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1.1       drying of vegetables 

Food, either in natural or in processed form, provides energy and essential nutrients 

for human life. A diet rich in essential nutrients has a positive effect on the human 

condition. The essential nutrients for humans are carbohydrates, proteins, fats, 

vitamins and minerals.  Vitamins and anti-oxidants in fresh food strengthen the 

immune system. For example, lycopene contributes to the reduction of prostate, 

lung and breast cancers, and also a broad range of epithelial cancers (Shi et al., 

2000, Goula et al., 2006, Chang et al., 2007, Dewanto et al., 2002). Glucosinolates 

have significant anticarcinogenic properties in the context of colorectal cancer 

(Verkerk et al., 2004, Verkerk et al., 2009, Volden et al., 2009, Cieslik et al., 2007).  

Fresh cultivated fruits and vegetables contain several essential nutrients, but due to 

the high moisture content these fresh products have a short shelf life. One of the 

most applied preservation methods to extend shelf life is drying. At low moisture 

content the water activity is low and consequently the microbial activity. It allows 

preservation of foods over a prolonged period. This technology can be traced back 

to ancient times when people used sun and wind for natural drying of foods. The 

experience of thousands of years and modern research resulted in various drying 

methods and drying equipment.  Among the available methods convective drying 

with heated air is one of the most applied methods to preserve vegetable and fruit 

products. The heat load of this method causes, however, quality changes (color, 

flavor, texture and nutritional components) in food during drying.  

In recent years the demand of consumers in the industrialized world for 

convenience and processed food products expanded and at the same time also the 

expectations on product quality, safety nutritional values and sustainability 

increased. This drives the need for research on drying technologies that retain 

quality attributes.  

 

1.2       Broccoli 

Brassica vegetables (cabbage, cauliflower, broccoli, Brussels sprouts etc.) are 

common, not only because of the taste but also because of the nutritional 

components having a positive effect on healthiness. It has been observed that a diet 

rich in Brassica vegetables can reduce the risk of lung, stomach, colon cancers 
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(Murillo and Mehta, 2001, Verkerk et al., 2004, Volden et al., 2009). Although the 

mechanism of the reduction of these cancers is not clear, the anti-oxidants in these 

products (vitamin C, polyphenols, carotenoids, glucosinolates) play a role in the 

reduction (Gliszczynska-Swiglo et al., 2011, Middleton and Kandaswami, 1993).  

Two groups of enzymes in foods are involved in carcinogenic development; 1) 

phase I enzymes which, depending on the conditions, can activate or deactivate 

carcinogens, and 2) phase II enzymes that detoxify carcinogens. Inhibition of phase 

I enzymes, and induction of phase II enzymes suppresses cancer development. 

Brassica vegetables have a high content of glucosinolates which can be hydrolysed 

by myrosinase to isothiocyanate, nitrile and thiocyanate (Figure 1) (Verkerk et al., 

2001). In in vivo studies it was observed that isothiocyanate can inhibit phase I 

enzymes that activate carcinogens, and induces phase II detoxification of 

carcinogens (Jones et al., 2006). Glucosinolates and myrosinase are present in 

vacuoles and myrosin cells, respectively, and due to this separation the product 

does not hydrolyze spontaneously. The hydrolysis occurs only when the cell walls 

are broken down, for example by cutting, chewing or by heat treatments.  

The moisture content of fresh broccoli ranges between 87-93% (wet basis). Due to 

the high moisture content the shelf life of broccoli at low temperatures (3-4°C) is 

limited to 7-10 days after harvest. To increase the shelf life drying can be applied 

to reduce the water activity. Drying can also be used to produce broccoli 

ingredients for convenience foods (soup powders, vegetable croutons, frozen food 

products). An interesting option is to activate bioactivity during drying. However, 

as bioactive components are heat sensitive, the drying system and the operational 

conditions should be carefully chosen to retain bioactivity.  
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Figure 1 Schematic diagram of hydrolysis of glucosinolates (Verkerk et al., 2001).  

 

1.3 Influence of pre-treatments and drying conditions on quality retention  

Besides the activation and retention of bioactive compounds other quality attributes 

for dried products, like color, porosity, texture, flavor, have to be taken into 

account. It is therefore important to notice that drying is not the only unit in the 

chain of vegetable processing. It includes pre-treatment (washing, peeling, 

blanching etc.), drying and post-treatment (packaging, storage etc.). These 

treatments affect the quality attributes positively (digestibility, color bioavailability, 

Krokida et al., 2000) and negatively (breakdown of enzymes and micronutrients, 

Munyaka et al., 2010, Selman, 1994, Cieslik et al., 2007).  

Prior to drying of vegetables, thermal pre-treatments may be needed. The enzymes 

peroxidase and lipoxygenase in fresh vegetables cause enzymatic reactions that 

result in color changes (turning products from green into brown) and unpleasant 

odor (Vamos-Vigyzao, 1995, McEvily et al., 1992). Therefore, before drying, 

vegetables are blanched to inactivate these enzymes which results in improved 

color and taste. Furthermore, blanching breaks down the internal cell walls, softens 

the internal tissue, and influences the elastic properties, which in turn enhance the 

drying rate and yields uniform shrinkage behavior (Kunzek et al., 1999, Munyaka 

et al., 2010, Waldron et al., 2003).  

For water or steam blanching, the blanching temperatures range between 70-100 °C 

and the time between 1-10 minutes. Soluble solids partly leach to the blanching 
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medium and compounds necessary for the formation of bioactive products may be 

inactivated as well. For example, blanching procedures (both steaming and water 

blanching) reduce the vitamin C content up to 40% of the initial value (Selman 

1994, Vallejo et al. 2002). Mild blanching conditions are therefore required to 

reduce vitamin C degradation. In a recent study Munyaka et al. (2010) showed that 

high temperature-short time blanching retains vitamin C better than long time low 

temperature blanching. Water blanching reduces glucosinolates content to 45-58% 

of the initial content, while with steam blanching 80-82% of the initial value is 

retained (Vallejo et al. 2002, Volden et al. 2009).  

When blanching is a necessary step prior to drying, loss of nutritional components 

cannot be avoided. The loss of the remaining components should be minimized 

during drying. A significant advantage of blanching with respect to drying is the 

softening of the internal tissue which results in an increased drying rate (Lewicki, 

1998, Jin et al., 2012) and thus in a shorter drying time, less degradation of 

components and less energy consumption.  

Temperature is a major factor for quality degradation during drying. For convective 

drying the air temperature in the dryer is often in the range of 40 to 70°C and the 

product temperature varies between the wet bulb temperature and the air 

temperature. For products with a long residence time in dryer the degradation of 

components is significant. Vega-Galvez et al. (2009) reported that for convective 

drying, vitamin C content falls below 40% of the initial value and that the retention 

decreases with increasing temperature. Similar results were reported by Goula and 

Adamopoulos (2006) and Zanoni et al (1998) for the degradation of Vitamin C 

during drying, and by Oliviero et al. (2012, 2013) for the degradation of 

glucosinolates and myrosinase during drying of broccoli. Therefore, mild drying 

conditions and a short residence time in dryer are required to retain these bioactive 

components. 

 

1.4 Energy demand for drying 

In convective drying, moisture vaporizes from the product. The heat required for 

vaporization makes drying one of the most energy intensive processes. According 

to a survey by Bahu (1991) in 1988, drying accounted at least 10% of the industrial 

energy demand in the UK and Europe. As drying is limited by a thermodynamic 
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barrier and because of the market introduction of new dried products (functional 

foods, fast foods, and pharmaceuticals) the energy demand of drying has increased.  

Despite governmental programs for energy reduction in industry, drying accounts 

now for 15-20% of the total industrial energy consumption in developed countries 

(Kemp, 2012). Furthermore, about 85% of all installed industrial dryers are 

convective dryers with low energy efficiency (often below 50%) (Kudra, 2012).    

The energy efficiency is defined as the ratio of energy for moisture evaporation and 

the total energy supplied to the dryer. For convective drying, the energy efficiency 

is based on the inlet air temperature     (°C), the drier outlet air temperature     

(°C) and the ambient temperature      (°C): 

    
        

        
                (1) 

The latent heat for vaporization varies with temperature and ranges between 2501 

and 2256 kJ.kg
-1

 over the temperature range of 0 and 100°C. Therefore, to remove 

1 kg of moisture from a product in a dryer operating with 50% energy efficiency, 

over 4500 kJ.kg
-1

 energy is required. In addition, extra energy is required to heat 

the product to the drying temperature and to compensate for heat losses from the 

dryer. The state of art in the reduction of energy consumption is heat recovery, 

adjusting the operation conditions or to reduce heat loss with insulation (Kemp, 

2012). Retaining product quality requests for low temperature drying, this 

according to equation 1 has low energy efficiency. The demands towards product 

quality and energy efficiency appear to be two conflicting aims!  

 

1.5 Research challenges 

In convective driers for vegetables the product temperature varies between the wet 

bulb temperature and the air temperature which is in the range of 40 to 70°C. 

Investigations showed that for products that reside at these temperatures the 

degradation of nutritional components is significant (Vega-Galvez et al., 2009, 

Goula and Adamopoulos, 2006, Zanoni et al., 1998, Oliviero et al., 2012, 2013).  

To retain these components during drying, mild drying at low temperatures should 

be applied. However, the energy efficiency at low temperatures is low. Although 

quality is regarded as the most important performance indicator, the energy 
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consumption needs increasing attention to reduce the operational costs and to 

reduce the energy consumption and the emission of greenhouse gasses. Therefore 

retention of heat sensitive components needs to be combined with energy 

efficiency which brings two, possibly conflicting, challenges in drying research. 

The demands of mild and sustainable drying bring the research challenge for 

drying research. 

 How to dry vegetables with a high retention of nutritional components 

and high energy efficiency? 

This PhD research project on quality retention in combination with energy saving 

(this thesis) is part of a larger research project ―Energy efficient drying of healthy 

food products‖. The PhD projects in this context were: 

1. Influence of drying technology on stability and availability of 

glucosinolates in broccoli (Teresa Oliviero, thesis writing in progress),  

2. Drying of healthy foods: from mechanism to optimization (this thesis), and 

3. Energy-efficient low-temperature drying using adsorbents (J.C. Atuonwu, 

PhD thesis Wageningen University, March 2013) 

The goal of this thesis within the overall program is to investigate whether the 

problem of apparently conflicting demands on quality retention and energy 

efficiency can be solved by optimization. As the optimal drying strategy is 

expected not to be solved straightforward, an accurate, mechanistic description of 

the process and product degradation is required. The mechanistic description of the 

product degradation is obtained from Project 1. The results from Project 3 can add 

values to the improvement of energy efficiency.  

Mishkin et al. (1984) were the pioneers in using optimization methods to improve 

the quality of dried food products. Banga et al. (1991, 1994) used various objective 

functions to optimize quality, energy efficiency or process time for drying. 

However, these optimization problems considered only one objective at a time. 

Kaminski et al. (1989), Madamba (1997), Kiranoudis & Markatos (2000) propose 

to apply multi-objective functions to meet the different requirements in  food 

processing.  

Maximizing product quality and energy efficiency are the key performance 

indicators. Afzal et al. (1999) investigated the influence of temperature and air 
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velocity on quality and energy consumption via experiments. Caceres-Huambo and 

Menegalli (2009) maximized equipment loading and degradation of ascorbic acid 

in fruits during drying via numerical modeling. However, the combination of 

optimizing drying policy for energy efficiency and retention of multiple nutritional 

values is still missing. This will be the focus of this thesis. Therefore, the first 

research challenge for this thesis will be:  

1. Can the optimization problem for mild, sustainable drying of 

healthy vegetables be solved by use of mechanistic modeling? 

To solve such an optimization problem, models for moisture transport and sorption 

isotherm, kinetic models for bioactivity and models for energy efficiency are 

required. Food is complex soft matter which contains water/moisture, 

carbohydrates, fat, protein and ash. Drying of food and especially vegetables is 

effected by the interaction between these components and phase changes in the 

product matrix. Such physical and chemical changes effect progress of drying and 

should be reflected in the used model. Most drying models in literature take the 

coupled mass and heat transport phenomena into account (Mulet et al., 1999, Bon 

et al., 1997), but not the physical changes in the product matrix and the interaction 

between the components. The aim of this thesis work was to use a mechanistic 

driven modeling and optimization approach to produce healthy food. The second 

research question is:     

2. How to describe the drying rate and moisture sorption isotherm by 

models based on physical properties related to the product matrix? 

Due to the temperature and moisture gradients in the drying products, the 

degradation of nutritional components varies throughout particles that are being 

dried. Models assume ideal transport of moisture in the product matrix. However, 

validation of this assumption is still lacking. Therefore, the third research question 

is: 

3. How to validate moisture transport models and how to detect 

moisture transport phenomena non-destructively, qualitative and 

quantitatively? 

In this overview of challenges, measurements and modeling of the degradation 

kinetics of nutritional components is missing. This essential work is part of the 
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parallel thesis work of Mrs. T. Oliviero (Product Design and Quality Management 

Group, Wageningen University). In this thesis, the kinetic results of her work are 

used to minimize product quality loss. 

To realize the solutions for the above mentioned research questions a mechanistic 

drying modeling and optimization approach is used. The applied research scheme 

and required information are introduced in the following sections.   

 

1.6 Simultaneous optimization of product quality and energy efficiency 

Two ways of optimization can be considered: static and dynamic optimization. 

Static optimization searches for the best constant operational conditions or design 

parameters, and does not use the transient properties of the process. Drying of 

foods, however, include various stages of moisture transfer, for which dynamic 

optimization is more suitable. Dynamic optimization results in optimal trajectories 

for the operational conditions during the passage of food products through a dryer. 

The optimization uses an objective function, can deal with constraints, and can be 

applied to real production systems. The optimized trajectories can be continuous 

functions (Bryson, 1999) or discrete functions (piece wise constant or piecewise 

linear) (Banga et al., 2005). Discrete functions have the advantage that they can 

represent succeeding drying stages.  For example, Banga et al. (2003) and Chou & 

Chua (2001) show that for drying of heat sensitive foodstuffs the use of multiple 

drying chambers, each operating at its optimal level, could lead to better products 

with significant energy savings.  

The dynamic optimization requires knowledge of the drying system formulated as 

a mathematical model and constraints. A drying model for product particles based 

on mass and energy balances, physical properties and drying rates,  and a quality 

model for the degradation of nutritional components. All required elements are 

given in Figure 2.   

In this thesis we aim to use mechanistic models using physical and chemical 

relations and that also consider the spatial distribution of moisture, temperature and 

nutritional components. The drying model uses thermodynamic properties and 

takes the mobility of water in the product into account (for example by the glass 

transition temperature). Measurements of physical properties of broccoli are used 
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in this thesis. In the product quality model myrosinase, glucosinolates and vitamin 

C in broccoli and the degradation of these components as a function of heat load 

and moisture levels are considered.   

Drying model Quality model

Optimization

Quality & Energy Efficiency

Sorption 

isotherm

Drying rate

Glucosinolates

Vitamins C

Drying in 

MRI

Myrosinase 

Constraints

Physical 

properties

Pilot dryer

Pre-treatment

(blanching)

Pre-treatment

(blanching)

Experimental 

Evaluation 

Shrinkage

Healthy 

quality

Energy 

efficiency

 

Figure 2 Research scheme according to the objective of this thesis work. The optimization 

uses a quality and a drying model. The quality model focusses on the retention of 

myrosinase, glucosinolates and vitamin C. The drying model involves physical properties, 

sorption isotherm and drying rates. 

 

1.7 Mechanistic driven modeling and optimization  

Figure 2 shows the combination of the kinetics on degradation of nutritional 

components with the drying kinetics. The degradation of nutritional components is 

a chemical process while drying is a multi-physics process. Models for the drying 

kinetics and sorption isotherm should therefore be based on the physical properties 

of the food matrix. As stated before food products as vegetables have a complex 

matrix due to interaction between the involved components and their effect on the 

mobility of water. For a good prediction of drying, which is a requirement for 

optimization; models that reflect the mechanism of moisture transport throughout 

the product matrix are required.  

Optimization techniques have been well developed and have been applied in food 

process optimization (Hadiyanto et al, 2007).  The majority of the process models, 
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however, are still empirical or semi-empirical. Therefore, the emphasis of this 

thesis is to use mechanistic drying models (Figure 3). The mechanistic models used 

in this work are based on the Free Volume theories. To our knowledge, this is the 

first time that these theories are used for moisture transport in a food matrix in 

combination with quality models for nutritional components and used for the 

optimization drying trajectories.  

Mechanism based 

model development

Mechanism based 

sorption isotherm 

model

Mechanism based 

drying model

Model validation  Optimization
Experimental 

Evaluation

Flory Huggins Free 

Volume theory

Free Volume 

theory

Healthy quality

Energy efficiency

 

Figure 3 Physics driven modeling and optimization approach  

 

1.7.1 Drying rates based on Free Volume theory 

In drying of food products two periods can be distinguished; 1) the constant rate 

period, and 2) the falling rate period. For vegetable drying the constant rate period 

is very short; drying of broccoli is diffusion controlled (see for example Mulet et 

al., 1999). Fick‘s second law is the basis for modeling the internal moisture 

transport during diffusion controlled drying. It is commonly accepted that the 

effective diffusion coefficient in Fick‘s law is temperature dependent according the 

Arrhenius equation. This relation, however, has its limitations for food products. 

During drying the state of the food matrix changes from rubbery to glassy, which 

influences the mobility of water and hence the diffusion process. Mulet et al. (1999) 

propose to extend the Arrhenius equation with moisture dependent terms. Slade 

and Levine (1991) propose as an alternative to link the low moisture diffusion 

coefficient in the low moisture content range with glass transition temperature. 

However, their work is not supported by a quantitative model and calculations.  In 

this thesis we use for the falling rate period the Free Volume Theory, which 
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involves moisture mobility and state changes during drying (Vrentas and Duda 

1977, Vrentas and Vrentas, 1994, He et al., 2008, van der Sman and Meinders, 

2013).   

 

1.7.2 Sorption isotherm model based on Flory Huggins Free Volume theory 

The moisture sorption isotherm relationship is also essential for the drying rate. It 

presents the relationship between moisture content and water activity and provides 

information on the equilibrium of the sorption of moisture in food at constant 

temperatures. Besides being important for the boundary conditions during drying, 

the moisture sorption isotherms also provide information on the storage conditions.  

State of the art sorption isotherm relations are (semi)-empirical models (GAB, BET 

etc.) which are based on theory for sorption at hard surfaces. Moisture sorption in 

food matrices differs from moisture sorption on hard surfaces, and these 

differences have to be taken into account. In this thesis the Flory-Huggins Free 

Volume theory (Vrentas & Vrentas, 1991, Ubbink et al., 2007, Zhang and Zografi, 

2001, van der Sman, 2013) has been applied to describe the sorption isotherms for 

fresh and pre-treated foods.  

 

1.8 Non-destructive methods to quantify the moisture distribution   

Diffusion results in a moisture gradient with the highest moisture contents in the 

center and the lowest at the edge of the product particles. Concentration driven 

transport is a common assumption for drying of foods (Fick‘s law). One goal of 

this thesis is to quantitatively validate the internal moisture transport and the spatial 

distribution of moisture during drying. State of the art methods to measure the 

internal distribution are destructive methods (e.g. by taking slices from the sample) 

or non-destructive methods (e.g. γ ray densitometry). The disadvantage of these 

methods is the limitation on the sample size, limited resolution and the 

measurement in only one dimensional direction (McCarthy et al., 1991, Ruiz-

Cabrera et al., 2005, Chen, 2007). In this thesis MRI (Magnetic Resonance 

Imaging) is applied as a non-destructive method to monitor and to understand the 

actual drying behavior. 
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1.9 Thesis structure 

The overall thesis structure is presented in Figure 5. There are three main parts in 

this thesis: model development, model validation, model based dynamic 

optimization and validation. 

First of all, to meet the objective of this project, a drying model is developed. In 

Chapter 2, the Free Volume Theory is presented as a model for drying. This model 

is based on physical properties of food, and the mobility of moisture in the product 

matrix during drying.  With this theory, mass and heat transport, shrinkage, and 

vitamin C degradation during drying are simulated by a spatial model. The sorption 

isotherm is a key element in the drying model; it defines the relation between 

moisture content and water activity and gives the boundary conditions for mass 

transfer. In Chapter 3, the Flory-Huggins Free Volume theory is introduced to 

interpret the sorption isotherm of broccoli. The main advantage of this theory is 

that it takes into account the mixing properties of water, biopolymers and solutes. 

