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Abstract: Plants are gaining increasingly acceptance as a production platform for recombinant proteins. One reason for this is their abil-
ity to carry out posttranslational protein modifications in a similar if not identical way as mammalian cells. The capability of plants to 
carry out human-like complex glycosylation is well known. Moreover, the targeted manipulation of the plant N-glycosylation pathway al-
lows the production of proteins carrying largely homogeneous, human-type oligosaccharides. These outstanding results have placed
plants in a favourable position compared to other eukaryotic expression systems. This review provides a comprehensive summary of the 
N-glycosylation of plant-produced recombinant proteins, the possible impact of plant-specific N-glycans on the human immune system, 
and recent advances in engineering the plant N-glycosylation pathway towards the synthesis of (complex) human-type glycan structures, 
highlighting challenges and achievements in the application of these powerful technologies.  
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1. INTRODUCTION 
 N-glycosylation, the enzymatic attachment of sugar moieties to 
a specific asparagine residue within the N-glycosylation recognition 
sequence of a protein, is a major posttranslational modification in 
eukaryotes. In humans, more than 50% of proteins are estimated to 
be N-glycosylated [1] and N-glycans can strongly influence the in 
vivo functionality of the protein (see below). N-glycosylation is a 
non-template driven reaction which normally results in the synthe-
sis of a heterogeneous collection of different carbohydrate struc-
tures on an otherwise homogeneous protein backbone (microhet-
erogeneity). Due to the large human glycome this microheterogene-
ity may comprise several thousand glycoforms [2], the exact num-
ber remaining elusive. Reflecting this diversity manifold functions 
have been attributed to the carbohydrate moiety of a protein, includ-
ing folding, stability, conformation, solubility, quality control, half-
life determination and oligomerization.  
 Serum proteins are particularly well known for their high gly-
can-microheterogeneity and it has been shown that different physio-
logical conditions, e.g. disease, pregnancy or ageing strongly affect 
the N-glycosylation profiles of immunoglobulin G (IgG), an abun-
dant serum protein. This indicates that some of the variable glycan 
residues might fine-tune antibody activity [3, 4]. In fact, dramati-
cally altered effector functions were reported for an IgG without 
core �1,6-fucose, a residue normally present on human serum IgG 
[5]. Moreover, the presence/absence of sialic acid may reverse the 
function of IgG i.e. from pro- to anti-inflammatory [6].  
 Although the consequences of N-glycans are often well docu-
mented, the mechanisms behind these effects are in many cases 
unknown. This is unfortunate as N-glycosylated proteins play an 
ever more important role in the biotech industry [7] and patients 
would benefit from optimally glycosylated drugs. Thus, proper N-
glycosylation is now regarded as a crucial factor by the biopharma-
ceutical industry and by regulatory authorities alike, leading to an 
increased number of industrial and academic laboratories trying to 

*Address correspondence to this author at the Department of Applied Ge-
netics and Cell Biology, University of Natural Resources and Life Sciences, 
Muthgasse 18, A-1190 Vienna, Austria; Tel: +43/1/47654-6700;  
Fax: +43/1/47654-6392; E-mail: herta.steinkellner@boku.ac.at 

decipher the effects of N-glycans on proteins and uncover the un-
derlying mechanisms.  
 Currently, the most used expression system for therapeutic 
glycoproteins are mammalian cell lines, most commonly Chinese 
hamster ovary cells (CHO). Mammalian cells provide the advantage 
of producing recombinant proteins with N-glycans very closely 
resembling those produced in the human body, however, differ-
ences exist. CHO cells for example lack the ability to sialylate pro-
teins in the human-typical �2,6-position and add sialic acid in �2,3-
linkage instead. While this difference does not seem to affect bio-
logical activity of recombinant human EPO, it might have an im-
pact on other therapeutic molecules, like intravenous immuno-
globulins (IVIG), whose activity seems to be dependent on the link-
age of sialic acid [8]. Moreover, mammalian cell lines typically 
produce a heterogeneous mixture of glycoforms and control over 
the glycosylation is difficult. Thus, some human glycan structures 
are not produced (or not at the desired level) and in many cases the 
production of single glycoforms is not possible.  
 Another relevant issue is the presence of Gal�1,3-Gal epitopes, 
a glycan not present in humans but produced by some mammalian 
cell lines e.g. SP2/0. Notably, about 1 % of the IgG in human serum 
is directed against this epitope (in particular to �1,3-galactose) [9]. 
Indeed, this structure present on the therapeutic mAb cetuximab, 
induced a hypersensitivity reaction in patients treated with this anti-
body [10]. Another difference between human and CHO cells is the 
absence of bisecting GlcNAc residues in the latter. The impact of 
this glycan formation is well documented for many proteins 
[reviewed in 11]. Finally, batch-to-batch reproducibility in terms of 
glycosylation is a challenge for protein production in CHO cells. 
Typically a heterogeneous mixture of glycoforms is produced and 
control over this heterogeneity is very difficult.  
 In summary, mammalian cell lines, despite being the most used 
production platform, suffer from several drawbacks including the 
difficulty to produce single glycoforms, low batch-to-batch glyco-
sylation reproducibility, attachment of non-human glycoepitopes 
and absence of some human-type N-glycans. To overcome these 
drawbacks mammalian (and other) expression hosts are being engi-
neered to allow production of tailor-made glycoproteins. Main aims 
are the removal of non-human and immunogenic epitopes, introduc-
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tion of human-type glycosylation reactions and reduction of the 
microheterogeneity to allow production of single glycoforms. How-
ever, the large glycome and the resulting high glycan-micro-
heterogeneity hamper the targeted manipulation of the N-
glycosylation pathway in many organisms [reviewed in e.g. 12]. 
Due to their rather small repertoire of glycosylation reactions plants 
carry out complex N-glycosylation at a striking homogeneity, which 
makes them especially amenable to glycoengineering. Indeed, over 
the past years many research groups have concentrated their efforts 
on modulating plant N-glycosylation to enable the production of 
recombinant proteins with human-like structures in plants. 
 In this manuscript we review the current status of the N-
glycosylation of plant-produced recombinant proteins, we summa-
rize different strategies for the production of targeted N-glycans, we 
give an overview of the impact of plant specific N-glycans on 
therapeutic applications and finally we highlight possible future 
developments.  

