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Abstract: Plants are gaining increasingly acceptance as a production platform for recombinant proteins. One reason for this is their abil-
ity to carry out posttranslational protein modifications in a similar if not identical way as mammalian cells. The capability of plants to
carry out human-like complex glycosylation is well known. Moreover, the targeted manipulation of the plant N-glycosylation pathway al-
lows the production of proteins carrying largely homogeneous, human-type oligosaccharides. These outstanding results have placed
plants in a favourable position compared to other eukaryotic expression systems. This review provides a comprehensive summary of the
N-glycosylation of plant-produced recombinant proteins, the possible impact of plant-specific N-glycans on the human immune system,
and recent advances in engineering the plant N-glycosylation pathway towards the synthesis of (complex) human-type glycan structures,
highlighting challenges and achievements in the application of these powerful technologies.
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1. INTRODUCTION

N-glycosylation, the enzymatic attachment of sugar moieties to
a specific asparagine residue within the N-glycosylation recognition
sequence of a protein, is a major posttranslational modification in
eukaryotes. In humans, more than 50% of proteins are estimated to
be N-glycosylated [1] and N-glycans can strongly influence the in
vivo functionality of the protein (see below). N-glycosylation is a
non-template driven reaction which normally results in the synthe-
sis of a heterogeneous collection of different carbohydrate struc-
tures on an otherwise homogeneous protein backbone (microhet-
erogeneity). Due to the large human glycome this microheterogene-
ity may comprise several thousand glycoforms [2], the exact num-
ber remaining elusive. Reflecting this diversity manifold functions
have been attributed to the carbohydrate moiety of a protein, includ-
ing folding, stability, conformation, solubility, quality control, half-
life determination and oligomerization.

Serum proteins are particularly well known for their high gly-
can-microheterogeneity and it has been shown that different physio-
logical conditions, e.g. disease, pregnancy or ageing strongly affect
the N-glycosylation profiles of immunoglobulin G (IgG), an abun-
dant serum protein. This indicates that some of the variable glycan
residues might fine-tune antibody activity [3, 4]. In fact, dramati-
cally altered effector functions were reported for an IgG without
core al,6-fucose, a residue normally present on human serum IgG
[5]. Moreover, the presence/absence of sialic acid may reverse the
function of IgG i.e. from pro- to anti-inflammatory [6].

Although the consequences of N-glycans are often well docu-
mented, the mechanisms behind these effects are in many cases
unknown. This is unfortunate as N-glycosylated proteins play an
ever more important role in the biotech industry [7] and patients
would benefit from optimally glycosylated drugs. Thus, proper N-
glycosylation is now regarded as a crucial factor by the biopharma-
ceutical industry and by regulatory authorities alike, leading to an
increased number of industrial and academic laboratories trying to
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decipher the effects of N-glycans on proteins and uncover the un-
derlying mechanisms.

Currently, the most used expression system for therapeutic
glycoproteins are mammalian cell lines, most commonly Chinese
hamster ovary cells (CHO). Mammalian cells provide the advantage
of producing recombinant proteins with N-glycans very closely
resembling those produced in the human body, however, differ-
ences exist. CHO cells for example lack the ability to sialylate pro-
teins in the human-typical 02,6-position and add sialic acid in 02,3-
linkage instead. While this difference does not seem to affect bio-
logical activity of recombinant human EPO, it might have an im-
pact on other therapeutic molecules, like intravenous immuno-
globulins (IVIG), whose activity seems to be dependent on the link-
age of sialic acid [8]. Moreover, mammalian cell lines typically
produce a heterogeneous mixture of glycoforms and control over
the glycosylation is difficult. Thus, some human glycan structures
are not produced (or not at the desired level) and in many cases the
production of single glycoforms is not possible.

Another relevant issue is the presence of Galal,3-Gal epitopes,
a glycan not present in humans but produced by some mammalian
cell lines e.g. SP2/0. Notably, about 1 % of the IgG in human serum
is directed against this epitope (in particular to al,3-galactose) [9].
Indeed, this structure present on the therapeutic mAb cetuximab,
induced a hypersensitivity reaction in patients treated with this anti-
body [10]. Another difference between human and CHO cells is the
absence of bisecting GIcNAc residues in the latter. The impact of
this glycan formation is well documented for many proteins
[reviewed in 11]. Finally, batch-to-batch reproducibility in terms of
glycosylation is a challenge for protein production in CHO cells.
Typically a heterogeneous mixture of glycoforms is produced and
control over this heterogeneity is very difficult.

In summary, mammalian cell lines, despite being the most used
production platform, suffer from several drawbacks including the
difficulty to produce single glycoforms, low batch-to-batch glyco-
sylation reproducibility, attachment of non-human glycoepitopes
and absence of some human-type N-glycans. To overcome these
drawbacks mammalian (and other) expression hosts are being engi-
neered to allow production of tailor-made glycoproteins. Main aims
are the removal of non-human and immunogenic epitopes, introduc-
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tion of human-type glycosylation reactions and reduction of the
microheterogeneity to allow production of single glycoforms. How-
ever, the large glycome and the resulting high glycan-micro-
heterogeneity hamper the targeted manipulation of the N-
glycosylation pathway in many organisms [reviewed in e.g. 12].
Due to their rather small repertoire of glycosylation reactions plants
carry out complex N-glycosylation at a striking homogeneity, which
makes them especially amenable to glycoengineering. Indeed, over
the past years many research groups have concentrated their efforts
on modulating plant N-glycosylation to enable the production of
recombinant proteins with human-like structures in plants.

