 
Three sets of evaluated animals were chosen from the 3 consecutive generations of 
the genotyped animals. The evaluated set I and the reference populations were 
chosen from the same generation. The evaluated sets II and III were, respectively, 1 
and 2 generations further away from the reference populations. Each set of 
animals consisted of 1,000 individuals originating from only one generation at the 
time. The evaluated sets consisted of animals sired by 50 sires. The 20 offspring per 
sire were chosen randomly from all available offspring of that sire. 

Reference populations were chosen from all females that had not been 
chosen in the evaluated set. All the reference populations consisted of 2,000 cows. 
The chosen reference populations differed by their family structure. The first 
reference population (HR) consisted of highly related animals; the second (MR) 
consisted of moderately related animals; the third (LR) consisted of lowly related 
animals; and the fourth (RND) consisted of randomly selected animals. Differences 
in the level of the relationship within the reference populations were achieved by 
choosing paternal half-sib families of different sizes in each of the 4 scenarios. For 
HR, sires with at least 425 offspring were selected and from them offspring of 5 
randomly chosen sires were included. For MR, offspring of 20 randomly chosen 
sires were included. For LR, offspring of 40 randomly chosen sires were included. 
For RND, 2,000 randomly chosen animals were included. In HR, MR, and LR, each 
sire contributed with equal number of offspring (400, 100, and 50, respectively) 
chosen randomly from all their available offspring. Reliabilities of DGV were 
calculated for each of the 3 sets of evaluated animals with use of the 4 different 
reference populations, using equations [3.1] and [3.2]. 
 
3.3 Results 
Characteristics of the simulation 
In each replicate, animals with genotypes were simulated. The average distance 
between adjacent segregating loci across the whole genome, calculated in the last 
generation, was approximately 0.03cM (Table 3.2). The average LD between 
adjacent markers, measured as r2 (Hill and Robertson, 1968), was 0.23, and minor 
allele frequency averaged across all marker loci in the last generation was 0.25. The 
calculated allele frequencies were consistent across the reference populations. 
Among all the chosen reference populations, RND had the lowest average 
relationship. 

The reference population, composed of progeny of only 5 sires (HR) on 
average, resulted in an average pedigree relationship of about 0.09. The average 
relationship in HR was higher than that in MR by about 0.04; differences in the 
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average relationship levels among MR, LR, and RND were small (0.06 to 0.05) as 
shown in Table 3.3. 
 
Reliabilities of Predictions  
Use of Genomic Information  
The increase in the reliabilities was clearly higher when the heritability was higher, 
as illustrated in Figures 3.1 and 3.2. The level of increase caused by using genomic 
information was similar across all reference populations (Figure 3.1). The increase 
in reliability caused by using genomic information, averaged across all the 
reference populations and evaluated sets, was 0.39, 0.13, and 0.03, respectively, 
for the highest, medium, and lowest heritabilities. Figure 3.3 shows that reliabilities 
increased when pedigree information was replaced by genomic information. The 
individual reliability values varied. For HR, 2 distinct groups of reliability values 
were found: high and low. The many more reliability values in the low group 
compared with the high group led to a lower mean value of reliability across 
individuals for HR compared with RND. In RND, no distinct groups of reliabilities 
were present and variance of reliabilities was much smaller. 
 
Table 3.3  Average pedigree-based relationship within the reference population, across 
different scenarios averaged over all replicates. 
 

Scenario1 
Relationship 

Mean  SD 

HR 0.0946  0.0048 

MR 0.0562  0.0020 

LR 0.0497  0.0016 

RND 0.0487  0.0016 
 
1 HR=the reference population with the highest average relationship within the reference 
population; MR=the reference population with moderate average relationship within the 
reference population; LR=the reference population with the lowest average relationship 
within the reference population; RND=the reference population consisted of randomly 
selected individuals. 
 
Family structure of the reference population 
The reliabilities increased when the average relationship within the reference 
population decreased (e.g., from 0.477 in HR to 0.597 in RND for heritability of 
0.30) as illustrated in Figures 3.1 and 3.2 and Table 3.4. The family structure of the 
reference population, therefore, strongly influenced the average relationship of the 
reference population and therefore had an effect on reliabilities. 
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Figure 3.1  Reliability of breeding values calculated based on pedigree (A) and genomic (B) 
data across all simulated heritability levels (a: h2=0.3; b: h2=0.05; c: h2=0.01), 4 reference 
populations with different family structure (highly related, HR; moderately related, MR; 
lowly related, LR; random selection of animals, RND), and 3 sets of evaluated animals with 
different distance from the reference population (I=the same generation as the animals in 
the reference population to III=2 generations after the reference population) and averaged 
over all replicates. 
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Table 3.4 Reliabilities obtained with use of different sources of information across all 
reference populations and evaluation sets for heritability of 0.30 averaged over all 
replicates1. 
 

 Evaluation set3 
 I  II  III 
Scenario2 Mean SD  Mean SD  Mean SD 
Pedigree data 
HR 0.121 0.001  0.079 0.004  0.054 0.002 
MR 0.189 0.002  0.119 0.005  0.081 0.003 
LR 0.251 0.002  0.152 0.004  0.100 0.003 
RND 0.274 0.001  0.165 0.002  0.107 0.002 
Genomic data 
HR 0.477 0.005  0.442 0.007  0.416 0.006 
MR 0.542 0.004  0.490 0.007  0.457 0.006 
LR 0.584 0.004  0.521 0.005  0.482 0.006 
RND 0.597 0.004  0.531 0.004  0.489 0.005 

 
1 Standard deviations of 20 replicates ranged from 0.003 to 0.012;  
2 HR=the reference population with the highest average relationship within the reference 
population; MR=the reference population with moderate average relationship within the 
reference population; LR=the reference population with the lowest average relationship 
within the reference population; RND=the reference population consisted of randomly 
selected individuals;  
3 Set of evaluation animals chosen from the same generation as the reference animals (I), 
from offspring of the animals from the same generation as the reference population (II), and 
from animals 2 generations after the reference population (III). 
 
Relationship to the reference population 
Three different measures of the relationship level of the evaluated animals to the 
reference population were calculated: average relationship, average squared 
relationship, and the maximum relationship. To determine which of these 
measures was most closely related to the reliability, the individual reliabilities of 
the animals included in the evaluated set I were compared with each of those 
measures, as shown in Figure 3.4. The reliabilities calculated with pedigree and 
genomic information were the most closely related to average squared 
relationship. The reliabilities showed a poorer relationship to the 2 other measures. 
The average squared relationship, therefore, is used hereafter as a measure of the 
relationship to the reference population. 

Figure 3.2 shows comparison of the reliabilities for HR and RND at 
different levels of the average squared relationship to the reference population. It 
can be seen that when the half-sib families in the reference population were 
smaller (RND), the reliabilities at the given level of the average squared relationship 
to the reference population were higher. Reliabilities were regressed on the 
average squared relationships to the reference population (Figure 3.2). Regression 
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coefficients increased with heritability level and were considerably higher for RND 
than for HR. This dependency was consistent over all the replicates and was 
observed across all the heritability levels, as well as for all evaluated sets of animals 
(results not shown). Animals with a higher average squared relationship to the 
reference population (based on genomic information) also had higher values of the 
reliability. This trend was observable across all reference populations and 
heritability levels. For example, at the average squared relationship of 0.005, the 
reliability for the heritability of 0.30 was, on average, 0.49 for HR and 0.63 for RND. 
For the lower heritability levels, the differences between HR and RND were smaller: 
0.20 for HR and 0.27 for RND at a heritability of 0.05, and 0.07 for HR and 0.09 for 
RND at a heritability of 0.01. Some variation in the reliability level at certain levels 
of the average squared relationship was found. This variation was smaller for the 
reference population with smaller families, as shown in Figure 3.2. 

 

 
  

Figure 3.2  Average squared relationship (based on genomic information) to the reference 
population versus the reliabilities of genomic breeding values for different heritability levels 
and the reference populations with high (HR) and low (RND) family structure based on 
randomly chosen replicate. 
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Figure 3.3  Genomic-based reliability as a function of pedigree-based reliability for high (HR; 
black) and low (RND; gray) family structure based on a randomly chosen replicate. 

 
 

  

Figure 3.4  An illustration of the relationship between 3 different measures of relationship of 
the evaluated animals to the reliability based on pedigree (a) and genomic (b) data for the 
reference population with moderate family structure (MR) and heritability of 0.05, and for 
the set of evaluated animals originating from the same generation as the reference 
population (set I). 
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Increasing the number of generations to the chosen reference populations 
resulted in a decrease in reliability (Figure 3.1). This decrease in the reliability was 
substantial when the predictions were based on pedigree relationships. The 
individual reliabilities obtained for the evaluated animals from different 
generations and their levels of the average squared relationship to the reference 
population were compared (results not shown). This comparison revealed that the 
decrease in the reliability was mostly explained by a reduction in the average 
squared relationship to the reference population. The decrease tended to be larger 
when the average relationship within the reference population was smaller. For 
example, for a heritability of 0.30, the decrease in reliability due to increased 
number of generations in the reference population was 0.042 for HR and 0.109 for 
RND (from the evaluated set I to II), and 0.067 for HR and 0.167 for RND (from the 
evaluated set I to III; see Figure 3.1A and Table 3.4). For the remaining heritability 
levels, this decrease in reliability was somewhat lower, but still substantial (Figure 
3.1). The decrease in reliability caused by the increased number of generations 
between the reference population and the evaluated animals was smaller with use 
of genomic data than pedigree data. For example, for heritability of 0.30, the 
decrease in reliability caused by an increased number of generations in the 
reference population was 0.035 for HR, 0.066 for RND from the evaluated set I to II 
and 0.061 for HR and 0.108 for RND from the evaluated set I to III (Figure 3.1B and 
Table 3.4). The level of reliability, moreover, decreased more slowly over the 
generations when genomic data were used (Figure 3.1). When using genomic data, 
for a heritability of 0.30, the decrease in reliability tended to be higher when the 
average relationship within the reference population decreased (Table 3.4). 
Although the decrease was larger for RND, the ranking of the scenarios remained 
the same. 

 
3.4 Discussion 

This study investigated the effect of relationship of evaluated animals with 
the reference population and various levels of relationship within the reference 
population on the reliability of DGV. A small reference population was assumed, 
consisting of animals with own performance only, to reflect a situation in which the 
reference population was initiated for scarcely recorded new traits. An important 
question is whether our results also apply to large reference populations for traits 
with abundant phenotypic information available. Additional analyses indicated 
similar trends when the reference population was twice as large (results not 
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shown). This indicates that optimization of the reference population design, as 
discussed here, is indeed also applicable to larger reference populations. 

 
Characteristics of the simulation 
Our initial application of the simulation scheme of de Roos et al. (2009) resulted in 
a different average LD level than in the study of de Roos et al. (2009) or results 
from real data sets (obtained with use of the 50K SNP cattle chip). To obtain LD 
levels as observed in cattle populations (de Roos et al., 2008), the number of 
mutation events and recombination rates were increased in the first 2 phases of 
the simulation compared with de Roos et al. (2009). A possible reason for the initial 
discrepancy with results of de Roos et al. (2009) is that simulated markers were 
biallelic in our whole simulation process. In the study of de Roos et al. (2009), 
however, simulated markers were multiallelic and they were transformed to 
biallelic at the last stage of the simulation. The genome simulated in this study was 
smaller than the real genome. This smaller genome size may lead to larger 
sampling variance for the estimated coefficients in G. Differences between A and G 
in our study, therefore, might be somewhat different from observed in real data. 

 
Average relationship in the reference population 
The average relationship within the reference population, calculated based on at 
least 5 generation complete pedigrees and averaged over all replicates for MR 
(0.0562), LR (0.0497), and RND (0.0487) corresponded to values based on real data 
(Kearney et al., 2004; König and Simianer, 2006; Mrode et al., 2009). The average 
relationship within the reference population for HR (0.0946) was higher than the 
findings of the other studies because of the strong family structure of the 
population (i.e., all included animals were sired by only 5 individuals; Table 3.3). 
The HR population was somewhat similar to a daughter design with large paternal 
half-sib families that has typically been used in QTL mapping experiments, set up 
for linkage mapping of QTL (i.e., Weller et al., 1990). The HR gave the lowest DGV 
reliabilities, which implies that although such experimental designs may be optimal 
for linkage mapping, they are suboptimal for use in genomic prediction as shown in 
this study or in genome-wide association studies (Balding, 2006). The RND was a 
random sample from the simulated population, whereas the other 3 reference 
populations were constructed by selecting paternal half-sib families of different 
sizes. Therefore, the family structure of RND was weaker than that in the other 3 
reference populations. This weak family structure resulted in a lower average 
relationship for RND. For example, in RND animals were offspring of 50 sires, 
whereas in LR animals were offspring of 40 sires. 
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Reliabilities of predictions 
The reliabilities in this study were obtained in a similar way to those that can be 
obtained from the left-hand side of the mixed models equations. For DGV 
reliabilities obtained in such a way, one of the assumptions is that the markers 
explain all the genetic variation, whereas some part of the genetic variance is also 
explained by loci between markers (VanRaden, 2008). This may lead to 
overestimation of the reliability. Calus et al. (2009), Hayes et al. (2009b), Lund et al. 
(2009), and Su et al. (2010) also showed that reliabilities obtained from cross-
validation are somewhat lower compared with reliabilities calculated from the 
prediction error variances of the mixed model equations. Therefore, in general, we 
can expect that reliabilities obtained in our study are slightly overestimated. An 
important question is whether the overestimation of DGV reliabilities is 
comparable across the different scenarios and reference populations. Reliabilities 
for the breeding values based on pedigree information were expected to be 
unbiased. Those gave similar patterns across the reference populations (not 
shown), despite the level being generally lower. Because replacing the pedigree by 
genomic data to some extent only adds more information, it is expected that the 
overestimation of the DGV reliability is mostly a scaling issue. 
 
Table 3.5 Comparison of reliabilities obtained with deterministic formulas of Daetwyler et al. 
(2008) and Goddard (2009a) for all simulated levels of heritability and effective population 
size Ne  of 100 with the reliabilities obtained in the present study averaged across all the 
individuals. 
 

 Reliability 
Heritability Present study Daetwyler et al. (2008) Goddard  (2009a) 

0.30 0.55 0.75 0.59 
0.05 0.23 0.34 0.22 
0.01 0.07 0.09 0.06 

 
 We also predicted reliabilities deterministically using formulas by 
Daetwyler et al. (2008) and Goddard (2009a) for Ne of 100 (Table 3.5). The 
reliabilities obtained as in Goddard (2009a) were shown to agree with the 
reliabilities for genomic breeding values in US and Australian Holstein-Friesians and 
Jerseys (Hayes et al., 2009c). These reliabilities were also in good agreement with 
the results obtained in the present study. Reliabilities calculated as in Daetwyler et 
al. (2008) were somewhat higher than those of the current study. Daetwyler et al. 
(2008) and Goddard (2009a) assumed unrelated animals, and therefore, animals 
with different levels of relationship to the reference population were examined. 
Examination of animals with the lowest and the highest relationship to the 
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reference population showed that reliabilities predicted for these animals differed 
from the reliabilities given by the deterministic formulas. Predictions obtained in 
the present study also allow for assessment of the individual reliability of a 
particular individual accounting for the actual relationships. 
 
Family structure of the reference population  
Comparison between the genomic- and pedigree-based reliabilities presented in 
Figure 3.3 shows that 2 groups of evaluated animals can be distinguished for HR. 
One group, strongly related with the reference population, yielded the highest 
reliabilities. The other group, loosely related to the reference population, had the 
lowest reliabilities. Reliabilities for RND was more homogeneous and at an 
intermediate level. The highest average reliabilities in this study were achieved for 
the randomly composed reference population (RND). Pérez-Cabal et al. (2010) also 
showed that the highest reliability was obtained when animals were chosen 
randomly. In their study, unlike our results, RND appeared to have higher average 
relationship within the reference population than nonrandomly chosen animals. 
The differences in the average relationship in Pérez-Cabal et al. (2010), however, 
were small and might be due to sampling; for example, depending on the size of 
the population from which the reference populations were chosen. 

Across different reference populations, and at the same level of the 
average squared relationship to the reference population, evaluated animals 
yielded different reliabilities, as shown in Figure 3.2. The RND population achieved 
the highest average reliability. The differences, despite the same average squared 
relationship, were because RND consisted of many small half-sib families and 
therefore had a low average relationship within the reference population. Related 
animals may partly explain the same part of variation; therefore, the theoretical 
maximum reliability can be achieved when all the individuals in the reference 
population are unrelated and their alleles are not identical-by-state. For such a 
case, although unrealistic, A and G in equations [3.1] and [3.2] would be diagonal 
and the reliability for an evaluated animal would be proportional to its sum of 
squared relationships to the animals in the reference population, at least when all 
animals are not inbred. For the reliabilities based on genomic information, 
according to the suggestion of Calus (2010a), animals could be chosen to represent 
the widest range of possible genotypes to further increase the reliability, which 
means minimizing the genomic relationships between animals in the reference 
population, such as with a randomly chosen reference population. 
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Relationship to the reference population 
The individual reliability strongly depended on the average squared relationship to 
the reference population (Figure 3.2). This is in accordance with findings of Habier 
et al. (2010). Variation in the reliability observed at the same level of the average 
squared relationship could arise, for example, when the animals were similarly 
related to the reference population but their relatives in the reference population 
were differentially related to each other. 

Larger numbers of generations to the reference population resulted in a 
decrease in the reliability, as in Habier et al. (2010). The level of genomic reliability 
decreased more slowly over generations than reliabilities based on pedigree data, 
as also reported by Wolc et al. (2011). To prevent a decrease of reliability, constant 
updates of the reference population with animals from more recent generations 
are required (e.g., animals selected from the evaluation set when their phenotypes 
become available; Habier et al., 2010). 

 
Implications  
This study showed that an optimally designed reference population should consist 
of loosely related animals. Still, evaluated animals with low relationship to the 
reference population had low reliability. In practical applications, for evaluated 
animals the reliability may be first predicted using pedigree alone. Based on the 
outcome, a rough estimate of the genomic reliability could be made, and a decision 
made as to whether the genomic prediction for this animal is reliable enough to 
justify the genotyping costs. When this is not the case, yet the animal itself is 
closely related to many other animals that may be evaluated, the animal could be 
considered for inclusion in the reference population. These aspects require further 
investigation. 

