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1. Introduction

Research on increasing the sustainability of aquafeeds is essential for 

aquaculture to fulfil its potential in providing high-quality protein for the global 

population in the coming decades. According to the Food and Agriculture 

Organization of the United Nations (FAO), fisheries and aquaculture are vital to 

global food security and poverty alleviation. Although the supply of fish from 

marine capture fisheries is stabilizing at around 90 million tons (FAO, 2010), the 

demand for fish and fish products is increasing. Production from world fisheries 

and aquaculture is projected to reach about 172 million tons in 2021, with most 

of the growth coming from aquaculture (FAO, 2012). Aquaculture has seen 

an average annual growth rate of 8% over the past two decades (FAO, 2008) 

making it the fastest growing food production sector in the world.

However, there is a major challenge facing aquaculture in continuing this 

growth. Fish need feed with high levels of protein and energy. Traditionally, for 

carnivorous or omnivorous fish, these are provided mainly as fish meal (FM) 

and fish oil, which also contributes to the health-promoting aspects of fish in 

the human diet, for example, with omega-3 fatty acids. The challenge lies in 

the need to increase feed production without increasing the demand for these 

marine raw material resources while maintaining the health benefits.

Aquaculture today consumes 60% of the FM and 85% of the fish oil produced 

(FAO, 2008), mainly from industrial coastal fisheries and from the trimmings 

produced during processing for human consumption. Therefore, the industry 

is heavily dependent on marine resources. Production from these resources 

cannot be increased without increasing the environmental impact. At best, 

sustainably managed fisheries may be able to yield the current harvest of 5 

million tons of FM and 1 million tons of fish oil (IFFO, 2011), but this is far below 

the current and expected demand. Therefore, to meet the growing demand for 

fish, aquaculture must identify alternatives. The research reported in this thesis 

focuses on alternatives for the proteins in fish feed.

2. Fish feed production: the manufacturing challenges

The fish feed production process involves a series of unit operations such as 

particle size reduction, mixing, extrusion, and subsequent drying followed by 

26694 Vukasin Draganovic.indd   8 17-09-13   09:55



Chapter

1

General introduction

9

vacuum coating and cooling (Fig. 1). Extrusion, a central structuring operation, 

includes the conditioning of the feed (0.5–2 min; 70–90 °C) before it enters the 

extruder barrel. The feed mash is cooked in the extruder at 80–130 °C and 20–

30 bar for a short time (0.3–1 min) and kneaded. The heat is mostly generated 

through the dissipation of mechanical (kneading) energy along the extruder 

barrel (Barron et al., 2002; Chevanan et al., 2007; Gatlin et al., 2007). The typical 

amounts of water added to the extrusion process are high (25–32% of the mash 

feed rate). To avoid product deterioration during storage, the extrudates have 

to be dried to a moisture level below 10%. Normally, hot air is used as a drying 

medium and the air temperature ranges from 80 to 140 °C. The drying time can 

vary from 20 to 50 min. Subsequently, vacuum coating is used to infuse the dry, 

porous pellets with oil (up to 40%).

Plant	  protein	  sources	  

Dosing	  per	  batch	  

Grinding	  

Mixing	  

Extrusion	  

Drying	  

Vacuum	  coa;ng	  

Cooling	  

Packing	  

Storage	  

Fish	  mea	   Micro	  ingredients	  

	  	  	  	  	  Water,	  steam	  

Oil	  

	  	  	  	  	  	  	  	  	  Water	  vapour	  

Micro	  ingredients	  

Fish	  meal	   Starch	  sources	  

Fig. 1. Schematic overview of the current fish feed manufacturing process.

Feed pellets must meet a series of physical specifications. They must be 

sufficiently durable to withstand the stresses exerted during transport, handling 

and in pneumatic feeding devices (Aarseth, 2004; Aarseth et al., 2006). Intensification 

of aquaculture has been accompanied by more extensive feeding systems (plastic 

tubes) in which the pellets can be transported from a few hundred meters to up to 
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1400 m. Apart from economic loss, fines generated by pellet crumbling can also 

have an adverse effect on the water quality when suspended in water.

The pellets must be consistent in appearance, size and density, and the 

density must be controlled precisely in the extrusion process to give the 

required oil absorption and sinking speed characteristics. Pellets that stay 

afloat will not be eaten by the fish; pellets that sink too fast may escape being 

eaten. Starch is used in feeds for carnivorous fish to promote expansion of the 

product after extrusion, giving the pellets their porosity (Glencross et al., 2010). 

This porosity allows the pellet matrix to be vacuum infused with oil (Sopade et 

al., 2006; Øverland et al., 2007). In addition, the oil must stay inside the pellet 

during storage, especially at increased temperatures. This depends on the pore 

structure of the pellets; larger and well-connected pores have more leakage.

The final properties of the pellets are highly dependent on the type of raw 

materials used. A different protein source may change the viscosity of the mash 

(feed into the extruder). A mash with a high viscosity requires dilution with some 

water to reduce the viscosity to manageable levels. Water acts as a plasticizer 

of the materials during extrusion. Miller (1985) observed that extrusion of dry 

expanded dog food at low moisture leads to reduction in the plasticity and 

elasticity of the extrudate. Therefore, the feed particles need to be hydrated 

enough. Addition of water is undesirable; a high level of water leads to high 

water activity, which needs to be reduced to have a product that is shelf stable. 

Excess water has to be removed after extrusion by drying. Unfortunately, plant 

proteins in general need more moisture for extrusion than FM, and thus require 

more drying after extrusion. Drying is recognized as one of the most important 

unit operations with respect to energy consumption, odour emissions and 

plant safety. In commercial fish feed manufacturing, drying typically represents 

about 65% of the total energy consumption.

Therefore, it is clear that alternative protein sources must not only provide 

the right nutrient profile but must also have the techno-functional properties 

that allow the formation of fish pellets with good properties using the current 

process (Allan and Booth, 2004; Kim et al., 2006; Knudsen et al., 2006; Øverland 

et al., 2007).
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3. Alternative protein sources

Some candidate protein sources have a lower crude protein content than 

FM, which suggests that the space in the diet formulation previously available 

for starch-rich ingredients is reduced in plant-based diets. This leaves fewer 

possibilities for adaptation of other properties, such as expansion of the 

extrudates after extrusion, to give the right porosity. The influence of plant-

based materials as listed in this section on these types of properties is therefore 

important. In FM-based products, the structure of the pellet is known to be 

easily accessible for oil infusion during coating. Oil impregnation must not be 

hindered by changes in the microstructural parameters of the pellets when 

using plant proteins.

Overall, plant-derived feedstuffs all have some functional characteristics 

that can be positive or negative relative to FM for their suitability for use in 

aquafeeds. It is therefore likely that a combination of plant-derived feed 

ingredients is required to replace FM. The aim of this thesis is to investigate the 

most important techno-functional properties of plant protein-rich ingredients 

compared with FM.

4. Current plant proteins used in aquafeeds

4.1. Soy protein concentrate
Soybean, Glycine max Linnaeus, is the leading oilseed crop produced 

globally. Its production in 2009–2011 averaged 254 million tons per year. A 

large part of this production is used for the extraction of oil yielding a cake with 

high protein content. This cake is processed to yield a wide array of soybean 

products, such as soy flour, soybean meal, soy protein concentrate (SPC) and 

soy protein isolate. Soy products are regarded as economical and nutritious 

feedstuffs with a high crude protein content and a reasonably balanced amino 

acid profile (Gatlin et al., 2007). They have been used widely as functional 

ingredients in food (Rao et al., 2002). SPC is produced by aqueous-alcohol 

extraction of defatted soy flakes (Lusas and Riaz, 1995) and typically contains 

60–65% crude protein. The extraction removes or deactivates anti-nutritional 

factors, soluble carbohydrates and fibre, but not phytic acid (Bureau et al., 1998; 

Storebakken et al., 2000), which chelates with minerals such as phosphorus 
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and zinc and reduces their availability in monogastric animals (Kumar et al., 

2012). This most widely used method to produce SPC also reduces the protein 

solubility to less than 10%. However, the extraction can eliminate the bitter off-

flavour (Morr and Ha, 1991). An added concern compared with FM is its high 

concentration of carbohydrates, largely present as oligosaccharides, of which 

some are not available to aquatic animals (Gatlin et al., 2007). Although SPC 

has a relatively balanced amino acid profile for fish, it is low in some essential 

amino acids, especially methionine (Storebakken et al., 2000), which need to be 

added in the diet in crystalline form (Kaushik et al., 1995; Mambrini et al., 1999; 

Refstie et al., 2001).

4.2. Wheat gluten
Wheat gluten (WG) is an interesting alternative dietary protein source to 

FM (Helland and Grisdale-Helland, 2006). Although most gluten is used in 

cattle feed, a small (<1%) but increasing quantity of WG produced is used by 

baking industries seeking greater control over the finished product either for 

quality control or nutritional marketing (Gatlin et al., 2007). A wet processing 

step is commonly used as an industrial separation technique for wheat 

flour, which suspends and washes away the starch while most of the gluten 

remains. Although energy and water intensive, it is considered to be a mild 

processing technique. This is reflected in the high digestibility of cysteine in 

diets containing WG (Storebakken et al., 2000) and the overall high protein 

digestibility of this product (Davies et al., 1997; Pfeffer et al., 1995; Robaina et 

al., 1999; Storebakken et al., 2000; Sugiura et al., 1998). Unlike soy products, 

WG contains less carbohydrates and anti-nutrients of concern that limit its use 

in feeds (Hardy, 2010; Storebakken et al., 2000). Among cereal proteins, WG is 

unique in its ability to form a dough that is viscoelastic and can act as a gas 

barrier (MacRitchie, 1992). However, it is not clear whether these properties 

are beneficial when making fish feed pellets. Wheat storage proteins are 

characterized by their high content of glutamine and proline and conversely, by 

their low content of charged amino acids. As a consequence, they are insoluble 

in water (Morel et al., 2002).
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5.  Candidate plant proteins for increased use in 
aquafeeds

5.1. Lupine protein concentrate
Lupines include several species of grain legumes with a high protein 

content (about 35% of the dry weight) and relatively low oil content (8–10%). 

Lupines are produced in significant quantities throughout the world. In 2004, 

1 million tons of lupines were produced (FAOSTAT, 2005). Among the lupine 

seed species, the most cultivated, primarily in Australia, is blue lupine (Lupinus 

angustifolius L.), whereas the typical European and South American varieties 

are yellow (Lupinus luteus L.) and white (Lupinus albus L.) lupines. So-called 

sweet lupines are varieties of white lupine with a low content of alkaloids 

(Roemer, 1993). Because heat processing of sweet lupines is not required (Drew 

et al., 2007), they may be processed by air classification into a lupine protein 

concentrate (Cheftel et al., 1985) containing 61% crude protein (Booth et al., 

2001). The amino acid pattern of lupine protein is comparable with that of 

soybeans (Cerletti and Duranti, 1979) with a good balance of essential amino 

acids. Based on the nutritional studies of sweet lupine fractions in finfish, this 

high-protein legume has great potential as an aquafeed ingredient (Drew et al., 

2007). It has been previously reported that lupine proteins may strengthen the 

structure of a processed/cooked product (Kiosseoglou et al., 1999; Mavrakis et 

al., 2003).

5.2. Canola protein concentrate
Canola, Brassica rapa L., is produced from cultivars of rapeseed that have 

been bred to contain low levels of erucic acid and glucosinolates, a group of 

anti-nutrients that interfere with normal thyroid function (Gatlin et al., 2007). 

Canola seed is an oilseed, and canola oil is the primary product of its cultivation. 

According to the United States Department of Agriculture, canola production 

exceeds 40 million metric tons per year (USDA, 2004).

Canola meal is the product that results after oil extraction and removal of 

the solvent. It can be further processed by aqueous extraction of the protein 

to yield canola protein concentrate (CPC). This process removes most of the 

anti-nutritional factors present in canola meal, and thus is an excellent protein 

source for salmonids (Drew, 2004). CPC has a protein content that is similar 

to SPC and lupine protein concentrate. Canola protein has high biological 
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value compared with other protein sources. As the primary protein source in 

aquafeeds for salmon and trout, CPC supports growth rates similar to those of 

fish fed FM-based diets, as long as some amino acid supplements are used to 

overcome limiting amino acid levels (Gatlin et al., 2007).

With regard to important functional properties of canola proteins, it has 

been reported previously that the water absorption capacity of rapeseed 

flours was similar (exceeded 200%) to that of soybean flour (Sosulski et al., 

1976). Canola proteins have been considered as potential ingredients for food 

products that require a gel-like structure (Aider and Barbana, 2011). Uruakpa 

and Amtfield (2004) found that canola protein isolate can serve as a structuring 

agent in mixed food systems.

At present, CPC is not widely available for use in aquafeeds but there is 

increasing interest in its production in larger quantities.

6.  Sustainability assessment of different feed 
formulations using energy, classical exergy and  
eco-exergy

Once the possible alternatives to FM in feeds have been defined with 

respect to all the nutritional and technological aspects, a proper sustainability 

assessment of various formulations is needed. Pelletier and Tyedmers (2007) 

stated that understanding and improving the environmental performance of 

feed ingredients and alternative feed formulations is central to improving the 

sustainability of salmon farming as a whole.

In this thesis, the replacement of fish protein harvested from wild sea fish by 

cultivated plant-based alternatives is investigated. In this research, we use the 

concept of exergy to get an objective insight into the environmental impact 

of various protein sources. Exergy analysis is akin to life cycle analysis, with the 

addition that the value of each stream (and emission) is quantified with its total 

available potential to do work.

Cumulative industrial energy consumption has been calculated previously 

to evaluate the comparative environmental performance of salmonid feed 

ingredients and feed formulations (Boissy et al., 2011; Pelletier and Tyedmers, 

2007). As energy is converted from one form to another, it is neither lost nor 

destroyed. It does, however, “lose a certain quality which can be described as 
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its ability to do work” (Torrie, 1981). This measure of the usefulness or value 

or quality of an energy form is called exergy. Technically, exergy is defined 

using thermodynamics principles as the maximum amount of work that can be 

produced by a system or a flow of matter or energy as it comes into equilibrium 

with a reference environment (Dewulf et al., 2008; Moran and Sciubba, 1994; 

Szargut et al., 1988). Exergy, therefore, is a measure of the total amount of 

usefulness in any stream or system. It would be beneficial to compare various 

feed formulations based on total exergy usage during their production.

Aquafeeds are composed of various ingredients originating from living 

organisms. Exergy only takes into account the inherent potential to do work in 

a specific system. The growth of a living organism, however, takes much more 

resources than is stored in its tissues after death, and thus, the expenditure of 

resources, in terms of exergy, to create these tissues is much larger than the 

amount of exergy left in them. This can be take into account with the concept 

of eco-exergy, which takes into account the quantity of information embedded 

in the biomass, estimated from the number of encoded amino acids in the 

genome of the species (Bendoricchio and Jorgensen, 1997; Jørgensen et al., 

1995). Eco-exergy can quantify the (thermodynamic) value of a living organism 

and even in an ecosystem of living organisms, which may be sacrificed for 

the creation of, for example, fish feed. It is therefore a useful concept when 

comparing feed products made from plants with products made by removing 

fish, as part of a natural ecosystem, from the sea. This new concept of eco-exergy 

was therefore proposed to investigate the impact of different ingredients 

of feed formulations on the environment to capture effects that cannot be 

investigated from a classical exergy point of view.

7. Outline of the thesis

This thesis aims to develop scientific insight on how the functional properties 

of protein-rich ingredients interfere with processing and final product quality. 

A proper understanding of these relationships guides us towards more efficient 

processes and could further contribute to the development of sustainable 

aquaculture. The research described in the thesis covers four topics:

(I) the interactions between protein-rich ingredients and process 

parameters;
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(II) the relationships between protein-rich ingredients, pellet structure 

formation and physical properties of feeds;

(III) the functional properties of the ideal protein source;

(IV) the sustainability of various compositions of salmon feeds.

A schematic outline of this thesis is shown in Fig. 2.

Chapter 2 explores the effects of replacing FM by SPC and WG on the 

extrusion process, moisture requirements and resulting physical properties 

of feeds. To minimize the number of experiments and cover a broad range of 

formulations, a mixture design was used. The optimal compositional window 

remaining after considering the required physical properties of feeds was 

reported.

Chapter 3 evaluates how the ingredients influence the structure of the 

fish feed pellet and relates these to changes in technological properties. The 

microstructure of pellets at various levels of SPC and WG was studied using 

scanning electron microscopy (SEM), cryo-SEM and X-ray microtomography. 

The microstructural parameters responsible for the mechanical properties of 

feeds are identified.

Chapter 4 introduces two new protein sources as alternatives to FM as a 

result of general necessity for diversification of plant proteins and potential 

intensification of the current process. The use of a shearing device for 

characterizing the techno-functional properties of ingredients is reported in 

this chapter. Guidelines are proposed for the functional properties of the ideal 

plant-based protein source.

Chapter 5 discusses the environmental impact of various protein sources 

using three different ecological indicators. The limitations of traditional 

thermodynamic analysis and the advantages of extending classical exergy 

analysis to eco-exergy are reported.

The thesis ends with a general discussion in Chapter 6, which focuses on 

the industrial consequences of the current work, the future outlook and further 

possibilities to increase the sustainability of aquaculture as a whole.
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Fig. 2. Schematic overview of the thesis: towards sustainable fish feed production using novel protein 
sources.
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Abstract

Evaluation of feed ingredient functionality plays a vital role in modern 

fish feed manufacturing practice. The aim of this study was to examine 

the extrusion behaviour of blends containing alternative protein 

sources from plant origin to fish meal (FM), such as wheat gluten (WG) 

and soy protein concentrate (SPC), and the consequences for the 

physical attributes of the resulting feed extrudates. A mixture design 

was applied, varying the levels of protein sources included in the 

formulation from 50 to 450 g kg−1. Each diet was produced with added 

feed moisture content of 20, 26 and 32 g per 100 g (wet basis). The partial 

least squares regression models were fitted and their performance was 

evaluated on the basis of R2 and the root mean squared error of cross-

validation over the complete data set. A higher inclusion level of FM 

in the diet decreased the values of the extruder system parameters, 

such as torque, pressure at the die and melt temperature. In contrast, 

inclusion of SPC significantly increased the values of these extruder-

related parameters. The viscoelastic properties of WG gave higher 

radial expansion; FM showed the opposite effect. The results show that 

the feed moisture was the dominant factor for extrudate density and 

oil absorption capacity. Products with higher breaking strength were 

observed with increasing levels of WG and SPC. Combining the product 

requirements for both extrudate density and hardness showed that the 

largest optimal compositional range is available at low feed moisture 

content. However, maximum FM replacement is possible at high feed 

moisture content.
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1. Introduction

Fish meal (FM) is a scarce and increasingly expensive protein source for 

commercial salmon and trout feeds. This explains the need for the replacement 

of fish proteins by vegetable alternatives. Numerous studies have investigated 

the potential of alternative protein sources (Gatlin et al., 2007). Most of 

these studies showed that the partial replacement of FM can be successfully 

accomplished with respect to nutritional and health aspects (Bransden et al., 

2001; Gomes et al., 1995; Kaushik et al., 1995; Refstie et al., 2001; Torstensen et 

al., 2008). A viable alternative feedstuff to FM must posses certain nutritional 

characteristics, such as low levels of fibre, starch and antinutrients, plus have 

a relatively high protein content, high nutrient digestibility and reasonable 

palatability (Gatlin et al., 2007). According to Glencross et al. (2007), ingredient 

functionality would be also one of the key parameters in ingredient assessment.

In addition to the nutritional aspects, fish feeds containing plant proteins 

should also meet physical characteristics. The extrudates should have sufficient 

porosity to allow good oil absorption and durability that remain upon product 

storage, transportation and pneumatic feeding. Typically, these parameters 

are greatly influenced by the raw material selection and therefore by the 

introduction of alternative protein sources. Vital wheat gluten (WG) and soy 

protein concentrate (SPC) are the two most prominent vegetable alternatives 

to FM with respect to their availability and nutritional value in grower salmon 

diets. In extrusion cooking, WG is significantly involved in the microstructural 

and textural formation of the extrudates (Faubion and Hoseney, 1982). SPC 

is already widely used in commercial salmon diets and its use is expected to 

increase further. In general, soy proteins are well known in the food and feed 

industries for a wide range of functional properties (Chen et al., 2010; Liu and 

Hsieh, 2008; Renkema et al., 2001; Yu et al., 2009).

In previous studies on the effect of plant protein sources and process 

parameters on extruder responses and product properties, the level of FM in 

the diets was high (≥30%) and within a relatively narrow range, often at lower 

added moisture content. Therefore, the present research was carried out to 

study the behaviour of various levels of protein source, with the aim to (almost) 

fully replace FM. We analysed the effects of protein composition and variation 

in feed moisture on the extruder system parameters (torque, pressure at the die 

and melt temperature) and the technical properties of fish feed. Feed moisture 
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content was included since it is recognized as one of the vital process variables 

and a significant factor affecting the properties of the final product (Chen et al., 

2010; Chevanan et al., 2008; Chevanan et al., 2007; Wang et al., 2001). Based on 

the outcomes, an estimation of the compositional space available to replace 

fish protein is provided.

2. Materials and methods

2.1. Raw materials and production of extruded feeds
The chemical composition of the raw materials examined is given in Table 1. 

WG had the highest level of crude protein and starch compared with FM and 

SPC. The SPC had the lowest level of crude protein, and FM had the lowest level 

of total carbohydrates and starch.

Table 1. Chemical composition of fish meal (FM), wheat gluten (WG) and soy protein concentrate (SPC)

FMa WGb SPCc

Composition g kg-1

Dry matter 921 922 916

Crude protein 697 776 604

Crude fat 110 50 17

Ash 132 12 60

Total carbohydrate 6 129 38

Starch 3 70 9

a Low temperature dried fish meal, Welcon, Måløy, Norway
b Vital wheat gluten powder, Cargill®, Barby, Germany
c IMCOSOY, Imcopa, Araucaria, Brazil

The formulations consisted of: commercial salmon grower diet (control diet), 

FM-based diet (FM diet), combination of FM and WG (FM×WG diet), combination 

of FM and SPC (FM×SPC diet), WG-based diet (WG diet), combination of WG 

and SPC (WG×SPC diet), SPC-based diet (SPC diet) and combination of FM, WG 

and SPC (centre diet). Table 2 shows formulations of dry mix, without oil. The 

evaluated protein sources were varied at levels of 50, 250 and 450 g kg−1 of 

complete diet. Simultaneously, the sum of FM, WG and SPC inclusion level was 

constant at 550 g kg−1 for all experimental diets.
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Table 2. Formulation and chemical composition of the dry feed mixes

Dietsa        

Control FM FM×WG FM×SPC WG WG×SPC SPC Centred

Formulation (g kg-1)

Fishmeal 520 658 365.5 365.5 73.1 73.1 73.1 268

Wheat gluten 56.3 73.1 365.5 73.1 658 365.5 73.1 268

Soy protein concentrate 267 73.1 73.1 365.5 73.1 365.5 658 268

Wheatb 126 153 153 153 153 153 153 153

Sunflower meal 26.5 23.4 23.4 23.4 23.4 23.4 23.4 23.4

Vitamin and mineral premixc 3.8 19 19 19 19 19 19 19

Analysed composition

Dry matter (DM) 917 919 911 917 920 916 912 913

In g kg-1 DM

Protein 586 603 618 575 647 599 553 595

Fat 66 70 61 55 51 34 24 49

Starch 91 88 119 108 141 147 139 121

Ash 90 100 65 80 43 45 59 66 

a Complete formulation of the diets contains 297and 316 g kg−1  oil mixture for  the control and experi-
mental diets, respectively. The inclusion level of examined protein sources in the dry mix of 73.1, 365.5 
and 658 g kg−1  corresponds to 50, 250 and 450 g kg−1  in the complete formulation, respectively.
b Supplied by Skretting Norway, Stavanger, Norway.
c Vitamin levels according to NRC 93 specification (proprietary composition, Skretting ARC, Stavanger, 
Norway).
d Centre point in the mixture design.

All diets were processed at Skretting ARC Technology Plant (Stavanger, 

Norway). The dry ingredients were pre-mixed in a vertical mixer (custom 

designed, Skretting ARC, Norway) and ground in a Dinnissen hummer mill 

(drive capacity 30kW, Sevenum, The Netherlands), with a screen size of 1.0 

mm. Subsequently, the ingredients were mixed in a Dinnissen horizontal 

ribbon mixer (500LTR, Sevenum, the Netherlands) for 7 min. The feed mash was 

conditioned in a differential diameter conditioner (custom designed, Skretting 

ARC). Extrusion experiments were carried out using a twin-screw extruder 

(TSE 36 HC Thermo Scientific, Thermo Fisher, UK) with barrel length of 1008 

mm and a length/diameter ratio of 28:1. The extruder processing conditions 

were pre-determined for a control diet and applied throughout the study 

(Table 3). Slightly higher barrel temperature was used in zone 5 to facilitate 
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material flow in this barrel section. The ingredients were extruded as described, 

leading to extrudates having a diameter ranging from 6.8 to 9.2 and a length of 

8 mm approximately. The knife rotation speed was adjusted according to the 

specified length of the extrudates.

Table 3. Constant extrusion process conditions

Process parameter Dimension Set point

Capacity feed mix kg h–1 75

Steam pre-conditioner % 5

Oil pre-conditioner % 0

Oil extruder % 0

Set-point water temperature °C 60

Pre-conditioner temp. down spot °C 75

Set-temperature extruder barrel zone (2-7) °C 100;100;100;110;100;100

Screw speed rpm 650

Die diameter mm 6

Die open area mm2 28.26

The configuration of the screws is shown in Fig. 1. The direction of the product 

flow was from left to right. The transport zones were built of either 1D or 1/2D 

conveying elements. The first forwarding kneading block consisted of 6 mixing 

elements at an orientation of 60 °; the two reversing kneading blocks consisted 

of 7 and 5 mixing elements, respectively, with a staggering angle of 30°.

	  	  	  	  	  	  	  Feed zone             Barrel zone 2         Barrel zone 3         Barrel zone 4         Barrel zone 5          Barrel zone 6         Barrel zone 7 

Feed material               Water 

Fig. 1. A Side-view diagram of the screw configuration, from inlet (left) to die (right).

Extrudates were dried in a conventional, batch hot-air dryer (custom 

designed, Skretting ARC, Norway) at 90 °C to ~ 8% moisture content. The 

samples used to determine the technical properties were not coated with oil 

in order to avoid fat leakage when analysing the specific density and hardness 

of the feed.
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2.2. Chemical analysis
Chemical analysis of the dry matter, protein, fat and ash was carried out 

by Skretting ARC laboratory (accredited analytical service provider). The total 

carbohydrate and starch analyses were carried out by Masterlab (Boxmeer, 

The Netherlands). Dry matter was calculated by gravimetric analysis after oven 

drying at 105 °C for 18 h. Protein levels were calculated from the determination 

of total nitrogen using the Kjeltec 2400 Auto System, based on N x 6.25. The fat 

concentration was measured by nuclear magnetic resonance (Maran Ultra NMR, 

Resonance Instruments, Witney, UK). Starch was analysed using an enzymatic 

method described by McCleary et al. (1994). Gross ash content was determined 

gravimetrically following loss of mass after combustion of a sample in a muffle 

furnace at 550 °C for 17 h.