Since it is based on product composition and physical properties, it has potential to 

describe the sorption isotherm relation for large ranges of products, moisture 

contents, and temperatures.  

Drying model

Free Volume Theory

Optimization

Quality & Energy Efficiency

Sorption Isotherm model

Flory-Huggins Free Volume Theory

Model Validation

MRI Experiments

Drying Mechanism & Spatial Distribution

Drying rate derived from MRI

Experiments with pilot dryer

Model Development

Chapter 2 Chapter 3

Chapter 4 Chapter 5

Chapter 6

 

Figure 4 Thesis structure 
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Chapter 4 and Chapter 5 concern the validation of the drying model based on the 

Free Volume theories presented in Chapter 2 and Chapter 3.  The validation of 

moisture transport and distribution with a non-destructive technique, Magnetic 

Resonance Imaging (MRI), to monitor moisture transport during drying is given in 

Chapter 4. The results show the moisture distribution, drying rate, and shrinkage 

of different pre-treated samples. Anomalous moisture transport is found which is 

probably due to stress induced diffusion by the elastic impermeable skin. 

In Chapter 5, drying rates of different pre-treated samples are derived from MRI 

experimental data. Key parameters of Free Volume Theory based drying model are 

tuned and the drying behavior of single particles in the MRI unit is compared with 

the results from a pilot dryer 

Chapter 6 concerns the dynamic optimization to find optimal drying trajectories 

that increase both energy efficiency and product quality. The moisture-temperature 

state diagram is used to interpret the calculated optimal trajectories. The results 

presented in the state diagram shows that the optimal drying trajectories 

circumvent the area with significant product quality degradation rates.  

In the end, Chapter 7 gives the conclusion of this project, and the perspectives for 

further development. 
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Abstract 

Moisture diffusion in porous broccoli florets and stalks is modeled by using the 

free volume and Maxwell-Eucken theories. These theories are based on the 

mobility of water and concern the variation of the effective diffusion coefficient 

for a wide range of temperature and moisture content during product drying. Mass 

and heat transport, shrinkage and vitamin C degradation during drying of broccoli 

are simulated by a spatial model. The effective diffusion coefficient varies strongly 

with product moisture content and temperature. Vitamin C degradation is high at 

moisture contents around 2 kg water per kg dry matter. Influences of the size of 

broccoli on drying rate are evaluated for several types of broccoli florets and stalks.    

 

Keywords: broccoli drying, moisture transport, spatial model, free 

volume theory, quality changes 
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2.1 Introduction 

Since low product moisture content allows a safe storage of food products over a 

long period, drying has gained an important position in the food industry. Water 

removal is the main function of drying, but at the same time quality changes will 

take place. For example, changes in shape, texture, color, and deterioration of 

nutritional components occur during drying. As quality becomes a more and more 

important aspect of dried products, preservation of such qualities and minimization 

of deterioration are more essential. 

Broccoli is a common vegetable for most families, not only because of the taste but 

also because of the components with nutritional value and components that 

contribute to health (e.g. vitamin C and glucosinolates). However, as these 

components are temperature sensitive, they may deteriorate during drying. From 

this point of view low and moderate temperatures are requested for drying. 

Furthermore, the changes in quality depend on the local moisture content and 

temperature in the product rather than the average moisture content. With dynamic 

distributed models the quality and moisture content during the drying process can 

be predicted. These models are also essential to optimize the product quality.   

To predict and to optimize the quality it is necessary to know the concentration and 

temperature profiles in the product as a function of time. In drying there are 

normally two main drying periods: the constant rate period and the falling rate 

period. Mulet and Sanjuan 
[1]

 showed that drying of broccoli is a diffusion 

controlled process; capillary transport of water was not detected in their work.   

For diffusion controlled drying, Fick‘s second law is usually applied to describe 

mass transport. The effective diffusion coefficient which is estimated from drying 

data represents the overall mass transport of water in the material to be dried. The 

most common approach to describe the temperature dependency of the effective 

diffusion coefficient is the Arrhenius equation
 [1, 2]

. Since the Arrhenius equation is 

an empirical equation, it is limited in its application for complex systems such as 

foods. At temperatures above the product glass transition temperature, the state of 

the product matrix changes, and as a result the diffusive behavior changes. 

Especially at low moisture contents where the mobility of water is low,   the 

diffusion coefficient fits not well to the Arrhenius equation.  To deal with this 

problem, it is proposed to include the influence of the moisture content by adding 
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another factor to the Arrhenius equation
[1,3]

, Levine and Slade
[4]

, Achanta and 

Srinvas
 [5]

 analyzed the reasons of possible low diffusion coefficient in the low 

moisture content region, by referring to the glass transition.  However, a model that 

includes these aspects is not given.   

As an alternative, the effective diffusion coefficient can be predicted from the free 

volume theory, which is used for diffusion of polymer solutions
[6,7]

. The main idea 

of this theory is that the free volume between polymer chains (voids) is the limiting 

factor for diffusion. Water molecules move between such voids with acquired 

sufficient energy to overcome forces attracting them to neighboring molecules
[8,9]

. 

The free volume theory is based on physical and chemical properties of the product 

and involves the glass and state transition parameters of the polymeric chains in 

food. By calculating the diffusion coefficient according the free volume theory, the 

drying rate can be predicted over a large temperature and moisture content range. A 

recent example on the moisture migration of trehalose solution drying introduces 

this theory for drying of bio-products
[10]

.  

In this work the free volume theory is applied to broccoli drying. The result is 

compared with the common diffusion model which uses the Arrhenius equation. 

Furthermore, the moisture distribution in the product is given for a spatially 

distributed model and the effect on product quality is determined. As the size of the 

samples  influences the drying time, different types of broccoli florets and stalks 

are defined and the influence of size on the drying time is evaluated.  

 

2.2 Theory and Modeling 

 

2.2.1 Basic balance equations and boundary conditions 

The mass balance equation according to Fick‘s second law is: 

    

  

  
 

 

  
(    

  

  
)                  (1)           

with W the moisture content (kg water per kg dry matter), Deff the effective diffusion 

coefficient (m
2
.s

-1
), r the distance from the centre (m) and t the time (s) .  
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This equation is applied for florets and stalks by using respectively spherical and 

cylindrical coordinates
 [2,11]

. Figure 1 shows how the natural structure of broccoli is 

translated into a form for spatial calculations of moisture and temperature.  

 

Figure 1 Top: the natural structure of broccoli, Bottom: the applied model structure for 

broccoli 

 

 Heat transport follows Fourier‘s law: 

     
  

  
  

   

   
                             (2) 

With T the temperature (K), λ the thermal conductivity (W.K
-1

.m
-1

), Cpp the specific 

heat of the product (J.kg
-1

.K
-1

), and ρp the product density (kg.m
-3

). Again spherical 

and cylindrical coordinates are applied for broccoli florets and broccoli stalks 

respectively. 

For the surface where r=R, the boundary condition for equation (1) is given by: 

  (             )        
     

  
                 (3)                     

sta lk

F loret

F

R  
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with kc the mass transfer coefficient (m.s
-1

), Csurface the vapor concentration at the 

product surface (kg.m
-3

) and Cair the vapor concentration in the air (kg.m
-3

). This 

equation indicates that the liquid flux to the surface equals to the vapor flux from 

the surface to the bulk drying air.  

Similarly, the boundary conditions for the heat balance equation (2) at the surface 

with r=R is: 

 (             )              
     

  
  

     

  
                (4) 

with h as the heat transfer coefficient (W.m
-2

.K
-1

), ΔHevap the latent heat for 

evaporation (J.kg
-1

). The term            
     

  
  represents the amount of 

energy required to evaporate the liquid flux at the product surface.                                                                        

For the center of the product (r=0), there is no mass and heat transfer over that 

surface of the drying product. Thus: 

     

  
   and 

     

  
                      (5) 

 

2.2.2 Effective diffusion coefficient based on Arrhenius theory 

The Arrhenius equation is often used for the temperature dependency of the 

effective diffusion coefficient Deff : 

            
  

  
                 (6) 

Simal and Rosselló 
[11]

 propose the extension of the Arrhenius equation for the 

cylindrical part of broccoli (stalks) by an extra term:  

                    
     

  
                           (7) 

For the hemispherical part of broccoli (florets), Bon and Simal 
[2]

 and Simal and 

Rosselló
[11]

 give:  
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                (8) 

With W the moisture content (kg water per kg dry matter), R the gas constant 

(8.314J.K
-1

.mol
-1

) and T (K) the temperature. The Arrhenius equation is an 

empirical equation with its limitations in food products. Although it expresses the 

temperature dependency, above the glass transition temperature the state of the 

product matrix changes, resulting in changed diffusion properties. However, the 

Arrhenius equation is not able to predict the diffusion in porous media like the 

floret. 

 

2.2.3 Effective diffusion coefficient based on Free Volume theory and Maxwell-

Eucken theory 

In porous media the effective diffusion coefficient depends on the diffusion 

properties of the dispersed phase (air) and continuous phase (product)
[12]

. By using 

the Maxwell-Eucken relationship, the diffusion coefficient for water in products is 

composed from the diffusion coefficient of water in the continuous phase (Dc) and 

in the dispersed phase (Dd):   

       (
                    

                   
)               (9) 

For moisture diffusion during broccoli drying, Dd is the water vapor diffusion 

coefficient in the air and Dc is the mutual diffusion coefficient of water molecules 

in food polymer chains.   (-) is the porosity, which is low for the stalk and high for 

the porous floret. The water vapor diffusion coefficient in the air is given by Olek 

and Perre
[13]

: 

               

 
(

 

      
)
    

             (10)                         

With P is the pressure (Pa), and T the temperature (K) 

The mutual diffusion coefficient of water molecules in a food polymer matrix is a 

combination of the self-diffusivity of the water molecules (Dw) and the self-

diffusivity of the solids (Ds). The mutual diffusivity for binary systems is given by 

the Darken relation
[14]

:  
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                                     (11) 

                                                               (12) 

with   (-) is the volume fraction of the solid phase, Q (-) is a thermodynamic factor, 

and χ (-) is the interaction parameter.  

The self-diffusion coefficient of water (Dw) follows the free volume theory, which 

considers physical properties of the product, such as water molecule mobility and 

the glass transition temperature. The free volume theory predicts the effective 

diffusion coefficient for a whole range of moisture contents and temperatures. 

Vrents and Duda
[6]

 showed the application for polymer diffusion system, while He 

and Fowler
[10]

 used this theory for moisture transport in sugars.  

The water self-diffusivity in a polymer matrix is given by: 

  
  

  
 

  

  
 

   ̂ 
      ̂ 

 

  (
   
 

)(          )    
   
 

             
            (13) 

 

with ΔE the activation energy (J.mol
-1

), D0 the pre-exponential factor (m
2
.s

-1
), ς  the 

ratio between molar volume of solvent versus solute (-), Kij the free volume 

parameters (K), Tg,i  the glass transition temperature of component i (K), yi  the 

mass fraction (%), and  
*

i
V


 the critical volume of component i (ml.g
-1

).  

Free volume parameters of water are given by He and Fowler [10] (See Table 1). 

Sugars are the main building blocks in broccoli. The physical properties of sugars 

are close and therefore we choose the free volume parameters of sucrose as 

representative for the solids. These parameters are summarized in Table 2.  
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Table 1 Free volume parameters of pure water 

Symbol Value 

*

1
V


 (ml.g
-1

) 0.91 

Tg,1 (K) 136 

D0 (m
2
.s

-1
) 1.39×10

-7 

ΔE (J.mol
-1

) 1.98×10
3 

K21 (K) -19.73 

K11/γ (m.L.g
-1

.K
-1

) 1.945×10
-3 

Table 2 Free volume parameters of solid matrix of broccoli 

Symbol Value 

*

2
V


 (ml.g
-1

) 0.59 

Tg,2 (K) 360 

K22 (K) 69.21 

C1 11.01
 

C2 69.21 

k (J.K
-1

)
 

1.38×10
-23

 

a (m) 1×10
-9 
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The remaining parameters are given by Vrentas and Vrentas
[15]

: 

                    (14) 

                                                    
   

 
 

 ̂ 
 

         
              (15)       

where C1 and C2 are universal constants.  

The self-diffusivity of the solids (Ds) follows from the Stokes-Einstein theory 
[16]

: 

   
  

      
              (16)                                        

With a the radius of the solid particle (m), ηeff the viscosity (Pa.s) and k the 

Boltzmann constant.  

The sorption isotherm relationship is used in the boundary condition for mass 

transfer (equation 3). According to Mulet and Sanjuan
[1]

 the sorption isotherm for 

broccoli is:  

                                 (17) 

Mulet and Sanjuan
[1]

 observed also shrinkage during drying. Simal and Rosselló
 [11]

 

suggested a shrinkage model which is based on a proportional change of the 

volume with the changes in moisture content:  

 

  
                            (18) 

 According to their results, shrinkage only happens in radial direction.  

 

2.2.4 Degradation of healthy components 

As an indicator for components that contribute to health, vitamin C is considered.  

Despite of the different sample nature, experiments on potato and pineapple 

samples showed similar results for the vitamin C degradation rate constants
[17,18]

. 

These results are therefore also applied for broccoli. The degradation of vitamin C 

follows a first order degradation kinetics: 
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                  (19) 

with C the concentration (kg/m
3
) and k the rate constant (s

-1
). The temperature 

dependency of k is given as: 

      
  

  
               (20) 

Mikshkin and Saguy
[17]

 and Karim and Adebowale
[18]

 found the following 

expressions for the rate constant and activation energy of vitamin C degradation 

during drying: 

                         
               (21) 

                   
     

              (22) 

With P1-P7  as constants and W  the moisture content (see Table 3) 

 

Table 3 Vitamin C degradation kinetic model parameter values for Eq. (21) and (22) 

Parameter Value Parameter Value 

P1 16.38 P4 14831.0 

P2 1.782 P5 241.1 

P3 1.890 P6 656.2 

  P7 236.8 

 

2.3 Results 

2.3.1 Diffusion model for broccoli stalks 

The free volume theory model was used to compute the effective diffusion 

coefficient during diffusion controlled drying of broccoli stalks. It is assumed that 
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capillary water transport is neglectable to the diffusive transport.  Simulations were 

done for cylindrical stalks of length 0.02m and radius 0.004m. he drying conditions 

and the sample sizes were the same as in the work of Simal and Rosselló
 [11]

. They 

reported effective diffusion coefficient values at 90°C between 1.63×10
-9

 to 

2.25×10
-9 

(m
2
.s

-1
) for different drying times (720s-2160s) and positions in the 

product by using the Arrhenius equation. The diffusion coefficient values based on 

the free volume theory range for these conditions from 1.56×10
—9

 to 3.20×10
-9

 

(m
2
.s

-1
).

 
  

Further simulations with the free volume theory were done for the effective 

diffusion coefficient during drying of broccoli stalks. As the self-diffusion 

coefficient of water molecules is influenced by the moisture content, a full range of 

moisture contents was used. In Figure 2 (top) the effective diffusion coefficient is 

expressed as a function of moisture content during drying and different product 

temperatures. The figure shows that the obtained diffusion coefficients vary with 

temperature and moisture content and are comparable to the results of Simal and 

Rosselló
 [11]

. Especially at moisture contents, below 0.5 kg water per kg dry matter, 

the results deviate from the literature values. Here, the free volume theory predicts 

a lower diffusion coefficient because of the lower mobility of the water molecules. 

For the diffusion coefficient a maximum value is found for a moisture content of 2 

kg water per kg dry matter. Furthermore, the graph shows that, just like the 

Arrhenius equation, the diffusion coefficient increases with raising temperature.  

 

2.3.2 Diffusion model for broccoli florets 

Similarly, the effective diffusion coefficient of drying of broccoli florets was 

calculated. In the simulations, a diameter of 0.04m and an average porosity 0.2 was 

used for the florets. Mulet and Sanjuan
[1]

 gave effective diffusion coefficients 

based on the Arrhenius theory for the temperature range 35-70°C. Their reported 

values of the effective diffusion coefficient were in the range of 3.00×10
—8

 to 

6.23×10
—8 

(m
2
.s

-1
). The values of the effective diffusion coefficient according the 

free volume theory are lower and ranged from 0.86×10
—8

 to 1.67×10
—8

 (m
2
.s

-1
) 

over the  temperatures range between 35-70°C. 

Furthermore, the same simulations which have been done for broccoli stalks were 

also done for broccoli florets for a wide range of moisture contents and 
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temperatures. The results are shown in Figure 2 (bottom). Again, the results are 

comparable with literature values
 [1]

, except for the low moisture content range 

where due to the lower water mobility the diffusion coefficient is low. Compared to 

the broccoli stalks, the simulations show for the broccoli florets a ten times higher 

value. This is result of the porous structure of the floret in which the air pockets 

enhance diffusion. 

 

 

Figure 2 Simulation results of effective diffusion coefficient of water in broccoli at 

different temperatures.  Top: broccoli stalk. Bottom: broccoli floret. 
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2.3.3 Drying simulation results 

Dynamic drying simulations have been done in Comsol Multiphysics. A symmetric 

2-D model was chosen according to the structure shown in Figure 1. The size of the 

simulation sample was 0.02m in radius for the broccoli floret, 0.01m in radius and 

0.02m in height for the broccoli stalk. To ensure diffusion controlled drying, the air 

flow rate was set to 2.5 m.s
-1

. Shrinkage of the sample was included as well (see 

equation 18). The initial moisture content was set to 9.6 kg water per kg dry matter 

and was uniform distributed throughout the whole sample. The initial temperature 

of the product was 20°C.  

Figure 3 shows the moisture distribution in broccoli after ten hours of drying. The 

color surface gives the moisture distribution within broccoli. The temperature 

distribution was also calculated, but after ten minutes drying, the temperature 

profile was already equally distributed.  

The figure shows that the moisture diffuses from the center to the outer surface in 

the direction of the arrows.  At the surface, moisture evaporates due to the mass 

and energy exchange with the air and the surface dries first. Moisture content 

increases towards the center of the product. The product gradually shrinks during 

the drying process, and shrinkage is shown by comparing the current frame with 

the original frame. 

Compared to the stalk, the moisture profile for the floret is more uniform. This is a 

result of the porous structure of the floret, which takes advantage of the diffusion 

properties of water in air. However, as the dimensions of the floret are larger than 

that of the stalk, drying of the floret takes more time.   
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Figure 3 Spatial moisture distribution in broccoli at 10 hours of drying at 50°C. Drying 

starts at the outer frame which changes due to shrinkage to the colored frame. Coordinates 

in meters. 

 

Simulation results for different positions in stalk and floret are given in Figure 4. 

The results concern different positions along the vertical axis (height) in the floret 

and stalk. Each curve in Figure 4 indicates the local moisture variation as a 

function of the drying time. The drying curves for the broccoli stalks differ for the 

positions, the outer surface dries faster than the center core, whereas, the drying 

curves for broccoli florets are close for the different positions.  
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Figure 4 Top: Drying curves of broccoli stalk at different positions from top to bottom 

along the vertical axis in the stalk (m). Bottom: Drying curves of broccoli floret at different 

positions from bottom to top along the vertical axis in the floret (m) 

 

2.3.4 Comparison the results from Free Volume theory and Arrhenius theory 

Figure 5 shows the comparison between using the free volume theory and the 

Arrhenius equation for the effective diffusion coefficient. The drying curve for the 
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average moisture content of the same piece of broccoli as considered in previous 

section. The graph shows that after one hour drying the curves starts to deviate. As 

the effective diffusion coefficient from the free volume theory is above that based 

on the Arrhenius equation (see Figure 2), drying is faster. During drying the 

differences in average moisture content increase.  At low moisture contents, where 

the mobility of water decreases, the diffusion coefficient from the free volume 

theory falls below that of the Arrhenius equation. As a result, the drying curves 

approach and cross each other. As the degradation rate of healthy components is 

strongly coupled to the local moisture content, accurate moisture content prediction 

is important.  