In this manuscript we review the current status of the N-
glycosylation of plant-produced recombinant proteins, we summa-
rize different strategies for the production of targeted N-glycans, we
give an overview of the impact of plant specific N-glycans on
therapeutic applications and finally we highlight possible future
developments.

2. GENERAL REMARKS ON PLANT MOLECULAR FARM-
ING

Biopharmaceuticals are the fastest growing class of novel medi-
cines and we are witnessing an accelerated development of protein-
based drugs. Many of these novel proteins cannot be produced sat-
isfactorily by established cell-based production platforms. Plants,
on the other hand, offer a viable alternative technology with the
potential to meet industry’s standards. Recent success stories in
expression levels, production speed and manufacturing scale-up
have placed this expression system in an encouraging position. For
example, the generation of mAbs and vaccines in gram levels
within two weeks after obtaining the coding sequences provides a
time frame that is unmatched by other established expression sys-
tems [13-16]. It is noteworthy that the U.S. governmental agency
Defense Advanced Research Projects Agency (DARPA) awarded
grants worth over $100 million for research into plant-based ex-
pression systems, recognizing it as the technology of choice for
rapid large-scale manufacturing processes of vaccines and antibod-
ies. Due to this financial support, large manufacturing facilities are
being built, e.g. Kentucky Bioprocessing, GCon, Medicago Inc.
Fraunhofer USA, with a size of 10,000-30,000 square meters each.
Substantial progress has also been made in biosafety, regulatory
compliance and public engagement [17], illustrating that therapeu-
tic application of this technology is gaining acceptance by the regu-
latory authorities. At the time of writing at least three plant-derived
recombinant proteins had been approved for human healthcare: the
mAb CaroRx used for treatment of dental caries, human intrinsic
factor used as a dietary supplement for the treatment of vitamin B-
12 deficiency [18], and human glucocerebrosidase used for enzyme
replacement therapy (see below). All three are glycoproteins.

3. THE PLANT N-GLYCOSYLATION PATHWAY

N-glycosylation is one of the major post-translational modifica-
tions of proteins in multicellular organisms. Thus, despite the high
heterogeneity of the final glycosylation status of a protein, the cor-
responding biosynthetic pathways are largely conserved between
kingdoms at a molecular level. In all eukaryotes, processing of N-
linked glycans is initiated in the ER, where the oligosaccharide
precursor Gle;MangGleNAc, (Man9) is converted to MangGlcNAc,
(Man8) (Fig. 1). In higher eukaryotes processing of Man8 in cis and
medial Golgi compartments leads to the formation of the so-called
complex N-glycans. Importantly, the N-glycan processing steps are
virtually identical in plants and mammals up to the formation of the
vital intermediate GlcNAc,Man;GlcNAc, (GnGn) (Fig. 1). In
mammals, GnGn oligosaccharides provide the substrate for exten-
sive elongation/modification processes to give rise to the final di-
versification of N-glycosylation. In plants, modifications of these
oligosaccharides are more limited and the GnGn structures are
normally decorated with B1,2-xylose and core al,3-fucose residues
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(GnGnXF®, Fig. 1). Although core fucosylation is observed in
mammals as well, the fucose residues are al,3-linked in plants as
opposed to al,6-linkage in mammals. In some cases plant cells are
able to further elongate the GnGnXF® by attaching p1,3-galatose
and al,4-fucose residues to form Lewis-a epitopes (Le?) [19, 20]. A
plant peculiarity, common with insect cells, is the formation of
paucimannosidic structures (MMXF?). This truncated oligosaccha-
ride formation results from the removal of terminal GlcNAc resi-
dues from GnGnXF® by the action of endogenous hexosaminidases
[see below; 21, 22] (Fig. 1).

In summary, although there are differences in the final structure
of N-glycans in mammals and plants, they share a remarkably high
degree of homology during processing along the secretory pathway.