2.3. Determination of water holding capacity
The water holding capacities (WHC) of the protein sources were determined 

using methods modified from Heywood et al. (2002) and Lin and Zayas (1987). 

Five grams of total flour were dispersed in 25 mL of distilled water in a 50 mL 

centrifuge bottle. Bottles were agitated for 10 min, and then centrifuged at 

4000 rpm for 30 min.

After decanting the supernatant, each bottle was weighed and the WHC (g 

of water per g flour) was calculated using Eqn. (1):
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The results were the average of three replicates. 

2.4. Measurement of extrudate properties 

Kernel morphology: The extrudates were photographed using a zoom digital camera 

(Olympus µ 780, 5x optical zoom) with 7.1 effective megapixels for high-definition pixel 

images. 

Radial expansion: The ratio between the extrudate diameter and die nozzle orifice diameter 

was used to quantify the product expansion at the extruder die. The reported values were the 

average of 10 replicates from randomly selected extrudates. 

Specific density: A volumetric displacement method using glass beads with a diameter of 

0.1 mm as a displacement medium was used to determine the specific density of the 

extrudates. The method was originally developed by Hwang and Hayakawa (1980). The 

specific density of the extrudates was calculated using Eqn. (2): 

( )gsgseg
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s /WV

W
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The results were the average of three replicates.

2.4. Measurement of extrudate properties
Kernel morphology: The extrudates were photographed using a zoom digital 

camera (Olympus μ 780, 5x optical zoom) with 7.1 effective megapixels for 

high-definition pixel images.

Radial expansion: The ratio between the extrudate diameter and die nozzle 

orifice diameter was used to quantify the product expansion at the extruder 

die. The reported values were the average of 10 replicates from randomly 

selected extrudates.

Specific density: A volumetric displacement method using glass beads with 

a diameter of 0.1 mm as a displacement medium was used to determine 
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the specific density of the extrudates. The method was originally developed 

by Hwang and Hayakawa (1980). The specific density of the extrudates was 

calculated using Eqn. (2):
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where ρ
s
, is the specific density using the glass bead displacement method 

(g l–1), W
ex

 is the extrudate mass (g), V
eg

 is the volume of the extrudates and 

glass powder,
 
W

gs
 is the mass of glass beads displaced (g) and ρ

gs
 is the specific 

density of the glass beads (g l–1). The values were obtained from an average of 

two measurements.

The breaking strength of extrudates was determined using a texture analyser 

TM2 DLX (Food Technology Corporate, USA) with a 13 kN load cell. Twenty grams 

of sample were placed in the cell and analysed using a cross head speed of 4.42 

mm s–1. The maximum force required to break the extrudates was expressed as 

the breaking force (kg). The reported values were the average of 10 replicates.

Oil absorption capacity: Samples of the extrudates (500 g) from each 

treatment were placed into a laboratory vacuum coater (custom designed, 

Skretting ARC, Norway) with an excess (400 g) of heated (60 °C) fish oil and 

thoroughly mixed throughout the whole coating cycle. Air was slowly 

evacuated from the vacuum chamber until all visible signs of air escaping from 

the extrudates ceased. This normally occurred at a reduced pressure of 0.85 bar. 

Once all visible signs of air escaping had ceased, the vacuum chamber was re-

equilibrated to atmospheric pressure and the oil was allowed to infuse into the 

feed. The extrudates were then removed from the coater and any excess oil was 

removed by placing the feed between two absorbent paper towels. The final 

weight of the oil infused into the extrudates was then recorded and the relative 

oil uptake was calculated.

2.5. Experimental design and statistical analysis
A mixture design was applied to systematically vary the levels of FM, WG 

and SPC in the diets. In addition, a full factorial design was used for the added 

feed moisture content. Each experimental diet was produced at added feed 

moisture contents of 20, 26 and 32 g per 100 g (wet basis). Two additional centre 

points were included in the design to verify the stability and reproducibility of 

the extrusion process.

26694 Vukasin Draganovic.indd   30 17-09-13   09:55



Interactions between protein-rich ingredients and processing

31

Chapter

2

The study comprised 25 production runs. The results were analysed by 

multivariate data analysis, using Unscrambler computer software (Unscrambler® 

9.7, 2009, Camo A/S, Oslo, Norway). The datasets were standardized because the 

variables had different units. The standardization was performed by dividing 

each parameter with its standard deviation. Partial least squares (PLS 1) was 

used as the regression method. The models were obtained using systematic 

cross-validation. The significance levels of each variable were determined on the 

basis of the jack-knife estimates of the uncertainties of the model parameters. 

Further information on the method can be found elsewhere (Esbensen, 2006).

The inter-relationships between the dependent variables were found using 

the correlation coefficients (R). The significance of the R-values was decided at 

a probability level of 0.01. The contour plots were performed using Statistica 

version 9.0 (Statsoft Inc., Tulsa, OK, USA). The contour plots were generated 

from the raw data using the quadratic fit.

3. Results

3.1. Feed extrusion and chemical composition of the diets
All the experimental diets were extruded using the constant extrusion 

parameters pre-determined for the control diet and presented in Table 3. The 

extruder system parameters and the product characteristics reproduced well 

when the production of the centre diet was repeated.

The chemical analysis revealed that the content of crude protein, fat and 

starch in the diets varied. These three changes are of important consideration, 

because the effects of examined protein sources might also be caused 

by differences in chemical composition between the diets. Especially, the 

polysaccharides present will influence the water absorption and the extrudate 

hardness as a result thereof. The crude protein level varied from 553 to 647 

g kg −1, while the fat level varied from 24 to 70 g kg −1 (Table 2). Starch level 

changed notably with the inclusion of both vegetable protein sources. Starch 

levels ranged from a low of 88 g kg −1 in the FM diet to a height of 147 g kg −1 

in the WG×SPC diet. Starch is commonly added to salmonid feed to improve 

binding of the matrix and facilitate expansion with a practical inclusion level of 

approximately 10% in the final feed (Sørensen et al., 2010).
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3.2. Effects of protein source and feed moisture on extruder system 
parameters

The effects of the protein source and feed moisture on the extruder system 

parameters are presented in Table 4. The motor torque values varied between 

76 and 145 Nm, depending on the protein source and feed moisture. The lowest 

motor torque (76 Nm) was obtained at a high level of WG (450 g kg−1), and low feed 

moisture (20 g per 100 g, wet basis). The highest motor torque was observed at a 

high level of SPC (450 g kg−1) and low feed moisture (Table 4). Except for the high 

WG diet, Table 4 also shows that motor torque decreased with increasing moisture. 

In this study, the pressure measured at the die ranged from 5 to 40 bar. When the 

feed moisture was increased from 20 to 32 g per 100 g (wet basis) at 450 g kg−1 

inclusion of SPC, the pressure at the die decreased from 40 to 18 bar (Table 4).

Considering all treatment combinations, the highest recorded melt 

temperatures (t
m

) were in the zone 5, which could be attributable to the set 

barrel temperature of 110 °C and the long reverse kneading block in this barrel 

head. The temperature t
m

 ranged from 113 to 138 °C. There was a wider range 

of t
m 

at low and medium added feed moisture (Table 4). The lowest t
m

 was 

observed for the FM and FM×WG diets at high added moisture. The highest 

melt temperature was recorded for the SPC diet at low added moisture. The 

weighted regression coefficients of the models and their quality analysis 

are presented in Table 5. All models were able to explain 57.8–96.5% of the 

variation (R2). The PLS regression models for torque, pressure at the die and melt 

temperature showed R2- values of 0.86, 0.58 and 0.96, respectively. The highest 

slope (0.98) was obtained for the melt temperature. The WG formulation at 

20 g per 100 g (wet basis) feed moisture was detected as an outlier due to 

slight fluctuations in the motor torque and therefore it was not included in the 

model. The negative weighted regression coefficients in the model (Table 5) 

showed negative effects of FM, WG and feed moisture, and a positive effect of 

SPC on the motor torque. The results also indicated significant effects of FM, 

SPC and feed moisture on the motor torque.

Although a decrease of feed moisture resulted in increased die pressure, the 

effect was not significant (Table 5). However, there was a significant decrease in 

die pressure with an increase in FM and a decrease in SPC. The FM, SPC and feed 

moisture significantly influenced the melt temperature (Table 5). Increasing the 

level of SPC resulted in a higher tm
; FM and feed moisture showed the opposite 

effect. Increasing the level of WG
 
did not have a significant effect (Table 5).
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Table 5. Effect of the proportion of FM, WG, SPC and added feed moisture on the extruder system 
parameters and technical properties of the extrudates

Property Equation R2 Slopea RMSEPb

Torque (Nm) –0.46·FM* – 0.02·WG + 0.49·SPC* – 0.42·MO* 0.86 0.90 6.82

Pressure at the die (bar) –0.40·FM* – 0.10·WG + 0.52·SPC* – 0.26·MO 0.58 0.55 5.59

Melt temperature –  
zone 5 (°C)

–0.32·FM* – 0.05·WG + 0.38·SPC* – 0.78·MO* 0.96 0.98 1.39

Radial expansion (–) –0.50·FM* + 0.47·WG* + 0.03·SPC + 0.27 ·MO 0.77 0.71 0.057

Specific density (g l–1)  0.05·FM + 0.15·WG – 0.20·SPC – 0.79·MO* 0.60 0.66 0.07

Peak breaking force (kg) –0.49·FM* + 0.37·WG* + 0.13·SPC – 0.49·MO* 0.77 0.81 55.98

Oil absorption capacity (%) –0.08·FM – 0.17·WG + 0.24·SPC + 0.78·MO* 0.63 0.68 7.06

In the equations, FM, WG and SPC are proportions of these ingredients and MO is added feed moisture. 
FM, fish meal; WG, wheat gluten; SPC, soy protein concentrate; MO, feed moisture
a Slope of the regression line between abscissa (X) and ordinate (Y)
b Root mean square error of prediction.
* The significance of the weighted regression coefficient

3.3.  Effects of the protein source and feed moisture on the technical 
properties of the feed

Fig. 2 shows the effect of the inclusion of FM, WG and SPC on the appearance 

of the extrudates. The products obtained from the various diets clearly differed 

in terms of the surface roughness and colour. However, at 32 g per 100 g (wet 

basis) feed moisture, the differences were much less pronounced.

The values for the radial expansion, specific density, peak breaking force 

and oil absorption capacity of the extrudates produced at different levels 

of added moisture are shown in Table 4. The product with the lowest radial 

expansion was produced for the FM×SPC diet at medium feed moisture (26 g 

per 100 g, wet basis). The highest radial expansion was observed for WG and 

SPC inclusion at 250 g kg−1 and high moisture level (32 g per 100 g, wet basis). 

When the level of FM increased from 50 to 450 g kg−1, the radial expansion 

decreased progressively, whereas an increased level of WG resulted in higher 

radial expansion. Radial expansion increased only marginally with increasing 

levels of SPC and feed moisture (Table 5). The density of the feed varied from 

660 to 980 g l–1 (Table 4) and was significantly affected by feed moisture (Table 

5). The actual composition had a smaller effect. Increasing the level of FM and 

WG resulted in a slight increase in density, whereas increasing the level of SPC 

led to a decrease in extrudate density.
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c

b

d

Fig. 2. Feed extrudate morphology at 26 g per 100 g (wet basis) added moisture. Difference in surface 
roughness of the control (a), FM, WG and SPC diets (b, c and d), respectively.

There were significant differences in extrudate hardness for the different 

protein sources (Table 4). The peak breaking force of the products ranged from 

629 to 980 kg force; the maximum occurred with a WG level of 450 g kg−1 and 

medium moisture content. The lowest hardness was observed for the high level 

of FM and feed moisture of 26 g per 100 g (wet basis). With an increase in the 

level of FM and feed moisture, there was a decrease in extrudate hardness. A 

higher level of WG increased the peak breaking force significantly. Table 5 shows 

that the level of FM and feed moisture were dominant factors influencing the 

extrudate hardness, followed by the level of WG in the formulation. Inclusion of 

SPC did not show a statistically significant effect.
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The lowest oil absorption capacity was observed for WG at 450 g kg−1 and 

low feed moisture; the highest was in diet containing 250 g kg−1 FM and WG 

at high added moisture. There were almost no differences in the effect on oil 

absorption capacity for the different protein sources.

The regression models for radial expansion, specific density, peak breaking 

force and oil absorption capacity showed R2 values of 0.77, 0.60, 0.77 and 0.63, 

respectively (Table 5). The highest slope (0.81) was observed for the peak 

breaking force.

3.4. Correlation of the response variables
Correlation analysis of multivariate data provides valuable information 

about the relationship between the different properties in extrusion studies. 

Higher correlation between some unexpected variables and lower correlation 

between some expected variables can reveal important inferences (Nehru et 

al., 2007). The correlation coefficients obtained between the extruder system 

parameters and the technical properties of the feed are presented in Table 6.

Table 6. Correlation coefficients for extruder system parameters and technical properties of the 
extrudates

TRQ PRE t
m

REX SD PBF OAC

TRQ 1*

PRE 0.89* 1*

t
m

0.75* 0.79* 1*

REX 0.13 0.16 –0.09 1*

SD –0.05 –0.05 0.46 –0.40 1*

PBF 0.49 0.60 0.70* 0.41 0.41 1*

OAC 0.07 0.08 –0.42 0.38 –0.99* –0.39 1*

TRQ, torque; PRE, pressure at the die; t
m

, melt temperature (zone 5); REX, radial expansion; SD, specific 
density; PBF, peak breaking force; OAC, oil absorption capacity.
* Denotes significant correlation coefficients.

The results show a strong linear correlation between the torque, pressure 

at the die and the t
m 

values. Ilo et al. (1999) observed that unit density is 

inversely related to the expansion ratio. This agrees with the results from the 

present research, although the correlation was not significant. In general, these 

findings imply the significance of axial expansion. The specific density was 

highly correlated with the oil absorption capacity. Peak breaking force and t
m

 

gave a correlation coefficient of 0.70.
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4. Discussion

To quantify the influence of the protein source and the feed moisture on 

extruder responses and the technical quality of the feed, we applied a mixture 

design in combination with the multivariate PLS regression technique. The 

levels of protein sources used are consistent with current and foreseeable 

future commercial guidelines. This experimental design minimized the required 

number of experiments and covered a wide range of ingredient contents. 

These methods allowed the original 133 data to be reduced to 28 weighted 

regression coefficients. None of the models showed signs of non-linearity as 

observed by normal probability plots of residuals (data not presented).

In current fish feed manufacturing practice, several technical properties 

of the constituent ingredients are required to meet the demands for efficient 

processing and properties of the final product. These properties include the 

ability to bind within the pellet matrix and allow expansion of the product 

(Glencross et al., 2010). This should result in a finely dispersed pore structure. 

The importance of porosity is manifested through the sinking rate of the 

extrudates, as well as the ability to infuse oil into the extrudate matrix in a 

vacuum (Øverland et al., 2007).

4.1. The behaviour of the mixtures in the extruder
The composition of raw materials is known to have a significant effect on 

extruder system parameters. The negative correlation between FM and motor 

torque (Table 5) may be explained by the higher fat content in this material 

compared with the vegetable alternatives.

The strong positive effect of SPC on the motor torque (Table 5) can be attributed 

to the high water holding capacity of this ingredient (2.63 g H
2
O per g flour) 

compared with FM (1.47 g H
2
O per g flour) and its lower fat content. The same 

mechanisms can also link WG inclusion and the motor torque because wheat 

gluten had the lowest water holding capacity (1.39 g H
2
O per g flour). The 

dependence of motor torque on feed moisture is well known. This finding was 

expected and is in accordance with the results presented by Lin et al. (2000). 

Motor torque and pressure at the die are functions of the dough viscosity 

during extrusion cooking (Pansawat et al., 2008).

The metal-sensing temperatures differed widely (≤28°C) from the temperature 

continuously measured by the flush-mounted melt thermocouples (data not 
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presented). This was expected because heat was generated during extrusion 

through viscous dissipation of the mechanical energy (Meng et al., 2010). Therefore, 

the strong positive effect of SPC on t
m

 (Table 5) can be attributed to an indirect 

effect through the increase in motor torque and resulting viscous dissipation. 

Water acts as a plasticizer in the extruder, and a higher feed moisture reduces 

the melt viscosity and the viscous dissipation (Ilo et al., 1996). For this reason, the 

product temperature was lower when feed moisture was higher (Table 5).

4.2. Product properties
In general, inclusion of vegetable proteins led to increased hardness, 

rougher surface, and greater radial expansion of the extrudates. In addition, 

these parameters were greatly affected by the feed moisture added.

The level of expansion is an important factor in aquafeeds as it affects the 

density, fragility, hardness and oil holding capacity (Rosentrater et al., 2009). 

The inclusion of FM was negatively associated with the radial expansion 

(Table 5) and it may be explained by the lowest starch level among the protein 

sources evaluated (Faubion et al., 1982; Linko et al., 1981). WG tends to expand 

in the radial direction most likely due to the viscoelastic properties of glutenin 

proteins, while expansion of SPC was mainly in the axial direction (Table 5). 

Cheftel et al. (1992) stated that when soy protein was extruded at a moisture 

content higher than 50%, fibrous and non-expanded products were observed. 

Although the moisture content in this study was not higher than 32 g per 100 

g (wet basis), the tendency of soy proteins to form a fibrous structure may be 

one possible explanation for the lack of radial expansion for SPC. Extrudate 

density is another important factor in fish feed and determines the floatability 

of the product (Chevanan et al., 2009). This parameter considers volumetric 

expansion in all directions (Phillips et al., 1984). Inclusion of WG was positively 

associated with the product density (Table 5).

Extrudate hardness essentially refers to the physical integrity of the finished 

product in terms of handling and transport. It relates to generation of broken 

extrudates. Our results show that extrudate hardness was hardly correlated 

with either radial expansion or specific density (Table 6), which suggests the 

importance of other aspects of the protein source and feed moisture. The 

difference in peak breaking force for feeds containing high FM compared to 

feeds containing high SPC and especially WG (Table 4), emphasize that protein 

sources differ in functionality.
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It has been found that extrudate hardness is important for nutrition of 

animals (Thomas van der Poel, 1996), suggesting that the melt temperature 

or motor torque will influence the nutritional value of the feed produced 

due to the correlation found (Table 6). However, the effects might be limited 

as Barrows et al. (2007) reported no effect of extruder barrel temperature on 

feed intake and weight gain of rainbow trout (Oncorhynchus mykiss). On the 

contrast, extrudate hardness is related to water stability and Bæverfjord et al. 

(2006) found that the low water stability of the diet resulted in separation and 

accumulation of free oil in the stomach of rainbow trout. In the next section, 

we will define an optimal range of extrudate hardness which is also anticipated 

to result in satisfactory water stability of the feeds. Most likely, the observed 

hardness values above the upper limit may impact feed intake negatively. 

However, this needs further investigation.

4.3. Towards a compositional window of optimal technical properties 
of extrudates

The contour plots were made to visualize the potential interactions between 

components that were not included in the regression models. This section 

focuses on specific density and hardness as an example. Other properties 

could have been investigated using the same method. We expected to find 

possible interactions between SPC and WG in case of extrudate density. The 

contour plots (Fig. 3) revealed interactions of FM and SPC at 32 g per 100 g (wet 

basis) added water. No other notable interactions were observed. According to 

the requirements for sinking and oil absorption, the optimum specific density 

ranged from 740 to 920 g l–1. This optimum was observed for FM feeds and 

combination of FM and SPC at 20 g per 100 g (wet basis), as well as combination 

of FM and SPC at 32 g per 100 g (wet basis) added moisture, as shown in Fig. 3.

According to the commercial guidelines, acceptable hardness (740–850 

kg) was found under conditions of restricted moisture for feeds containing 

higher levels of FM, whereas higher moisture content was appropriate for feeds 

containing high levels of SPC and WG (Fig. 4). However, no notable interactions 

were observed among protein sources on extrudate hardness.

The contour plots can also be used to derive the optimal compositional 

range of the protein sources evaluated when the product requirements 

for density and hardness are combined. Fig. 5 shows the area in which the 

requirements for both technical properties are met. The largest overlapping 
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area was obtained at low moisture content. In that case, about 40–50% of the
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FM could be replaced by rather arbitrary proportions of WG and SPC or slightly 

higher SPC content. With higher moisture contents, about 75% of FM could be 

replaced by SPC.

However, high levels of WG did not fulfil the requirements for both product 

properties, regardless of the feed moisture added. It could be postulated that 

the inclusion of the third relevant product parameter might lead to a further 

diminishing of the compositional window. For example, the extrudate surface 

became rather rough when high levels of SPC were included. Therefore, it can 

be concluded that FM has unique functional properties that affect the technical 

quality of fish feed. Future research should therefore focus on improving our 

understanding of the functional properties of FM and finding ways to adjust 

the properties of plant proteins accordingly.

5. Conclusions

The use of a mixture design in combination with multivariate PLS regression 

is a fast and efficient technique for quantifying the differences between the 

protein sources studied. The replacement of FM with plant proteins and 

changes in feed moisture affected the extruder system parameters and the 

technical properties of fish feed.

From the results, it can be concluded that FM has unique functional 

properties that are not naturally present in the vegetable protein sources 

evaluated. SPC and WG were positively associated with the strength of the 

extrudates. However, the compositional window remaining after considering 

two technical properties of feed was rather narrow. The greater part of FM 

could be replaced with SPC at higher moisture levels. High levels of WG did not 

fulfil the product requirements and WG is therefore less good alternative to FM.
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Abstract

This article focuses on understanding the role of vital wheat gluten on 

the structural parameters of extruded fish feed and its correlation to 

the physical and functional properties. Gluten–soy protein concentrate 

blends with five gluten concentrations (0–200 g kg–1) were produced. 

An abrupt reduction in oil uptake was observed with the 200 g gluten 

kg–1 blend. Inclusion of gluten from 100 to 200 g kg–1 resulted in 

unacceptable product properties. Sinking of feed pellets with 0 and 

50 g gluten kg–1 was 100%, whereas only 36% of pellets with 200 g 

gluten kg–1 sank. We suspect that this is due to a relationship between 

morphological structure and oil impregnation during coating of feeds. 

The addition of gluten at 200 g kg–1 gave a smoother and non-porous 

outer surface. Pellets without gluten had a larger number of cells that 

were smaller than 200 µm (P<0.05) compared with pellets with 100 and 

200 g gluten kg–1. More spherical cell shapes (P<0.01) and a compact 

structure were favoured in the presence of gluten. The closed porosity 

increased (P<0.05), whereas interconnectivity between pores decreased 

(P<0.01), with increasing gluten content from 0 to 200 g kg–1. The effects 

of the addition of gluten are probably related to the film-forming 

properties of gluten.
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1. Introduction

In an effort to increase formulation flexibility in the production of modern 

salmonid feeds, and to enhance the sustainability of feeds by replacement 

of fish protein with plant protein, vital wheat gluten has been shown to have 

high potential as a feed ingredient (Gatlin et al., 2007). Among plant proteins, 

soy protein concentrate (SPC) is still the primary alternative ingredient to fish 

meal due to its availability and competitive prices, but the high concentration 

of carbohydrates in SPC remain a concern (Gatlin et al., 2007). In this respect, 

vital wheat gluten may have good potential due to its high protein content 

and nutrient digestibility (Robaina et al., 1999; Sugiura et al., 1998), its lower 

level of indigestible fibres and absence of anti-nutritional factors. Compared 

with fish meal, wheat gluten is low in methionine and especially low in lysine, 

whereas it is higher in cysteine content (Allan et al., 2000). It has been reported 

previously that in salmonids, supplementation with lysine (Cheng et al., 2003; 

Davies et al., 1997) or a combination of lysine and methionine (Pfeffer and 

Henrichfreise, 1994) is required for diets containing wheat gluten to maintain 

fish growth. Wheat gluten is also extensively used in food applications due to 

its functionality (Day et al., 2006) and availability in large quantities (Domenek 

et al., 2004).

Feed pellets obtained after extrusion should have a well-defined porosity 

that allows sufficient oil absorption capacity leading to specific sinking rates 

and durability (Glencross et al., 2010). In a commercial fish feed manufacturing 

operation, incorporation of gluten was shown to significantly influence the 

physical properties of feed, such as oil infusion. For example, in high-fat feeds 

(>300 g kg–1 added fat), gluten can be used only in small amounts (<100 g kg–

1) because of the negative effect on this and other related technical features of 

the feed. The underlying mechanism affecting the physical properties of these 

extrudates is as yet unclear.

A quantitative description of the microstructure of the extrudate helps in 

understanding its mechanical properties (Robin et al., 2010). The microstructural 

features of cellular products, such as average cell size, cell size distribution, 

cell wall thickness, control product attributes such as the void fraction and 

the interconnectivity of the cells (Gibson and Ashby, 1997). The infusion of 

liquids such as oil strongly depends on cell size distribution, the degree of 

interconnectivity between the cells and the average cell wall thickness (Trater 
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et al., 2005). The precise influence of using wheat gluten for partial or complete 

replacement of fish meal on the morphology has not been described yet.

Several techniques were used to study the microstructure of expanded 

extrudates, such as scanning electron microscopy (SEM) (Warburton et al., 

1992), and light microscopy (Chanvrier et al., 2007) followed by digital imaging 

(Stojceska et al., 2008). However, these techniques only gave information about 

a surface or a fracture plane. X-ray microtomography (XMT) provides a non-

invasive means of assessing the morphology in three dimensions. To the best 

of our knowledge, this technique has not yet been used to study the impact of 

plant proteins on the morphology of fish feed extrudate.

The specific objective of this study was to determine the links between the 

physical and microstructural characteristics of extruded feeds based on gluten–

SPC blends and relate these to the properties of the respective components. 

The microstructure of the pellets was altered through inclusion of different 

levels of wheat gluten mainly.

2. Materials and methods

2.1. Raw materials and processing
All diets were processed at Skretting ARC Technology Plant (Stavanger, 

Norway). The formulations consisted of a commercial salmon grower diet (0 

g gluten kg–1) and four experimental diets containing gluten, in which SPC 

was partly replaced to give diets containing 50, 100, 150 and 200 g gluten kg–1 

(50, 100, 150 and 200 g gluten kg–1 diets, respectively). Commercially available 

SPC (Imcosoy) and gluten (vital wheat gluten powder) were obtained from 

Imcopa (Imcopa SA, Araucaria, Brazil) and Cargill (Cargill Germany GmbH, 

Barby, Germany), respectively. Table 1 gives the formulations and chemical 

composition of the diets. The chemical composition of the raw materials is given 

in the footnotes of Table 1. Chemical analysis of the diets (Table 1) revealed that 

the inclusion of gluten led to a lower level of crude fibre and higher level of 

starch and fat. However, no notable differences in the content of crude protein 

and ash were observed between the feeds (Table 1).
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Table 1 Formulation and chemical composition of the dry feed mixes.