 

Figure 5 Comparison of average moisture content based on Free Volume Theory and 

Arrhenius theory 
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2.3.5 Degradation of healthy components  

Figure 6 gives the degradation rate constant for vitamin C degradation for a range 

of moisture contents and temperatures.  The degradation rate constant is a bell 

shaped curve; above 4 kg water per kg dry matter the degradation rate is constant 

and very low and there is a maximum value at moisture content of 2 kg water per 

kg dry matter. The rate constants increase with increasing temperature.  

 

Figure 6 Vitamin C degradation rate constant as a function of moisture content and 

temperature. 

 

The vitamin C concentration profiles resulting from drying are given in Figure 7. 

The top figure, for t=10 hour, shows that at this moment degradation starts at the 

bottom of the broccoli stalk. The floret and the major part of the stalk still have the 

initial concentration. Till this moment, the moisture content in the major part of the 

broccoli was above 4 kg water per kg dry matter, where vitamin C degradation 

hardly occurs. Figure 7 shows also the concentration profiles at 15 hour and 16 

hour drying. In this period, the moisture content of the whole body reach values 

where the degradation rate constant increases rapidly. As a result of these 
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conditions, the vitamin C concentration decreases fast. At 15 hours, vitamin C 

concentration in the stalk is already low and the concentration starts to decrease in 

the floret. At 16 hours, there is hardly any Vitamin C left.  

 

Figure 7 Vitamin C distributions throughout the sample. Top: after 10 hour drying, middle: 

after 15 hour drying, bottom: after 16 hour drying. Coordinates are given in meters 
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2.3.6 Analysis of drying behavior of different sizes of broccoli 

In the previous simulations, a piece of fresh broccoli (as shown in Figure 1) is 

considered for drying. Due to the mild drying conditions and the large size of the 

sample, drying takes a long time. In order to reduce the energy requirement and to 

limit the size of drying equipment, the drying time should be lowered. Furthermore, 

to limit the degradation the nutritious components like vitamin C, the time with 

high values for the degradation rate constant (k; see Figure 6) should be as short as 

possible.   

Instead of a full piece of broccoli, separate parts can be dried.  Due to the branch 

structure of broccoli, the piece of broccoli from Figure 1 can be split up in smaller 

florets and remaining cylindrical pieces of stalk. Simulations are done for three 

sizes of florets, and four sizes of cylinders which are taken from the broccoli 

structure in Figure 8. The sizes are specified in Table 4.  

 

Figure 8 Cross section of a broccoli floret. Numbers refer to the different pieces to be dried. 
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Table 4 Size specification for the different types of broccoli florets (hemispherical and 

cylindrical part) and stalks (cylindrical part only). Unit: m 

Florets Diameter 

(semispherical) 

Height 

(semispherical) 

Diameter 

(cylindrical) 

Height 

(cylindrical) 

Type 1 0.04 0.02 0.02 0.02 

Type 2 0.02 0.01 0.006 0.005 

Type 3 0.005 0.005 0.002 0.002 

Stalks Diameter 

(cylindrical) 

Height 

(cylindrical) 

Type 1 0.02 0.02 

Type 2 0.004 0.005 

Type 3 0.002 0.004 

Type 4 0.001 0.004 

 

The upper graph in Figure 9 shows the average moisture contents for the three 

types of broccoli florets. Drying of a small sample is much faster than that of the 

larger pieces. The smallest floret can be dried in a few hours, whereas the largest 

one will need at least 24 hours to be dried.   

Simulations for the different cylinders are given in the lower graph of Figure 9. 

The difference in drying rates follows from the slopes of the curves and the time 

required to reach the final moisture content. Compared to the initially given 

structure, drying is much faster by splitting the sample into multi-cylinders and the 
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smallest cylinder can be dried within one hour which could be an acceptable 

residence time in industrial dryers.  

 

Figure 9 Average moisture content in different sizes of broccoli florets (top) and stalks 

(bottom) after 24 hour drying 
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2.4 Conclusions 

In this paper, the free volume theory combined with the Maxwell-Eucken theory is 

used to predict the effective diffusion coefficient during drying of broccoli. The 

obtained values from the proposed model are close to the effective diffusion 

coefficient as given in the literature. Main advantage of the free volume theory is 

that the mobility of water molecules is taken into account and that the glass 

transition temperature is involved.  As a consequence this model has the potential 

to predict the effective diffusion coefficient from general physical and chemical 

properties for a wide range of moisture contents and temperatures. The other 

advantage is that by combining the free volume theory with the Maxwell-Eucken 

theory, the moisture transport in the porous structure of a broccoli floret can be 

predicted as well.  

The effective diffusion coefficient from the free volume theory varies with the 

product moisture content and temperature. As a consequence the drying curve 

deviates from models where the effective diffusion coefficient is only a function of 

temperature according to the Arrhenius equation.   

By using a spatial model, temperature and moisture distribution, as well as 

shrinkage is presented by the 2-D color map and a moving mesh function. The 

temperature distribution in broccoli proved to be uniform after a relatively short 

time. During drying at 50°C the moisture distribution in the broccoli floret is 

homogeneous. The simulations show that a long drying time is required to bring 

the broccoli moisture content to a level of 0.2 kg water per kg dry matter which is 

the level for longer shelf life. However, by redefining the structures for drying, 

drying time can be enhanced significantly. The spatial calculations make it possible 

to estimate the content of healthy components (e.g. vitamin C) throughout the 

product and as a function of time. At high moisture contents (>4kg water per kg 

dry matter) the rate constant is very low and degradation hardly occurs. However, 

the degradation rate is high at a moisture content of 2 kg water per kg dry matter. 

So optimization towards optimal drying paths to limit degradation is required.  
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Abstract 

In this work, the Flory Huggins Free Volume theory is used to interpret the 

sorption isotherms of broccoli from its composition and using physical properties 

of the components.  This theory considers the mixing properties of water, 

biopolymers and solutes and has the potential to describe the sorption isotherms for 

varying product moisture content, composition and temperature. The required 

physical properties of the pure components in food became available in recent 

years and allow now the prediction of the sorption isotherms with this theory. 

Sorption isotherm experiments have been performed for broccoli florets and stalks, 

at two temperatures. Experimental data shows that the Flory Huggins Free Volume 

(FHFV) theory represents the sorption isotherm of fresh and blanched broccoli 

samples accurately. The results also show that blanching affects the sorption 

isotherm due to the change of composition via leaching solutes and the change of 

interaction parameter due to protein denaturation.  

 

Keywords: sorption isotherm, Flory Huggins Free Volume theory, glass 

transition, interaction parameter 
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3.1 Introduction 

Water is the main component in fresh food products. One of the most common 

ways for preservation of these products is removal of water by drying, such that the 

water activity is sufficiently low (typically below 0.3). During drying, mass 

transfer in the product is driven by (water) activity gradients. Moisture sorption 

isotherms define the relation between concentrations and activities, and give the 

boundary conditions for mass transfer. The measurement and estimation of 

moisture sorption isotherms of products is therefore an essential aspect for 

designing or modeling drying processes. Moreover, the moisture sorption 

properties are important for the sensory, physical, chemical and biological 

properties of dried products [1, 2]. 

Several (semi)-empirical expressions are known to adequately describe the 

moisture sorption isotherm; for example Henderson, Oswin, Halsey, Chung-Pfost 

equations, and the GAB equation, which has been adopted by the American 

Society of Agricultural engineers as a standard for describing moisture sorption 

isotherms [3-5]. The GAB equation is commonly used; its accuracy is high 

compared to other relations [6-11]. Furthermore, the GAB equation is 

recommended by the European project COST 90 on Physical Properties of Foods 

[12].  

These relations are, however, from a physical point of view not appropriate for 

food materials. The GAB equation is an extension of the BET model, which 

describes (inert) gas adsorption on hard surfaces. In food, water is not absorbed on 

surfaces, but through molecular absorption inside the matrix. Thus, the 

phenomenon is more related to mixing of solvent (water), (bio) polymer, and other 

soluble solutes [13], which are commonly described by the Flory-Huggins theory. 

The FHFV theory extends the FH (Flory Huggins) theory by taking into account 

the structural (non-equilibrium) verification in the glassy state, and it uses the glass 

transition temperature as a parameter [14].  

The glassy state is not an equilibrium state, and in principle the thermodynamic 

theory of Flory Huggins would not apply. Moreover, neither would any other 

sorption isotherm theory apply such as GAB and BET, because they also assume 

an equilibrium state. However, Leibler and Sekimoto show that the Free Volume 

theory does have some physical basis as the excess sorption in a glassy state (Free-
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Volume contribution) is due to the elastic energy stored in the material [41]. In 

absence of any theory handling properly the non-equilibrium glassy state, we have 

opted for the FHFV theory. Earlier, the FHFV has been applied to predict the 

moisture sorption isotherm for carbohydrates [15] and hydrogen binding polymers 

[16] and recently it has been successfully applied to predict the sorption isotherm 

of meat proteins, starch, maltodextrins and water mixtures, as well as of ternary 

mixtures [17-20]. These applications showed that the sorption isotherm based on 

the FHFV theory is accurate over the full range of water activities (0<aw<1), a wide 

range of temperatures, and can be extended to mixtures. The key parameters in the 

FHFV for mixtures are the interaction parameters (χ) for water to hydrophilic 

components that have hydrogen bonds, and the glass transition temperature (Tg), 

which can be obtained from independent measurements. Following the 

classification of Moreira et al. [21] and van der Sman [20] the interaction 

parameters for water-sugars (mono and di-saccharides), water-polysaccharides and 

water protein are subdivided for vegetables. 

In this work, we apply the FHFV theory to interpret the sorption isotherm 

properties for broccoli based on the composition of broccoli. The composition 

varies throughout the parts of broccoli resulting in different moisture sorption 

behavior. Therefore, distinct parts of broccoli are considered.   

Plant tissue is generally compartmentalized: different components are located in 

different parts of the cellular tissue, such as sugars in vacuoles, protein and fibers 

in cytoplasm organelles. The compartmentalized plant tissue can be viewed as a 

phase separated system. The vacuole phase contains all the solutes (mono, 

disaccharides) and water; while the other phase contains all the biopolymers, from 

the cytoplasm, and cell wall materials. Due to the permeability of the membranes 

between them, water can diffuse between the two phases. At local equilibrium, 

water activities in two phases are equal. In the theory for fresh vegetables, we will 

acknowledge the fact of this compartmentalization, treating the tissue as a phase 

separated system. 

Processing methods may have a big effect on the structure, as cell membranes may 

loss permeability and the phase separated system becomes a mixed system, by 

which the moisture sorption isotherms may change significantly. Blanching 

changes the cellular structure [22-24], and consequently changes the organization 

of the cell structure. Leaching of soluble solids [25] changes the composition, 
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while protein denaturation increases the interaction parameter of water-protein, and 

changes consequently the sorption isotherm.  

Although several studies concern the influence of blanching on the progress of 

drying and the quality attributes [26-28], knowledge on the influence of blanching 

on the sorption isotherm is still limited.  

In this work, we therefore also evaluate the effect of blanching and composition 

changes on the moisture sorption isotherm relations. The evaluation is based on the 

product composition and physical properties, by which we aim to quantify the 

effect of blanching on the sorption isotherm for broccoli.  

 

3.2 Materials and Methods 

3.2.1 Sample preparation 

Samples were taken from freshly harvested broccoli. Moisture sorption isotherm 

measurements were performed with fresh, blanched and oven-dried samples. The 

fresh broccoli samples were obtained by cutting florets (height 0.5 cm and diameter 

0.5 cm) and stalks (height 1 cm and diameter 1 cm) from the fresh pieces of 

broccoli. The blanched samples were obtained by blanching in excess of water at 

90°C for 3 minutes. Then samples were divided into the categories florets and 

stalks. To reduce the measurement time for the moisture sorption isotherm 

measurements, all samples were pre-dried in an oven at 50°C for about 12 hours. 

This treatment might affect the cell structure, but Gonzalez et al. [29]
 
reported a 

minor reduction of cell viability for onion treated at for 30 min at 50°C in water. 

Also Sanjuan et al. [30]
 
and Wu and Chang [31] reported a heat treatment of 

broccoli at 40-70°C during 30 minutes didn‘t affect the texture of broccoli. 

Therefore, it was assumed that the texture was not affected by the pre-drying 

procedure.  

 

3.2.2 Moisture sorption isotherm measurement 

A 24-sample analyzer (SPSX-S3-EU01508 Sorption test instrument, Project 

Messtechnik, 2008) was used for moisture sorption isotherm measurements. All 
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measurements started at low moisture content, 0% relative humidity, going up 

stepwise (10%) to 90% and going down again to 0%. The change of sample weight 

was recorded every five minutes, the measurements for each level of water activity 

were minimal 250 minutes and if necessary they were continued until equilibrium. 

The equilibrium was determined when the weight change was less than 0.01% in 

three consecutive measurements. The sorption isotherms were measured at 25°C 

and 50°C.  

 

3.2.3 Glass transition temperature measurement 

Broccoli samples were dried in an air drier at 50°C (see sample preparation). 

Samples with different moisture content were then taken for glass transition 

temperature measurement, which were carried out in duplicate in the Modulated 

Differential Scanning Calorimeter-MDSC (TA Instruments). MDSC can increase 

the sensitivity and resolution of complex thermal events [43].  Instead of the linear 

temperature program, it is modulated by a sine wave with specified amplitude and 

frequency. The ability of the sample to follow the imposed modulation depends on 

the chosen period. The fastest modulation rate depends on the heat capacity and 

thermal conductivity of the sample. Most samples will easily follow modulation 

periods of 50 seconds or greater, at which heating rate of 2°C/min with amplitude 

of 0.5°C is a reasonable value to use [44].  

Therefore, for the measurement, Samples of about 20 mg were weighted in 

aluminum measuring cups which were hermetically sealed. The temperature scan 

in modulated mode was performed by increasing the temperature from -60°C till 

+160°C with a rate of 2°C/min and an oscillating temperature with an amplitude of 

0.5°C and a period of 100 seconds. During this scan the reversible and irreversible 

heat flow were measured. Glass transition temperature is in the reversible heat flow. 

It is identified as the midpoint between          and          .  
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3.2.4 Moisture content measurement 

For the Tg measurements, only part of the sample was used; the rest was put in the 

oven for moisture measurement. The moisture content was determined 

gravimetrically by oven drying (105°C, 24 h). 

For the moisture sorption isotherm was assumed that the equilibrium moisture 

content of a sample that resides at 0% RH equals to zero.  The measured value at 

this condition is used to calculate the moisture content for other relative humidity 

conditions.    

 

3.2.5 Glucose content measurement 

Fresh and blanched samples were prepared according the procedure given in 

section 2.1. All samples were frozen in liquid nitrogen and milled into powder. The 

glucose content was determined enzymatically. D-Glucose in presence of 

adenosine-5‘-triphophate (ATP) is phosphorylated by the enzyme hexokinase (HK) 

to glucose-6-phosphate (G-6-P) with the simultaneous formation of adenosine-5‘-

diphosphate (ADP). Only D-glucose is converted and fructose is not involved in 

the reaction. 

             
  
→                       (1) 

The enzyme glucose-6-phosphate dehydrogenase (G6PDH) in presence of 

nicotinamide-adenine dinucleotide phosphate (NADP+) catalyzes the G-6-P 

oxidation in gluconate-6-phosphate with the formation of reduced nicotinamide-

adenine dinucleotide phosphate (NADPH). 

               
     
→                                   (2) 

The amount of NADPH formed in this reaction is stoichiometric with the amount 

of D-Glucose. NADPH is measured by the increase in absorbance at 340nm.  
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3.3 Theory and Modeling 

3.3.1 Moisture sorption isotherm prediction: mixed system 

According the Flory-Huggins Free Volume theory [20], the activity of water in a 

mixture is:  

    (            )         (  
 

    
)                              

(3) 

in which    is the water activity (-),      is the volume fraction of water,       is 

the effective interaction parameter,       is the effective ratio of molar volume of 

water versus solutes, and        is the free volume term.                            

The free volume term      is given as 

                                                     

             
      

  

   

   
 
    

  
                                             (4) 

in which Mw is the molecular weight of water (g.mol
-1

), yw is the mass fraction of 

water (kg water/kg product), ys is the mass fraction of the solid matrix(-),       

(kJ.kg
-1

.K
-1

) is the change in the specific heat capacity at the glass transition of pure 

water, Tg is the glass transition temperature of the product (K), and T the actual 

product temperature (K). 

The glass transition temperature    follows from Couchman and Karasz relation, 

which is based on the entropy continuity condition at     and the volume continuity 

condition [32]:  

          
                       

               
                         (5) 

In which      and      are the glass transition temperatures of pure water and the 

solute. In the case of broccoli, the product matrix, being a mixture of fibers, sugars, 

and proteins, is considered as the solute.      (1.83 kJ/kg/K) and       (0.42 

kJ/kg/K) are the differences in specific heat of water or solute between rubbery and 
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glassy state which has the same value for all polysaccharides, sugars, and proteins 

[17-20]. ys and yw are the mass fractions of solids and water. 

Differentiation of Equation 5 gives:  

   

   
 

            (         )

(               )
                           (6) 

 

The effective ratio of the molar volume of water versus that of the solutes (    ) 

can be computed via the volume-averaged relation as well: 

 

    
 

∑       

∑    
 (mono (i=1), di (i=2), poly (i=3)) saccharides, protein ( i=4))        (7) 

 

For monosaccharides and disaccharides, the ratios of molar volumes 
 

  
 are 0.160 

and 0.084 respectively. For long chain polymers like proteins and polysaccharides, 

the effective ratio is zero.  

The volume fraction is calculated according to the mass fraction, and the density of 

the components (Table 1), with the assumption that the partial molar volumes are 

constant: 

   

  
  

∑
  
  

   
                          (8) 
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Table 1 the effective density of the components
33 

Component Density (kg/m3) 

Water 1000 

Ash 2440 

Protein 1330 

Carbohydrate 1550 

Fat 930 

 

The above constants are based on the assumption that the partial molar volumes are 

constant in rubbery and glassy state. As stated in other papers [20, 42], in the 

rubbery state, the specific volume of carbohydrates and water mixtures follow the 

rule of ideal mixing. However, in the glassy state, the specific volume may deviate 

from the ideal mixing rule which is due to the pore formation in the glassy state. 

Therefore, we assume that in the glassy state there are two phases: pore phase and 

solid phase. In the solid phase, it is assumed to follow the ideal mixing rule. In the 

pore phase, pore space can be occupied by water in the gas phase whose density is 

negligible compared to other compounds. Thus, in glassy state, we assume that 

ideal mixing is still valid [20].  
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Table 2 Composition data of broccoli floret and broccoli stalk (USDA data extended with 

data from Wageningen University) 

Component Broccoli floret (%) Broccoli stalk (%) 

Water 89.3 90.7 

Ash 0.87 0.92 

Protein 2.82 2.98 

Fat 0.37 0.35 

Total Carbohydrates 6.64 5.24 

Monosaccharaides 1.5 1.17 

Disaccharides 0.60 0.39 

Polysaccharides 3.2 2.34 

 

The remaining parameter in the moisture sorption isotherm relationship (equation 4) 

is the effective interaction parameter    , which depends on the composition. In 

broccoli monosaccharides (glucose, fructose), disaccharides (sucrose, lactose, and 

maltose), polysaccharides (fibers), and proteins are the main building blocks that 

influence the moisture sorption behavior (Table 2; extended USDA data for 

broccoli). It was assumed that glucose and fructose are present in a ratio of 1:1 [40], 

and because the contribution of ash is low it is not taken into account.  

A volume averaged relationship leads to the effective interaction parameter 

between water and the matrix with all of its components: 

      
∑      

∑    
   , (mono (i=1), di (i=2), poly (i=3)) saccharides, protein (i=4))    (9) 
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Here     is the effective interaction parameter of the mixture,     is the 

interaction parameter between component i and water, and     is the volume 

fraction of component i. For monosaccharides and disaccharides, the interaction 

parameters with water are constant at the values of 0.27 and 0.53, respectively. For 

polymers (fibers and protein), the interaction parameter follows from the 

composition: 

        (          )(        )
 
 , with               

         

∑  
 

             (mono (i=1), di (i=2), poly (i=3)) saccharides, protein (i=4))             (10)  

In which       equals 0.5 for a fully hydrated polymer, and        is the interaction 

parameter with the dry polymer i. For water-insoluble fibers       is constant at 0.8, 

for protein, depending on the degree of denaturation,        is in the range 0.8-1.4. 