4. GLYCOSYLATION OF RECOMBINANT PROTEINS
PRODUCED IN NON GLYCAN-ENGINEERED PLANTS

Secreted Proteins

In contrast to the N-glycan profile of mammalian cell-derived
recombinant proteins where a mixture of N-glycans is present, the
plant produced counterparts exhibit generally a largely homogene-
ous glycosylation profile with a single dominant N-glycan species.
Secreted heterologous proteins produced in plants typically carry
one of two major types of N-glycans: complex-type or pauciman-
nosidic oligosaccharides. How the final glycosylation profile of a
particular protein actually looks like is a priory not predictable.
Two factors seem to influence the process: (i) the route along the
secretory pathway and the final destination/accu-mulation of the
heterologous proteins, and (ii) the intrinsic character of the (recom-
binant) protein itself. Currently, the mechanisms and effects of both
factors are poorly understood. For example, while recombinant
mAbs, human transferrin and EPO that are targeted to the apoplast
mainly carry complex N-glycans [23, 24], another secreted recom-
binant protein, follicle-stimulating hormone, carries virtually exclu-
sively paucimannosidic structures [25], assumed typical for vacuo-
lar proteins. The fact that this oligosaccharide formation carries
core f1,2-xylose and al,3-fucose residues indicates the proteins are
processed through the Golgi, where the corresponding enzymes are
active (XylT, al,3-FucT, Fig. 1). Currently it is not entirely known
where paucimannosidic structures on secreted proteins are formed,
(a) along the secretory pathway upon sorting after the trans-Golgi
into a vacuolar compartment; or (b) in the apoplast by the action of
hexosaminidases located in this compartment [22, 26].

In addition to the two major glycoforms (GnGnXF’, MMXF?),
different levels of oligo-mannosidic glycans and glycans carrying
Le® motifs can be found on secreted recombinant plant-derived
proteins. Interestingly, recombinant human EPO (thEPO) produced
in moss cells and Nicotiana benthamiana carries high amounts of
Le® motifs [27, 28]. This over-proportional synthesis of Le” epitopes
is a surprise, they are absent on native hEPO and rthEPO derived
from mammalian cells. Notably, all plant derived complex N-
glycan formations carry f1,2-xylose and core al,3-fucose residues,
structures which are not present in mammals.

Targeting to ER

A commonly used approach to express recombinant proteins in
plants is their retention in the endoplasmic reticulum ER by addi-
tion of C-terminal retention/retrieval signals (H/KDEL). As a con-
sequence proteins carry mainly oligo-mannosidic N-glycans (Man7,
Man8, Man9) [for recent reviews see 12, 29, 30] and are largely
devoid of plant-specific, immunogenic xylose and fucose (Fig. 1).
Additionally, some studies have reported enhanced accumulation of
KDEL-tagged proteins in the ER [e.g. 31]. Thus, this strategy has
been widely used for the expression of recombinant mAbs [among
others 32-39]. However, therapeutic applications of such protein
variants may be restricted to special cases since oligo-mannosidic
structures are atypical on mammalian proteins and thus potentially
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Fig (1). Protein N-Glycosylation pathway in plants. Sequential distribution of N-glycan processing enzymes across the Golgi apparatus, separated according to
their action into early- and medial-acting (GMI, GnTIL; GMII, GnTII, XyIT and al,3-FucT) and late-acting enzymes ($1,3-GalT and, al,4-FucT). The majority
of secreted proteins carry complex GnGnXF® structures. However significant amounts of paucimannosidic structures are present. Note: the majority of vacuolar
glycoproteins carry paucimannosidic structures (i.e. MMXF®). The formation of paucimannosidic structures in the vacuoles and in the apoplast is not fully
understood. Adapted from [29].

ER: endoplasmic reticulum; ERV: ER-derived vesicles; PSV: protein storage vacuole; Apo: apoplast.

1: Man§; 2: Man5; 3: Man5Gn; 4: MGn; 5: GnGn; 6: GnGnX; 7: GnGnXF’; 8: A’A’XF’ (B1,3-galactosylated structures; Le® precursor); 9: (FA)(FA)XF’ (Le"
structures); 10: MMXF® (paucimannosidic structure).

GMI: Golgi-o-mannosidase I; GnTI: N-acetylglucosaminyltransferase I; GMII: Golgi-o-mannosidase II; GnTII: N-acetylglucosaminyltransferase II; XylT:
B1,2-xylosyltransferase; a1,3-FucT: core al,3-fucosyltransferase; al,4-FucT: al,4-fucosyltransferase; p1,3-GalT: B1,3-galactosyltransferase.. HEXO1,
HEXO3: B-N-acetylhexosaminidase 1 and 3.
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immunogenic. In addition, macrophages quickly eliminate oligo-
mannosidic glycoforms from the bloodstream via mannose recep-
tors on their surface [40]. Indeed, the half-life of a plant-produced
anti-rabies antibody bearing oligo-mannosidic N-glycans was
clearly reduced when compared to the same antibody carrying
mainly complex-type N-glycans [37].

High-level expression of recombinant KDEL-tagged proteins
seems to generate de novo special, ER-derived compartments, simi-
lar to those frequently found in monocot seeds or induced by fusion
to specific protein tags [33, 41, 42; reviewed in 43, 44]. Several
studies have reported incomplete ER retention of KDEL-tagged
recombinant proteins, a feature most often found in seeds [34, 41,
42, 45-47]. Consequently, N-glycosylation patterns of such proteins
might differ from expectations. A peculiarity described in maize
seeds is the presence of single-GlcNAc residues on recombinant
mAbs irrespective of the subcellular localisation [33, 48, 49], a
phenomenon not understood so far.