0 g gluten 
kg-1 

50 g gluten 
kg-1 

100 g gluten 
kg-1 

150 g gluten 
kg-1 

200 g gluten 
kg-1 

Formulation (g kg-1)a

Wheatb 108.9 108.9 108.9 108.9 108.9

Faba beans (dehulled)c 108.2 108.2 108.2 108.2 108.2

Fishmeald 233.3 233.3 233.3 233.3 233.3

Soy protein concentratee 466.6 388.9 311.1 233.3 155.6

Wheat glutenf 0 77.8 155.6 233.3 311.1

Sunflower mealg 46.7 46.7 46.7 46.7 46.7

Mineral and vitamin mixh 36.6 36.6 36.6 36.6 36.6

Analysed composition 

Dry matter (DM) (g kg-1) 922 920 922 921 914

In g kg-1 DM

Protein 582 598 603 601 621

Fat 47 49 53 60 63

Starch 126 125 141 164 155

Crude fibre 42 40 36 31 31

Ash 81 79 75 67 66

aComplete formulation of the diets contains 345 g kg–1 oil mixture. The inclusion level of gluten in the 
dry mix of 77.8, 155.6, 233.3, and 311.1 corresponds to 50, 100, 150 and 200 g kg–1 in the complete 
formulation, respectively.
bSupplied by Skretting AS, Stavanger, Norway. Containing (g kg–1): dry matter 869; In g kg–1 DM: protein 
135; fat 32; starch 692; crude fibre 25; ash 18.
c Supplied by Skretting AS, Averøy, Norway. Containing (g kg–1): dry matter 862; In g kg–1 DM: protein 304; 
fat 23; starch 534; crude fibre 21; ash 30.
dLow temperature dried fish meal, Welcon, Egersund, Norway. Containing (g kg–1): dry matter 931; In g 
kg–1 DM: protein 723; fat 142; starch 5; crude fibre 4; ash 145.
eContaining (g kg–1): dry matter 923; In g kg–1 DM: protein 673; fat 22; starch 62; crude fibre 49; ash 65.
f Containing (g kg–1): dry matter 918; In g kg–1 DM: protein 821; fat 67; starch 87; crude fibre 6; ash 13.
g Supplied by Skretting AS, Stavanger, Norway. Containing (g kg–1): dry matter 910; In g kg–1 DM: protein 
404; fat 37; starch 45; crude fibre 182; ash 72.
hVitamin levels according to NRC 93 specification (proprietary composition, Skretting ARC, Stavanger, 
Norway). Complete formulation of the diets contains 23.8 g kg–1 mineral and vitamin mix.

The dry ingredients were premixed in a vertical mixer (custom designed, 

Skretting ARC, Stavanger, Norway) and ground in a Dinnissen 30 kW hammer 

mill (Dinnissen, Sevenum, The Netherlands), with a screen size of 1.0 mm. 

Subsequently, the ingredients were mixed in a Dinnissen 500LTR horizontal 

ribbon mixer (Dinnissen, Sevenum, The Netherlands) for 7 min. The feed mash 

was conditioned in a differential diameter conditioner (DDC 2, Wenger Mfg. 

26694 Vukasin Draganovic.indd   49 17-09-13   09:55



Chapter 3

50

Co., Sabetha, KS, USA) and extruded in a Wenger TX-57 twin-screw extruder. 

The barrel of the extruder was 57 mm in diameter and the length-to-diameter 

ratio (L/D) was 17.5:1. The screw configuration was composed of a series of 

intermeshing feed screws (FS), a forwarding kneading block (FK) and reversing 

kneading blocks (RK) arranged according to the defined barrel diameters (D) 

such that the overall configuration from the drive end was: 5D FS, 1D FK, 8D 

FS, 0.5D RK, 1D FS, 0.5D RK, 1.5D FS: to the die. The extruder barrel consisted 

of four head sections, with each section jacketed to permit either steam 

heating (sections 1–4) or water cooling (sections 2–4). Temperature control of 

the second, third and fourth section is achieved by balancing the heating and 

cooling power input.

The ingredients were processed as described, yielding pellets with a 

diameter of 8.7 mm and a length of approximately 10.0 mm. The feed was dried 

in a Wenger Series III horizontal 3-zones dryer (Wenger Mfg. Co., Sabetha, KS, 

USA) to approximately 920 g kg–1 dry matter. The allotted oil component of 

each diet was vacuum infused to the pellets in a Forberg 6-l vacuum coater 

(pilot-scale coater) (Forberg®, Larvik, Norway). The mixtures were extruded 

using the parameters presented in Table 2. Slight adjustments were made to 

the screw speed and barrel temperature to obtain similar expansion for each 

composition. The knife rotation speed was adjusted according to the specified 

length of the pellets. Other extruder operating conditions were constant for all 

the feeds produced. After at least 10 min of running, discrete samples of pellets 

(n = 4 × 1000 g) were collected every 15 min to create a repeated measures 

assessment of each diet.

The specific mechanical energy (SME) and specific thermal energy (STE) were 

read directly from the control panel of the extruder. The data were collected 

by APIS real-time Process Explorer (version 4.1, Prediktor, Fredrikstad, Norway). 

The values presented are the means of 10 measurements taken at equal time 

intervals throughout the production run.

2.2. Chemical analysis
Chemical analyses of the dry matter, protein, fat and ash were carried out 

by Skretting ARC laboratory (an accredited analytical service provider). The 

starch and crude fibre analysis was carried out by Masterlab (Boxmeer, The 

Netherlands). The dry matter was calculated by gravimetric analysis after oven
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Table 2 Extruder and dryer processing parameters during feed production.

Diet formulation 0 g gluten 
kg-1 

50 g gluten 
kg-1 

100 g gluten 
kg-1 

150 g gluten 
kg-1 

200 g gluten 
kg-1 

Added moisturea  
(% of feed rate)

31 31 31 31 31

Extrusion

Capacity feed mix, kg h-1 150 150 150 150 150

Steam added to pre-
conditioner, kg h-1

10.5 10.5 10.5 10.5 10.5

Water added to pre-
conditioner, kg h-1

16.5 16.5 16.5 16.5 16.5

Temperature pre-
conditionerb, °C 

74 72 72 72 70

Water added to extruder, 
kg h-1

19.5 19.5 19.5 19.5 19.5

Temperature of extruder 
water, °C

60 60 60 60 60

Temperature section 1c, °C 64 62 63 62 64

Temperature section 2d, °C 63 60 62 60 62

Temperature section 3e, °C 80 81 81 64 86

Temperature section 4f, °C 80 79 81 70 81

Revolution of screws, rpm 372 378 366 372 403

Die orifice diameter, mm 6.5 6.5 6.5 6.5 6.5

Die open area (mm2) 66.4 66.4 66.4 66.4 66.4

SMEg, kJ kg-1 179 170 144 139 130

STEh, kJ kg-1 233 232 216 207 225

Drying

Temperature section 1, °C 90 95 100 100 100

Temperature section 2, °C 85 90 95 100 100

Temperature section 3, °C 75 90 85 95 95

Total drying time (min) 13 13 13 13 13

aCalculated on the basis of raw materials fed to the pre-conditioner; weight of raw materials on ‘as is’ 
basis.
bTemperature pre-conditioner, temperature at the outlet of the pre-conditioner.
c-fActual extruder barrel temperature at sections 1–4.
gSME, specific mechanical energy.
hSTE, specific thermal energy.

drying at 105 °C for 18 h. The protein levels were calculated by determining 

the total nitrogen content using the Kjeltec 2400 Auto System, based on N 

× 6.25. The fat concentration was measured by Maran Ultra NMR nuclear 

magnetic resonance (Resonance Instruments Ltd, Witney, UK). NMR measures 

the number of hydrogen protons of some character in a sample. This is done by 
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letting the protons induce a current in a closed coil. The sample was placed in 

an external magnetic field, which aligns the protons, creating a net magnetic 

field. An RF pulse is applied to the sample, creating a dynamic change in the 

field. This induces a current in a coil surrounding the sample. The induced 

current is then related to the fat content by a simple two-point calibration. 

The gross ash content was determined gravimetrically as the mass remaining 

after combustion of a sample in a muffle furnace at 550 °C for 17 h. Starch was 

analysed using an enzymatic method described by McCleary et al. (1994). The 

crude fibre content was determined as the loss in mass resulting from ashing 

of the dried residue obtained after acid and alkaline digestion of the sample 

according to ISO 6865 (ISO, 2000).

2.3. Structure characterization

2.3.1. Digital imaging

The pellets were photographed using a zoom digital camera (Canon IXUS 

210, Canon Inc., Headquarters, Tokyo, Japan) with 14.1 effective megapixels for 

high-definition pixel images.

2.3.2. Light microscopy analysis

Light microscopy was performed using a Stereo Discovery V12 

stereomicroscope (Carl Zeiss, Goettingen, Germany). Pellets coated 

(impregnated) with oil were cut in half along the cross section with a razor 

blade. The pictures of the samples were taken with the cutting side facing up.

2.3.3. Scanning electron microscopy (SEM)

Vacuum-dried samples were cut with a razor blade and glued onto a sample 

holder using carbon adhesive tabs (Electron Microscopy Sciences, Hatfield, 

PA, USA) or Leit-C (Neubauer Chemikalien, Münster, Germany), air dried for 

2 h and subsequently stored overnight under vacuum before analyses. The 

samples were sputter coated with 20 nm of iridium in SCD 500 (Leica, Vienna, 

Austria). Samples were analysed at 2 kV at room temperature in a Magellan 

400 field emission SEM (FEI company, Eindhoven, The Netherlands). The 

images were digitally recorded. The raw micrographs of the pellet surfaces 

were reconstructed using Visiopharm image analysis software (VisioMorph – 

Visiopharm Integrator System®, Visiopharm, Hørsholm, Denmark) and analysed 
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for porosity. The program calculated the percentage of the image containing 

black pixels. The porosity is reported as the area of pores as a percentage of the 

total area.

2.3.4. Cryo-Scanning electron microscopy

The frozen (–20 °C) sample was cut in half and glued onto a brass Leica 

sample holder using carbon glue Leit-C (Neubauer Chemicalien, Münster, 

Germany), directly frozen in liquid nitrogen and simultaneously fitted into the 

cryo-sample loading system (VCT 100). The Leica sample holder was transferred 

to a MED 020/VCT 100 non-dedicated cryo-preparation system (Leica, Vienna, 

Austria) on a sample stage at –93 °C. The sample was freeze dried in this cryo-

preparation chamber for 5 min at –93 °C and 1.3 × 10–6 mbar to remove water 

vapour contamination from the surface of the sample. The sample was sputter 

coated with a 15-nm layer of tungsten at the same temperature. The sample 

was then transferred into the Magellan 400 field emission SEM (FEI company, 

Eindhoven, The Netherlands) on the sample stage at –122°C and 4 × 10–7 mbar. 

The analysis was performed with a secondary electron voltage of 2 kV and 

probe current of 25 pA. All images were recorded digitally.

2.3.5. X-ray microtomography

The 0, 100 and 200 g gluten kg–1 feed pellets were scanned using a SkyScan 

1172 desktop X-ray microtomography imaging system (SkyScan, Kontich, 

Belgium) with a pixel size of 5.4 µm, operating at a voltage of 50 kV and 

current of 160 µA (to obtain optimum contrast between the solid and gaseous 

phases). A 12-bit, 11-megapixel, cooled CCD camera was used to collect the 

X-ray data. The images were acquired with a rotation step of 0.4 degrees over 

a total rotation of 180 degrees. Image reconstruction was accomplished using 

the Volumetric Reconstruction for Micro CT Instruments (SkyScan, Kontich, 

Belgium) software (Version 2.1, SkyScan, Kontich, Belgium). This reconstruction 

software uses a filtered back-projection algorithm with a modified cone-beam 

reconstruction (Feldkamp et al., 1984). The measurements were limited to an 

appropriate volume of interest (VOI), that is, a cylinder measuring 5.4 mm 

in diameter and 2.7 mm in height located in the centre of each pellet. The 

structural parameters were calculated by SkyScan CTAn software, version 1.5.13 

(SkyScan, Kontich, Belgium) after applying a global thresholding to segment 

the solid and gaseous phases. The porosity of the pellets was calculated as the 
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ratio of the volume of the pores to the total volume of the pellet, where the 

pellet volume is equal to the VOI previously defined. The structure separation 

function yielded the cell size distribution, and the thickness distribution 

function yielded the distribution in thickness of the cell walls. In addition, the 

open and closed porosity are reported. A closed pore in 3D is characterized by 

a connected assemblage of space voxels that is fully surrounded on all sides 

in 3D by solid voxels. An open pore is defined as any space located within a 

solid object or between solid objects, that has any connection in 3D to the 

space outside the object or objects. Percent open porosity is the volume of 

open pores as a percentage of the total VOI volume. The microstructure of the 

pellets was also described in terms of average cell size, structure surface per 

volume ratio, degree of anisotropy and connectivity density. The analyses were 

done on 3D image. All experiments were done in four replicates.

2.4. Measurement of the physical and functional parameters of feeds

2.4.1. Specific density

A volumetric displacement method using glass beads with a diameter of 0.1 

mm as a displacement medium was used to determine the specific density of 

the pellets including pores. The method was originally developed by Hwang 

and Hayakawa (1980). The specific density of the pellets was calculated using 

the following equation:
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pores. The method was originally developed by Hwang and Hayakawa (1980). The specific 

density of the pellets was calculated using the following equation: 

( )
pl

s
pg gs gs/

W
V W

ρ
ρ

=
−  

where ρs is the specific density using the glass bead displacement method (g l–1), Wpl is the 

pellet mass (g), Vpg is the volume of the pellets and glass powder, Wgs is the mass of glass 

beads displaced (g) and ρgs is the specific density of the glass beads (g l–1). The values were 

obtained from an average of three measurements. 

 (1)

where ρ
s
 is the specific density using the glass bead displacement method (g 

l–1), W
pl

 is the pellet mass (g), V
pg

 is the volume of the pellets and glass powder, 

W
gs

 is the mass of glass beads displaced (g) and ρ
gs

 is the specific density of 

the glass beads (g l–1). The values were obtained from an average of three 

measurements.

2.4.2. Oil absorption capacity

The oil absorption capacity (OAC) was measured according to a modified 

method of Lin et al. (1974). Approximately 0.5 g of the ground pellets and 10.0 

ml of rapeseed oil were added to a 15-ml conical graduated centrifuge tube. The 
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contents in the tube were mixed for 3 min with a vortex mixer to disperse the 

sample into the oil. After a holding period of 30 min, the tube was centrifuged 

for 25 min at 3050 × g. The separated oil was then removed with a pipette, 

and the tube was inverted for 25 min to drain the oil prior to reweighing. The 

OAC was expressed as grams of rapeseed oil bound per gram of ground pellet. 

Triplicate measurements were performed on each sample.

2.4.3. Maximum oil infusion into pellets

Unlike the OAC, the maximum oil infusion test was performed under vacuum 

conditions, using the whole pellets. The pellets (500 g) from each treatment 

were placed in a laboratory vacuum coater (custom designed, Skretting ARC, 

Norway) and the air was slowly evacuated from the vacuum chamber down to 

a reduced pressure of 0.15 bar. A mixture of heated (80 °C) fish and rapeseed 

oil (50:50) was sprayed through a nozzle in an excess amount (approximately 

350 g) and thoroughly mixed with the pellets throughout the coating cycle. 

The vacuum chamber was then re-equilibrated to atmospheric pressure and 

the oil was allowed to infuse into the feed. The pellets were then removed from 

the coater and any excess oil was removed by placing the feed between two 

absorbent paper towels. The final weight of the oil infused into the pellets was 

then recorded and the relative oil uptake was calculated. The reported values 

were the average of three replicates.

2.4.4. Fat leakage analysis

Coated pellets from the previous analysis were placed in a plastic bucket 

with blotting paper in the bottom and stored at 40 °C for 24 h. The leakage of 

fat was measured as the loss of fat from 100 g of feed.

2.4.5. Holmen durability index

This feed tester has recently been introduced in the fish feed industry. It uses 

air to rapidly circulate the feed and simulates a combination of mechanical and 

pneumatic stresses (Kaliyan and Vance Morey, 2009). One hundred grams of 

coated product were placed into the New Holmen Portable Pellet Tester (NHP 

100, Borregaard Lignotech, Sarpsborg, Norway), for 120 s. The samples were then 

collected and weighed. Three replicates were tested to calculate the Holmen 

durability index for each diet. The chamber of the NHP 100 was cleaned and 

the filter paper was changed between each replicate. The measurements are 
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in line with the internal quality control guidelines for coated pellets (Skretting 

AS, Stavanger, Norway), which ensures the industrial relevance of the results.

2.4.6. Percentage of sinking pellets

A 3000-ml cylinder was filled with 40 g l–1 salt water. One hundred pellets 

from each treatment were randomly selected and individually dropped into 

the cold water (6 °C) from 5 cm above the water surface. The pellets that did not 

sink within 3 min were given a zero score and percentage of sinking pellets was 

calculated. The results were the average of three replicates.

2.4.7. Water absorption index

The water absorption index (WAI) was determined by the method of 

Anderson et al. (1970). The pellets were first milled to a mean particle size of 

approximately 270 µm, determined by laser diffraction analysis (Mastersizer 

2000, Malvern Instruments Ltd., Malvern, UK). A 2.5-g sample was dispersed in 

25 g of distilled water. After stirring for 30 min, the dispersions were rinsed into 

tarred centrifuge tubes, made up to 32.5 g and then centrifuged at 3050 × g 

for 10 min. The supernatant was decanted and the sediment was weighed. The 

WAI was calculated using the following equation: WAI = weight of sediment/

weight of dry solids. All determinations were conducted in triplicate.

2.5. Statistical analysis
The results were submitted to one-way analysis of variance (ANOVA) and a 

least significant difference test (LSD); a confidence interval of 95% was used 

to compare the means. Statistical analyses were carried out using UNISTAT 

(Unistat Computer Software Ltd, London, UK).

3. Results

3.1. Macrostructure, physical and functional characteristics of feeds

Fig. 1 shows the effect of the inclusion of 200 g gluten kg–1 on the appearance 

of the final product. The appearance of the products with 50, 100 and 150 g 

gluten kg–1 was similar to the sample without gluten (results not shown).
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a b

Fig. 1. Oil-coated pellet morphology for feed with 0 (a) and 200 g gluten kg–1 (b). Samples were coated 
using pilot-scale coater.

When the 0 and 200 g gluten kg–1 samples were compared, a clear difference 

could be observed in terms of oil uptake. The surface of the sample with 0 g 

gluten kg–1 was practically oil free, implying that most of the oil was captured 

inside the pellet. Stereo light microscopy was used to evaluate the macroscopic 

morphology of the cross sections of the 0 and 200 g gluten kg–1 samples. Fig. 

2 clearly shows the region in the 200 g gluten kg–1 sample that is not loaded 

with oil.

a b

Fig. 2. Stereomicroscopy images of cross sections for feed with 0 (a) and 200 g gluten kg–1 (b). Samples 
were coated using the pilot-scale coater. Magnification is ×10.2.

Table 3 lists the effects of gluten on the physical and functional properties 

of the feeds. The density of the feed ranged from 683 to 758 g l–1. Except for 

150 g gluten kg–1, all the feeds had very similar density. Although statistically 

significant difference was observed, these differences are not considered to be 
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of technical relevance for the effects explained in this study. It is not completely 

clear why the feed with 150 g gluten kg–1 behaved differently. Obviously, this 

composition resulted in more expansion compared with the other pellets. The 

trends for the maximum infusion of oil are known to closely follow density 

(Draganovic et al., 2011). It was reported that the density and maximum oil 

infusion had a correlation coefficient of –0.99. Here, except for 200 g gluten 

kg–1, we found that the maximum oil infusion trend was similar to that for the 

density for 0 to 150 g gluten kg–1.

Table 3 Effects of gluten on the physical and functional characteristics of the feed.

Diet formulation Specific 
density 
(g l-1)

Maximum 
oil infusion 
(%)

Sinking 
(%)

Fat 
leakage 
(%)

Holmen 
durability 
(%)

WAIa  
(g g-1)

OACb 
(g g-1)

0 g gluten kg-1 758c 51.1a 100.0c 6.8c 97.2b 2.42a 0.82a

50 g gluten kg-1 750c 53.4b 100.0c 5.4b 96.9ab 2.44a 0.87b

100 g gluten kg-1 738b 54.7c 94.7c 4.7ab 97.0ab 2.45a 0.82a

150 g gluten kg-1 683a 58.2d 70.7b 3.5a 98.2c 2.44a 0.84ab

200 g gluten kg-1 735b 53.9bc 35.7a 3.7a 96.8a 2.80b 0.83a

MSE* 25.23 0.47 21.00 0.62 0.05 0.023 0.000

P value 0.0000 0.0000 0.0000 0.0023 0.0001 0.0517 0.0850

Means (n = 3) without a common superscript within a column are significantly different in an LSD test; 
P<0.05.
a Water absorption index
b Oil absorption capacity
* Mean square error from analysis of variance (df = 14).

It can be seen from Table 3 that the percentage of sinking feed decreased 

(P<0.01) with increasing gluten content. The lowest percentage sinking (35.7%) 

was obtained at 200 g gluten kg–1; the highest (100%) was observed at 0 and 50 

g gluten kg–1 and it was followed by 100 g gluten kg–1 (94.7%).

Fat leakage varied from 3.5% to 6.8%. It decreased as the gluten level 

increased from 0 to 150 g kg–1; however, with 200 g gluten kg–1, a slightly higher 

value was again found (Table 3). In general, the changes observed in fat leakage 

also suggest differences in the morphology of the products.

Durability is typically manifested by retention of the integrity of the feed 

during storage, transportation and pneumatic feeding (Aas et al., 2011). There 

were statistically significant differences in durability among the feeds (Table 
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3). The highest durability value was found for 150 g gluten kg–1, followed by 0 

g gluten kg–1. Overall, except for 200 g gluten kg–1, the feeds with lower starch 

content tended to have lower durability compared with the feeds with higher 

starch content.

Gluten was not found to have a significant effect on the WAI. The WAI has 

been correlated with the microstructural features of the extrudates (Badrie and 

Mellowes, 1991). In the current work, the WAI values varied between 2.4 and 

2.8 (g g–1). Adding 200 g gluten kg–1 increased the WAI significantly (Table 3), 

suggesting a structural change.

As shown in Table 3, the OAC of ground pellets increased significantly when 

50 g gluten kg–1 was added, and then decreased to a level similar to 0 g gluten 

kg–1 as the added gluten was further increased to 200 g kg–1. In general, no 

significant effect of gluten was observed. It was previously shown that the 

OAC of ground extrudates is mostly influenced by protein–oil hydrophobic 

interactions (Li and Lee, 1996). Due to grinding, the effects of the oil uptake 

rate and pore availability are not included in this measurement. In contrast, 

it provided information about the interaction between the oil and the pellet 

matrix. Obviously, the addition of gluten did not change the interaction 

between the matrix and the oil after grinding.

3.2. Pellet microstructure
SEM micrographs of the outer surfaces and cross sections of extruded 

pellets are shown in Figs. 3 and 4, respectively. Fig. 3a clearly shows differences 

in roughness between the samples. The product with 200 g gluten kg–1 shows 

a rather smooth surface (Fig. 3a). The green areas in Fig. 3b represent the pores 

and it is obvious that there are fewer pores on the surface of the pellets with 

200 g gluten kg–1 compared with the other treatments. Image analysis revealed 

lower surface porosity for 200 g gluten kg–1 (1.8%) compared with the values of 

6.9, 8.6 and 6.7% for 0, 50 and 100 g gluten kg–1, respectively. 
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Figure 3a 

     

 

(I)	   (II)	   (III)	  

(IV)	  

Figure 3a 

     

 

(I)	   (II)	   (III)	  

(IV)	  

Figure 3a 

     

 

(I)	   (II)	   (III)	  

(IV)	  

Fig. 3a. Surface porosity of pellets with 0 (I), 50 (II), 100 (III) and 200 g gluten kg–1 (IV), imaged using SEM. 
Each image is a compilation of a series of representative micrographs. Magnifi cation is ×300.
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Fig. 3b. Reconstructed micrographs of surface porosity of pellets with 0 (I), 50 (II), 100 (III) and 200 g 
gluten kg–1 (IV).
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Fig. 4 also shows that the solid matrix is more compartmentalized or less 

compact in the sample without gluten.

  

Figure 4 

	  	  	  	   	  

	  

(a)	   (b)	  

Fig. 4. SEMs of the cross section of pellets with 0 (a) and 200 g gluten kg–1 (b), showing a more fractured 
(a) or a more compact structure (b). Magnifi cation is ×200.Figure 5 

	  

	  	  	   	  

(a)	  

(b)	   (c)	  

Fig. 5. Cryo-SEM image of a sample with 200 g gluten kg–1. Sample was coated using the pilot-scale 
coater. (a) the image of cross-section is a compilation of a series of representative micrographs (×35 
magnifi cation); (b) and (c) representative images of the periphery and the inner part of the sample, 
respectively (×400 magnifi cation).
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The cryo-SEM micrographs (Fig. 5) of the fraction planes reveal the internal 

structure of the oil-coated pellet containing 200 g gluten kg–1. Most of the 

pores at the periphery are completely fi lled with oil, but towards the core of 

the pellets, larger voids are not yet fi lled (Fig. 5a). Unlike the inner part of the 

pellet (Fig. 5c), ridges and fracture points are not visible at the periphery where 

the contours are smoother (Fig. 5b), which we contribute to the overlying lipid.

The quantitative microstructural data extracted from the XMT analysis are 

presented in Table 4. No signifi cant diff erences in porosity were observed. 

The average air-cell diameter (D
cell

) ranged between 319 and 375 µm and 

was signifi cantly aff ected by gluten. The lowest D
cell

 was observed for pellets 

without any gluten and it increased by 15% with 200 g gluten kg–1.

Table 4 Three-dimensional structural parameters obtained with XMT.

Diet Porosity 
(air-cell 
volume 
fraction) 
(volume %)

Average 
air-cell 
diameter, 
D

cell
 (µm)

Structure 
surface/
volume 
ratio, SV 
(×10–2 

µm-1)

DAa 
(unitless)

Open 
porosity 
(%)

Closed 
porosity 
(%)

Connectivity 
density (×10-

7 µm-3)

0 g gluten 
kg-1 

50.9±2.1a 318.7±35.1a 2.44±0.16a 1.53±0.04b 50.6±2.0a 0.6±0.1a 4.24±0.45b

100 g 
gluten kg-1 

54.1±3.2a 364.9±25.8b 2.37±0.15a 1.43±0.02a 53.7±3.2a 0.8±0.1b 3.04±0.48a

200 g 
gluten kg-1 

53.2±2.3a 374.9±19.0b 2.27±0.22a 1.42±0.03a 52.7±2.3a 0.9±0.2b 2.95±0.46a

MSE* 6.69 753.17 0.00 0.00 6.55 0.02 0.00

P value 0.2580 0.0387 0.4521 0.0016 0.2754 0.0243 0.0000

Data shown are mean ± standard deviation. Means (n = 4) without common superscript within a column 
are signifi cantly diff erent in an LSD test; P<0.05. The sum of open and closed porosities corresponds to 
the total porosity values (air-cell volume fraction).
a Degree of anisotropy
*Mean square error from analysis of variance (df = 9).

