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  1 
General Introduction 

The formation of fluorinated monolayers with a minimized surface energy and an 

improved chemical stability on specific substrates will enable outstanding tribological 

properties and is the main goal of the research described in this thesis. Inorganic 

substrates, such as Si(111), silicon carbide (SiC), chromium nitride (CrN), and organic 

nano-micro-textured substrates such as PMMA, PDMS, PS and PEEK have been studied. 

Both fluorinated and non-fluorinated monolayers with a high packing density were 

obtained using functionally different surface attaching groups like alkenes, alkynes, 

enynes, silanes, and phosphonates. Most of these attaching moieties have been used 

before, but the deepening understanding of the factors that determine monolayer qualities 

allowed the development of even better attaching groups, like the ynenes.  

Newly synthesized fluorinated alkyne-derived monolayers will be described exhibiting 

a minimized surface energy and an exceptionally low critical surface tension. The 

chemical stability in various aqueous media at different temperatures was also studied. 

Nano-tribology measurements were performed using atomic force microscopy (AFM) to 

verify a minimum in adhesion, friction and wear. The organic monolayers obtained on 

various surfaces in this study will be useful in MEMS/NEMS high performance industrial 

applications.  
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1.1 Introduction 

 

Micro/Nano Electro Mechanical Systems (MEMS/NEMS) are becoming increasingly 

important for a wide range of products, including airbag sensors, digital light projector 

chips (beamers), microfluidic devices, car tire pressure monitoring systems, etc. Given 

their potential, several industrial and governmental roadmaps1 are forecasting the 

“imminent broad-based impact of MEMS/NEMS technology in modern society” or “the 

world we are living is fashioned by interfaces, surfaces and ultra-thin films”2 suggesting 

that MEMS/NEMS devices should by now be as common as the personal computer. 

Tremendous progress has been made in micro-fabrication techniques using 

monocrystalline silicon both as an electronic and a mechanical bulk material.  

Miniaturization of mechanical/electronic devices is a lot more than just scaling down the 

device components. The design engineer needs to weigh for instance the magnitudes of 

the possible consequences from the reduction on both the volume and surface of the 

particular device. An increase of the friction force with respect to the inertial force is 

inherent to an increase in the ratio between surface and bulk material. Also wear imposes 

severe constraints on how much material may erode before miniaturized hightech devices 

stop working. The development of highly robust surfaces with a reduced adhesion, 

friction, and resistance against wear is therefore important for many of these 

MEMS/NEMS devices. However, large-scale implementation of MEMS and NEMS is 

still highly challenging, and significantly limited by incomplete control over the relevant 

surface parameters.  

Since the invention of the transistor in 1947, there has been a widespread and 

continuing interest in understanding the physical and chemical properties of 

monocrystalline silicon semiconductor surfaces.3, 4 Also outside the field of 

microelectronics, such as genomic, proteomic,5 lab-on-chip,6 microfluidic7 and other 

BioMEMS applications require adequate control of surface characteristics by applying 

suitable monolayers. The enormous resources of (bio-)organic surface chemistry can be 

used to permit access to a broad range of surface functionalities.8-10  

  Surface modification by organic monolayers was pioneered in 1946 by Zisman et al.,11 

who used long-chain hydrocarbons with polar end groups to form monolayer films on 

several polar surfaces. After that Sagiv12 introduced the concept of Self-Assembled 

Monolayers (SAMs) in 1980. These monolayers have thicknesses in the range of a few 

nanometers, but they are able to significantly transform the physical properties (electrical 

and mechanical) of the substrates. Some unique properties of SAMs are due to their 

highly ordered and oriented structure, and the flexibility to incorporate almost any groups 
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in the chain (or at the terminal position of the anchoring molecules). This makes them a 

highly versatile tool in making a variety of surfaces with tuned chemical and physical 

properties. SAMs have thus found application in areas such as protective layers, analytical 

sensor layers, and catalytic structures.13 Many types of SAMs have been studied over the 

last three decades, with thiolates on gold as likely the most studied ones due to their high 

order and ease of formation.14 

The most important criteria in the formation of SAMs are the choice of the surface and 

a chemically compatible grafting molecule to control various monolayer parameters such 

as density, orientation, stability, etc. There are three main structural features of SAM-

forming monomers. a) Terminal functional group, which dictates the new surface 

properties, b) hydrocarbon linker chain (typically polyethylene), which assists in the 

packing and organization of the monolayer, and c) an anchoring group, linking this 

‘linker-functionality’ system to the substrate by specific interactions. A wide variety of 

anchoring groups have been studies over the years, such as thiols, alcohols, alkynes, 

alkenes, siloxanes and phosphonates. They are known to self-assemble on a wide variety 

of active surfaces by forming covalent linkages on the surface having hydrogen, metal, 

hydroxyl and/or oxide termination. 

1.2 Organic Monolayers on Silicon-Rich Surfaces 

1.2.1 Silicon Surfaces 

A variety of surface passivation methods has been investigated to preserve the nearly 

ideal electrical properties of oxide-free Si(111) surfaces in ambient conditions.8 The 

formation of in particular Si-C bonds has attracted considerable interest due to the kinetic 

inertness of these bonds as compared to Si-O or Si-H bonds. The almost non-polar Si-C 

bond is chemically more stable than Si-O bonds on oxidized Si surfaces, and less 

susceptible to hydrolysis and other nucleophilic substitution reactions.15 Hydrogen-

terminated Si(111) surfaces have been functionalized by a variety of methods using 

alkenes, alkynes, –OH,16 –C(O)H, –NH2 , –Br, –C(O)Cl, and –SH reactive groups.17 For 

the formation of Si-C bonds various methods are used, like radical initiator, thermal, 

photochemical UV and white light-initiated reactions, catalytic coupling using Grignard 

chemistry on halide-terminated surfaces to obtain novel mechano-chemical and 

electrochemical surface modification routes as shown in Figure 1.8 

For molecules with just one binding site the resultant layer will typically be a 

monolayer. Furthermore, as the underlying silicon surface can be tuned both electronically 

and topographically this system has a huge versatility. Si(111) faces can be prepared to be 
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atomically flat with a combination of mechanical and chemical polishing, and Si(111) and 

Si(100) faces can also be provided with a micro and nanoscale roughness using a range of 

isotropic and anisotropic wet and dry etching techniques.18  

The challenge with this covalently coated Si is to achieve high-quality layers without 

the formation of silicon oxide. As (partly) oxidized surfaces will be detrimental for 

electronic properties of electronic devices, applications in aqueous media thus require to 

prepare oxide-free modified substrates of substantial stability. Amongst other conditions 

this requires that the surface modification is performed in an inert atmosphere with 

degassed chemicals of high purity (typically in GC/MS >99.99%). The difficulty of this 

challenge is demonstrated by many examples in the literature where visible SiOx peaks are 

observed in X-ray photoelectron spectroscopy (XPS) scans of the Si 2p region of the 

spectrum binding energy at 102 - 103 eV. 

 

Figure 1. Several modification routes for hydrogen-terminated Si(111) surfaces.10, 19, 20  

1.2.2 Silicon nitride (SiN) surfaces 

Silicon nitride surfaces have been extensively studied due to their remarkable dielectric 

properties and resistance to chemical and mechanical attack (wear resistance) enabling 

good tribological performance under a wide range of conditions.21 During the last 20 years 
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the surface chemistry of SiN and also SiC has been greatly developed (Figure 2), 

particularly because of its increasing application in the semiconductor industry. 

 

Figure 2.  Annual trends in the number of publications for silicon carbide (SiC) and nitride (SiN). 

(from: www.scopus.com, with the terms ”Silicon Nitride” and “Silicon Carbide”) 

 

Well-controlled and stable modification of un-oxidized SiN has been made possible 

with the covalent attachment of organic monolayers.22, 23 This has opened up many new 

opportunities for optoelectronic applications, including optoelectronics, biosensors, and 

waveguide material with a refractometric or fluorescence detection technique. In addition, 

the mechanical robustness and electrical resistance of SiN allow for the development of 

micro- and nano-electromechanical systems (MEMS and NEMS) and for use as coating 

material in sensors based on electrical impedance or vibrating micro-cantilevers.24 

Examples of silicon nitride as modified with different organic monolayers are shown in 

Figure 3. 

 

Figure 3. Examples of silicon nitride surface modified with different organic monolayers.
22, 25-27
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1.2.3 Silicon carbide (SiC) surfaces 

Silicon carbide is being increasingly studied, due to its outstanding mechanical hardness 

(Mohr’s Index = 9) and excellent chemical stability.   As a result, it is also heavily 

investigated for use in high-temperature tribological systems.28, 29 To this aim, more 

detailed information on its tribological behavior is required, in particular, information on 

friction coefficients and wear rates under different conditions to ensure efficient and 

reliable performance. Furthermore, a deeper understanding of the wear mechanisms and 

of the relationship between these mechanisms and the nanostructure of the material is 

needed to develop improved materials with an enhanced performance.30 

SiC with a chemically modified surface layer is also used in, for example, 

refractometers and biosensors.31 Some theoretical studies have been reported on the 

chemisorption of organic molecules onto clean or SiC surfaces, which show the potential 

of this material to form hybrid structures for bio(techno)logical applications. This is of 

interest, since the high biocompatibility of SiC itself allows its use in medical 

applications, for instance as a supporting material of bioactive layers for sensing or as a 

passivation coating for prostheses or microelectrodes. Both such sensing and biomedical 

applications would benefit from specific surface modification.32  

With an eye to such chemistry, our group reported recently on the thermal and UV 

light-induced modification of poly-SiC hydroxyl-terminated surfaces as shown in Figure 

4. In this manner Markovnikov addition was obtained, yielding highly stable and good-

quality monolayers from several simple alkenes (e.g., contact angles up to 107° for 

octadecene-derived monolayers on SiC).31 This reaction also works well on the probably 

the best studied silicon-rich material, namely glass,33 which leads us to the topic of the 

next paragraph.  

 

Figure 4. Attachment of alkyl monolayers on hydroxyl-terminated SiC surfaces.
31
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1.3 Organic Monolayers on Oxide Surfaces 

Hydroxyl-terminated oxidic substrates provide a highly interesting class of materials, 

which have been used for a plethora of fundamental studies and applications.  Surface 

modification thereof by organic monolayers can be aimed for in various different 

manners, several of which have become rather routine practices. Figure 5 shows different 

anchoring groups provided on a hydroxyl-terminated inorganic substrate. 

 
Figure 5. Alkyl monolayers using different anchoring groups for the modification of metal oxide 

surfaces.
34-36

 

 

Over the years several researchers have worked on tailoring the anchoring molecules to 

tune their properties in order to understand and further improve the formation of SAMs. 

Knowledge is thus obtained in the underlying mechanism of competing reactions such as 

intermolecular, molecular-substrate and molecular-solvent interactions. Selection of the 

right surface and anchoring molecules provides a flexible tool to develop materials with 
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desired properties at both the molecular and material level.  As far as surface modification 

of oxidic materials is concerned, topics of interest require the possibility to use easy-to-

synthesize, apolar molecules to provide high chemical stability to the modified surface, by 

using mild, non-corrosive reaction conditions, possibly combined with light-induced 

reactivity to allow non-contact patterning.  Such chemistry using terminal alkenes has 

initially been developed by our group and that of Hamers34,35 on glass, hydroxyl-

terminated SiC and TiO2.  More recently, this has been extended to surfaces like 

aluminum oxide, ITO and ZnO, and of course the question arose whether it can be 

extended even further, so as to provide other materials with fundamentally new surface 

properties.  In fact, the chemistry outlined in this thesis on the modification of chromium 

nitride is an example of precisely this. A review of this topic is forthcoming.37 

1.4 Superoleophobic Surface Modification 

Surfaces and materials that are to a very high degree repellent to fluids are of great 

interest for numerous commercial and specialty applications, including non-fouling,38 self-

cleaning,39 and stain-resistant clothing.40 The primary measure of wetting of a liquid on a 

non-textured (or smooth) surface is the static or equilibrium contact angle θ. It is given by 

Young’s relation as follows: 

          cos � = 	
����	���

���
     

Here, γ refers to the interfacial tension and S, L and V refer to the solid, liquid and 

vapor phases, respectively. The solid–vapor interfacial tension (γSV) and the liquid–vapor 

interfacial tension (γLV) are also commonly referred to as the solid surface energy and the 

liquid surface tension, respectively. Surfaces that display contact angles θ > 90° with 

water are considered hydrophobic, while surfaces that display contact angles θ < 90° with 

water are considered hydrophilic. 