2. GENERAL REMARKS ON PLANT MOLECULAR FARM-
ING 
 Biopharmaceuticals are the fastest growing class of novel medi-
cines and we are witnessing an accelerated development of protein-
based drugs. Many of these novel proteins cannot be produced sat-
isfactorily by established cell-based production platforms. Plants, 
on the other hand, offer a viable alternative technology with the 
potential to meet industry’s standards. Recent success stories in 
expression levels, production speed and manufacturing scale-up 
have placed this expression system in an encouraging position. For 
example, the generation of mAbs and vaccines in gram levels 
within two weeks after obtaining the coding sequences provides a 
time frame that is unmatched by other established expression sys-
tems [13-16]. It is noteworthy that the U.S. governmental agency 
Defense Advanced Research Projects Agency (DARPA) awarded 
grants worth over $100 million for research into plant-based ex-
pression systems, recognizing it as the technology of choice for 
rapid large-scale manufacturing processes of vaccines and antibod-
ies. Due to this financial support, large manufacturing facilities are 
being built, e.g. Kentucky Bioprocessing, GCon, Medicago Inc. 
Fraunhofer USA, with a size of 10,000-30,000 square meters each. 
Substantial progress has also been made in biosafety, regulatory 
compliance and public engagement [17], illustrating that therapeu-
tic application of this technology is gaining acceptance by the regu-
latory authorities. At the time of writing at least three plant-derived 
recombinant proteins had been approved for human healthcare: the 
mAb CaroRx used for treatment of dental caries, human intrinsic 
factor used as a dietary supplement for the treatment of vitamin B-
12 deficiency [18], and human glucocerebrosidase used for enzyme 
replacement therapy (see below). All three are glycoproteins.  

3. THE PLANT N-GLYCOSYLATION PATHWAY 
 N-glycosylation is one of the major post-translational modifica-
tions of proteins in multicellular organisms. Thus, despite the high 
heterogeneity of the final glycosylation status of a protein, the cor-
responding biosynthetic pathways are largely conserved between 
kingdoms at a molecular level. In all eukaryotes, processing of N-
linked glycans is initiated in the ER, where the oligosaccharide 
precursor Glc3Man9GlcNAc2 (Man9) is converted to Man8GlcNAc2
(Man8) (Fig. 1). In higher eukaryotes processing of Man8 in cis and 
medial Golgi compartments leads to the formation of the so-called 
complex N-glycans. Importantly, the N-glycan processing steps are 
virtually identical in plants and mammals up to the formation of the 
vital intermediate GlcNAc2Man3GlcNAc2 (GnGn) (Fig. 1). In 
mammals, GnGn oligosaccharides provide the substrate for exten-
sive elongation/modification processes to give rise to the final di-
versification of N-glycosylation. In plants, modifications of these 
oligosaccharides are more limited and the GnGn structures are 
normally decorated with �1,2-xylose and core �1,3-fucose residues 

(GnGnXF3, Fig. 1). Although core fucosylation is observed in 
mammals as well, the fucose residues are �1,3-linked in plants as 
opposed to �1,6-linkage in mammals. In some cases plant cells are 
able to further elongate the GnGnXF3 by attaching �1,3-galatose 
and �1,4-fucose residues to form Lewis-a epitopes (Lea) [19, 20]. A 
plant peculiarity, common with insect cells, is the formation of 
paucimannosidic structures (MMXF3). This truncated oligosaccha-
ride formation results from the removal of terminal GlcNAc resi-
dues from GnGnXF3 by the action of endogenous hexosaminidases 
[see below; 21, 22] (Fig. 1).  
 In summary, although there are differences in the final structure 
of N-glycans in mammals and plants, they share a remarkably high 
degree of homology during processing along the secretory pathway.  