Targeting to Vacuoles

Plants seem to possess functionally distinct vacuolar compart-
ments that can exist site by site in the same cell: lytic vacuoles and
storage vacuoles [50]. Whereas storage vacuoles are mainly found
in storage tissue (seeds, tubers, etc), lytic vacuoles are normally
present in all tissues and share some of their basic properties with
the lysosomes of animal cells. The mechanisms which direct solu-
ble proteins from the secretory pathway to the different vacuolar
compartments in plant cells are not fully understood. Different tar-
geting signals, different sorting mechanisms and different routes are
present and partially overlap [51-57]. Unexpected deposition in
storage vacuoles has been reported for some proteins containing
KDEL-fusions in seeds [34, 45-48], as well as for other
recombinant proteins [48, 58-60]. Vacuolar targeting sequences,
which direct (heterologous) proteins to vacuoles have been charac-
terized [51, 61-63] and found use in the production of several
recombinant proteins, among them the therapeutic human enzyme
prGCD [see below; 64, 65, 66]. Paucimannosidic protein N-
glycosylation has been regarded as most typical for vacuoles [67];
however, oligosaccharide analysis of proteins deposited in the
vacuole revealed the possibility for oligomannosidic and complex-
type N-glycosylation as well. Interestingly, paucimannosidic N-
glycans are needed for in vivo efficacy of a special class of human
enzymes used in enzyme replacement therapies, including glu-
cocerebrosidase (GCD), which is used to treat Gaucher disease.
Indeed, upon fusing GCD to a C-terminal vacuolar targeting signal,
a recombinant enzyme that carries this truncated oligosaccharide
was produced using carrot cells as expression platform [64]. This
enzyme exhibited enhanced in vivo efficacy compared with the
currently available drug Cerezyme® produced in CHO cells [64,
68]. The carrot-produced enzyme, also known as Elelyso™, has
been approved by the FDA in March 2012. Notably, although Ele-
lyso™ carries plant-specific xylose and fucose, no obvious adverse
side effects that could be attributed to these N-glycan residues were
reported during clinical trials. This work has been a significant
milestone for the parenteral administration of plant-produced gly-
coproteins and at the time of writing it is the only recombinant
plant-derived human therapeutic protein approved and on the mar-
ket.

5. IMMUNOLOGICAL RELEVANCE OF PLANT-SPECIFIC
CARBOHYDRATES

The possible adverse immune reactions of the “non-human”
B1,2-xylose and core al,3-fucose N-glycan epitopes on plant pro-
duced proteins have been a matter of debate. IgE antibodies that
bind to these epitopes have been found in the serum of patients
allergic to pollen and insect venoms [69]. In vitro assays using puri-
fied glycoprotein allergens from plants [70, 71] show that these N-
glycans contribute to histamine release from basophil cells when
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incubated with sera of these patients. In contrast, skin prick tests
suggest poor biological activity of these carbohydrate-specific IgE
antibodies [72]. It was concluded that the carbohydrate-specific IgE
antibodies are of limited clinical relevance since the observed bio-
logical reactions require high concentrations of glyco-allergens and
these reactions were only observed with sera from a selected group
of allergic patients [73]. Also IgGs binding to plant fucose and
xylose epitopes have been found in sera, also from non-allergic
people, albeit at low levels [74]. It is not likely that this is caused by
dietary exposure of plant proteins, as this normally leads to toler-
ance. As in the case of IgE in allergic patients, appearance of these
antibodies is most likely caused by pollen or venom exposure. Fur-
thermore, rabbits were shown to raise carbohydrate specific IgG
antibodies after parenteral immunization with plant produced anti-
bodies carrying the fucose and xylose epitopes [75, 76]. However,
immunization was in the presence of complete Freund’s adjuvant,
which is not likely to be used in humans. Mice do not mount such
carbohydrate specific immune responses, suggesting that immuno-
genicity of these epitopes might be species specific [77]. It was
shown that topical application of glycoproteins from plants does not
cause adverse reactions on humans [78, 79]. It should also be noted
that intravenous application of Elelyso™, the carrot-produced hu-
man glucocerebrosidase which does carry plant specific xylose and
fucose, did not display obvious adverse effects during human clini-
cal trials. Nevertheless, for both regulatory and safety issues, the
presence of plant specific fucose and xylose residues has to be con-
sidered.