The optimal design of the reference population may differ from one 
application to another and depend on the desired breeding strategy of the breed. 
For example, if an experiment intends to measure methane emission, the number 
of observations is limited because of high phenotyping costs. In such a case, if the 
goal is to predict breeding values for selection candidates only, then the reference 
population should consist of animals closely related to these selection candidates. 
An optimal solution could then be to build the reference population using progeny 
(i.e., daughters) of key breeding animals (i.e., sires), including only few daughters 
per sire. If the goal, however, is to predict breeding values (or phenotypes) for all 
the animals, then a reference population consisting of unrelated animals would be 
the most desired. Composing the most suitable reference population is therefore 
an optimization problem because a tradeoff exists between obtaining a low 
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average relationship between the animals in the reference population and a high 
average squared relationship to the animals in the population to be evaluated. 

3.5 Conclusion 
This study shows the importance of optimizing the design of the reference 
population consisting of cows. First, the optimally designed reference population 
for use in genomic prediction or genome-wide association studies should have a 
loose family structure; that is, the average relationship within the animals included 
into the reference population should be low. This implies that different designs are 
required for reference populations than the traditional designs used for linkage 
mapping purposes. Second, the relationship between the reference population and 
the evaluated animal should be maximized. The average squared relationship 
appeared to be the best measure of the relationship to the reference population 
with respect to the reliability. Higher levels of heritability resulted in higher levels 
of reliabilities. To maximize reliability, relationships among animals in the reference 
population should be minimized and the relationships of the validation 
animals with the reference population should be maximized. 
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3.7 Appendix 
Derivation of Reliability Prediction Equations  
The equations used to predict reliabilities can be derived from selection index 
theory. Let P be the (co)variance matrix between the information 
sources 𝑋1 to 𝑋𝑛 and g be the vector containing the covariances between the 
information sources and their true breeding values (A). P contains the single 
phenotypic observations of genotyped animals in the reference population. 
Then, P can be formulated as follows: 

𝑷 = �
𝑣𝑎𝑟(𝑋1) … 𝑐𝑜𝑣(𝑋1,𝑋𝑛)

… … …
𝑐𝑜𝑣(𝑋𝑛 ,𝑋1) … 𝑣𝑎𝑟(𝑋𝑛)

� = �
𝜎𝑃2 … 𝑎𝜎𝐴2
… … …
𝑎𝜎𝐴2 … 𝜎𝑃2

�, 

where σA2  is the additive genetic variance, a is the coefficient indicating the 
proportion of genetic variance shared between the information sources, and σP2  is 
the phenotypic variance. The vector g can be written as: 

𝒈 = �
𝑐𝑜𝑣(𝐴,𝑋1)

…
𝑐𝑜𝑣(𝐴,𝑋𝑛)

� = �
𝑎𝜎𝐴2

…
𝑎𝜎𝐴2

�. 

Then, the reliability of breeding values estimated with use of selection index theory 

can be calculated as 𝑟𝐼𝐻2 = 𝒃′𝒈
𝑎𝐴
2 , where b is a vector with optimal weights for the 

information sources calculated as 𝒃 = 𝑷−𝟏𝒈. Therefore, the equation for the 
reliability can be rewritten as: 

𝑟𝐼𝐻2 = 𝒈′𝑷−𝟏𝒈
𝑎𝐴
2 . 

Let A be the additive relationship matrix formulated as: 

𝑨 = �
𝑎11 … 𝑎1𝑛
… … …
𝑎𝑛1 … 𝑎𝑛𝑛

�, 

and 𝑎𝐴2 equals 1, then P can be rewritten as �𝑨 + 𝑰 �𝜎𝑒
2

𝜎𝐴
2��, where variance ratio 

�𝜎𝑒
2

𝜎𝐴
2� reflects the heritability, because 𝜎𝑒2

𝜎𝐴
2 = 1

ℎ2
− 1, and A is created for the 

information sources (i.e., reference population); then, g will equal the additive 
relationship of the evaluated animal to the reference population a. Therefore, 

reliability of traditional selection can be calculated as 𝑟𝐴2 = 𝒂 �𝑨 + 𝑰 �𝜎𝑒
2

𝜎𝐴
2��

−1
𝒂′. For 

genomic selection, pedigree-based coefficients can be substituted by the genomic 

coefficients as 𝑟𝐺2 = 𝒄 �𝑮 + 𝑰 �𝜎𝑒
2

𝜎𝐴
2��

−1
𝒄′, where G is genomic relationship matrix for

the animals in the reference population and c is the genomic-based relationship of 
the evaluated animal to the reference population. 
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Abstract 
Compared with traditional selection, the use of genomic information tends to 
increase the accuracy of estimated breeding values (EBV). The cause of this 
increase is, however, unknown. To explore this phenomenon, this study 
investigated whether the increase in accuracy when moving from traditional (AA) 
to genomic selection (GG) was mainly due to genotyping the reference population 
(GA) or the evaluated animals (AG). In it, a combined relationship matrix for 
simultaneous use of genotyped and ungenotyped animals was applied. A simulated 
data set reflected the dairy cattle population. Four differently designed (i.e., 
different average relationships within the reference population) small reference 
populations and 3 heritability levels were considered. The animals in the reference 
populations had high, moderate, low, and random (RND) relationships. The 
evaluated animals were juveniles. The small reference populations simulated 
difficult or expensive to measure traits (i.e., methane emission). The accuracy of 
selection was expressed as the reliability of (genomic) EBV and was predicted 
based on selection index theory using relationships. Connectedness between the 
reference populations and evaluated animals was calculated using the prediction 
error variance. Average (genomic) EBV reliabilities increased with heritability and 
with a decrease in the average relationship within the reference population. 
Reliabilities in AA and AG were lower than those in GG and were higher than those 
in GA (respectively, 0.039, 0.042, 0.052, and 0.048 for RND and a heritability of 
0.01). Differences between AA and GA were small. Average connectedness with all 
animals in the reference population for all scenarios and reference populations 
ranged from 0.003 to 0.024; it was lowest when the animals were not genotyped 
(AA; e.g., 0.004 for RND) and highest when all the animals were genotyped (GG; 
e.g., 0.024 for RND). Differences present across designs of the reference 
populations were very small. Genomic relationships among animals in the 
reference population might be less important than those for the evaluated animals 
with no phenotypic observations. Thus, the main origin of the gain in accuracy 
when using genomic selection is due to genotyping the evaluated animals. 
However, genotyping only one group of animals will always yield less accurate 
estimates. 
 
Key words: genomic selection; reference population design; breeding value 
reliability; connectedness  
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4.1 Introduction 
Genomic selection (GS) uses dense SNP marker arrays. These markers are assumed 
to be in linkage disequilibrium (LD) with QTL (Meuwissen et al., 2001), allowing 
their effects to be estimated. To estimate SNP marker effects, GS requires a set of 
genotyped and phenotyped animals, a so-called reference population used to 
evaluate genotyped animals without phenotypic information. 

Another approach to evaluating animals without explicitly estimating SNP 
marker effects is to use SNP markers to estimate relationships between animals. 
Genomic relationships can capture Mendelian sampling and reveal links between 
animals that are seemingly unrelated through pedigree. Thus, genomic 
relationships are more precise, improving the connectedness between animals in a 
reference population and the evaluated animals. This higher connectedness 
reduces bias, and thus improves the genetic evaluation (Kennedy, 1981). 

Based on such genomic relationships, a genomic relationship matrix (G) 
can be created using various methods (e.g., Nejati-Javaremi et al., 1997; VanRaden, 
2008; Yang et al., 2010). This genomic relationship matrix can be used in the 
genomic BLUP procedure (G-BLUP), where G replaces the additive relationship 
matrix (A). Alternatively, G for genotyped animals can be merged with A for all 
animals, to enable simultaneous use of phenotypic information of genotyped and 
ungenotyped animals in genetic evaluation (e.g., Legarra et al., 2009; Misztal et al., 
2009b; Aguilar et al., 2010; Christensen and Lund, 2010). This method, as shown by 
Christensen and Lund (2010) using the gene content prediction method (Gengler et 
al., 2007), provides an approximation to unseen genotypes and generates genomic 
EBV (GEBV) in a single step. 

An important aspect of genetic improvement is the response to selection, 
which depends linearly on accuracy of selection. The accuracy of traditional 
selection depends on the availability of phenotypic information on relatives as well 
as the animal’s own performance and on heritability of the considered trait. The 
accuracy of GS depends on heritability, but also on several other factors (Daetwyler 
et al., 2008; Goddard, 2009a). First, the size of the reference population is relevant; 
this is equivalent to the availability of phenotypic information on relatives and the 
animal’s own performance in traditional selection. The larger the reference 
population, the higher the accuracy of predicted breeding values. Second, the 
lower the effective population size (Ne), the fewer independent segments in the 
genome, reducing the number of markers needed to tag all segments and the 
fewer records are needed to accurately estimate the effects of all independent 
segments (Goddard, 2009a). Third, the effective number of loci, dependent on the 
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mating structure and the recombination length of the genome, affects the number 
of markers required to tag all potential QTL (Goddard, 2009a). Finally, the accuracy 
of GEBV is affected by both the relationship between the evaluated animals and 
the reference population (Habier et al., 2010; Wolc et al., 2011; Pszczola et al., 
2012a) and its design (the relationships within the reference population; Pszczola 
et al., 2012a). 

Choosing an appropriate design for the reference population, as suggested 
by Meuwissen (2009) and Calus (2010a) and shown by Pszczola et al. (2012a), may 
be a way to optimize current techniques. Such optimization is especially required 
when the number of animals in the reference population is limited. This can be a 
consequence of, for example, a small population size, a limited number of 
phenotypes available from research herds or (historic) experiments, a lack of 
routinely taken measurements for the considered trait, genotyping costs, or 
measuring a difficult or expensive trait. For instance, in the case of methane 
emission, measuring a single observation is very expensive because it requires 
sophisticated equipment. 

A comparison of GS with traditional selection tools showed, especially in 
the case of unphenotyped juveniles, an increase in accuracy when GS was used 
(Meuwissen et al., 2001; Schaeffer, 2006; Pszczola et al., 2011). The origin of this 
increase in accuracy is unclear, given that it is unknown whether this increase is 
mainly due to substituting pedigree with genomic information for the reference 
population or for the evaluated animals. This is also an important question from a 
practical point of view because genomic data are sometimes unavailable for 
animals with valuable phenotypes. Including these animals in the reference 
population is possible by using approaches that combine genomic with pedigree 
information. 

The aim of this study was to investigate whether the increase in accuracy, 
when moving from traditional selection to GS, is mainly due to genotyping the 
reference population or the evaluated animals. More specifically, it asks whether 
the accuracy of GEBV increases 1) when the reference population is ungenotyped 
while the evaluated animals are genotyped, and 2) when the evaluated animals are 
ungenotyped and the reference population is genotyped, and the combined 
relationship matrix is used. We evaluated the amount of gain by comparing, across 
scenarios at different heritability levels, predicted reliabilities and connectedness 
levels. 
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4.2 Materials and methods 
Data 
The simulated data set used in this study, reflecting a dairy cattle population, has 
been described in detail by Pszczola et al. (2012a). Briefly, the simulation scheme 
adopted from de Roos et al. (2009) mimics different sizes of Ne at different stages 
in the historic cattle population by using inflated values of recombination rates and 
frequency of mutation events. The use of inflated parameters heavily reduces the 
number of generations simulated at each of the stages of the historic cattle 
population and yields realistic LD levels (de Roos et al., 2008). To achieve LD levels 
for modern cattle breeds while simulating biallelic loci, this simulation scheme was 
further modified as described by Pszczola et al. (2012a). 

The data set retained for analysis comprised pedigrees of 10 generations 
of randomly mated animals. Each of the first 5 generations included 25 sires mated 
randomly with 400 dams, and each of the last 5 generations included 50 sires 
mated randomly with 200 dams. The last 2 generations were composed of animals 
with genotypic data. Data were available from 20 replications of the simulation 
process. 

The simulated genome was 3 M long and consisted of 3 chromosomes of 
1 M each. In the last generation, the average distance between segregating loci 
across the whole genome was approximately 0.03 cM, the average minor allele 
frequency was 0.25, and the average LD, measured as r2 (Hill and Robertson, 1968) 
between adjacent loci, was 0.23. 
 
Reference populations and evaluated animals 
Simulated animals were partitioned into an evaluation set and reference 
populations. The evaluated animals (n = 1,000) were chosen from the second 
genotyped generation (i.e., 20 randomly chosen progeny each of 50 randomly 
chosen sires). The 4 reference populations were chosen from the animals in the 
first genotyped generation. 

Because each reference population, consisting of 2,000 cows, had a 
different family structure with respect to the sizes of parental half-sib families, 
their average relationship varied. The average relationship of the first reference 
population (high relationship), which consisted of progeny of 5 sires, was 0.095. 
The average relationship for the second reference population (medium 
relationship), consisting of progeny of 20 sires, was 0.056. For the third reference 
population (low relationship), consisting of progeny of 40 randomly chosen sires, 
the average relationship was 0.050. The average relationship for the fourth 
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reference population (RND), consisting of randomly selected animals, was the 
lowest: 0.049. 

 
Calculation of (G)EBV reliabilities 
Reliabilities were calculated deterministically for all the evaluated animals for 
4 situations: first, no animals were genotyped and the pedigree-based relationships 
were used (AA); second, animals in the reference population were genotyped and 
the evaluated animals were not (GA); third, the reference population was not 
genotyped whereas the evaluated animals were (AG); and fourth, all the animals 
were genotyped (GG). 

The matrices were created as follows. Relationship matrix H combined 
pedigree and genomic data for GA and AG, following the method of Legarra et al. 
(2009): 

 

�
𝑨𝟏𝟏 + 𝑨𝟏𝟐𝑨𝟐𝟐−𝟏(𝑮 − 𝑨𝟐𝟐)𝑨𝟐𝟐−𝟏𝑨𝟐𝟏 𝑨𝟏𝟐𝑨𝟐𝟐−𝟏𝑮

𝑮𝑨𝟐𝟐−𝟏𝑨𝟐𝟏 𝑮
�,    [4.1] 

 
where the pedigree relationship matrix A was partitioned for ungenotyped (1) and 
genotyped (2) animals. The genomic relationship matrix, G, was created as 

𝒁𝒁′
2∑ 𝑝𝑖(1−𝑝𝑖)

, following the method of VanRaden (2008), where 𝑝𝑖  is the frequency of 

the second allele at locus i for which the homozygote genotype is coded as 1, and Z 
is derived from the genotypes of the animals in the reference population by 
subtracting 2 times the allele frequency expressed as a difference of 0.5 [i.e., 
2(𝑝𝑖 − 0.5)] from matrix M, which specifies the marker genotypes for each 
individual as −1, 0, or 1. Because for building H, A and G must be compatible, the G 
matrix had to be adjusted. First, the inbreeding level in G was scaled to the 
inbreeding level in A. This was done by calculating the pedigree inbreeding 
coefficients averaged across all animals �𝑓𝑝��. Because the current population was 
used to calculate 𝑝𝑖 , it was assumed that an average genomic inbreeding 
coefficient in G is zero. G* was then calculated following the formula derived from 
Wright’s F-statistics, as in Powell et al. (2010): 
 

𝑮∗ = 𝑮(1 − 𝑓𝑝� ) + 2𝑓𝑝� 𝑱,  
 
where G* contains the relationships relative to the same base used in A, and J is a 
matrix of all ones. This adjustment is equivalent to what was proposed by Vitezica 
et al. (2011). 
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To create 𝐆�,the second step, following Yang et al. (2010), accounts for the 
fact that G* is estimated with some error: 

 
𝑮� = 𝑮∗ + 𝑬 = 𝑨 + (𝑮∗ + 𝑨) + 𝑬, 

 
where E is the matrix containing estimation errors for 𝐆� assuming the following 
variances for those matrices V(𝐆� − 𝐀)=V(𝐆∗ − 𝐀) + V(𝐄). V(𝐄) equals 1/N, where 
N is the SNP number used. To account for the sampling variance in 𝐆�, 𝐆� − 𝐀 is 
regressed back toward A, and 𝐆� is 
 

𝑮� = 𝑨 + (𝑮�−𝑨)×V(𝑮∗−𝑨)
[V(𝑮∗−𝑨)+𝑉(𝑬)]

= 𝑨 +
(𝑮�−𝑨)×�𝑉�𝑮�−𝑨�−1𝑁�

𝑉(𝑮�−𝑨)
. 

 
Because the sampling error in relationships in 𝐆� depends on the value of 

the relationship, values for V(𝐆� − 𝐀) were calculated separately for bins of 
relationships in A. The bins of relationships were 0 to 0.10, >0.10 to 0.25, >0.25 to 
0.50, and >0.50. The last bin excluded parent-offspring pairs because their 
relationship is expected to be 0.5. The diagonal elements of 𝐆� (i.e., self-
relationships) were not regressed. The regression coefficients averaged across 
simulations for the 4 bins were, respectively, 0.963, 0.983, 0.991, and 0.989, which 
are similar to those reported in a different study based on real data (Veerkamp et 
al., 2011). 

Deterministic predictions of GEBV reliabilities were based on formulas that 
can be derived either from selection index theory [for a derivation see the 
Appendix in Pszczola et al. (2012a)] or from the prediction error variances of the 
mixed model equations used to estimate the breeding values, as follows. 

For AA, the reliability 𝑟𝐴𝐴2  was 
 

𝒂 �𝑨 + 𝑰 �𝜎𝑒
2

𝜎𝑎2
��
−𝟏
𝒂′,       [4.2] 

 
where a is a vector with pedigree-based relationships of an evaluated animal with 
the animals in the reference population; A is the additive relationship matrix for 
animals in the reference population; I is an identity matrix, 𝜎𝑒2 is the residual 
variance; and 𝜎𝑎2 is the genetic variance. Their ratio reflects heritability (ℎ2). 

For GA and AG, 𝑟𝐺𝐴2  and 𝑟𝐴𝐺2  were calculated as 

𝒉 �𝑯𝒓𝒆𝒇 + 𝑰 �𝜎𝑒
2

𝜎𝑎2
��
−𝟏
𝒉′,       [4.3] 
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where h is a vector based on part of H that contains relationships of an evaluated 
animal with the animals in the reference population (𝐇𝐫𝐞𝐟_𝐞𝐯𝐚); 𝐇𝐫𝐞𝐟 is the 
combined pedigree and genomic relationship matrix for animals in the reference 
population. For situation GA, 𝐇𝐫𝐞𝐟_𝐞𝐯𝐚 = 𝐀𝐫𝐞𝐟_𝐞𝐯𝐚𝐀𝐫𝐞𝐟−1 𝐆𝐫𝐞𝐟 and 𝐇𝐫𝐞𝐟 = 𝐆𝐫𝐞𝐟 where 
𝐀𝐫𝐞𝐟_𝐞𝐯𝐚 is the part of A describing relationships between the reference and 
evaluated animals, and 𝐀𝐫𝐞𝐟 and 𝐆𝐫𝐞𝐟 are created for the genotyped reference 
population.  