4. GLYCOSYLATION OF RECOMBINANT PROTEINS 
PRODUCED IN NON GLYCAN-ENGINEERED PLANTS 
Secreted Proteins 
 In contrast to the N-glycan profile of mammalian cell-derived 
recombinant proteins where a mixture of N-glycans is present, the 
plant produced counterparts exhibit generally a largely homogene-
ous glycosylation profile with a single dominant N-glycan species. 
Secreted heterologous proteins produced in plants typically carry 
one of two major types of N-glycans: complex-type  or pauciman-
nosidic oligosaccharides. How the final glycosylation profile of a 
particular protein actually looks like is a priory not predictable. 
Two factors seem to influence the process: (i) the route along the 
secretory pathway and the final destination/accu-mulation of the 
heterologous proteins, and (ii) the intrinsic character of the (recom-
binant) protein itself. Currently, the mechanisms and effects of both 
factors are poorly understood. For example, while recombinant 
mAbs, human transferrin and EPO that are targeted to the apoplast 
mainly carry complex N-glycans [23, 24], another secreted recom-
binant protein, follicle-stimulating hormone, carries virtually exclu-
sively paucimannosidic structures [25], assumed typical for vacuo-
lar proteins. The fact that this oligosaccharide formation carries 
core �1,2-xylose and �1,3-fucose residues indicates the proteins are 
processed through the Golgi, where the corresponding enzymes are 
active (XylT, �1,3-FucT, Fig. 1). Currently it is not entirely known 
where paucimannosidic structures on secreted proteins are formed, 
(a) along the secretory pathway upon sorting after the trans-Golgi 
into a vacuolar compartment; or (b) in the apoplast by the action of 
hexosaminidases located in this compartment [22, 26].  
 In addition to the two major glycoforms (GnGnXF3, MMXF3),
different levels of oligo-mannosidic glycans and glycans carrying 
Lea motifs can be found on secreted recombinant plant-derived 
proteins. Interestingly, recombinant human EPO (rhEPO) produced 
in moss cells and Nicotiana benthamiana carries high amounts of 
Lea motifs [27, 28]. This over-proportional synthesis of Lea epitopes 
is a surprise, they are absent on native hEPO and rhEPO derived 
from mammalian cells. Notably, all plant derived complex N-
glycan formations carry �1,2-xylose and core �1,3-fucose residues, 
structures which are not present in mammals.  

Targeting to ER  
 A commonly used approach to express recombinant proteins in 
plants is their retention in the endoplasmic reticulum ER by addi-
tion of C-terminal retention/retrieval signals (H/KDEL). As a con-
sequence proteins carry mainly oligo-mannosidic N-glycans (Man7, 
Man8, Man9) [for recent reviews see 12, 29, 30] and are largely 
devoid of plant-specific, immunogenic xylose and fucose (Fig. 1). 
Additionally, some studies have reported enhanced accumulation of 
KDEL-tagged proteins in the ER [e.g. 31]. Thus, this strategy has 
been widely used for the expression of recombinant mAbs [among 
others 32-39]. However, therapeutic applications of such protein 
variants may be restricted to special cases since oligo-mannosidic 
structures are atypical on mammalian proteins and thus potentially 
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Fig (1). Protein N-Glycosylation pathway in plants. Sequential distribution of N-glycan processing enzymes across the Golgi apparatus, separated according to 
their action into early- and medial-acting (GMI, GnTI; GMII, GnTII, XylT and �1,3-FucT) and late-acting enzymes (�1,3-GalT and, �1,4-FucT). The majority 
of secreted proteins carry complex GnGnXF3 structures. However significant amounts of paucimannosidic structures are present. Note: the majority of vacuolar 
glycoproteins carry paucimannosidic structures (i.e. MMXF3). The formation of paucimannosidic structures in the vacuoles and in the apoplast is not fully 
understood. Adapted from [29].  
ER: endoplasmic reticulum; ERV: ER-derived vesicles; PSV: protein storage vacuole; Apo: apoplast.  
1: Man8; 2: Man5; 3: Man5Gn; 4: MGn; 5: GnGn; 6: GnGnX; 7: GnGnXF3; 8: A3A3XF3 (�1,3-galactosylated structures; Lea precursor); 9: (FA)(FA)XF3 (Lea

structures); 10: MMXF3 (paucimannosidic structure).  
GMI: Golgi-�-mannosidase I; GnTI: N-acetylglucosaminyltransferase I; GMII: Golgi-�-mannosidase II; GnTII: N-acetylglucosaminyltransferase II; XylT:
�1,2-xylosyltransferase; �1,3-FucT: core �1,3-fucosyltransferase; �1,4-FucT: �1,4-fucosyltransferase; �1,3-GalT: �1,3-galactosyltransferase.. HEXO1,
HEXO3: �-N-acetylhexosaminidase 1 and 3. 
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immunogenic. In addition, macrophages quickly eliminate oligo-
mannosidic glycoforms from the bloodstream via mannose recep-
tors on their surface [40]. Indeed, the half-life of a plant-produced 
anti-rabies antibody bearing oligo-mannosidic N-glycans was 
clearly reduced when compared to the same antibody carrying 
mainly complex-type N-glycans [37].  
 High-level expression of recombinant KDEL-tagged proteins 
seems to generate de novo special, ER-derived compartments, simi-
lar to those frequently found in monocot seeds or induced by fusion 
to specific protein tags [33, 41, 42; reviewed in 43, 44]. Several 
studies have reported incomplete ER retention of KDEL-tagged 
recombinant proteins, a feature most often found in seeds [34, 41, 
42, 45-47]. Consequently, N-glycosylation patterns of such proteins 
might differ from expectations. A peculiarity described in maize 
seeds is the presence of single-GlcNAc residues on recombinant 
mAbs irrespective of the subcellular localisation [33, 48, 49], a 
phenomenon not understood so far. 