Relatively recently, a new classification, known as superhydrophobic surfaces, has 

emerged. Superhydrophobic surfaces display water contact angles greater than 150° along 

with low contact angle hysteresis.41 Here, contact angle hysteresis refers to the difference 

between the advancing and the receding contact angles. Water droplets can easily roll-off 

and/or bounce on such surfaces. Note that all superhydrophobic surfaces are nano or 

micro textured (or rough), as the maximum water contact angle measured thus far on a 

textured surface is ~160°.42 The Cassie-Baxter model or Wenzel model are needed to 

describe the corresponding contact angles depending on the wetting state (see Figure 6): 
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Figure 6. The micro/nano texture of the substrate will co-determine the corresponding contact 

angle. Wenzel model (middle) whereby the water droplet penetrates the protuberances down to the 

surface, and Cassie-Baxter model (right side) which assumes the water droplet retains its shape whilst 

perched on top of the structures. 

 

Superhydrophobic surfaces are pervasive in nature with various plant leaves, gecko’s 

feet, water strider, troughs on the elytra of desert beetles and insect wings, displaying 

extreme water repellency. Inspired by natural superhydrophobic surfaces, several 

researchers have also engineered artificial (or synthetic) superhydrophobic surfaces, as 

displayed in Figure 7.43, 44 

 

Figure 7. (a–c) Schematic of a liquid droplet in the Cassie-Baxter state on a coarser textured surface, 

a finer textured surface and a hierarchically textured surface, respectively. (d–f) SEM images of the 

coarser texture, finer texture and the hierarchically textured surface fabricated by overlaying the finer 

texture on the coarser texture. (g) Droplets of various low surface tension liquids displaying very high 

contact angles on the hierarchically textured surface. (h and i) SEM images showing the vicinity of the 
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contact line along the coarser length scale texture and the finer length scale texture, respectively, on 

top of the hierarchically structured surface. The distortions in the contact line are evidence of air 

trapped at both the length scales.44 The vicinity of the contact line was imaged using a PDMS droplet 

that was cross-linked on top of the hierarchically textured superoleophobic surface. 44 

In a similar manner, based on their respective contact angles with oils, it is possible to 

classify surfaces as oleophilic (θ < 90°), oleophobic (θ > 90°) or superoleophobic (θ * > 

150° and low contact angle hysteresis). Here, θ* refers to the apparent contact angle, that 

is the contact angle on a textured surface. In contrast with the numerous naturally 

occurring superhydrophobic surfaces (see e.g. Figure 8), there are not known natural 

superoleophobic surfaces. This is because oils possess significantly lower surface tension 

values than water and consequently spread on most natural and synthetic surfaces. 

Previous work42 has explained how re-entrant surface textures, in conjunction with surface 

chemistry and roughness, can be used to engineer superoleophobic surfaces, even with 

extremely low surface tensions liquids such as oils and alcohols.  

As an example of a low surface energy material octameric fluorinated polyhedral 

oligomeric silsesquioxane (Fluoro-POSS) nano-composite can be mentioned. Fluoro-

POSS constitutes a new class of materials, in which the silsesquioxane cage is surrounded 

by fluorinated alkyl groups. A number of different molecules with various fluoroalkyl 

groups have been developed, as shown in Figure 8C. Fluoro-POSS have been studied on 

various textured and non-textured materials. The high concentration of perfluorinated 

carbons in the alkyl chains leads to extremely low surface energies for surfaces decorated 

with these molecules.45 Additionally covalently bound monolayers are more stable as 

compared to non-covalently bonded films.46 

 

Figure. 8. Imbuing oleophobicity to natural surfaces. (A) Droplets of rapeseed oil (/ν = 35.7 mN/m), 

colored with oil red O, on a duck feather dip-coated in a solution of fluorodecyl POSS. (B) Droplets of 

water (/ν = 72.1 mN/m), methylene iodide (/ν = 50.1 mN/m),methanol (/ν = 22.7 mN/m), and octane 

(/ν = 21.7 mN/m) on a lotus leaf surface covered with electrospun fibers (beads-on-strings 

morphology) of PMMA + 44 wt% fluorodecyl POSS. A reflective surface is visible underneath all 

droplets, indicating the presence of microscopic pockets of air and the formation of a composite 

interface.
47

 (C) Extremely low surface energy POSS compounds.
45
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1.5 Tribology 

The word ‘tribology’ is derived from the ancient Greek word tribos, which means 

rubbing, and the suffix -logy from –logia, study of. Tribology is the science of interacting 

surfaces in relative motion and of related subjects and practices. Wear resistance is an 

important subject in tribology. Tribological knowledge helps to improve lifetime, safety 

and reliability of interacting machine components, and yields substantial economic 

benefits as well as long-term reliability.48 

Two recent developments have allowed tremendous progress in the systematic study of 

interfacial effects with high resolution.  First of all, the development of proximal probes, 

in particular tip-based scanning probe microscopies (such as scanning tunneling 

microscopy (STM), atomic force microscopy (AFM)), and surface force apparatus 

(SFA)), has allowed the study of surface forces, typically down to the range of 

picoNewtons. This has stimulated the development of various methods and means for 

modifying and manipulating micro-nanostructures. Secondly a range of computational 

methods for simulating the interactions between tips and substrates have been developed, 

which have allowed detailed interpretation and suggestions for further experiments.2  

 
Figure 9. (A) A typical force-distance curve describing a single approach-retraction 

cycle of the AFM tip, (B) Representative AFM lateral friction force depicting trace and 

retrace curves of a laterally 90º (laterally is along the surface) moving AFM cantilever. 

 

There are many innovative applications that involve detailed understanding of the 

tribological basics and related industrial processes on macro- to nano-scales. For the first 

time in 1984 the tribology of the magnetic storage device has become an important 

keystone in the field of tribology. Thereafter tribological studies were fully explored on 
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Micro/nano-ElectroMechanical Systems (MEMS/NEMS), Micro/Nano-Opto 

ElectroMechanical Systems (MOEMS/NOEMS), bio-MEMS/NEMS and radio-frequency 

(RF-MEMS/RF-NEMS), which brought many challenges in the field of tribology.   

The adhesion forces between two solid surfaces approaching and separating each other 

has been studied experimentally with the help of AFM (See figure 9A). This has brought 

much understanding of interactions between surfaces, and the way in which these forces 

are modified by the presence of a monolayer,  a polymer film, or a thin liquid. The friction 

properties in these systems have been studied by moving an AFM tip with a colloidal 

probe laterally with respect to the substrate, and these experiments provide fundamental 

insights into operation of lubricants at the molecular-scale (See figure 9B). The 

experiments show the relationship between friction, surface roughness, velocity and/or 

surface condition (dry and wet) and it is not always simple or obvious to measure them 

with any other method. The AFM studies have also revealed much about the nano-scale 

nature of wear and indentation of the material interacting with the hard probe. 

For experiments on wear resistance related to organic monolayers on different surfaces 

at the micro or nano levels various modern surface-sensitive techniques will be employed. 

We will emphasize on hard solid surfaces ranging from diamond-like carbon surfaces to 

transition metal carbide and nitride surfaces. Many of these solid surfaces are grown by 

both chemical and physical thin film vapor deposition methods.  

For application in high performance technological devices studies on no-wear and low 

friction surfaces are important. In particular, the nano-tribological behavior of 

fluorocarbon-hydrocarbon based organic monolayers has been widely studied in order to 

produce durable low-friction lubricants.49 These monolayers on Si surfaces improved their 

tribological properties including wear.50 Silicon is the primary substrate material for many 

MEMS/NEMS micro-components whose dimensions are typically between 1 and 100 

microns as shown in Figure 10.  

 

In MEMS and NEMS devices the numerous relevant forces related to their application 

are dependent on the size of device. E.g.  when the length of the device decreases from 1 

mm to 1 m, the surfaces area will decrease by a factor of million while the volume 

decrease by factor of a billion. As a result surface forces such as adhesion, friction, 

capillary forces, viscous drag and surface tension, that are linearly dependent to area, 

become a thousand times bigger than the forces proportional to the volume such as the 

inertial and gravitational forces. At these small scales surface properties, such as van der 

Waals forces, thus greatly influence the performance. Several types of organic monolayers 
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have been proposed, which have considerably enhanced the tribological properties of 

silicon at the micro/nano scale.51  

 

Figure 10. Applications of nanotechnology that operate at high sliding velocities and ditto wear: top 

left electrostatic micromotor; left bottom actuator (http://www.memx.com/); and right side Complex 

MEMS ratchet mechanism (http://www.sandia.gov/).
 

 

1.5.1 Surface roughness, hydrophobicity and tribological properties 

Many tribological studies are carried out on smooth surfaces, using highly polished 

surfaces with mean roughness well below 10 nm, sometimes even below 1 nm, 

approaching the typical surface roughness of a polished atomically flat silicon surface. 

This provides detailed information on the tribological effects of these coatings, as flat 

surfaces are typically the most easily to study and to understand in detail.  Subsequently 

structuring the surface is an effective way on further lowering the frictional force or 

changing the contact angle to either more hydrophobic or more hydrophilic.2, 52-54 It has 

been useful to classify rough surfaces into three types: irregular rough surfaces,55 designed 

rough surfaces,56 and hierarchical multi-level surfaces.57  

Structuring the surface can yield tribological benefits. It has, for example, been shown 

that micro-structuring of read/write heads in magnetic disks results in lower friction.57  

Another biological example is the very low sliding friction at natural synovial joints, 
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which have friction coefficients of < 0.002 at pressures up to 5 megaPascals or more, a 

value that has not been attained in human-made joints or in model surfaces in aqueous 

environments.58  

The effect of roughness in the macro to nano scale has also been theoretically examined 

by various groups.59, 60 The effects were not always easy to understand when varying  

surface roughness, humidity, etc. A recent study on graphite, MoS2, and NaCl in ambient 

conditions using an AFM and a tribometer in combination with a scanning electronic 

microscope showed that roughness can surprisingly lead to a higher friction due to a 

change of slope61, 62 (Figure 11). In Figure 11(a) a color-coded image of the topography 

is shown on top; in the middle a double, a fivefold, and a single step; and at the bottom a 

higher frictional increase for upward scans is shown clearly. Figure 11(b): plots of 

frictional increase, as observed at three different step edges, as a function of the load in 

upward panel; the frictional increase grows linearly with load, while it is constant for 

downward scans, as shown in bottom panel.62  

 

Figure 11. The frictional behavior of graphite at atomic scale surface steps.
62

  

 

1.5.2 Tribological properties of self-assembled monolayers 

For molecular force measurements on a laterally small scale, atomic force micro/nano-

scopic (AFM) methods have been used. To obtain a well-defined probe geometry, 

spherical probes have been attached to AFM cantilevers. Figure 12 depicts both AFM 

adhesion force-distance curves and a typical lateral friction force trace and retrace curve. 