6. PLANT N-GLYCO-ENGINEERING
Elimination of Plant-specific N-glycan Residues

A major concern when using plant-produced recombinant gly-
coproteins in therapeutic applications is the presence of plant spe-
cific xylose and core al,3-fucose residues (Fig. 2, glycoform 1b).
Such glycan residues are not present in humans and are thus un-
wanted on proteins intended for therapeutic use. The elimina-
tion/disruption of the genes that are responsible for the synthesis of
these glycan-epitopes, i.e. B1,2-xylosyltransferase and core al,3-
fucosyltransferase (XylT, al,3-FucT) provides an elegant method
to solve this issue. The feasibility of this strategy was proven by the
generation of Arabidopsis thaliana knock-out plants lacking XyIT
and al,3-FucT. Those plants were viable without any obvious phe-
notype under standard growth conditions but produced proteins
carrying complex N-glycans lacking xylose and fucose (Fig. 2,
glycoform 2) [42, 80, 81]. These results were a major breakthrough
because they (i) demonstrated the plasticity of plants to tolerate the
manipulation of the N-glycosylation pathway without an obvious
adverse phenotype; (i) generated the central acceptor template (i.e.
GnGn structures) for a large number of modifications; and (iii)
enabled a significant increase in glycan homogeneity, which may
have substantial implications for downstream processing and meets
regulatory requirements for therapeutic proteins. Subsequently,
elimination/RNAi mediated knock-down of XylT and al,3-FucT
was performed in several other plant species potentially well suited
for the production of human proteins, including the aquatic plant
Lemna minor [82], the moss Physcomitrella patens [83], Nicotiana
benthamiana (AXTFT) [23], Medicago sativa [84] and rice cells
[85]. N-glycosylation profiles of mAbs (and other proteins) pro-
duced in some of the glyco-engineered hosts contained GnGn as a
single dominant structure accounting for 90 % of the N-glycan
structures [23, 86]. In some cases GnGn was the only carbohydrate
species detected [82]. Biological activity assays of such glyco-
engineered mAbs revealed unaffected antigen binding and CDC
activity, but significantly enhanced ADCC potency compared with
mAbs produced in wild type plants and CHO cells [82, 87]. Also, a
plant-produced, fucose-free mAb against Ebola virus exhibited
superior in Vivo potency in immune protection assays [86].
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Le* (Fig. 2, glycoform 1a) is a N-glycan structure normally
infrequently present on plant proteins; however it was detected at
surprisingly high levels on some plant-produced recombinant pro-
teins. This is the case for recombinant human EPO (thEPO) pro-
duced in tobacco and moss [27, 28]. Even though Le® structures can
be synthesized by humans their abundance on human glycoproteins
is low. Elimination of the responsible glycosyltransferases (al,4-
fucosyltransferase and p1,3-galactosyltransferase) by disruption of
the corresponding genes was recently reported for moss [88]. As a
consequence a thEPO with largely homogeneous GnGn glycosyla-
tion lacking Le® oligosaccharides was produced.

Overall results obtained by the in planta elimination of specific
N-glycan residues have placed plants in a particularly favourable
position for the production of the next generation mAbs and
“biobetters”. Thus, biopharmaceutical companies like Biolex thera-
peutics (lemna), Greenovation Biotech GmbH (moss) or Protalix
Biotherapeutics (carrot cells) have prominently posted their plant-
derived products with optimized N-glycosylation profiles in their
company portfolio. Clinical trials with such potential “biobetters”
are underway [89] and the outcome will hopefully confirm their
therapeutic value in the near future.

Mammalian-type Core Fucosylation

N-glycans on human glycoproteins are typically decorated with
core al,6-fucose residues, a carbohydrate not synthesized in plants.
In recent years, this special type of glycosylation has elicited a lot
of interest because it modulates IgG (mAb-) Fc activity [reviewed
in 4] and several studies have been published dealing with the
modulation of this N-glycan residue in mammalian cells. Despite
remarkable success it is to date impossible to use mammalian cells
for the production of mAbs with identical N-glycosylation profiles
differing only in the presence/absence of core ol,6-fucose
[reviewed in 12]. Thus, apart from the presence/absence of fucose
other minor differences in the glycosylation profiles might contrib-
ute at least to some extent to altered mAb activities.

Glycoengineered plants such as N. benthamiana AXTFT that
allow the generation of mAbs with virtually a single GnGn N-
glycoform provide an ideal host to address this issue. Indeed upon
overexpression of the human al,6-FucT (FUT8) in AXTFT, it was
possible to produce human-type fucosylation (Fig. 2, glycoform 3),
finally allowing the generation of mAbs with and without core
al,6-fucose while maintaining an otherwise identical N-
glycosylation pattern [24, 87]. In the course of these studies Fc-
glycosylation on the antiviral activity of the broadly neutralizing
HIV mAb 2G12 was investigated. In contrast to the CHO-derived
2G12, which carries a mixture of 6 different glycoforms, the carbo-
hydrate structures of 2G12 produced in different glycoengineered
plants differed only in one or two glycan residues (Fig. 2, glyco-
forms 1b, 2, 3 and 7), thus allowing precise investigation of the
impact of single glycan moieties on mAb activity [87]. These re-
sults demonstrate that presence/absence of fucose, irrespective of its
al,3- or al,6-linkage, strongly influences downstream activities,
like binding to Fc-y-receptor IIL. In addition fucose-free 2G12 gly-
coforms mediated higher antiviral activity against various lentivi-
ruses. This study was the first to investigate the in vitro and in vivo
impact of particular glycoforms in the antiviral activity of mAbs,
and pointed to the importance of optimal N-glycosylation for im-
munotherapeutic reagents.