Fig. 6 shows that most pore sizes were between 11 and 330 µm. Porosity 

smaller than 11 µm could not be detected due to limitations in resolution. The 

inclusion of gluten led to

(1) less cells smaller than 200 µm, 

(2) more cells in the range from 550 to 700 µm, and

(3) higher volumetric frequency of structures between 48 and 177 µm thick 

and lower frequency between 200 and 344 µm (Fig. 7).
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Fig. 6. Cell size distribution in the pellets (average from four replicates).

Fig. 7. Cell wall thickness distribution in the pellets (average from four replicates).
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When cells expand just after emergence from the die, their walls stretch and 

thus become thinner until they rupture (Trater et al., 2005). This explains how 

an increase in cell size is accompanied by thinner lamellae between the cells 

(Fig. 7). Obviously, inclusion of gluten delays rupturing.

With the addition of gluten, the surface-to-volume ratio (SV) tended to 

decrease, but the differences were not statistically significant (Table 4). The 

highest SV (0.024 µm–1) was observed for the feed without gluten. Even though 

there is a (non-significant) trend of slightly higher porosity with more gluten, 

smaller cells imply more surface area, and therefore it is logical that the samples 

without gluten are spread over a greater cell surface area.

The degree of anisotropy (DA) is a measure of the preferential alignment 

of structures along a particular directional axis in three dimensions (Bellido et 

al., 2006). There is a trend of decreasing (P<0.01) anisotropy with more gluten. 

The DA values ranged from 1.42 to 1.53 and they were lower with the inclusion 

of gluten, indicating that cells were more spherically shaped (Table 4). Cell 

anisotropy was more evident at 0 g gluten kg–1.

Table 4 shows that all products have an open porous structure; about 98-99% 

by volume of all cells is open. This is in the normal range for extruded products 

(Bhatnagar and Hanna, 1997; Hicsasmaz and Clayton, 1992). Although low in 

absolute magnitude, the percentages of closed pores increased (P<0.05) as the 

gluten increased from 0 to 200 g kg–1.

Table 4 shows that the connectivity density between pores decreased 

(P<0.01) with increasing gluten level, although no statistically significant 

difference was detected between 100 and 200 g gluten kg–1 feeds.

A series of XMT reconstructed images for the 0, 100 and 200 g gluten kg–1 

treatments is given in Fig. 8. The dark areas represent the void cells, whereas 

the continuous solid matrix, mostly the cell walls, is in orange or white (denser 

material). A change in the pellet microstructure can be observed with the 

addition of gluten (Fig. 8). The microstructure of the 0 g gluten kg–1 pellet shows 

elongated cells at the periphery, caused by axial expansion after emergence 

from the die. The centre of the pellet without gluten has an irregular structure.
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Figure 8 

	  	   	  	  	  	  	   	  	  

	  	   	  

(a)	   	  (b)	  

(c)	  

Fig. 8. Reconstructed two-dimensional horizontal X-ray slice images of pellets with 0 (a), 100 (b) and 200 
g gluten kg–1 (c). The parts of the radial sections presented are of the whole pellet, not the VOI.

4. Discussion

In this work, the microstructure of feed pellets has been found to be highly 

influenced by the replacement of SPC by vital wheat gluten. The changes in 

microstructure might be a response to changes in the mechanical behaviour of 

the melt due to changes in the concentration of the two plant protein sources. 

The overall effect is discussed and the origin of the differences is explained 

based on the structure formation properties of both plant proteins.
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4.1. Effects of chemical composition on the physical characteristics of 
feeds

The increased inclusion of wheat gluten in the pellets resulted in a marginal 

increase of protein and a significant increase of starch. The starch level was 

targeted at 120 g kg–1 DM. However, actual measured starch was between 125 

and 164 g kg–1 for the feed with 50 and 150 g gluten kg–1, respectively (Table 

1). The increased starch level of the feed with 150 g gluten kg–1 might be the 

reason for the greater expansion of the pellets and therefore the highest oil 

infusion (Table 3), despite the changes made to the process parameters (Table 

2). This confirms the findings of Glencross et al. (2010), who found that a higher 

level of starch results in greater oil uptake due to greater pellet expansion. A 

similar trend was observed when the gluten level increased from 0 or 50 to 

100 g kg–1 (Table 3). However, this result was not repeated for the 200 g gluten 

kg–1 inclusion level in the current experiment. Based on the high correlation 

between the density and maximum oil infusion, as mentioned earlier, we 

would have expected a higher maximum oil infusion at 200 g gluten kg–1. This 

indicates hindered oil infusion. In the case of 100 and 200 g gluten kg–1, the 

reduction in sinking is an indicator that there was no uniform infusion of oil 

into the product. Besides this effect, the reduced sinking for 150 g gluten kg–1 

could also be attributed to the lower density caused by the high inclusion level 

of starch compared with the other feeds.

Øverland et al. (2009) reported previously that starch from wheat is a 

primary component responsible for the binding properties in extruded diets 

for salmonids. Therefore, the improved durability of the 150 g gluten kg–1 diet 

(Table 3) in this study could be associated with the higher starch level in this 

diet compared with other feeds. In general, the numeric durability values were 

high for all the feeds and well within acceptable quality criteria according to 

commercial guidelines.

4.2.  Effect of addition of gluten on the morphology and functional 
characteristics of feeds and oil infusion

The changes in the morphology of the pellets are probably related to the 

film-forming properties of gluten (Moore et al., 2004; Park and Chinnan, 1995). 

Parker et al. (1990) and Moss (1974) reported that mixing in bread making 

causes the gluten to form a highly extensible network, which stretches into 

thin film walls around the growing gas cells during leavening. The same effect 
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takes place after exiting the die, during expansion of the matrix, due to flashing 

off of the excess steam. The higher temperatures used during extrusion 

might allow gluten having the same effect as in dough development. The 

network formation of hydrated gluten during mechanical deformation was 

previously reported by Bugusu et al. (2002). Li and Lee (1996) correlated the 

polymerization of gluten through disulfide bond crosslinking with higher WAI 

values, and the formation of a compact, solid structure. Hashimoto et al. (2002) 

reported higher WAI values with increased gluten concentration in cassava 

starch/gluten blends. The increase in WAI with the addition of 200 g gluten kg–1 

in our study is therefore an indicator of network formation by the gluten.

The irregular structure of the pellets without gluten (Fig. 8) is probably 

caused by rupture of smaller cells due to insufficient strength of the 

surrounding lamellae. Parada et al. (2011) concluded that the solid matrix is 

more fragmented with the addition of fibre by using the average number of 

objects per unit length. The compartmentalisation observed in this study (Fig. 

4) could be cause by the higher fibre present in the diets with more SPC (i.e. 

less gluten). The structure around the bubbles at the rim is solidified quickly, as 

this part cools off quickest. This is in line with the anisotropy; there was simply 

not enough time for relaxation. The centre, however, remains mobile for some 

time, as it cools more slowly, and if the matrix material is not elastic enough 

to be able to accommodate the expanding bubbles, it will rupture there, 

leading to partly fused smaller cells and large, irregular cells. The gluten is 

well deformable compared with other types of proteins with the same level of 

moisture; thus the expansion can be better accommodated. Not only does the 

gluten provide a highly adaptive environment for the bubbles to grow during 

expansion but the gluten network remains flexible for some time, which allows 

the bubbles to attain a more or less spherical shape.

Rosenquest et al. (1975) attributed the small cell size to a reduction in the 

strength and stretchability of the dough. When the moisture in the dough 

flashed to the gaseous state on extrusion, the walls of the cells broke while 

the cells were still small. In contrast, as gluten is known to be an excellent film 

former, the addition of gluten results in the lamellae remaining stable over 

more expansion, thus leading to larger bubbles and thinner lamellae. This 

confirms some of the observations regarding macrostructure that were made 

in our previous work (Draganovic et al., 2011).

Based on images shown in Fig. 2, the greater difference in maximum oil 
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infusion was expected for the 200 g gluten kg–1 pellets compared with the 

other treatments (Table 3). Besides differences in morphology, the rate of oil 

infusion is also important here. Greater amounts of oil were used in the infusion 

tests compared with pilot-scale coating, which in turn can lead to better oil 

impregnation. This factor can affect the speed at which the two materials are 

intermixed, as well as the distance that one material can diffuse into another 

(Ellis et al., 1993). Therefore, for 200 g gluten kg–1, we would expect even lower 

values for maximum oil infusion in the case of pilot-scale coating (Fig. 2).

4.3. Relationship between physical properties and cellular structure
The results from the current study suggest that oil impregnation is hindered 

by the cell structure. Although the density would certainly influence these 

parameters (Barrett and Ross, 1990), the density is kept constant in this study, 

and therefore this effect should be attributed to the microstructure. The effects 

of gluten seen here are also found with some other additions. Some natural 

ingredients can reduce oil uptake because of their film-forming capability (Pedro, 

2009). In the work done by Bouchon and Pyle (2004), it was shown that a more 

elastic network in a restructured potato chip may result in a less permeable outer 

layer, which is an effective barrier against oil absorption during frying.

The micrographs used in this study are useful for estimating the size and position 

of the pores on the extruded samples (Reitz et al., 2008) and allow qualitative 

observations (Bouchon and Pyle, 2004).The outer layer influences different 

properties. The smooth and regular outer surface obtained after extrusion with 

200 g gluten kg–1 (Fig. 3a), will give a certain resistance to oil impregnation; the oil 

will stay on the surface and simply drain off. Bouchon and Pyle (2004) concluded 

that the evenness of the outer surface and the permeability of the outer layer 

play a fundamental role in the oil infiltration pattern.

The influence of gluten can be also seen from the results for the diet without 

gluten. Soy protein concentrate is exposed to intolerable levels of stretching 

during the expansion stage, which cannot be accommodated. The mechanical 

properties and their timescales do not match the timescale of the expansion 

process. Thus, a highly irregular and partially ruptured structure results, which 

allows very easy infusion of oil. The gluten introduces better deformability 

at processing time scales, and thus a matrix with gluten can adapt to the 

expansion, resulting in a structure that is highly cellular. But, slightly more 

cells are either closed or almost closed (Table 4). These findings are in line 
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with the results presented by Ghorpade et al. (1997). They reported that soy 

protein isolate did not affect the open pore volume of starch-based extrudates; 

inclusion of gluten above 200 g kg–1 resulted in a decreased open pore volume. 

Even though the absolute volume of closed cells for three feeds in this study 

count for less than 1.7% of the total porosity (Table 4), they contribute to the 

overall density of the pellets. In general, we believe that the potential effect 

of closed pores on the reduced oil uptake is minor compared with the effects 

of surface porosity (Fig. 3b) and other microstructural parameters reported 

in Table 4. In accordance with the results from the present study, it has been 

shown for tortilla chips that due to capillary pressure, small narrow pores 

lead to more fat uptake than wide pores (Moreira et al., 1997). Moreover, the 

whole pore pathway has to be considered. It has been stated by Saguy and 

Pinthus (1995) that long continuous channels lead to increased fat uptake. 

Both interconnectivity density and anisotropy give an indication of the pore 

pathway; less spherical pores and better interconnectedness between pores 

suggest the presence of longer, continuous channels. The values of those two 

parameters decreased with 200 g gluten kg–1 (Table 4) and it can be expected 

that, the oil will penetrate more slowly during oil impregnation, which will 

result in more pores (even somewhat open ones) that are not filled with oil.

The observed reduction in fat leakage with 200 g gluten kg–1 (Table 3) could 

also be attributed to the differences in skin porosity. Once the oil is impregnated 

in the pellet with the use of a vacuum, the surface acts as an effective barrier 

against its diffusion in the opposite direction, towards the outside. Moreover, 

the leakage of fat could be also hindered by the lower pore interconnectivity 

and less fragmented structure with the 200 g gluten kg–1 pellets. For the duration 

of the test (24 h) there was limited time for oil diffusion and the differences in 

fat leakage would be more pronounced with a longer time.

An ideal pellet seems to benefit from inclusion of both, SPC and gluten. Soy 

protein concentrate provides high interconnectedness, while gluten provides 

stronger pellets. When these two components are the main sources of protein 

in the diet besides fish meal, their optimization may lead to an optimal pellet.

4.4. The role of the extrusion process
As stated in Section 2, a slight modification in extruder settings was necessary 

to obtain pellets with similar density. The 150 g gluten kg–1 sample needed an 

adjustment in the barrel temperature (sections 3 and 4), whereas the 200 g 
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gluten kg–1 sample was extruded with a slightly higher rotation speed (Table 

2). The question now is whether the changes in product properties discussed 

above could be attributed to the changes in the extrusion conditions rather 

than compositional changes.

To check for this and the influence of the scale of the process, a second 

twin-screw extruder (TSE 36 HC, Thermo scientific, Staffordshire, UK) with a 

screw diameter of 36 mm and an L/D of 28:1 was used to produce 0 and 200 g 

gluten kg–1 formulations (results not shown). These diets were processed under 

comparable operating conditions. Here, the inclusion of gluten led to even 

greater differences in oil uptake using the pilot-scale coater for pellets with 

similar density. Moreover, the percentage sinking of the pellets, fat leakage and 

the WAI followed exactly the same trend as with the TX-57 extruder. Therefore, 

we are confident that the changes in the properties of the final product 

described in this article are mainly caused by differences in the technological 

properties of SPC and gluten.

5. Conclusions

This study shows the relationship between the pellet microstructure and 

its techno-functional properties. Most of the changes in techno-functional 

properties can be explained by the changes in microstructure. Changes in 

microstructure were induced by altering the composition through the inclusion 

of wheat gluten.

The inclusion of wheat gluten in fish feed pellets leads to a reduction in oil 

impregnation and oil uptake during coating, but yields strong, highly porous 

pellets. The pores are still highly interconnected, albeit slightly less than 

without gluten.

Pellets without gluten have an irregular, very open internal structure, while 

those with gluten have a more regular cellular structure. In the radial direction, 

a larger number of cells of smaller diameter were observed close to the surface 

of the pellets without gluten, indicating a relatively porous skin, while gluten 

yielded a rather smooth, non-porous surface.

These effects seem to be related to the film-forming properties of gluten, 

which are still effectively present at the high temperatures used during the 

extrusion process.
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Abstract

The techno-functional properties of soy, lupine and canola protein 

concentrates (SPC, LPC and CPC, respectively) in fish feed were evaluated 

relative to fish meal (FM). The effects were studied using a shear cell 

device and an extruder with emphasis on the added moisture content. 

Six diets were formulated: an SPC-based diet with 300 g SPC kg–1, diets 

containing 100 and 200 g LPC kg–1 or 100 and 200 g CPC kg–1 and an FM-

based diet with 450 g FM kg–1. Each diet was extruded with an added 

moisture content of 29%, 25% and 22% of the mash feed rate. The results 

of the extrusion trials confirmed the observations made from the shear 

cell device. Thus, the shear cell device can be used to study processing 

conditions that are close to extrusion conditions. The technological 

properties of LPC closely resembles FM: high solubility, low water-

holding capacity (WHC) and low paste viscosity. The LPC 100 and 200 g 

kg–1 diets could be extruded at 22% moisture, which gives an extrudate 

with reduced drying requirements. In addition, less specific mechanical 

energy was needed for extrusion. In contrast, both SPC and CPC have 

high WHC and paste viscosity. This explains the higher feed moisture 

required during extrusion. The properties of the feeds containing CPC 

could be well within the ranges acceptable for commercial fish feed use 

at even higher moisture content compared with SPC.
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1. Introduction

The global demand for seafood has made aquaculture one of the fastest 

growing food production activities in the world (FAO, 2009). The expansion of 

aquaculture production has been accompanied by rapid growth of aquafeed 

production (Gatlin et al., 2007). The challenge for the aquaculture industry is 

to identify economically viable and more environmentally benign alternatives 

to fish meal (FM) and fish oil, on which many present aquafeeds are still based.

Soy protein concentrate (SPC) possesses most of the nutritional 

characteristics required for an alternative feedstuff to FM (Gatlin et al., 2007). 

Currently, SPC is the protein source of choice among plant ingredients due to 

its relatively high protein content, high nutrient digestibility, low level of anti-

nutritional factors, and excellent availability. In addition, the price is relatively 

low. However, regardless of these benefits of SPC, sustainability also implies the 

use of plant proteins originating from different sources and locations. Proteins 

from vegetables other than soy are a valuable alternative to fish protein due 

to the renewability of the raw material and the variety of sources (especially 

legumes, cereals and oilseeds) (Moure et al., 2006). Aubin et al. (2009) stated 

that the increasing production of aquaculture products makes diversification 

of protein and lipid sources an important challenge.

From a technological viewpoint, SPC is easy to store, handle and blend with 

other ingredients. Furthermore, it possesses good expansion capabilities during 

extrusion and contributes to the strength of the pellets. However, the inclusion 

of SPC in the feed also requires the addition of more moisture for the extrusion 

process due to its high water-holding capacity (WHC) (Bhattacharya et al., 

1986; Draganovic et al., 2011; Zayas, 1997). The extra water has to be removed 

subsequently after extrusion through drying. This is undesirable because it is 

very energy intensive, emits odour to the environment and may compromise 

plant safety (dust generation). It is therefore interesting to evaluate other plant 

materials. Recent advances in fractionation technologies have provided more 

fractions, such as LPC and CPC, with higher protein and lower carbohydrate 

contents relative to their unprocessed raw materials.

From the point of view of reduced addition of moisture during extrusion, 

LPC might be interesting because of its low viscosity as demonstrated by Chew 

et al. (2003). In addition, the nutrient profile of lupines shows their potential 

to replace significant proportions of FM in aquafeeds (Allan and Booth, 2004; 
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Burel et al., 1998; Gatlin et al., 2007; Glencross et al., 2005; Glencross et al., 

2004). Although some work has been done on the technological aspects of 

lupine kernel meals in fish feed (Glencross et al., 2010), we are not aware of 

such studies on the use of LPC. LPC is used in food due to its functionality, for 

example, as bread improvers (Drakos et al., 2007; Lqari et al., 2002).

Canola is one of the most abundant protein meals and it represents 12.4% 

of the world protein meal production (Ash and Dohlman, 2006), ranked second 

behind soy (Drew, 2004). The high biological value of canola protein products 

has already been confirmed in feeding trials with salmonids (Higgs et al., 

1994; Mwachireya et al., 1999). Its apparent protein digestibility coefficient is 

the highest for any protein source ever assessed including FM. It thus has a 

high potential for use in fish feed and may contribute to the diversification of 

proteins. It is therefore remarkable that the techno-functional characteristics of 

CPC in fish feed have not yet been reported.

The current article presents a compilation of the most interesting techno-

functional properties of three plant protein-rich ingredients in comparison with 

FM. In this study, we show that LPC allows the addition of less moisture during 

extrusion of low FM diets, probably by reducing the WHC of the total mash. This 

offers opportunities for mild drying after extrusion while still yielding good 

feed product properties. In contrast, when replacing SPC with CPC, product 

properties can be maintained only with greater addition of moisture. Although 

the main objective of this research was to investigate the effects of partial 

replacement of SPC with CPC and LPC on the specific mechanical energy usage 

during extrusion, the feed moisture requirements and the properties of the 

fish feed products, we also evaluated the usefulness of the pilot-scale shearing 

cell device as a fast and simple method to investigate the techno-functional 

properties of the feed ingredients.

2. Materials and methods

2.1. Feed ingredients and diet formulations
The formulations consisted of a commercial salmon grower diet (SPC diet), 

based on SPC, and four experimental diets in which SPC was partly replaced 

by either LPC or CPC to give diets containing 100 and 200 g LPC kg–1 or 100 

and 200 g CPC kg–1. In addition, the composition of the sixth feed (FM diet) 
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was similar to that of some feeds still available on the market (with FM as the 

major constituent). All diets were formulated to be roughly isonitrogenous and 

isoenergetic and contained approximately 110 g starch kg–1. Table 1 gives the 

formulations and chemical composition of the diets. The chemical composition 

of the raw materials is given in the footnotes to Table 1.

Table 1 Formulation and chemical composition of the dry feed mixes.

 SPC 100 g LPC 
kg–1

200 g 
LPC kg–1 

100 g  
CPC kg–1 

200 g  
CPC kg–1

FM

Formulation (g kg–1)a

Wheatb 108.9 108.9 108.9 108.9 108.9 108.9

Faba beans (dehulled)c 108.2 108.2 108.2 108.2 108.2 108.2

FMd 233.3 233.3 233.3 233.3 233.3 699.9

SPCe 466.6 311.1 155.6 311.1 155.6 0

LPCf 0 155.6 311.1 0 0 0

CPCg 0 0 0 155.6 311.1 0

Sunflower mealh 46.7 46.7 46.7 46.7 46.7 46.7

Mineral and vitamin mixi 36.6 36.6 36.6 36.6 36.6 36.6

Analysed composition (g kg–1 dry matter)

Dry matter (g kg–1) 933 933 930 932 936 943

Protein 587 573 567 556 569 614

Fat 53 66 81 56 56 105

Starch 115 114 122 131 115 106

Crude fibre 38 33 25 44 46 19

Ash 84 80 74 84 88 120

aComplete formulation of the diets contains 345 g kg–1 oil mixture. The amount of LPC and CPC included 
in the dry mix (155.6 and 311.1 g kg–1) corresponds to 100 and 200 g kg–1 in the complete formulation, 
respectively; the amount of FM included in the dry mix (699.9 g kg–1) in the FM-based diet corresponds 
to 450 g kg–1 in the complete formulation.
bSupplied by Skretting AS, Stavanger, Norway. Containing (g kg–1): dry matter 869; in g kg–1 dry matter: 
protein 142; fat 32; starch 688; crude fibre 25; ash 17.
cSupplied by Skretting AS, Averøy, Norway. Containing (g kg–1): dry matter 886; in g kg–1 dry matter: 
protein 303; fat 33; starch 525; crude fibre 38; ash 31.
dLow temperature dried FM, Welcon, Egersund, Norway. Containing (g kg–1): dry matter 932; in g kg–1 dry 
matter: protein 724; fat 137; starch 5; crude fibre 0; ash 142.
eSupplied by Imcopa SA, Araucaria, Brazil. Containing (g kg–1): dry matter 922; in g kg–1 dry matter: pro-
tein 652; fat 17; starch 64; crude fibre 57; ash 62.
fSupplied by L.I. Frank, Twello, The Netherlands. Containing (g kg–1): dry matter 935; in g kg–1 dry matter: 
protein 630; fat 119; starch 4; crude fibre 5; ash 36.
gSupplied by Bunge, St. Louis, MO, USA. Containing (g kg–1): dry matter 958; in g kg–1 dry matter: protein 
665; fat 50; starch 2; crude fibre 63; ash 74.
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hSupplied by Skretting AS, Stavanger, Norway. Containing (g kg–1): dry matter 914; in g kg–1 dry matter: 
protein 384; fat 31; starch 2; crude fibre 191; ash 76.
iVitamin levels according to NRC 93 specification (proprietary composition, Skretting ARC, Stavanger, 
Norway). Complete formulation of the diets contains 23.8 g kg–1 mineral and vitamin mix.

2.2. Shear cell trials

2.2.1. Shearing device

Shear cell trials were performed at the Laboratory of Food Process Engineering 

at Wageningen University (Wageningen, The Netherlands). The shearing device 

was developed to study the influence of simple shear deformation on breakage 

and structure development in a number of biopolymer systems (Manski et al., 

2007; Peighambardoust et al., 2004; van der Zalm et al., 2012). The device allows 

processing under conditions that are relevant to extrusion (Emin et al., 2012; 

van den Einde et al., 2005). The device consists of stationary and rotating cones, 

which are both jacketed; the temperature is regulated by a circulating water 

flow. The shearing device is connected to a Thermo drive unit (Thermo Scientific, 

Staffordshire, UK) with an interface and controlling unit for on-line measurement 

of temperature and torque values. The contact surface of the cone and plate is 

grooved to avoid slippage of the material during shear processing. A schematic 

configuration of the shear cell is shown in Fig. 1.

2.2.2. Sample preparation and shearing process
Before the shear processing, the sample material was blended with water 

in a Philips kitchen blender (type HR 7744, Amsterdam, The Netherlands) for 

1 min. The mass ratios between the dry flour and water was 40:60 for feed 

ingredients; ratios of 65:35, 60:40 and 50:50 were used for each sample of 

meal mix. After blending with water, the total amount that was placed in the 

shear cell was 54 g and 82 g in the case of feed ingredients and meal mixes, 

respectively. After filling the shear cell zone with the material, the cone-plate 

cell was closed hydraulically with a vertical compression force of 3500 N onto 

the material, which was kept constant during all experiments. The pressure 

inside the chamber was adjusted to 2 bar to prevent evaporation of water 

during the experiments. All samples were sheared at 90 °C and 50 rpm for 20 

min.
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Fig. 1. The shear cell device. (A) Animation and (B) schematic overview of the shear cell device. Cone 
angle=100°, angle between cone and plate (shearing zone), θ=2.5°.

2.3. Extrusion trials
All diets were processed at Skretting ARC Technology Plant (Stavanger, 

Norway). The dry ingredients were pre-mixed in a vertical mixer (custom 

designed; Skretting ARC, Stavanger, Norway) and ground in a Dinnissen 30 kW 

hammer mill (Dinnissen, Sevenum, The Netherlands), with a screen size of 0.75 

mm. The ingredients were then mixed in a Dinnissen horizontal ribbon mixer 

(500LTR, Sevenum, The Netherlands) for 7 min. The feed mash was conditioned 

in a differential diameter conditioner (DDC 2; Wenger Manufacturing, Sabetha, 

KS, USA) and extruded in a Wenger TX-57 twin screw extruder. The barrel of the 

extruder was 57 mm in diameter and the length-to-diameter ratio was 17.5:1. 
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The extruder barrel consisted of four head sections, with each section jacketed 

to permit either steam heating (sections 1–4) or water cooling (sections 2–4). 

Temperature control of the second, third and fourth sections was achieved by 

balancing the heating and cooling power input.

The ingredients were extruded as described, yielding extrudates with a 

diameter of approximately 9 mm and a length of approximately 10 mm. The 

knife rotation speed was adjusted according to the specified length of the 

extrudates. The feed was dried in a Wenger Series III horizontal 3-zones dryer 

(Wenger Manufacturing, Sabetha, KS, USA) to approximately 900 g kg–1 dry 

matter. Subsequently, the pellets obtained were coated with oil in a Forberg 

6-l vacuum coater (Forberg, Oslo, Norway). After running for at least 10 min, 

discrete samples of pellets (n=3; ×3000 g) were collected every 15 min to create 

a repeated measures assessment of each diet.