Monolayer films offer distinct advantages over many standard strategies for lubrication of 

MEMS devices, because the molecular components can assemble onto the targeted the 



Chapter 1 

 16

surface, even in the presence of nano scale gaps between moving components.48, 63 

Specific surfaces can be addressed by matching the adsorbate head group with the surface.  

 Fluorocarbon-based films are generally preferred in low-friction tribological 

applications.64, 65 In addition, most MEMS devices are fabricated from silicon,66 and 

therefore, there is a growing interest in fluorocarbon-based, wear-resistant surfaces.  This 

has led to several studies on the tribological properties of fluorine-coated silicon 

surfaces.54, 67-69 Tribological properties of monolayer films are also dependent on their 

internal stabilities, which are influenced by interchain interactions (Van der Waals) and 

the adsorbate-substrate bond.  

 

Figure 12. Schematic representations of the wear mechanisms in monolayers with an increasing 

normal load.
49

 

By scanning the sample in two dimensions with the AFM, wear scars are generated on the 

surface. High-quality monolayers with long carbon chains exhibit excellent tribological 

properties especially characterized by improved wear properties.70 Most of the monolayers 

only change orientation when normal loads are exerted below a critical value. However, at a 

certain critical load the monolayer may show wear or abrasion, due to severe changes in the 

interfacial intermolecular bond strengths as shown in Figure 12.49 Bhushan et al.71 reported 

that longer chain methyl-terminated alkylsilane or phosphate organic monolayers exhibit a 

significant decrease in friction and a reduced tendency to wear compared to shorter chain 

monolayers. They have shown that alkylsilane monolayers having a chain length of at least 

more than 12 carbon atoms, and preferably rather 18 or more, are recommended for 

tribological applications. The disorder of the alkyl chains in short chain hydrocarbon disulfide 

SAMs was found to result in a noteworthy increase in friction, due to a less crystalline 

structure and an enhanced lateral cohesion. However, they were found less compliant in 

shearing .72 
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1.6 Aim of this Research 

 Despite the fundamental scientific importance of organic monolayers, many questions 

about their formation, structure and behavior remain unanswered.  Answering these 

questions is therefore highly relevant, also in view of the ever growing industrial interests: 

How will a change of anchoring moieties alter the binding mode of a monolayer? How do 

the polar moieties in a monolayer affect the overall surface dipole forces, and thereby 

electrical properties like the work function? Which reaction mechanisms occur during 

formation of monolayers? How stable are these monolayer under different chemical and 

mechanical (tribological) conditions? How do chemical and physical properties change if 

hydrogen is substituted to fluorine or vice versa? While several of these questions have 

been answered for a selected series of monolayers, systematic studies are still rare. The 

aim of the research described in this thesis is to partly fill this gap, largely by focusing on 

three aspects: to examine monolayer formation for different flat and nanostructured 

surfaces, to determine the structure and stability of these monolayers in relation to the 

terminal functional groups, and finally, to evaluate and optimize the tribological 

properties of both fluorinated and non-fluorinated monolayers, with the aim to make truly 

low-friction surfaces.  Fortunately, these goals have come within reach. 

 

1.7 Outline of this Thesis 

In this thesis the surface modification, stability and tribology properties will be studied 

of several inorganic substrates: Si(111), silicon carbide (SiC), and chromium nitride 

(CrN), as well as of various organic substrates: PMMA, PDMS, and PEEK. We will focus 

on the formation of dense monolayers, investigate their structure in great detail, and 

determine changes in surface energy, tribological properties and chemical stability.  

In Chapter 2 to 3 the formation of dense monolayers on Si(111) are described, whereas 

chapter 4, 5, 6, 7, and 8 deal with the relation between the obtained monolayers and its 

tribological properties. Chapter 9 deals with superoleophobic nanotextured organic 

substrates (PMMA, PDMS, PS, and PEEK). 

In Chapter 2 we investigated the use of a novel functional group, ynenes, for 

monolayer formation on silicon. This nucleophile reacts faster with H-Si(111) than 

alkynes and is shown to be a better reagent for dense monolayer formation. The kinetics 

of the surface attachment reactions were followed by studying partially complete 

monolayers obtained after fixed times. Next, in order to reveal the influence of the 

structurally different linkages (Si-C=C-C=C versus Si-C=C) to the H-Si(111) substrate the 
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quality, structure and surface coverage of the resultant monolayers have been studied both 

experimentally and theoretically. 

In Chapter 3 we describe the formation of self-assembled monolayers with five 

different -fluorinated 1-alkynes of different lengths (F-(CH2)8-16-CCH), onto an oxide-

free, H-Si(111) surface. Characterization was based on XPS, IRRAS, ellipsometry, 

NEXAFS and water contact angle measurements. The thickness, tilt angle and surface 

coverage was determined, and compared with the result of molecular modeling. Finally 

charge transport was measured across a metal/monolayer-semiconductor junction, and it is 

concluded that via fluorination the charge transport can be fine-tuned through modulation 

of the surface potential (work function). 

In Chapter 4 we investigated the tribological properties of a number of newly 

synthesized fluorine-containing fixed chain length terminal alkynes, which were attached 

onto H-Si(111) substrates. We showed by a series of experimental measurements and 

theoretical calculations that an increasing number of fluorine atoms in the main chain 

decreases the surface tension, the work of adhesion and also the friction coefficient. We 

had set ourselves the goal to get something significantly better than Teflon coated 

unmodified substrates, and we really achieved this (we got the lowest friction and 

adhesion currently reported for any flat surface!)  

In Chapter 5 we focused on the surface chemistry and wear resistance of perfluorinated 

monolayers coated on Si(111) by using AFM and SEM measurements. Such wear 

resistance of modified Si is of increasing importance, as outlined in section 1.2.1 above. A 

comparison is made of the wear properties on a varying number of fluorine atoms (#F 

atoms = 0 - 17) at a constant chain length (C16). 

In Chapter 6 we describe newly discovered insights in the structural and tribological 

properties of fluorinated and non-fluorinated monolayers bound to SiC surfaces. The 

mode of attachment for 1-alkynes onto SiC was studied using various physical 

characterization techniques in detail.  It is also demonstrated using extensive AFM 

experiments that the fluorinated monolayers show excellent tribological properties 

compared with non-fluorinated surfaces, which render them particularly interesting for the 

development of new coating materials in high-performance microelectromechanical 

devices.  

Chapter 7 outlines for the first time, the formation of stable fluorinated-non-fluorinated 

alkyne derived organic monolayers on plasma-activated, hydroxyl-terminated CrN 

surfaces through covalent bond formation with anchoring alkyne molecules. 

Subsequently, the kinetics of alkyne- and alkene-derived monolayers was discussed.  We 

describe the use of various fluorinated and non-fluorinated 1-alkynes to form monolayers 
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onto hydroxyl-terminated CrN surfaces via Cr-O-C linkages under thermal conditions. 

Various chain lengths and degrees of fluorination were used, to study the influence on the 

packing density of the monolayer, and the resulting hydrophobic properties. To probe the 

binding to the surface more deeply, monolayers derived from 1-hexadecene and 2-

hydroxyhexadecanoic acid (2HHDA) were also studied.  The resulting modified surfaces 

were characterized in detail to elucidate their binding mode and various physical 

properties using static water contact angle measurements, infrared spectroscopy, and X-

ray photoelectron spectroscopy (XPS) have been obtained. 

In Chapter 8 we investigated the chemical stability and tribological performance of a 

variety of organic monolayers on chromium nitride, as derived from different anchoring 

groups and with varying chain length.  To study the chemical stability, we used three 

different media such as strong acid (pH = 3), strong base (pH = 11) and in water at 65 C. 

The replacement of the methyl group by the fluorinated terminal groups to enhance the 

performance in tribology was also studied. In addition, wear resistance on fluorinated 

surfaces was studied using DLC (diamond like carbon) coated probes, and they show low 

wear resistance. The obtained results provide a valuable reference for the development of 

high-performance devices.  

In Chapter 9 we combine the plasma-induced nanotexturing of polymeric surfaces of 

polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and polydimethyl 

siloxane (PDMS) with a covalently attached perfluorinated monolayer. The resulting 

hierarchically ordered surfaces were characterized in detail by SEM, IR and XPS 

analyses. Static contact angles and concomitant hysteresis are measured with a variety of 

liquids, ranging from water to hexadecane and soya oil, on freshly prepared samples, but 

also after prolonged (> 1 month) exposure to aqueous media. The resulting data show for 

the first time that non-degrading (surfaces are stable for > 40 days in water!) 

superoleophobicity can be produced on polymeric surfaces using a simple and generic 

technology suitable for most polymers. 

Chapter 10 summarizes the most important achievements and places them in a wider 

context. Furthermore, we will comment on currently on-going and likely or desired future 

research, and address the potential of MEMS/NEMS applications of surface-modified 

hard and soft materials. 
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  2 
Hexadecadienyl Monolayers on Hydrogen-

terminated Si(111): Faster Monolayer Formation and 

Improved Surface Coverage Using the Enyne Moiety 

To further improve the coverage of organic monolayers on hydrogen-terminated silicon 

(H-Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized 

that enynes (H-CC-HC=CH-R) would be even better reagents for dense monolayer 

formation. To investigate whether the increased delocalization of -carbon radicals by the 

enyne functionality indeed lowers the activation barrier, the kinetics of monolayer 

formation by hexadec-3-en-1-yne and 1-hexadecyne on H-Si(111) were followed by 

studying partially incomplete monolayers. Ellipsometry and static contact angle 

measurements indeed showed a faster increase of layer thickness and hydrophobicity for 

the hexadec-3-en-1-yne-derived monolayers. This more rapid monolayer formation was 

supported by IRRAS and XPS measurements that for the enyne show a faster increase of 

the CH2 stretching bands and the amount of carbon at the surface (C/Si ratio), 

respectively. Monolayer formation at room temperature yielded plateau values for 

hexadec-3-en-1-yne and 1-hexadecyne after 8 and 16 h, respectively.  

Additional experiments were performed for 16 h at 80° to ensure full completion of the 

layers, which allows comparison of the quality of both layers. Ellipsometry thicknesses 

(2.0 nm) and contact angles (111 - 112°) indicated a high quality of both layers. XPS, in 

combination with DFT calculations, revealed terminal attachment of hexadec-3-en-1-yne 

to the H-Si surface, leading to dienyl monolayers. Moreover, analysis of the Si2p region 

showed no surface oxidation. Quantitative XPS measurements - obtained via rotating Si 

samples - showed a higher surface coverage for C16 dienyl layers than C16 alkenyl layers 

(63% vs. 59%). The dense packing of the layers was confirmed by IRRAS and NEXAFS 

results. Molecular mechanics simulations were undertaken to understand the differences 

in reactivity and surface coverage. Alkenyl layers show more favorable packing energies 

for surface coverages up to 50 - 55%. At higher coverages this packing energy rises 

quickly, and there the dienyl packing becomes more favorable. When the binding energies 

are included the difference becomes more pronounced, and dense packing of dienyl layers 
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becomes more favorable by 2-3 kcal/mol. These combined data show that enynes provide 

the highest-quality organic monolayers reported on H-Si onto now. 