Targeting to Vacuoles 
 Plants seem to possess functionally distinct vacuolar compart-
ments that can exist site by site in the same cell: lytic vacuoles and 
storage vacuoles [50]. Whereas storage vacuoles are mainly found 
in storage tissue (seeds, tubers, etc), lytic vacuoles are normally 
present in all tissues and share some of their basic properties with 
the lysosomes of animal cells. The mechanisms which direct solu-
ble proteins from the secretory pathway to the different vacuolar 
compartments in plant cells are not fully understood. Different tar-
geting signals, different sorting mechanisms and different routes are 
present and partially overlap [51-57]. Unexpected deposition in 
storage vacuoles has been reported for some proteins containing 
KDEL-fusions in seeds [34, 45-48], as well as for other 
recombinant proteins [48, 58-60]. Vacuolar targeting sequences, 
which direct (heterologous) proteins to vacuoles have been charac-
terized [51, 61-63] and found use in the production of several 
recombinant proteins, among them the therapeutic human enzyme 
prGCD [see below; 64, 65, 66]. Paucimannosidic protein N-
glycosylation has been regarded as most typical for vacuoles [67]; 
however, oligosaccharide analysis of proteins deposited in the 
vacuole revealed the possibility for oligomannosidic and complex-
type N-glycosylation as well. Interestingly, paucimannosidic N-
glycans are needed for in vivo efficacy of a special class of human 
enzymes used in enzyme replacement therapies, including glu-
cocerebrosidase (GCD), which is used to treat Gaucher disease. 
Indeed, upon fusing GCD to a C-terminal vacuolar targeting signal, 
a recombinant enzyme that carries this truncated oligosaccharide 
was produced using carrot cells as expression platform [64]. This 
enzyme exhibited enhanced in vivo efficacy compared with the 
currently available drug Cerezyme® produced in CHO cells [64, 
68]. The carrot-produced enzyme, also known as ElelysoTM, has 
been approved by the FDA in March 2012. Notably, although Ele-
lysoTM carries plant-specific xylose and fucose, no obvious adverse 
side effects that could be attributed to these N-glycan residues were 
reported during clinical trials. This work has been a significant 
milestone for the parenteral administration of plant-produced gly-
coproteins and at the time of writing it is the only recombinant 
plant-derived human therapeutic protein approved and on the mar-
ket.  

5. IMMUNOLOGICAL RELEVANCE OF PLANT-SPECIFIC 
CARBOHYDRATES
 The possible adverse immune reactions of the “non-human” 
�1,2-xylose and core �1,3-fucose N-glycan epitopes on plant pro-
duced proteins have been a matter of debate. IgE antibodies that 
bind to these epitopes have been found in the serum of patients 
allergic to pollen and insect venoms [69]. In vitro assays using puri-
fied glycoprotein allergens from plants [70, 71] show that these N-
glycans contribute to histamine release from basophil cells when 

incubated with sera of these patients. In contrast, skin prick tests 
suggest poor biological activity of these carbohydrate-specific IgE 
antibodies [72]. It was concluded that the carbohydrate-specific IgE 
antibodies are of limited clinical relevance since the observed bio-
logical reactions require high concentrations of glyco-allergens and 
these reactions were only observed with sera from a selected group 
of allergic patients [73]. Also IgGs binding to plant fucose and 
xylose epitopes have been found in sera, also from non-allergic 
people, albeit at low levels [74]. It is not likely that this is caused by 
dietary exposure of plant proteins, as this normally leads to toler-
ance. As in the case of IgE in allergic patients, appearance of these 
antibodies is most likely caused by pollen or venom exposure. Fur-
thermore, rabbits were shown to raise carbohydrate specific IgG 
antibodies after parenteral immunization with plant produced anti-
bodies carrying the fucose and xylose epitopes [75, 76]. However, 
immunization was in the presence of complete Freund’s adjuvant, 
which is not likely to be used in humans. Mice do not mount such 
carbohydrate specific immune responses, suggesting that immuno-
genicity of these epitopes might be species specific [77]. It was 
shown that topical application of glycoproteins from plants does not 
cause adverse reactions on humans [78, 79]. It should also be noted 
that intravenous application of ElelysoTM, the carrot-produced hu-
man glucocerebrosidase which does carry plant specific xylose and 
fucose, did not display obvious adverse effects during human clini-
cal trials. Nevertheless, for both regulatory and safety issues, the 
presence of plant specific fucose and xylose residues has to be con-
sidered. 