2.4. Chemical analysis
Chemical analyses of the dry matter, protein, fat and ash were carried out 

by Skretting ARC Laboratory (an accredited analytical service provider). The 

starch and crude fibre analyses were carried out by Masterlab (Boxmeer, The 

Netherlands). The dry matter content was assessed with gravimetric analysis 

after oven drying at 105 °C for 18 h. The protein levels were calculated from 

the determination of total nitrogen using the Kjeltec 2400 Auto System, based 

on N×6.25. The fat concentration of meal mixes and FM was measured by 

nuclear magnetic resonance (Resonance Instruments Ltd, Witney, UK). This 

method was described previously by Draganovic et al. (2013). The fat content 

of other feed ingredients used in this study was determined using a solvent 

extraction system (Soxtec Avanti 2050 Auto System, Foss Tecator AB, Höganas, 

Sweden). The gross ash content was determined gravimetrically following the 

loss of mass after combustion of a sample in a muffle furnace at 550 °C for 

17 h. The starch content was analysed using an enzymatic method described 

by McCleary et al. (1994). The crude fibre content was determined as the loss of 

mass resulting from ashing of the dried residue obtained after acid and alkaline 

digestion of the sample according to ISO 6865 (ISO, 2000).

2.5. Determination of the WHC
The WHC is the ability of a biopolymer to absorb and bind water against 

gravity (Porter and Skarra, 1999). The WHC of the protein fractions was 
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determined using methods modified from Heywood et al. (2002) and Lin and 

Zayas (1987). Four grams of total flour were dispersed in 25 ml of distilled 

water in a 50-ml centrifuge bottle. The bottles were shaken for 20 min, and 

then centrifuged at 3050×g for an additional 15 min. After decanting the 

supernatant, each bottle was weighed and the WHC (grams of water per gram 

of flour) was calculated using Eqn. (1):
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The WHC is the ability of a biopolymer to absorb and bind water against gravity (Porter 

and Skarra, 1999). The WHC of the protein fractions was determined using methods 

modified from Heywood et al. (2002) and Lin and Zayas (1987). Four grams of total flour 

were dispersed in 25 ml of distilled water in a 50-ml centrifuge bottle. The bottles were 

shaken for 20 min, and then centrifuged at 3050×g for an additional 15 min. After decanting 

the supernatant, each bottle was weighed and the WHC (grams of water per gram of flour) 

was calculated using Eqn. (1): 

( )wt of bottle after decanting wt of dry bottle total wt of flour (g)
WHC=

total wt of flour (g)
− −⎡ ⎤⎣ ⎦  (1) 

The results were based on the average of three replicates. 

2.6. Rapid visco-analysis 

Each diet mash was evaluated for its pasting characteristics using a Rapid Visco Analyzer 

(RVA; Newport Scientific, Warriewood, NSW, Australia). Approximately 22 g of distilled 

water was dispensed into the clean canister. This amount was corrected for the moisture 

content of the sample such that the solid-to-water ratio was kept constant for the diet mashes 

tested. Six grams of sample were poured into the water in the canister before testing in the 

RVA. The mixtures were subjected to the following heat treatment: 1 min at 50 °C, ramping 

to 95 °C in 4 min, held at 95 °C for 3 min, and cooling to 50 °C in 4 min. The total test time 

was thus 12 min. Key features to be examined were the peak viscosity (maximum viscosity 

reached) and the final viscosity. Three replicates were analysed for each sample. 

The results were based on the average of three replicates.

2.6. Rapid visco-analysis
Each diet mash was evaluated for its pasting characteristics using a Rapid Visco 

Analyzer (RVA; Newport Scientific, Warriewood, NSW, Australia). Approximately 

22 g of distilled water was dispensed into the clean canister. This amount was 

corrected for the moisture content of the sample such that the solid-to-water ratio 

was kept constant for the diet mashes tested. Six grams of sample were poured into 

the water in the canister before testing in the RVA. The mixtures were subjected to 

the following heat treatment: 1 min at 50 °C, ramping to 95 °C in 4 min, held at 95 

°C for 3 min, and cooling to 50 °C in 4 min. The total test time was thus 12 min. Key 

features to be examined were the peak viscosity (maximum viscosity reached) and 

the final viscosity. Three replicates were analysed for each sample.

2.7. Protein solubility
To determine the solubility of the protein, 4 g of sample was dispersed into 

25 ml of distilled water and shaken at ambient temperature for 20 min. The 

dispersion was then centrifuged in an Eppendorf 5810 centrifuge (Hamburg, 

Germany) at 3050×g and 20 °C for 15 min. After appropriate dilution, the protein 

content of the supernatant was determined by the Kjeldahl method (N×6.25). 

The protein solubility was expressed as the amount of the soluble substance (in 

percentage) released from the total amount of protein in the sample material. 

All determinations were conducted in triplicate.

2.8. System parameters
The specific mechanical energy (SME) was read directly from the control 

panel of the extruder. The data were collected by APIS real-time Process 
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Explorer (version 4.1; Prediktor, Fredrikstad, Norway). The values presented are 

the means of 10 measurements taken at equal time intervals throughout the 

production run.

2.9. Measurement of the physical quality parameters of feeds

2.9.1. Pellet morphology

The pellets were photographed using a zoom digital camera (Nikon D3s) 

with 12.1 effective megapixels for high-definition pixel images.

2.9.2. Specific density

A volumetric displacement method using glass beads with a diameter of 

0.1 mm as a displacement medium was used to determine the specific density 

of the pellets. The method was originally developed by Hwang and Hayakawa 

(1980). The specific density of the pellets was calculated using Eqn. (2):
 Lupine and canola protein concentrate in fish feed 
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( )
pl

s
pg gs gs/

W
V W

ρ
ρ

=
−

 (2) 

where ρs is the specific density using the glass bead displacement method (g l–1), Wpl is the 

pellet mass (g), Vpg is the volume of the pellets and glass powder, Wgs is the mass of glass 

beads displaced (g) and ρgs is the specific density of the glass beads (g l–1). The values were 

obtained from an average of three measurements. 

2.9.3. Maximum oil infusion 

Samples of the pellets (500 g) from each treatment were placed in a laboratory vacuum 

coater (custom designed; Skretting ARC, Norway) with an excess (400 g) of heated (60 °C) 

fish oil and mixed thoroughly throughout the coating cycle. The air pressure was slowly 

decreased inside the vacuum chamber until all visible signs of air bubbles escaping from the 

pellets ceased. This normally takes about 1–1.5 min and happens at an air pressure of around 

0.15 bar. Once all visible signs of air bubbles escaping had ceased, the vacuum chamber was 

re-equilibrated to atmospheric pressure, which leads to infusion of the oil into the pellets. The 

product was then removed from the coater and any excess oil was removed by placing the 

feed between two absorbent paper towels. The final weight of the oil infused into the pellets 

was then recorded and the relative oil uptake was calculated. 

2.9.4. Percentage of sinking pellets 

A 3-l cylinder was filled with water containing 40 g l–1 salt (sodium chloride). One 

hundred pellets from each treatment were randomly selected and individually dropped into 

cold water (6 °C) from 5 cm above the water surface. The pellets that did not sink within 3 

min were given a zero score and the percentage of sinking pellets was calculated. The results 

were the average of three replicates. 

where ρ
s
 is the specific density using the glass bead displacement method (g l–1), 

W
pl

 is the pellet mass (g), V
pg

 is the volume of the pellets and glass powder, W
gs

 is 

the mass of glass beads displaced (g) and ρ
gs

 is the specific density of the glass 

beads (g l–1). The values were obtained from an average of three measurements.

2.9.3. Maximum oil infusion

Samples of the pellets (500 g) from each treatment were placed in a 

laboratory vacuum coater (custom designed; Skretting ARC, Norway) with 

an excess (400 g) of heated (60 °C) fish oil and mixed thoroughly throughout 

the coating cycle. The air pressure was slowly decreased inside the vacuum 

chamber until all visible signs of air bubbles escaping from the pellets ceased. 

This normally takes about 1–1.5 min and happens at an air pressure of around 

0.15 bar. Once all visible signs of air bubbles escaping had ceased, the vacuum 

chamber was re-equilibrated to atmospheric pressure, which leads to infusion 

of the oil into the pellets. The product was then removed from the coater and 

any excess oil was removed by placing the feed between two absorbent paper 

towels. The final weight of the oil infused into the pellets was then recorded 

and the relative oil uptake was calculated.

26694 Vukasin Draganovic.indd   86 17-09-13   09:55



Lupine and canola protein concentrate in fish feed

87

Chapter

4

2.9.4. Percentage of sinking pellets

A 3-l cylinder was filled with water containing 40 g l–1 salt (sodium chloride). 

One hundred pellets from each treatment were randomly selected and 

individually dropped into cold water (6 °C) from 5 cm above the water surface. 

The pellets that did not sink within 3 min were given a zero score and the 

percentage of sinking pellets was calculated. The results were the average of 

three replicates.

2.9.5. Fat leakage analysis

Coated pellets from the maximum oil infusion analysis were placed in a 

plastic bucket with blotting paper in the bottom and stored at 40 °C for 24 h. 

The leakage of fat was measured as the loss of fat from 100 g of feed.

2.9.6. DORIS durability

The DORIS test was performed by placing 300 g of coated product into 

the DORIS tester (Akvasmart; AKVA Group, Bryne, Norway.). The DORIS tester 

comprises an Archimedean screw that feeds product into a vane, simulating 

the stresses experienced by feed during pneumatic conveyance in automated 

feeding systems. The sample was then sieved. A shaker (HAVER EML 200 Digital 

plus; T. HAVER & BOECKER, Germany) with amplitude 2.3 (level 7 vibration 

intensity of the shaker; the maximum setting is level 9) was used to sieve the 

samples through a rack of sieving screens with mesh sizes of 7.1 mm and 

2.36 mm for 2 min. After sieving, the weight of the materials on the 2.36-mm 

screen and on the bottom pan was determined. The DORIS values are presented 

as the percentage of fractured product (product size 2.36–7.1 mm) and the 

fines (product size <2.36 mm) of the starting weight. The test was carried out 

in triplicate for each feed.

2.9.7. Holmen durability index

One hundred grams of coated product were placed into the New Holmen 

Portable Pellet Tester (NHP 100; Borregaard LignoTech, Sarpsborg, Norway), 

for 120 s. The samples were then collected and weighed. Three replicates 

were tested to calculate the Holmen durability index (HDI) for each treatment 

combination. This feed tester has recently been introduced in the fish feed 

industry. It uses air to rapidly circulate the feed and simulates a combination 

of mechanical and pneumatic stresses (Kaliyan and Vance Morey, 2009). 
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It simulates severe treatment of the feed by pneumatic handling (Van der Poel, 

1996) and gives a wide range of results due to the long time span over which 

the stresses are applied.

2.10. Experimental design and statistical analysis
The effects of inclusion of LPC and CPC (100 and 200 g kg–1) and the added 

feed moisture (29%, 25% and 22% of the mash feed rate) were investigated 

with respect to the pasting properties of the mash, extruder SME, specific 

density of feed, maximum oil infusion, sinking, fat leakage, DORIS and Holmen 

durability. In addition, the SPC-based diet, 200 g LPC kg–1, 200g CPC kg–1, and 

the FM-based diet were processed at 16% added moisture using exactly the 

same process parameters. However, those feeds were not used in the further 

analyses.

The results from the 18 experiments (Table 2) were submitted to a one-way 

analysis of variance (ANOVA) and a Tukey honestly significant difference (HSD) 

test; a confidence interval of 95% was used to compare the means. Statistical 

analyses were carried out using UNISTAT computer software (Unistat, 2011).

3. Results and discussion

The aim of this work was to understand the effects of various protein sources 

on SME consumption, addition of moisture during extrusion and the overall 

properties of fish feed products. We demonstrated that the shear cell device 

can be used efficiently to study the behaviour of feed ingredients under 

thermo-mechanical treatments, which can be used to predict the behaviour of 

material during extrusion.

3.1. Feed extrusion and chemical composition of the diets
The mixtures were extruded using the parameters presented in Table 2. The 

screw speed and barrel temperature were used to optimize expansion of the 

extrudate and maximum oil infusion, but these changes did not significantly 

influence the effects reported in this study, as shown later.

The SPC-based diet processed with 16% added moisture resulted in high 

dust formation at the extruder discharge and a fragile product. Consequently, 

these kernels were not used in further analysis. Dust formation is a clear sign 
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of insufficient hydration of the mash particles. To check if the properties 

of the product could be attributed to the changes in extrusion conditions 

rather than compositional changes, we decided to process 200 g LPC  

kg–1, 200 g CPC kg–1 and the FM-based diet at this moisture level, using exactly the 

same process parameters. As a result, the morphology of the pellets containing 

either LPC or FM was improved significantly and no dust formation was observed. 

In contrast, addition of 200 g CPC kg–1 did not result in any improvement.

It has been reported previously that the effects of protein sources might 

also be caused by differences in chemical composition between the diets 

(Draganovic et al., 2011). Chemical analysis revealed that the crude protein 

level varied from 556 to 614 g kg–1, and the fat level varied from a low of 53 g 

kg–1 in the SPC-based diet to a high of 105 g kg–1 in the FM-based diet (Table 

1). The starch in the feed facilitates expansion and binding of the pellet matrix 

(Sørensen et al., 2010). The actual starch measured was between 106 and 131 g 

kg–1 for the feed based on FM and the 100 g CPC kg–1 diet, respectively (Table 1). 

The inclusion of CPC in the feed resulted in a significant increase in crude fibre. 

No notable differences were observed in the ash content between the diets, 

except for the FM-based diet, which showed a higher value (Table 1).

3.2.  Effects of the protein source and the addition of moisture on 
the shear cell torque and extruder specific mechanical energy 
consumption

To mimic the extrusion conditions, we tried to use similar moisture levels 

during the shearing experiments as used in extrusion. However, this was 

unsuccessful because of difficulties in closing the shear cell device in the case 

of the SPC-based diet and the 200 g CPC kg–1 diet at 30% water content or 

lower, when 82 g of material was used; the cell could not be closed because the 

mash was too solid. Therefore, it was decided to use higher water content than 

typically used in extrusion; namely 35%, 40% and 50% (of the total water and 

material mass).

Fig. 2A shows the torque curves of the shear runs for different protein sources. 

LPC behaves similar to FM; both show low and constant torque values over 

time. The highest torque was observed with CPC, followed by SPC. The curve 

of the CPC-based feed tends to decrease slightly with time, which suggests 

weakening of the melt. The torque curve for SPC, however, increases with time 

and then levels off (Fig. 2A).

26694 Vukasin Draganovic.indd   91 17-09-13   14:39



Chapter 4

92

C4	  Figure	  2	  (A) C4	  Figure	  2	  (B)
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Fig. 2. (B) Effects of formulation on torque at 35% (a), 40% (b) and 50% (c) water content.

Fig. 2B shows the torque curves during shearing of the meal mixes. The 

higher moisture content led to lower torque. Inclusion of LPC led to a decrease 

in the torque at all three moisture levels. Remarkably, the torque values were 

not much different between 100 and 200 g LPC kg–1. Inclusion of 100 g CPC 

kg–1 gave torque values similar to those for the SPC-based diet at 40% and 50% 

water content; 200 g CPC kg–1 resulted in an increase in the torque at the same 

water content (Fig. 2B). The highest torque value at 35% water content was 

obtained for the SPC-based diet.

All the curves were relatively constant over time except for the 100 and 200 

a b

c
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g CPC kg–1 meals at 35% and 40% water content, in which a slight decrease was 

observed (Fig. 2B).

The eff ects of the formulation and moisture content on the extruder SME 

responses are presented in Fig. 3. There were statistically signifi cant diff erences 

in SME consumption among the feeds (P<0.01). The SME was highest for the 

200 g CPC kg–1 diet with low moisture content (16%). The lowest SME was 

observed for the 200 g LPC kg–1 diet at 29% added moisture (Fig. 3). Generally, 

for all feeds, the SME decreased as the moisture level increased (Fig. 3) because 

water reduces the viscosity of the melt and thus results in decreased shear 

stress, which is in agreement with the study of Lam and Flores (2003).

75 
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SPC 100 g CPC kg-1 200 g CPC kg-1 100 g LPC kg-1 200 g LPC kg-1 FM 

SM
E

 (k
J/
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) 

29% moisture 

25% moisture 

22% moisture  

16% moisture  

Fig. 3. Eff ects of the protein source in the diet and added feed moisture on SME. Means (n=10) with the 
same letter are not signifi cantly diff erent.

At 16%, 22%, 25% and 29% moisture, the SME decreased by 41%, 11%, 31% 

and 22%, respectively, when SPC was partially replaced by 200 g LPC kg–1 (Fig. 

3). Replacing SPC with LPC had a pronounced eff ect on the SME despite the fact 

that both diets containing LPC were extruded at notably higher screw speeds. 

The eff ect of LPC was so great that the SME for the 200 g LPC kg–1 diet at 16% 

moisture was even lower than the SME of the SPC-based diet at 25% moisture 

(Fig. 3).

The low WHC of LPC plays a role in this, because more water is available for 

plasticizing other ingredients when LPC is added. The SPC showed a WHC of 

2.4 g H
2
O (g fl our)–1; which for LPC was only 0.9 g H

2
O (g fl our)–1. Fig. 3 shows 
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that the SME values for the 200 g LPC kg–1 diet were very similar to those of the 

FM-based diet at all values of moisture content. However, the WHC of FM was 

somewhat higher (1.8 g H
2
O (g flour)–1). In addition, the increased fat level in 

the feeds containing LPC and the FM-based feed (Table 1) may have an effect 

on the lower SME.

No substantial differences in SME were observed when SPC was replaced 

with CPC (Fig. 3). For the 200 g CPC kg–1 diet, slightly higher values were found 

compared with the SPC-based diet at 16%, 22% and 29% added moisture 

(0.6%, 10.6% and 7.4% change, respectively); a lower value was found at 

25% moisture (16% change). As with the LPC, the high SME values for diets 

containing CPC can be attributed mostly to the high WHC of this ingredient 

(3.6 g H
2
O (g flour)–1) plus the low fat level (Table 1).

The RVA assessment was used to examine the effects of the protein source 

on the pasting properties of the feed mash. Fig. 4 shows the RVA pasting profiles 

of the six diets. The inclusion of LPC significantly decreased the peak viscosity 

(P<0.05) and the final viscosity (P<0.05), whereas the inclusion of CPC had the 

opposite effect. The final viscosity of the 200 g LPC kg–1 diet was the lowest 

(0.50 Pa s) and it was followed by the FM-based diet (0.55 Pa s) and the 100 g 

LPC kg–1 (0.63 Pa s) diet (Fig. 4). The low viscosity of LPCs has been reported 

previously by Chew et al. (2003). In contrast, the highest viscosity by far was 

recorded for the 200 g CPC kg–1 diet (3.19 Pa s) (Fig. 4), which is probably related 

to its high WHC. In general, the viscosity results from this study corroborate the 

findings observed for the torque and SME in the shear cell and extrusion trials, 

respectively.

3.3. Effects of LPC and CPC and added moisture on the physical 
characteristics of the feed

Fig. 5 shows the materials formed by shearing. Visual examination of the 

sheared materials revealed that CPC formed a more consistent structure with 

a smoother surface compared with SPC, which crumbled during handling 

and gave off fines. In contrast, shearing of LPC and FM resulted in paste-like 

structures; with LPC, the resulting material was stickier.
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Figure 4 
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Fig. 4. Rapid viscosity analysis profi les of SPC-based, 100 g LPC kg–1, 200 g LPC kg–1, 100 g CPC kg–1, 200 
g CPC kg–1 and FM-based mash. A–F Diff erent letters denote a signifi cant (P<0.05) diff erence among the 
means for the peak and fi nal viscosity (from left to right, respectively) in a Tukey HSD test.

Fig. 5. Structures of CPC (A), LPC (B), SPC (C) and FM (D) after 20 min of shearing at 50 rpm and 90 °C. The 
water content of all materials is 60%.
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Fig. 6. Overview of all meal mix materials after shearing. The meal mixes were sheared for 20 min at 50 
rpm and 90 °C. Red square, crumbled material; yellow square, crumbled material with a greater 
proportion of fines; black square, structured material with a torn up appearance and still some fines 
present; green square, cohesive, structured material with a smooth surface. SPC, soy protein concentrate; 
LPC, lupine protein concentrate; CPC, canola protein concentrate.

The effect of including protein-rich ingredients in the diet on the structure 

formation in the shear cell is visualized in Fig. 6. Except for the 200 g CPC kg–1 

diet, all diets at 50% water resulted in material that was too moist and crumbled 

during handling. At this moisture content, the material was solidified in the 

case of canola protein, which obviously better tolerates higher moisture levels.

Although the moisture levels used here were higher than those normally 

used in extrusion, the consistency of the structures shown in the green squares 

was similar to the common dough melt at the discharge of the extruder die, 
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and we thus anticipate that these mixtures will produce elastic extrudates 

with a smooth outer surface. The SPC-based diet at 35% water content gave a 

structure with a rougher surface compared with those in the green squares and 

less uniform appearance, with some fines present. For diets containing SPC, 

it would be more difficult to obtain a completely smooth outer surface, even 

though a 35% water content provides sufficient hydration of particles.

In general, results from the extrusion trials showed that the inclusion of 

LPC leads to acceptable product characteristics at restricted moisture content. 

The implications for reduction in energy use and improvements in process 

efficiency are evident. In contrast, SPC could be partly replaced with CPC only 

with addition of more moisture.

The appearance of the pellets in the SPC-based diet followed an expected 

pattern. The pellets in the SPC-based diet produced at 16%, 22% and 25% added 

moisture had torn edges and a rough cutting surface with marked protrusions 

and grooves. This also led to the generation of fines during handling that 

need to be removed. These effects were more pronounced at lower moisture 

contents. Similar effects were observed when SPC was replaced with either 100 

or 200 g CPC kg–1 at all moisture contents. Figs. 7 and 8 show the differences 

in pellet morphology at 16% and 22% moisture content, respectively. At 29% 

added moisture, the SPC-based diet had a smoother surface, but still had some 

grooves. Similarly, after shearing the same diet at even higher moisture content 

than in extrusion, the surface was not completely smooth (Fig. 6). Remarkably, 

the poor appearance of pellets observed during extrusion of diets containing 

canola disappeared at higher moisture levels as can be seen from the shear 

cell results with all three water levels tested (Fig. 6). It is therefore expected 

that at added moisture levels higher than 29%, CPC will contribute more to 

the binding of the extrudate matrix and formation of adequate product quality 

compared with SPC.

In contrast, adding 100 and especially 200 g LPC kg–1 improved the 

appearance of the pellet notably (Figs. 7 and 8). A smooth surface and shiny 

appearance was observed for these two diets at all three moisture levels. When 

22% moisture was used, the 100 and 200 g LPC kg–1 diets had even better 

appearance than the SPC-based diet at 29% moisture.
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Figure 7 
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Fig. 7. Feed pellet morphology at 16% added moisture for (A) SPC-based, (B) 200 g LPC kg–1, (C) 200 g 
CPC kg –1, (D) FM-based diets.

The production of modern extruded aquafeeds for finfish is closely linked 

to the feeding behaviour of the target species, therefore the sinking rate of the 

pellets, and hence the control of the pellet bulk density, is of critical importance 

(Glencross et al., 2010). Although replacement of SPC with LPC did not notably 

change the starch content, it did result in lower overall expansion, which 

was compensated with higher screw speed (Table 2). This is in agreement 

with Glencross et al. (2010) who found a significant decrease in oil uptake 

and radial expansion with increasing levels of lupin kernel meals. The same 

authors suggest further increases in the level of starch in the diet to overcome 

these limitations. The density of the feed without oil varied from 684 to 777 

g l–1 (Table 3); it was lower for the 200 g LPC kg–1 diet at 29% and 22% added 

moisture and the FM-based diet at 29% moisture than for the other treatments. 

The trends for maximum infusion of oil are known to closely follow the density 

(Draganovic et al., 2011); it was reported that the density and the maximum oil 

infusion had a correlation coefficient of –0.99. Although the specific densities 
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differ significantly in statistical terms (P<0.01) (Table 3), the differences are not 

considered of technical importance because all the feeds showed adequate 

oil infusion. Furthermore, the percentage sinking was high (≥98%) in all cases 

(Table 3).Figure 8 

	  	  	  	   	  

	  	  	  	   	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  A 	  	  	  	  	  	  	  	  	  	  	  	  	  	  B 

	  	  	  	  	  	  	  	  	  	  	  	  	  C 	  	  	  	  	  	  	  	  	  	  	  	  	  	  D 
Fig. 8. Feed pellet morphology at 22% added moisture for (A) SPC-based, (B) 200 g LPC kg–1, (C) 200 g 
CPC kg –1, (D) FM-based diets.

Fat leakage varied from 4.5% to 12.5%. The lowest fat leakage was obtained 

at 200 g LPC kg–1 at 25% moisture; the highest was observed for the FM-based 

diet at 29% moisture, followed by the same diet at 25% moisture (Table 3). In 

general, diets containing LPC showed lower fat leakage compared with other 

feeds, which is probably related to the microstructure of the pellet (Draganovic 

et al., 2013).

The durability of the product during handling is a strong indicator of feed 

integrity during storage, transportation and pneumatic feeding. Although 

there were significant (P<0.01) differences in DORIS durability among the feeds, 

the inclusion of both LPC and CPC did not result in notable differences from a
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Table 3 Effects of LPC and CPC on the physical characteristics of the feed.

Diet formulation Specific 
density  
(g l–1)

Maximum 
oil infusion 
(%)

Sinking 
(%)

Fat leakage 
(%)

DORIS 
durability 
(%)

Holmen 
durability (%)

29% feed moisture

SPC 729efg 53.1bcde 100.0b 7.7cd 93.8c 98.0bc

100 g LPC kg–1 710bc 53.8cdef 100.0ab 5.8b 97.3cd 99.6e

200 g LPC kg–1 684a 55.8fg 99.0ab 5.2ab 96.8cd 99.2e

100 g CPC kg–1 746i 51.6bcd 100.0b 7.7cd 96.8cd 98.4cd

200 g CPC kg–1 744hi 50.7b 100.0b 7.5c 98.6d 98.7d

FM 693a 57.3gh 100.0b 12.5h 70.3a 97.9b

25% feed moisture

SPC 706b 57.0gh 98.7ab 7.56c 96.9cd 98.7d

100 g LPC kg–1 718cde 54.1def 98.7ab 5.3ab 95.8cd 99.7e

200 g LPC kg–1 723def 50.7b 99.0ab 4.5a 97.0cd 99.5e

100 g CPC kg–1 746i 51.4bc 100.0b 8.3cdef 98.0d 98.3bcd

200 g CPC kg–1 729efg 53.1bcde 99.7b 7.9cde 97.0cd 98.3bcd

FM 717bcd 55.4efg 100.0b 10.5g 71.2a 98.5cd

22% feed moisture

SPC 777j 48.1a 100.0b 5.3ab 98.9d 98.2bcd

100 g LPC kg–1 718cde 56.1fg 99.3ab 8.8def 98.1d 99.3e

200 g LPC kg–1 694a 58.9h 97.7a 4.9ab 96.7cd 97.4a

100 g CPC kg–1 739ghi 53.0bcde 100.0b 9.3f 97.2cd 98.1bc

200 g CPC kg–1 727def 55.5efg 99.3ab 9.0ef 94.1c 98.6d

FM 734fgh 54.1def 100.0b 9.4fg 79.1b 98.1bc

MSEa 13.850 0.677 0.333 0.160 1.403 0.024

P value 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

Means (n=3) without a common superscript within a column are significantly different in a Tukey HSD 
test; P<0.05.
aMean square error from analysis of variance (df=36).

technical point of view (Table 3). In contrast, the durability was greatly reduced 

compared with other feeds when FM was used as a main protein source. 