For fully denatured protein       is equal to 1.4, a value that has been reported for 

meat, mushroom and carrot [19, 20]. The parameters are summarized in Table 3. 

 

Table 3 Interaction parameter of all components (van der Sman, 2012, 2013) 

Component symbol value 

Monosaccharides    0.27 

Disaccharides    0.53 

Polysaccharides       0.50 

       0.80 

Protein      0.50 

       0.8-1.4 
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3.3.2 Moisture sorption isotherm prediction: phase separated system 

For fresh products, the plant tissue is generally compartmentalized: soluble solids 

such as sugars (mono, disaccharides) are contained in vacuoles, which have their 

own cell membrane that is impermeable to solutes. Protein and fibers 

(polysaccharides) are found in cytoplasm and the cell wall material. These phases 

are separated by membranes (plasmalemma), which is permeable for water. 

Therefore, for fresh product, water is partitioned by two compartments to obtain 

local equilibrium, where the water activities of the two compartments are equal.  

                                                          (11) 

with               

Water activities in two phases have to be calculated separately via equation 3. The 

parameters in equation 3 such as glass transition temperature (  ), volume fraction 

(  ), effective ratio of the molar volume of water versus that of the solutes (    ), 

interaction parameter (    ) have to be determined via the composition for two 

phases. The fraction of water in two phases has to be determined via minimization 

procedures that solves the water partitioning that adheres the condition aw,1=aw,2. 

The structure and compartmentalization in fresh vegetables is affected by heat 

treatments, which may result in complete mixing of the two phases present in the 

fresh vegetables. Therefore for the blanched samples and the samples for which the 

sorption isotherm measured at higher temperatures (>50°C) the vegetable is 

considered as a homogeneous mixture. 

 

3.4 Results and Discussions 

3.4.1 Glass transition temperature of broccoli 

Since water acts as a plasticizer, the glass transition temperature at which the 

structure changes between glass and rubber state depends on the water content [34, 

35]. Pure water has a glass transition temperature of 134K while for fresh food 

with a mass fraction of water in the range of 0.8-0.9; the glass transition 

temperature is about 150K [36]. The measurement range of common glass 

transition temperature measurement devices is above 250K and only broccoli 
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samples with moisture content below 17% fall in this range. Therefore, our 

measurements concern dried samples in the range of 3-17% (%kg water/kg 

product). The results are given in Table 4.  

 

Table 4 Glass transition temperature measurements of broccoli with different water 

contents 

Water content (% kg water/kg product)    (K) 

16.5 269.3 

8.25 288.3 

6.62 307.5 

3.05 320.8 

 

Using           for pure water and the change in specific heat capacity      

                , equation 6 was fitted against experimental data. The fit resulted 

in            and                        for broccoli. Figure 1 gives the 

curve and as a validation the figure includes the product glass transition 

temperature measured by Sanjuan et al. [37, 38] which coincides with the fitted 

curve.  
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Figure 1 Results for the glass transition temperature (Tg) measurements and comparison 

with literature data 

 

3.4.2 Adsorption-desorption hysteresis 

The Flory Huggins Free Volume theory concerns the molecular properties of 

materials which are being mixed and presents therefore the absorption isotherm. 

For modeling drying processes the desorption isotherm is more relevant than the 

absorption isotherm. All the adsorption-desorption curves, obtained from the DVI-

measurements, showed that the adsorption-desorption hysteresis is minimal (an 

example is given in Figure 2). Hence,  the desorption isotherm also interpreted with 

the FVFH theory. 
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Figure 2 Comparison of desorption and adsorption isotherm curve for broccoli stalks at 

25°C 

 

3.4.3 Fresh broccoli moisture sorption isotherm 

Fresh broccoli sorption isotherm measured at 25°C, phase separated FHFV was 

applied. Monosaccharaides, disaccharides, and water (    ) are in the vacuole 

phase, while protein and polysaccharides and water (    ) are in the cytoplasm 

organelles. The interaction parameters of water-monosaccharide   , water-

disaccharide  , water-polysaccharide    and water-protein    from table 3 were 

applied to calculate the fresh broccoli moisture sorption isotherm data at 25°C. At 

equilibrium, water activities at two phases are equal. Water is partitioned in the two 

phases. Water mass fraction in the vacuole phase was found to be linear with total 

moisture content for both floret and stalk.  

                               (12) 

with X the moisture content (kg water/kg dry matter). This implies that the water 

partitioning between the two phases is nearly constant, which explains the 

similarity between the two predictions in figure 3. 
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Our calculations show little difference in the predictions of the sorption isotherm 

using FHFV theory for both the phases-separated system and the completely mixed 

system. Both predictions show good comparison with experimental data, as 

indicated in Figure 3.  

It was expected that temperature have a minor effect on the interaction parameter 

of water-(poly) saccharides. For 50°C measurements, however, for broccoli with a 

considerable amount of protein in the dry matter, denaturation of protein results in 

a higher value of    and as a consequence the contribution of              

increases compared to the free volume term     . 

The FHFV was fitted to the measured values at 50°C with       (protein-water) as a 

fitting parameter. The fitted value for      was 1.4 (see Table 5 and Figure 3), 

which is the same value as for fully denatured protein [17, 18]. The complete 

denaturation is probably caused by the relative long residence time in the DVS 

sorption measurement equipment (about 80 hours). 

 

Table 5 Estimated interaction parameters of protein for fresh broccoli florets and stalks 

  

Interaction 

parameter    

RMSE 

floret 

R
2
 

floret 

RMSE 

stalk 

R
2
 

stalk 

25°C 

mixed theory 

0.8 0.054 0.970 0.038 0.984 

25°C 

Phase separated 

0.8 0.060 0.984 0.039 0.985 

50°C 

 

1.4 0.026 0.992 0.072 0.937 
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Figure 3 Desorption isotherm data and Flory Huggins Free Volume Theory curves for fresh 

broccoli at 25°C and 50°C 
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3.4.4 Blanched broccoli 

During blanching in water soluble solids leach into the water. Mate et al. [39] used 

the glucose content as an indicator for the change of soluble solids in the matrix 

during blanching. The loss in glucose content in blanched samples (compared to 

fresh samples) is given in Table 6. The relative loss is stronger for florets stronger 

than for stalks and this affects the moisture sorption isotherms through equation 4, 

equation 8 and equation 10, by lower values of    in the FHFV theory.  

Table 6 Relative glucose loss in broccoli due to blanching 

Broccoli Glucose loss (%） 

floret 49.8 

stalk 28.5 

 

Although the composition changes were taken into account, the moisture sorption 

isotherms of blanched product were not correctly predicted by using the values in 

table 3. Therefore, the FHFV was fitted to the data with    as fitting parameter. 

The results for the blanched broccoli are given in Figure 4, and the estimated 

values for the interaction parameters    in Table 7. The interaction parameter for 

(poly) saccharides in blanched broccoli has the same value as in the fresh samples. 

The proteins in broccoli denature partly during short-time blanching and this 

results in a higher value of the protein interaction parameter (  =0.9). The protein 

interaction parameter at 25°C and 50° differ also (respectively 0.9 and 1.4). The 

value   =1.4 obtained at 50°C is in line with our previous observation for fresh 

broccoli and shows the continuation of protein denaturation during the residence 

time of sample in the moisture sorption isotherm measurement device.  
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Table 7 Estimated interaction parameters of protein for blanched broccoli 

  

Interaction 

parameter    

RMSE 

floret 

R2 

floret 

RMSE 

stalk 

R2 

stalk 

25°C 0.9 0.039 0.984 0.034 0.988 

50°C 1.4 0.055 0.951 0.054 0.953 

 

To demonstrate the effect of composition and the role of heat treatments, all the 

obtained sorption isotherms for fresh broccoli and blanched broccoli florets and 

stalks are plotted for the two temperatures in Figure 5. The effects of the heat 

treatments on the sorption isotherms are clear. With the intensive heating, cell 

walls were broken down and protein was denatured, resulting in an enhanced 

release of bounded water. Therefore, at the same temperature, the sorption 

isotherms of blanched broccoli are below that of fresh broccoli. Similarly, Figure 5 

shows the differences in the sorption isotherms for the measurements at different 

temperatures for fresh and treated samples.   
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Figure 4 Desorption isotherm curves at 25°C and 50°C for blanched broccoli florets 

and stalks. 
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Figure 5 Comparison of fresh and blanched broccoli floret and stalk at 25°C and 50°C 
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Sorption isotherms expressions, like Oswin, Henderson, GAB, are derived from 

gas adsorption properties to solid surfaces. Food products, however, are a matrix 

with a mixture of water and several components with polymer properties. For these 

systems, the Flory-Huggins Free Volume (FHFV) theory is more appropriate to 

describe the moisture sorption isotherms.  The FHFV allows prediction of the 
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the components. In this work, the use of the FHFV is applied to interpret the 

moisture sorption isotherms of broccoli. 

For both fresh broccoli florets and stalks we have applied the FHFV theory for 

phase separated systems, with soluble solids contained in the vacuole. The water 

partitioning between vacuole phase and biopolymer phase remained about constant. 

Using FHFV interaction parameters from earlier and independent studies on pure 

components (monosaccharaides, disaccharides, polysaccharides, and protein) 

resulted for the moisture sorption isotherm at 25°C in good agreement of prediction 

and experimental data.  

The moisture sorption isotherm of 50°C showed that the interaction parameter for 

protein has been changed to that of fully denatured protein during the long time the 

sample resides in the moisture sorption isotherm device.  

Blanching has a significant influence on the moisture sorption behavior. This is 

caused by 1) loss of soluble solids (leaching of carbohydrates), and 2) protein 

denaturation. Taking the changed composition into account it was found that for 

the 25°C moisture sorption isotherm the interaction parameter for protein increased 

because of the denaturation during blanching. For 50°C the protein interaction 

parameter was equal to fully denatured protein like for the isotherm for fresh 

broccoli ate 50°C. 

The Flory-Huggins Free Volume theory (FHFV) has a sound theoretical basis for 

water-polymer interactions and can well describe the moisture sorption isotherm 

relation for food products like broccoli. We do expect that the theory will perform 

similarly for other products. Most parameters in the FHFV can be found in 

literature and if the state of protein is known, the FHFV predicts the moisture 

sorption isotherm well. If the state of protein is not precisely known, the water-

protein interaction is the only parameter to be estimated. This is in contrast to 

traditional moisture sorption isotherms relationships, which need 3-5 parameters to 

be estimated (like the GAB, Henderson, Oswin and other relations). The obtained 

values make physical sense, which implies that predictions of the sorption 

isotherms are possible when good information about the components and their state 

is available. 
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Abstract 

Magnetic Resonance Imaging (MRI) offers unique opportunities to monitor 

moisture transport during drying or heating of food, which can render 

unexpected insights. Here, we report about MRI observations made during 

drying of broccoli stalks indicating anomalous drying behaviour. In fresh 

broccoli samples the moisture content in the core of the sample increases 

during drying, which conflicts with Fickian diffusion. We have put the 

hypothesis that this increase of moisture is due to the stress diffusion induced 

by the elastic impermeable skin. Pre-treatments that change skin and bulk 

elastic properties of broccoli show that our hypothesis of stress-diffusion is 

plausible. 

 

Keywords: MRI, Drying, Broccoli, moisture transport, stress diffusion 
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4.1 Introduction 

Magnetic resonance imaging (MRI) is an established technique for studying the 

internal states in biological systems. When coupled to in-situ thermal 

treatments MRI can be viewed as a rather novel enabling technology that yields 

unprecedented insights into the physical transport phenomena that occur during 

food processing.
1-6

 

In this work, we apply MRI to investigate the changes in moisture distribution 

in time observed during in-situ drying of broccoli which apparently violates 

Fick‘s law. 

Convective drying of vegetables is mostly considered as a diffusion-controlled 

process.
7
 Traditionally in food science, diffusion is described by Fick‘s law in 

which the mass flux is linear with the gradient in moisture content. A few 

papers in food science report deviations of moisture transport from Fick‘s law. 

Johnson et al. (1998)
8
 reported an increased moisture content in the product 

centre during drying of plantain but without further explanation. Arnaud and 

Fohr (1988)
9
 observed that the intra-kernel moisture content gradient increases 

during drying and decreases during tempering. Courtois et al. (2001)
10

 and 

Toyoda (1988)
11

 have considered the internal structure of products as a reason 

for deviation. In rice and corn there are internal regions with different moisture 

transport properties. Other deviations from Fick‘s law are reported for cooking 

of starch-rich products with moisture transport against the moisture 

gradient.
12,13

 The deviations are said to be caused by gelatinization of starch 

during heating, which results in changes of local water holding capacity and 

water activity in the heterogeneous product. Different degrees of starch 

gelatinization result in different potential maximum moisture contents (ceiling 

moisture content). Therefore, the moisture transport during rice cooking is 

driven by the difference of local moisture content and the ceiling moisture 

content.  Watanabe et al. (2001)
14

 proposed the so called ―water demand‖ 

model to describe this transport phenomenon, which is not captured by Fick‘s 

law.  

Furthermore, Wählby et al. (2001)
15

 observed during experiments an increased 

moisture content in the product centre during cooking of beef without clear 

explanation. Transport against the gradient in moisture content is 
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thermodynamically possible if gradients in swelling pressure arise. Van der 

Sman (2007)
16

 modelled swelling pressure-driven moisture transport (based on 

the Landau expansion of the Flory-Rehner theory) caused by protein 

denaturation near the product surface during cooking of meat. In that model, the 

elasticity properties of the product play an important role and result in moisture 

transport in directions opposite to the moisture gradient. Recently, it has been 

shown that the full Flory-Rehner theory, indeed, holds for cooked meat.
17

 

Another example is from the field of polymer physics where during drying the 

formation of a skin at the polymer surface resulted in water transport against 

the gradient in the moisture content. Okuzono and Doi (2008)
18

 have called this 

phenomenon stress diffusion, and they formulated a generalized Fick‘s equation 

with an elastic term to describe the stress diffusion.  In view of the preceding 

cited analysis and observations of non-Fickian moisture transport, we pose that 

the observed non-Fickian behaviour during broccoli drying is due to elastic 

stresses. 

To test this hypothesis, we applied pre-treatments (blanching, freezing and 

peeling) which change the product structure and thus its textural and elastic 

properties. Experiments have been done in a MRI device with continuous and 

controlled in-situ hot air supply; the acquired MRI images provide data about 

moisture transport and shrinkage during drying. The different pre-treatments 

have been compared in terms of drying rates, shrinkage and moisture content 

profiles, via which the validity of our hypothesis are analyzed. 

 

4.2 Materials and Methods  

4.2.1 Materials  

For all measurements parts of the broccoli stalk were used. The sizes of the 

samples were about 0.01 m in height, 0.01 m in radius. Figure 1 gives an 

example of a fresh broccoli sample.  
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4.2.2  Pre-treatments 

In total six different pre-treatments were applied. An overview of the samples 

and pre-treatments is given in Table 1. After all pre-treatments, the free water 

at the sample surfaces was removed at room temperature with tissue paper.  

 

 

Figure 1 Cross section of a broccoli stalk sample 

 

 

4.2.3 Drying in the MRI device 

The sample was fixed by a stick on a sample supporter and inserted into a drying 

chamber in the MRI measurement device. The size of the drying chamber was 

0.032 m in diameter and 0.2 m in length. A continuous flow of temperature-

controlled air was supplied. The air temperature was controlled at 30°C or 50°C, 

the air velocity at 1.0m/s and the relative humidity at 10%.  

Drying was continued until the moisture content of the samples was constant. 

Depending on the material properties, the experimental time for the fresh broccoli 

stalks ranged from 12 to 48 hours. Initial and final product moisture contents (M0, 

Mi) were determined by oven drying (105°C, 24 hours).   
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Table 1 Overview of pre-treatments and experiments 

Pre-treatment  Procedure 

Peeling 1.0mm-1.5mm skin was removed  

Blanching 90°C water, 3 minutes 

Freezing -25°C, 48 hours 

Experiment pre-treatment 

1 Non treated 

2 Peeled 

3 Non-peeled, blanched  

4 Peeled, blanched 

5 Non-peeled, frozen 

6 Peeled, frozen 

 

4.2.4 MRI imaging equipment 

All measurements were performed on a 3 T (128 MHz for protons) MRI system 

(Bruker, Karlsruhe, Germany), consisting of an Avance console, a 

superconducting magnet with a 0.5 m vertical free bore (Magnex, Oxford, UK), 

a 1 T/m gradient coil, and a birdcage RF coil with an inner diameter of 0.04 m.  
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4.2.5 MRI imaging 

3D images were obtained using a Turbo Spin Echo (TSE) MRI sequence
19

, a 

repetition time TR of 2 s, an effective spin echo time TE of 3.35 ms and a spectral 

bandwidth SW of 50 kHz. Only 16 echoes were acquired in the TSE train to avoid 

T2-weighting. Odd and even echoes were separately phase-encoded forming two 

different images to avoid Nyquist ghost‘s artefacts, so the turbo factor was 8. Two 

acquisitions were averaged to improve image quality. The Field-Of-View (FOV) 

was 35×35×35 mm
3
 with a matrix size of 64×64×64 resulting in a spatial 

resolution of 0.55×0.55×0.55 mm3. The interval time between measurements was 

34 minutes. 

T2 mapping was done using a Multi Spin Echo (MSE) imaging sequence20, a TR 

of 2 s, a TE of 3.59 ms and a SW of 50 kHz. Per echo train 128 echoes were 

acquired; 16 acquisitions were averaged to improve image quality. The FOV was 

35×35 mm2 with a matrix size of 64×64 resulting in an in-plane resolution of 

0.55×0.55 mm2. The slice thickness was 3 mm. The interval time between 

measurements was 34 minutes. 

 

4.2.6 Numerical methods and data analysis 

MRI-measurement data handling for graphical interpretation and analysis was 

performed with home-built software written in IDL (RSI, Boulder, CO). For 

shrinkage calculations, pixels with an intensity value above 0.75 (with the 

maximum value of 11.42 per pixel) were counted and for each pixel a volume of 

0.16mm3 was assigned. By summing up the volume of all counted pixels the 

instantaneous volume (Vt) of the sample was calculated.  

The degree of shrinkage is defined as the ratio of the reduced volumes (V0-Vt) to 

the initial volume (V0): 

                                                  
       

  
                                                       (1) 

and the fraction of moisture removed from the initial product is:  

                                                          
     

  
                                                       (2) 
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Where M0, the initial moisture content, was measured by the oven method and 

Mt is the moisture content at different sampling time t.  

 

4.2.7 MRI data calibration 

For wet samples, the signal intensity is assumed to be linear with moisture 

content.
21 

However, for nearly dry samples the intensity images are weak and 

deviate from the linear relationship. The minimum detectable liquid water 

concentration is about 20 kg.m
-3

.
22,23

  

Hence, to establish the extent of linearity between MRI signal intensity and 

moisture content, we have plotted the shrinkage data as a function of the fraction of 

removed moisture. Assuming incompressibility of the solid and water present in 

broccoli, and absence of air, the reduced volume must be attributed to the loss of 

moisture. In Figure 2 we show this relation, which also indicates the accuracy of 

the interpretation of signal intensity to moisture content. It shows that below 

Sm=0.85 shrinkage is more or less linear with the fraction of removed moisture, 

whereas in the last phase of drying (Sm >0.85) there is a deviation from linearity. In 

this region, with product moisture content below 0.3 kg water/kg dry matter, the 

measured values might be lower than the actual values.  
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Figure 2 Shrinkage as a function of the fraction of moisture removal. a: unpeeled fresh 

samples at 30 and 50°C drying; b: peeled fresh samples at 30 and 50°C drying; c:  peeled 

blanched samples and unpeeled blanched samples dried at 50°C; d: peeled frozen samples 

and unpeeled frozen samples dried at 50°C. 