6. PLANT N-GLYCO-ENGINEERING  
Elimination of Plant-specific N-glycan Residues 
 A major concern when using plant-produced recombinant gly-
coproteins in therapeutic applications is the presence of plant spe-
cific xylose and core �1,3-fucose residues (Fig. 2, glycoform 1b). 
Such glycan residues are not present in humans and are thus un-
wanted on proteins intended for therapeutic use. The elimina-
tion/disruption of the genes that are responsible for the synthesis of 
these glycan-epitopes, i.e. �1,2-xylosyltransferase and core �1,3-
fucosyltransferase (XylT, �1,3-FucT) provides an elegant method 
to solve this issue. The feasibility of this strategy was proven by the 
generation of Arabidopsis thaliana knock-out plants lacking XylT 
and �1,3-FucT. Those plants were viable without any obvious phe-
notype under standard growth conditions but produced proteins 
carrying complex N-glycans lacking xylose and fucose (Fig. 2,
glycoform 2) [42, 80, 81]. These results were a major breakthrough 
because they (i) demonstrated the plasticity of plants to tolerate the 
manipulation of the N-glycosylation pathway without an obvious 
adverse phenotype; (ii) generated the central acceptor template (i.e. 
GnGn structures) for a large number of modifications; and (iii) 
enabled a significant increase in glycan homogeneity, which may 
have substantial implications for downstream processing and meets 
regulatory requirements for therapeutic proteins. Subsequently, 
elimination/RNAi mediated knock-down of XylT and �1,3-FucT 
was performed in several other plant species potentially well suited 
for the production of human proteins, including the aquatic plant 
Lemna minor [82], the moss Physcomitrella patens [83], Nicotiana 
benthamiana (�XTFT) [23], Medicago sativa [84] and rice cells 
[85]. N-glycosylation profiles of mAbs (and other proteins) pro-
duced in some of the glyco-engineered hosts contained GnGn as a 
single dominant structure accounting for 90 % of the N-glycan 
structures [23, 86]. In some cases GnGn was the only carbohydrate 
species detected [82]. Biological activity assays of such glyco-
engineered mAbs revealed unaffected antigen binding and CDC 
activity, but significantly enhanced ADCC potency compared with 
mAbs produced in wild type plants and CHO cells [82, 87]. Also, a 
plant-produced, fucose-free mAb against Ebola virus exhibited 
superior in vivo potency in immune protection assays [86].  
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 Lea (Fig. 2, glycoform 1a) is a N-glycan structure normally 
infrequently present on plant proteins; however it was detected at 
surprisingly high levels on some plant-produced recombinant pro-
teins. This is the case for recombinant human EPO (rhEPO) pro-
duced in tobacco and moss [27, 28]. Even though Lea structures can 
be synthesized by humans their abundance on human glycoproteins 
is low. Elimination of the responsible glycosyltransferases (�1,4-
fucosyltransferase and �1,3-galactosyltransferase) by disruption of 
the corresponding genes was recently reported for moss [88]. As a 
consequence a rhEPO with largely homogeneous GnGn glycosyla-
tion lacking Lea oligosaccharides was produced. 
 Overall results obtained by the in planta elimination of specific 
N-glycan residues have placed plants in a particularly favourable 
position for the production of the next generation mAbs and 
“biobetters”. Thus, biopharmaceutical companies like Biolex thera-
peutics (lemna), Greenovation Biotech GmbH (moss) or Protalix 
Biotherapeutics (carrot cells) have prominently posted their plant-
derived products with optimized N-glycosylation profiles in their 
company portfolio. Clinical trials with such potential “biobetters” 
are underway [89] and the outcome will hopefully confirm their 
therapeutic value in the near future. 

Mammalian-type Core Fucosylation 
 N-glycans on human glycoproteins are typically decorated with 
core �1,6-fucose residues, a carbohydrate not synthesized in plants. 
In recent years, this special type of glycosylation has elicited a lot 
of interest because it modulates IgG (mAb-) Fc activity [reviewed 
in 4] and several studies have been published dealing with the 
modulation of this N-glycan residue in mammalian cells. Despite 
remarkable success it is to date impossible to use mammalian cells 
for the production of mAbs with identical N-glycosylation profiles 
differing only in the presence/absence of core �1,6-fucose 
[reviewed in 12]. Thus, apart from the presence/absence of fucose 
other minor differences in the glycosylation profiles might contrib-
ute at least to some extent to altered mAb activities.  
 Glycoengineered plants such as N. benthamiana �XTFT that 
allow the generation of mAbs with virtually a single GnGn N-
glycoform provide an ideal host to address this issue. Indeed upon 
overexpression of the human �1,6-FucT (FUT8) in �XTFT, it was 
possible to produce human-type fucosylation (Fig. 2, glycoform 3),
finally allowing the generation of mAbs with and without core 
�1,6-fucose while maintaining an otherwise identical N-
glycosylation pattern [24, 87]. In the course of these studies Fc-
glycosylation on the antiviral activity of the broadly neutralizing 
HIV mAb 2G12 was investigated. In contrast to the CHO-derived 
2G12, which carries a mixture of 6 different glycoforms, the carbo-
hydrate structures of 2G12 produced in different glycoengineered 
plants differed only in one or two glycan residues (Fig. 2, glyco-
forms 1b, 2, 3 and 7), thus allowing precise investigation of the 
impact of single glycan moieties on mAb activity [87]. These re-
sults demonstrate that presence/absence of fucose, irrespective of its 
�1,3- or �1,6-linkage, strongly influences downstream activities, 
like binding to Fc-�-receptor III. In addition fucose-free 2G12 gly-
coforms mediated higher antiviral activity against various lentivi-
ruses. This study was the first to investigate the in vitro and in vivo
impact of particular glycoforms in the antiviral activity of mAbs, 
and pointed to the importance of optimal N-glycosylation for im-
munotherapeutic reagents. 