Decreasing the moisture content from 29% to 22% significantly improved the 

durability of the SPC-based diet and the FM-based diet; the opposite effect was 

observed for the 200 g CPC kg–1 diet (Table 3). Thus, addition of CPC leads to 

26694 Vukasin Draganovic.indd   100 17-09-13   09:55



Lupine and canola protein concentrate in fish feed

101

Chapter

4

the most durable product at 29% added moisture, which confirms that canola 

proteins strengthen the structure at higher moisture levels and is in line with 

the results obtained with the shearing device. In general, the numeric durability 

values were high for all the feeds analysed and well within the acceptable range 

according to the commercial guidelines, except for the FM-based diet (Table 3).

Even smaller variations were observed with the HDI. The highest HDI was 

found for the 100 g LPC kg–1 diet at 25% moisture, followed by the same diet 

at 29% and the 200 g LPC kg–1 at 25% moisture (Table 3). With the exception 

of the 200 g LPC kg–1 diet at 22% moisture, replacing SPC with LPC led to a 

statistically significantly higher HDI. Furthermore, the value for the HDI was 

not very responsive to changes in added moisture (Table 3). In commercial 

feed manufacturing practice, HDI values ≥93% are recommended. Thus, all the 

treatment combinations showed adequate HDI values.

3.4. Technological requirements for plant-based materials used in 
fish feed

The materials examined show large differences in the amount of water 

required for good material plasticization. Even though lupine and canola 

seed proteins are mainly globulins like soy proteins, they behave differently. 

SPC and CPC showed poor solubility of 2.7 and 1.7 %, respectively, whereas 

the protein solubility of LPC and FM was much higher (9.7 and 15.1 %, 

respectively). According to Chen et al. (2011), solubility is one of the most 

important properties of protein, as it is an indication of good interaction with 

water, which is necessary for strong plasticization by water; good solubility is 

an indication that the glass transition temperature of the material will drop fast 

with the addition of water. Therefore, water solubility is also directly related to 

other useful functional properties.

Table 4 summarizes the results found in this study. FM has unique 

technological properties (high solubility, low WHC and low paste viscosity) 

and is thermostable. SPC is often used to replace FM. Given its much higher 

WHC, this is only possible when the dough is extruded at a higher moisture 

content. A higher moisture content leads to more plasticization and thereby 

reduces the viscosity of the mash. Additional moisture is required to improve 

the deformability and the formation of a coherent mass.
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Table 4 Overview of the technological properties of the protein sources examined

Feed ingredient Solubility WHC Gelation on 
heating

Viscosity Pellet quality 
low moisture 
content

Pellet quality 
high moisture 
content

FM High Low No Low Good Fair 

LPC High Low No Low Good Good

SPC Low High Yes High Poor Good

CPC Low High Yes High Poor Good 

CPC also has low solubility and high WHC. In addition, the melt viscosity is 

high as can be seen from the shearing device results. In contrast to SPC, CPC 

is able to form a coherent mass with a smooth surface at high water content 

(Fig. 6).

The technological properties of LPC resemble those of FM. It has high 

solubility and low WHC. As a result, most of the water is available to plasticize 

the other components in the dough at low moisture levels. In addition, its paste 

viscosity is low and not much influenced by thermal treatment. The similarity 

of LPC to FM is reflected in similar extrusion behaviour. It may even be possible 

to reduce the moisture level even further, which would lower the amount of 

drying required. The changes in the properties of the pellets from SPC and from 

LPC can be explained by a lower glass transition temperature (Tg
) of the dough 

mass based on LPC. LPC did not become a hard gel. Although the T
g
 values were 

not measured here, the diets containing SPC and CPC will be either close to their 

glass transition or even be glassy at low moisture content, which prevents the 

formation of a smooth pellet. The limited moisture available might be absorbed 

by the plant material, leaving less water available for the other materials. These 

might be in the glassy stage at lower overall moisture content. Fan et al. (1996) 

stated that the extrudate structure is strongly dependent on T
g
. Barrett and 

Kaletunc (1998) used T
g
 as a parameter to evaluate the effects of processing 

conditions on the textural attributes of extrudates. They and Champion et al. 

(2000) stated that water is the major plasticizing component that affects T
g
.

3.5. Usefulness of the shearing device
The results from this study show that the shear cell device is adequate for 

assessing processing conditions that are close to the conditions in an extruder 

during the production of fish feed.
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SME is an important parameter as it indicates the melt behaviour during 

extrusion, which in turn determines the product qualities (Yuliani et al., 2009). 

Although not statistically tested, the shearing torque values in this study 

correlate well with the SME in an extruder. Furthermore, the cohesiveness 

and viscosity of the material under extruder-like processing conditions can be 

readily studied.

Compared with pilot-scale extrusion, shear cell trials consume less time and 

materials. The latter can be important for feed ingredients that are at the early 

stage of development, when a very small amount of material is available. Results 

from shear cell trials are a solid basis for the development of formulations and 

processes before moving to a larger scale. Shear cell trials can help in revealing 

the functional properties of FM, and therefore can be used to set design criteria 

for various materials, such as other plant-based materials or microalgae, which 

may lead to lower viscosity, higher solubility and stronger gel formation.

4. Conclusions

The potential use of SPC, LPC and CPC in fish feeds was evaluated by two 

processing methods: shearing in a cone-plate shearing device and extrusion. 

The behaviour of these three materials during processing was compared with 

FM.

The shear cell device is a good, simple and fast apparatus for characterizing 

the techno-functional properties of raw materials, and for determining the 

influence of processing conditions.

Both shearing and extrusion showed that FM and soy have different 

technological properties; soy is normally used as a replacer for FM. SPC has a 

higher WHC and higher paste viscosity, which explain the higher feed moisture 

required during extrusion. CPC has similar properties to SPC and also requires 

more moisture. The properties of the feeds containing CPC could be well within 

the ranges that are acceptable for commercial fish feed use at higher moisture 

contents compared with SPC, but the higher moisture levels would require 

more drying, and thus higher energy consumption.

LPC had similar or even better properties than FM. For formulations with 

100 and 200 g LPC kg–1, the moisture level during extrusion could be reduced 

without negatively influencing the final properties of the product. Clearly, this 
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results in a notably decreased drying requirement, leading to reduced energy 

consumption and better process efficiency.

The effect of adding LPC can be explained by considering that LPC reduces 

the viscosity of the feed mash through a plasticizing effect and reduced WHC. 

This reduced viscosity lowers the SME input, which leads to energy savings 

additional to the reduced drying.
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Abstract

Reduction of the environmental impact of feed products is of paramount 

importance for salmon farming. This article explores the potential to compare 

three thermodynamically based ecological indicators. The environmental 

impact of partial replacement of fish meal (FM) and fish oil with alternative 

ingredients was investigated using energy, classical exergy and eco-exergy 

analysis. Seven hypothetical feeds were formulated: one with high levels of 

FM and fish oil, four feeds based on plant ingredients, one containing krill 

meal, and one based on algae-derived products. Analysis included cultivation 

of crops and algae, fishing for fish and krill, industrial processing of these 

ingredients and production of complete fish feed. Because most harvested 

products are refined in multiple product outputs that have good value to 

society, two scenarios were compared. In the base case scenario, no allocation 

of co-products was used and all the environmental costs were ascribed to one 

specific co-product. Co-product allocation by mass was used in the second 

scenario; this is considered to be the preferred scenario because it accurately 

reflects the individual contributions of the co-products to the environmental 

impact of the feed products. For this scenario, the total energy consumption 

for a fish-based diet was 14,500 MJ, which was similar to a krill diet (15,600 

MJ), about 15–31% higher than plant-based diets, and 9% higher than an 

algae diet. Substituting FM and fish oil with alternative ingredients resulted 

in minor changes in total classical exergy degradation (2–16% difference). The 

calculations based on energy only consider the energy conservation based 

on the First Law of Thermodynamics, whereas those based on classical exergy 

also takes the Second Law of Thermodynamics into account; energy that can 

do work is distinguished from energy that is lost as heat to the environment. 

The calculations based on eco-exergy consider the total loss of work energy in 

the environment including the work energy associated with the information 

embodied in the genomes of organisms. The diet based on fishery-derived 

ingredients was the highest total work energy consumer compared with plant-

based diets (24–30% greater), the diet containing krill meal (25% greater), and 

the algae diet (four times higher). Thus, reducing FM and fish oil levels in fish 

feed can contribute significantly to more sustainable aquaculture. In particular, 

algae-derived products in aquafeeds could drastically decrease environmental 

costs in the future.
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1. Introduction

As the aquaculture industry continues to expand globally, access to key 

feedstuffs, such as fish meal (FM) and fish oil, will become increasingly limited 

because of the finite resources available for wild harvesting (Gatlin et al., 2007). 

Aquaculture that relies on FM as a dominant protein ingredient is another 

source of pressure on populations of wild fish (Pauly et al., 2002). To reduce 

the effect of aquaculture on the ecosystem, enhanced efforts are needed to 

thoroughly evaluate reasonable alternatives, such as feedstuffs from plant 

origin (Gatlin et al., 2007). Wheat gluten and soy protein concentrate (SPC) 

have shown high potential as alternative proteins to FM with respect to their 

availability and nutritional value. However, it is not straightforward to conclude 

that plant proteins inherently contribute to sustainability if we take into account 

the renewable and nonrenewable resources and waste emissions related to 

the production of these feed ingredients. The theoretical impact of replacing 

FM and fish oil in rainbow trout feeds was investigated using nutritional 

modeling and life cycle assessment by Papatryphon et al. (2004). They showed 

that completely replacing FM and fish oil with plant sources did not decrease 

the environmental impact when use of energy is considered. In addition, it was 

previously reported (Draganovic et al., 2011) that replacing FM with gluten, 

and particularly SPC, increases the quantity of water added during fish feed 

production to compensate for differences in the technological properties of 

fish and plant protein. Consequently, energy consumption for drying has to be 

increased. It can be concluded that there is a need for a comprehensive analysis 

of different protein sources in fish feeds.

We proposed using three thermodynamic analyses to provide an ecological 

evaluation of the differences in sustainability of various salmon feed 

compositions.

(A)  Energy analysis has been applied traditionally to compare the energy 

consumption per kilogram of production of different salmon feeds. In this 

study, not only the energy of processing of feed ingredients is considered 

but also the direct energy inputs related to agricultural production and the 

processing systems from which the feed ingredients were derived (Pelletier 

and Tyedmers, 2007).

(B)  Energy can, however, be energy that can do work or energy that cannot 

do work but is lost to the environment as heat by the temperature of the 
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environment. Energy is conserved (the First Law of Thermodynamics), 

whereas energy that can do work (often named exergy) is lost inevitably by 

all processes (the Second Law of Thermodynamics). Humans are interested 

in the work energy, not in the heat energy lost to the environment. It would 

therefore be beneficial to compare different salmon feeds by the amount 

of exergy that is consumed in their production. The exergy content of the 

feed itself would be equal to the free energy (chemical work energy) of 

the various components. But the work energy related to production, such 

as electricity and fossil fuel, has to be included as well (Balkan et al., 2005; 

Dewulf and Van Langenhove, 2002; Kotas, 1986; Tekin and Bayramoğlu, 

1998). Szargut (1989) described a method to calculate the exergy for a 

given chemical composition. Exergy is defined as the amount of work the 

system under consideration can perform when brought into equilibrium 

with the environment (room temperature and 1 atm). Exergy is therefore 

calculated slightly differently than the free energy because exergy has the 

environment as a reference.

(C)  Classical exergy analysis does not consider that living organisms carry 

a lot of information. Information is a form of free energy according to 

Boltzmann (1905), which implies that living organisms contain more 

work energy than just the chemical energy of their components (proteins, 

lipids, carbohydrates, etc.) (often named eco-exergy). The information 

in organisms is embodied in the genome and is used to determine the 

amino acid sequence in the enzymes that are controlling the biochemical 

processes in living organism.

By calculating eco-exergy and including other exergy degradation, the total 

embodied work energy capacity can be calculated; this is the chemical work 

energy (free energy) of the chemical components, the work energy used for 

production, and the work energy embodied in the information that the living 

organisms carry. It means that the salmon feed with the lowest total work 

energy capacity or degradation is the preferred salmon feed from an ecological 

or sustainability point of view.

The primary aim of this paper is to estimate the impact of alternative 

ingredients to fish meal and fish oil on the environment, regardless of the 

geographic region of fish feed production. As a secondary aim, we want to 

introduce eco-exergy as a key driver for sustainability of aquaculture.

The diets considered in this work were formulated to be nutritionally 
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equivalent or biochemically optimal to ensure maximum growth of salmon. 

Therefore, identical growth performance could be expected in fish fed different 

diets for this study.

2. Materials and methods

2.1. Methods
Fig. 1 shows the system chosen for the analysis. The system boundaries 

include the agriculture of wheat, grain legumes, oil seeds and microalgae, 

fishing for fish and krill, industrial processes to extract oils and produce protein 

concentrates, and the production of fish feeds made from them. Pesticides, 

fertilizers, manure, seed, electricity and diesel consumed during the agriculture 

are accounted for. Transportation stages are important. It has been reported 

previously that transportation may contribute from about 5 to 12% to the 

total energy use for the production of 1 ton of salmonid feeds (Papatryphon 

et al., 2004; Pelletier and Tyedmers, 2007). Transportation expenditure could 

potentially be substantial depending on the distances travelled and, more 

importantly, the mode of transportation used. Fish feed factories are located 

all around the world, and therefore general figures for transportation do not 

exist. The transportation expenditure for SPC, for instance, would be different 

for a feed plant in Norway compare with a plant in Brazil where soybeans are 

sourced locally. The same is true with FM. There are several FM manufacturers 

in Norway, located close to fish feed plants. In other countries, this ingredient 

may need to be transported longer distances, possibly including transportation 

by truck or rail freight, which is more energy intensive than shipping by sea. 

In general, local sourcing of ingredients is important. Because the aim of this 

study is to provide a global perspective on the sustainability of aquaculture, 

the transportation is not included in the analysis. In agreement with Apaiah 

et al. (2006), chains in the manufacture of machines are not accounted for. 

Inputs from feed additives (minerals, pigments, etc.) were not included in 

the calculations. Typically, more than 10 different micro-ingredients are used 

in the fish feed formulation and as they are applied in very small but varying 

amounts they are difficult to account for and are therefore not considered. In 

general, plant protein sources are deficient in some nutrients (e.g. lysine and 

methionine) compared with FM. Thus, it is anticipated that addition of those 
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nutrients in the diet as micro-ingredients will slightly increase the total energy/

exergy expenditure of the plant-based diets, although they are added in small 

amounts.

Fig. 1. System boundaries for the production of fish feed representing: (i) primary production/fishing, (ii) 
industrial stage ingredient preparation, and (iii) industrial stage mixing of ingredients and processing. 
The streams of all ingredients included in this study are shown. SPC, soy protein concentrate; PPC, pea 
protein concentrate; SFM, sunflower meal; FM, fish meal.

As stated in the Introduction, three different methodologies are used in this 

work to consider the production of 1 metric ton (1000 kg) of complete fish feed. 

The total energy consumption corresponds to the sum of all contributions, 

namely energy for crop cultivation/fishing, industrial preparation of ingredients 

and feed processing. The total classical exergy degradation corresponds to 

the sum of all contributions, namely chemical exergy of the biomass, work 

energy for crop cultivation/fishing, industrial preparation of ingredients and 

feed processing. The total work energy including eco-exergy (work energyiee) 

degradation relates to the sum of all contributions, namely eco-exergy of 

the components originating from living organisms, work energy for crop 

cultivation/fishing, industrial preparation of ingredients and feed processing.

The mass and energy balances and the classical exergy dissipation profile 

were determined for each feed ingredient. The governing equations for a 
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steady-state system are:

Mass balance:

 (1)

Energy balance:

 (2)

Exergy dissipation:

 (3)

where m is mass (kg), h is enthalpy (kJ mol–1), Q is heat (kJ), W is work performed 

by the system, b is steam availability (kJ mol–1), T is temperature (K) and Ex is 

exergy (kJ). Subscript k denotes the index of the heat source, in denotes inlet, 

and out denotes outlet.

The intrinsic chemical exergies (kJ kg–1) of wheat, grain legumes, oil seeds, 

wet fish, krill, and algae (composition given in the Appendix, Table A1) were 

calculated based on their heating values given by Szargut et al. (1988):

 (4)

In contrast to the β factor mentioned earlier that accounts for the 

information that an organism contains, here β
Chem

 is the ratio of the chemical 

exergy to the lower heating value of the fuel (LHV) of the organic fraction of 

the biomass. Therefore, we have specified this factor as β
Chem

. It is calculated 

from statistical correlations developed by Szargut and Styrylska (1964). The 

following correlation is used:

•	 for solid biofuels

 (5)
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•	 for liquid vegetable oils:

 (6)

where H/C, O/C, and N/C represent atomic ratios in the fuel.

The chemical exergy of the biomass components is presented in the 

Appendix (Table A2).

The sum of a component’s chemical exergy was weighted by their mass 

fraction in the biomass (this implies that mixed exergies are neglected; they 

are generally small compared with the chemical exergies of the individual 

macromolecular components) and it yields the chemical exergy of the biomass 

(kJ kg–1) (Bosch et al., 2012):

 (7)

where x
i
 is the mass fraction (kg kg–1).

2.1.1. Eco-exergy calculation

Jørgensen et al. (1995) and Bendoricchio and Jørgensen (1997) found the 

information that different organisms are carrying on the basis of the information 

embodied in the genome and thereby also in the amino acid sequence of the 

life-controlling enzymes and, on this basis, they calculated the exergy using 

the following equation:

 (8)

(as detritus equivalents at temperature T = 300 K in g l–1) where β
i
 is a weighting 

factor accounting for how much information is contained in the ith organism, c
i
 

is the concentration in, for example, grams per litre of the ith organism. Notice 

that the equation considers exergy density expressed, for example, as grams of 

detritus equivalents per litre. If we want to obtain the exergy of an organism, 

for example, the concentration is replaced by the biomass and if we want 

to obtain the exergy in kilojoules, it is necessary to multiply by the chemical 

exergy content of average detritus, which is 18.7 kJ g–1.

It can be shown that the beta value is a direct measure of the free energy 

of the amino acid sequence determined by the genome (Jørgensen, 2012; 
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Jørgensen et al., 2010), which makes the interpretation very clear. Furthermore, 

the exergy calculation for organisms uses a reference other than the classical 

exergy, because the environment in nature or an ecosystem in which an 

organism is living is another ecosystem, but we would like to determine the 

work energy capacity of the organisms or the entire ecosystem. Therefore, it 

is necessary to use the same ecosystem or organism but at thermodynamic 

equilibrium as reference. All gradients are eliminated at thermodynamic 

equilibrium and the system is an inorganic system containing no exergy or free 

energy. Therefore, the exergy calculated by this method is denoted eco-exergy 

to underline that it includes information and uses another reference to be able 

to express the work energy capacity of living organisms.

The following formula was used to calculate the eco-exergy (kJ kg–1) of seven 

fish feeds:

 
(9)

The latest β values proposed by Jørgensen et al. (2005) have been used in this 

work (Table 1).

Table 1 β values used in this work.

Organism Conversion factor (β)

Microalgae 20

Crustaceans 232

Plant 275

Fish 499

Eco-exergy, which includes the information carried by living organisms, has 

been applied for all components that originate from living organisms, because 

it expresses nature’s loss of work energy in delivering the living organisms 

(microalgae, crustaceans, plants and fish) as raw material for the fish feed. It is 

calculated as the chemical exergy of the organism’s biomass multiplied by the 

beta value. The chemical exergy represents a more exact value than the 18.7 kJ 

g–1 for biomass, mentioned above. The calculated eco-exergy is added than to 

the other contributions of work energy to obtain the total work energy.
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2.2. Data collection
Data on the agriculture of wheat (Oren and Ozturk, 2006), faba beans 

(Petkova and Pavlov, 2010), peas (Gerdzhikova et al., 2009; Zhelyazkova, 2010), 

cultivation and processing of algae (Xu et al., 2011), and sunflower (Keller, 

2011; Ozilgen and Sorguven, 2011) were obtained from the literature. Mass 

balance data on dehulling of faba beans were obtained from Agrimarin AS 

(Stavanger, Norway). The data on the agriculture and processing of soybeans 

was derived from Ozilgen and Sorguven (2011), Qaim and Traxler (2005), and 

personal communication with the industry (Imcopa SA, Araucaria, Brazil). Data 

on the energy use in fisheries were taken from Tyedmers (2000); data for krill 

was obtained from Parker and Tyedmers (2012). Energy input for fisheries can 

vary widely (20–3400 l of fuel per ton of fish landed) (Tyedmers, 2004). We used 

a value of 32 l in this study (Tyedmers, 2000) because reduction fisheries are 

much more efficient than fisheries for human consumption (Tyedmers, 2004). 

FM and fish oil processing yields and energy inputs were calculated from a 

technical report from a fish meal producer (Welcon, 2010) and confirmed by 

personal communication with experts in the same industry (Norsildmel AS, 

Fyllingsdalen, Norway). With respect to wheat processing, inventory data were 

taken from the literature (Narayanaswamy et al., 2003; van der Zalm, 2011); 

inventories of inputs used for processing peas were obtained from Apaiah et al. 

(2006) and confirmed by personal communication with the industry (Agrimarin 

AS, Stavanger, Norway). Feed processing inventories were based on data from 

the fish feed factory (Skretting, 2009).

2.3. Sensitivity and scenario analyses
The sensitivity of the results to the choice of the allocation procedure was 

assessed by comparing the energy, classical exergy, and eco-exergy results 

for fish feeds using two allocation scenarios: (a) a base case scenario, whereby 

the ingredients used in fish feeds were considered as the only products 

from primary production and industrial stage processing, and therefore, no 

allocation was used; and (b) the mass allocation scenario in which the energy 

consumption, classical exergy, and eco-exergy degradation for the main 

product (e.g. wheat starch) and the resulting co-products (e.g. gluten) was 

allocated a share according to the relative mass of these products.
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2.4. Composition of fish feeds
To compare feeds on the basis of equal performance potential (hypothetical), 

we selected feed pellets with a diameter of 9 mm and with similar nutrient 

profiles (Table 2). These feeds correspond to the so-called energy and 

nutrient dense category, representing the state of the art, also known as low 

pollution fish feeds. The hypothetical composition of the diets was based 

on information on the major ingredients in current use and ingredients that 

may be used potentially to ensure comparable feed quality (Table 2). All 

diets were formulated to be iso-energetic, to have the minimum required 

amount of digestible protein, and to contain at least 60 g kg–1 starch to give 

the pellets good binding properties. The diets were also formulated to meet 

or exceed the requirements for all essential amino acids and other nutrients 

(National Research Council, 2011). The composition of the first feed (FM diet) 

is similar to that of some feeds still available on the market (FM is the major 

constituent). In the diets with protein-rich plant ingredients, FM was mainly 

replaced with either SPC (SPC diet), a combination of SPC and wheat gluten 

(SPC×gluten diet), sunflower meal and gluten (SFM×gluten diet) or pea protein 

concentrate (PPC diet). The sixth formulation contained krill meal in addition to 

SPC (SPC×krill). The last feed (algae diet) is a prospective feed in which FM was 

mainly substituted by SPC and algae meal.
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The FM content was relatively low in the plant-based diets (150 g kg–1) and 

the diet containing krill (50 g kg–1). As shown in Table 2, fish oil and algae oil 

were the only sources of oil in the FM and algae diets, respectively. For five diets 

with relatively low amounts of FM, vegetable oil was added at 70% of the total 

oil added; the reminder was fish oil.

2.5. Assumptions
Energy used for dehulling of faba beans was assumed to be the same as for 

dehulling of peas. In accordance with the study by Lechon et al. (2005), the 

energy and exergy input for production of the seeds was considered to be the 

same as the production of the crop. With respect to thermal drying of algae, 

Hassebrauck and Ermel (1996) reported that typical thermal dryers use from 

3.3 to 3.9 MJ kg–1 of evaporated water. In this study, we used an average value 

(3.6 MJ kg–1). Based on the results from our previous study (Draganovic et al., 

2011), it was assumed that the FM diet requires less drying (about 30%) during 

processing compared with other diets.

2.6. Statistical analysis
Due to potential variability in the chemical composition of the ingredients, 

different practices between factories and the fact that the β-coefficients are 

estimations and not the absolute values, we presumed a standard deviation 

(SD) of ±10% of the total energy consumption, classical exergy and work 

energyiee degradation for various feeds when the mass allocation scenario was 

used.

To generate three data points, the original value (considered as the mean) 

±10% SD was used. The results were subjected to a one-way analysis of 

variance (ANOVA), and a Tukey honestly significant difference (HSD) test and 

a confidence interval of 95% was used to compare the means (n=3). Statistical 

analyses were carried out using UNISTAT computer software (UNISTAT, 2011).
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3. Results

3.1. Feed ingredients
Table 3 shows the energy necessary to produce the different feed ingredients. 

No mass allocation is applied, which means that all the energy needed to 

produce a certain feed ingredient is attributed to that ingredient. It basically 

assumes that a certain source does not deliver other useful ingredients, making 

it a kind of worse-case scenario.

In total, the production of 1 ton of FM requires an energy input of 18,874 MJ, 

of which 43% is attributable to the use of fuel for fishing. On an equivalent mass 

basis, the production of wheat gluten costs five times more energy than FM, 

mainly due to the large amounts of wheat required (1 kg of gluten requires 9.2 

kg of wheat). Of the protein sources, the energy required for gluten production 

was the highest, followed by the production of krill meal and SPC (Table 3a). 