 

 

This Chapter has been published as: 

“Hexadecadienyl Monolayers on Hydrogen-Terminated Si(111): Faster Monolayer 

Formation and Improved Surface Coverage Using the Enyne Moiety” Bart Rijksen*, 

/Sidharam P. Pujari*, Luc Scheres, Cees J. M. van Rijn, J. E. Baio, Tobias Weidner, and 

Han Zuilhof. Langmuir 2012 28 (16), 6577-6588 (*contributed equally) 

 

Table of Contents 

2      Hexadecadienyl Monolayers on Hydrogen-terminated Si(111): 

Faster Monolayer Formation and Improved Surface Coverage 

Using the Enyne Moiety ..................................................................................... 25  

2.1 INTRODUCTION ............................................................................................... 27 

2.2 MATERIALS AND METHODS ......................................................................... 30 

2.2.1 Materials ....................................................................................................... 30 

2.2.2 Equipment ..................................................................................................... 30 

2.2.3 Synthesis of hexadeca-3-ene-1-yne ............................................................... 30 

2.2.4 Hydrogen-terminated Si(111) surfaces .......................................................... 30 

2.2.5 Preparation of 3-en-1-ynes and 1-alkynes Derived Monolayers on H-Si(111) 31 

2.2.5.1 Kinetic studies ........................................................................................ 31 

2.2.5.2 Quality studies ........................................................................................ 31 

2.3 MONOLAYER CHARACTERIZATION ............................................................ 31 

2.3.1 Contact Angle Measurements ........................................................................ 31 

2.3.2 Ellipsometry .................................................................................................. 32 

2.3.3 X-ray Photoelectron Spectroscopy (XPS) ...................................................... 32 

2.3.4 Near Edge X-ray Absorption Fine Structure (NEXAFS)................................ 33 

2.3.5 Infrared Reflection Absorption Spectroscopy (IRRAS) ................................. 33 

2.3.5 Infrared Attenuated Total Reflectance (IRATR) ............................................ 33 

2.3.6 Computational Procedures ............................................................................. 34 

2.3.6.1 XPS binding energies ............................................................................. 34 

2.3.6.2 Monolayer simulations ........................................................................... 34 



High Density Monolayers on Si(111) 

 27

2.4 RESULTS AND DISCUSSION ........................................................................... 34 

2.4.1 Reactivity difference of 3-en-1-ynes and 1-alkynes onto H-Si(111) ............... 34 

2.4.2 High-quality 3-en-1-yne and 1-yne monolayers on H-Si(111) ....................... 38 

2.4.3 Molecular modeling ...................................................................................... 43 

2.5 CONCLUSIONS ................................................................................................. 47 

2.6 REFERENCES .................................................................................................... 47 

 
 

2.1 INTRODUCTION 

Long-term passivation of oxide-free silicon surfaces can be achieved by the covalent 

attachment of self-assembled monolayers onto hydrogen-terminated silicon surfaces (H-

Si). Not only can these thin organic layers protect the surface from oxidation, they also 

form a versatile scaffold for (bio)functionalization.1-6 Many methods and procedures to 

produce these layers have been described in literature, including thermal7, 8 and UV9-12 

methods, electrochemistry,13, 14 and chemomechanical scribing.15, 16 However, under those 

reaction conditions side reactions might occur, thereby reducing the quality of the 

produced layers.17, 18 Milder methods, which invoke a substantially lower energy input, 

have been shown to overcome these issues, though at cost of longer reaction times.19, 20 

Hence, a reduction of the reaction time under these mild reaction conditions, while 

maintaining the oxide-free nature of the organic monolayer-silicon interface, might bring 

application of these layers in (bio)electronic devices within reach.21-25  

For these potential applications the stability of the oxide-free monolayer-silicon 

interface is one of the most important properties, for which oxidation is a hampering 

factor both during and after the modification process.26, 27 During the formation of the – 

not yet complete – monolayer, oxidation by traces of oxygen present in the precursor or 

reaction flask might be relatively fast, and competes with the precursors for reactive 

surface sites. After completion of the monolayer the oxidation rate is relatively slow due 

to the limited diffusion of oxygen through the monolayer28 but even there, only a small 

fraction of defects in the monolayer is already sufficient to cause detectable amounts of 

oxide after prolonged storage in ambient conditions.29 In order to further improve the 

stability of the oxide-free monolayer-silicon interfaces, both oxidation routes need to be 

suppressed via a combination of faster attachment and a higher packing density.  

One of the current theories that explain mild attachment involves initiation by 

nucleophilic attack of the precursors to delocalized silyl radical cations at the H-Si surface 

(see Scheme 1).5, 6, 30 Hence, better nucleophiles will improve the initial attack on the 
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delocalized radical cations and therefore facilitate C-Si bond formation. In addition, recent 

studies have shown that stabilizing the -carbon radical intermediate by a neighboring -

system speeds up the propagation of the radical chain mechanism and thereby monolayer 

formation.31-33 In accordance with the above, a significant higher reactivity of -alkynes 

compared to -alkenes has  been demonstrated on H-Si(100) and H-Si(111) surfaces.34, 35  

Besides the reactivity, also the shape and footprint of the precursor are important 

parameters, as both can have a tremendous influence on the packing, and thus on the 

stability of the layer.36 Limited by steric constraints and unfavorable conformations of the 

carbon chains near the surface, numerous studies have reported a maximum surface 

coverage of 50-55% for alkyl monolayers on Si(111).7, 9, 35, 37-42 However, by introducing 

moieties with a smaller Van der Waals radius than a regular CH2-group, i.e., a smaller 

footprint, packing densities as high as 67% have been obtained for long alkoxyl (Si-O-C) 

monolayers40, 43, 44 and for C18 alkenyl (Si-C=C) monolayers on H-Si(111).19, 35, 36 

Obviously, this is a clear indication that even minor structural differences in the linkage 

can have a major effect on the overall monolayer structure. In addition, regarding the long 

term stability of the oxide-free interface, we note that a higher surface coverage will not 

only slow down diffusion of water and oxygen through the monolayer, but will also result 

in slightly reduced numbers of unreacted H-Si sites at the interface.  

All these findings encouraged us to design two new precursors with a further increased 

reactivity and the proper geometrical requirements. As can been seen in Scheme 1, both 

candidate structures (hexadec-3-en-1-yne and 1,3-hexadecadiyne) possess a conjugated 

reactive terminal functionality, which is expected to enhance the nucleophilic attack at the 

silicon surface and might improve subsequent stabilization of the -carbon radical 

intermediate by the neighboring -system. Furthermore, since CH=CH moieties have a 

significantly smaller footprint than CH2-CH2 moieties, the smaller Van der Waals radius 

of both linkages to the silicon surface (Si-HC=CH-HC=CH- and Si-HC=CH-CC-, 

respectively) meet the requirements to obtain high surface coverage organic monolayers. 

In a recent photospectroscopic study the reactivity of these two candidate structures 

towards silyl radicals has been investigated.31 It was shown that hexadec-3-en-1-yne and 

1,3-hexadecadiyne are both at least 30 times more reactive than 1-alkynes. However, 

preliminary results of monolayer-forming experiments showed that diynes polymerize 

under monolayer-forming conditions, which precludes their use in this. 
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Scheme 1. Mechanistic hypothesis that initiated study of enynes for monolayers on H-Si(111): 

Nucleophilic attack of (a) 1-alkynes and (b) 3-en-1-ynes to delocalized radical cations at the silicon 

surface result in the formation of -carbon radicals. Subsequent transfer of a hydrogen atom from a 

neighboring Si-H site then results in the formation of a surface-centered radical. 

 

The above ideas and results stimulated us to investigate the kinetics of monolayer 

formation with hexadec-3-ene-1-yne on hydrogen-terminated Si(111) in detail. To 

visualize a possible enhanced reactivity of the 3-ene-1-yne functionality compared to 1-

alkynes, 1-hexadecyne-derived monolayers were used as a reference. The kinetics of the 

surface attachment reactions were followed by studying partially complete monolayers 

obtained after fixed times by static contact angle measurements, ellipsometry, infrared 

reflective absorption spectroscopy (IRRAS), and x-ray photoelectron spectroscopy (XPS). 

Next, in order to reveal the influence of the structurally different linkage to the H-Si(111) 

substrate (Si-C=C-C=C versus Si-C=C) on the quality and structure of the final 

monolayers, fully completed hexadecadienyl and hexadecenyl monolayers were 

thoroughly studied by additional quantitative XPS measurements involving rotating Si 

samples to exclude crystal reflection effects,35,39 DFT calculations and near-edge x-ray 

absorption fine structure (NEXAFS) measurements. Finally, a combined ab initio and 

molecular mechanics molecular modeling study was undertaken to provide insight into the 

subtle chemical and structural differences responsible for the observed reactivity and 

quality difference between alk-3-ene-1-yne and in 1-alkyne-derived monolayers. The 

resulting picture clarifies the potential of novel, high-reactivity moieties for the 

attachment of organic monolayers onto H-Si surfaces. 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

Bis(trimethylsilyl)-1,3-butadiyne (96%), 1-bromododecane (99%), potassium fluoride 

dihydrate, dimethylformamide (DMF), hexamethylphosphoramide (HMPA), 

methyllithium/LiBr in diethylether (1.6 M), di-isobutylaluminumhydride in pentane (1.6 

M), dimethoxyethane (DME) (anhydrous), and n-butyllithium in pentane (1.6 M), acetone 

(semiconductor grade VLSI PURANAL Honeywell 17617) and sulfuric acid (95-97%) 

were obtained from Sigma-Aldrich. From other sources we purchased hydrogen peroxide 

(Acros Organics, 35%) ammonium fluoride (Riedel-de Haën, 40%, semiconductor grade 

VLSI PURANAL Honeywell 17600), deionized water (resistivity 18.3 MΩ cm), pentane 

(VWR, 95%). 1-Hexadecyne (90%, ABCR, Germany) was purified by column 

chromatography (hexane) to remove trace amounts of 1-bromoalkane, and subsequently 

distilled twice under reduced pressure before use. Silicon wafers were (111)-oriented, 

single-side or doubly polished (500-550 μm thick, n-type doping by phosphorus), and 

have a resistivity of 2.0 - 8.0 Ω cm (Siltronix, France). 

2.2.2 Equipment 

NMR spectra were recorded on a Bruker Avance III with an inverse broadband probe 

running at 400 MHz, with C6D6 as solvent. Hexadeca-3-ene-1-yne was purified by HPLC 

(Shimadzu, ALLTIMA C18 5U column, MeOH, 15 mL/min, UV detection at 215 nm). 

2.2.3 Synthesis of hexadeca-3-ene-1-yne 

This compound was synthesized according to a literature procedure,45 using 1-

tris(trimethyl)silyl-1,3-hexadeca-di-yne46, 47 as precursor, and purified by prep-HPLC (C18 

reversed phase/MeOH) to achieve 99.9% purity as determined with GC-MS. Yield: 90%. 
1H-NMR (400 MHz, C6D6)  0.91 (t, J = 6.8 Hz, 3H), 1.13-1.29 (m, 20H), 1.82 (m, 2H), 

3.01 (s, 1H), 5.52 (d, J = 15.6 Hz, 1H), 6.18 (m, 1H). 13C-NMR (100 MHz, C6D6)  14.39 

(CH3), 23.15, 29.00, 29.14, 29.42, 29.59, 29.85, 30.01, 30.13, 30.16, 30.74, 33.31, 92.79 

(HCC-), 105.08 (HCC-), 110.58 (C-CH=), 146.12 (C=CH-CH2). MS (EI) m/z(%) 220 

(1) [M+], 135 (23), 121 (37), 107 (38), 93 (74), 79 (100), 67 (54), 55 (54).  