Extension of Complex N-glycans by GlcNAc Residues 
 Bisected and branched (tri- and tetra-antennary) complex N-
glycans are commonly synthesized in humans. These multi-
antennary structures are involved in various biological functions 
[90] and are substrates for further galactosylation and multi-
sialylation. They are generated by the transfer of terminal GlcNAc 
residues to the GnGn-core structure through the action of N-
acetylglucosaminyltransferases (GnTIII-V Fig. 2, glycoforms 4-6).

Like mammals, plants possess highly active GnTs that catalyse the 
transfer of �1,2-GlcNAc residues to the core �1,3- and �1,6-
mannosyl residues (GnTI and GnTII), producing GnGn structures 
(Fig. 1). However, activity of other GnTs has never been detected 
in plants and thus plant N-glycans must lack the respective carbo-
hydrate formations.  
 Attempts to produce bisected N-glycans in plants (Fig. 2, glyco-
form 4) first relied on the overexpression of mammalian �1,4-N-
acetylglucosaminyltransferase III (GnTIII), which indeed resulted 
in the formation of bisected carbohydrates, accompanied with un-
usual structures [91-95]. In the course of these studies it became 
evident that the correct sub-Golgi targeting of heterologous glyco-
sylation enzymes is of the outmost importance in the formation of 
N-glycan structures. The use of chimeric GnTIII containing target-
ing sequences that direct it to the trans-Golgi compartment allowed 
the production of proteins carrying largely fully processed bisected 
structures, instead of unusual hybrid structures when the non-
engineered version of the enzyme was expressed [24, 28].  
 To obtain tri- and tetra-antennary complex N-glycans in plants 
(Fig. 2, glycoforms 5 and 6) the respective mammalian enzymes 
GnTIV and V were overexpressed [96]. As already seen for GnTIII 
unusual incompletely processed structures were synthesized when 
the full length native protein was expressed. Thus, the catalytic 
domains of GnTIV and V were fused to different Golgi-targeting 
sequences to allow correct subcellular targeting. In this case it 
turned out that upon targeting the enzymes to a medial Golgi com-
partment the generation of tri- and tetra-antennary structures is most 
efficient [28,96]. Multi-antennary complex N-glycans provide an 
ideal starting point for further elongation of plant N-glycans. 

�1,4-Galactosylation  
�1,4-Galactosylation is a widespread modification of complex 

N-glycans in mammals. Although the precise impact of this residue 
on protein function is not known, two aspects have raised attention: 
(i) the degree to which the resulting glycoform can vary between 
different physiological conditions, which points to an active role of 
the N-glycan residue in modulating IgG activity in vivo [reviewed 
in 3, 4]; and (ii) the requirement of �1,4-galactosylation as an ac-
ceptor substrate for protein sialylation, the final and most complex 
type of human glycosylation.  
 Plant N-glycans do not carry this terminal elongation because 
they lack the corresponding enzyme, �1,4-galactosyltransferase 
(GalT). Several groups have reported the overexpression of the 
human enzyme in plants, with different degrees of success [97-
101]. Although �1,4-galactosylated structures were formed in 
plants, the presence of incompletely processed structures and the 
reduction of xylose and fucose indicated that GalT and the endoge-
nous enzymes compete for the same acceptor substrate. Advances 
in the generation of complex bigalactosylated structures were 
achieved by targeting GalT to a late Golgi compartment. mAbs 
coexpressed with such a hybrid enzyme exhibited a single dominant 
Fc-N-glycan species, namely a bigalactosylated structure (Fig. 2,
glycoform 7) [102]. Conflicting reports about the role of terminal 
galactose residues in modulating IgG activity have been published 
[4]. Glyco-engineered plants as described by Strasser et al. [102] 
provide a suitable platform for producing bigalactosylated antibod-
ies which can be used to further investigate the importance of this 
abundant IgG glycoform. Another important aspect is that these 
plants synthesize the appropriate acceptor substrate for the final 
glycosylation step in human, terminal sialylation. 
 Another human N-glycan structure is Lewis-X epitopes (Lex;
Fig. 2, glycoform 10), generated by the action of �1,4-GalT and 
�1,3-fucosyltransferase IXa. It is well known that Lex-containing 
structures induce antigen-specific immune responses [103]. Indeed, 
by the overexpression of the two mammalian enzymes this 
oligosaccharide was synthesized in tobacco [104]. Thus, plants 
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producing Lex epitopes can be explored as a prospective host for 
production of vaccines with enhanced immunogenicity.  