For AG, 𝐇𝐫𝐞𝐟_𝐞𝐯𝐚 = 𝐀𝐫𝐞𝐟_𝐞𝐯𝐚𝐀𝐞𝐯𝐚−1 𝐆𝐞𝐯𝐚 and 
𝐇𝐫𝐞𝐟 = 𝐀𝐫𝐞𝐟 + 𝐀𝐫𝐞𝐟_𝐞𝐯𝐚𝐀𝐞𝐯𝐚−1 (𝐆𝐞𝐯𝐚 − 𝐀𝐞𝐯𝐚)𝐀𝐞𝐯𝐚−1 𝐀𝐞𝐯𝐚_𝐫𝐞𝐟 where 𝐀𝐫𝐞𝐟_𝐞𝐯𝐚 and 𝐀𝐞𝐯𝐚_𝐫𝐞𝐟 
are parts of A describing the relationships between the reference and evaluated 
animals; 𝐀𝐫𝐞𝐟 is part of A for the ungenotyped reference population; 𝐀𝐞𝐯𝐚 and 𝐆𝐞𝐯𝐚 
are created for the genotyped evaluated population. 

For GG, 𝑟𝐺𝐺2  source was as in VanRaden (2008), Goddard et al. (2011), 
or Pszczola et al. (2012a): 

 

𝒄 �𝑮 + 𝑰 �𝜎𝑒
2

𝜎𝑎2
��
−1
𝒄′,       [4.4] 

 
where c is a vector with the genomic relationships of an evaluated animal with the 
animals in the reference population. This vector is a column of the C matrix for a 

particular evaluated animal. The C matrix itself is created as 𝒁𝟐𝒁′
2∑𝑝𝑖(1−𝑝𝑖)

  and 𝐙𝟐 is 

constructed from the genotypes of the evaluated and reference animals. In the GG 
scenario, G for all animals (i.e., the reference and evaluated animals) was created 
as 𝐆�. The C matrix, therefore, is an off-diagonal part of 𝐆� that describes 
relationships between the reference population and the evaluated animals. 
 
Connectedness 
Connectedness was calculated as in Lewis et al. (1999) between the evaluated 
animals and animals in the reference population. Because negative relationship 
coefficients are present when genomic information is incorporated, the absolute 
values were taken; thus, the connectedness level was calculated as: 
 

𝑐𝑜𝑛 = � 𝑃𝐸𝐶(𝑎𝚤�,𝑎𝚥�)

�𝑃𝐸𝑉(𝑎𝚤�)𝑃𝐸𝑉(𝑎𝚥�)
�,      [4.5] 
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where PEV(aı�) is the prediction error variance of an EBV of an evaluated animal i, 
PEV(aȷ�) is the prediction error variance of an EBV of a reference animal j, 
PEC(aı� , aȷ�) is the prediction error covariance between the breeding values of the 
animals i and j. Note that 𝑐𝑜𝑛 = 0 means that the animals are not connected. The 
PEV and PEC were obtained from inverted coefficient matrices of mixed model 
equations. For each of the evaluated animals, its average connectedness with all 
the animals in the reference population was calculated. 
 
4.3 Results 
Reliability 
The average reliabilities of (G)EBV predictions are shown in Figures 4.1, 4.2, and 4.3 
for the different heritability levels and across all the considered scenarios and 
reference populations. The significance of the differences between the scenarios 
was tested within each reference population. Almost all of these differences were 
highly significant (P < 0.01). The exceptions were differences between scenarios AA 
and GA for the reference population medium relationship and low relationship. 

Overall, the reliabilities of the scenarios, as can be seen in Figures 4.1 to 
4.3, increased with increasing heritability and with a decreasing average 
relationship within the reference population. In GG, when all the animals were 
genotyped, as was especially evident in case of the highest heritability (see Figure 
4.3), the reliabilities were considerably higher than in the other cases. When the 
evaluated animals were genotyped and the reference population was not (AG), 
reliabilities were noticeably lower than those in GG. When the reference 
population was genotyped and the evaluated animals were not (GA), reliabilities 
were somewhat higher than those in AG. For example, in the case of RND for the 
heritability of 0.01, the average reliabilities for AA, GA, AG, and GG were, 
respectively, 0.039, 0.042, 0.048, and 0.052 (Figure 4.1). Differences between these 
scenarios increased together with an increase in the heritability level (Figures 4.1 to 
4.3). Differences between the traditional breeding scheme using pedigree 
information (AA) and GA were always small, with ranking changing across 
heritability levels. For example, at the heritability of 0.9 (Figure 4.3) and with the 
RND reference population, AA (0.207) was slightly higher than GA (0.204), whereas 
at the heritability of 0.3 (Figure 4.2), AA (0.165) was slightly lower than GA (0.173). 
For the heritability of 0.01, the GA scenario tended to be more accurate than the 
AA scenario (Figure 4.1; as for example in case of RND, where GA was 0.042 and AA 
was 0.039) only when the average relationship within the reference was low. 
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Connectedness 
The average connectedness level of evaluated animals with all the animals in the 
reference population 𝒄𝒐𝒏�����  for different scenarios and reference populations and 
for a heritability of 0.3 is shown in Figure 4.4. The 𝒄𝒐𝒏�����  ranged from 0.003 to 0.024. 
Differences present across designs of the reference populations were very small. 
The 𝒄𝒐𝒏�����  level was lowest when the animals were not genotyped (AA; e.g., 0.004 
for RND) and highest when all the animals were genotyped (GG; e.g., 0.024 for 
RND). Genotyping only the reference population (GA) slightly improved 𝒄𝒐𝒏�����  when 
compared with AA (e.g., from 0.004 for AA to 0.005 for AG in the RND scenario). 
Genotyping only the evaluated animals (AG) caused a higher increase (to 0.008 for 
AG in the RND scenario). The 𝒄𝒐𝒏�����  level increased when the heritability level 
increased (not shown; i.e., the heritability level acted as a scaling factor). 

 

   

Figure 4.1  Average reliabilities of breeding values for the evaluated set of animals calculated 
based on scenarios in which pedigree information only is used (AA); the reference 
population is genotyped and the evaluated animals are ungenotyped (GA); the reference 
population is ungenotyped and the evaluated animals are genotyped (AG); and all animals 
are genotyped (GG) across 4 reference populations with different family structures (high 
relationship = HR; medium relationship = MR; low relationship = LR; random selection of 
animals = RND) for the heritability of 0.01, averaged over all replicates. 
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Figure 4.2  Average reliabilities of breeding values for the evaluated set of animals calculated 
based on scenarios in which pedigree information only is used (AA); the reference 
population is genotyped and the evaluated animals are ungenotyped (GA); the reference 
population is ungenotyped and the evaluated animals are genotyped (AG); and all animals 
are genotyped (GG) across 4 reference populations with different family structures (high 
relationship = HR; medium relationship = MR; low relationship = LR; random selection of 
animals = RND) for the heritability of 0.3, averaged over all replicates. 

 
4.4 Discussion 
The aim of this study was to investigate whether the increase in accuracy, when 
moving from traditional selection to GS, is mainly due to genotyping the reference 
population or the evaluated animals. In it, accuracy of selection is expressed as the 
reliability of (G)EBV. These reliabilities were calculated using deterministic 
prediction that can be derived from selection index theory or the prediction error 
variances of the mixed model equations. 
 
Combined relationship matrix 
In the GA and AG scenarios, the genomic-based relationships were combined with 
the pedigree-based relationships into the H matrix (see Legarra et al., 2009; Misztal 
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et al., 2009b). Combining the pedigree-based and the genomic-based relationships 
may yield different breeding value reliabilities across differently created G matrices 
(Forni et al., 2011). Matrices A and G have to be on the same scale before they are 
combined into H. To ensure this, in the present study, the inbreeding level in G was 
scaled to the inbreeding level in A as in Powell et al. (2010), and then, using the 
method of Yang et al. (2010), G was regressed toward A. Further improvement of 
the compatibility of the 2 matrices could possibly be achieved using LD-linkage 
analysis methodology (Meuwissen et al., 2011); however, this option was not 
explored here. 

 
 

 
   

Figure 4.3  Average reliabilities of breeding values for the evaluated set of animals calculated 
based on scenarios in which pedigree information only is used (AA); the reference 
population is genotyped and the evaluated animals are ungenotyped (GA); the reference 
population is ungenotyped and the evaluated animals are genotyped (AG); all animals are 
genotyped (GG) across 4 reference populations with different family structures (high 
relationship = HR; medium relationship = MR; low relationship = LR; random selection of 
animals = RND) for the heritability of 0.9, averaged over all replicates. 
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 Although the applied adjustments did result in a similar scale for both 
matrices, G and A still have different properties. This is because genomic 
relationships include Mendelian sampling and therefore have higher variance than 
do pedigree-based relationships. This difference in the matrix properties may be a 
reason why, in the case of GA, it was unexpected that the use of the combined 
relationship matrix, was only somewhat (or not) beneficial when compared with 
traditional BLUP (AA). 
 
 

 
   

Figure 4.4 Average connectedness of evaluated animals calculated based on scenarios in 
which pedigree information only is used (AA); the reference population is genotyped and the 
evaluated animals are ungenotyped (GA); the reference population is ungenotyped and the 
evaluated animals are genotyped (AG); all animals are genotyped (GG) across 4 reference 
populations with different family structures (high relationship = HR; medium 
relationship = MR; low relationship = LR; random selection of animals = RND) for the 
heritability of 0.3, averaged over all replicates. 
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 Scenario AG was always better than GA, which can be explained by the 
availability of information on Mendelian sampling. When genotypes are to be 
predicted from offspring to parents, this information is available, which may lead to 
high accuracy of the genotype prediction. For instance, if the number of genotyped 
offspring per ungenotyped parent is large (i.e., 30 or more), the accuracy of 
genotype prediction can even reach 100%, as shown by Boettcher et al. (2004). In 
the opposite situation (i.e., when missing genotypes are to be predicted from 
parents to offspring), prediction accuracy will be poorer because no information on 
Mendelian sampling is available; therefore, the distinction between, for example, 
half sibs is not possible. When both parents are genotyped, in fact, the maximum 
genotype prediction accuracy, measured as the correlation between the true and 

predicted genotypes, assuming a heritability of 1, is equal to 𝑟 = √𝒃𝑮 𝜎𝑎� = �1
2�    

where both b and G contain values of 0.5 and 𝜎𝑎 = 1 (Mrode, 2005). It is therefore 
important to genotype both parents if the genotypes of their offspring are to be 
predicted (Calus et al., 2011a; Pszczola et al., 2011). If both parents (or more 
ancestors) and offspring of an animal are known, the accuracy of its genotype 
prediction would be substantially higher (Gengler et al., 2008). Therefore, it is 
expected that genotyping evaluated animals, which are usually younger than the 
reference animals, is more beneficial than the opposite. This is especially evident 
when the evaluated animals are offspring of the reference animals, as discussed 
above. The closest relationships available between reference and evaluated 
animals in our design were due to sharing the same ungenotyped sire (i.e., being 
half-sib family members), maternal grandsires, or other more distant relatives. 
Closer relationships between genotyped and ungenotyped animals in the AG and 
GA scenarios would increase the accuracy of predicting genomic relationships for 
ungenotyped animals, in a similar way as the accuracy of genotype imputation 
depends on relationships between genotyped and imputed animals (Mulder et al., 
2012). In general, the level of accuracy in the simulated scenarios is expected to be 
lower than when closer relationships between reference and evaluated animals 
would be present. In most practical situations, however, the evaluated animals are 
genotyped as well as at least part of the reference animals, and stronger family 
links between these 2 groups may exist. Such a setup leads to considerable 
differences between a pedigree-based scenario and a single-step approach favoring 
the latter method (e.g., Aguilar et al., 2010; Christensen and Lund, 2010; Chen et 
al., 2011; Forni et al., 2011; Vitezica et al., 2011). 
  

76 
 



4 Genotyping reference or evaluated animals 

 
 

 The genome simulated in this study was about 10 times smaller than the 
cattle genome. As indicated in Pszczola et al. (2012a), the simulated LD was close to 
values observed in real data (e.g., those reported by de Roos et al., 2008). To 
further check similarities to expectations found in real data analyses, we estimated 
the number of effective chromosome segments (Me) calculated based on the 
formula of Daetwyler et al. (2008). Rearranging this equation yields 𝑀𝑒 =
𝑁ℎ2 (𝑟2 − 𝑁ℎ2)⁄ , where N is the reference population size, ℎ2 is the heritability 
level, and 𝑟2 is the reliability obtained from our analysis. The calculated value for 
Me ranged from 352 to 437 for an ℎ2 of 0.9, from 617 to 829 for an ℎ2 of 0.3, and 
from 365 to 424 for an ℎ2 of 0.01. The lowest values were observed for reference 
populations with a weaker family structure. Our Me values agreed reasonably well 
with the results of other studies for small cow reference populations. For example, 
Verbyla et al. (2010) showed that Me calculated for a small population of Holstein-
Friesian heifers for energy balance with an ℎ2 of 0.325 was 472. 
 As our results have shown, compared with traditional BLUP, genotyping 
only the evaluated animals achieved substantially higher reliabilities. Although the 
realized reliabilities will be substantially lower than if all or most of the reference 
and the evaluated animals are genotyped, genotyping only the evaluated animals is 
more beneficial than genotyping only animals with phenotypic records. 
 
Impact of relationships 
The average relationship within the reference population, as reported previously by 
Pérez-Cabal et al. (2010) and Pszczola et al. (2012a), affected the average reliability 
regardless of which animals were genotyped. When the animals in the reference 
population were loosely related to each other, as shown in Figures 4.1 to 4.3, the 
reliabilities were higher. This means that the design of the reference population is 
also important when genotyped and ungenotyped animals are analyzed jointly 
using the H matrix. 
 The availability of more precise relationship data for the reference 
population (GA) resulted in small differences in reliabilities compared with a 
situation in which none of the animals were genotyped (AA), whereas, as shown in 
Figures 4.1 to 4.3, genotyping the evaluated animals (AG) increased reliabilities 
noticeably. This may be because, from regular BLUP models (Henderson, 1985), it is 
known that when an animal has phenotypic records itself, the emphasis on 
information about relatives is reduced. Translated to the scenarios studied here, 
this reduced emphasis on information concerning relatives implies that very precise 
genomic relationships among animals in the reference population (i.e., animals 
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with phenotypes) might be less important than those for the evaluated animals 
with no phenotypic observations on themselves or on their descendants. 
 We also considered a situation in which the evaluated animals originated 
from the same generation as the reference population. In this situation, the 
average reliabilities were higher than in the presented results, but the tendencies 
were similar (results not shown). For animals originating from different 
generations, differences in the reliability of (G)EBV were in line with those in the 
literature (Habier et al., 2010; Pszczola et al., 2011, 2012; Wolc et al., 2011). 
 Deterministic approaches can be used to approximate the reliability, 
given known and simple family structures of the considered population (Hayes et 
al., 2009d) or randomly mated population (Daetwyler et al., 2008; Goddard, 
2009a). In practice, however, more complex family structures are present and 
animals are not mated at random, and for such a situation, deriving a general 
deterministic prediction formula is not trivial. On the basis of our results, however, 
in general one may expect to achieve higher reliabilities when the reference 
population is composed of many small half-sib families as opposed to a few large 
ones; that is, the use of an RND reference population always yielded higher average 
reliabilities than using a high relationship (Figures 4.1 to 4.3). 
 
Bias of prediction 
The reliability of (G)EBV can be assessed by inverting the left-hand side of the 
mixed model equations or, in an empirical way, by cross-validation (e.g., Calus et 
al., 2010b). The former method, as applied in this study, tends to give somewhat 
overestimated results (Calus et al., 2009; Hayes et al., 2009b; Lund et al., 2009; Su 
et al., 2010). One reason for this overestimation is the underlying assumption that 
the markers explain all the genetic variance. The genetic variance, however, is at 
least partially also explained by loci between the markers (VanRaden, 2008). Thus, 
the reliabilities presented here may be somewhat overestimated. Despite this 
expected slight overestimation of the reliabilities, the method used here, unlike the 
cross-validation method, makes an assessment of individual reliabilities possible, 
which is important from the practical point of view when comparing animals’ 
breeding values. Yet even if some overestimation would be present in this study, it 
is expected not to affect the conclusions presented here. This is because 
reliabilities for the breeding values based on pedigree information are expected to 
be unbiased, and replacing the pedigree with genomic data, to some extent, only 
adds more information. 
 
 

78 
 



4 Genotyping reference or evaluated animals 

 
 

Connectedness 
The reliability predictions formulas presented here are equivalent to those 
obtained with use of the PEV of breeding values. The PEV of differences between 
animals from different management units can be also used to determine 
connectedness (Kennedy and Trus, 1993). Genetically unconnected herds or other 
management units with different genetic means cannot be distinguished in the 
genetic evaluation; thus, the comparison of breeding values among them is biased 
(Kennedy, 1981). This bias would be reduced if a positive genetic covariance existed 
between the units (i.e., they would be connected). In other words, 2 animals are 
connected when the PEC between them is nonzero; the difference between their 
breeding values is then expected to have smaller bias than would a pair of animals 
with zero PEC. Using the pedigree-based relationships, PEC is nonzero only when 
the animals are linked through the pedigree. Seemingly unlinked animals, in fact, 
may be linked through distant unrecorded ancestors, as can be revealed with 
genomic relationships. Using genomic relationships thus improves comparisons 
across the management units. This was shown in Figure 4.4, where the average 
connectedness level in the AA scenario was considerably lower than that in GG. 
Small differences across differently designed reference populations may be 
attributed to the fact that differences in the average relationship within the 
reference population based on genomic data were smaller than calculated based 
on the pedigree data. 
 