 

4.3 Results and Discussions 

4.3.1 Drying pattern of fresh broccoli stalks 

Figure 3 presents the MRI measurements for the central cross-section of fresh 

broccoli samples dried at 30°C and 50°C. Differences in brightness indicate the 

distribution of moisture throughout the sample; the brighter the color, the higher 

the moisture content. The bar in the figures provides a relative scale for the 

moisture content. The gap at the bottom of each image indicates the hole made by 

the stick which supports the sample. In the first image of both figures slightly 

higher moisture content is observed at the edges. It indicates that there is still some 

free water at the surface, which is the consequence of cutting. 
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Figure 3 Series of MRI intensity of the middle slice of fresh broccoli samples in time. Top: 

drying at 30 °C; time interval between samples 272 minutes, total time 50 hours. Bottom: 

drying at 50 °C, time interval between samples 68 minutes, total time 12.5 hours. 
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Figure 3 shows an anomalous drying behaviour for both the 30
o
C and 50

o
C drying 

experiment for fresh and non-treated samples: after several hours of drying the 

moisture in the centre has been increased for the sample dried at 30°C the 

brightness at the center of the images of row 2 is above that of row 1, and for 50°C 

drying the brightness of the first image of row 2 is above that of the initial image.  

 

Figure 4 MRI intensity values for a cross-section (given by the horizontal lines). Top: 

drying at 30 °C; initial sample and at 18.1 hours. Bottom: drying at 50 °C; initial sample 

and at 6.8 hours. In both cases, the moisture content in the centre of the samples surpasses 

the initial sample. 

 

 1 

 2 
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Figure 4 gives the intensity (proportional to moisture content) for the cross-section 

of the image at start of drying and at 18.1 hours for drying at 30°C, and at 6.8 hours 

for drying at 50°C. We observe clearly that during drying, the moisture content in 

the centre rises far above the initial moisture content at any location of the sample. 

Compared to its initial value, the moisture content in the centre increases by 50-

60%. This anomaly in drying behavior evidently deviates from the standard Fickian 

diffusion. According to the work of van der Sman (2007)
16

 and Okuzono and Doi 

(2008)
18

, shrinkage and deformation of the skin cause an internal pressure gradient, 

which results in a temporarily pressure-driven moisture transport towards the 

center of the product.  

 

Figure 5 Drying curves of fresh broccoli stalks at different drying temperatures (30 and 

50°C drying). 

 

Despite the increasing moisture content in the centre of the product, the drying 

curves for the full samples, which are given in Figure 5, show monotonic 

decreasing moisture content. 

Furthermore, the MRI images in Figure 3 show the decreasing size of the samples 

due to shrinkage during drying. Figure 2a shows the shrinkage quantitatively. The 

drawn lines in Figure 2 correspond to the situation where shrinkage is equal to 

moisture removal. The data points for drying at 50°C are above that for drying at 
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30°C which indicates that shrinkage at 50°C is stronger than at 30°C (Figure 2a). 

This result can be explained by the relation of elasticity and moisture content.  

Krokida et al. (1998)
24

 reported that in the high moisture content region, elasticity 

decreases with decreased moisture content, whereas in the low moisture content 

region, elasticity increases while moisture content decreases.  During drying , the 

skin dries fast and due to  the low moisture content the skin is more elastic and 

causes a centre-directed moisture transport.
16

 Moreover, the skin forms a 

significant barrier for moisture transport and therefore moisture removal takes 

place in the longitudinal direction of the sample. It results in an early stage of 

drying in a ―butterfly‖ shape.    

The cross-sections in Figure 4 also show that shrinkage differs for the height and 

width direction. For isotropic shrinkage of a cylindrical shape, the ratio (Vt/V0) 

between the diameter at time t (  ) and the initial diameter (  ) is equal to the 

square root of the volume ratio (Vt/V0)
0.5

 (with    the volume at time t , and    the 

initial volume).  

However, for the broccoli samples in Figure 4, (Vt/V0)=0.52, while (Vt/V0)
0.5

=0.22. 

The anisotropic shrinkage is caused by the impermeable and elastic structure of the 

skin and causes internal stress in the samples.  From these results it is hypothesized 

that by applying pre-treatments that break down the wall structure the anomalies in 

drying behaviour could be reduced or even be cancelled. 

 

4.3.2 Drying patterns after pre-treatments 

To verify the hypothesis that the centre directed moisture transport is induced by 

the elastic properties of the product structure, product treatments were applied to 

break down the wall structure. The product treatments are 1) peeling: to remove the 

skin, 2) blanching: to soften the total tissue, both skin and core, thus to level out the 

elasticity differences between skin and center
25

, and 3) freezing and thawing: to 

break down the internal structure, and to change the elasticity of the internal 

structure.
5 

 

 



Chapter 4 

86 

 

4.3.2.1 Peeling 

The results for two drying temperatures are shown in the images of Figure 6. 

Compared to Figure 3, the increased moisture content hardly occurs which 

confirms the role of elastic properties and the transport barrier of the skin. The first 

images also show increased moisture content at the surface, which is a result of 

moisture release at the surfaces where the skin was removed by cutting. 

MRI images in Figure 3 and Figure 6 show different forms of shrinkage during 

drying. The peeled samples keep their original form for a long time, but towards 

the end of drying when the edge of the product approaches the glassy state, these 

samples also end with the ―butterfly‖ shape.   Figure 2b presents the degree of 

shrinkage as a function of the fraction of removed moisture for the peeled samples 

at 30 and 50°C. For a fraction of removed moisture below 0.85, shrinkage is linear 

to the fraction of removed moisture. For both temperatures the results coincide 

with the drawn line, which indicate the absence of an elasticity contribution to 

drying (see section 3.1).  

 

4.3.2.2 Blanching 

Blanching results in tissue-softening and can level out the differences in 

mechanical properties between the core and the skin.
26

 For the blanched samples 

only a small difference in drying behavior between the peeled and unpeeled sample 

is found in Figure 7. So, the barrier for mass transport by the skin is removed by 

only blanching. Not only the structure of the skin is softened, the internal matrix is 

also softened by blanching and as a result, differences in elastic properties are 

leveled out resulting in standard Fickian moisture transport. The drying time is 

reduced to about 4.5 hours. The drying rate of both samples is nearly equal, but the 

shrinkage of the peeled blanched sample is below that of the non-peeled sample 

(Figure 2c).  

 

4.3.2.3 Freezing 

During freezing, ice crystals are formed in the tissue. Upon thawing, individual ice 

crystals merge into large complexes which both break the structure and increase the 
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internal pore size. With the destruction of internal structure, elasticity is lowered. 

However, freezing is not effective enough to break down the barrier by skin. 

Results for peeled and non-peeled samples are given in Figure 8. Due to the 

internal stress, the product shrinks easily during drying. The images in Figure 8 

show a strong ―butterfly‖ form for the non-peeled frozen sample. The skin remains 

a mass transfer barrier. Drying occurs mainly along the longitudinal direction, and 

there is moisture accumulation just below the skin where the highest moisture 

content was detected. 

 

 

Figure 6 Series of MRI intensity of the middle slice of peeled broccoli stalks in time. Top: 

drying at 30 °C; Bottom: drying at 50 °C. Total drying time respectively 12.5 and 9.0 hours 
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Figure 7 Series of MRI intensity of the middle slice of blanched broccoli stalks in time. 

Samples are dried at 50°C. Top: fresh unpeeled sample is blanched before drying. Bottom: 

sample first peeled then blanched before drying. Total drying time 4.5 hours. 

 

 

Figure 8 Series of MRI intensity of the middle slice of frozen broccoli stalks in time. 

Samples are dried at 50°C. Top: fresh sample frozen before drying. Bottom: sample first 

peeled then frozen before drying. Total drying time 4.5 hours. 
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The barrier for mass transport is absent for the peeled sample and therefore the 

peeled frozen sample does not have elastic stress-driven diffusion, and dries 

uniformly and the shape remains during drying and the moisture content in the 

center decreases in time. For both samples, shrinkage was equal to the volume of 

lost moisture (see Figure 2d). The change in the structure due to the freezing and 

thawing advances drying significantly and drying is completed within 4.5-5 hours.  

 

4.4 Conclusions 

From this investigation using in-situ MRI imaging of drying broccoli, and above 

cited earlier reports, it is observed that moisture transport in foods can be due to 

moisture concentration gradients and gradients in elastic stress. In our case of pre-

treated broccoli, the gradients in elastic stresses are probably induced by 

inhomogeneity in elastic properties of the skin compared to the core. During drying 

of broccoli, the internal stress gradient can achieve a level that results in moisture 

transport against the gradients in moisture concentration. These observations are 

confirmed by pre-treatments which breakdown the internal structure and that of the 

product skin. Removing the skin of the broccoli sample by peeling results in a 

uniform product with drying behavior closed to Fickian diffusion. Blanching as a 

pre-treatment softens the skin and core of the product and creates uniform 

properties throughout the material to be dried. In this case drying can, indeed, be 

considered as a diffusion-driven process. Freezing and subsequently thawing as 

pre-treatment of fresh broccoli does not change the inhomogeneity of the elastic 

properties of the product during drying.  In addition, we have observed that the pre-

treatments peeling, blanching and freezing all enhance the drying rate significantly.  

It is also likely that the skin (cuticle) of fresh products forms a barrier for moisture 

transport, which amplifies the effects of the internal stress gradients. This leads to 

anisotropic shrinkage, and subsequent moisture transport towards the centre of 

product.  Drying of fresh products no longer follows the standard Fick‘s law of 

diffusion. Drying models must be extended and the observed results show that 

stress-driven diffusion term must be included, similar to the work of Okozuno and 

Doi (2008)
18

.  

According to thermodynamics, it is even more proper to relate the moisture 

transport to gradients in chemical potential (or equivalently water activity or 
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swelling pressure). If formulated in terms of the proper thermodynamic potential, 

there exists no anomaly. The formulation of transport in terms of gradients of 

thermodynamic potential is customary in the field of soft matter physics
18,27

, and 

food science can take advantage of this in adapting their framework. 
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Quantifying Broccoli Drying Rates 

from MRI Measurements 
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Abstract 

The distribution of the internal moisture content during drying of broccoli is 

monitored by MRI imaging with controlled airflow and temperature. The 

measurements concern fresh broccoli florets with a porous structure and stalk 

samples as well as pre-treated (blanched and peeled) samples. The drying 

behaviour in the MRI device is compared with the behaviour in a pilot installation. 

The Free Volume theory describes the variation of the effective diffusion 

coefficient throughout the rubbery and glassy states that occur during drying of 

food products. The Free Volume theory is validated on the average moisture 

content from the MRI experiments. The fitting parameters were the mass transfer 

coefficient and the self-diffusion coefficient for solids.  

The results of MRI measurements showed that pre-treatments increase the drying 

rate of pre-treated products, which is result of an increased mass transfer 

coefficient and self-diffusion coefficient for solids due to the removal of a transport 

barrier or opening the cell structure. With the estimated parameter values the Free 

Volume theory reveals how the effective diffusion coefficient varies with moisture 

content. Drying curves from the MRI experiments for a single particle represent the 

drying behaviour of a batch of particles in the pilot plant. 

 

Keywords: diffusion properties; MRI; convective drying; moisture profiles 

 

 

 

 

This chapter has been submitted as X.Jin, R.G.M. van der Sman, E. Gerkema, F.J. Vergeldt, 

H. van As, G. van Straten, R.M. Boom, A.J.B. van Boxtel, Quantifying broccoli drying 

rates from MRI measurements. 
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5.1 Introduction 

Models to describe the mass transport driven by concentration gradients during 

drying of food are based on Fickian diffusion (Mulet et al., 1999). In these 

representations the diffusion coefficient is set to be a function of temperature 

according to the Arrhenius equation.  However, due to the interaction between the 

product matrix and water, drying of food products behaves in a more complex way, 

and consequently, often a mismatch between the outcome of diffusion based drying 

models and the data is observed. An important  reason for the deviation is that 

during drying the product passes through rubbery and glassy states, resulting in 

changes of water mobility and consequently in a moisture dependent effective 

diffusion coefficient. The varying diffusion properties within each state and 

between the different states may not be ignored. Therefore, a model that reflects 

the physical changes by a varying effective diffusion coefficient is required.  

In previous work (Jin et al., 2011, Sman and Meinders, 2013) the Free Volume 

theory for moisture transport is proposed to predict the moisture transport during 

drying of broccoli. This theory includes water mobility and involves the glass 

transition temperature to distinguish between different moisture transport in 

rubbery and glassy states. The potential of this model to predict moisture transport 

was illustrated by simulation studies on a spatially distributed model and 

comparison with literature information.  The first aim of this work is to validate a 

spatial distributed drying model based on the Free Volume theory from 

experimental data. 

The validation of a spatially distributed drying model is difficult with traditional 

methods. The most used methods to  examine the internal moisture distribution in 

foods during drying are destructive methods (e.g. by taking slices from the sample) 

or non-destructive methods (e.g. γ ray densitometry). Drawbacks of these methods 

are the requirements on the size of the sample, the limited resolution and that they 

can only be applied in a one-dimensional direction (McCarthy et al., 1991, Ruiz-

Cabrera et al., 2005, Chen, 2007).  

Magnetic Resonance Imaging (MRI) is a non-destructive technique to examine the 

interior of food products. It provides the opportunity to investigate the internal 

moisture distribution and transport of food products during in-situ heating. Nott et 

al., (2000) applied the technique to monitor the phase transition and temperature 
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distribution in food during microwave heating. Watanabe et al., (2001) applied this 

technique to monitor moisture transport during rice cooking. Other examples of the 

application of MRI to food products are given by Schrader and Litchfield (1992), 

Foucat, et al. (2002) and McCarthy et al. (1991). In contrast to these examples, in 

this work MRI is used for in situ monitoring of the moisture content and its 

distribution during drying and to derive characteristic parameters in the Free 

Volume theory. 

The cell structure in plant tissue has also a main role in moisture transport. The 

density of the cell structure increases from the centre towards the surface. 

Especially the surface and the layers just below the surface form a high resistance 

to moisture transport. Blanching affects the cell membranes and equalizes the 

resistance for moisture transport throughout the tissue (Sila et al., 2005, Gomez et 

al., 2004, Galindo et al., 2005). Another method to equalize the resistance is the 

removal of the outer layer by peeling (Xanthopoulos et al., 2012, Prachayawarkorn 

et al., 2010). In our previous work, the effect of pre-treatments on the internal 

moisture distribution and shrinkage behaviour during drying was investigated with 

MRI (Jin et al., 2012). In that work, it was shown that pre-treatments prior to 

drying significantly increase on the drying rate, but it was not studied 

quantitatively. Hence, the second aim of this work is to quantify the drying rate 

from experimental MRI data. For that purpose, we fit moisture profiles in broccoli 

during drying from MRI imaging data to simulations of a drying model using the 

Free Volume theory. Influences of different pre-treatments (peeling, blanching) on 

drying rate of broccoli are quantified by characterizing parameters: the mass 

transfer coefficient and the self-diffusion coefficient for solids  

In the MRI installation only one broccoli particle can be dried at a time. These 

results can differ to that of a large scale dryer. The third aim of this work is to 

compare the drying behavior of a single particle in the MRI installation and that of 

multiple particles in a pilot dryer. 

 

5.2 Theory and Modeling 

At constant temperature, Fick‘s second law for diffusion-controlled particle drying 

is given as: 
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)                 (1) 

with Deff the effective diffusion coefficient(m2.s-1), W the moisture content 

(kgwater.kgdry matter-1), r the position in the diffusion direction (m) and t the 

time(s).  

According the Maxwell-Eucken relationship, the diffusion coefficient for water in 

porous products is a combination of the diffusion coefficient of water in the 

continuous phase (Dc ; product) and in the dispersed phase(Dd ; air):   

       (
                    

                   
)               (2) 

with   is the porosity (-) (estimated as 0.3 for broccoli florets and 0 for stalks from 

image processing), Dd( m2.s-1)  the water diffusion coefficient in air which is 

given by Olek (2003), : 
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                (3) 

where P is the pressure(Pa), and T the temperature(K).  

Dc ( m2.s-1) is the water diffusion coefficient in the solid matrix, and follows from 

the Darken relation (Hahn et al., 1986, Sman,and Meinders,2013): 

                                 (4) 

                                                                    (5) 

with Dw( m2.s-1) is the self-diffusion coefficient of water molecules, Ds( m2.s-1) 

the self-diffusion coefficient of solid particles,  (-) the volume fraction of the solid 

phase, Q(-) the thermodynamic factor, and   (-) the interaction parameter (Jin et al., 

2013) 

The self-diffusion coefficient of water molecules Ds( m2.s-1), is given by the Free 

Volume theory (Vrentas and Duda, 1977): 
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with    and    respectively the mass fraction of water and solids in the product. 

These mass fractions are related with the volume fraction  . The free volume 

parameters for water and product are given in Table 1. The Free Volume 

parameters sucrose in Table 1 holds for a large range of food ingredients. In 

contrast to Vrentas and Duda (1977) the glass transition temperature of sucrose is 

used instead of that of the product.  

Table 1 Universal parameters for the Free Volume theory 

Water properties Value  Product  properties Value 

 ̂ 
 
 (ml.g-1) 0.91   ̂ 

 
 (ml.g-1) 0.59 

Tg,1 (K) 136  Tg,2 (K) 360 

D0,w (m2.s-1) 1.39×10-7  K22 (K) 69.21 

ΔE (J.mol-1) 1.98×103  k (J.K-1) 1.38×10-23 

K21 (K) -19.73  a (m) 1×109 

K11/γ (m.L.g-1.K-1) 1.945×10-3    

 

Because of the varying composition and physical properties of the solids, the self-

diffusion coefficient Ds is used as a fitting parameter.  

To solve equation 1, symmetry in the product is assumed. At the centre of the 

product there is no mass transfer and at the surface where r=R, the boundary 

condition for mass transfer is: 

  (             )        
     

  
               (7) 

with kc the overall mass transfer coefficient (m.s-1), Csurface and Cair are 

respectively the vapour concentration at the product surface and air (kg.m-3) and ρp 

the product density (kg.m-3). Using uniform Fickian diffusion for product implies 
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that the resistance for mass transport in the surface layer is now added to the mass 

transfer coefficient. 

         
        

  
              (8) 

The sorption isotherm relationship is used in the boundary condition for mass 

transfer (equation 9). According to our previous work (Jin et.al. 2013, van der 

Sman and Meinders, 2011, van der Sman 2012), the sorption isotherm is given by 

Flory-Huggins Free Volume theory (FHFV). The relation is described as: 

             (  
 

    
)                        (9) 

With aw the water activity (-),  the solid volume fraction (-),   the interaction 

parameter (-), N (-) the molar volume ratio of polymer and solvent (see Appendix 

A). The interaction parameter is a function of the physical properties of the 

components (Jin et.al. 2013). 

 

5.3 Materials and Methods 

5.3.1 Materials  

Fresh broccoli was cut in florets and stalks. The dimensions for the florets were 

about 0.01 m in height and 0.01 m in radius. Each floret includes a stalk part of 

0.005 m in height and 0.005 m in radius. The mass of the florets was around 1.5 

gram. 

The dimensions of the stalks were 0.01m in height and 0.01m, the mass of these 

stalk was about 2.5 gram. 

 

5.3.2 Pre-treatments 

For all the samples, different pre-treatments were applied (Table 2). After all pre-

treatments, the free water at the sample surfaces was removed at room temperature 

with tissue paper before further processing. 
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Table 2 Overview of pre-treatments and experiments 

Pre-treatment  procedure 

Peeling 1.0mm-1.5mm skin was removed  

Blanching 90°C water, 3 minutes 

Experiment pre-treatment 

1.  Fresh 

2.  Peeled 

3.  blanched  

 

5.3.3 Drying chamber (MRI) 

The sample was fixed by a stick on a sample supporter and inserted into a drying 

chamber in the MRI measurement device. The size of the drying chamber was 

0.032 m in diameter and 0.2 m in length. A continuous flow of dry conditioned and 

temperature controlled air was supplied. The air temperature was 30°C and 50°C, 

respectively, the air velocity 1.0 m/s and the relative humidity 10%.  

Drying was continued until the moisture content of the samples was constant. 

Depending on the material properties, the experimental time for the fresh and pre-

treated broccoli ranged from 12 to 48 hours. Initial and final product moisture 

contents were determined by oven drying (105°C, 24 hours). 