Terminal Sialylation 
 Terminal sialylation is the final and most complex step of hu-
man N-glycosylation. Many drugs require sialylated oligosaccha-
rides for optimal therapeutic potency. Until recently, manufacturing 
has been restricted to mammalian cell-based systems that are able 
to perform this important posttranslational modification.  
 Convincing evidence suggests that plants do not sialylate gly-
coproteins [105, 106]; notwithstanding that genes homologous to 
mammalian CMP-sialic acid transporters and sialyltransferases 
have been detected in some plants [107, 108]. These findings are 
interesting since plants do not synthesize the donor substrate CMP-
Neu5Ac or the acceptor substrate Gal�1,4-GlcNAc. Protein sialyla-
tion is particularly difficult to accomplish in plants, even in the 
presence of �1,4-galactosylated structures, because plants lack 
some further essential prerequisites: (i) the biosynthetic capability 
to produce the sugar nucleotide precursor CMP-sialic acid, specifi-
cally CMP-N-acetylneuraminic acid (CMP-Neu5Ac); (ii) a trans-

porter that delivers CMP-sialic acid into the Golgi in sufficient 
amounts; and (iii) a sialyltransferase to transfer sialic acid from 
CMP-Neu5Ac to terminal galactose on the nascent glycoprotein. 
The enzymes involved in protein sialylation and their substrates 
must work in a highly coordinated fashion at different stages of the 
pathway. Consequently, organelle-specific targeting of several 
components is required for proper protein sialylation. Initial at-
tempts to introduce Neu5Ac residues into plant N-glycans involved 
the expression of some of these proteins in plants [109-111]. 
 Recently, Castilho et al. [112] introduced six proteins from the 
mammalian sialylation pathway into plants, permitting the biosyn-
thesis of sialic acid, its activation, transport into the Golgi, and 
finally its transfer onto terminal galactose. Namely, the mouse 
UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine 
kinase (GNE), the human N-acetylneuraminic acid phosphate syn-
thase (NANS), human CMP-N-acetylneuraminic acid synthase 
(CMAS), mouse CMP-sialic acid transporter (CST), human �1,4-
galactosyltransferase and the rat �2,6-sialyltransferase (ST). Coex-
pressed target proteins were decorated with structures sialylated up 
to 80 % [112,113]. This is remarkable considering the requirement 

Fig. (2). Schematic illustration of plant engineered glycoforms. Reactions and enzymes to generate certain N-glycan structures are indicated. Numbers 1 to 10 
refer to the different glycoforms generated on plant-derived proteins either naturally formed or engineered.  
1a: (FA)(FA)XF3 (Lea structures); 1b: GnGnXF3 or through targeted glyco-engineering 2-10; 2: GnGn; 3: GnGnF6; 4: GnGn(bi) (bisected structures); 5:
[GnGn]Gn or Gn[GnGn] (triantennary structures); 6: [GnGn][GnGn] (tetraantennary structures); 7: AA (�1,4-galactosylated structures); 8: NaNa (�2,6-
sialylation); 9: [NaNa][NaNa] (multiantennary �2,6-sialylation); 10: LeX containing N-glycans.  
XylT: �1,2-xylosyltransferase; �1,3-FucT: plant core �1,3-fucosyltransferase; �1,6-FucT: core �1,6-fucosyltransferase (FUT8); GnTIII: �1,4-mannosyl-
�1,4-N-acetylglucosaminyltransferase; GnTIV: �1,3-mannosyl-�1,4-N-acetyl-glucosaminyltransferase; GnTV: �1,6-mannosyl-�1,6-N-acetyl-
glucosaminyltransferase; �1,4-GalT: �1,4-galactosyltransferase; ST: �2,6-sialyltransferase.
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for coordinated overexpression of the mammalian proteins which 
are transiently delivered to the same cell and act at various different 
stages and in different subcellular compartments (i.e. cytoplasm, 
nucleus, Golgi). These results are thus a milestone in plant glyco-
engineering because they show the enormous plasticity of plants 
which allows them to tolerate mammalian glycosylation and the 
large extent of conservation between the biosynthetic pathways of 
mammals and plants. Moreover, this reconstruction of an entire 
mammalian biosynthetic pathway in plants may serve as a model 
for engineering other complex traits into plants, which could open 
new possibilities in plant breeding and biotechnology. 
 Plant-produced EPO containing tri- and tetra-antennary N-
glycans [28, 114] has paved the way for the generation of multi-
antennary sialylated therapeutic proteins in plants (Fig. 2, glyco-
form 9), a major prerequisite for full biological efficacy of many 
drugs [115]. Notably, sialylated multi-antennary structures are 
amongst the most complex structures found in mammals and the 
controlled generation of such structures in plants provides another 
major step towards the versatile use of plants as an expression sys-
tem for proteins with highly complex glycosylation patterns. 

7. FUTURE PERSPECTIVES  
 Plants are amazingly amenable to glyco-engineering. Many 
glyco-traits have already been introduced in plants and very often 
this has resulted in high glycoform homogeneity of the co-
expressed target proteins. This offers several opportunities, both 
with respect to basic research as well as for applications.  