4.5 Conclusion 
This study aimed to investigate the contribution of using genomic information on a 
reference population or the evaluated animals to the increase in selection 
accuracy. Compared with traditional selection, genotyping only the evaluated 
group of animals significantly increased the accuracy of the estimates, whereas 
genotyping only the reference population yielded minor, and sometimes 
unfavorable, changes in accuracy. This was attributed to the fact that the emphasis 
on information concerning relatives is reduced when an animal has phenotypic 
records. The reduced emphasis on the information of relatives implies that very 
precise genomic relationships among animals in the reference population are less 
important than those for the evaluated animals with no phenotypic observations 
on themselves or on their descendants. Nevertheless, although the main origin of 
the gain in accuracy from using GS is genotyping the evaluated animals, genotyping 
only one group of animals will always yield estimates that are substantially less 
accurate than when all the animals are genotyped. An additional benefit of using a 
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genomic relationship matrix is reducing bias across herd, region, or country 
evaluations, which is demonstrated by the improved connectedness between the 
reference population and the evaluated animals. 
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Abstract 
The genomic breeding value accuracy of scarcely recorded traits is low because of 
the limited number of phenotypic observations. One solution to increase the 
breeding value accuracy is to use predictor traits. This study investigated the 
impact of recording additional phenotypic observations for predictor traits on 
reference and evaluated animals on the genomic breeding value accuracy for a 
scarcely recorded trait. The scarcely recorded trait was dry matter intake (DMI, n = 
869) and the predictor traits were fat–protein-corrected milk (FPCM, n = 1520) and 
live weight (LW, n = 1309). All phenotyped animals were genotyped and originated 
from research farms in Ireland, the United Kingdom and the Netherlands. Multi-
trait REML was used to simultaneously estimate variance components and 
breeding values for DMI using available predictors. In addition, analyses using only 
pedigree relationships were performed. Breeding value accuracy was assessed 
through cross-validation (CV) and prediction error variance (PEV). CV groups (n = 7) 
were defined by splitting animals across genetic lines and management groups 
within country. With no additional traits recorded for the evaluated animals, both 
CV- and PEV-based accuracies for DMI were substantially higher for genomic than 
for pedigree analyses (CV: max. 0.26 for pedigree and 0.33 for genomic analyses; 
PEV: max. 0.45 and 0.52, respectively). With additional traits available, the 
differences between pedigree and genomic accuracies diminished. With additional 
recording for FPCM, pedigree accuracies increased from 0.26 to 0.47 for CV and 
from 0.45 to 0.48 for PEV. Genomic accuracies increased from 0.33 to 0.50 for CV 
and from 0.52 to 0.53 for PEV. With additional recording for LW instead of FPCM, 
pedigree accuracies increased to 0.54 for CV and to 0.61 for PEV. Genomic 
accuracies increased to 0.57 for CV and to 0.60 for PEV. With both FPCM and LW 
available for evaluated animals, accuracy was highest (0.62 for CV and 0.61 for PEV 
in pedigree, and 0.63 for CV and 0.61 for PEV in genomic analyses). Recording 
predictor traits for only the reference population did not increase DMI breeding 
value accuracy. Recording predictor traits for both reference and evaluated animals 
significantly increased DMI breeding value accuracy and removed the bias observed 
when only reference animals had records. The benefit of using genomic instead of 
pedigree relationships was reduced when more predictor traits were used. Using 
predictor traits may be an inexpensive way to significantly increase the accuracy 
and remove the bias of (genomic) breeding values of scarcely recorded traits such 
as feed intake. 
 
 
Key words: accuracy; bias; genomic selection; multi-trait analyses; dairy cow  
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5.1 Implications 
Feed intake has a significant impact on the profitability and environmental 
footprint of livestock production. Feed intake is expensive and labour intensive to 
measure on individual animals, resulting in a limited number of phenotypic records. 
Genomic selection is suggested to be a promising selection tool to improve traits 
with only small numbers of available observations. In this study, an inexpensive 
way to increase the accuracy of genomic selection and remove the bias of 
(genomic) breeding values for feed intake using easily recordable predictor traits 
was demonstrated. This approach is successful when predictor traits are recorded 
on both evaluated and reference animals. 
 
5.2 Introduction 
Single-nucleotide polymorphisms (SNP) markers are used nowadays in genomic 
selection (Hayes et al., 2009a). Genomic selection increases genetic gain compared 
with traditional selection tools by decreasing the generation interval without 
(heavily) jeopardizing the accuracy of selection (Meuwissen et al., 2001, Muir, 
2007, Calus, 2010a). The accuracy of genomic selection depends on the accuracy of 
estimated direct genomic breeding values (DGV). The DGV accuracy is affected by 
the effective population size by the density at which the SNP chip covers the 
genome and by the size of the reference population (Daetwyler et al., 2008, 
Goddard, 2009a, Pszczola et al., 2012a). Generally, a large reference population is 
needed to achieve high accuracy of DGV (Hayes et al., 2009a). Large reference 
populations already exist for routinely recorded traits, for example, milk yield. 
However, for traits that are not routinely measured because they are difficult or 
expensive to measure, obtaining large numbers of phenotypic observations is 
problematic. Despite the availability of relatively low numbers of records, the 
application of genomic selection is suggested as a promising tool to start selection 
for difficult-to-measure traits (Calus et al., 2013a). 
An example of a labour-intensive and expensive-to-measure trait is feed intake, for 
which usually only a limited number of phenotypic records are available. The 
heritability of feed intake ranges from 0.16 to 0.36, showing potential to change 
feed intake using genetic improvement (for review see Veerkamp, 1998). As 
traditional selection is likely too costly to apply for feed intake, and because 
genotyping costs are reducing continuously, genomic selection is the expected 
method of choice to start genetic selection for feed intake. The limited number of 
phenotypic records for feed intake will, however, result in a relatively low accuracy 
of genomic selection for feed intake. One solution to partly overcome this effect of 
the limited size of the reference population is to optimize its design (Jiménez-
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Montero et al., 2012, Pszczola et al., 2012a). Another solution, commonly used in 
traditional breeding programmes, is to use predictor traits. For example, somatic 
cell counts are used to predict udder health traits (Philipsson et al., 1995), and birth 
weight can be used to predict calving ease or perinatal mortality (Johanson and 
Berger, 2003). A predictor trait has to meet several requirements. It has to be easily 
recordable, inexpensive to measure, heritable and, most importantly, genetically 
correlated with the trait of interest. Using such a predictor trait may result in an 
improvement of the trait of interest at a low cost. Also in genomic selection, an 
additional gain in accuracy can be achieved using predictor traits, as it was shown 
using both deterministic (Calus et al., 2013a) and empirical simulations (Calus and 
Veerkamp, 2011c; Jia and Jannink, 2012). Both empirical studies had predictor 
traits measured on both the reference animals and evaluated animals. An 
important and unanswered question when using predictor traits in genomic 
selection is on which animals (reference or evaluated) the predictor traits should be 
recorded. Therefore, the objective of this study was to investigate the impact of 
using additionally recorded phenotypic observations for the predictor traits on (1) 
the reference, or (2) on the reference and evaluated animals, on the accuracy of 
breeding values for a scarcely recorded trait, using multi-trait genomic prediction 
models. 
 
5.3 Materials and methods 
The data used in this study originated from Teagasc, Moorepark, Ireland, the 
Langhill herd from the Scottish Agricultural College, United Kingdom, and from the 
‘t Gen herd from Wageningen UR Livestock Research, the Netherlands. Details on 
the experimental treatments for different countries are described elsewhere, for 
Scotland (Veerkamp et al., 1995, Pryce et al., 1999, Coffey et al., 2004, Bell et al., 
2011), Ireland (Horan et al., 2005) and the Netherlands (Veerkamp et al., 2000), 
and a more detailed description of the merging of the data sources and estimated 
variance components across the different herds can be found in a study by Banos 
et al. (2012). 
 
Phenotypic data 
The pre-corrected phenotypes used here were obtained from Veerkamp et al. 
(2012) who described in detail the steps taken to adjust the original phenotypes. In 
short, phenotypic measurements were corrected for the mean lactation curve, 
herd, nutritional treatment, milking frequency, year and month of milk test by 
management group, and experimental treatments using random regression. 
Records available for the average fat–protein-corrected milk (FPCM), live weight 
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(LW) and dry matter intake (DMI) of the predicted values for weeks 3 to 15 were 
used. The available data set comprised 1520 animals’ phenotypic observations for 
FPCM; of these animals, 1309 had phenotypes for LW and 869 had phenotypes for 
DMI. Feed intake was not recorded on animals from Teagasc, Moorepark, Ireland. 
In total, 824 animals had pre-corrected phenotypic observations for all three traits. 
For descriptive statistics of the traits, see Table 5.1. 
 
Table 5.1 Descriptive statistics of the analysed traits. 
 

Trait No. 
records 

Min. Mean Max. S.D. Average reference 
population sizea 

FPCM (kg/d) 1 520 2.41 34.62 54.57 6.16 1 402 
LW (kg/d) 1 309 241.77 520.00 699.95 43.97 1 191 
DMI (kg) 869 7.06 12.39 16.76 1.60 751 

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake.  
a Reference population size averaged over all cross-validation sets 
 
Genomic data 
In this study, the genotypes of 2162 animals genotyped with the Illumina 
BovineSNP50 BeadChip (Illumina Inc., San Diego, CA, USA) containing 54 001 SNPs 
were available. This included all phenotyped animals and some additional ones 
with no phenotypes. The additional animals were used to perform checks for 
Mendelian inconsistencies between pedigree and SNP data, which were performed 
for all genotyped parent–offspring pairs and among sibs (Calus et al., 2011b). 
Animals with conflicting information were removed. The SNP quality control 
criteria were as described by Veerkamp et al. (2012), that is, GenCall (GC) score 
>0.20 and GenTrain (GT) score >0.55 for individual genotypes; call rate >95%; minor 
allele frequency >0.01 in each country; and no extreme deviation from Hardy–
Weinberg Equilibrium (i.e. χ2 < 600). After applying the quality control of the 
genotypes, 36 346 SNP remained in the data set. 
 
Models 
Animal models with one, two or three traits included were fitted using ASReml 3.0 
(Gilmour et al., 2009) depending on how many traits were available in each 
scenario. The general (multi-trait) model was 
 
𝑦𝑖𝑗 = 𝜇𝑗 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑖𝑗 + 𝑒𝑖𝑗, 
 
where 𝑦𝑖𝑗 is the pre-corrected phenotypic record of animal i, 𝜇𝑗  is the overall mean 
for trait j, 𝑎𝑛𝑖𝑚𝑎𝑙𝑖𝑗  is the random polygenic effect of animal i for trait j and 𝑒𝑖𝑗 is a 
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random residual for animal i and trait j. Variance components were estimated for 
each analysis. In pedigree analyses (P-REML), polygenic values were assumed to be 
normally distributed N(0, A⊗GA), where A is the numerator relationship matrix, GA 
is the m × m polygenic covariance matrix and m is the number of traits in the 
model. In genomic-based analyses (G-REML), genomic values were assumed to be 
normally distributed N(0, G⊗GG), where G is the genomic relationship matrix and 
GG is the m × m genomic covariance matrix. The G matrix was created with the first 
formula described by VanRaden (2008) using current allele frequencies. The 
inbreeding level in G was scaled to the inbreeding level in A and then the adjusted 
G was corrected to account for the sampling error in genomic relationships as in 
the study by Veerkamp et al. (2011). 
 
Accuracy 
The accuracy of the breeding values was calculated in two ways: using cross-
validation (CV) and using prediction error variance (PEV) and, additionally, selection 
index theory calculations were carried out to assess the minimum and maximum 
expected accuracy for an animal that is unrelated to the reference population. 
 CV accuracy was calculated as the correlation between the estimated 
breeding values and the phenotypic values divided by the square root of the 
heritability. Accuracy was calculated for each evaluation set and then averaged 
over all evaluation sets. Heritabilities of the considered traits and genetic 
correlations between traits were estimated using pedigree and genomic 
relationships using a multi-trait analysis in ASReml (Gilmour et al., 2009) using all 
available data. 
 The PEV-based accuracies for each animal (i) were calculated using 
standard errors of prediction (SEP) obtained from the output of the models as 
 

 𝑟𝑖 = �1 − 𝑷𝑬𝑽𝒊
𝜎𝐴
2  , where 𝑷𝑬𝑽𝑖 = 𝑺𝑬𝑷𝑖2. 

 
Accuracies for the evaluated animals were calculated within the corresponding CV 
set and then averaged across CV sets within scenarios. 
 To assess the minimum and maximum expected accuracy for an animal 
that is unrelated to the reference population, selection index calculations were 
carried out for two scenarios. In the first scenario (OWN), the expected accuracy 
was calculated for an animal that had no relatives in the reference population and 
only had its own phenotypic observations available. In the second scenario (PRO), 
the expected accuracy was calculated for a progeny-tested bull that was assumed 
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to be a selection candidate. This bull had very accurate breeding values for the 
predictor traits, instead of its own phenotypic observations. These accurate 
breeding values were based on 1000 offspring each with a single phenotype. In the 
two scenarios, three situations were distinguished, in which observations (being 
phenotypic records or daughter-based breeding values) were available for: (a) 
FPCM, (b) LW or (c) FPCM and LW. Phenotypic observations for DMI were not 
available. 
 
Reference populations 
Four reference populations were defined that differed by the number of traits for 
which phenotypic observations were available. The sizes of the different reference 
populations varied along with the number of phenotypic records available for the 
different traits (see Table 5.1). Records of DMI were assumed to be available for at 
least part of the animals in all the reference populations. Observations for the 
reference animals were available on: (1) DMI only; (2) DMI and FPCM; (3) DMI and 
LW; or (4) FPCM, LW and DMI. 
 
Evaluated animals 
Evaluated animals were created by defining several CV sets. Only animals from the 
United Kingdom and the Netherlands were included in CV sets, because only those 
animals had records for all traits. Animals from Ireland contributed only to the 
reference populations with records available for LW and FPCM. The CV sets were as 
in the study by De Haas et al. (2012b) who split the animals across genetic lines and 
management groups. Four CV sets were formed from the UK animals. First, animals 
were split based on two genetic lines: a control and a selection line. Animals in the 
control line have been bred to bulls with about average genetic merit for fat and 
protein yield, whereas the animals in the selection line were bred since 1973 to 
bulls with the highest genetic merit for fat and protein yield available in the United 
Kingdom (Veerkamp et al., 1994). Second, animals were divided on the basis of two 
feeding strategies: one group was fed with a high-concentrate diet and the second 
group with a low-concentrate diet. Animals from the Netherlands composed of 
three groups. At the ‘t Gen farm, two groups of animals were present: a high 
genetic line for milk yield, that participated in the CR-Delta (Arnhem, The 
Netherlands) breeding programme, and a control line. Owing to its size, the high 
genetic line was randomly split into two sets. Each of the CV sets was assumed to 
be a set of evaluated animals and was analysed four times, assuming a presence of 
phenotypic information for: (1) none of the considered indicator traits, (2) FPCM, 
(3) LW or (4) FPCM and LW. 
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Scenarios 
Of all the 16 possibilities (all combinations of four reference and four evaluated 
sets), nine of the most practical ones were chosen, as outlined in Table 5.2. All 
reference populations were used to predict all evaluation animals without using 
any of their records on the predictor traits to obtain baseline accuracy. The 
reference population for which information on all traits was available was used to 
evaluate all possible evaluated sets of animals (i.e. no observations, FPCM, LW and 
FPCM and LW). In addition, the reference population with DMI and FPCM records 
was used to evaluate the CV set with FPCM recorded, and the reference population 
with DMI and LW records was used to evaluate the CV set with LW records. All 
analyses were performed twice: first using pedigree relationships (P-REML) and 
then using genomic relationships (G-REML). 
The remaining seven scenarios (i.e. out of all 16 possible combinations), where the 
predictor traits could be recorded only for the evaluated and not for the reference 
population, were only initially investigated here because of two reasons: first, 
having phenotypes only for the evaluated animals is rather unlikely in practice, and 
second, estimating variance components with only few animals in the evaluated 
sets proved to be difficult in the initial analyses and the obtained estimates were 
inaccurate. 
 
Table 5.2 Included phenotypes () in the different analyses, both for the evaluated and the 
reference population. 
 

Traits recorded on reference 
population 

Traits recorded on evaluated population 
NO FPCM LW FPCM and LW 

DMI     
DMI and FPCM     
DMI and LW     
DMI, FPCM and LW     

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake; NO = No 
phenotypes available. 
 
5.4 Results 
Heritability and correlation estimates 
The estimated heritabilities for each trait and phenotypic and genetic correlations 
between the traits are shown in Table 5.3. Heritability estimates were moderate to 
high, ranging from 0.31 to 0.60, with the highest value observed for DMI. The 
strongest phenotypic and genetic correlations were between DMI and LW, whereas 
correlations between DMI and FPCM were somewhat weaker. In general, 
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heritabilities and genetic correlations were somewhat lower when genomic 
information was used instead of pedigree information. 
 
Table 5.3 Heritability estimates (diagonal) phenotypic (above diagonal) and genetic 
correlations (below diagonal) for the analysed traits estimated using pedigree and genomic 
data, and their approximated standard errors in parentheses. 
 

 Data used to obtain estimates 
 Pedigree  Genomic 
 FPCM LW DMI  FPCM LW DMI 
FPCM1 0.36(0.06) 0.19(0.03) 0.45(0.03)  0.31(0.04) 0.18(0.03) 0.45(0.03) 
LW2 0.34(0.12) 0.48(0.07) 0.47(0.03)  0.12(0.11) 0.41(0.05) 0.45(0.03) 
DMI3 0.32(0.11) 0.70(0.08) 0.60(0.08)  0.24(0.11) 0.62(0.08) 0.44(0.06) 

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake. 
 
Accuracy 
Genomic and pedigree-based accuracies, calculated using CV and PEV, are 
presented in Tables 5.4 and 5.5, respectively. When no additional traits were 
recorded for evaluated animals, accuracies for DMI, both CV- and PEV-based, were 
substantially higher for genomic analyses than for pedigree analyses (CV: maximum 
0.26 for pedigree and 0.33 for the genomic analyses; PEV: maximum 0.45 and 0.52, 
respectively). When one or two traits were added, the differences between 
pedigree- and genomic-based accuracies diminished (Tables 5.4 and 5.5). With 
additional recording for FPCM, pedigree-based accuracies increased from 0.26 to 
0.47 for CV and from 0.45 to 0.48 for PEV. Genomic-based accuracies increased 
from 0.33 to 0.50 for CV and from 0.52 to 0.53 for PEV. With additional recording 
for LW instead of FPCM, pedigree-based accuracies increased to 0.54 for CV and to 
0.61 for PEV. Genomic-based accuracies increased to 0.57 for CV and to 0.60 for 
PEV. When both FPCM and LW were available for evaluated animals then the 
highest accuracy was obtained (0.62 for CV and 0.61 for PEV in pedigree analyses, 
and 0.63 for CV and 0.61 for PEV in genomic analyses). Recording predictor traits 
only for the reference population alone did not increase DMI breeding value 
accuracy. Recording predictor traits for both the reference population and 
evaluated animals significantly increased DMI breeding value accuracy and 
removed the bias observed when only reference animals had records. 
 The selection index calculations showed that the predicted accuracy for 
the OWN scenario, when phenotypes were available for FPCM, was 0.19. When LW 
instead of FPCM records was available, the predicted accuracy increased to 0.49. 
When both predictor traits records were used, the predicted accuracy reached the 
highest value of 0.50. For the PRO scenario, when phenotypes were available for 
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FPCM, the predicted accuracy was 0.32. When LW only and LW and FPCM 
phenotypes were available the predicted accuracy was 0.70. 
 