The high overall energy consumption is a direct reflection of the low yield 

from whole krill (1 kg of krill meal requires 6.9 kg of freshly caught krill). The 

combustion of natural gas for steam generation is the main contributor in SPC 

production (35% of total energy use); diesel use on the land is also substantial 

(21%) (Table 3a). Chemical fertilizers are the major energy users in the case of 

gluten, SFM, and PPC (38%, 52%, and 54%, respectively); for algae meal, the 

main energy use is electricity for microalgae processing (51%). Of the all feed 

ingredients considered here, faba beans had the lowest energy use.

Oil produced by sunflower required the lowest amount of energy followed 

by soy, fish and algae oil (Table 3a).

Energy consumption for producing feed ingredients using mass allocation 

is summarized in Table 4. The energy consumption in the production of krill 

meal was the highest (Table 4). The energy consumption for FM was higher 

than that for gluten and for SPC, and substantially higher than that for SFM and 

PPC. Of the protein-rich ingredients, the percentage difference from the base 

case scenario is highest for gluten and lowest for krill meal (Table 4), due to the 

fact that wheat is relatively low in protein. Using the mass allocation scenario, 

energy use for the production of the oils varied from 56.4% to 86.7% of the 

base case; fish oil had the highest and sunflower oil the lowest value.
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Table 4 Energy and classical exergy to produce 1 ton of feed ingredient (mass allocation scenario)

Feed ingredient Value in ×100 MJ ton–1 and % change from the base case

Energy % change Classical exergy % change

FM 146.2 –22.5 360.3 –22.5

SPC 127.3 –53.6 350.3 –62.1

Gluten 136.4 –86.2 288.5 –87.7

Sunflower meal 56.9 –53.7 307.9 –53.7

PPC 45.8 –74.5 218.9 –74.5

Krill meal 503.1 –5.2 1004.6 –5.2

Algae meal 128.5 –13.3 354.2 –13.3

Wheat 74.6 –3.0 220.6 –3.0

Dehulled faba beans 52.7 –10.0 215.3 –10.0

Fish oil 146.7 –77.5 360.9 –77.5

Soy oil 69.1 –79.6 289.7 –79.6

Sunflower oil 56.9 –56.4 307.8 –56.4

Algae oil 128.3 –86.7 354.5 –86.7

FM, fish meal; SPC, soy protein concentrate; PPC pea protein concentrate.

The results of the classical exergy analysis for cultivation/fishing and 

industrial conversion of fish, krill, wheat, oilseeds, legumes, and algae into feed 

ingredients are presented in Table 3b. The share of chemical exergy of the wet 

biomass in the total input varied from 48% to 87%; FM and algae meal had 

the lowest values of all protein-rich ingredients (Table 3b). This was largely due 

to the high water content of the raw materials for these two protein sources 

(Appendix, Table A1). To convert 4.7 kg of raw fish into 1 kg of FM with exergy 

content of 26.9 MJ kg–1, nonrenewable input of 8514 and 10,167 MJ for diesel 

and natural gas, respectively, and 912 MJ of electricity are required. Furthermore, 

1 kg of algae meal requires 6.9 kg of raw algae. When the plant protein sources 

are compared, the total exergy degradation values are in the same order as 

the energy use. Gluten has the highest exergy input requirement of all protein 

sources; 67% of exergy consumed by gluten production originates from the 

chemical exergy of the wet biomass and 19% from fossil fuels; the rest is mainly 

due to the use of other nonrenewable chemicals (fertilizers and pesticides). For 

the protein-rich ingredients, the lowest classical exergy degradation is required 

for algae meal (Table 3b).
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With regard to the four oils, algae oil had the most significant exergy 

degradation, mainly driven by the low oil yield. Fish oil had the second most 

significant degradation of exergy and sunflower oil had the lowest (Table 3b).

Table 4 shows the classical exergy loss when mass allocation is applied. A 

trend similar to that for the use of energy was observed; the values for the 

protein sources were between 5.2% and 88% lower compared with the base 

case scenario; and were 56.4–86.7% lower for the oils.

Eco-exergy was used in this study to describe the differences between four 

types of living organisms: fish, plants, crustaceans, and microalgae. The results 

calculated for the work energyiee for feed ingredients are shown in Table 5. 

Given that classical exergy analysis does not distinguish between living and 

dead organisms, the value of the classical exergy cost for FM was considerably 

lower relative to other ingredients (Table 3b), whereas this difference is reduced 

in the case of work energyiee (Table 5).

Table 5 Work energy including eco-exergy degradation to produce 1 ton of feed ingredient (base case 
and mass allocation scenarios)

Feed ingredient Value in ×100 GJ ton–1

Base case scenario Mass allocation scenario

FM 134.5 104.2

SPC 187.4 64

Gluten 433.4 48.7

Sunflower meal 159.3 73.7

PPC 202.8 51.7

Krill meal 118.4 112.2

Algae meal 6 5.2

Wheat 48.6 47.2

Dehulled faba beans 53.8 48.5

Fish oil 462.7 104.3

Soy oil 312.4 63.9

Sunflower oil 169.3 73.7

Algae oil 38.9 5.2

FM, fish meal; SPC, soy protein concentrate; PPC pea protein concentrate.

In the base case scenario, FM requires less work energyiee relative to almost 

all alternatives, except for krill meal and algae meal (Table 5). However, this 
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is mainly due to the total assignment of all work energyiee costs to these 

ingredients; in reality, the raw materials are refined in a range of ingredients. 

Thus, using the mass allocation scenario, it becomes clear that FM is more 

expensive than all alternatives, except krill meal. Algae meal is about 20 times 

less costly than FM, implying that although plant proteins from wheat, soy, or 

peas give an immediate and significant improvement, there is scope for even 

larger savings by using algae.

For production of the oils, the highest work energyiee input was observed for 

fish oil (base case scenario); soybean oil, sunflower oil, and algae oil all needed 

significantly less (67%, 37% and 8%, respectively) (Table 5).

After co-product allocation, the work energyiee cost for the four oils ranged 

between 518 and 10,426 GJ. Similar to the base case scenario, the highest value 

was observed for fish oil and the lowest for algae oil.

3.2. Feed formulations

3.2.1. Total energy consumption

In the base case scenario, the total energy consumption is smallest for SPC 

and the conventional fish-based product (Fig. 2a). All other products cost more 

energy to prepare. The formulation of the product itself only uses a minor 

amount of energy; by far the largest energy expenditure is in the preparation 

of the ingredients. Therefore, as the production of gluten is energy intensive, 

the SPC×gluten and SFM×gluten products require more energy. SPC accounts 

for most of the total energy consumption for the SPC and SPC×krill products, 

whereas soy oil and gluten account for most of the total energy consumption 

for the PPC product (Fig. 2a). For the product based on algae, algae oil is by 

far the single most important contributor. Thus, replacing FM with plant-based 

ingredients actually requires more energy for the production chain. The fish, 

growing in the sea without any human effort, are caught with little energy 

expenditure for the fishing itself, whereas all plants need to be cultured, 

harvested, and processed.
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Fig. 2. The influence of feed formulation on total energy consumption (MJ equiv.) of 1 ton of fish feed. 
(a) Base case scenario; (b) mass allocation scenario. Means with same letter are not significantly different.

The situation is different with the mass allocation scenario (Fig. 2b). Most 

products now show less total energy consumption than the FM product, with 

the exception of SPC×krill. There were significant (P<0.01) differences in total 

energy consumption between the feeds. Even though krill meal is used in 

relatively small quantities (10% inclusion rate), it contributes a disproportionate 

share of the total energy consumption of the SPC×krill diet (Fig. 2b).

3.2.2. Total classical exergy degradation

Fig. 3a shows that for the base case scenario, the total classical exergy 

degradation follows the same pattern as the total energy use, the exception 

being the FM and PPC products. The exergy degradation of FM product was 
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almost three times lower than the corresponding value for the algae product 

and 17–46% lower than the other products.
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Fig. 3. The influence of feed formulation on the total classical exergy degradation (MJ equiv.) of 1 ton of 
fish feed. (a) Base case scenario; (b) mass allocation scenario. Means with same letter are not significantly 
different.

For the mass allocation scenario (Fig, 3b), all products require similar 

amounts of total exergy degradation, except for the SPC×krill and PPC diets, 

which showed somewhat higher and lower values, respectively. No significant 

differences were observed among the different feeds. Generally, co-product 

allocation by mass greatly reduces the contribution of gluten in all diets that 

contain this ingredient. For the algae diet, the contribution of algae oil was 27% 

smaller than in the base case scenario.
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Fig. 4. The influence of feed formulation on the total work energy including eco-exergy degradation (GJ 
equiv.) of 1 ton of fish feed. (a) Base case scenario; (b) mass allocation scenario. Means with same letter 
are not significantly different.

3.2.3. Total work energy including eco-exergy degradation

Fig. 4a shows the impact of feed formulation on the total work energyiee 

degradation for the base case scenario. Using this scenario, the highest work 

energyiee input is found for the PPC product (20,975 GJ), followed by the 

SPC×gluten (18,386 GJ) and SFM×gluten (17,026 GJ) diets. Except for SPC 

product, the total work energyiee values were higher for plant-based products 

than for conventional FM product, despite the fact that the trophic level of the 

plant species providing these ingredients is lower than that for fish. Thus, the 

difference in β value between fish and plants does not compensate for the 

energy input needed during the production of some plant protein sources 
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in this scenario. The SPC diet showed slightly lower total work energyiee 

degradation compared with the FM diet (–3.1%).

Using mass allocation (Fig. 4b), replacement of FM and fish oil with alternative 

ingredients resulted in decreased (P<0.01) total work energyiee degradation. 

The FM diet has by far the largest value (9805 GJ); all plant-based products have 

similar values (from 6905 GJ for the PPC product to 7458 GJ for the SFM×gluten 

product). The total work energyiee degradation for algae product is much lower 

(2428 GJ).

For both scenarios here, the work energy needed to process the ingredients 

into the formulated product was negligible (i.e. <0.04% of the total work 

energy used).

4. Discussion

The results show that the energy, classical exergy, and work energyiee 

requirements are strongly dependent on how the costs are ascribed to 

specific products. To illustrate these effects, Grassmann diagrams for FM and 

SPC×gluten diets are shown in Fig. 5. In a Grassmann diagram, the exergy flow 

for the different streams between the process components is shown as an 

arrow; the width of the arrow is proportional to the size of the exergy flow. 

Thus, it is easy to identify the components with high exergy levels. From Fig. 5, 

it is clear that ascribing all the costs to one specific co-product is arbitrary and 

does not reflect the value of all the co-products produced.
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Fig. 5. Grassmann diagrams for FM (a) and the SPC×gluten diet (b). All the streams are expressed as MJ 
exergy per 1 ton of complete diet. FM, fish meal; SPC, soy protein concentrate; SBM, soybean meal.

4.1. Impact of allocation method on study outcomes
As stated by Ayer et al. (2007), the method of allocation for environmental 

interventions has a great influence on the results. In our study, we chose mass 

allocation to take into account co-products that have good value to society 

(Pelletier and Tyedmers, 2007). In general, the conversion of the starting 
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materials (from cultivation or fishing) results in a significant number of co-

products that can be marketed. For example, soy refining produces hulls, 

molasses, oil, soybean meal, and SPC. Although criteria such as exergy content 

and economic value can be chosen, we believe that allocation by mass content 

provides the simplest and most realistic representation of actual biophysical 

flows for different feed ingredients (Ayer et al., 2007). Allocation on the basis of 

economic value is dependent on the economic valuation, which will vary over 

time and even by location (the value may be different in Norway from that in 

Asia or in Latin America), and is thus not a stable allocation key. Allocation on 

exergy content raises the question of how this value relates to the actual value 

to society. Mass, however, is a simple objective criterion.

The calculations reported in this article include the total energy consumption, 

classical exergy and work energyiee degradation of co-products (i.e. starch, hulls, 

molasses, gluten, meal, oil, or protein concentrate) of fish, krill, wheat, legumes, 

oilseeds, and algae. In the next section, the overall effects are discussed and 

the differences are explained, focusing mainly on the mass allocation scenario.

4.2. Impacts of feed ingredients and formulations
Pelletier and Tyedmers (2007) reported total industrial energy use for 

conventional feed production of 18,100 MJ ton–1. In the current study, the 

energy use varies from about 20,000 MJ to about 32,400 MJ, apart from the 

algae diet (Fig. 2a). A much higher values was reported by Tyedmers (2000). 

They calculated direct energy use of approximately 43,500 MJ for fossil fuel 

and electrical energy for 1 ton of feed for conventional salmon aquaculture 

in British Columbia. The differences can probably be attributed to changes in 

the chemical composition of feed, origin of the ingredients, and the precise 

formulation of the product and the processing conditions.

Although the degree of intervention for growth of crops is much higher 

compared with fisheries (Pelletier and Tyedmers, 2007), the mass allocation 

scenario showed that it is not necessarily as energy intensive as many fisheries. 

When composing Table 4, we found that the underlying values for primary 

production of fish (6340 MJ), crop-derived feed ingredients (6010 MJ in 

average), and algae (6340 MJ) showed no major differences. Besides primary 

production, processing of raw materials is important and it strongly depends 

on the technology required. For example, although no substantial differences 

exist between wheat and pea cultivation, wet separation of wheat starch and 
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gluten requires considerably more energy (5950 MJ) than the air classification 

used in PPC production (250 MJ). Steam cooking and drying of minced fish, 

aqueous alcohol treatment of soybean meal, and subsequent drying or thermal 

drying of harvested algae consume significantly more energy than mechanical 

separation processes. For this reason, the SFM×gluten and PPC diets use the 

least energy (Fig. 2b). It has been reported previously that wheat gluten is more 

resource intensive than the most efficient fisheries products (e.g. menhaden 

meal and oil) (Pelletier et al., 2009), which is in accordance with our study for 

the base case scenario (Table 3a). However, after co-product allocation, energy 

consumption for gluten was even lower compared with FM (Table 4). This 

is due to a significant energy cost for the starch stream. Fishing contributes 

significantly to the overall energy consumption for krill meal because the 

greatest abundance of krill is found between the Antarctic continent and the 

polar front (Parker and Tyedmers, 2012).

The energy required to produce oil depends greatly on the oil source 

and is lower for plant oils than for fish and algae oils, despite intensive crop 

production (Table 4). As a result, apart from proteins, this low energy use for 

plant oils contributes to the overall lower total energy consumption of plant-

based diets compared with the FM diet (Fig. 2b).

Opportunities for reducing classical exergy degradation by using plant-

derived products or algae are poor (Fig. 3b). Processes with the highest fuel 

consumption have the lowest exergy efficiency (Sorguven and Ozilgen, 2012). 

In our study, krill meal, fish oil and FM had the highest fossil fuel consumption 

(52,300, 14,520 and 14,470 MJ, respectively), followed by SPC and gluten (8800 

and 6700 MJ, respectively). The fact that there was no statistically significant 

difference in total classical exergy degradation between the FM diet and plant-

based diets (Fig. 3b) was also a result of similar exergy costs for oils originating 

from these sources (Table 4). The SPC×krill was the most exergy inefficient diet 

(Fig. 3b); this can also be ascribed to the intensive use of energy sourced from 

fossil fuels, in addition to the inefficient conversion of harvested krill to krill meal.

From Table 1, the β value for fish is higher than for plants, crustaceans, 

and especially algae. This explains why all the diets containing alternatives 

to fish-based ingredients showed significantly lower total work energyiee use 

compared with the FM diet when mass allocation was used. The algae diet uses 

the least total work energyiee, which is mainly due to the low trophic level of 

the microalgae (Fig. 4b). Among the plant-based diets, the most successful 
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combination of ingredients was found in the PPC diet although the differences 

from other plant-based products are minor (Fig. 4b).

The work energyiee results from this study indicate that algae oil is the best 

substitute for fish oil (Table 5). Besides the environmental factors, it is also 

important to consider that inclusion of omega-3 is one of the main reasons for 

including fish oil. Although the inclusion of vegetable oils does not compromise 

growth (Glencross and Turchini, 2010), tissue composition may be affected 

(Dosanjh et al., 1998; Greene and Selivonchick, 1990). In general, oils extracted 

from different algae species are rich in eicasopentanoic and docosahexaenoic 

acids (Miller et al., 2011) and thus the fatty acid profile of fish flesh may be 

maintained. Thus, there may be both nutritional and environmental reasons 

for using algae oil.

4.3.  Sustainability of aquaculture as a function of feed and eco-exergy 
destruction

It has been reported previously that the production of fish feed accounts 

for most of the energy and material input and the environmental impact of 

farmed salmon production (Ellingsen and Aanondsen, 2006; Folke, 1988; 

Tyedmers, 2000). Pelletier and Tyedmers (2007) stated that the use of fish feed 

is a logical unit of analysis for evaluating the environmental performance of 

salmon aquaculture. According to Aubin et al. (2009), the increasing production 

of aquaculture products makes diversification of protein and lipid sources an 

important challenge. For that reason, the current study provides information 

on the total work energyiee use of several salmonid feeds. A unique feature of 

this research is that the different origin of some feed ingredients (e.g. fish and 

crops) has been identified as a factor in environmental performance.

As already mentioned earlier, the use of feeds considered here would 

potentially result in the same growth performance of fish, which in turn would 

not affect the environmental performance of the overall farming system. Thus, 

the comparison made in this study meets the scope of the investigations.

Cornelissen (1997) stated that an important element for sustainable 

development is the use of exergy analysis. The same study suggests that exergy 

losses should be minimized to obtain sustainable development, particularly 

due to the use of nonrenewable energy forms. Fig. 6 represents the relationship 

between exergy, sustainability, and environmental impact.
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Fig. 6. Qualitative illustration of the relation between the environmental impact and the sustainability 
of a process, and its exergy efficiency (Rosen and Dincer, 2001).

When the exergy efficiency approaches 100%, the environmental impact 

approaches zero, whereas the sustainability becomes very high because the 

process approaches reversibility (i.e., no work energy or gradients are lost). In 

that context, eco-exergy reflects the quality in terms of information content 

(or in terms of ecological value) of what we extract from the environment and 

gives a weight to each species. As fisheries and aquaculture have very strong 

ecological impact on their (maritime) environment, it is therefore logical 

to compare the magnitude of the impact and potential lower total work 

energyiee degradation associated with growing salmon using alternative feeds, 

originating from different species.

This study shows that (based on mass allocation to take into account the 

effects of multiproduct processing), the total work energyiee degradation 

can be notably decreased and thus the sustainability of aquaculture can be 

increased (Fig. 4b). For the products considered here, even though we could 

not achieve complete replacement of all FM and fish oil, a significant reduction 

in total work energyiee degradation can be achieved.

Considering future trends, substitution of FM and fish oil with algae-derived 

products offers an even further reduction in total work energyiee degradation 

than plant-based products, and will meet new environmental constraints, 

particularly regarding the use of finite marine fishery resources.

Based on the results from the present study, feed formulators can and 

should strive to use the least environmentally costly formulations (and at the 

least economic cost). Analysis of the total work energyiee is an insightful and 
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comprehensive method to evaluate environmental costs; it has a sound and 

objective basis in thermodynamics but also includes the ecological value of 

each biological resource.

5. Conclusions

This study shows that the environmental performance of salmon 

aquaculture could be greatly influenced by the nature of the complete feeds 

used. Within the scope of this research, we have shown that allocation by mass 

is a preferable scenario because processing of materials from cultivation and 

fishing results in many valuable co-products that often represent a significant 

portion of the mass flow.

Calculations based on energy consider only energy conservation based 

on the First Law of Thermodynamics, whereas calculations based on classical 

exergy also take the Second Law of Thermodynamics into account, because we 

distinguish between energy that can do work and energy that is lost as heat to 

the environment. This means that classical exergy considers energy efficiency 

in the production of the feed.

The role of information and structure associated with living species is 

fundamental for the study of complex systems, such as aquafeeds, that are 

composed of various ingredients originating from different species. Classical 

exergy does not take into account information content and does not allow us to 

consider the loss of usefulness of living organisms directly related to structures 

and information (Susani et al., 2006). From the results, the use of plant-based 

ingredients and krill meal instead of fish-derived products could significantly 

decrease total work energyiee degradation. Moreover, complete substitution of 

FM and oil with algae-derived ingredients offers substantial opportunities to 

reduce the total work energyiee and thus the environmental costs of salmon 

feed.

Because the use of total work energyiee as an ecological index considers the 

complete loss of work energy, including the loss of the genetic information, it 

provides a useful measure of the impact on nature. Therefore, this approach is 

recommended for other animal feed types.
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Appendix A

The chemical composition of the raw materials is shown in Table A1 and the 

chemical exergy of the biomass components is shown in Table A2. The specific 

energy and exergy values of input materials used in this study are listed in Table 

A3. All the data were taken from the literature. Brehmer (as cited in Ozilgen and 

Sorguven, 2011) draw attention to the noticeable variation in the cumulative 

exergy values for pesticide production based on the active ingredients and 

showed that those values are between 21 and 667 MJ kg–1 for the insecticides, 

172–564 MJ kg–1 for the herbicides, and 38–474 MJ kg–1 for the fungicides. In 

this article, the averages of these ranges are used.

Table A1 Chemical composition of the raw materials.

Raw material Composition (g kg–1 as is) Reference

Dry matter Protein Fat Carbohydrate Ash

Wheat 850 136.2 24.9 673.6 15.3 McCance et al. (1945)

Faba beans 865 251 18 564 32 Skretting (2010)

Soybeans 877 354 210 267 46 Skretting (2010)

Sunflower 932.6 182.3 361.4 350.1 38.8 Rosa et al. (2009)

Peas 884.2 223.2 11.7 615.8 33.5 Marte et al. (2002)

Fish (Sand eel) 221 154 30 11 26 Norita (2003)

Krill 280 136.9 61.3 52.2 29.6 Sidhu et al. (1970)

Chlorella vulgaris 160 79.59 22.2 47.7 10.48 Tokusoglu and Unal (2003)

Table A2 Chemical exergy of biomass components.

Component LHV (kJ kg–1) β
Chem

Ex
chem

Water 530

Protein 22,230 1.10 24,488

Lipids 39,140 1.07 41,954

Carbohydrate polymer 16,340 1.15 18,808

Ash 1006
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Table A3 Specific energy and exergy consumption for each input.

Input S p e c i f i c 
e n e r g y 
(MJ kg–1)

Reference β
C h e m

 
value

Specific exergy 
(MJ kg–1)

Reference

Pesticides

 Insecticides 363.8 Polychronaki 
(2007)

– 344 Brehmer (as cited in Ozilgen and 
Sorguven, 2011) 

 Herbicides 418.2 Polychronaki 
(2007)

– 368 Brehmer (as cited in Ozilgen and 
Sorguven, 2011)

 Fungicides 276 Unakitan et al. 
(2010)

– 256 Brehmer (as cited in Ozilgen and 
Sorguven, 2011)

Fertilizers

 Nitrogenous 78.1 Pimentel 
(2003)

– 32.7 Szargut et al. (1988)

 Phosphorus 17.4 Pimentel 
(2003)

– 7.52 Wittmuss et al. (1975)

 Potassium 13.8 Pimentel 
(2003)

- 4.6 Pimentel (1991)

Electricity – – 1.00 – Szargut et al. (1988)

Diesel 54 Shapouri 
(2002)

1.04 56.2 Rosen and Dincer (2003)

Natural gas 55 Patzek (2004) 1.04 57.2 Ayres et al. (2006)

The values for specific energy and exergy of pesticides and fertilizers are reported in the literature as 
cumulative energy and exergy consumption, respectively.
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1. Introduction

The aim of this thesis is to explore the technological aspects of fish meal 

(FM) replacement with alternative ingredients without significant changes 

to the current process and with the ultimate intention of creating more 

sustainable fish feed products. The initial perspective was to understand the 

differences in techno-functional properties between FM and various plant 

protein sources. In this chapter, the conclusions from the previous chapters are 

combined into the overall conclusions. The environmental implications of the 

different methodologies used in sustainability assessment are also discussed. 

The industrial relevance of the work is analysed by considering reductions in 

water and energy use in relation to the choice of plant protein source.

2. Development of plant protein-based diets

Plant-based proteins are considered to be promising alternatives for the 

replacement of FM because of their nutritional value, availability and relatively 

low cost (up to now). However, the replacement of FM with plant ingredients 

does not just involve substitution of one ingredient for the other; because these 

new ingredients have different properties, the properties of the final products 

also change. Therefore, it is therefore necessary to acquire knowledge about 

the relationships between these ingredients, the conditions applied during 

processing and the resulting quality of the end product.

Therefore, we described the use of the two most prominent alternatives 

to FM, soy protein concentrate (SPC) and wheat gluten (WG) in Chapter 2. It 

was demonstrated that most of the FM can be replaced with SPC provided 

that additional moisture is used during extrusion. Consequently, more water 

needs to be removed after extrusion by drying, which implies that using SPC 

requires much more energy, contrary to our target of a more sustainable fish 

feed product.

WG did not fulfil the product requirements and cannot be the main protein 

substitute for FM, but can complement other protein sources. Because WG is a 

valuable feed ingredient from many different aspects, increased use in the diet 

would be important. For that reason, Chapter 3 explores the links between 

the physical and microstructural characteristics of feeds in relation to the 
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addition of WG to understand the effect of the use of this ingredient on the 

morphology of the product in more detail. Most of the changes in the physical 

properties of the feeds, such as reduced oil impregnation, can be related to 

changes in the microstructure. In the case of WG, its film-forming properties, 

which are still effective at the high temperatures used during the extrusion 

process, negatively influence the pellet properties; the surface is smooth and 

non-porous, which besides other properties, does not allow good infusion with 

oil after extrusion and drying.

Due to the limitations in the use of SPC and WG, as described above, 

other plant protein sources were investigated in Chapter 4: lupine protein 

concentrate (LPC) and canola protein concentrate (CPC). The technological 

properties of LPC resemble those of FM. Replacing part of SPC with LPC was 

possible with reduced moisture levels during extrusion while still yielding good 

properties in the final product. This allows less drying after extrusion, and thus 

less energy consumption. In contrast, with the addition of CPC, the properties 

of the product could be maintained although at even higher moisture levels 

than was necessary with SPC. This means that use of CPC would require even 

higher energy consumption than SPC.

Chapter 4 introduces the shearing device as a tool to investigate the 

functional properties of the various protein sources and the behaviour of the 

full diets. We concluded that this device can be used efficiently to characterize 

the techno-functional properties of raw materials as a simple and a fast method. 

In the case of lupine, it was shown that inclusion of this material led to the 

lowest viscosity of the mash during processing, which explains the potential to 

work at low moisture levels.

Table 1 presents the relationships between the proteinaceous ingredients, 

process parameters and product properties. Although not quantitative, this 

table gives a general impression on how to proceed towards development 

of plant protein-based feed with optimal pellet quality and higher process 

efficiency.
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Table 1. Influences of protein-rich ingredients on the extruder parameters and the final product 
properties (+ means that the functionality increases with increasing levels of the ingredient).