During drying in the MRI drying chamber a large flow of air is applied for only 

one particle. As a result, particle temperature decline in air and product due to 

evaporation is small and it is reasonable to assume that the particle dries at 

isothermal conditions in time. 
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5.3.4 Drying chamber (pilot dryer) 

Product was dried in a drying chamber fed by temperature and zeolite dehumidified 

air (Atuonwu et al., 2013). Samples were placed on a grid (0.2×0.2m, mesh size 

0.0025×0.0025m), which is connected to a scale (Mettler Toledo PM2500). This 

scale measured the mass of product in the dryer continuously. For every drying 

experiment, 100 grams of samples were placed at the grid. Temperature and 

airflow rate are controlled.  

 

5.3.5 MRI imaging 

All measurements were performed on a 3 T (128 MHz for protons) MRI system 

(Bruker, Karlsruhe, Germany), consisting of an Avance console, a superconducting 

magnet with a 0.5 m vertical free bore (Magnex, Oxford, UK), a 1 T/m gradient 

coil, and a birdcage RF coil with an inner diameter of 0.04 m. 

 

5.3.6 MR Imaging 

3D images were obtained using a Turbo Spin Echo (TSE) MRI sequence 

(Scheenen et al., 2000), a repetition time TR of 2 s, an effective spin echo time TE 

of 3.35 ms and a spectral bandwidth SW of 50 kHz. Only 16 echoes were acquired 

in the TSE train to avoid T2-weighting. Odd and even echoes were separately 

phase encoded forming two different images to avoid Nyquist ghost‘s artefacts, so 

the turbo factor was 8. Two acquisitions were averaged to improve image quality. 

The Field-Of-View (FOV) was 35×35×35 mm
3
 with a matrix size of 64×64×64 

resulting in a spatial resolution of 0.55×0.55×0.55 μm
3
. The interval time between 

measurements was 18 minutes. 

 

5.3.7 Numerical methods and data analysis 

MRI-measurement data handling and analysis was performed with home-built 

software written in IDL (RSI, Boulder, CO). To solve Equation 1-9, the structure 
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of broccoli is configured in COMSOL and the equations are defined for each part 

of the structure.  

 

5.3.8 MRI data calibration 

Monitored intensity values above 0.75 counts/pixel were used for conversion to 

moisture content. Above this value, the MRI signal intensity is linear with moisture 

content (McCarthy et al., 1991). However, for nearly dry samples the MRI 

intensity might deviate from the linear relationship. Jin et al. (2012) discuss the use 

of the MRI intensity signal at low moisture content. The same procedure is 

followed here. 

 

5.3.9 Moisture calculations 

The average intensity from the MRI follows by the summation of all intensity 

values above the threshold 0.75 counts/pixel divided by the number of pixels above 

the threshold. The average moisture content is then derived from the average 

intensity and the initial and final moisture content of the product measured by 24 

hours oven drying at 105°C. These values are used to convert the intensity signal to 

average moisture content.  

Similarly the average moisture content in the pilot dryer is derived from the initial 

and final weight of the batch of samples. 

 

5.3.10 Parameter estimation 

The trajectories for the average moisture content in a sample were simulated by 

using COMSOL (Jin et al. 2011). As there was no suitable procedure for parameter 

estimation for the used model in COMSOL, the drying trajectories from COMSOL 

were imported to MATLAB to calculate the sum of squared errors (SSE) and R
2
. 

Subsequently a decision was made to adapt the parameters, and the model in 

COMSOL was simulated again with the new parameters. This procedure was 

followed until the improvement of sum of squared errors was below 2% of its value. 
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5.4 Results and Discussions 

5.4.1 MRI moisture profiles  

Figure 1 gives the 3D image measurements for the cross section at the center of the 

broccoli floret sample. The intensity of the color indicates the moisture content 

distribution within the sample; the brighter the color, the higher local moisture 

content. The outer surface of the floret has a dark color, whereas the stalk in the 

floret has a bright color, which corresponds to the faster drying at the surface and 

slower drying in the center. The size of the sample corresponds to the size of each 

image and demonstrates shrinkage. After some time, the signal for the surface is 

too weak to interpret progress of drying by visual observation, but the changes in 

moisture content can still be recorded from the MRI signal.  

Figure 2 gives an example of the 3D image measurements for the cross section at 

the center of blanched broccoli stalk. Blanching breaks the cell structure and 

softens the entire tissue and as a result moisture transport is enhanced. The drying 

time for blanched broccoli is therefore significantly shorter than that for untreated 

broccoli. Anomalies due to shrinkage, elasticity and stress diffusion as observed in 

untreated broccoli stalks do not occur for blanched broccoli (Jin et al., 2012).  

 

Figure 1 Series of MRI intensity in the centre of a fresh floret sample during drying at 

30°C. Progress during drying is given in the pictures at the succeeding rows. The interval 

time is 18 minutes. Total drying time 14 hours 
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Figure 2 Series of MRI intensity in the centre of blanched broccoli stalks during drying at 

30°C. The interval time is 18 minutes. Total drying time 10 hours 

 

5.4.2 Moisture profiles and diffusivities  

Figure 3 gives the average moisture content in florets derived from the MRI 

intensity. The moisture content is given as the moisture ratio 

   
    

     
               (10) 

With    the water content at the start of drying (kgwater.kgdrymatter
-1

),    the water 

content at the end of drying (kgwater.kgdrymatter
-1

) and   the water content during 

drying (kgwater.kgdrymatter
-1

). 

The figures show the normal pattern for drying of vegetables. The average 

moisture content from the MRI intensity is fitted to the spatially distributed model 

based on the Free Volume Theory (equation 1-8). The dimensions and form used in 

the COMSOL model were close to the samples used in MRI experiments.  

Universal constants and water properties are used in equation 6. The universal 

constants follow from sugar properties and are given in Table 1. Only two 

parameters remain for fitting; these are the self-diffusion coefficient of solids in 

broccoli (  ) and the mass transfer coefficient (  ). Results for these parameters 

are given in Table 3. 
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Figure 3 Measured and estimated drying curves expressed as moisture ratio (  ) 

of fresh and blanched floret at different temperatures. Top: drying of fresh broccoli 

florets at 30 and 50°C. Bottom: drying of blanched florets at 30 and 50°C. 

 

Rossello et al. (1992) state that the initial stage of drying is governed by the mass 
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period of both mass transfer and diffusion control drying. In the last stage of drying, 

the drying rate is diffusion controlled.  

The results obtained from figure 4 yield similar mass transfer coefficients for 

broccoli florets at 30 and 50°C (Table 3). In the initial stage, drying at 50°C is, 

however, faster than at 30°C, which is caused by improved diffusivity. So, 

according to Rossello et al. (1992), the start of broccoli drying is both mass transfer 

and diffusion controlled.  

 For the blanched samples, it was found that the mass transfer coefficient increased 

dramatically, and values for self-diffusion coefficient of solids are ten times higher 

than for fresh dried broccoli florets. This increase is due to the tissue softening and 

breaking down of cell walls.   

The values for the self-diffusion coefficient are, except for the blanched floret at 

50°C in line with literature values for gels which are in the range of 1e-9 to 1e-10 

m
2
s

-1
 (Amsden 1998,  Masaro and Zhu 1999, Wu et al., 2009, Kvarnström et al., 

2009). The noticeable result for the blanched floret at 50°C is possibly caused by a 

deviation in the used porosity.  It has been reported that for drying of broccoli, 

shrinkage is equal to moisture removal which indicates that the volume substituted 

by air is minimal (Jin et al., 2012). Therefore, the porosity should be constant 

during drying, except for the last phase of drying (glassy state) with a small 

derivation from the linearity (Jin et al., 2012). The Free Volume model is sensitive 

to the chosen value of the porosity (see equation 2,4,5). For the broccoli florets a 

porosity of 0.3 was derived from image analysis of the cross sectional areas. 

However, occasionally higher porosity values were found. Using a porosity value 

0.4 for the blanched floret at 50°C brings the self-diffusion coefficient for that 

sample in the expected range. 

The obtained mass transfer coefficients (see Table 3) are rather high, but 

comparable to those for drying of other crops (Temple et al., 1999, Crip and 

Woods, 1994, and Patil et al., 1992).  The high values can be result of two aspects. 

The first is that in the simulation with COMSOL a  smooth outer surface is used, 

while the surface of the actual sample is non-smooth and has a higher surface area. 

The second reason is that the mass transfer coefficient is an effective coefficient, 

which also includes the resistance of the skin layer. As moisture transport is 

considered as diffusion in a uniform product, the resistance for moisture transport 
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in the surface is included in the mass transfer coefficient for boundary layer. Pre-

treatments affect the surface layers and the change of the resistance is reflected by 

the mass transfer coefficient (compare the differences in mass transfer coefficient 

for peeled and blanched stalks). The effect of blanching on the total drying time is 

significant; the drying time is reduced to about 2-3 hours, whereas for fresh 

broccoli floret the time was at least 15-20 hours.  

Results for broccoli stalks are given in figure 4. For peeled and blanched stalks, the 

mass transfer coefficients at the different temperature levels are also the same. 

With the removal of the mass transfer barrier by peeling, drying enhanced 

significantly at both 30 and 50°C and drying curve is comparable to blanched 

broccoli stalks with intact skin (see Jin et al, 2012).  

Table 3 Results of data fitting. Mass transfer coefficient (kc) and self-diffusion coefficient 

of solids (Ds) 

sample kc (m.s
-1

) Ds (m
2
.s

-1
) RMSE (-) R

2
 

Fresh floret (30°C)       0.025 1E-10 0.16 0.99 

Fresh floret (50°C)       0.026 5E-10 0.21 0.99 

Peeled stalk (30°C) 0.073 1E-11 0.45 0.96 

Peeled stalk (50°C) 0.075 1E-10 0.41 0.99 

Blanched floret (30°C)       0.38 1E-9 0.46 0.92 

Blanched floret (50°C)       0.40 1E-8 0.10 0.99 

Blanched floret (50°C)       0.4 5E-9 0.11 0.99 

Blanched stalk (30°C) 0.074 3E-11 0.37 0.99 

Blanched stalk (50°C) 0.076 3E-10 0.22 0.99 
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Figure 4 Measured and estimated drying curves expressed as moisture ratio (  )  of 

peeled and blanched stalks at different temperatures. Top: drying of peeled stalks at 30 and 

50°C. Bottom: drying of blanched stalks at 30 and 50°C. 
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Figure 5 Effective diffusion coefficients for broccoli florets (top) and stalks (bottom) as a 

function of the moisture content at 30°C and 50°C 
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lower self-diffusivity is consequence of the changing water mass fraction (  ) and 

solid mass fraction (  ) during drying. The maximum value for      is the result of 

the varying value of the volume fraction during drying (  , related with    and   ) 

in the Darken relations (equation 4 and 5). Similar results are reported for the 

mutual diffusion coefficient of water in gelatine (Yapel et al., 1994), and for drying 

of starch rich products (Karathanos and Vegenas, 1991). For the blanched floret at 

50°C, the maximum in the curve is absent. This is due to much higher effective 

diffusion coefficient and     and    values in the same order of magnitude. This 

also can be explained by the possibly high porosity of the floret.  It must also be 

noted that this sample has an exceptional value for the self-diffusion coefficient in 

table 3.  

5.4.3 Comparison of single MRI particle drying and pilot drying 

The drying model and MRI drying experiments consider drying of a single particle 

of broccoli; floret or stalk. Experimental results from MRI drying data were 

compared to results of a pilot plant batch dryer. In the MRI drying chamber, dried 

conditioned air was supplied and for the comparison zeolite-dehumidified air was 

used in the pilot dryer.  In Figure 6The results of the pilot dryer fall, regardless of 

noise, together with the MRI drying curve. From the comparison, we conclude that 

for the same drying conditions the single broccoli-drying model is representative 

for drying of a batch of samples in a pilot dryer. 

 

Figure 6 Comparison of drying curves obtained in the MRI system and in the pilot dryer 

(with ambient and dehumidified air). 
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5.5 Conclusions 

MRI imaging offers the potential to study the internal moisture distribution of food 

products during processing. The moisture distribution obtained by MRI imaging of 

broccoli stalks and florets enables a model-based characterization of  moisture 

transport during drying. From the time trajectories of the average moisture content, 

the effective diffusion coefficient and the mass transfer coefficient are successfully 

derived.   

The effective diffusion coefficient depends, like in other food products, on the 

mobility of water in the food matrix. The mobility of water in food is described by 

the Free Volume theory. The Free Volume model uses a number of universal 

constants and leaves the self-diffusion coefficient of solids as fitting parameter. 

This parameter is derived for different pre-treated broccoli products. 

The results show that the effective diffusion coefficient is a function of the product 

moisture content, and varies thus during drying. Compared to fresh products, pre-

treatments increase the mass transfer coefficient for moisture either by removing 

the transport resistance of the skin (peeling), or by disruption of the cell structure 

(blanching). Disruption of the cell structure by blanching of stalks increases the 

effective diffusion coefficient only slightly, while the effect for florets is significant. 

MRI experiments of a single particle proved to be representative for drying 

experiments in a conventional pilot dryer.  This supports the use of drying models 

derived from MRI data to predict and optimize drying in larger scale units. 
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Abstract 

This work concerns the combined optimization of the retention of bioactive 

components and energy efficiency during drying of vegetables like broccoli. 

Kinetics for the degradation of glucosinolates, vitamin C and drying of broccoli are 

used to calculate optimal drying trajectories for the control variables air flow rate 

and temperature. It is shown from plots of the optimal drying trajectories in 

moisture-temperature state diagrams with degradation and drying rates, that areas 

with high degradation rates are circumvented. The drying strategies allow for 

halving the energy consumption and a significant increase of vitamin C content. 

 

Keywords: broccoli, drying, dynamic optimization, glucosinolates, vitamin C 

retention, energy efficiency 
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6.1 Introduction 

Food quality is the main performance indicator in food processing. Besides the 

visible quality aspects (shape, color, sensory etc.), nutritional impact has become a 

major aspect for quality. Among the nutritional aspects, antioxidant properties of 

bioactive components are considered as a key for human health especially due to 

the anti-cancer effect. For example, glucosinolates, present in brassicaceae, have 

significant anti carcinogenic properties in colorectal cancer (Verkerk, 2009). 

Vitamin C, the most abundant in water soluble antioxidant, is a basic component 

for health and reduces the risk for cancer and heart diseases (Tribble, 1999, Byers 

and Perry, 1992). These components are, however, heat sensitive and the 

availability in processed food is reduced during heat treatments like cooking and 

drying.  

Convective drying is most applied for preservation of food products over long 

periods. It also provides opportunities for the production of convenient food. 

Convective drying is a heat intensive treatment which results in degradation of heat 

sensitive bioactive components. Goula and Adamopoulos (2006), Zanoni et al. 

(1998) reported that for conventional drying of vegetables under constant drying 

conditions vitamin C retention is below 50% or even not detectable. Similar results 

are available for other nutritional components such as glucosinolates, which 

degrade at drying temperatures above 60°C (Oliviero et al., 2012).  

In convective drying moisture is removed from the product by vaporization. The 

heat required for vaporization makes drying one of the most energy intensive 

industrial processes. The energy efficiency of convective dryers is often below 

50% (Kemp, 2005) and drying accounts for at least 10% of industrial energy 

demand (Kudra, 2004). To retain as much as possible of the nutritional components 

in vegetables, mild drying conditions are recommended. Under these conditions 

energy efficiency is even below the level as mentioned by Kemp (2005). With the 

current price level for energy and the need for sustainable operations, industries 

that process food are now facing two challenges: 1) to retain nutritional 

components, and 2) to reduce the energy demand for drying. Therefore, in recent 

years, lots of efforts have been paid to increase energy efficiency and to lower the 

energy consumption by the development of advanced dryers (Menshutina et al., 

2004, Dufour, 2007, Djaeni 2007, Nagle et al., 2010).  
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Energy efficiency and product quality seem conflicting demands, but at the other 

hand developing drying methods that meet both needs is regarded as a challenge 

(Mujumdar, 2004). In this work we consider the possibilities of dynamic 

optimization to find optimal drying trajectories that increase both energy efficiency 

and product quality. The optimal trajectories are calculated for drying of broccoli 

where we aim to retain both vitamin C and glucosinolates in combination with high 

energy efficiency.  To interpret the results, the optimal drying trajectories are given 

in moisture-temperature state diagrams which also present the degradation kinetics 

and the drying rate kinetics. 

The results of this study give information for the design and operation of dryers in 

which bioactive compounds in food products can be retained.  In addition, the 

moisture-temperature state diagram provides a basis to understand how to deal with 

multiple objectives. 

 

6.2 Theory and Modeling 

6.2.1 Mass and energy balances 

The mass balances for the moisture content in  a product particle during the  time (t) 

the particle resides in a dryer and for the moisture content in the air around the 

particle are given by (single phase model, Law and Mujumdar,  2007): 

 
  

  
                         (1) 

    (        )     
  

  
                (2) 

With X is the moisture content (kg water.kg dry matter
-1

), Xe is the equilibrium 

moisture content (kg water.kg dry matter
-1

), k is the drying rate constant (s
-1

), Fa is 

the air mass flow rate (kg.s
-1

.m
-2

), Xa is the moisture content of air (kg water.kg dry 

air
-1

), Xa,in is the moisture in inlet air (kg water.kg dry air
-1

), and Mp is the weight of 

dry matter (kg.m
-2

 ). 

The Biot number for heat transfer for broccoli particles of 1×1 cm is below 1 which 

indicates that the time scale for heating is much faster than the time scale for 

moisture transport during drying. This is confirmed by our previous simulations 
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(Jin et al., 2011), which showed for broccoli particles a time constant for heat 

transfer in the range of 3-5 minutes. Therefore we assumed that product and air 

have the same temperature, and experimental data also confirmed that. As a result, 

the combined energy balance for product and air is given by (single phase model, 

Law and Mujumdar,  2007):  

             
  

  
   (             )                (        )       (3) 

With T is the product temperature (°C),  Tin is the air inlet temperature (°C), Cpp is 

the specific heat capacity of product (kJ.kg
-1

.K
-1

), Cpa  is the specific heat capacity 

of air (kJ.kg
-1

.K
-1

), Cpv is the specific heat capacity of water vapor (kJ.kg
-1

.K
-1

),  

      is the latent heat of vaporization (kJ.kg
-1

).  

The energy efficiency is defined as the energy used for moisture evaporation (Eev) 

to the total energy supplied to the dryer (Ein): 

     
   

   
                 (4) 

The heat used for moisture evaporation is:  

                      (
  

  
)                        (5) 

And the energy supplied to the dryer: 

                                                                  

With Tamb is the ambient temperature (°C). 

 

6.2.2 Degradation kinetics 

Experiments on a range of product samples showed common results for the vitamin 

C degradation rate constants (Mishkin et al., 1984, Karim and Adebowale, 2009). 

These kinetic results are here applied for broccoli. The degradation of vitamin C 

follows a first order degradation kinetics: 

      
  

  
                     (7) 
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With C the concentration of vitamin C (g.kg
-1

 product) and kc is the degradation 

rate constant (s
-1

) for which the temperature dependency is given by: 

       ( 
   

  
)                (8) 

With R the gas constant (J.mol
-1

.K
-1

), Ea the activation energy (J.mol
-1

) and kc0 the 

pre exponential factor.  

Mishkin and Saguy and Karim and Adebowale reported the following expressions 

for the degradation rate constant and activation energy for vitamin C as a function 

of the moisture content: 

                   
                 (9) 

                         
     

              (10) 

The values for P1-P7 are given in Table 1. 

Table 1 Model parameter values for vitamin C degradation kinetics 

Parameter Value Parameter Value 

P1 16.38 P4 14831.00 

P2 1.78 P5 241.10 

P3 1.89 P6 656.20 

  P7 236.80 

 

Glucoraphanins is a group of abundant glucosinolates in broccoli and most 

important as a nutritional component. Thermal degradation of glucosinolates (GL) 

follows a first order reaction model, and the temperature dependency of the 

degradation rate constant is given by the Arrhenius equation (Oliviero et al., 2012): 

 
 [  ]

  
    [  ]              (11) 
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                   ( 
   

  
)               (12) 

With T the product temperature (K), kd is the degradation rate constant (min
-1

), kref 

is the degradation rate constant at reference temperature (min
-1

), Tref (K) is the 

reference temperature, Ea the activation energy (J.mol
-1

).  