Table 5.4 Cross-validation-based accuracies (and their standard errors) for DMI of evaluated 
animals for which phenotypic observations were available on different number of traits 
across reference populations with phenotypes available for different traits. 
 

Traits recorded on 
reference population 

Traits recorded on evaluated population 
NO FPCM LW FPCM and LW 

 P-REMLa 
DMI 0.24(0.03) . . . 
DMI and FPCM 0.24(0.03) 0.47(0.04) . . 
DMI and LW 0.26(0.04) . 0.54(0.05) . 
DMI, FPCM and LW 0.26(0.04) 0.47(0.05) 0.54(0.06) 0.62(0.06) 

 G-REMLb 
DMI 0.33(0.02) . . . 
DMI and FPCM 0.33(0.03) 0.50(0.06) . . 
DMI and LW  0.32(0.03) . 0.57(0.05) . 
DMI, FPCM and LW 0.33(0.03) 0.50(0.06) 0.57(0.06) 0.63(0.06) 

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake; NO = No 
phenotypes available.  
a Pedigree-based analyses; 
 b Genomic-based analyses. 
 
 
Table 5.5 Prediction error variance-based accuracies for DMI of evaluated animals for which 
phenotypic observations were available on different (number of) traits across reference 
populations with phenotypes available for different traits. 
 

Traits recorded on 
reference population 

Traits recorded on evaluated population 
NO FPCM LW FPCM and LW 

 P-REMLa 
DMI 0.43 . . . 
DMI and FPCM 0.44 0.48 . . 
DMI and LW 0.45 . 0.61 . 
DMI, FPCM and LW 0.45 0.48 0.60 0.61 

 G-REMLb 
DMI 0.51 . . . 
DMI and FPCM 0.51 0.53 . . 
DMI and LW  0.52 . 0.60 . 
DMI, FPCM and LW 0.52 0.53 0.60 0.61 

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake; NO = No 
phenotypes available.  
a Pedigree-based analyses;  
b Genomic-based analyses. 
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Bias 
Slopes of regression of phenotypes on estimated breeding values are a measure of 
the bias in terms of the variance of estimated breeding values. Slopes greater 
(smaller) than one indicate underestimation (overestimation) of the variance of the 
estimated breeding values. The slopes ranged from 0.56 to 1.17 for pedigree and 
from 0.68 to 1.12 for genomic-based analyses, as shown in Table 5.6. When no 
observations on the evaluated animals were available and the reference animals 
had only DMI records, the variance of the estimates was most biased, the slope 
was 0.56 for pedigree analyses and 0.68 for genomic analyses. The bias was 
somewhat reduced when information for all traits (FPCM, LW and DMI) was added 
to the reference population, that is, the slopes increased to 0.66 for pedigree and 
0.73 for genomic analyses. The variance of the estimated breeding values was 
rather unbiased when information on additional trait(s) was added both for the 
reference population and for the evaluated animals. This was observed, 
irrespective of whether FPCM, LW or both were added to the analyses; the slopes 
ranged from 0.99 to 1.12 for genomic and from 0.92 to 1.17 for pedigree analyses. 

Re-ranking 
Spearman rank correlations between the estimated breeding values were 
calculated to investigate whether changes in the ranking of animals occurred on 
the basis of their estimated breeding values across different scenarios. The 
correlations are shown in Appendix Tables A5.1 and A5.2 for pedigree and genomic 
analyses, respectively. Little re-ranking of the animals on the basis of their breeding 
values was present across scenarios in which no phenotypic information was 
available for the evaluated animals (rank correlations from 0.89 to 0.96 for 
pedigree and genomic analyses). Considerable re-ranking of animals was present 
comparing scenarios with and without information on the additional traits for 
evaluated animals, with rank correlations from 0.58 to 0.99. The rank correlations 
showed that the re-ranking of the animals coincides with the accuracy of their 
breeding values, that is, when the accuracy of the breeding values estimated with 
one method differs from the accuracy of the other method, more changes in the 
ranking of the animals on the basis of their breeding values are expected to occur. 

5.5 Discussion 
In this study, we investigated the impact of recording additional phenotypic 
observations for the predictor traits for reference and evaluated animals on the 
accuracy of breeding values for a scarcely recorded trait. Our results show that the 
breeding value accuracy for a scarcely recorded trait was not increased when the 
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predictor traits were recorded only for the reference population. When the 
predictor traits were recorded for both the evaluated animals and the reference 
population, however, the breeding value accuracy increased. The above results 
were obtained using DMI as the scarcely recorded trait, and FPCM and LW as 
predictor traits for DMI. 
 
Table 5.6 Slopes of regression of phenotype on estimated breeding values (and the standard 
error between cross-validation sets) for DMI of evaluated animals for which phenotypic 
observations were available on different traits across different reference populations. 
 

Traits recorded on 
reference population 

Traits recorded on evaluated population 
NO FPCM LW FPCM and LW 

 P-REMLa 
DMI 0.56(0.07) . . . 
DMI and FPCM 0.60(0.10) 1.01(0.19) . . 
DMI and LW 0.63(0.11) . 0.92(0.12) . 
DMI, FPCM and LW 0.66(0.12) 1.17(0.21) 0.96(0.15) 1.05(0.15) 

 G-REMLb 
DMI 0.68(0.11) . . . 
DMI and FPCM 0.72(0.12) 1.06(0.21) . . 
DMI and LW  0.71(0.13) . 0.99(0.12) . 
DMI, FPCM and LW 0.73(0.13) 1.08(0.23) 1.00(0.15) 1.12(0.16) 

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake; NO = No 
phenotypes available.  
a Pedigree-based analyses;  
b Genomic-based analyses. 
 
Accuracy 
Differences were shown when the predicted (selection index-based) and empirical 
(REML-based) accuracies for DMI were compared. When only FPCM was the 
predictor trait, the empirical genomic-based accuracy was lower than the 
corresponding predicted accuracy of the OWN and PRO scenarios. When only LW 
was the predictor trait, or when two predictor traits (FPCM and LW) were used, the 
empirical genomic-based accuracies were higher than these in OWN but lower than 
in PRO scenarios. The presented results show that the empirical accuracies may 
differ from the expectations on the basis of selection index theory. The difference 
between predicted and empirical accuracies may arise, for example, owing to the 
pedigree structure of the data used. In the theoretical calculations (OWN and PRO), 
a reference population of unrelated individuals was assumed, whereas the animals 
in the data set might actually be strongly related to each other. As shown earlier, 
the more the animals in the reference population are related to each other, the 
lower the predicted accuracy is (Pszczola et al., 2012a, Pszczola et al., 2012b). 
When the own phenotypes for the predictor traits are available (OWN), or when 
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the correlation between the traits is weak (i.e. PRO with only FPCM recorded), 
utilizing information collected from relatives may increase the accuracy. The 
predicted accuracy of scenarios OWN and PRO LW, where no information on 
relatives was utilized, was indeed inferior to the empirical accuracy. Conversely, 
when phenotypic information is very accurate (i.e. based on numerous progeny) 
and the correlation between the traits is sufficient, information from the relatives 
has a limited impact on the accuracy. Again, this was confirmed here, as the 
predicted accuracy obtained from almost all the PRO scenarios was superior over 
the empirical accuracy. Therefore, the results of OWN and PRO scenarios, obtained 
with selection index theory are in agreement with the results of the REML models. 
The gain in breeding value accuracy for a scarcely recorded trait is expected to be 
higher when the correlation with the predictor trait is stronger. In our study, LW 
was more strongly correlated to DMI than FPCM was. Therefore, the gain in 
breeding value accuracy of the scarcely recorded DMI was expected to be 
considerably higher when using LW as a predictor trait than when using FPCM. 
Contrarily, differences in accuracies between these two scenarios, as shown in 
Tables 5.4 and 5.5, were small. We investigated whether this unexpected 
difference between scenarios with either FPCM or LW can be attributed to the 211 
more phenotypes available for FPCM than for LW. Analyses with equal sizes of the 
reference populations for the predictor traits (after removing the 211 FPCM 
records of the animals with no LW records), however, showed similar results (not 
shown) to the analyses using all FPCM observations (Table 5.4), leaving this issue 
unresolved. Analysing all traits jointly yielded the highest breeding value accuracy, 
as expected. The superiority of multi-trait genomic analyses over single trait ones 
was also shown earlier in stochastic (Calus and Veerkamp, 2011c, Jia and Jannink, 
2012) and deterministic simulations (Calus et al., 2013a), as well as in real data 
analysis (Aguilar et al., 2011, Tsuruta et al., 2011). 
The expected gain in accuracy because of the use of multi-trait selection, as 
compared with single-trait selection, strongly depends on the value of the variance 
components of the traits involved (Thompson and Meyer, 1986). When the 
heritability of the different traits is similar and pairwise genetic and residual 
correlations are similar, the benefit of multi-trait applications is expected to be very 
limited. Large gains in accuracy are expected when pairwise genetic and residual 
correlations differ from each other substantially and when the predicted trait has a 
low heritability. Differences between the heritabilities of the analysed traits were 
small and diminished even more when the genomic data were used (see Table 5.3). 
Genetic correlations between DMI and LW were higher than between DMI and 
FPCM, but in both cases they were moderate. Therefore, for other traits than those 
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analysed here, the benefit of using the predictor traits may be different. For 
example, differences in accuracy for various type traits, while using single- or multi-
trait genomic analyses shown by Tsuruta et al. (2011), were up to 9%. 
In our study, using two predictor traits resulted in similar accuracies for the 
pedigree-based and genomic-based breeding values (see Table 5.4). It should be, 
however, noted that this may be due to relatively low genomic-based accuracies, 
which was because of small number of the animals in the reference population. If 
the reference population would be bigger, it is likely that even with two predictor 
traits recorded on all the animals the genomic-based breeding value accuracy will 
be superior compared with the pedigree-based one. 
Genomic analyses are expected to yield more accurate estimates than the pedigree 
ones, as shown in theoretical (Goddard, 2009a, Meuwissen, 2009) and simulation 
studies (Meuwissen et al., 2001), as well as in most real data analyses (Lund et al., 
2011; for reviews see: Hayes et al., 2009a, Calus, 2010a). The superiority of 
genomic analyses was also confirmed here for the single-trait model. The genomic-
based accuracies for the single-trait model were likely superior because genomic 
relationships capture information on Mendelian sampling in evaluated animals and 
also because of increased connectedness between the reference and evaluated 
animals when G was used (Pszczola et al., 2012b). Differences in accuracy were, 
however, moderate and nearly disappeared in multi-trait analyses. One possible 
explanation for the small differences between pedigree and genomic analyses 
might be the fact that the analysed populations had strong family links. For 
example, in A, 8351 relationships were >0.25 (excluding self-relationships), 
whereas in G this number was 18 573. Because A already contains numerous high 
relationships, apparently the added benefit of additional high relationships in G 
was limited, resulting in marginal differences between accuracies obtained from 
pedigree and genomic analyses. Nevertheless, in most practical cases, the family 
links between animals are expected to be weaker than in the data used here, and 
thus the differences between genomic and pedigree relationships are expected to 
be higher. In such cases, single- and multi-trait genomic analyses, which use more 
accurate relationships, are still expected to be superior over pedigree analyses. For 
example, Aguilar et al. (2011) showed an increase in accuracy of conception rate 
when enriching A with G and an additional substantial increase when multi-trait 
approach was used instead of the single-trait one. Tsuruta et al. (2011), who 
analysed linear type traits of US Holsteins, showed that, in terms of accuracy, the 
benefit of genomic analyses instead of pedigree was persistent across all analysed 
traits. Another explanation of small differences in accuracy between multi-trait 
pedigree and genomic scenarios is that recording own phenotypes for predictor 
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traits on the evaluated animals gives information about the Mendelian sampling in 
the evaluated animals. Explaining Mendelian sampling, albeit through the genomic 
information, is also the most important reason why genomic selection is superior 
to selection using pedigree-based breeding values. This explains why, in our study 
there is a limited benefit to using genomic information, when predictor traits are 
already included in the model. Whether or not the use of genomic information, on 
top of using predictor traits, leads to an increase in the accuracy of breeding values 
depends predominantly on the genetic correlation between the predictor traits and 
the trait of interest (Calus and Veerkamp, 2011c). 
 
Bias 
Scenarios in which no phenotypic observations were available for the evaluated 
animals showed bias (Table 5.6). This observed bias appears to be the result of an 
incorrect scale of the variance of the estimated breeding values. Inclusion of 
additional trait(s) recorded on the evaluated animals caused a substantial increase 
in variance of the estimated breeding values and an even higher increase in co-
variance between estimated breeding values and phenotypes (results not shown). 
Together, the changed variance of the estimated breeding values and co-variance 
with the phenotypes appeared to remarkably reduce the bias. This bias reduction is 
most likely owing to the fact that the availability of the observation(s) for the 
additional trait(s) helped to account for the potential heterogeneity of the data, 
which may have resulted in multivariate distribution of the data. The analysed data 
set was heterogeneous in the sense that animals originated from different 
countries and management systems. These factors were accounted for during pre-
correction of the phenotypes with a random regression model. Using random 
curves for each animal should, to some extent, adjust for differences in residual 
variances across groups. However, it is still possible that some of the data 
heterogeneity was not completely removed, for example, owing to different 
selection strategies in particular countries or herds. Thus, differences between 
groups may still have been present in the data set. To additionally account for 
differences within the groups, the phenotypes could be adjusted such that the 
mean (μ) is 0 and the standard deviation (σ) is 1 within each group. This possibility 
was investigated by De Haas et al. (2012b). In their paper, despite the adjustment, 
accuracies between groups differed substantially, suggesting that such adjustment 
in fact may be too rigorous, and thus we did not use this additional adjustment 
here. 
Data heterogeneity would not only affect bias in terms of the variance of the 
estimated breeding values but also the CV-based accuracy of the predicted 
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breeding values. The CV accuracy is expected to be affected by the heterogeneity 
of the data because it relates estimated breeding values back to the phenotypes. In 
the case of heterogeneous data, the validation set may differ from the remaining 
animals and this may affect the bias and accuracy. To investigate whether, indeed 
in a case of no additional traits recorded for the evaluated animals, the data 
structure was not properly accounted, all the accuracies were calculated also using 
PEV. This method does not relate estimated breeding values back to the 
phenotype, but rather relies on the estimated residual variance, and thus the 
calculated PEV accuracies are expected to not be strongly affected by the 
heterogeneity of the phenotypes. Accuracies based on CV deviated from PEV 
accuracies when no additional observations are recorded for the evaluated 
animals. This suggests that, despite the pre-correction, the data (possibly) still 
contain heterogeneity in phenotypes. Using a multi-trait approach in general 
resulted in less biased estimates than in the case of the single-trait analyses, 
especially when additional information was available for the evaluated animals. 
The use of additional traits could help to reduce bias in two ways. First, by having 
the own phenotypes of the evaluated animals, information on their Mendelian 
sampling is available, as discussed previously. This helps to reduce the bias, 
because it enables the model to more accurately predict the ‘level’ of the breeding 
value of an evaluated animal, relative to the reference animals. Second, 
unaccounted differences between evaluated animals and the reference population 
can be accounted in the analysis by introducing information on the animals’ own 
phenotype(s) for the predictor trait(s) recorded on the evaluated animals. Thus, 
breeding values for the target trait are less regressed to the mean of the reference 
population. This regression, instead, is restricted to a certain range specified by the 
observed value of their own phenotype(s) for the predictor trait(s) and its 
correlation with the target trait. When the additional traits are recorded only for 
the reference population, no additional information on Mendelian sampling for the 
evaluated animals is provided and the regression of their breeding values for the 
target trait is not restricted by the own phenotype on the predictor trait(s). The 
additional information on Mendelian sampling for the evaluated animals and the 
restriction of the regression of their breeding values for the target trait resulted 
also in an increase of the breeding value accuracy when all the animals were 
phenotyped for the predictor traits. Therefore, using a multi-trait approach with 
additional information for all the animals allows the bias of the evaluation to be 
reduced by utilizing all available information. 
An additional bias, which may be present in our multi-trait scenarios, can be caused 
by the fact that the own phenotypes for the predictor traits of evaluated animals 
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are used in the evaluation. This bias may arise when residuals of the measured 
trait(s) are correlated with the evaluated animals’ estimates for the target trait. If 
such a kind of bias was present here, CV and PEV accuracies would differ for the 
multi-trait scenarios, as the CV method relates back to the phenotypes, whereas 
PEV does not. In our study, for the scenarios in which additional traits were 
recorded for the evaluated animals, the differences between CV and PEV 
accuracies were, however, small. Thus, it appears that this type of bias, if present, 
is limited in the analysed data set. 
 
Genetic parameters 
The estimated heritabilities and the genetic correlations were similar to the results 
of Veerkamp et al. (2011) who used the Dutch part of the data for the analyses. The 
correlations between DMI, FPCM and LW obtained here, were similar to some and 
contradictory to other studies shown in a review of Veerkamp (1998) who 
attributed the differences between the results to the small sample sizes and 
differences in traits definitions. The same argument applies to the current study in 
which the estimated genetic correlations were in general higher than in the 
literature. Another reason of differences between the values of the genetic 
correlations can be differences in milk production between the groups. Some of the 
animals included in the analyses were bred to average, whereas other to elite bulls. 
Although the differences between the groups were, to some extent, accounted 
while pre-correcting the data, still some differences may be unaccounted. These 
differences may have influenced the values of genetic parameters leading to 
differences observed between our results and reported in other studies. 
 A comparison between values of the genetic parameters estimated using 
pedigree and genomic analyses showed that the genomic-based values are lower 
(see Table 5.3). This agrees with the indications of Veerkamp et al. (2011) who 
partly analysed the same data as in here. Veerkamp et al. (2011) indicated that 
differences between genomic-based and pedigree-based estimated heritabilities 
not only may be the result of differences in properties of the A v. G matrix, but also 
because G-REML may be better able to disentangle genetic and environmental 
effects because of using more precise relationships between animals (Lee et al., 
2010). Another important question is whether pedigree-based or genomic-based 
genetic parameters are more precise. Veerkamp et al. (2011) used two 
methodologies to estimate errors of the estimated genetic parameters. One 
method was approximating the error of the estimates using predicted error 
variances (as done also here) and the second method used a bootstrapping 
procedure. Whereas the first method, as in Table 5.3, showed that standard errors 
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of pedigree-based and genomic-based are similar, the bootstrapping revealed 
lower standard errors for genomic-based estimates. Lower values of the genomic-
based estimates of the genetic parameters, given the lower standard errors, should 
be closer to the true values. Such conclusion is especially valid when the data set 
used for estimating the genetic parameters is small and then genomic-based 
parameters should be used instead of the pedigree-based ones. 