2.2.4 Hydrogen-terminated Si(111) surfaces 

H-Si(111) was prepared by chemical etching as previously reported.48, 49 All liquid 

reagents were continuously purged with an argon flow. An n-type Si (111) wafer with a 

0.2° miscut angle along <112>, was first cut (10 × 10 mm2) and subsequently cleaned in a 
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sonication bath with acetone and then with Milli-Q water (resistivity >18 MΩ cm). The Si 

wafer was oxidized in freshly prepared piranha solution (H2SO4/H2O2 3:1) for at least 20 

min. After piranha treatment, the substrates were immersed immediately in water and 

rinsed thoroughly, followed by drying with a stream of argon. Subsequently, the 

substrates were etched in an argon-saturated 40% aqueous NH4F solution for 15 min, 

rinsed by Milli-Q water, and finally dried with a stream of argon. The H-Si surfaces were 

studied by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy. 

2.2.5 Preparation of 3-en-1-ynes and 1-alkynes derived monolayers on H-

Si(111) 

2.2.5.1 Kinetic studies 

After being etched, the samples were rinsed with argon-saturated water, and finally 

blown dry with a stream of argon. These samples were then immediately transferred to the 

inert atmosphere glove box. Next, the surface was covered with a few drops of neat 1-

hexadecyne or hexadeca-3-ene-1-yne. The reactions were performed at room temperature 

under ambient light (i.e., standard fluorescent lamps in the fume hood were on). To stop 

the reaction, the sample was removed from the glovebox and immediately extensively 

rinsed with pentane and CH2Cl2. The sample was then sonicated for 5 min in CH2Cl2 to 

remove physisorbed molecules, after which the samples were blown dry with a stream of 

dry argon. 

2.2.5.2 Quality studies 

High-quality monolayers were produced in a fume hood setup described in literature.35, 

48 A three-necked flask was charged with 2 mL of 1-hexadecyne or hexadeca-3-ene-1-yne, 

and was purged with argon under reduced pressure for 30 min, while being heated up to 

80 °C. The freshly etched and dried surface was then quickly transferred into the flask, 

which was immediately depressurized again. The reaction mixture was kept at 80 °C 

overnight. The sample was then removed from the flask and immediately extensively 

rinsed with pentane and CH2Cl2, sonicated for 5 min in CH2Cl2 to remove physisorbed 

molecules, and blown dry with a stream of dry argon. 

2.3 MONOLAYER CHARACTERIZATION 

2.3.1 Contact Angle Measurements 

Contact angle measurements were performed on a Krüss DSA 100 contact angle 

goniometer with an automated drop dispenser and image video capture system. The static 
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contact angles of six small droplets, (3.0 μL volume of deionized water) dispensed on 

modified silicon surfaces, were determined using the implemented Tangent 2 fitting 

model. The digital drop images were processed by the image analysis system, which 

calculated both the left and right contact angles from the drop shape with an accuracy of 

±1.0°. 

2.3.2 Ellipsometry 

The thickness of the modified silicon surfaces (in the dry state) was measured using a 

rotating analyzer ellipsometer of Sentech Instruments (Type SE-400), operating at 632.8 

nm (He–Ne laser), and an angle of incidence of 70°. The optical constants of the substrate 

were determined with a piece of freshly etched H-Si(111) (n = 3.819 and k = 0.057). The 

thicknesses of the monolayers were determined with a planar three-layer (ambient, 

monolayer, substrate) isotropic model with a refractive index for the organic monolayers 

of 1.46. The reported values for the layer thickness are the average of eight measurements 

taken at different locations on the substrate with an error < 1 Å. 

2.3.3 X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements were performed using a JPS-9200 photoelectron spectrometer 

(JEOL, Japan). A monochromatic Al Kα X-ray source (hν = 1486.7 eV) 12 kV and 20 mA 

using an analyzer pass energy of 10 eV was used. The base pressure in the chamber 

during measurements was 3 × 10–7 Torr, and spectra were collected at room temperature. 

The intensity of XPS core level electron was measured as the peak area after standard 

background subtraction according to the linear procedure. The takeoff angle φ (angle 

between sample and detector) of 80° is defined with a precision 1°. The typical sample 

size was 1 × 1 cm2. For a precise determination of the atomic C/Si ratio of organic 

monolayers on Si(111), the influence of X-ray photo diffraction (XPD) on the XPS signal 

had to be accounted for.35, 39 Therefore, the samples were rotated 360° around the surface 

normal, yielding rotationally averaged C1s and Si2p emissions to obtain a truly quantitative 

C/Si ratio which is now independent of the orientation of the sample. As our sample 

holder only allows rotation of the samples at a takeoff angle of 90°, we used non-

monochromatic Al-Kα ray radiation (twin source) at 10 kV and 15 mA with analyzer pass 

energy of 50 eV and a takeoff angle of 90° for these measurements. All spectra were 

corrected with a slight linear background before fitting. All XPS spectra were evaluated 

using the Casa XPS software (version 2.3.15). All binding energies are referenced relative 

to the main hydrocarbon (CH2) peak with a binding energy of 285.0 eV. 
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2.3.4 Near Edge X-ray Absorption Fine Structure (NEXAFS) 

NEXAFS spectra were collected at the National Synchrotron Light Source (NSLS) U7A 

beamline at Brookhaven National Laboratory, using an elliptically polarized beam with 

~85% p-polarization. This beam line utilizes a monochromator and 600 l/mm grating 

providing a full-width at half-maximum (FWHM) resolution of ~0.15 eV at the carbon K-

edge. The monochromator energy scale was calibrated using the intense C 1s - π* 

transition at 285.35 eV of a graphite transmission grid placed in the path of the X-rays. 

Partial electron yield was monitored by a detector with the bias voltage maintained at -150 

V. Samples were mounted to allow rotation and allow changing the angle between the 

sample surface and the synchrotron X-rays. The NEXAFS angle is defined as the angle 

between the incident light and the sample surface. The spectra were brought to the 

standard form by linear pre-edge background subtraction and normalizing to the unity 

edge jump defined by a horizontal plateau 4050 eV above the absorption edge.  

2.3.5 Infrared Reflection Absorption Spectroscopy (IRRAS) 

IRRAS spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer using a 

variable angle reflection unit (Auto Seagull, Harrick Scientific). A Harrick grid polarizer 

was installed in front of the detector and was used to record spectra with p-polarized 

(parallel) radiation with respect to the plane of incidence at the sample surface. All spectra 

were obtained at an incident angle of 68° (2048 scans). The resolution was set at 1 cm-1 

per modulation center. The final spectra were obtained using a piranha-oxidized reference 

surface as background. Data were collected as differential reflectance versus wavenumber. 

All spectra were recorded at room temperature in dry atmosphere. A linear baseline 

correction was applied. 

2.3.5 Infrared Attenuated Total Reflectance (IRATR) 

Infrared spectra were acquired using a Bruker spectrometer (model Tensor 27) equipped 

with a Harrick ATR accessory (Harrick Scientific Co.) and an FTIR spectrometer 

equipped with liquid nitrogen cooled mercury cadmium telluride (MCT) detectors. A 

wire-grid Harrick polariser was placed in front of the sample to measure p- (parallel) or s- 

(perpendicular) polarization with respect to the light incidence plane. The spectrometer 

was purged with dry nitrogen to minimize the contribution of moisture and CO2 to the 

recorded spectra. Double side polished single crystal n-Si(111) wafers were cut into 

pieces of 5 × 1 cm2 and polished to obtain ATR crystals with 45° angles with respect to 

the large parallel bevel faces, producing approximately 100 internal optical reflections of 

the incident beam. The reflection spectra of the samples were in the wavenumber range 
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4000 to 560 cm–1 and resolution of 1 cm–1 spectra where the average of 10000 scans. The 

unit of absorbance intensity was defined as −log(R/Ro), where R and Ro are the 

reflectivity of the substrate with and without the monolayer, respectively. 

2.3.6 Computational Procedures 

2.3.6.1 XPS binding energies 

XPS binding energies were estimated by calculating the orbital energies of molecular 

analogues of C16 chains attached to a silicon surface. A Si(SiH3)3 group was attached to 

specifically mimic the Si-C bond.50 The geometries were optimized with B3LYP/6-

311G(d, p), using the Gaussian 09 package.34 The carbon binding energies were then 

estimated by calculating the 1s core energy versus the average of the 2p valence orbital 

energies (mimicking the Fermi level). 

2.3.6.2 Monolayer simulations 

Unit cells were constructed, and expanded to supercells of 12 × 12 units (33, 50, 67 and 

75% surface coverage) and 10 × 15 units (60% surface coverage), following literature 

procedures.35 The geometries were optimized using the polymer consistent force field 

(PCFF) (bottom two rows of Si atoms were constrained) as implemented in the Discover 

package in Materials Studio, using the ultrafine settings of the smart minimizer routine 

(line width 0.01 and convergence 10-5, VdW and coulomb, atom centered and long-range 

correction switched off).35 All G3 calculations of the binding energies of the chains to the 

surface were performed using the Gaussian 09 package. 

 

2.4 RESULTS AND DISCUSSION 

2.4.1 Reactivity difference of 3-en-1-ynes and 1-alkynes onto H-Si(111) 

To study the reactivity difference of alkynes and alk-3-en-1-ynes towards oxide-free 

hydrogen-terminated Si(111) (H-Si(111)) surfaces, the kinetics of monolayer formation 

under ambient conditions were explored by analyzing the resulting (partial) monolayers 

after different reaction times. To minimize the effect of competing oxidation reactions 

induced by water and oxygen, the experiments were performed in a glovebox under argon 

atmosphere. Precursors and freshly etched H-Si(111) were deoxygenized by three or more 

freeze-pump-thaw cycles before transferring them into the glovebox. The reaction was 

started by covering the freshly etched surfaces with 1 or 2 drops of precursor. The 

surfaces were then allowed to react for the appropriate time at a constant temperature of 
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20 °C. Subsequently, the resulting (partial) monolayers were analyzed by water contact 

angle measurements (static, advancing and receding angles), ellipsometry and x-ray 

photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy 

(IRRAS). As shown in Figure 1A, for both precursors, the static contact angles gradually 

increase in time, while monolayer formation proceeds faster with hexadec-3-en-1-yne 

than with 1-hexadecyne. With hexadec-3-en-1-yne, the plateau value of 111 - 112°, 

indicative of hydrophobic and densely packed organic monolayers,7, 19, 35, 48, 51  was already 

reached after 8 h, while for 1-hexadecyne these values were only obtained after increasing 

the reaction time to 16 h. This demonstrates a considerable reactivity difference between 

both precursors. As expected, this difference in reactivity was also displayed by the 

ellipsometry measurements (See Figure 1B), which show significant differences in the 

growth of the layer thickness over time. The hexadecadienyl monolayers reached a 

thickness of 1.9 nm after 2 h,, while hexadecenyl monolayers were then only 1.5 nm thick. 

The plateau value 2.1 (± 0.1 nm) nm for hexadec-3-en-1-yne was reached after 8 h, 

whereas it took the 1-hexadecyne at least 16 h. 

 

Figure 1. (A) Static water contact angles (± 1°), and (B) layer ellipsometric thicknesses (± 0.1 nm) of 

hexadec-3-en-1-yne (□) and 1-hexadecyne (●) layers versus the reaction times at room temperature. 

Each data point represents the average value of two separately prepared monolayers.  

In order to monitor the actual formation of the organic monolayer, the contributions of 

the Si2p and C1s core levels were studied in time by XPS narrow scans. For both 

precursors, the Si2p signal rapidly decreases in time, which coincides with an increase of 

the carbon signal at 285 eV (Figure 2A and B). This is a clear indication of the formation 

of an organic monolayer. Furthermore, the Si2p narrow scans of both partial and complete 
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organic monolayers, show no visible traces of oxygen at the silicon surface, demonstrating 

the success of the stringent oxygen-excluding conditions required to study the kinetics of 

monolayer formation in detail, and to obtain high-quality organic monolayers on oxide-

free H-Si (see Figure 2C and D).20, 35 Finally, from Figure 2E (which shows the C1s/Si2p 

ratios in time) it becomes clear that the carbon build-up of the 3-en-1-yne layers is faster 

than of the 1-yne counterpart. In fact the amount of carbon after 16 hours of reaction of 1-

yne, is in the case of the 3-en-1-yne already achieved after 6-8 hours of reaction. This 

indicates a speed-up of a factor ~2, which is in agreement with the contact angles and the 

ellipsometric thicknesses discussed earlier. 