According the experimental results of Oliviero et al. (2012) the moisture 

dependency of    and     is given by (see also Table 2):   

                              (13) 

                    
              (14) 

 

Table 2 Model parameter values for glucosinolates degradation kinetics 

Parameter Value Parameter Value 

u1 25.21 u3 91741.97 

u2 8.29 u4 133.60 

  u5 32606.35 

 

 

6.2.3 Specification of product and drying system 

The calculations concern uniform pieces of broccoli stalks that pass a dryer system. 

The product and drier properties are specified in Table 3. 
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Table 3 Dryer and product properties used for calculations and optimization 

Parameter Value 

Mp 1.00 (kg.m
-2

) 

T(t=0) 25°C 

Cpa 1.00 (kJ.kg
-1

.K
-1

) 

Cpv 1.93 (kJ.kg
-1

.K
-1

) 

Cpp 0.837+1.256X(kJ.kg
-1

.K
-1

) (Hussain and 

Dincer, 2003) 

      2500-2.386T (kJ.kg
-1

) 

(Henderson-Sellers, 1984) 

Tamb 20 (°C) 

k           
     

      
) (s

-1
)  

 (derived from Jin et al., 2011) 

Xa,in 0.007 (kg water/kg dry matter) 

 

6.2.4 Degradation and drying rates in the moisture-temperature state diagram 

The total losses of components depend on both time and degradation rate at a 

moment during drying. To illustrate the optimal drying strategies we use moisture-

temperature state diagrams in which contour lines of equal degradation rate (for 

vitamin C and glucosinolates) and the drying rates are plotted (see Figure 1). The 

color bar indicates the values of these constants, the darker of the lines, the higher 

the constant values.  
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The total degradation of vitamin C and glucosinolates and total drying depends on 

a combination of rate and time. A short stay in a region with an elevated 

degradation rate can result  in a similar degradation of vitamin C as a long stay in a 

region with a lower degradation rate. Although the time is missing in the state 

diagram, the diagram still can help to explain the drying strategies (as will be 

shown later).  A first conclusion from the diagram is that in the considered 

temperature range (20-60°C), the degradation rate of glucosinolates is very low and 

loss of glucosinolates can be considered as a minor aspect. The degradation rate 

constant for vitamin C is neglectable  for moisture contents above 3.5 kg water.kg 

dry matter
-1

, and below 1 kg water.kg dry  matter
-1

.  Degradation rates of vitamin C 

are the strongest in the moisture range of 1.0-3.0 kg water.kg dry matter
-1

. When 

passing this moisture range during drying the product temperature be reduced to 

retain vitamin C or the time in this moisture range should be short. Outside the heat 

sensitive range the drying path hardly affects the vitamin C content.  

 

Figure 1 Moisture-temperature state diagram of fresh broccoli stalks with contour lines for 

the degradation rate constant of vitamin C (k-Vc) and glucosinolates (k-GL) and the drying 

rate 
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6.2.5 Optimization objectives and boundaries 

The objective is to minimize the loss of the nutritional components vitamin C and 

glucosinolates. The control variables considered were temperature of the inlet air 

and air flow rate. The control variables are constrained by: 

                   

     
  

 
       

  

 
             (15) 

The restriction on the control variable air temperature affects the degradation rate 

constants. The degradation rate constant of glucosinolates in this temperature range 

is very low (see also Oliviero et al., 2012). Therefore we included only vitamin C 

and energy efficiency in the objective function. Both are relative values and it is 

intended to bring them at the end of the drying time as close as possible to 1. This 

aim is reflected in the objective function (J) by the first two terms:   

     (
 

  
  )

 
                      (16) 

With 
 

  
 the retention ratio (-) of vitamin C compared to its initial concentration, 

  and    weight factors for respectively vitamin C retention and energy efficiency.  

Vitamin C retention and energy efficiency in equation 17 are in the same range (0-

1), and therefore the weight factors      and      were applied.  

Three final drying times (8,10 and 12 hours) at which a given final product 

moisture content must be achieved were considered. The total optimization 

problem is then defined as: 

       (
 

  
  )
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Drying trajectories can be calculated as continuous functions (Bryson, 1999) or by 

discrete functions like piecewise constant and piecewise linear functions. Discrete 

functions are most suitable for realization in batch or continuous drying of 

vegetables; each function can represent a drying stage. The calculation of the 

trajectories in this work is therefore based on optimization for piecewise constant 

and piecewise linear functions. The time intervals/drying stages were chosen to be 

equally. 

In a first instance, a comparison is made between piecewise linear and piecewise 

constant functions for the temperature in combination with a constant flow rate. To 

obtain the best results, the required number of drying stages is increased until the 

improvement is no longer significant.  

The results are compared to a reference with the best results for constant conditions 

over the whole drying time. Next, drying trajectories are calculated with both air 

flow rate and air temperature as control variables.  

 

6.3 Results and Discussions 

6.3.1 Comparison of piecewise linear and piecewise constant control profiles  

Optimization results for comparison of piecewise linear and piecewise constant 

control profiles obtained with the Matlab function fmincon are listed in Figure 2. In 

these optimizations, the inlet air temperature trajectory was optimized, air mass 

flow rate was set to at 0.1 kg.s
-1

.m
-2

, and the drying time was 10 hours.  

The top figure in Figure 2 shows for piecewise linear functions that the retention of 

vitamin C increased significantly by increasing the control stages for inlet air 

temperature. The improvement between 8 and 10 stages is still significant, but 

beyond 10 stages there is only a minor effect. The entire multistage controlled 

drying processes yield an improved energy efficiency (up to 42% at 10 or more 

stages) compared to the reference case with optimal constant drying temperature 

(28%), and an improved vitamin C retention (up to 60% at 10 or more stages) 

compared to the reference case (32%). 
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Figure 3 represents a plot for the drying strategies in state diagram. The drying 

trajectories for piecewise linear functions for 8 and 10 stages show in Figure 3 a 

different strategy. The 8 stages drying trajectory starts with a lower drying rate for 

the wet product and needs a higher drying temperature at the end of the drying. As 

a result vitamin C degradation occurs in the last drying stage during a relative long 

time. The 10 stage dryer passes at a moisture content of 2 kg water/kg product a 

region of higher degradation rates, but compensates the loss by a shorter stay in 

this region and low loss in the late drying stages.  

For the optimization of piecewise linear functions with given length of each 

interval the number of parameters to be optimized are equal to 

                     . That yields for the dryer with 10 stages 11 parameters 

to be optimized. Optimization problems with different aspects in the objective 

function (vitamin C retention and energy efficiency) and a high number of 

parameters often have local minima. Starting the optimization at different 

conditions, however, always resulted in similar outcomes for vitamin C retention 

and energy efficiency. 
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Figure 2 Comparison vitamin C retention (relative to the initial concentration) and energy 

efficiency by applying piecewise linear and piecewise constant control variables for air 

temperature. REF: optimal constant conditions for temperature and flow rate 
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Figure 3 Product temperature trajectories in the state diagram for 8 stages and 10 stages 

with piecewise linear controlled air temperature 

 

The results for piecewise constant functions for the inlet air temperature in Figure 2 

show that the improvement is only significant when increasing the number of 

stages from two to four. Comparing both methods shows that piecewise linear 

functions yield the highest energy efficiency around 42%, and vitamin C retention 

around 60%, whereas with piecewise constant function the highest vitamin C 

retention is only about 40%.  

The temperature trajectories of piecewise linear functions with ten stages, and 

piecewise constant function with four stages (the best results for each methodology) 

are given in the state diagram in Figure 4. In the first drying stage with a high 

drying rate, moisture evaporation is high enough at relative low temperatures. At 

the end of the first stage the product enters the region of vitamin C degradation and 

the piece wise constant controlled dryer responds by decreasing the temperature. 

The ten stage piecewise linear controlled dryer the product can easily avoid the 

region of vitamin C degradation. To satisfy the final moisture content constraint the 

four stage piecewise constant controlled dryer cannot avoid the region, which 

results in more vitamin C degradation. 
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Figure 4 Product temperature trajectories in the moisture-temperature state diagram for 

comparison of best results from piecewise linear and piecewise constant controlled 

variables 

 

6.3.2 Trajectories for air temperature and air flow rate 

Following the results from previous section the piecewise linear functions were 

applied for the calculations of the trajectories of both air temperature and flow rate.  

The results in Figure 5 show that using the air flow rate as an extra control variable 

yields both a better energy efficiency and better vitamin C retention. Increasing the 

number of stages from two to four gives a significant improvement, while above 

four stages the improvement for energy efficiency and vitamin C retention is 

marginal. The energy efficiency increases to 65% and is combined with vitamin C 

retention around 55%. The loss in vitamin C is in the objective function 

compensated by gain in energy efficiency. The achieved energy efficiency is more 

than 100% better than the results for the reference case. In other words the energy 

consumption is halved. Note: by applying a higher weight factor for vitamin C in 

the objective function (equation 17), vitamin C retention can be improved. 

For piecewise linear controlled inputs for air temperature and flow rate it satisfies 

to apply four stages. This number is also to be preferred from a numerical point of 

view. Only 10 parameters need to be optimized, while the number of parameters 
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for an 8 stage system equals to 18. A lower number of parameters reduce the risk 

for ending in a local minimum. 

 

Figure 5 Optimization results with piecewise linear control variables for both air 

temperature and air flow rate. REF: optimal constant conditions for temperature and flow 

rate, REF(2): best result from piecewise linear optimization of temperature with 10 stages. 

 

The optimized trajectories for air temperature and flow rate in the four stages dryer 

are given in Figure 6. In the initial stage of drying moisture is released easily from 

the product and don‘t need a high temperature. The moisture is then energy 

efficient removed by a high flow rate in combination with a moderate temperature. 

In the later stages of drying, the drying rate is not that high and then a low air flow 

rate satisfies, but to enhance drying in this phase a higher temperature is applied.  

Again the drying strategy is represented in the state diagram (bottom figure, Figure 

6). Due to the low product temperature degradation of the nutritional components 

is absent in the initial stage of drying. In the later stages of drying the trajectory 

just reaches low values for  vitamin C degradation. To satisfy the constraint on the 

final moisture content, the product temperature increases to 45°C in the end stage 

of drying. Because of the low moisture content the vitamin C degradation rate is 

low in this stage. The improved energy efficiency is result of the decreasing air 

flow rate throughout the drying time. In the initial period of drying the drying rate 

is high and combined with an high air flow rate. With falling moisture content the 
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drying rate reduces and the air flow rate can decrease accordingly to realize energy 

savings (bottom figure, Figure 6) 

Because of the mild drying conditions (to retain vitamin C all temperatures remain 

below 60°C) degradation rate of glucosinolates is low. Glucosinolate retention is 

above 90%. 

 

 

Figure 6 Temperature trajectories of the inlet air temperature, product temperature, and air 

flow rate as a function of time (top), and trajectories presented in moisture-temperature 

state diagram (bottom) 
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6.3.3 Effect of drying time 

Figure 7 shows the effect of the drying time on the vitamin C retention and energy 

efficiency. Compared to 10 hours of drying, 12 hours of drying results in only a 

slight improvement of vitamin C retention. Although the distance for the product 

temperature trajectory to the region of vitamin C degradation increases (see Figure 

8), the total beneficial effect is only small due to the longer residence time during 

which degradation occurs. There is no further improvement in energy efficiency. A 

shorter drying time (8 hours) requires a more intensive heating to satisfy the 

constraint on the final product moisture content. The increased heating results in a 

significant loss of vitamin C and a lower energy efficiency. In order to achieve the 

same final moisture content the product is forced to pass through a region of high 

drying rates which fall together with a higher degradation rate for vitamin C.  

 

Figure 7 Optimization results with piecewise linear control variables for both air 

temperature and air flow rate at different drying times (8, 10, 12 hours) 
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Figure 8 Product temperature trajectories in the moisture-temperature state diagram for air 

temperature and flow rate as control variables for different drying times (8, 10, 12 hours) 

 

6.3.4 Sensitivity of the drying strategies for the drying rate  

The role of the drying rate constant is also investigated. Products with a higher 

drying rate constant can be dried in a shorter time, while products with a lower 

drying rate constant need more time to be dried. Table 4 gives the results for the 

drying time for variations of the drying rate constant, while keeping the same result 

for the objective function. A 20 and 50% higher drying rate constant reduces the 

drying time from 10 to 8 and 6 hours respectively.  For the considered cases, the 

optimized trajectories pass the areas of high vitamin C degradation in a comparable 

way. This means that the most sensitive component (Vitamin C in this case) in the 

state diagram is most essential for the trajectory. 
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Table 4 Effect of drying rate constant on drying time, vitamin C retention and energy 

efficiency 

Drying rate constant Drying time (hr) Vc retention Energy efficiency 

k see table 3 10 55% 65% 

1.2×k 8 55% 62% 

1.5×k 6 60% 59% 

 

6.4 Conclusions 

Convective drying is an energy intensive operation in food processing which 

causes a high heat load to heat sensitive components. Most of the heat sensitive 

components have, however, an important contribution to the nutritional value of 

food products. To retain these components mild drying is often applied which 

results in a low energy efficiency. This work showed the development of drying 

strategies that meet both aims: high energy efficiency and a high retention of heat 

sensitive components.  

To compromise between both objectives, optimal drying trajectories for the control 

variables air temperature and air flow rates are calculated. Representation of the 

trajectories in moisture-temperature state diagrams showed that the strategies avoid 

temperature- moisture content regions where degradation of the nutritional 

components occurs, or that the product resides only a short time in such region. To 

satisfy the objective for high energy efficiency, the conditions are also chosen in 

such way that the air flow rates are linked to the drying rate. Moisture-temperature 

state diagrams can also be used for other applications to obtain an overview of the 

possible pathways and to support the optimization results.  

Piecewise linear and piecewise constant functions   are used for the optimization 

for the controlled inputs. Piecewise linear functions resulted in the best 

performance with 55% for vitamin C retention and 65% for energy efficiency. 

These results are superior to a dryer with the best constant settings of the controlled 
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variables: 32% retention for vitamin C and 28% of energy efficiency. In other ways, 

the energy consumption can be halved and the retention of nutritional components 

increased with 70%. These results show the impact of using optimized drying 

strategies instead of constant drying conditions. 
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7.1 Energy efficient drying of healthy food products 

Food products with a high level of nutritional components are considered as 

healthy products and have gained a lot of attention in the food market. Freshly 

harvested food products have a high level of nutritional components, but their shelf 

life is limited. To prolong the shelf life fresh food can be dried, but during the heat 

treatment the nutritional components deteriorate. Therefore, retention of nutritional 

components during drying of food has become a challenge for research.  

Drying is an energy intensive process and it is expected that in the near future the 

global economy will consume more energy. Considering the global energy 

shortage and global warming there is a need for highly energy efficient processes. 

Governments of several countries and food industries agreed with covenants to 

reduce the energy consumption and the CO2-exhaust. The food drying industry 

faces two challenges at the same time: retention of heat sensitive nutritional 

components for healthy food products and decreasing the energy consumption 

while maintaining profitability.  

Retention of quality and increasing the energy efficiency of drying are conflicting 

objectives. High energy efficiency is realized at high drying temperatures but 

results in a significant degradation of quality attributes, whereas a high retention of 

quality attributes asks for low drying temperatures which have low energy 

efficiency. The primary research question as stated in Chapter 1 was: 

1. Can the optimization problem for mild, sustainable drying of healthy 

vegetables be solved by use of mechanistic modeling? 

The problem of apparent conflicting demands concerning mild, sustainable drying 

has been resolved (in Chapter 6) by formulating it as a model-based dynamic 

optimization problem to develop drying strategies that seek the best compromise 

between energy efficiency and retention of healthy components. In order to apply 

this technology, kinetic models for the degradation of nutritional components had 

to be combined with novel mechanistic drying models. 

In a food matrix moisture transport does not always follow the standard diffusion 

laws. The mobility of water changes with the state of the product and the 

interaction between moisture and the product matrix varies. Therefore it was 

essential to investigate the moisture transport behavior on the basis of an advanced 
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mechanistic drying model for moisture transport. This part of the research 

(Chapters 3 -5) represents the answers to the following two secondary research 

questions: 

2. How to describe the drying rate and moisture sorption isotherm by 

models based on physical properties related to the product matrix? 

3. How to validate moisture transport models and how to detect moisture 

transport phenomena non-destructively, qualitative and quantitatively? 

The mechanistic driven modeling and optimization approach for the production of 

dried healthy foods was implemented to drying of broccoli. Details on the concept 

of this approach, the major findings, some comments on limitations and issues, and 

the main contribution are discussed in the following retrospective section, whereas 

expectations on the impact on drying research and the potential for the drying 

industry are given in the perspectives section.  

 

7.2 Mechanistic driven modeling and optimization for drying of healthy 

foods: Retrospectives 

Vegetables contain water, carbohydrates, proteins, fats, and ash. All these 

components are often well organized in the cellular matrix. Drying of vegetables 

involves simultaneous heat and mass transfer, physical and chemical changes, and 

changes of the properties of the cellular matrix. State of the art models for moisture 

transport during drying include empirical or semi-empirical aspects. In this thesis, 

the emphasis was put on the use of a drying model based on physical concepts for 

the empirical and semi-empirical aspects and to use that model for optimization. 

The setup and implementation of this systematic approach is the main contribution 

of this thesis work. The original scheme as envisaged in Chapter 1 is shown in 

Figure 1. It includes the development of a mechanistic model, model validation, 

mechanistic assisted optimization, and the implementation and evaluation of the 

optimized drying trajectory. This approach has been applied to drying of broccoli. 

Prior to discussing element-by-element the main achievements of this thesis 

according to the proposed approach it is appropriate to provide the entire project 

context first. 



Chapter 7 

144 

 

Mechanistic based model 

development

Mechanistic 

based sorption 

isotherm model

Mechanistic 

based drying 

model

Model validation

Mechanistic 

assisted 

optimization

Experimental 

Evaluation

Flory Huggins Free 

Volume theory

Free Volume 

theory

Healthy quality

Energy efficiency

Energy 

efficiency

State diagram

 

Figure 1 Mechanistic modeling and optimization to produce healthy foods.  

 

7.2.1 The project “Energy efficient drying of healthy food products” 

The total research project concerned 3 parallel projects:  

1. Influence of drying technology on stability and availability of glucosinolates in 

broccoli (T. Oliviero), 

2. Drying of healthy foods: from mechanism to optimization (this thesis), 

3. Energy-efficient low-temperature drying using adsorbents (J. Atuonwu). 

The topic of this thesis is to integrate findings of sub-projects 1 and 3. It is clear 

that to solve the central question of this thesis, knowledge about kinetics and 

assumptions about energy consumption are needed. However, as the projects were 

running in parallel, it was unavoidable that a full integration at this stage was not 

yet possible, and certain limitations had to be accepted. 

In this thesis the degradation kinetics was obtained from project 1. In Chapter 6 the 

kinetics for vitamin-C and glucosinolates were used, but a complete picture 

requires also the kinetics of myrosinase inactivation. Although preliminary 

trajectory optimizations were done for the complete set of healthy components 

considered in the project, and the envisaged experiments as shown in Figure 1 were 

performed, the analysis results were not yet available for this thesis.   

In project 3, it was shown that with the application of adsorbents and energy 

recovery the energy consumption in low temperature drying can be more than 
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halved. The proposed adsorbent system can be combined with traditional dryers as 

an add-on. In line with these findings, in the current thesis (in Chapter 6) the 

energy efficiency is treated in the traditional way without considering an 

adsorption add-on system. This does not invalidate the approach, as it can be 

applied to any drying equipment. 

 

7.2.2 Mechanistic drying model 

In this thesis work the sorption isotherm and moisture transport are modeled and 

validated by using the physical properties of the components in the product and by 

using the state of the food matrix. Two forms of free volume models, i.e. the Free 

Volume theory for moisture transport and the Flory Huggins Free Volume theory 

for sorption isotherms, are used in this work. To assess the effective diffusion 

coefficient in Fick‘s law the Free Volume Theory replaces the Arrhenius equation 

(see Chapter 2). The main advantage of this model is that the parameters are based 

on the physical properties of the components. Also variations in moisture mobility 

that occur when the product passes during drying through the rubbery and glassy 

state are involved. By combining the Free Volume theory with the Maxwell-

Eucken theory, the moisture transport in a porous broccoli floret is well predicted. 