Optimal selection strategy for scarcely recorded traits 
This study showed how DMI breeding value accuracy can be increased using 
predictor traits. To further increase the accuracy, several strategies can be 
considered. One solution could be to use more predictor traits. As shown here, 
three-trait analyses were more accurate than the two-trait ones, and therefore 
adding even more traits, which have the characteristics of a predictor trait, could 
further increase the accuracy. An additional strategy, when phenotyping is very 
difficult, is to extend the reference population by an international collaboration (de 
Haas et al., 2012b). A similar approach is to add a larger bull reference population 
with more accurate phenotypes or breeding values for the predictor traits, which 
appears to be a successful strategy (Calus et al., 2013a). Yet another approach 
could be to increase the reference populations for the predictor traits, while 
leaving the reference population for DMI unchanged. This approach, although not 
investigated here, is expected to be successful when the size of the reference 
population for the predictor traits is much larger than for the predicted trait(s) and 
when the genetic correlations between the predictor traits and the trait of interest 
are well known. In our study, the most easily accessible predictor trait was FPCM; 
however, it may be insufficient to use only this trait because of its relatively weak 
genetic correlation with DMI. Moreover, strong selection on milk production is 
present for many years in dairy cattle, and thus DMI is already being changed 
indirectly together with milk production. Therefore, the additional benefit of using 
FPCM as a predictor trait may be limited. Increasing the reference population for 
LW, however, should be more beneficial as its genetic correlation with DMI is 
higher. In situations with higher correlations, as shown by Calus and Veerkamp 
(2011c), the increase in the accuracy would be considerably higher than with 
weakly correlated predictor traits such as FPCM. 
Combining the aforementioned approaches (i.e. using more predictor traits 
measured on an additional reference population of bulls with accurate phenotypic 
records on daughters, international collaboration to increase the reference 
population for the trait of interest and using multi-trait analyses) seems to be the 
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most promising solution and could potentially yield a substantial increase in the 
breeding value accuracy compared with the levels obtained in this study. 

5.6 Conclusion 
This study showed that multi-trait genomic selection is more accurate than single-
trait applications when phenotypic observations for the predictor trait(s) are 
recorded for both the reference population and the evaluated animals. Recording 
predictor traits for the reference population only did not result in an increase in 
accuracy for the predicted trait. LW was indicated to be a better predictor trait for 
DMI than FPCM. The initial benefit of using genomic instead of pedigree 
relationships obtained in single-trait analyses was reduced when increasingly more 
information from predictor traits was used in multi-trait analyses. This is because 
both the analyses using predictor traits and the analyses using genomic information 
attempted to increase the accuracy by explaining Mendelian sampling terms. The 
highest accuracy was achieved for multi-trait analyses with information on both 
predictor traits. When including the predictor trait(s) recorded for the reference 
and evaluated animals, the estimates were unbiased, most likely because this 
information helped to account for heterogeneity of the data. Therefore, using 
predictor traits in multi-trait genomic approach may be an inexpensive way to 
significantly increase the accuracy and to obtain unbiased breeding values for 
evaluation of scarcely recorded traits, which are expensive or difficult to measure, 
such as feed intake. 
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5.6 Appendix 

Table A5.1 Spearman rank correlationsa between pedigree-based breeding values for DMI of 
evaluated animals for which phenotypic observations were available on different number of 
traits across reference populations with phenotypes available for different traits 

Traits 
recorded 
on evaluated 
population 

NO FPCM LW 

Traits 
recorded 
on reference 
population 

DMI 
DMI 
and 

FPCM 

DMI 
and 
LW 

DMI, 
FPCM 
and 
LW 

DMI 
and 

FPCM 

DMI, 
FPCM 
and 
LW 

DMI 
and 
LW 

DMI, 
FPCM 
and 
LW 

NO DMI  
and FPCM 0.95 

DMI and LW 0.92 0.89 

DMI, FPCM 
and LW 0.89 0.94 0.95 

FPCM DMI  
and FPCM 0.81 0.84 0.75 0.78 

DMI, FPCM 
and LW 0.76 0.79 0.80 0.83 0.95 

LW DMI and LW 0.61 0.61 0.67 0.66 0.58 0.63 

DMI, FPCM 
and LW 0.58 0.63 0.64 0.69 0.59 0.65 0.98 

FPCM    and 
LW 

DMI, FPCM 
and LW 0.59 0.64 0.64 0.67 0.69 0.73 0.96 0.97 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake; NO = No 
phenotypes available.  
a Standard errors across cross-validation sets ranged from 0.002 to 0.052.  
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Table A5.2 Spearman rank correlationsa between genomic-based breeding values for DMI of 
evaluated animals for which phenotypic observations were available on different number of 
traits across reference populations with phenotypes available for different traits. 
 

Traits 
recorded 
on evaluated 
population 

 NO FPCM LW 

 

Traits 
recorded 
on reference 
population 

DMI 
DMI 
and 

FPCM 

DMI 
and 
LW 

DMI, 
FPCM 
and 
LW 

DMI 
and 

FPCM 

DMI, 
FPCM 
and 
LW 

DMI 
and 
LW 

DMI, 
FPCM 
and 
LW 

NO DMI  
and FPCM 0.96        

         
DMI and LW 0.94 0.92       
         
DMI, FPCM 
and LW 0.89 0.95 0.96      

  
 

        
FPCM DMI  

and FPCM 0.90 0.93 0.85 0.87     

         
DMI, FPCM 
and LW 0.86 0.90 0.91 0.94 0.95    

          
LW DMI and LW 0.78 0.77 0.82 0.81 0.76 0.80   

         
DMI, FPCM 
and LW 0.74 0.78 0.79 0.82 0.76 0.81 0.98  

          
FPCM    and 
LW 

DMI, FPCM 
and LW 0.73 0.77 0.78 0.81 0.80 0.85 0.97 0.99 

 

FPCM = Fat-protein-corrected milk; LW = Live weight; DMI = Dry matter intake; NO = No 
phenotypes available.  
aStandard errors across cross-validation sets ranged from 0.002 to 0.052. 
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6.1 Introduction 
In genomic selection (GS), the requirement of collecting many phenotypes on 
progeny is relaxed, as opposed to conventional selection. Therefore, GS provides a 
new opportunity for re-considering genetic improvement of novel traits and to 
start selecting for them. For GS, the novel traits’ phenotypes have to be collected 
for animals in the reference population (RP) only. Collection of the phenotypes may 
therefore be conducted, for example, on specialized farms, where collecting 
expensive or difficult data is feasible. RP for novel traits will be small compared to 
the routinely recorded traits. The expected limited size of RP for novel traits 
stresses the need for methods that optimally use all the available information. This 
thesis aimed to address some of the issues of optimizing GS for novel traits. 

The overall objective of this thesis was to investigate different options of 
optimizing GS for scarcely recorded novel traits. The investigated options were: 
genotype imputation for ungenotyped but phenotyped animals to be used to 
enlarge RP; optimization of the RP design with respect to the relationships among 
the animals included in it; prioritizing genotyping of RP or the selection candidates; 
and using easily recordable predictor traits to improve the GS accuracy of the novel 
traits. 

The general discussion will focus on several aspects related to the genetic 
improvement of novel traits. First, the importance of female RP will be discussed. 
Next, the expected GS accuracy at different project budgets will be derived. Finally, 
foresight into the future challenges for selection for novel traits will be given. 
 
6.2 Optimizing reference populations for novel traits 
Optimal reference population design considering relationships 
among animals 
For novel traits, with expensive measurements, RP will remain small, resulting in 
low GS accuracy. To achieve the highest possible accuracy with a small RP, animals 
to be included in it should be chosen in an optimal way. One possibility for 
optimizing RP for GS is to consider relationships within the RP and between the RP 
and selection candidates (see, Figure 6.1). Closely related animals partly explain the 
same part of the genetic variation and therefore, they may also partly have similar 
phenotypes. When constructing RP, the goal is to capture in it as much of the 
usable genetic variation present in the whole population as possible. To do so, the 
animals in RP should be distantly related to each other but at the same time at 
least somehow be related to the potential selection candidates (as discussed in this 
thesis). Designing RP in which animals from a single population or breed are 
distantly related to each other will also lead to a higher average relationship 
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between a potential selection candidate and RP, compared to when RP consists of 
closely related animals (e.g., from one family). Therefore, if many animals are 
genotyped, but only few can be phenotyped due to related costs, information on 
their (genomic) relationships can be utilized to assign animals for phenotyping to 
such that the level of relationships among them is minimized, while their 
relationship with the selection candidates is maximized. 
 

 
   

Figure 6.1 Optimal design of the reference population. 
 
Increasing the size of the reference population by combining 
datasets 
To create RP, a sufficient number of phenotypic records are required (Meuwissen 
et al., 2001; Goddard and Hayes, 2009b; Hayes et al., 2009a). An interesting option 
for obtaining a sufficient number of records for novel traits is to combine 
phenotypic records of multiple data sets, for instance, across different 
experiments, possibly also using phenotypes of historic experiments (see Veerkamp 
et al., 2010; Berry et al., 2012; Veerkamp et al., 2012). To use historic phenotypes, 
especially together with new phenotypes (i.e., collected during recent 
experiments), several aspects should be taken into a consideration (Banos et al., 
2012). First, trait definitions have to be compared across the data sets and made 
compatible. Second, the data sets should be corrected for the systematic 
environmental factors affecting the phenotypes, especially if they were collected 
within different experiments. For example, differences in diet composition in 
nutrition trials and differences in housing conditions in management experiments 
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should be accounted for. Third, the presence of genotype x environment (GxE) 
interactions (Mathur and Horst, 1994) should be investigated and if present, be 
accounted for in the model, for instance using multitrait model across 
environments. Fourth, animals for which the historic phenotypes were obtained 
may be at a different genetic level than those recorded currently, because of the 
ongoing selection for other traits genetically related to the trait of interest or 
different breeding strategies. Differences in genetic levels may be partly accounted 
for by including a year and an origin effect in the analyses.  

If any of the above discussed differences between the data sets are not 
taken into consideration, combining different data sets carries the risk of obtaining 
predictions affected by a hidden data structure or data heterogeneity. This hidden 
data structure may result in prediction equations that predict differences between 
the data sets (populations or herds) instead of between the animals. The estimated 
breeding values will then be biased in the sense that their level will be 
systematically different than the true breeding values. It is important to check the 
pooled data to verify if the applied adjustments of the phenotypes are adequate 
and whether no hidden data structures were left unaccounted for. Such data 
checks could for instance include comparison of the distributions of the final data 
across the different data sources. 

Combining data sets internationally may be an interesting option when 
only a few hundred phenotypes for a novel trait have been collected within a 
country; nonetheless, improving the novel trait is a global concern (e.g., reducing 
methane emission). Then, the data can be put together for the joint benefit of all 
the participating entities. The adjustment of phenotypes when combining historic 
and present data sets should also be applied when datasets from different 
locations, such as herds or countries, are combined (see, for example, Banos et al., 
2012). Pooling phenotypic data has been shown to increase the selection accuracy 
for novel traits through international collaborative projects (de Haas et al., 2012b). 
For example, a global initiative for collecting data on dry matter intake (gDMI) was 
undertaken (Pryce et al., 2012b). Also, mitigation of methane emission from dairy 
cows (de Haas et al., 2012b; http://www.sruc.ac.uk/greenhousemilk) is a good 
example of international collaboration for improving novel traits. Yet another 
example was the EU FP7 project RobustMilk, which focused on the robustness of 
dairy cattle (Berry et al., 2012; www.robustmilk.eu; Veerkamp et al., 2012). The 
above mentioned projects combined databases of novel traits from different 
countries, thereby creating an international RP for increasing GS accuracy. 

Whether or not combining the data sets internationally is beneficial 
depends on the genetic connectedness between the countries, which is present if 
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there is an exchange of the breeding material. Such exchange allows for part of the 
RP from one country to be to some extent related to selection candidates from 
another country. Genomic data can capture Mendelian sampling and reveal links 
between animals that are seemingly unrelated through pedigree. Therefore, use of 
genomic data may somewhat reduce the problem of poor connectedness (as 
discussed in this thesis), but it will not solve the problem completely. The presence 
of a relationship between RP and animals in different countries is important for 
achieving high prediction accuracy for the selection candidates. Therefore, 
international RP has bigger potential for dairy cattle than for some other species 
such as sheep, where the exchange of breeding material is not extensive. 

Using multi-herd data leads to an increase in the statistical power of the 
analysis. Using data from a single herd may limit the conclusions to specific 
conditions or to the farm only (Tempelman, 2009). Combining data internationally 
provides an opportunity for gathering multi-herd data sets for novel traits, thereby 
enabling the drawing of inferences and estimating the effects that are applicable 
across a wide range of herds or herd environments (e.g., in multiple countries). 
 
Increasing size of the reference population by including 
ungenotyped animals  
Genotypes of the reference animals are needed next to their phenotypes to create 
RP. When historic phenotypes are used to increase the RP size, it is important that 
DNA samples from animals on which the historic phenotypes were recorded are 
available. If so, genotyping is possible and RP may be increased by the historic 
phenotypes relatively easily. For this, no pedigree information is required, as 
genotypes may be used for establishing the relationships between animals. In some 
cases, however, DNA samples may not be available. This presents a more 
challenging situation, because the genotypes then have to be predicted and this 
does require pedigree data. One way of using ungenotyped animals in genomic 
evaluations is to merge pedigree-based and genomic relationships into one 
relationship matrix (Legarra et al., 2009; Aguilar et al., 2010). Although this model 
avoids imputation of the unobserved genotypes, it is in fact similar to imputing 
these genotypes by regression on gene content by utilizing pedigree information 
(Gengler et al., 2008; Christensen and Lund, 2010; this thesis). Alternative ways for 
imputing genotypes of ungenotyped animals involve the use of algorithms utilizing 
family relationships and linkage information (see Druet and Georges, 2010; 
Daetwyler et al., 2011; Hickey et al., 2012). Imputation methods that use only 
linkage disequilibrium (see Li and Abecasis, 2006; Scheet and Stephens, 2006; 
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Howie et al., 2009) are not useful for imputing ungenotyped animals, as they 
require that the imputed animals have at least some genotypes known. 

Whichever method is used to impute the genotypes for the ungenotyped 
animals, it is important that genotypes are imputed accurately, as GS accuracy was 
shown to depend linearly on imputation accuracy (Mulder et al., 2012). Increasing 
RP with inaccurately imputed ungenotyped animals will not increase GS accuracy as 
it was demonstrated in this thesis. To achieve high accuracy of genotype 
imputation for ungenotyped animals, genotypes of close relatives have to be 
available. When only parents are genotyped, the genotype imputation accuracy, 
based on pedigree information only, can reach at maximum 0.707. Therefore, 
preferably offspring of the ungenotyped animals should be genotyped to achieve 
the highest possible imputation accuracy. Information of genotyped offspring is 
important, as it reveals information on Mendelian sampling that otherwise remains 
unknown. For example, enlarging RP by imputed genotypes of an ungenotyped 
animal that had only one parent and a maternal-grand sire genotyped hardly 
increased the GS accuracy for selection candidates, as the imputation accuracy was 
poor. Calus et al. (2011a) and Boettcher et al. (2004) reported poor imputation 
accuracy when only few offspring of imputed individuals were available. When 
many genotyped offspring are available, the imputation accuracy for ungenotyped 
animals will be high, leading to an increase in GS accuracy. In the case of 
ungenotyped animals with historic phenotypes, the imputation accuracy may be 
low, as parents of these animals are very likely ungenotyped and most probably 
their progeny is not genotyped either. Therefore, ungenotyped animals with 
historic phenotypes are very likely not valuable for inclusion to RP. When animals 
with historic phenotypes were genotyped, but the experiment was undertaken 
very long time ago, the family links between the RP and potential selection 
candidates living presently may be very weak. Due to the weak family links, the 
benefit of including such historic phenotypic data for creating RP may also be 
limited. Nonetheless, such historic data sets may still be useful for estimating 
genetic parameters and relationships with other traits. 
 
Females – best source of information for novel traits 
 As novel traits are unlikely to be recorded on a routine scale, each reference 
animal will at most have only few phenotyped relatives. The accuracy of breeding 
values (r) depends on the sources of information included in each phenotypic 
record. If this phenotypic record is based on progeny phenotypes, its accuracy can 

be calculated as: 𝑟 = �
1
4� 𝑁ℎ2

1+1 4� (𝑁−1)ℎ2
, where N is the number of phenotyped progeny 
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and h2 is the trait heritability. The more phenotyped progeny, the higher value of 
the progeny-based accuracy. The accuracy of a single phenotypic measurement of 
an animal itself is equal to the square root of the heritability (√ℎ2). In case of a 
limited number of phenotyped progeny for each reference animal, which is quite 
likely to be the case for novel traits, progeny-based phenotypic records will be less 
accurate than own performance records, as shown in Figure 6.2. To achieve the 
accuracy obtained when each reference animal has a single own phenotypic 
record, roughly five progeny with phenotypic records are needed for low and 
moderate heritabilities (≤0.5). To achieve the accuracy of a single own phenotypic 
record for higher heritabilities (> 0.5), for each reference animal more than five 
progeny with phenotypic records are needed (e.g., for h2>0.8 more than 10 
phenotyped progeny are needed). This means that the use of progeny-based 
records requires at least 5 times more phenotypes than the use of own 
performance. De Roos et al. (2011) indicated that use of records based on 
100 offspring requires ~15 to  50 times as many records compared to using 
own phenotypes. Thus, if the total number of phenotypic measurements is 
restricted, using own records of the reference animals always results in higher 
GS accuracy than using progeny information for the reference animals (Buch et 
al., 2011; Van Grevenhof et al., 2012).  

Because own phenotype is more valuable than progeny-based phenotype 
and in dairy cattle many traits are expressed in females, reference populations for 
novel traits should be composed of females. It is important that the cows included 
in RP are a ‘random sample’ of the whole population to achieve maximum 
variability in relationships between the animals. In practice, however, it may be 
difficult to sample cows for RP randomly at the population level, because 
measuring a novel trait is often expensive and possible at only few locations at the 
time. Therefore, while choosing the animals to be phenotyped and included to RP, 
assuring the maximum possible variability (low relationship) among the available 
animals is essential. 