 

 

Figure 2. XPS spectra of the C1s (A and B) and Si2p region (C and D) of monolayers on H-Si(111) 

derived from 1-hexadecyne and hexadec-3-en-1-yne, respectively; and C1s/Si2p ratios in time (E). 

 

To obtain detailed information about the molecular order of the (partial) monolayers in 

time, IRRAS measurements were carried out. As can be seen in Figures 3A and 3B, the 

intensities of the antisymmetric (a) and symmetric (s) methylene stretching vibrations 

grow gradually in time for both precursors, clearly displaying the increasing amount of 

carbon chains at the surface. Furthermore, upon completion of the monolayers, for both 

types of monolayer the antisymmetric and symmetric CH2 stretching frequencies shift 
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from 2923 to 2918 cm-1 and from 2853 to 2848 cm-1, respectivelyThese optimal 

frequencies were obtained after 4 h for the hexadec-3-en-1-yne and after 8 h for the 1-

hexadecyne. This difference of speed (~factor 2) is in line with the contact angle an 

ellipsometry data in Figure 1. We note that these frequencies correspond to highly ordered 

organic monolayers and are for 1-hexadecyne in good agreement with literature.51-53 

Moreover, the gradual disappearance of a detectable Si-H stretching vibration at 2083 cm-

1 (Fig. 3C and D) confirms the formation of a monolayer by adsorption of the precursors 

onto H-Si(111).19, 35 The initial rate difference is in line with the speed-up demonstrated 

earlier. However, loss of a detectable Si-H stretching vibration prevents accurate 

comparison of the speeds at longer reaction times. 

 

 

Figure 3. IRRAS data of 1-alkyne-derived and 3-en-1-yne-derived monolayers on H−Si(111) at 

ambient condition as a function of reaction time: (A) CH2 stretch region of 3-en-1-yne in time, (B) CH2 

stretch frequencies of 3-en-1-yne and 1-yne monolayers in time, (C) Si-H stretch region of 3-en-1-yne 

in time, and (D) Si-H stretch normalized peak areas in time. 
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2.4.2 High-quality 3-en-1-yne and 1-yne monolayers on H-Si(111) 

After confirming the considerably higher reactivity of the 3-en-1-yne moiety towards 

H-Si(111) compared to the 1-yne moiety, the quality of the both final monolayers was 

studied in more detail. To ensure completion of the monolayer formation, i.e., to minimize 

the number of defects, more stringent reaction conditions (16 h at 80 °C) were chosen. 

Static water contact angles of 111 - 112°, advancing contact angles of 116 - 117°, 

receding contact angles of 109 - 110°, and ellipsometric thicknesses of 2.1 ± 0.1 and 2.2 ± 

0.1 nm for monolayers derived from hexadec-3-en-1-yne and 1-hexadecyne, respectively, 

compare well with literature values (111° and 2.1 nm for 1-hexadecyne) and confirm the 

high quality of both organic monolayers.35 The theoretical layer thickness can be 

determined via equation 1, and 2. By inserting a tilt angle ( ) of 30°, which is the 

experimentally determined tilt angle of high-quality organic monolayers on gold,54 a 

theoretical thickness of 1.90 nm for hexadecenyl and 1.89 nm for hexadecadienyl 

monolayers was calculated. This is somewhat lower than the ellipsometric values, which 

is likely caused by the assumed tilt angle of 30°. A smaller tilt angle, indicating more 

upright positioned chains, will result in thicker layers.  

 

1-hexadecyne (nm): 

 

             d�� = 0.188 + 1.772	cosθ + 0.156	sin(35.5 + θ)  (1)  

 

hexadeca-3-en-1-yne (nm):    

 

           	d�� = 0.188 + 1.765	cosθ + 0.156	sin(35.5 + θ)  (2) 

 

ATR measurements show the anti-symmetric and symmetric CH2 stretching vibrations 

at 2918.8 cm-1 and 2849.4 cm-1 (hexadecenyl), and 2917.6 cm-1 and 2847.5 cm-1 

(hexadecadienyl), respectively for both monolayers (see Figure 4). The value for 

hexadecenyl monolayers is in line with literature values,35 and indicative of a highly 

ordered monolayer. In this regard it should be noted that  that these hexadecadienyl 

monolayers have two methylene groups less for favorable interchain Van der Waals 

interactions compared to hexadecenyl monolayers and even four methylene groups less 

compared to hexadecyl monolayers. Therefore it is remarkable that such a highly ordered 

organic monolayer can be obtained with only 12 CH2 groups (cf. dodecyl termination), 
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especially when comparing these low wavenumbers with those of a dodecyl monolayer on 

H-Si(111) (2922 cm-1).35  

In addition ATR measurements proved sensitive enough to capture the C=C stretch 

vibrations around 1600 cm-1. A clear single peak is visible in the hexadecenyl spectrum, 

whereas hexadecadienyl gives two peaks. Simulations (vibrations obtained from G3 

calculations) show that the denyl moiety gives rise to two peaks, and that one is indeed 

shifted to higher wavenumbers, which is in good agreement with the ATR results (see 

Figure 4b). This result indicates terminal attachment of the 2-en-1-yne with retention of 

the double bonds upon monolayer formation. The C-H stretch vibration, however, is only 

visible in the hexadecadienyl layer (3016 cm-1), which may be explained by the higher 

concentration (2 double bonds instead of 1). 

 

 
 

Figure 4. (A) ATR of hexadec-3-en-1-yne (black) and 1-hexadecyne (red) derived monolayers on H-

Si(111) at 80 °C; and (B) frequencies from G3 calculations of carbon chains attached to silicon 

clusters. 

 

To study the linkage to the Si(111) substrate in more detail, XPS C1s narrow scans were 

recorded. In addition, density functional theory (DFT) calculations were used to calculate 

the binding energies of the distinct carbon atoms in the linkage. As shown in Figure 5A 

and B, both C1s spectra are deconvoluted into three contributions. The components at 

283.8, 285.0 and 285.7 eV have been assigned to the carbons directly attached to the 

relatively electropositive silicon (C-Si, Ecalc = 283.9 eV), the aliphatic carbons (C-C, Ecalc 
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= 285.0 eV), and the more electronegative sp2 hybridized carbons (C=C, Ecalc = 285.6 and 

285.8 eV), respectively. In combination with DFT calculations on other possible binding 

conformations (see Supporting Information S.2.2), the relative intensities of these distinct 

carbons disclose the linkage of both monolayer types to the H-Si(111) surface, i.e., 1 : 12 : 

3 for hexadec-1-en-3-yne-derived monolayers with a Si-C=C-C=C linkage and 1 : 14 : 1 

for 1-hexadecyne-derived monolayers with a Si-C=C linkage. In addition, in the Si 2p 

narrow scans obtained for the dienyl and alkenyl layers (see Figure 5C and D), no silicon 

oxide was identified in the 101 - 103.5 eV region. This again confirms the monolayer 

quality and its ability to prevent appreciable oxidation of the underlying Si substrate.36 

 

 
 

Figure 5. C1s (A,B) and Si2p (C,D) XPS narrow scan spectra of the H-Si(111) surface after modification 

(80 °C, 16 h) with hexadec-3-en-1-yne and 1-hexadecyne, respectively. 

Moreover, in order to extract the packing densities, also the exact composition of 

monolayers was determined by quantitative XPS measurements. To overcome the signal 

dependency on the orientation of the crystal, i.e., to remove any influence of X-ray 
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diffraction, the XPS samples were rotated 360° around the surface normal, in steps of 

10°.35, 39 The obtained C/Si ratios display the expected periodicity of 120°, and reveal an 

increased amount of carbon for the hexadecadienyl monolayers as compared to the 

hexadecenyl monolayers (Table 1). The surface coverage and monolayer thickness were 

calculated from these C/Si ratios using the following equations:27,56 

 

Thickness:   d��	�Å� = λ��	
�� sin	(φ)	 ln(1 + C Si� )  (3), 

 

Surface coverage:  θ�� = 	
���	�	���

���(��)	�	���	
     (4), 

 

 In which λ��	
��  is the attenuation length of Si2p photoelectron in the organic monolayer 

(39.5 Å), and  is the angle between the surface plane and the detector (90°). The surface 

coverage is estimated by comparison to the literature value of a fully characterized 

alkanethiol monolayer on gold, where dTH is the theoretical thickness of an organic 

monolayer on H-Si(111) with a tilt angle of 30° (1.90 and 1.89 nm for alkenyl and dienyl 

layers, respectively), and DSi and DAu are the number of sites per cm (7.8 × 1014 cm-2 and 

4.65 × 1014 cm-2, respectively).35, 39 From the results in Table 1, it shows that the dienyl 

layers, with a surface coverage of 63% (± 1%), are significantly more densely packed than 

the hexadecenyl monolayers, while the XPS-derived thickness of both layers is the same 

within the experimental error (1.9 ± 0.1 and 2.0 ± 0.1 nm, for enyne-derived and alkyne-

derived C16 monolayers, respectively). The thickness and surface coverage of 59% for the 

hexadecenyl monolayers are in excellent agreement with previous findings.35 These 

results clearly show that, besides an increased reactivity, the 3-en-1-yne moiety also leads 

to a significant higher surface coverage, fulfilling both prerequisites for improvement of 

quality in monolayers. 

 

Table 1. Quantitative XPS Data; Atomic C/Si ratios, resulting monolayer thickness and surface 

coverage of hexadecadienyl and hexadecenyl monolayers on H-Si(111). 

Reactant XPS C1s/Si2p ratios  Surface coverage % 

C16 Enyne        40.2/59.8            63% 

C16 Alkyne           37.7/62.3            59% 

 

Finally, to investigate the ordering of the monolayer in more detail, high-quality Near 

Edge X-Ray Absorption Fine Structure (NEXAFS) measurements were performed. 

NEXAFS spectra provide information about the electronic structure of the surface species 
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by measuring characteristic absorption resonances corresponding to electronic transitions 

from atomic core levels to unoccupied molecular orbitals.55 Carbon K-edge spectra for the 

hexadecadienyl and hexadecenyl layers on silicon, acquired at 70°, 55° and 20°, are 

presented in Figure 6 along with the difference between the 70° and 20° spectra. Since 

radiation damage from the X-ray would also be visible in this spectral range,56 a careful 

beam damage study was performed to rule out this possibility.57 The adsorption near 285.0 

eV, π*(C=C) clearly indicates resonance of the aromatic alkene moieties, whereas the 

strong Rydberg/C-H (R*) resonance near 287.9 eV and the broad σ* resonances are 

related to the alkyl chains and the C-C bonds at higher photon energies, respectively. The 

spectra show neither signs of chemical impurities such as C=O, nor any traces of 

unreacted C≡C moieties (expected near 285.9 eV) for any of the monolayers.55, 58-61 The 

pronounced linear dichroism for the C=C, C-C and C-H related resonances (highlighted 

by the 70°  20° difference spectra) indicates significant order and molecular alignment in 

both monolayers. The positive polarity of the observed difference peaks for the π* 

resonance implies a strongly tilted orientation of the π*(C=C) orbitals, which is expected 

for an upright chain orientation, since the π*(C=C) orbitals are perpendicular to the C=C-

C plane. The R* features also show an appreciable positive linear dichroism while the C-

C difference peaks are negative, which is again a clear indication of an upright orientation 

of the alkyl chain. 