Extension of Complex N-glycans by GlcNAc Residues

Bisected and branched (tri- and tetra-antennary) complex N-
glycans are commonly synthesized in humans. These multi-
antennary structures are involved in various biological functions
[90] and are substrates for further galactosylation and multi-
sialylation. They are generated by the transfer of terminal GIcNAc
residues to the GnGn-core structure through the action of N-
acetylglucosaminyltransferases (GnTIII-V Fig. 2, glycoforms 4-6).
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Like mammals, plants possess highly active GnTs that catalyse the
transfer of P1,2-GIcNAc residues to the core al,3- and al,6-
mannosyl residues (GnTI and GnTII), producing GnGn structures
(Fig. 1). However, activity of other GnTs has never been detected
in plants and thus plant N-glycans must lack the respective carbo-
hydrate formations.

Attempts to produce bisected N-glycans in plants (Fig. 2, glyco-
form 4) first relied on the overexpression of mammalian $1,4-N-
acetylglucosaminyltransferase III (GnTIII), which indeed resulted
in the formation of bisected carbohydrates, accompanied with un-
usual structures [91-95]. In the course of these studies it became
evident that the correct sub-Golgi targeting of heterologous glyco-
sylation enzymes is of the outmost importance in the formation of
N-glycan structures. The use of chimeric GnTIII containing target-
ing sequences that direct it to the trans-Golgi compartment allowed
the production of proteins carrying largely fully processed bisected
structures, instead of unusual hybrid structures when the non-
engineered version of the enzyme was expressed [24, 28].

To obtain tri- and tetra-antennary complex N-glycans in plants
(Fig. 2, glycoforms 5 and 6) the respective mammalian enzymes
GnTIV and V were overexpressed [96]. As already seen for GnTIII
unusual incompletely processed structures were synthesized when
the full length native protein was expressed. Thus, the catalytic
domains of GnTIV and V were fused to different Golgi-targeting
sequences to allow correct subcellular targeting. In this case it
turned out that upon targeting the enzymes to a medial Golgi com-
partment the generation of tri- and tetra-antennary structures is most
efficient [28,96]. Multi-antennary complex N-glycans provide an
ideal starting point for further elongation of plant N-glycans.

p1,4-Galactosylation

B1,4-Galactosylation is a widespread modification of complex
N-glycans in mammals. Although the precise impact of this residue
on protein function is not known, two aspects have raised attention:
(i) the degree to which the resulting glycoform can vary between
different physiological conditions, which points to an active role of
the N-glycan residue in modulating IgG activity in vivo [reviewed
in 3, 4]; and (ii) the requirement of 1,4-galactosylation as an ac-
ceptor substrate for protein sialylation, the final and most complex
type of human glycosylation.

Plant N-glycans do not carry this terminal elongation because
they lack the corresponding enzyme, [1,4-galactosyltransferase
(GalT). Several groups have reported the overexpression of the
human enzyme in plants, with different degrees of success [97-
101]. Although P1,4-galactosylated structures were formed in
plants, the presence of incompletely processed structures and the
reduction of xylose and fucose indicated that GalT and the endoge-
nous enzymes compete for the same acceptor substrate. Advances
in the generation of complex bigalactosylated structures were
achieved by targeting GalT to a late Golgi compartment. mAbs
coexpressed with such a hybrid enzyme exhibited a single dominant
Fc-N-glycan species, namely a bigalactosylated structure (Fig. 2,
glycoform 7) [102]. Conflicting reports about the role of terminal
galactose residues in modulating IgG activity have been published
[4]. Glyco-engineered plants as described by Strasser et al. [102]
provide a suitable platform for producing bigalactosylated antibod-
ies which can be used to further investigate the importance of this
abundant IgG glycoform. Another important aspect is that these
plants synthesize the appropriate acceptor substrate for the final
glycosylation step in human, terminal sialylation.

Another human N-glycan structure is Lewis-X epitopes (Le*;
Fig. 2, glycoform 10), generated by the action of B1,4-GalT and
al,3-fucosyltransferase [Xa. It is well known that Le*-containing
structures induce antigen-specific immune responses [103]. Indeed,
by the overexpression of the two mammalian enzymes this
oligosaccharide was synthesized in tobacco [104]. Thus, plants



5508 Current Pharmaceutical Design, 2013, Vol. 19, No. 31

Bosch et al.

AB1,3-GalT
Aal4-FucT

AXyIT 2

Aal,3-Fue ®
Lol lad ff 9- mo,

o
>

o

mm

EEOC

7
[ __8i
2 ﬁllaol
B ¢ | S———
) W
© ™ lST

Fig. (2). Schematic illustration of plant engineered glycoforms. Reactions and enzymes to generate certain N-glycan structures are indicated. Numbers 1 to 10
refer to the different glycoforms generated on plant-derived proteins either naturally formed or engineered.