Using females in RP for novel traits, instead of bulls with phenotyped 
offspring, requires more extensive genotyping and low density SNP chips could be 
used for this. Use of low density chips reduces the costs of genotyping, but may 
also result in somewhat lower prediction accuracy than higher density chips (see 
Habier et al., 2009). To estimate the impact of using lower density chips on the 
predicted accuracy, we calculated the predicted accuracy for different scenarios 
using an adapted version of the deterministic formula of Daetwyler et al. (2008), 

where 𝑅𝐺 = �
𝑁𝑝ℎ2

𝑁𝑝ℎ2+𝑀𝑒
. The reference population size (𝑁𝑃) was calculated as the 
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overall budget (B) divided by the sum of phenotyping (𝐶𝑝ℎ𝑒𝑛) and genotyping (𝐶𝑔𝑒𝑛) 

costs per animal, so that 𝑁𝑝 = 𝐵
𝐶𝑝ℎ𝑒𝑛+𝐶𝑔𝑒𝑛

. The number of independent 

chromosome segments (Me) was considered to be 1,000 (Wientjes et al., 2013) and 
h2 was the trait heritability. The accuracy 𝑅𝐺   was adjusted by the genotype 
imputation accuracy 𝑅𝑖𝑚𝑝 (from low density to 50k chip) as 𝑅 = 𝑅𝐺 ∗ 𝑅𝑖𝑚𝑝. The 
predicted GS accuracy was calculated for three heritability levels (0.05, 0.1, 0.6), 
two chip densities (low density chip and 50k chip) and four accuracies of imputing 
genotypes from low density to a 50k chip (0.80, 0.90, 0.95, 0.99) for different 
project budgets. We assumed phenotyping costs of €100, 50k chip genotyping costs 
(including the sample handling) of €60 and the costs of genotyping at low density 
(7k chip) was €30. Here, it was assumed that higher density SNP genotypes were 
already available for facilitating the imputation process; therefore, no additional 
new costs were required when the reference animals were imputed from low 
density to 50k. 

 
Figure 6.2 Breeding value accuracy based on own performance (OWN) and 2 (2PRO), 5 
(5PRO), 10 (10PRO) or 100 (100PRO) progeny with phenotypic records, at different 
heritability levels. 
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Figure 6.3 Accuracy of genomic predictions at different budgets given for an experiment 
using 50k chips (black lines) or low density SNP chips (grey lines) for three different 
heritability levels (solid line = 0.6, dashed line = 0.1 and dotted line = 0.05) and different 
accuracy of imputation from low to high density (A = 0.80, B = 0.90, C = 0.95,D = 0.99). 
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The results of the accuracy calculations showed that with sufficient 
accuracy of imputation from lower to higher density (>0.80), using lower density 
chips lead to a higher GS accuracy (see Figure 6.3). In practice, the imputation 
accuracy from low density to higher density may reach from 0.96 to 0.99, given 
that some close relatives are genotyped at higher density (Berry and Kearney, 
2011, Mulder et al. 2012). By using a lower density chip with lower overall 
genotyping costs, more animals can be phenotyped and genotyped, resulting in 
bigger RP; as a result, higher GS accuracy is achieved. Moreover, in the future, with 
a further drop in genotyping costs, the phenotyped animals can be genotyped at 
very high density (e.g., using a 777k chip) or even be sequenced, which can possibly 
lead to more accurate predictions (Meuwissen et al., 2001). However, at the point 
where re-genotyping or sequencing would be possible, the phenotyped animals 
may already be too distantly related to the current population to have a valuable 
contribution to GS accuracy. The biggest caveat of using imputation is that some 
animals are required to be genotyped with higher density chips to facilitate the 
imputation process. Nonetheless, when the imputation accuracy is high, 
genotyping with low density can be considered as one of the options for increasing 
GS accuracy for novel traits. 
 
Joint optimization of the reference population design and its 
relationship with the selection candidates  
It was shown in this thesis that the design of RP can be optimized by considering 
relationships among animals in the RP and between animals in RP and the selection 
candidates. Optimizing the design of the RP with respect to the relationships across 
generations may prove challenging. Moreover, RP should be frequently updated 
with new animals to maintain baseline accuracy (Habier et al., 2007; Wolc et al., 
2011). For the novel traits where only a fraction of the population can be 
phenotyped, only a few animals can be used to enlarge RP.  

The animals used for updating RP should be chosen in a manner that they 
are minimally related to the current RP and maximally related to the potential 
selection candidates. In the first step, RP has to be created by sampling animals 
from the whole population. Then, in all later rounds of selection, RP has to be 
updated. The animals to be used to update RP can be sampled from past selection 
candidates, where genotypes are already available and the additional cost is the 
phenotyping; alternatively, RP may be updated from the whole population. 
Possibly, the animals with the lowest relationship to the RP should be selected first 
for phenotyping and genotyping (if not yet genotyped). The updated RP will be 
bigger than in the previous rounds of selection. The average squared relationship 
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between RP and selection candidate depends on the RP size, whereas another 
measure that approximates the GS accuracy – the sum of squared relationships – is 
independent from the RP size (Wientjes, personal communication, 2013). 
Therefore, to maximize the relationship between the updated RP and the potential 
selection candidates, the sum of the squared relationships between the updated RP 
and the potential selection candidates should be equal to or larger than in the 
previous selection round. Ultimately, the GS accuracy after the RP update should 
be at the level of the previous round of selection, or increased. A conceptual 
scheme of the optimizing process described above is presented in Figure 6.4. 

Figure 6.4 A conceptual scheme of the process to optimize the reference population design 
for a novel trait across generations. 

For creating a minimally related RP, the initial step for composing an RP 
with optimal design may be the use of clustering algorithms. For example, K-means 
clustering with an inverted genomic relationship matrix can be used to create a 
distance matrix, which could be employed for selecting the least related 
individuals. This option was not investigated in this thesis and requires further 
attention before implementation can take place. Another option is to use methods 
that minimize mean generalized coefficients of determination or average 
relationship (Rincent et al., 2012). Yet another solution is to use optimization 
software utilized for designing breeding schemes for maintaining biodiversity. Such 
programs, for example, Gencont (Meuwissen, 2002), uses optimal contribution 
methodology to maximize breeding goal while minimizing inbreeding (i.e., choosing 
the least related animals as parents of the next generation). This could also be used 
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for selection of lowly related animals to the reference population in later 
generations. 

Use of predictor traits 
Because collecting phenotypes of novel traits may prove challenging, using another 
supporting source of information that is (genetically) related to the novel traits, such 
as predictor traits, may be beneficial. Predictor trait(s) are required to be easily 
recordable and genetically related to the trait of interest. The additional information 
may be recorded on the same animals as the novel trait, or on a separate RP (Calus 
et al., 2013a). It is always important, however, that predictortraits are also 
measured on selection candidates (as discussed in this thesis). Calus and Veerkamp 
(2011c) compared scenarios with different genetic correlations (-0.5, 0, 0.5) 
between two traits (h2=0.9 and 0.6) recorded on a small RP. They reported that for 
an absolute value of the genetic correlation >0.5, predictions based on pedigree 
and with the predictor trait recorded on the selection candidates were 
more accurate than having only genotypic information on the selection 
candidates. With a genetic correlation <0.5 and having only genomic information on 
the selection candidates yielded more accurate predictions than having 
pedigree and records for the predictor trait on the selection candidates. They 
therefore concluded phenotyping the selection candidates for the novel trait to be 
beneficial, provided that the genetic correlation between the predictor and novel 
trait is sufficiently high. The cut-off point at which using a predictor trait is 
beneficial depends on the heritabilities of the traits, genetic correlations and the RP 
size. In Chapter 5 of this thesis, measuring the predictor trait(s) on both groups of 
animals (i.e., RP and selection candidates) has led to a gain in accuracy of 
predictions even when the genotypes were not used. These analyses used up to 
three traits, with heritability ranging from 0.31 to 0.44 and genetic correlations 
ranging from 0.12 to 0.62. The results showed that when the selection candidates 
are phenotyped for the predictor trait(s), additional genotyping leads to slightly 
more accurate predictions (i.e., pedigree-based predictions are only a little less 
accurate than genomic ones). The small differences between pedigree and 
genomic-based accuracies were probably due to a very small RP, resulting in low 
genomic accuracies. With bigger RP, the differences are expected to be bigger. 
Although it is expected that genotyping the selection candidates – next to 
phenotyping them for the predictor trait(s) – is advantageous, this increase may be 
limited if the genetic correlation of the indicator trait with the novel trait is high. 

Another possibility for increasing GS accuracy with the use of predictor 
traits is to expand the cow RP with bull RP. Calus et al. (2013b) analyzed this 
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scenario by combining cow and bull RP, where the cows were phenotyped for the 
novel trait of interest and the bulls had daughter yield deviations available for 
a trait that had a genetic correlation with the novel trait of 0.59 to 0.65. In this 
study, adding nearly 300 bulls to a cow reference population consisting of about 
1 600 individuals caused only a limited increase in GS accuracy for the novel 
trait and it was concluded that a bigger set of bulls is needed (e.g., national RP) 
to achieve a substantial increase in GS accuracy. Although only a limited increase 
in GS accuracy was observed, enlarging the RP with a small number of bulls 
with very accurate phenotypes did increase the power for genome-wide 
association studies (Calus et al., 2012). If the bull reference population with the 
correlated trait recorded is sufficiently big, then such approach may also be 
considered as a possible solution for increasing GS accuracy for novel traits. 

6.3 Future perspectives for improving novel traits 
Farmers routinely record the performance of their animals for various traits, mainly 
for management purposes. As a by-product, breeding values can be estimated at 
low cost for these routinely collected traits. Breeding values contribute to genetic 
improvement of the animals, leading to mutual benefits for both farmers and 
breeding companies. In case of novel traits, when the costs of phenotyping are 
high, farmers need to be motivated to participate in data recording, especially 
when the benefit for farmers is not obvious. The novel traits that have a more 
obvious benefit in terms of farm management will therefore have a higher chance 
to be implemented in breeding practice than others. For example, feed efficiency 
or fertility related traits can be easily linked with profitability of production and can 
thus be attractive to farmers. Other traits, like methane emission, may be less 
attractive to farmers. Nonetheless, only engaging farmers can enable the moving of 
the recording of novel traits from research herds to commercial farms, thereby 
increasing the possibilities to successfully implement genetic improvement of those 
novel traits. Several novel traits without a direct link to improving farm 
management therefore likely require compensation for farmers to collect the data. 

Improving novel traits is a challenging issue. The most difficult part of 
improving novel traits is phenotyping. Obtaining reliable phenotypes for novel 
traits, such as methane emission or energy balance, is currently not possible on a 
routine basis. Emphasis therefore needs to be placed on developing cheap and 
reliable phenotyping technologies, which should be the focus of the breeding 
industry if it wants to select for novel traits. Promising examples of such 
technologies include the introduction of measuring methane emission using Fourier 

118 



6 General discussion 

transform infrared spectroscopy, which has the potential for being applied on a 
larger scale as opposed to the gold standard method for measuring methane 
emission – respiration chambers (Lassen et al., 2012), or using mid-infrared analysis 
to cheaply predict energy balance (McParland et al., 2011). With decreasing 
genotyping costs, investments in phenotyping have become more attractive. 
Before new cheap and reliable phenotyping technologies will be available, 
however, the number of phenotypic records for novel traits will remain small. As it 
was discussed above, in such cases, own phenotypic information is more reliable 
than progeny-based records that are based only on a few individuals. Therefore, to 
start genomic selection for novel traits in dairy cattle, using a female reference 
population is currently the most appropriate solution. 

Sequencing is being considered as a promising tool for genetic 
improvement of many traits, as it is believed to allow for the across-breed 
evaluation or identifying of causal mutations. Currently, this technique is still 
expensive and to fully benefit from the use of sequencing data, even more 
phenotypes than for a 50k chip are needed. As RP  for the most of the novel traits 
will remain small in the near future; therefore, the sequence data is unlikely to 
be a source of additional increase in GS accuracy. In the future, when sequence 
data will be widely available and phenotyping for novel traits will become cheaper, 
the suitability of using sequence data for the genetic improvement of novel 
traits should be re-considered. 

The key factors for successful implementation of selection for a novel trait 
in a breeding scheme are: (1) maximizing accuracy of genotype prediction for 
ungenotyped animals to be used for updating the reference population;  
(2) optimizing the design of the reference population; (3) determining easy to 
record indicator traits that are also available on the selection candidates;         
(4) developing large scale phenotyping techniques; and (5)  establishing strategies 
and policies for increasing the engagement of farmers in the recording of novel 
traits. 
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Summary 
Animal breeding aims to genetically improve animal populations by selecting the 
best individuals as parents of the next generation. Presently, in some countries, 
dairy cattle breeding goals include up to 40 commonly recorded traits. New traits 
are being introduced to breeding goals to satisfy new demands faced by livestock 
production. However, introducing a new trait and starting selection for such a trait 
may be difficult when the trait is novel in the sense that it has not been widely 
recorded before. Selecting for such novel traits is especially challenging when 
recording is laborious and expensive.  

Because of laborious and expensive recording, for some novel traits, 
large scale recording will not be possible in the near future and it may therefore 
be limited to research herds. Therefore, despite genetic improvement of novel 
traits is desirable it may be limited due to the small number of observations 
available. Because of the small number of observations, the novel traits often 
cannot be improved directly by conventional breeding tools, as these require large 
numbers of observations, measured on many offspring of each selection candidate. 
New breeding tools are therefore needed to enable the genetic improvement of 
novel traits. 

Genomic selection is a new breeding tool that uses single-nucleotide 
polymorphism markers spread across the genome. An important feature of 
genomic selection, which makes it especially interesting to apply to novel traits, is 
that the expensive or laborious measurements do not have to be taken on a 
routine scale. Using the limited available data optimally may, however, require 
alternative approaches and methodologies than currently used for conventional 
breeding goal traits.  

The overall objective of this thesis was to investigate different options for 
optimizing genomic selection for scarcely recorded novel traits. The investigated 
options were: genotype imputation for ungenotyped but phenotyped animals to be 
used to enlarge the reference population; optimization of the design of the 
reference population with respect to the relationships among the animals included 
in it; prioritizing genotyping of the reference population or the selection 
candidates; and using easily recordable predictor traits to improve the accuracy of 
breeding values for scarcely recorded traits.  

Chapter 2 of this thesis aimed to investigate whether the accuracy of 
genomic selection can be improved by supplementing a small reference population 
with ungenotyped but phenotyped animals. A dairy cattle population was 
simulated from which a reference population was sampled. This reference 
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population consisted of 1,000 phenotyped and genotyped individuals. In the 
subsequent scenarios, the reference population was supplemented by additional 
1,000 ungenotyped or genotyped animals. Genotypes of the ungenotyped animals 
were predicted based on the genotypes of their relatives and pedigree information. 
The comparison of the accuracy of breeding values among all the scenarios showed 
a small increase in accuracy after enlarging the reference population by 
ungenotyped but phenotyped animals. The increase was, however, limited what 
was attributed to the low genotype prediction accuracy. 

Chapter 3 investigated the impact of different family designs in terms of 
the relationships within the reference population, as well as the relationship of 
selection candidates to the reference population on accuracy of genomic selection. 
A dairy cattle population structure was simulated. Scenarios differed by the level of 
relationships among the animals in the reference population. Differences in 
predicted accuracy of breeding values were compared between scenarios. The 
analyses allowed for determining the optimal design of the reference population by 
investigating the association between relationship to the reference population and 
predicted breeding values accuracy. It was demonstrated that the relationship 
within the reference population should be minimized, while the relationship 
between reference population and potential selection candidates should be 
maximized. Average squared relationship between reference population and a 
selection candidate was shown to be a good proxy for the accuracy of breeding 
values. 

Breeding values estimated using genomic information are more accurate 
than pedigree based ones. The aim of the study described in Chapter 4, was to 
investigate whether this increase is mainly due to genotyping reference or 
evaluated animals. For this purpose, a simulated dataset reflecting a dairy cattle 
population was used. Four scenarios were considered in which genomic 
information was available on different groups of animals. The genomic information 
was available on (1) no animals; (2) reference population; (3) evaluated animals; or 
(4) reference population and evaluated animals. A comparison of the 
accuracy of breeding values predicted deterministically for all the scenarios 
showed that the main gain in accuracy was due to genotyping the 
selection candidates. Nevertheless, genotyping both reference population 
and selection candidates is clearly superior, indicating that both categories 
should be genotyped whenever possible. 

In addition to optimizing the reference population with respect to its 
design or size, predictor traits can be used to increase the accuracy of genomic 
selection for a novel trait. This option was evaluated using real data in Chapter 5 
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for a trait recorded on a limited cow reference population. The analyzed scenarios 
assumed that one or two predictor traits were available on the reference 
population only, or both on the reference population and the evaluated animals. 
The novel trait was dry matter intake, while fat-protein-corrected milk yield and 
live weight were available as predictor traits. The analysis showed that including 
the predictor traits in the analysis when it is recorded on both reference population 
and selection candidates can lead to a significant increase in the selection accuracy. 
When including the predictor traits in the analysis, the added value of using 
genotypes became less than in single trait analysis. 

The general discussion focused on several aspects related to the genetic 
improvement of novel traits. First, it was demonstrated that females are the most 
valuable source of information for novel traits in dairy cattle; therefore, reference 
populations for these traits should consist of females. Consequently, the 
importance of females as a component of the reference populations in dairy cattle 
breeding will increase in the future. Second, low density genotyping was shown to 
be a promising way for increasing genomic selection accuracy. The reason for this is 
that, thanks to the lower costs of genotyping, more funds can be spent on 
phenotyping and genotyping additional animals. This in turn results in an 
increase in the reference population size and by that in the increase of 
genomic selection accuracy. Finally, the importance of investing in 
phenotyping technologies and increasing the participation of farmers in the 
process of data collection was stressed as crucial points for enabling to move 
collecting of phenotypes for novel traits from research to commercial farms. 

The key factors for successful implementation of selection for a novel trait 
in a breeding scheme are: (1) maximizing accuracy of genotype prediction for 
ungenotyped animals to be used for updating the reference population;  
(2) optimizing the design of the reference population; (3) determining easy to 
record indicator traits that are also available on the selection candidates;       
(4) developing large scale phenotyping techniques; and (5)  establishing strategies 
and policies for increasing the engagement of farmers in the recording of novel 
traits. 
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Samenvatting 
Het doel van veefokkerij is het genetisch verbeteren van een populatie dieren door 
het selecteren van de beste individuen als ouders voor de volgende generatie. Op 
dit moment worden in de melkveefokkerij in sommige landen standaard tot 40 
kenmerken gemeten en meegenomen in het fokdoel. Om aan de nieuwe vragen en 
eisen te voldoen die aan de veehouderij worden gesteld, worden nieuwe 
kenmerken toegevoegd aan het fokdoel. Het invoeren van een nieuw kenmerk kan 
moeilijkheden geven wanneer dit voorheen niet gemeten werd. Dit is met name 
het geval wanneer het meten van een kenmerk arbeidsintensief en duur is. 