Perspectives for Fundamental Research 
 It is clear that N-glycans play crucial roles in protein-protein 
interactions, and through that, in processes such as cell-to-cell 
communication, signal transduction and infection. This became 
apparent with the recognition of the N-glycan nature of the ABO 
blood group types [116]. More recently, it has been shown that even 
minor modifications can completely reverse a molecule’s function, 
e.g. the addition of a single sialic acid molecule converts IgG from 
a pro-inflammatory into an anti-inflammatory molecule [6]. How-
ever, the role of different N-glycan structures on proteins participat-
ing in many biological processes is still unknown. Progress in this 
research is to a large extent impeded by the lack of availability of 
defined and homogeneous glycoforms of the proteins under study. 
Panels of glyco-engineered plants that can produce different glyco-
variants of the same protein in a homogeneous manner open new 
opportunities for research. In particular, transient expression sys-
tems can rapidly deliver purified, defined glycoproteins in sufficient 
amounts, certainly for research purposes. Thus, this technology has 
great potential to increase our understanding of the structure-
function relationship of oligosaccharides in biological processes. 
This in turn, will undoubtedly have impact on the discovery and 
development of new therapies and drugs. 

Perspectives for Application 
 For several reasons, plants have been considered as production 
platform for therapeutic proteins. A key success of their commer-
cial application may very well be their superior glycosylation char-
acteristics. The recently FDA approved glucocerebrosidase pro-
duced in carrot cells is an example. Targeting to the vacuole in 
these non-glycoengineered cells resulted in more than 90 % of its 
N-glycans being terminated with mannose residues [64]. Mannose 
ending N-glycans are necessary on glucocerebrosidase for uptake 
by macrophages, the cells that are deficient for this enzyme in Gau-
cher patients. The production of a glucocerebrosidase with a homo-
geneous N-glycosylation profile in plants is a clear advantage com-
pared to commercial CHO produced glucocerebrosidase, which is 
galactosylated and sialylated and requires in vitro deglycosylation 
to expose terminal mannose residues.  

 The availability of glyco-engineered plant expression systems 
will further broaden the scope of different proteins that can success-
fully be produced by plants. An example of this, although not 
commercialised yet, is the production of highly homogeneously 
galactosylated antibodies by glyco-engineered N. benthamiana
which outperformed the same antibody produced by CHO cell in a 
virus neutralization assay [102]. It has become apparent that differ-
ent proteins may accumulate optimally in different plant species, 
depending on characteristics of the protein and the specifics of the 
plant platform. This, and Freedom To Operate issues, explain the 
many plant species currently under investigation as production 
platforms. Even mushrooms are evaluated for their capability to 
serve as a glycoprotein production platform [117]. However, not all 
relevant glyco-traits are already present in all of these plant species 
and in the near future humanisation of glycosylation will likely be 
established in the plant species of preference. On the other hand, 
consolidation to a limited number of commercially exploited plant 
expression systems can be expected as well. 
 Perhaps the most intriguing opportunity offered by the glyco-
flexibility of plants, is to design N-glycans normally not found on 
the target proteins. By doing so, new N-glycans could provide fea-
tures to the carrier glycoprotein such that it acquires improved 
therapeutic performance. This could be an important advantage for 
new subunit vaccines [118]. Subunit vaccines need a design such 
that they optimally interact with antigen presenting cells (APCs) to 
mount a protective immune response. Thereto, the vaccine should 
be taken up by an APC with the aid of so-called pattern recognition 
receptors (PRRs) such as toll like receptors and C-type lectin recep-
tors (CLRs). As a consequence of receptor binding and subsequent 
vaccine uptake cytokines are secreted by the APC to stimulate or 
inhibit the differentiation or development of other immune cells. 
Parallel to cytokine secretion, fragments of the degraded vaccine 
are presented to T-cells on MHC molecules and co-stimulatory 
molecules such as CD80/86 are expressed on the surface of the 
APC to augment T-cell differentiation. Carbohydrate moieties, such 
as glycans on glycoproteins, play a pivotal role in antigen uptake by 
antigen presenting cells through CLRs. Since the specificity of 
CLRs for their carbohydrate ligands is known, glyco-engineering in 
plants holds the promise of producing subunit vaccines that are 
recognized by a specific CLR and another PRR. This dual recogni-
tion is important for an effective response. Interaction with a CLR 
often results in an adjuvant function. In many cases, adjuvants are 
added to vaccines as molecules to improve vaccine performance (in
trans). By designing N-glycans that specifically target CLRs and 
which are covalently attached to the antigen (cis-configuration), 
better immune responses may be evoked [119, 120].  
 Only now we are beginning to understand the factors that influ-
ence differential N-glycosylation and how N-glycans affect protein 
functions. It has become apparent that a different application and a 
different mode of action may require a different N-glycosylation 
profile of a biopharmaceutical protein. Currently, mammalian cell 
lines are the system of choice for the production of many therapeu-
tic glycoproteins. In the near future this leading position might be 
challenged by novel expression platforms with improved glycosyla-
tion machineries, including plants, bacteria, yeast and insect cells 
[29]. Plants have demonstrated a high degree of tolerance towards 
changes in the glycosylation pathway, allowing the modification of 
recombinant glycoproteins in a specific and controlled manner. This 
feature is currently unrivalled by alternative expression platforms. 
The outcomes have already contributed to and will continue to ad-
vance this field, ultimately underpinning the production of next 
generation biopharmaceuticals.  
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