The validation work for the model showed how the effective diffusion coefficient 

varies with moisture content and temperatures during drying. 

Another important contribution is the application of a mechanistic model for the 

sorption isotherm for fresh and pre-treated vegetables. It was demonstrated that the 

Flory Huggins Free Volume (FHFV) theory predicts the sorption isotherm for 

broccoli accurately, not only for fresh samples but also for blanched samples with a 

changed composition compared to the fresh product. Changed sorption properties 

due to pre-treatments are hardly mentioned in literature. The main advantage is that 

the FHFV theory, just as the Free Volume theory for moisture transport, is based 

on product composition and physical properties.  The consequences of changed 

composition due to pre-treatments like blanching on the sorption isotherms can 

therefore be predicted by using the FHFV theory. 
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7.2.3 Spatial modeling of products during drying 

The degradation of the nutritional components in a product depends on the local 

time varying temperature and moisture content rather than on the average values. 

Therefore, in this work a spatial distributed model (COMSOL multi-physics) is 

used to illustrate the impact of temperature and moisture distribution, and 

shrinkage by a 2D color map (Chapters 2 and 5). Calculations with this spatial 

modeling reveal how the nutritional components degrade throughout the product as 

a function of time. Spatially distributed moisture and temperature profiles are 

desired for the evaluation of the quality degradation over the whole product.   

 

7.2.4 Non-destructive validation and detection of drying phenomena 

Moisture transport during drying is monitored non-destructively with MRI. While 

MRI was used before in the context of drying, this is the first time it was applied to 

broccoli. With fresh broccoli stalks anomalous moisture transport was observed, 

which seemed to conflict with Fickian diffusion. The internal stress developed 

during drying and the elastic impermeable skin were the source of the anomalies. 

Pre-treatments such as peeling or blanching change the skin and bulk elastic 

properties of broccoli and support the hypothesis of stress-diffusion for fresh 

products. Fickian drying behavior occurs only if the significant moisture transport 

resistance in the skin of fresh food products is removed by a pre-treatment. This 

thesis work shows that besides coupled heat and mass transfer, other physical 

phenomena such as stress development, elasticity changes etc., are involved in 

drying. Multi-physics modeling should be used to explain the complex moisture 

transport during drying. 

 

7.2.5 Optimization of drying trajectories and the isokinetic state diagram 

Model based optimization of the dynamics during drying is a powerful tool to find 

optimal drying trajectories to retain nutritional components and to increase the 

energy efficiency. However, while 2-D analysis and CFD were used in the detailed 

analysis of Chapters 4 and 5, the direct use of COMSOL in conjunction with 

dynamic optimization was simply not possible because of the computational 
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burden. Instead, in Chapter 6, a lumped moisture and temperature model was used. 

This model was calibrated against the 2-D results. However, the lumping of 

temperature and moisture will result in a homogeneous degradation rate, whereas 

in reality the degradation rate is a distribution over the spatial dimension, with 

spots with higher than average, and spots with lower than averaged rates. The 

effect on the actually observed degradation is yet to be investigated. This 

experience with 2-D dynamic modeling shows that the scheme of Figure 1 must 

perhaps be expanded with a model reduction step.   

Assuming that the overall quality degradation will not be too different from the 

degradation at lumped calibrated temperatures and moisture contents, this thesis 

shows that with the optimized drying trajectories the retention of nutritional 

components can be doubled, and the energy consumption can be halved compared 

to the conventional drying methods. State diagrams are combined with contour 

lines of equal degradation rate constants. These isokinetic state diagrams give a 

good motivation for the optimal trajectories; the product avoids regions with high 

degradation rates as much as possible. This thesis shows that isokinetic state 

diagrams are a powerful tool for optimization and understanding processing 

methods for high value food products. This concept can also be applied to other 

food products and processes.  

 

7.3 Mechanistic driven modeling and optimization for drying of 

healthy foods: Perspectives  

In this thesis, moisture transport and sorption isotherm models were successfully 

built by using underlying physical mechanisms. The models are experimentally 

investigated for an extended range of moisture contents and temperatures. Because 

of the mechanistic background of the used theories, extrapolation outside the 

experimental validation range is allowed.  

The application of MRI offered the possibility for non-destructive monitoring of 

the drying mechanism in time. The MRI images showed anomalous moisture 

transport caused by stress assisted diffusion. The MRI results also show that drying 

of vegetables is a multi-physics process rather than purely mass and heat transfer 

process.  
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By using optimized drying trajectories, obtained by dynamic optimization, the 

energy consumption can be halved and the retention of nutritional components can 

be improved significantly. The isokinetic moisture-temperature state diagram 

explains the result of the optimization procedure. The effectiveness of the 

optimized process trajectories is realized minimizing the time during which the 

product resides under conditions which result in high degradation rates for qualities. 

The impact of the proposed research approach ‗mechanistic driven modeling and 

optimization for drying of healthy foods‘ on drying research and potential for 

further work are discussed in the following sections. 

 

7.3.1 Spatial distribution of quality in product and on dryer 

In this work the spatial quality distribution in the product was calculated via a 

CFD-model. With this model it is possible to predict the spatial distribution of 

moisture and quality in time. The predictions for moisture are validated by 

monitoring the moisture distribution during drying non-destructively with MRI. 

Validation of the quality distribution is still an open question. Furthermore, 

calculation of the optimized drying trajectories to retain heat sensitive components 

and its validation is based on an averaged moisture and quality model and data. 

The computational efficiency of the CFD model in COMSOL multi-physics in 

combination with the optimization procedures was insufficient to allow full 

integration of the spatial model with the dynamic optimization. Further 

development of software that can realize dynamic optimization of spatial 

distributed models is recommended.   

Vegetables are normally dried with belt dryers. Particles at different height on the 

belt have a different temperature-moisture content profiles and consequently 

different qualities. This aspect has not yet been discussed in this thesis. Future 

work is recommended to investigate the role of the spatial distribution within a 

dryer and to develop drying strategies either for a uniform quality distribution 

throughout the dryer, or to cope with the distribution in the final product. 
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7.3.2 Impact of adsorption drying on drying efficiency and quality  

 Although not extensively investigated in this work it is expected that the adsorbent 

system can also be combined as an add-on with the drying strategies as proposed in 

this thesis. Experimental results for drying of broccoli with ambient air and zeolite 

dehumidified air also showed that with dehumidified air the drying rate can 

significantly be enhanced in the first drying period. Quality degradation during 

drying depends on temperature and moisture content and residence time. Applying 

dehumidified air reduces the residence time of product in a dryer and it there are 

possibilities to reduce the residence times in regions of high degradation rates. This 

aspect has not yet been studied in this work. It may be worthwhile to do further 

work along the lines of this thesis to investigate quality retention in combination 

with zeolite dehumidified air. 

 

7.3.3 Application to other food products and processes 

A mechanistic driven modeling and optimization approach to dry healthy foods 

was proposed and applied in this thesis work. It includes four steps: model 

development, validation, optimization and implementation.  Foods, either in its 

natural or processed form, with various ingredients such as moisture, carbohydrates, 

fat, protein and ash are complex soft matter. Processing of foods includes besides 

coupled heat and mass transfer also physical and chemical changes. All these 

changes affect the development of food quality during processing.   

Optimization needs a good transport model and a good quality model. Empirical 

and semi-empirical models are limited in the extrapolation to conditions outside the 

validated range. Empirical models in the literature are often based on single 

response models which don‘t include effect of varying multiple conditions that 

arise during food processing. For example the Arrhenius equation gives only the 

temperature dependency of the rate constants and the role of the changing 

composition is not included.  Mechanistic drying models can overcome these 

limitations. Therefore they have the potential to be applied for a large range of 

processing conditions.  

The case study in this thesis concerned drying of broccoli. Both the drying and 

sorption isotherm model are mechanistic and use the composition and physical 
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properties of the components based. The experimental validation proved that the 

models are valid in a wide range of moisture contents and temperatures. With the 

isokinetic temperature-moisture content state diagram, optimized drying 

trajectories are designed which avoids temperature-moisture content regions with a 

high degradation rate.  

This approach is a fundamental approach based on applied physics and can be 

applied to other food products and processing methods to dry healthy foods.  The 

isokinetic temperature-moisture content state diagram is especially helpful to 

understand the drying trajectories for multi-objective problems and to obtain an 

overview of pathways that retain heat sensitive healthy components.  

The optimal trajectories can be realized in batch dryers by varying the temperature 

settings in time. In continuous dryers the optimal trajectories can be realized by 

applying drying sections with distinct air temperatures for each section.  
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Summary 

 

Convective drying is an effective post-harvest method to the extend shelf life of 

vegetables and to reduce the mass for transportation. The heat load during drying, 

however, affects the quality attributes negatively. Today, consumers in the 

industrialized world pay a raised attention on food quality, and especially to the 

nutritional value of food.  This increased demand on quality has become a 

challenge for drying research, and to retain the nutritional value, mild drying 

conditions must be applied. However, at these conditions the energy efficiency to 

remove the water from the product by evaporation is low; often below 50%. 

Moreover, due to the growing global market for dried products, drying contributes 

more and more to the global energy consumption and CO2-emission.  Hence, there 

is a need for high energy efficient drying methods with low CO2-emission. A 

straightforward solution to increase drying energy efficiency is high temperature 

drying, but these conditions are conflicting with the aim to retain nutritional 

components. To combine these two aims, i.e. energy efficient drying and retention 

of nutritional components, is a challenge for drying research.   

In this thesis work, the conflict between quality retention and energy efficiency is 

investigated for the drying of broccoli. The approach in this work is based on 

mechanistic driven drying modeling and optimization. The approach includes three 

crucial elements: 1) mechanistic driven model development, 2) model validation, 

and 3) mechanistic model assisted optimization. 

In the first parts of the thesis advanced mechanistic drying models are introduced. 

These are the Free Volume theory for moisture transport (Chapter 2), and the 

Flory-Huggins Free Volume theory to describe sorption isotherms (Chapter 3). 

The strength of these theories is that the mobility of water is based on the changes 

in physical state during drying (from rubbery to glassy state) and the mixing 

properties of water, biopolymers and solutes. These mechanistic models allow the 

extrapolation of the drying behavior to not experimentally validated conditions. 

Moreover, the model parameters have a physical basis and can directly be related 

to material properties.  The drying behavior in broccoli is represented by 2D color 

maps to visualize the spatial distribution of moisture content, the progress of 
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degradation of nutritional components in the product and shrinkage during drying. 

The influences of pre-treatments are also incorporated in the models.  

The second part of the thesis concerns experimental validation of the models from 

Chapter 2 and Chapter 3. In Chapter 4 moisture transport during drying of 

broccoli is monitored with MRI (Magnetic Resonance Imaging) as a non-

destructive technique. The results show the spatial distribution of moisture content, 

shrinkage and drying rate of differently pre-treated samples during drying. The 

images revealed non-Fickian diffusion behavior for fresh stalks. The non-Fickian 

diffusion is caused by the moisture transport resistance of the stalk skin which 

creates, together with shrinkage, center directed stress driven moisture transport. 

This phenomenon was absent in pre-treated broccoli samples for which the 

resistance for moisture transport in the skin was reduced.    

The drying rates for broccoli florets and stalks are derived from MRI data in 

Chapter 5. The Free Volume theory for moisture transport is validated on the 

average moisture content from the MRI experiments. The fitting parameters are the 

mass transfer coefficient and the self-diffusion coefficient of solids. The results 

quantify the enhanced drying rates of fresh and pre-treated samples due to the 

removal of the transport resistance in the skin and the changed cell structure. The 

influence of pre-treatments on the drying rate is in line with the results of Chapter 

4. Comparison of experiments in a pilot dryer showed a good agreement with the 

drying behavior in the MRI device.  

Chapter 6 concerns dynamic optimization to derive optimal drying trajectories that 

increase both energy efficiency and retention of nutritional components during 

drying of broccoli. For this step it was necessary to derive, from the spatial model, 

a drying model for the average moisture content and average value of the 

nutritional components. The kinetics for the degradation of glucosinolates and 

vitamin C (obtained from a parallel project) and the drying rate of broccoli are 

applied to calculate optimized drying trajectories for the control variables of 

temperature and air flow rate. The results have shown that with optimal trajectories 

the energy consumption can be halved, the vitamin C retention can be increased 

significantly, and the influence of drying on the degradation of glucosinolates is 

reduced to nearly zero. The optimized drying trajectories are plotted in an 

isokinetic temperature-moisture content state diagram which shows that the 

product areas with high degradation rates are circumvented.  
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Finally, in Chapter 7 the contribution of the thesis work and the impact on drying 

research and the perspectives are discussed. The mechanistic driven drying 

modeling and optimization approach to produce healthy dried food is regarded as a 

fundamental approach which uses physical and chemical properties of the product. 

The advantage of the approach is the potential for application to a large range of 

processing conditions. The isokinetic temperature-moisture content state diagram, 

which gives a direct overview of possible pathways to retain heat sensitive 

components, is a powerful tool to support decision making in multi-objective 

problems in food process design. This thesis work is an important step in 

mechanistic modeling and optimization, but the end of this approach is not yet 

reached. Further adoption of the proposed methodology of monitoring and 

modeling transport phenomena and degradation of micronutrients in food matrices 

is believed to advance the quality of food products. 

 

 

 



 

154 

 

 

 



 

155 

 

 

Samenvatting 

 

Convectief drogen met verwarmde lucht is een effectieve manier om de 

houdbaarheid van levensmiddelen te verbeteren. Het beperkt ook de kosten van 

transport door het kleine productvolume en de lage productmassa. De 

warmtebelasting tijdens het drogen heeft echter een negatieve invloed op 

kwaliteitseigenschappen. De eindgebruikers in de geïndustrialiseerde wereld stellen 

steeds hogere eisen aan kwaliteit van gedroogde producten en met name aan de 

gezondheidseigenschappen. Het bereiken van betere gezondheidseigenschappen is 

daarom een belangrijk aspect in de ontwikkeling van droogtechnologie waarbij het 

toepassen van milde droogcondities centraal staat.  

Echter, bij milde droogcondities is de energie-efficiëntie voor het verwijderen van 

water laag; in het algemeen beneden 50%. Omdat de wereldmarkt voor gedroogde 

producten nog altijd groeit, draagt drogen steeds meer bij aan de wereldwijde 

energieconsumptie en de CO2-uitstoot. Daarom is het ontwikkelen van 

energiezuinige droogmethoden met lage CO2-uitstoot van groot belang. Verhogen 

van droogtemperaturen is een eenvoudige methode om de efficiëntie van 

droogprocessen te verhogen, maar dat conflicteert met het streven naar milde 

droogcondities voor het behoud van gezondheidseigenschappen. Het combineren 

van de twee doelen, 1) energiezuinig drogen en 2) het behoud van 

gezondheidseigenschappen in gedroogde producten is daarom een van de grootste 

uitdagingen voor het huidige droogonderzoek. 

In dit proefschrift wordt de conflicterende vraag voor behoud van kwaliteit en 

energie-efficiëntie onderzocht voor het drogen van broccoli. Het onderzoek maakt 

gebruik van het modelleren en optimaliseren van het droogproces op basis van 

mechanistische kennis. De aanpak is gebaseerd op de volgende elementen: 1) 

mechanistisch modelleren, 2) model validatie en 3) modelgebaseerde optimalisatie. 

In het eerste deel van dit proefschrift worden geavanceerde mechanistische 

modellen geïntroduceerd. Dit betreft de Free Volume theorie voor watertransport in 

groenten die gedroogd worden (hoofdstuk 2), en de Flory-Huggins Free Volume 

theorie voor de beschrijving van sorptie-isothermen (hoofdstuk 3). In deze 
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theorieën is de verandering van de mobiliteit van water in de productmatrix, welke 

tijdens drogen van de rubber- naar de glasstatus gaat, meegenomen. Verder 

gebruiken deze theorieën de mengeigenschappen van water, biopolymeren en 

opgeloste componenten. De modelparameters in deze mechanistische modellen 

hebben een fysische achtergrond en volgen uit materiaaleigenschappen. Daarmee 

wordt de mogelijkheid voor extrapolatie van het drooggedrag naar niet-

experimenteel gevalideerde condities sterk uitgebreid. Het drooggedrag is 

weergegeven in 2D kleurengrafieken die de ruimtelijke verdeling van water in het 

product, de afbraak van micronutriënten en de krimp tijdens het drogen weergeven. 

Het effect van behandelingen die voorafgaan aan het drogen is in deze modellen 

meegenomen. 

Het volgende deel van dit proefschrift betreft experimentele validatie van de 

modellen uit hoofdstuk 2 en hoofdstuk 3. In hoofdstuk 4 wordt het vochttransport 

in broccoli tijdens drogen gemonitord via MRI (Magnetische Resonantie Imaging). 

Het voordeel van deze methode is dat het product intact blijft tijdens het meten 

waardoor er geen neveneffecten optreden. De metingen geven de ruimtelijke 

verdeling van het vochtgehalte, de krimp en droogsnelheid voor verse en 

voorbehandelde broccoli in de tijd weer. Uit de resultaten blijkt dat het drogen van 

verse broccoli sterk afwijkt van de gebruikelijke Fick-diffusie. Deze afwijking 

wordt veroorzaakt door de weerstand voor watertransport in het oppervlak van het 

product, door de krimp en door stress ontstane naar binnen gericht watertransport. 

Dit verschijnsel was sterk gereduceerd of afwezig bij voorbehandelde producten. 

In hoofdstuk 5 worden de droogsnelheden voor broccoliroosjes en -stelen afgeleid 

uit MRI data (hoofdstuk 4). De Free Volume theorie voor watertransport is 

gevalideerd op basis van het gemiddelde vochtgehalte dat gemeten is gedurende de 

MRI experimenten. De fitparameters waren de massaoverdrachtscoëfficiënt  en de 

zelf-diffusiecoëfficiënt voor vaste componenten. De resultaten kwantificeren de 

verschillen in droogsnelheid van verse en voorbehandelde broccoli (zie hoofdstuk 

4). Vergelijking van het drooggedrag tijdens de MRI experimenten  toonde een 

goede overeenkomst met dat in een pilot drooginstallatie.   

Hoofdstuk 6 betreft de dynamische optimalisatie voor het behoud van 

micronutriënten in combinatie met hoge energieefficiëntie bij het drogen van 

broccoli. Hiervoor was het nodig om de ruimtelijke verdeelde modellen te 

reduceren tot productgemiddelde modellen voor watertransport en afbraak van de 
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micronutriënten glucosinolaten en vitamine C. Op basis van deze modellen bepaalt 

de optimalisatie de stuurpatronen voor luchttemperatuur en –debiet.  Met de 

optimale sturing voor deze variabelen halveert het energieverbruik, neemt het 

vitamine C-gehalte aanzienlijk toe, en treedt er vrijwel geen afbraak van 

glucosinolaten op. Grafische weergave van de optimale sturingen in isokinetische 

temperatuur-vochtgehalte toestandsdiagrammen maakt inzichtelijk hoe de sturing 

afbraak van de micronutriënten voorkomt.  

In het slothoofdstuk (hoofdstuk 7) worden de impact en perspectieven van dit 

werk voor het droogonderzoek en de kwaliteit van levensmiddelen beschreven.  De 

aanpak van mechanistische modellen en optimalisatie is een fundamentele aanpak 

om micronutriënten op een energiezuinige manier te drogen. Met het gebruik van 

fysische en chemische eigenschappen is het mogelijk om de modellen voor een 

groot bereik van droogcondities toe te passen. De isokinetische temperatuur-

vochtgehalte toestandsdiagrammen geven direct inzicht in de mogelijke manieren 

om temperatuurgevoelige componenten te behouden en zijn belangrijk in het 

maken van beslissingen bij het ontwerpen van verwerkingsprocessen met 

meervoudige doelen. Hoewel dit proefschrift een belangrijke bijdrage levert aan 

het droogonderzoek zijn er nog diverse mogelijkheden voor verdere ontwikkeling 

van de aanpak. Verdere ontwikkeling van monitoring methoden en modellen voor 

watertransport, en onderzoek naar de manier waarop micronutriënten afbreken in 

intacte levensmiddelen, zal de kwaliteit van gedroogde levensmiddelen  nog verder 

verbeteren. 
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