Ingredient
Target 
functionality

Required moisture 
content

-- ++ + -- ++

Extruder SME -- ++
0                      

No direct 
influence

-- ++

Density
0                      

No direct 
influence

-
0                      

No direct 
influence

+ -

Structure 
accesible for oil 

infusion
++ + -- + +

Strength
0                      

No direct 
influence

+
++             

Compact structure 
formation

+ +

FM SPC WG LPC CPC

+ Denotes a positive correlation between addition of ingredient and target functionality; ++ denotes 
significant correlation.
- Denotes negative correlation between addition of ingredient and target functionality; -- denotes sig-
nificant correlation.

3. Methodology improvement

3.1. Visualization techniques
The results described in Chapter 3 show that a range of different 

pellet microstructures can be formed depending on the proteinaceous 

ingredients used and the overall chemical composition of the feed. In this 

project, visualization of the macrostructure was done using conventional 

photography and light microscopy. X-ray microtomography (XMT) was used 

to obtain a quantitative description of the inner microstructure, which helps in 

understanding the properties of feed.

Although not reported in this thesis, we also tried to apply this imaging 

technique to the pellets coated with oil, with the knowledge that the 

differences in density between the solid matrix, oil and air (void cells) can be 

detected by X-rays. From Fig. 1 (right-hand picture), it can be seen that some 

pores are still not yet filled with oil, although both products have the same 
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density and are coated with the same amount of oil. These results indicate 

that oil infusion could be studied further with this technique. For example, the 

effect of different protein sources could be visualized in future research.

   

Fig. 1. Three-dimensional models of two coated products obtained with XMT. The objects presented are 
the volume of interest, not the whole pellet. The blue areas represent oil, white areas are void cells, and 
the continuous solid matrix is in green or red (dense material).

SEM and cryo-SEM are less suitable imaging techniques for these purposes 

because of preparation of the sample may alter the structure of the product.

Other techniques are also useful. The interconnectivity of the pore network 

plays a role in the overall physical properties of feed. Long continuous channels 

lead to increased fat uptake (Saguy and Pinthus, 1995). Mercury intrusion 

porosimetry can therefore offer opportunities.

Here, we did not focus on the changes in product durability during storage 

when using different protein-rich ingredients. To the best of our knowledge, 

the causes of reduction in durability over time are unexplored. To improve this, 

better characterization methods are important. XMT might also be a useful tool 

to gain more insight into oil migration in the pellet over time and its relation to 

pellet structure and the functional properties of ingredients. These visualization 

techniques can contribute greatly to further understanding of the relationships 

between the physical properties of the feeds and the microstructure in addition 

to the mechanisms involved in structure formation.
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3.2. Eco-exergy as sustainability
Although FM is a finite resource, its replacement with a new ingredient does 

not necessarily imply more sustainable aquaculture as a whole; the use of fish 

is substituted with the use of plants; both have ecological value. It has been 

previously reported that replacing FM and fish oil with plant sources did not 

decrease the environmental impacts (Boissy et al., 2011; Papatryphon et al., 

2004). Our study confirms this using traditional thermodynamic analysis for an 

ecological evaluation of the sustainability of various feed compositions, such 

as energy and classical exergy. We showed in Chapter 5 that fishery-product 

substitution with alternative ingredients in general caused minor changes in 

these two parameters, although classical exergy considers energy efficiency in 

the production of the feed. This work establishes that these analyses might not 

include all relevant aspects when comparing FM with plant-based alternatives. 

That is why the exergy analysis was extended with the concept of eco-exergy. 

This concept includes the information carried by living organisms embodied in 

the genome and used to determine the amino acid sequence in the enzymes, 

which are controlling the biochemical processes in the living organism 

(Bendoricchio and Jørgensen, 1997; Jorgensen et al., 1995). It has been shown 

that it can also quantify the value of ecosystems. In Chapter 5, this information 

has been applied to all components that originate from living organisms 

because it expresses nature’s loss of work when living organisms (microalgae, 

crustaceans, plants and fish) are used as raw material for the fish feed. After 

considering the genetic patrimony of the organism, the conclusions were 

different from those obtained with traditional methods. It became evident 

that a plant-based protein source has less consequence for the environment 

than the use of FM. We can therefore say that the thermodynamic analysis 

based on eco-exergy unambiguously shows that plant-based fish feed is more 

sustainable that fish feed based on FM and fish oil.

4. Future prospective

Chapter 4 shows that the properties of a plant protein material determine 

the amount of moisture used during extrusion. Fig. 2 gives an overview of the 

material and energy flows involved with a production of SPC- and LPC-based 

diets. The data on the energy consumption during extrusion and drying were 
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derived from a technical report from a fish feed producer (Skretting, 2009); the 

mass balance data were obtained from Chapter 4.

Fig. 2. Production schemes for SPC- (a) and LPC-based (b) diets and one prospective (c) diet. The SPC-
based diet contains 300 g SPC kg–1, while LPC-based diet contains 200 g LPC kg–1, partially replacing 
SPC. The thickness of the arrows represents the size of the stream.

It is interesting to further investigate the property that determines the 

amount of moisture used. An ideal ingredient would be one with techno-

functional properties such that (almost) no drying is necessary. This is indicated 

schematically in Fig. 2. The desirable properties for such an ingredient during 

extrusion seem to be low water-holding capacity and low gelling properties. 

Fig. 2 shows that the conventional process (for an SPC-based diet) requires 

the addition a substantial amount of water (290 g kg–1 meal mix). About 40 

g kg–1 of the water added evaporates at the discharge of the extruder die, 

while the rest joins the extrudate stream. The amount of water added to the 

system in the case of an LPC-based diet is reduced to 220 g kg–1 meal mix. As a 

a

b

c
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consequence, the drying load is reduced by 53% compared with an SPC-based 

diet. Furthermore, based on the results from Chapter 4, it was assumed that the 

same amount of energy for extrusion is needed for both diets. The differences 

in the amounts of water required between protein-rich ingredients are such 

that the third diet has to be extruded at 80 g added water per kg of meal mix, 

which gives an extrudate that does not need to be dried. Because of the very 

low anticipated viscosity of this feed, we assumed lower extruded energy 

consumption (27% change) compared with the other two feeds. Although 

the LPC-based diet gives an immediate improvement, moving towards such 

a prospective ingredient may lead to significant reduction of energy use and 

even better process efficiency.

In general, the mash needs to be plastic inside the extruder (i.e. at 80– 130 

°C), becoming glassy by the loss of moisture and reduction in temperature 

after expansion. The best mash thus needs careful tuning of the glass transition 

between these two conditions, which can be done by adding more or less 

water. A mash that by itself has a low glass transition will need less water to 

reduce the glass transition. Components (such as SPC or CPC) that have a strong 

interaction with moisture may remove that moisture from the other materials, 

and hence induce a higher glass transition than would be present without 

these components. The ideal component in Fig. 2c would be a component 

with a low intrinsic glass transition temperature and a relatively low interaction 

with moisture (thus leaving the moisture available for other components). 

This low interaction will be evident from a low water-holding capacity. Here 

we postulate that the quest for even more sustainable components should be 

aimed at identifying components with both a low glass transition temperature 

and a low water-holding capacity.

The environmental impact of large-scale drying operations has become a 

critical issue in recent years as a result of the consumption of fossil fuels and the 

carbon footprint (Jangam, 2011). The results from Chapter 5 show that plant-

based diets are more sustainable than diets based on fishery-derived products, 

even with the higher drying requirements necessary. Although drying was 

minimally involved in overall sustainability, good use of the material streams is 

of the greatest importance. The developments presented in Fig. 2 are needed 

for the following reasons:
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•	 to improve capacity (dryers are often bottlenecks in a production line)

•	 to control of the process better

•	 to reduce fire risks, explosions; safer operation

•	 	to minimize the capital costs and maintenance costs; horizontal belt dryers 

are standard in the fish feed industry and in principle they occupy large 

spaces in the factory

•	 to improve overall efficiency (cost optimization)

•	 	to provide higher nutrient recovery (e.g. colours and vitamins) and 

digestibility

•	 to reduce odour emissions to the environment.

In addition, hot air dryers often have several other limitations, such as 

non-uniform product quality due to overdrying or underdrying caused by 

long, inadequate or non-uniform exposure of the product to the drying 

medium. Long drying times are the result of poor contact between the drying 

medium and the extrudates being dried (Jangam, 2011). In general, potential 

improvements in all these areas are possible by proper selection of plant 

proteins as described in this thesis.

In conclusion, any aspect that contributes to sustainability, including 

reduced drying, is of extreme importance. Alternative candidates to FM should 

have two essential characteristics: (1) be of plant origin and (2) capable of 

meeting the requirements for an energy efficient process. Chapter 5 showed 

that after the next generation of fish feed based on plant ingredients, there 

is further potential in moving towards algae-derived products. Although FM 

can be replaced from both the nutritional and technological points of view, 

fish oil remains a challenge. As oils from algae are rich in polyunsaturated fatty 

acids, future research should focus on this oil source. Overall, algae-derived 

products seem to be the most credible alternative to respond to the growing 

aquaculture feed sector and to meet new environmental constraints.
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The consumption of fish and fish-related products is increasing. Due to 

improved welfare and suggested health benefits, consumers are now eating 

more fish. In 2008, global fisheries supplied the world with about 142 million 

tons of fish, of which 115 million tons was used as human food, which is an 

all-time high (FAO, 2010. The State of World Fisheries and Aquaculture. FAO, 

Rome, Italy). Fish for consumption can be harvested directly from the wild 

(capture fisheries), but a growing proportion of the fish comes from worldwide 

aquaculture (FAO, 2010). As a result, there is an increased need for feed for this 

growing industry.

Salmon is one species for which the whole life cycle can be controlled in 

aquaculture systems. By inclusion of ingredients derived from fish (i.e. fish 

protein, often called fish meal (FM) and fish oil), diets for farmed salmon aim 

to reflect the natural diet of wild salmon, which consists of smaller fish among 

others. This explains why FM has been the most important protein source in 

commercial feeds for finfish historically. Some of the diets available today 

may contain up to 50% FM. The oil content in grower diets for carnivorous fish 

may vary from 15% to 40%. Of the macro-ingredients, the rest of the diet is 

typically composed of plant proteins and starch sources. Starch is added for 

technological reasons; it provides binding properties and expands the pellet 

matrix.

However, FM and fish oil are finite resources and alternative ingredients 

are needed. This requires supplementation with feed additives to provide any 

essential micro-nutrients still required for complete nutrition.

Fish feed pellets are produced using the following steps: various ingredients 

are ground and mixed together; the material then is processed through a 

pre-conditioner and an extruder with the addition of steam and water; the 

resulting extrudates are dried to obtain the desired consistency and storage 

properties; oil is then rapidly infused into hot, dry pellets during the coating 

process before the finished product is cooled.

Any change in composition is not trivial because fish feed pellets need to 

fulfil strict technological requirements. When feeding to salmon, the pellet 

should sink slowly. In addition, the porosity of the pellet directly after extrusion 

should be such that it can capture sufficient oil. The pellets should not break or 

produce dust during transport and further handling. This makes the production 

of feed pellets a delicate process in which the techno-functional properties of 

the raw materials play an important role.
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It is not a simple matter to conclude that plant proteins are more sustainable 

per se if all the renewable and nonrenewable resources and waste emissions 

related to the production of these ingredients are taken into account. For 

example, the use of plant-based ingredients might require additional water 

during extrusion leading to increased drying costs.

This thesis describes the relationships between the techno-functional 

properties of protein-rich ingredients and processing. Criteria have been 

developed for the use of plant-based materials in existing fish feed processes 

to allow the production of feed pellets that meet all the product requirements. 

Feed sustainability is assessed using three different methodologies and 

sustainable feed compositions are proposed.

Chapter 2 describes how the extrusion process, moisture requirements 

and final product quality were affected by replacement of FM with soy protein 

concentrate (SPC) and vital wheat gluten (WG). Considering future perspectives, 

the overall goal was to (almost) fully replace FM. Therefore, up to 40% of the 

FM in the complete formulation was replaced by plant proteins. Addition of 

plant proteins resulted in higher strength of the products, but, when more 

product properties were considered, we found that the operational window 

became very small. With soy and gluten, it was not possible to make a fish feed 

pellet that fulfilled all the requirements, indicating that the techno-functional 

properties of FM are unique. Generally, FM-based diets can be processed with 

very low added moisture, mainly due to the low water holding capacity (WHC) 

of this ingredient in addition to fat present in FM. In contrast, to fulfil product 

requirements, most of the FM can be replaced with SPC with high added 

moisture. WG, however, showed limitations as the main alternative to FM, but 

it could complement other plant proteins.

To understand why WG was not a good alternative for FM, we studied the 

effect of adding WG on the physical and functional properties of feed pellets 

in Chapter 3. Partial replacement of SPC with WG resulted in reduced oil 

impregnation and insufficient oil uptake during coating, even though the 

pellets were sufficiently strong and had the desired density. Scanning electron 

microscopy showed that addition of WG resulted in a smooth, non-porous 

surface. X-ray microtomography revealed that pellets without gluten had a 

more fragmented structure with a larger number of small cells. Most likely, the 

higher fibre content originating from the plant cell wall material present in SPC 

is responsible for this observation. Spherical shaped cells were favoured in the 
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presence of WG, suggesting the presence of closed pores. Interconnectivity 

between pores decreased with the addition of WG. These effects may be caused 

by the film-forming properties of WG, i.e. it forms a highly extensible network 

that stretches into thin film walls around the growing gas cells at discharge of 

the extruder die.

Chapter 4 presents the effects of partial replacement of SPC with two new 

protein sources for fish feed, lupine protein concentrate (LPC) and canola 

protein concentrate (CPC), on the extrusion process, moisture requirements 

and final product quality. In addition, the value of using the shear cell device 

was explored to help in understanding the techno-functional properties of raw 

materials in a simple and fast way. This apparatus was found to be efficient for 

characterizing the properties of raw material and their correlation with process 

conditions. Both shearing and extrusion showed that LPC closely resembles 

FM. Addition of LPC led to a reduction in moisture added to the process and 

decreased drying requirements, while yielding even stronger pellets compared 

with FM. In contrast, the properties of CPC and SPC were similar, becoming 

plasticized at high moisture content. Remarkably, acceptable product 

properties of feeds containing CPC required even higher added moisture than 

SPC. The effects may be related to differences in the WHC of the ingredients 

and resulting changes in the paste viscosity of the blends.

Chapter 5 compares the impact of alternative ingredients to FM and 

fish oil on the environment using three ecologic indicators: total energy 

consumption, classical exergy (work energy) and work energy including eco-

exergy degradation. Replacement of fishery-derived products with alternatives 

reduced the values of the first two indicators only to a minor extent. However, 

both energy and classical exergy analysis ignore the fact that living organisms 

carry a lot of information, which is why the latter analysis was extended 

with the concept of eco-exergy. Eco-exergy includes the information carried 

by living organisms embodied in the genome and it gives a weight to each 

species. Human beings have the highest weighting factor (2149), whereas 

algae have one of the lowest (20). Fish have a determined weighting factor of 

499, and plants have a factor of 275. As a result, eco-exergy analysis showed 

that removing fish from nature has a significantly higher impact on the 

environment than removing plants, crustaceans or algae.

The results and methodologies applied are discussed in Chapter 6. An 

overview of the techno-functional properties of all the protein-rich ingredients 
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examined is presented. This is followed by a description of the methodologies 

used in this thesis, with emphasis on the development of (1) the imaging 

techniques for characterization of pellet structure and physical properties; and 

(2) a new methodology for sustainability assessment of feed. The guidelines 

for desirable properties of plant protein developed in Chapter 4 are used to 

evaluate the impact on reduction of energy use and better process efficiency.

Future trends in the development of sustainable feeds are described based 

on the insights obtained from this thesis. These include the use of plant 

proteins that contribute to a more intensified process with the ultimate goal 

of no drying and future exploration of the use of algae-derived products with 

special focus on the replacement of fish oil with algae oil.
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De consumptie van vis en aan vis gerelateerde producten neemt toe. Door 

de toegenomen welvaart en veronderstelde voordelen voor de gezondheid, 

eten consumenten nu meer vis. In 2008 voorzag de visserij wereldwijd in 

ongeveer 142 miljoen ton vis, waarvan 115 miljoen ton als menselijk voedsel 

werd gebruikt, een record (“The State of World Fisheries and Aquaculture” [“De 

staat van de Visserij en de Aquacultuur in de wereld”]. 2010, FAO, Rome, Italië). 

Vis voor consumptie kan rechtstreeks in de wilde natuur worden gevangen 

(vangstvisserij), maar steeds meer vis wordt verkregen uit wereldwijde 

aquacultuur (FAO, 2010). Hierdoor is er een verhoogde behoefte aan voeder 

voor deze groeiende industrie.

Zalm is een soort waarvan de gehele levenscyclus in aquacultuursystemen 

kan worden gecontroleerd. Door van vis afkomstige bestanddelen op te nemen 

(dat wil zeggen viseiwit, vaak vismeel genoemd, en visolie), wordt gepoogd 

om de voeding voor gekweekte zalm een afspiegeling te laten zijn van het 

natuurlijke voedingspatroon van wilde zalm, dat uit onder meer kleinere vis 

bestaat. Dit verklaart waarom vismeel traditioneel de belangrijkste eiwitbron 

in commercieel voeder voor vinvis is geweest. Sommige huidige  visvoeders 

bevatten nog steeds tot 50% vismeel. Het aandeel olie in kweekvoeding voor 

vleesetende vis kan variëren van 15% tot 40%. Wat de macrobestanddelen 

betreft is de overige voeding meestal samengesteld uit plantaardige eiwitten 

en zetmeelbronnen. Zetmeel wordt toegevoegd om technische redenen; het 

versterkt bindende eigenschappen en  maakt uitzetting van de korrel mogelijk.

Vismeel en visolie zijn echter eindige hulpbronnen en dus zijn alternatieve 

bestanddelen nodig. Vervanging van deze grondstoffen vereist aanvulling met 

andere ingrediënten in het  diervoeder, teneinde te voorzien in de essentiële 

micronutriënten die nog nodig zijn voor een volledige voeding.

De productie van visvoerkorrels bestaat uit drie stappen. In de eerste stap 

worden diverse ingrediënten worden samen gemalen en gemengd. Daarop 

wordt het mengsel door een preconditioner en een extruder verwerkt, waarbij 

stoom en water worden toegevoegd; de resulterende mengsels worden 

gedroogd om de gewenste consistentie en opslageigenschappen te verkrijgen. 

Vervolgens worden de droge hete korrels tijdens het coatingproces snel in de 

olie gedrenkt, alvorens koeling van het afgewerkte product plaatsvindt.

Het veranderen van de samenstelling is niet triviaal, aangezien visvoerkorrels 

aan strikte technische eisen moeten voldoen. Bij het voeren van zalm moeten 

de korrels langzaam dalen. Bovendien dient de porositeit van de korrels 
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onmiddellijk na extrusie dusdanig te zijn dat ze voldoende olie kunnen 

opnemen. De korrels mogen niet breken of stof ontwikkelen tijdens het 

vervoer en verdere hantering. De productie van korrels is dus een gevoelig 

proces waarbij de technisch-functionele eigenschappen van de grondstoffen 

een belangrijke rol spelen.

De conclusie dat plantaardige eiwitten hoe dan ook duurzamer zijn is niet 

eenvoudig te trekken, indien rekening wordt gehouden met alle hernieuwbare 

en niet-hernieuwbare hulpbronnen en afvaluitstoot die verband houden met 

de productie van deze bestanddelen. Zo kan het gebruik van plantaardige 

bestanddelen het nodig maken dat er extra water tijdens de extrusie wordt 

gebruikt, waardoor het drogen meer kosten met zich meebrengt.

In dit proefschrift wordt het verband tussen technisch-functionele 

eigenschappen van eiwitrijke ingrediënten en de verwerking beschreven. 

Er zijn criteria ontwikkeld voor het gebruik van plantaardige materialen in 

de bestaande proces van visvoeder om de productie van korrels die aan alle 

productvereisten voldoen mogelijk te maken. De duurzaamheid van het voer 

wordt beoordeeld aan de hand van drie verschillende methodologieën en er 

worden duurzame voedersamenstellingen voorgesteld.

In Hoofdstuk 2 wordt beschreven hoe het extrusieproces, het benodigde 

vochtgehalte en de definitieve productkwaliteit werden beïnvloed door de 

vervanging van vismeel door soja-eiwitconcentraat en vitaal tarwegluten. 

Gezien het toekomstperspectief was het doel om vismeel (bijna) volledig 

te vervangen. Daartoe werd tot 40% vismeel in de volledige formulering 

vervangen door plantaardige eiwitten. De toevoeging van plantaardige 

eiwitten leidde tot een grotere sterkte van de producten, de operationele 

mogelijkheden zeer gering werden als andere producteisen werden 

meegenomen. Met soja en gluten was het niet mogelijk visvoerkorrels te 

maken die aan alle eisen voldeden, wat erop wijst dat de technisch-functionele 

eigenschappen van vismeel uniek zijn. Over het algemeen kan op vismeel 

gebaseerde voeding met een zeer lage toegevoegde vocht worden verwerkt, 

voornamelijk vanwege de lage waterhoudende capaciteit van dit bestanddeel, 

naast het in vismeel aanwezige vet. Daarentegen kan, om aan de producteisen 

te voldoen, het meeste vismeel worden vervangen door soja-eiwitconcentraat 

met een hoge toegevoegde vochtigheid. Als voornaamste alternatief voor 

vismeel vertoonde vitaal tarwegluten echter beperkingen. Wel zou het andere 

plantaardige eiwitbronnen kunnen aanvullen.
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Om te begrijpen waarom tarwegluten geen goed alternatief voor vismeel 

is, bestudeerden wij in Hoofdstuk 3 het effect van de toevoeging van dit 

tarwegluten op de fysische en functionele eigenschappen van voerkorrels. 

De gedeeltelijke vervanging van soja-eiwitconcentraat door tarwegluten 

leidde tot verminderde olie-impregnatie en ontoereikende olieopname 

tijdens de coating, hoewel de korrels sterk genoeg waren en de gewenste 

dichtheid bezaten. Scans met een elektronenmicroscoop toonden aan dat de 

toevoeging van tarwegluten leidde tot een gladde, niet-poreuze oppervlakte. 

Microtomografie met röntgenstralen  liet zien dat korrels zonder gluten een 

meer gefragmenteerde structuur met een groter aantal kleine cellen hadden. 

Waarschijnlijkst is het hogere gehalte aan ruwe celwandmateriaal, in het 

soja-eiwitconcentraat, de oorzaak van deze structuur. Na toevoegen van 

tarwegluten werden meer ronde cellen gevormd, wat de aanwezigheid van 

gesloten poriën verklaart. De interconnectiviteit tussen poriën nam af met 

de hoeveelheid toegevoegd tarwegluten. Deze effecten kunnen door de 

filmvormende eigenschappen van vitaal tarwegluten worden veroorzaakt: het 

vormt een zeer rekbaar netwerk dat zich uitstrekt tot dunne filmlagen rond de 

groeiende gascellen bij het verlaten van de extruderspuitkop.

In Hoofdstuk 4 worden de gevolgen uiteengezet van gedeeltelijke 

vervanging van soja-eiwitconcentraat door twee nieuwe eiwitbronnen voor 

visvoeder – lupine-eiwitconcentraat en raapzaad-eiwitconcentraat – op de 

extrusie, het benodigde vochtgehalte en de definitieve productkwaliteit. 

Daarnaast werd de waarde van het gebruik van het shear cell-apparaat 

onderzocht, om tot een beter begrip te komen van de technisch-functionele 

eigenschappen van grondstoffen. Dit bleek een efficiënt apparaat te zijn om 

een beeld te krijgen van de eigenschappen van grondstoffen en hun correlatie 

met verwerkingsomstandigheden. Zowel shearing als extrusie toonde aan 

dat lupine-eiwitconcentraat sterk op vismeel lijkt. De toevoeging van lupine-

eiwitconcentraat maakte het mogelijk om minder vocht te gebruiken tijdens 

extrusie, en dus minder droging, terwijl de voortgebrachte korrels zelfs 

sterker waren dan de met vismeel verkregen korrels. Daarentegen waren de 

eigenschappen van raapdzaad-eiwitconcentraat en soja-eiwitconcentraat 

vergelijkbaar: zij verweekten bij hoge vochgehalte. Voor aanvaardbare 

producteigenschappen van voeder met raapzaad-eiwitconcentraat was zelfs 

meer vocht vereist dan soja-eiwitconcentraat. De effecten kunnen te maken 

hebben met verschillen in waterhoudend vermogen van de bestanddelen en 
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hieruit voortvloeiende veranderingen in de viscositeit van de mengsels.

In Hoofdstuk 5 wordt het effect op het milieu van alternatieve bestanddelen 

voor vismeel en visolie vergeleken, waarbij gebruik wordt gemaakt van 

drie ecologische indicatoren: totaal energieverbruik, klassieke exergie  en 

exergie met inbegrip van degradatie van eco-exergie. De vervanging van 

visserijproducten door alternatieven verminderde de waarden van de eerste 

twee indicatoren slechts in geringe mate. Zowel de energieanalyse als de 

klassieke exergieanalyse gaat echter voorbij aan het feit dat levende organismen 

grote informatiedragers zijn, wat de reden is dat de laatstgenoemde analyse 

met het begrip eco-exergie werd uitgebreid. In eco-exergie zit door levende 

organismen gedragen informatie, belichaamd in het genoom, en vertaald in een 

wegingsfactor. Menselijke wezens hebben de hoogste wegingsfactor (2149), 

terwijl algen één van de laagste hebben (20). Vissen hebben een vastgestelde 

wegingsfactor van 499, en planten een factor van 275. Dientengevolge toonde 

de eco-exergieanalyse aan dat het onttrekken van vis aan de natuur een 

beduidend sterker effect heeft op het milieu dan het verwijderen van planten, 

schaaldieren of algen.

De toegepaste resultaten en methodologieën worden besproken in 

Hoofdstuk 6. Er wordt een overzicht gegeven van de technisch-functionele 

eigenschappen van alle onderzochte eiwitrijke bestanddelen. Hierop volgt 

een beschrijving van de in deze thesis gevolgde methodologieën, met 

nadruk op de ontwikkeling van (1) de beeldvormingstechnieken voor de 

karakterisering van de korrelstructuur en de fysische eigenschappen; en (2) 

een nieuwe methodologie voor de beoordeling op duurzaamheid van voeder. 

De in Hoofdstuk 4 uiteengezette richtsnoeren voor wenselijke eigenschappen 

van plantaardig eiwit worden gebruikt om het effect te evalueren op de 

vermindering van energieverbruik en een betere verwerkingsefficiency.

Toekomstige ontwikkelingen van duurzaam voeder worden beschreven op 

basis van de in dit proefschrift verkregen inzichten. Deze omvatten het gebruik 

van plantaardige eiwitten die tot een intensievere verwerking leiden. Naast 

het vermijden van drogen na extrusie zullen in de toekomst mogelijkheden 

verkend worden van het gebruik van ingrediënten uit algen, met speciale 

aandacht voor de vervanging van visolie door algenolie.
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