 

 

Figure 6. NEXAFS carbon K-edge spectra for hexadecadienyl and hexadecenyl monolayers on 

Si(111), acquired at 70°, 55° and 20°. The difference spectra between the 70° and the 20° data are 

shown in blue. 
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A quantitative analysis of the C K-edge NEXAFS spectra was performed to determine 

the average molecular tilt and twist angles. The orientation of the carbon chains with 

respect to the surface normal were determined using the R* transitions. The intensities of 

these resonances as a function of the X-ray incidence angle Θ were evaluated using 

literature procedures for a planar orbital.55 This analysis yields average tilt angles versus 

the surface normal of 28° ± 5° and 25° ± 5° for dienyl and alkenyl layers, respectively. 

These values are slightly similar to those observed for alkane thiols on gold (28°).62 In 

addition, these NEXAFS data can be used (via Eq. 2) to derive monolayer thicknesses, 

and these agree within experimental error with the XPS thicknesses. 

The tilt angle of the alkene π*(C=C) orbitals was determined using the π* resonance 

intensity variations and a standard methods for vector orbitals.55 The orientations of the 

orbitals (ρ) were found to be 66° ± 5° and 76° ± 5° for dienyl and alkenyl chains, 

respectively. These values can be used, together with equation 5, to determine the twist 

angle of the chains.63 The twist angle ψ can be described as the rotation over the long 

molecular axis of the chains. 

 

ρ = arccos(sin� cos�)                                                    (5) 

 

This evaluation yields twist angles of ψ = 60° and ψ = 45° for dienyl and alkene chains, 

respectively. These values are in line with geometries observed for related alkanethiols on 

gold (53°) and other metal surfaces.54 Overall, the NEXAFS data indicate that the 

structure of the hexadecadienyl and hexadecenyl layers is very similar. Both are densely 

packed, highly ordered and contamination free. The structure and orientation of the 

monolayers are also very similar to the binding geometry observed for alkanethiols on 

gold. 

2.4.3 Molecular modeling 

The obtained difference in surface coverage stimulated us to perform a comparative 

molecular modeling study of monolayers derived from 1-hexadecyne and hexadec-3-en-1-

yne. Unit cells containing hexadecadienyl and hexadecenyl (both C16) chains were 

constructed, and used to create large simulation cells with various substitution percentages 

and substitution patterns analogous to those described in literature.38, 40, 41, 64-66 Energy 

minimizations were performed using a polymer consistent force field (PCFF) with high-

convergence criteria and periodic boundaries conditions to eliminate the edge effects and 

to mimic an infinitely large monolayer. 
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The structure of the resulting optimized monolayers was compared in detail with the 

available experimental data. Reported data are the average observed for the chains (48 at 

33% coverage to 108 at 75% coverage) in the periodically repeating unit cells at a specific 

substitution pattern. As shown in Table 2 for one of the substitution patterns (arbitrarily 

labeled A; see for other patterns and corresponding data the Supporting Information 

S.2.1), at a coverage of approximately 60 – 67%, the alkenyl and dienyl layers display a 

calculated thickness of 1.9 and 2.0 nm, respectively. These values agree with the 

thicknesses derived from the XPS and NEXAFS measurements discussed above (1.9 ± 0.1 

nm for both layers). The differences between both types of layers become clear after 

comparison of the tilt and the layer thicknesses at the various surface coverages. At low 

coverage (33-50%), the dienyl chains are more upright oriented than the alkenyl chains, 

resulting in a higher layer thickness. However, the tilt angles for alkenyl layers decrease 

rapidly when going to a higher surface coverage, while the dienyl layers show a more 

gradual decrease. This behavior can be explained by the rigidity of the dienyl moiety, 

which is caused by the two double C=C bonds and their overlapping p-orbitals, which 

keep the four carbons in an almost planar conformation (typical dihedral C=C-C=C ~ 

170° for 33 - 60% coverage). At low coverage, the dienyl will thus keep its upright 

orientation, whereas the alkenyl moiety has more rotational freedom, resulting in a more 

flat orientation of alkyne-derived monolayers. Both layers show a slight increase of the Si-

C=C bond angles with increasing coverage, likely caused by the optimization of the 

interchain Van der Waals interactions between CH2 moieties at the expense of such minor 

distortions at the surface. 

 

Table 2. Calculated characteristics of hexadecenyl and hexadecadienyl monolayers on H-Si(111). 

Unit 

Cell 

Hexadecenyl Hexadecadienyl 

Thickness 

(nm) 

Tilt 

angle chain 

Si-C=C 

(in °) 

Thickness 

(nm) 

Tilt 

angle chain 

 Si-C=C 

(in °) 

33A 1.2 61 ± 2 123 ± 1 1.3 56 ± 2 121 ± 1 

50A 1.7 48 ± 2 123 ± 2 1.8 26 ± 4 124 ± 2 

60A 2.0 19 ± 6 125 ±3 1.8 27 ± 3 124 ± 4 

67A 2.0 17 ± 2 124± 3 2.0 11 ± 4 126 ± 3 

75A 2.1 8 ± 3 124 ± 3 2.0 5 ± 3 127 ± 2 

 

Next to the structural parameters of the monolayers, also the packing energies were 

determined. After optimization of the layer, the chains were cut loose from the surface. 
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The carbon atoms that were attached to silicon were left uncapped since capping with 

hydrogen led to distortion of the geometry. The resulting dangling carbon bonds were 

subsequently neglected by the used PCFF forcefield. The average packing energy per 

chain was then calculated according to: 

 

�������� =
�������

�
− �������     (5), 

 

in which Echains is the total packing energy of the layer, n is the number of chains in the 

layer, and Esingle is the energy of a separately optimized chain.64 The resulting average 

packing energies per chain are shown in Figure 7 (dotted lines). At low surface coverage, 

hexadecenyl layers are energetically more favorable than dienyl layers. This difference 

can be explained by the upright position of the rigid dienyl moiety that pushes the CH2 

chain up, to an orientation in which the - overlap of the resulting diene moiety 

competes with the interchain Van der Waals interactions between CH2 moieties. For the 

alkyne-derived monolayer, such competition is absent, yielding a more flat orientation of 

the CH2 chains with concomitantly increased attractive Van der Waals interactions. 

 

 

Figure 7. Packing energy (dotted lines) and total energy (solid lines) per chain for hexadecenyl (■) 

and hexadecadienyl (○) monolayers, as a function of surface coverage. 
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finding that hexadecadienyl layers can achieve a higher surface coverage (63%) than 

hexadecenyl layers (59%). This can largely be attributed to the volumes of the atoms close 

to the silicon surface (-CH=CH-CH=CH- versus -CH=CH-CH2-CH2-), which for the -

CH=CH-CH=CH- moiety is ~5% smaller, with concomitant reduction of steric repulsions 

as increased surface coverages. 

The optimum packing, however, is still lower than the experimentally observed packing 

of both the alkenyl and dienyl layers. The likely dominant part of the explanation for this 

phenomenon lies in the fact that the binding of the chains to the surface is energetically 

highly favorable and irreversible, yielding an experimental density that is higher than the 

optimum for the non-covalent interchain interactions.  

The second aspect controlling the experimentally observed packing density relates to 

the Si-C binding energy. For the monolayers under study this was calculated via high-

quality G3 ab initio calculations of the reaction of 1-pentyne and pent-3-en-1-yne with a 

small hydrogen-terminated silicon cluster (HSi(SiH3)3), analogous to literature 

procedures.64, 65 For fully relaxed structures this would favor the reaction of the enyne by 

2.6 kcal.mol-1. However, the situation is slightly more complicated, as for varying 

coverages the precise structures near the surface vary slightly. To take this into account 

properly, the product geometries for the G3 calculations were isolated from the PCFF-

optimized monolayer structures discussed earlier. Isolated Si4 clusters were cut out of the 

surface slabs, and the chains were truncated to five carbon atoms, in order to lower the 

computational cost. The atoms were then constrained, in order to perform single-point G3 

energy calculations. The binding energy was then calculated as the difference of the 

energy of the chain attached to the surface and the fully relaxed reactant complexes, and 

corrected for the energy contribution of the deformation of the C5 chain, according to 

literature procedures.64 Figure 7 (continuous lines) then shows the sum of packing and 

binding energies at the various degrees of surface coverage for enyne-derived and alkyne-

derived C16 monolayers. This profile of the total energy resembles the profile of the 

packing energy, but show a more distinct preference for the reactivity of the C16 enyne. 

For the calculated total energies of 60% and 67%, i.e., close to what is experimentally 

observed, the energy gap between the alkenyl and the dienyl layers increases to 2.5 and 

3.2 kcal mol-1. This overall higher reaction exothermicity and higher optimum packing 

density for enyne-derived monolayers fits very well with the experimental observation of 

the faster reaction of the C16 enyne than of hexadecyne (Figure 1), and the observed 

higher denser packing of the dienyl layers (Figure 4). 
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2.5 CONCLUSIONS 

In summary, we successfully developed a novel precursor, hexadeca-3-en-1-yne 

(HCC-HC=CH-C12H25), for the formation of high-quality monolayers on H-terminated 

silicon surfaces. Detailed kinetics studies show that this enyne reacts faster than the 

corresponding C16 alkyne, while quantitative XPS studies show that the resulting dienyl 

monolayers also display a higher packing density than had been reported up to now on H-

Si(111). Infrared and NEXAFS measurements confirm the formation of highly ordered, 

densely packed enyne-derived monolayers. Finally, a molecular modeling study 

(combination of molecular mechanics calculations on complete monolayers and G3 ab 

initio calculations on well-defied model systems) shows that for C16 monolayers an enyne-

derived monolayer is both more stable and more densely packed than the monolayer 

derived from the corresponding C16 alkyne (hexadecyne). 

This enhanced monolayer quality and rate of formation of enyne-derived monolayers, 

compared with the best performing reagent up to now (1-alkynes), makes enynes HCC-

HC=CH-R the agent of choice if a supreme monolayer quality is desired, which also 

enhances the stability of the oxide-free silicon interface.  This development further 

increases the chance of a successful application of organic monolayers on silicon in 

electronic and biosensor devices. 
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S.2.1 Modeling studies in materials studio 

The modeling of the monolayers on silicon was performed following the procedures as 

described previously.1, 2 Since the packing energies were combined with the binding 

energies, only one series of coverage patterns was used. In order to allow comparison with 

literature values, a single set of patterns from ref. 1 (A series, See Figure S1) was used.  
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Figure S1. Patterns used in monolayer simulations. 

 

Figure S2. Construction of monolayer geometries from a single unit cell (left) to the desired pattern 

(middle), and finally the entire monolayer (right). 
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Unit cells were constructed, with dimensions a = b = 3.840 Å, c = 35 Å, a = b = 90°, 

and g = 120° (See Figure S2). The cells were expanded to larger cells (2 × 2, 2 × 3, 2 × 4 

or 2 × 5) and chains were replaced by hydrogen to achieve the desired pattern. The cells 

were then expanded to supercells of 12 × 12 units (33, 50, 67 and 75% surface coverage) 

and 10 × 15 units (60% surface coverage).3 

The geometries were optimized using the polymer consistent force field (PCFF) 

(bottom two rows of Si atoms were constrained) as implemented in the Discover package 

in Materials Studio, using the ultrafine settings of the smart minimizer routine (line width 

0,01 and convergence 10-5, VdW and coulomb, atom centered and long-range correction 

switched off). 