1a: (FA)FA)XF’ (Le" structures); 1b: GnGnXF’ or through targeted glyco-engineering 2-10; 2: GnGn; 3: GnGnF®; 4: GnGn(bi) (bisected structures); 5:
[GnGn]Gn or Gn[GnGn] (triantennary structures); 6: [GnGn][GnGn] (tetraantennary structures); 7: AA (B1,4-galactosylated structures); 8: NaNa (02,6-
sialylation); 9: [NaNa][NaNa] (multiantennary o2,6-sialylation); 10: Le* containing N-glycans.

XylIT: B1,2-xylosyltransferase; al,3-FucT: plant core al,3-fucosyltransferase; al,6-FucT: core al,6-fucosyltransferase (FUTS8); GnTIII: 1,4-mannosyl-
B1,4-N-acetylglucosaminyltransferase; GnTIV: al,3-mannosyl-f1,4-N-acetyl-glucosaminyltransferase; GnTV: al,6-mannosyl-p1,6-N-acetyl-

glucosaminyltransferase; p1,4-GalT: B1,4-galactosyltransferase; ST: a2,6-sialyltransferase.

producing Le* epitopes can be explored as a prospective host for
production of vaccines with enhanced immunogenicity.

Terminal Sialylation

Terminal sialylation is the final and most complex step of hu-
man N-glycosylation. Many drugs require sialylated oligosaccha-
rides for optimal therapeutic potency. Until recently, manufacturing
has been restricted to mammalian cell-based systems that are able
to perform this important posttranslational modification.

Convincing evidence suggests that plants do not sialylate gly-
coproteins [105, 106]; notwithstanding that genes homologous to
mammalian CMP-sialic acid transporters and sialyltransferases
have been detected in some plants [107, 108]. These findings are
interesting since plants do not synthesize the donor substrate CMP-
Neu5Ac or the acceptor substrate Galp1,4-GlcNAc. Protein sialyla-
tion is particularly difficult to accomplish in plants, even in the
presence of [B1,4-galactosylated structures, because plants lack
some further essential prerequisites: (i) the biosynthetic capability
to produce the sugar nucleotide precursor CMP-sialic acid, specifi-
cally CMP-N-acetylneuraminic acid (CMP-Neu5Ac); (ii) a trans-

porter that delivers CMP-sialic acid into the Golgi in sufficient
amounts; and (iii) a sialyltransferase to transfer sialic acid from
CMP-NeuSAc to terminal galactose on the nascent glycoprotein.
The enzymes involved in protein sialylation and their substrates
must work in a highly coordinated fashion at different stages of the
pathway. Consequently, organelle-specific targeting of several
components is required for proper protein sialylation. Initial at-
tempts to introduce NeuSAc residues into plant N-glycans involved
the expression of some of these proteins in plants [109-111].

Recently, Castilho et al. [112] introduced six proteins from the
mammalian sialylation pathway into plants, permitting the biosyn-
thesis of sialic acid, its activation, transport into the Golgi, and
finally its transfer onto terminal galactose. Namely, the mouse
UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine
kinase (GNE), the human N-acetylneuraminic acid phosphate syn-
thase (NANS), human CMP-N-acetylneuraminic acid synthase
(CMAS), mouse CMP-sialic acid transporter (CST), human f$1,4-
galactosyltransferase and the rat a2,6-sialyltransferase (ST). Coex-
pressed target proteins were decorated with structures sialylated up
to 80 % [112,113]. This is remarkable considering the requirement
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for coordinated overexpression of the mammalian proteins which
are transiently delivered to the same cell and act at various different
stages and in different subcellular compartments (i.e. cytoplasm,
nucleus, Golgi). These results are thus a milestone in plant glyco-
engineering because they show the enormous plasticity of plants
which allows them to tolerate mammalian glycosylation and the
large extent of conservation between the biosynthetic pathways of
mammals and plants. Moreover, this reconstruction of an entire
mammalian biosynthetic pathway in plants may serve as a model
for engineering other complex traits into plants, which could open
new possibilities in plant breeding and biotechnology.

Plant-produced EPO containing tri- and tetra-antennary N-
glycans [28, 114] has paved the way for the generation of multi-
antennary sialylated therapeutic proteins in plants (Fig. 2, glyco-
form 9), a major prerequisite for full biological efficacy of many
drugs [115]. Notably, sialylated multi-antennary structures are
amongst the most complex structures found in mammals and the
controlled generation of such structures in plants provides another
major step towards the versatile use of plants as an expression sys-
tem for proteins with highly complex glycosylation patterns.

7. FUTURE PERSPECTIVES

Plants are amazingly amenable to glyco-engineering. Many
glyco-traits have already been introduced in plants and very often
this has resulted in high glycoform homogeneity of the co-
expressed target proteins. This offers several opportunities, both
with respect to basic research as well as for applications.