Wanneer het meten van nieuwe kenmerken arbeidsintensief en duur is, is 
het in de nabije toekomst niet mogelijk om het kenmerk op grote schaal te meten. 
Het meten blijft dan beperkt tot de zogenaamde onderzoeksbedrijven en het 
aantal observaties blijft laag. De genetische vooruitgang van een kenmerk kan 
hierdoor beperkt blijven, ondanks dat vooruitgang wenselijk is. De huidige fokkerij-
technieken zijn namelijk gebaseerd op grote aantallen observaties, gemeten aan 
veel nakomelingen van een selectie kandidaat. Om genetische vooruitgang op 
nieuwe kenmerken mogelijk te maken zijn nieuwe fokkerij-technieken nodig. 

Genomic selection is een nieuwe techniek dat gebruik maakt van merkers, 
verspreid over het genoom. Een belangrijke eigenschap van genomic selection is 
dat arbeidsintensieve en dure metingen niet routinematig gedaan hoeven worden, 
hierdoor is deze techniek extra interessant voor nieuwe kenmerken. Voor een 
optimaal gebruik van het geringe aantal observaties, zijn er alternatieve methodes 
nodig vergeleken met de methodes die momenteel gebruikt worden voor de 
kenmerken in het fokdoel.  

Het algemene doel van dit proefschrift was om verschillende opties te 
bekijken om genomic selection te optimaliseren voor nieuwe kenmerken met een 
gering aantal observaties. De bekeken opties waren: vergroten van de referentie 
populatie door genotypes te voorspellen van dieren zonder genotype maar met 
fenotype; optimaliseren van de samenstelling van de referentie populatie met 
betrekking tot de relaties tussen de dieren daarin; prioriteren van het genotyperen 
van dieren in de referentie populatie versus selectie kandidaten; en het gebruik van 
makkelijk meetbare voorspellers om de betrouwbaarheid van fokwaardes voor 
kenmerken met een gering aantal observaties te vergroten. 

Hoofdstuk 2 van dit proefschrift had als doel om te onderzoeken of de 
betrouwbaarheid van genomic selection kan worden verhoogd door het toevoegen 
van dieren zonder genotypes maar met fenotypes aan een kleine referentie 
populatie. Hiervoor was een melkveepopulatie gesimuleerd, waaruit een referentie 
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populatie van 1.000 dieren met genotype en fenotype was gevormd. In de 
onderzochte scenario’s werd deze referentie populatie aangevuld met 1.000 dieren 
met of zonder genotype. Van de dieren zonder genotype werd het genotype 
voorspeld op basis van de genotypes van familieleden en stamboom informatie. De 
betrouwbaarheid van de fokwaardes steeg licht nadat de referentie populatie was 
vergroot door dieren met fenotype maar zonder genotype. De stijging was echter 
beperkt, wat veroorzaakt werd door de lage betrouwbaarheid waarmee genotypes 
voorspeld werden. 

In Hoofdstuk 3 werd de invloed van verschillende familie samenstellingen 
in termen van relaties in de referentie populatie, als ook de relatie van selectie 
kandidaten met de referentie populatie, op de betrouwbaarheid van genomic 
selection onderzocht. Hiervoor was de structuur van een melkveepopulatie 
gesimuleerd. De verschillende scenario’s verschilden in het niveau van de relaties 
tussen de dieren in de referentie populatie. De betrouwbaarheid van de 
fokwaardes werd per scenario voorspeld en onderling vergeleken. Deze analyses 
onderzochten het verband tussen de relatie met de referentie populatie en de 
voorspelde betrouwbaarheid van de fokwaardes, om zodoende het optimale 
design voor de referentie populatie te bepalen. De resultaten geven aan dat de 
relaties in de referentie populatie geminimaliseerd moeten worden en de relaties 
tussen de referentie populatie en de potentiële selectie kandidaat 
gemaximaliseerd. De gemiddelde gekwadrateerde relatie tussen de referentie 
populatie en een selectie kandidaat was een goede voorspeller voor de 
betrouwbaarheid van de fokwaardes. 

Fokwaardes voorspeld met genomic selection zijn nauwkeuriger dan 
fokwaardes gebaseerd op stamboom informatie. Het doel van de studie in 
Hoofdstuk 4 was om te onderzoeken of deze toename met name veroorzaakt 
wordt door het genotyperen van dieren in de referentie populatie of de selectie 
kandidaten. Hiervoor was een gesimuleerde dataset gebruikt, welke een 
melkveepopulatie beschrijft. Er waren vier verschillende scenario’s gebruikt waarin 
genomische informatie beschikbaar was voor een andere groep dieren. De 
genomische informatie was beschikbaar voor (1) geen dieren; (2) referentie 
populatie; (3) selectie kandidaten; (4) referentie populatie en selectie kandidaten. 
Voor ieder scenario was de betrouwbaarheid van de fokwaardes deterministisch 
voorspeld en de grootste stijging in betrouwbaarheid werd veroorzaakt door het 
genotyperen van de selectie kandidaten. Het genotyperen van zowel de referentie 
populatie als de selectie kandidaten was echter duidelijk superieur, wat aangeeft 
dat beide groepen gegenotypeerd zouden moeten worden indien mogelijk. 
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Naast het optimaliseren van de referentie populatie met betrekking tot 

het ontwerp en de grootte, kan het gebruik van andere kenmerken als voorspellers 
de betrouwbaarheid voor nieuwe kenmerken verhogen. Deze optie werd 
bestudeerd in Hoofdstuk 5, waarvoor echte data van een kleine koeienpopulatie 
werd gebruikt. De bestudeerde scenario’s namen aan dat één of twee voorspellers 
beschikbaar waren voor alleen de referentie populatie of voor zowel de referentie 
populatie en de selectie kandidaten. Droge stof inname werd gebruikt als nieuw 
kenmerk, vet en eiwit gecorrigeerde melkproductie en gewicht werden gebruikt als 
voorspellers. De analyses gaven aan dat het meenemen van voorspellers gemeten 
in zowel de referentie populatie als de selectie kandidaten kan leiden tot een 
significante stijging in de betrouwbaarheid van de selectie. Wanneer voorspellers 
werden gebruikt in de analyse, werd de toegevoegde waarde van het gebruik van 
genotypes lager dan in een analyse met één kenmerk. 

De algemene discussie gaat in op verschillende aspecten gerelateerd aan 
de genetische vooruitgang van nieuwe kenmerken. Als eerste werd aangetoond dat 
koeien de belangrijkste informatiebron zijn voor nieuwe kenmerken in melkvee, en 
dat referentie populaties van deze kenmerken dus uit koeien zouden moeten 
bestaan. Dit benadrukt het toenemende belang van het opnemen van koeien in 
referentie populaties in de toekomst. Als tweede werd aangetoond dat 
genotyperen door middel van goedkopere chips met een lage merker dichtheid een 
veelbelovende manier is om de betrouwbaarheid van genomic selection te 
verhogen. De reden hiervoor is dat meer geld kan worden besteed aan het 
genotyperen en meten van kenmerken van extra dieren. Dit heeft een grotere 
referentie populatie, en daarmee een stijging in de betrouwbaarheid van genomic 
selection, als gevolg. Tot slot werd het belang om te investeren in meettechnieken 
en het vergroten van de deelname van boeren in het proces van dataverzameling 
onderstreept als cruciale punten om het verzamelen van observaties voor nieuwe 
kenmerken te verplaatsen van onderzoeksbedrijven naar commerciële bedrijven.  

De belangrijkste factoren voor het succesvol implementeren van een 
nieuw kenmerk in het fokdoel zijn (1) maximaliseren van de betrouwbaarheid om 
genotypes te voorspellen van dieren zonder genotype voor het vergroten van de 
referentie populatie; (2) optimaliseren van de samenstelling van de referentie 
populatie; (3) definiëren van makkelijk meetbare voorspellers welke beschikbaar 
zijn voor de selectie kandidaten; (4) ontwikkelen van meettechnieken welke op 
grote schaal toegepast kunnen worden; en (5) instellen van strategieën en beleid 
om de betrokkenheid van boeren in het meten van nieuwe kenmerken te 
vergroten.   
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Streszczenie 
Genetyczne doskonalenie zwierząt odbywa się przede wszystkim na drodze selekcji. 
Kierunek doskonalenia wyznacza cel hodowlany, który stanowią cechy i przypisane im 
wagi. W przypadku bydła mlecznego, w niektórych krajach doskonali się jednocześnie 
nawet ponad 40 cech, dla których obserwacje gromadzone są w populacji aktywnej, 
objętej kontrolą użytkowości. Wzbogacanie celów hodowlanych o nowe cechy wynika 
głównie ze zmian w hodowli, powodowanych dostosowywaniem się do nowych 
warunków rynkowych i chęcią poprawy ekonomiki produkcji, konsekwencji 
występowania korelacji genetycznych pomiędzy cechami czy dążeniem do ograniczenia 
negatywnego wpływu produkcji zwierzęcej na środowisko naturalne. Uwzględnienie 
nowej cechy w hodowli nie jest łatwe, szczególnie gdy nie jest ona objęta kontrolą 
użytkowości, a jej pomiar jest kosztowny i pracochłonny. Niewielka liczba obserwacji 
zgromadzona od małej populacji przekłada się na niską dokładność oceny i ograniczoną 
możliwość uzyskania pożądanego postępu genetycznego przy wykorzystaniu selekcji 
tradycyjnej. U bydła mlecznego postęp genetyczny opierał się na selekcji buhajów, do 
oceny których konieczne było pozyskanie obserwacji od wielu córek, co było procesem 
kosztownym i czasochłonnym. Stąd aktualne jest poszukiwanie rozwiązań i narzędzi, 
które umożliwią doskonalenie nowych cech.  

Selekcja genomowa otwiera nowe możliwości w doskonaleniu zwierząt. 
Wykorzystuje markery podstawień jednonukleotydowych (SNP) zebrane na panelach 
SNP. Markery SNP to dodatkowe źródło informacji, pozwalające przeprowadzić ocenę 
wartości hodowlanej. W selekcji genomowej kontrolą użytkowości obejmuje się grupę 
zwierząt zwaną populacją referencyjną. Większa populacja referencyjna przekłada się 
na wyższą dokładność oceny. Osobniki oceniane nie muszą posiadać informacji 
fenotypowej, stąd możliwe jest przyspieszenie selekcji młodych osobników. Selekcja 
genomowa pozwala na bardziej efektywne wykorzystanie ograniczonej liczby 
obserwacji, co otwiera możliwości doskonalenia nowych cech o trudnych pomiarach. 
Jako stosunkowo nowa metoda, wymaga ona poznania mechanizmów, na których się 
opiera oraz poszukiwania sposobów jej optymalizacji.  

Głównym celem badań przedstawionych w niniejszej pracy było poszukiwanie 
możliwości optymalizacji selekcji genomowej dla doskonalenia nowych cech, dla 
których dostępna jest niewielka liczba obserwacji. W kolejnych rozdziałach pracy 
rozważono wpływ użycia czterech metod optymalizacyjnych na dokładność oceny 
wartości hodowlanych w selekcji genomowej. Przeanalizowane rozwiązania to: 
(1) powiększenie populacji referencyjnej o osobniki niezgenotypowane, których 
genotypy zostały oszacowane na podstawie informacji rodzinowej; (2) optymalizacja 
struktury populacji referencyjnej pod kątem spokrewnienia zwierząt ją tworzących; 
(3) genotypowanie tylko osobników w populacji referencyjnej lub kandydatów 
selekcyjnych; oraz (4) wykorzystanie cech wskaźnikowych o łatwych pomiarach. 
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Pierwszy rozdział wprowadza do tematyki selekcji genomowej ze szczególnym 
naciskiem na aspekty związane z wykorzystaniem jej do doskonalenia nowych cech. W 
drugim rozdziale pracy, w oparciu o badania symulacyjne, przedstawiono możliwość 
poprawy dokładności selekcji genomowej poprzez powiększenie populacji referencyjnej 
o zwierzęta niezgenotypowane. Osobniki wchodzące w skład populacji referencyjnej 
zostały wybrane losowo spośród wszystkich zwierząt. Populacja referencyjna składała 
się z 1 000 zgenotypowanych zwierząt. W dalszych wariantach, populacja ta została 
powiększona o 1 000 zgenotypowanych lub 1 000 niezgenotypowanych zwierząt. Do 
predykcji genotypów wykorzystano informację markerową od krewnych oraz 
informację rodzinową. Wykazano niewielki wzrost dokładności oceny, uzyskany dzięki 
powiększeniu populacji referencyjnej o zwierzęta niezgenotypowane. Ten stosunkowo 
niewielki wzrost dokładności wynikał prawdopodobnie z niskiej dokładności predykcji 
genotypów. 

W trzecim rozdziale oceniono wpływ spokrewnienia zwierząt w ramach 
populacji referencyjnej oraz pomiędzy tą populacją, a kandydatami selekcyjnymi na 
dokładność selekcji genomowej. W tym celu przeprowadzono badania symulacyjne 
odwzorowujące strukturę populacji charakterystyczną dla bydła mlecznego. 
Przeprowadzone symulacje różniły się poziomem spokrewnienia zwierząt włączonych 
do populacji referencyjnej. Obliczono dokładność oceny dla kandydatów selekcyjnych 
charakteryzujących się różnym stopniem spokrewnienia z populacją referencyjną. 
Analizy pozwoliły na określenie optymalnej struktury rodzinowej tej populacji. 
Najwyższą dokładność oceny uzyskano dla populacji referencyjnej o najniższym średnim 
spokrewnieniu oraz dla osobników silnie spokrewnionych z tą populacją. 
Maksymalizacja dokładności oceny wymaga więc minimalizowania spokrewnienia w 
ramach populacji referencyjnej oraz maksymalizowania spokrewnienia tej populacji z 
potencjalnymi kandydatami selekcyjnymi. Dodatkowo dowiedziono, że średni kwadrat 
spokrewnień pomiędzy populacją referencyjną, a kandydatem selekcyjnym jest dobrym 
indykatorem dokładności oceny wartości hodowlanej. 

W czwartym rozdziale pracy starano się odpowiedzieć na pytanie, czy wzrost 
dokładności oceny przy przejściu z selekcji tradycyjnej na genomową wynika głównie z 
wykorzystania informacji genotypowej dla populacji referencyjnej, czy może dla 
osobników ocenianych. W oparciu o dane symulacyjne przeanalizowano cztery warianty 
dostępności informacji genomowej, zakładając jej brak lub obecność dla: populacji 
referencyjnej, osobników ocenianych lub obu tych grup. Porównanie oszacowanych 
wartości hodowlanych wykazało, iż dla wzrostu dokładności w selekcji genomowej 
ważniejszy jest genotyp zwierząt ocenianych, aniżeli populacji referencyjnej. Niemniej 
jednak, zdecydowany wzrost dokładności oceny wartości hodowlanej w selekcji 
genomowej w porównaniu do tradycyjnej, został osiągnięty tylko gdy zgenotypowane 
były obydwie grupy zwierząt. 
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Streszczenie 

Przyjęto, że obok optymalizacji rozmiaru oraz struktury populacji 
referencyjnej, dokładność selekcji genomowej dla cech o trudnych pomiarach, może 
zostać zwiększona, dzięki wykorzystaniu cech wskaźnikowych. Teza ta została 
zweryfikowana w rozdziale piątym niniejszej pracy. Wykorzystany zbiór danych składał 
się z obserwacji dokonanych na krowach. Użyto jednej lub dwóch cech wskaźnikowych, 
które były dostępne tylko dla populacji referencyjnej lub zarówno dla populacji 
referencyjnej jak i zwierząt ocenianych. Nową trudną w ocenie cechą było pobranie 
suchej masy, a cechami wskaźnikowymi: wydajność mleczna poprawiona o zawartość 
tłuszczu i białka oraz waga przyżyciowa. Analizy pozwoliły określić, iż użycie cech 
wskaźnikowych dostępnych zarówno dla populacji referencyjnej jak i zwierząt 
ocenianych może prowadzić do znacznego wzrostu dokładności oceny. Dodatkowo 
wykazano, że przy wykorzystaniu informacji o cechach wskaźnikowych przewaga 
selekcji genomowej nad selekcją tradycyjną jest mniejsza niż przy braku wykorzystania 
tych cech. 

W dyskusji skupiono się na kilku aspektach związanych z doskonaleniem 
nowych cech o trudnych pomiarach. Po pierwsze, wykazano iż samice to najcenniejsze 
źródło informacji fenotypowej dla tych cech, a zatem populacje referencyjne dla nich 
tworzone powinny się składać z samic posiadających obserwacje własne. Można więc 
przewidywać wzrost znaczenia informacji pozyskanych od samic w doskonaleniu bydła 
mlecznego. Następnie, wykazano, iż genotypowanie z wykorzystaniem paneli SNP o 
mniejszej gęstości (tańszych w zastosowaniu) może być skuteczną metodą poprawy 
dokładności selekcji, pozwala to bowiem przeznaczyć środki zaoszczędzone na 
genotypowaniu na pozyskanie większej liczby obserwacji fenotypowych prowadząc do 
powiększenia populacji referencyjnej. Wskazano również na konieczność 
przeprowadzenia inwestycji mających na celu opracowanie nowoczesnych technologii 
pomiarowych oraz potrzebę zwiększenia zaangażowania hodowców w proces zbierania 
informacji, by zapewnić szerszą pulę pozyskanych obserwacji dla nowych cech. 

W podsumowaniu, za kluczowe czynniki pozwalające na skuteczne wdrożenie 
nowych cech do nowoczesnych programów hodowlanych uznano: (1) maksymalizację 
predykcji genotypów niezgenotypowanych zwierząt mających powiększyć populację 
referencyjną; (2) optymalizację struktury populacji referencyjnej; (3) poszukiwanie cech 
wskaźnikowych o łatwych pomiarach, dostępnych również dla osobników ocenianych; 
(4) opracowanie technik umożliwiających rutynowe pomiary nowych obserwacji 
fenotypowych; oraz (5) zwiększenie zaangażowania hodowców w proces pozyskiwania 
informacji. 
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Education and training total: 60 ECTS
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