Perspectives for Fundamental Research

It is clear that N-glycans play crucial roles in protein-protein
interactions, and through that, in processes such as cell-to-cell
communication, signal transduction and infection. This became
apparent with the recognition of the N-glycan nature of the ABO
blood group types [116]. More recently, it has been shown that even
minor modifications can completely reverse a molecule’s function,
e.g. the addition of a single sialic acid molecule converts IgG from
a pro-inflammatory into an anti-inflammatory molecule [6]. How-
ever, the role of different N-glycan structures on proteins participat-
ing in many biological processes is still unknown. Progress in this
research is to a large extent impeded by the lack of availability of
defined and homogeneous glycoforms of the proteins under study.
Panels of glyco-engineered plants that can produce different glyco-
variants of the same protein in a homogeneous manner open new
opportunities for research. In particular, transient expression sys-
tems can rapidly deliver purified, defined glycoproteins in sufficient
amounts, certainly for research purposes. Thus, this technology has
great potential to increase our understanding of the structure-
function relationship of oligosaccharides in biological processes.
This in turn, will undoubtedly have impact on the discovery and
development of new therapies and drugs.

Perspectives for Application

For several reasons, plants have been considered as production
platform for therapeutic proteins. A key success of their commer-
cial application may very well be their superior glycosylation char-
acteristics. The recently FDA approved glucocerebrosidase pro-
duced in carrot cells is an example. Targeting to the vacuole in
these non-glycoengineered cells resulted in more than 90 % of its
N-glycans being terminated with mannose residues [64]. Mannose
ending N-glycans are necessary on glucocerebrosidase for uptake
by macrophages, the cells that are deficient for this enzyme in Gau-
cher patients. The production of a glucocerebrosidase with a homo-
geneous N-glycosylation profile in plants is a clear advantage com-
pared to commercial CHO produced glucocerebrosidase, which is
galactosylated and sialylated and requires in vitro deglycosylation
to expose terminal mannose residues.
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The availability of glyco-engineered plant expression systems
will further broaden the scope of different proteins that can success-
fully be produced by plants. An example of this, although not
commercialised yet, is the production of highly homogeneously
galactosylated antibodies by glyco-engineered N. benthamiana
which outperformed the same antibody produced by CHO cell in a
virus neutralization assay [102]. It has become apparent that differ-
ent proteins may accumulate optimally in different plant species,
depending on characteristics of the protein and the specifics of the
plant platform. This, and Freedom To Operate issues, explain the
many plant species currently under investigation as production
platforms. Even mushrooms are evaluated for their capability to
serve as a glycoprotein production platform [117]. However, not all
relevant glyco-traits are already present in all of these plant species
and in the near future humanisation of glycosylation will likely be
established in the plant species of preference. On the other hand,
consolidation to a limited number of commercially exploited plant
expression systems can be expected as well.

Perhaps the most intriguing opportunity offered by the glyco-
flexibility of plants, is to design N-glycans normally not found on
the target proteins. By doing so, new N-glycans could provide fea-
tures to the carrier glycoprotein such that it acquires improved
therapeutic performance. This could be an important advantage for
new subunit vaccines [118]. Subunit vaccines need a design such
that they optimally interact with antigen presenting cells (APCs) to
mount a protective immune response. Thereto, the vaccine should
be taken up by an APC with the aid of so-called pattern recognition
receptors (PRRs) such as toll like receptors and C-type lectin recep-
tors (CLRs). As a consequence of receptor binding and subsequent
vaccine uptake cytokines are secreted by the APC to stimulate or
inhibit the differentiation or development of other immune cells.
Parallel to cytokine secretion, fragments of the degraded vaccine
are presented to T-cells on MHC molecules and co-stimulatory
molecules such as CD80/86 are expressed on the surface of the
APC to augment T-cell differentiation. Carbohydrate moieties, such
as glycans on glycoproteins, play a pivotal role in antigen uptake by
antigen presenting cells through CLRs. Since the specificity of
CLRs for their carbohydrate ligands is known, glyco-engineering in
plants holds the promise of producing subunit vaccines that are
recognized by a specific CLR and another PRR. This dual recogni-
tion is important for an effective response. Interaction with a CLR
often results in an adjuvant function. In many cases, adjuvants are
added to vaccines as molecules to improve vaccine performance (in
trans). By designing N-glycans that specifically target CLRs and
which are covalently attached to the antigen (Cis-configuration),
better immune responses may be evoked [119, 120].

Only now we are beginning to understand the factors that influ-
ence differential N-glycosylation and how N-glycans affect protein
functions. It has become apparent that a different application and a
different mode of action may require a different N-glycosylation
profile of a biopharmaceutical protein. Currently, mammalian cell
lines are the system of choice for the production of many therapeu-
tic glycoproteins. In the near future this leading position might be
challenged by novel expression platforms with improved glycosyla-
tion machineries, including plants, bacteria, yeast and insect cells
[29]. Plants have demonstrated a high degree of tolerance towards
changes in the glycosylation pathway, allowing the modification of
recombinant glycoproteins in a specific and controlled manner. This
feature is currently unrivalled by alternative expression platforms.
The outcomes have already contributed to and will continue to ad-
vance this field, ultimately underpinning the production of next
generation biopharmaceuticals.
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ABBREVIATIONS

ADCC
CDC

GIcNAc =

= Antibody-dependent cell-mediated cytotoxicity
= Complement-dependent cytotoxicity

N-acetylglucosamine
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