S.2.2 DFT calculations of XPS binding energies 

XPS binding energies were estimated by calculating the orbital energies of molecular 

analogues of chains attached to a silicon surface which was mimicked by a Si(SiH3)3 

group (See Figure S3). The geometries were optimized with B3LYP/6-311G(d,p), using 

the Gaussian 09 package.4 The carbon binding energies were then estimated by calculating 

the 1s core energy versus the average of the 2p valence orbital energies (mimicking the 

Fermi level). 

 

Figure S3. Self-Assembled monolayers on Si(111); A) hexadecenyl layers and B-D) possible modes 

of attachment of  hexadeca-3-en-1-ynes. Calculated binding energies per carbon atom are depicted in 

eV (R = C11H23). 

The calculations show that the peaks at 283.8 eV can be attributed to carbons attached 

to silicon. (both 283.9 eV, See Figure S3). Sp2 hybridized carbons, show a binding energy 

around 285.7 eV, as the stronger electronegativity will increase the binding energy. 

Regular sp3 hybridized carbons give a binding energy of 295.0 eV. Calculations of the 

binding energies of the hexadecenyl chain attached to the surface give three peaks: at 
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283.9 eV for the carbon attached to the silicon, at 285.0 eV for the aliphatic carbons, and 

at 285.8 eV for the sp2 carbons, in the ratio of 1 : 14 : 1 (See Fig. S3A). The different 

attachment modes of the 3-en-1-yne give a very different pattern of binding energies. 

Terminal attachment (Fig. 3B) gives three peaks (binding energies for the sp2 hybridized 

carbons at 285.6-285.8 eV) in a ratio of 1:3:14. Double attachment (Fig. 3C) gives two 

carbons attached to silicon, which results in a ratio of 2:1:15. Another possibility is 

terminal attachment with retention of the triple bond (Fig. 3D). The triple bond results in 

distinct peaks at 284.3 eV for the carbon connected to silicon, and at 286.5 eV for the 

other sp hybridized carbon. 
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  3 
Mono-Fluorinated Alkyne-Derived SAMs on Oxide-

Free Si(111) Surfaces: Preparation, Characterization 

and Tuning of the Si Workfunction 

 

Organic monolayers derived from -fluoro-1-alkynes of varying carbon chain lengths 

(C10-C18) were prepared on Si(111) surfaces, resulting in changes of the physical and 

electronic properties of the surface. Analysis of the monolayers using XPS, Infrared 

Reflection Absorption Spectroscopy, ellipsometry and static water contact angle 

measurements provided information regarding the monolayer thickness, the tilt angle, and 

the surface coverage. Additionally, PCFF molecular mechanics studies were used to 

obtain information on the optimal packing density and the layer thickness, which were 

compared to the experimentally found data. From the results it can be concluded that the 

monolayers derived from longer chain lengths are more ordered, possess a lower tilt 

angle, and have a higher surface coverage than monolayers derived from shorter chains. 

We also demonstrate that by substitution of an H by F atom in the terminal group, it is 

possible to controllably modify the surface potential and energy barrier for charge 

transport in a full metal/monolayer-semiconductor (MOMS) junction. 
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3.1 INTRODUCTION  

Molecular electronics describes molecules that assist as active elements (switching, 

sensing, current rectifiers, etc.) in electronic devices or passivate surfaces.1 One practical 

example of molecular electronics is a glucose sensor that is based on the electrochemical 

detection of glucose via the action of electrode-bound glucose oxidase.2 In numerous other 

examples, the molecules themselves are designed to match the properties of traditional 

solid-state devices like in molecular current rectifiers3 and molecule-based tunnel 

junctions (resistors).4-11  

 Although considerable progress has been made in the development of organic thin 

film-based electronics, it is currently not commercially competitive with traditional silicon 

technology. In addition, there are problems associated with device stability, efficiency, 

and lifetime.12-14 One strategy that is pursued to achieve a device that circumvents these 

problems, involves the use of covalently bound, self-assembled monolayers (SAMs) on 

inorganic surfaces to fine-tune the properties of the inorganic surface and of the interface, 

formed with such modified surface.11,15-21 Features of SAMs that are attractive for this 

purpose include a high degree of chemical robustness, good passivating properties, low 

bias voltage, ease of formation, and above all, the ability to manipulate their structural and 

dipolar characteristics through design and synthesis.20,22-24  

In many Micro-Electro-Mechanical Systems (MEMS) / Nano-Electro-Mechanical 

Systems (NEMS) applications Si-based materials are used.25 However, direct use of native 

Si-based materials result in the oxidation of these materials, and functionalization of that 

oxide with an organic monolayer thus yields an intermediary, insulating layer between the 

Si and the functionality of interest. Treatment of Si surfaces with covalently bound stable 

monolayers addresses each of these issues: it hampers undesired surface oxidation during 

processing provides a direct electronic coupling between the Si surface and the organic 

functionality via hydrosilylation,17,26,27 and monolayers that are directly linked to Si 

surfaces with a Si-C linkage are chemically and thermally more stable than alkoxyl (Si-O-

C) monolayers.28 Especially the possibility to obtain highly dense monolayers on oxide-

free Si provides significant opportunities, as reviewed recently.29-31 In addition, it has been 

shown that the interface state density of such well-prepared Si-organic monolayer 

interfaces is very low.32,33 However, the studies over bond formation between silicon and 

carbon via radical chain mechanisms are well-documented.34 The Si-C bond formation are 

irreversible which is different than the well-known thiol-Au bond. For thermodynamic 

equilibrium it is required that the bonding is reversible and there is an equilibrium 

between the free and bonded components.35  
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The work of various research groups shows that organic molecules having different tail 

groups (i.e. C-C, C=C, CC bonds) react differently with the Si substrate, and this 

influences the resulting monolayer packing densities on Si(111) surfaces.31, 36 

Experimental data37 as well as a molecular modeling study38 revealed that alkenyl 

monolayers derived from 1-alkynes are of better quality than alkyl monolayers derived 

from 1-alkenes. 1-Alkynes37,39 and ynenes (HCC-CH=CHR)40 turned out to be more 

reactive, and the resulting monolayers possess an improved packing density and higher 

surface coverage.37,40 The differences in packing density can be explained by the 

compactness of the resulting Si-bound -CH=CH- moiety that decreases steric repulsion 

near the surface in comparison to Si-bound –CH2-CH2 moieties. Secondly, sp2-hybridized 

carbon atoms form a stronger Si-C bond with H-terminated Si surfaces than the sp3 C 

atoms resulting from alkene attachment.38  

Apart from the Si-C forming moiety, also the chain length and terminal group of the 

precursor molecules will influence the properties of the resulting monolayers.34,37,38,41 End 

groups that are bulky or electrically repulsive decrease the packing density and, hence, 

increase the susceptibility to oxidation of the underlying substrate.42 Functionalization 

with small end groups is therefore expected to help achieve a high packing density, which 

makes terminal fluorine functionalization highly interesting. Fluorinated monolayers are 

unique in their low surface energies and their ability to reduce Van der Waals 

interactions.43-46 This property results from the low polarizability and high ionization 

potential of the carbon-fluorine bond.44,47 In addition, the presence of dipolar groups in the 

monolayer can also have a large effect on the electrical properties of the junction.21,32,33 

Functionalized monolayers thus may provide a tunable means to affect the work 

function. Fluorinated monolayers are expected to increase the work function of almost any 

surface,19, 48-50 and the hypothesis in this paper is that this increase can be tuned to a high 

degree by using terminal F-functionalization of monolayers, composed of Si-bound 

alkenyl chains of different lengths.  

Here, we prepared monolayers made from five different -fluorinated 1-alkynes of 

different lengths (F-(CH2)8-16-CCH), onto oxide-free, hydrogen-terminated Si(111), see 

Figure 1. These monolayers were characterized experimentally by X-ray photoelectron 

spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), ellipsometry, 

near edge X-Ray absorption fine structure (NEXAFS), and contact angle measurements. 

In addition, molecular modeling was used to obtain information about the packing density 

and layer thickness. Finally using the n-Si-alkyl chain/Hg junction, where Hg contacts a 

monolayer of a series of organic molecules,17 current-voltage studies were performed to 

obtain information about a stepwise tunable Si work function. 



Mono-Fluorinated Alkyne on Si(111) Tuning of the Si Workfunction 

 59

 

 

Figure 1. Monolayers on Si(111) used in the current study. 

 

3.2 EXPERIMENTAL SECTION 

3.2.1 Materials  

Five mono--fluorinated 1-alkynes were used. The synthesis procedures and spectra of 

10-fluorodec-1-yne (F1-C10-yne), 12-fluorotetradec-1-yne (F1-C12-yne), 14-

fluorotetradec-1-yne (F1-C14-yne), 16-fluorohexadec-1-yne (F1-C16-yne) and 18-

fluorooctadec-1-yne (F1-C18-yne) can be found in the Supporting Information S.3.2 to 

S.3.6. All chemicals were used as received, with the following specifications and sources: 

n-hexadecane (Sigma Aldrich, 99%), sulphuric acid (Sigma Aldrich, 95 - 97%), hydrogen 

peroxide (Acros Organics, 35%), ammonium fluoride (Riedel-de Haën, 40%, 

semiconductor grade VLSI PURANAL Honeywell 17600), acetone (Aldrich, 

semiconductor grade VLSI PURANAL Honeywell 17617), deionized water (resistivity 

18.3 MΩ cm), pentane (VWR, 95%). Silicon wafers, with a 0.2o miscut angle along the 

<112> plane, were (111)-oriented, n-type, phosphorus-doped and with a specific 

resistance of 1-10 Ωcm, as purchased from Siltronix (France). 
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3.2.2 Monolayer formation 

A three-necked flask was charged with 2 mL of mono--fluorinated 1-alkyne and 

purged with argon under reduced pressure for 30 min, while being heated to 80 °C. 

Si(111) wafers were cut in 1  1 cm pieces. The surfaces were cleaned using air plasma 

(Harrick Scientific Products, Inc. Pleasantville, NY) for 10 min and the surfaces were 

subsequently sonicated for 15 min in pure acetone. The surfaces were rinsed with water 

and transferred to freshly prepared piranha solution (H2SO4/H2O2 3:1). After 20 min, the 

surfaces were thoroughly rinsed with water and dried with a stream of argon. 

Subsequently, the substrates were etched in argon-saturated 40% aqueous ammonium 

fluoride solution for 15 min. The surfaces were again rinsed with water and dried with a 

stream of argon. The samples were rinsed with argon-saturated water, and finally blown 

dry with a stream of argon. These samples were then immediately transferred into the 

flask, which was immediately depressurized again. The reaction mixture was kept at 80 

°C overnight. The sample was then removed from the flask and immediately extensively 

rinsed with pentane and CH2Cl2, sonicated for 5 min in CH2Cl2 to remove physisorbed 

molecules, and blown dry with a stream of dry argon. The surfaces were directly used for 

surface characterization or stored in the glove box until surface characterization. 

3.3 Monolayer characterization 

3.3.1 Static water and hexadecane contact angles  

Static water and hexadecane contact angles were measured with an automated Krüss 

DSA 100 goniometer. At least six small droplets (3.0 μL) were dispensed and the contact 

angles were determined by a Tangent 2 fitting model. The error in the determined contact 

angles is approximately 1o. 

3.3.2 X-ray Photoelectron Spectroscopy (XPS) 

XPS spectra were recorded on a JPS-9200 photoelectron spectrometer (JEOL, Japan). 

The analysis was performed under ultra-high vacuum conditions using a 

monochromatic Al Kα source at 12 kV and 20 mA and an analyzer pass energy of 10 eV. 

A takeoff angle φ (angle between the sample and the detector) of 80o was used. For an 

exact determination of the atomic C/Si ratio of organic monolayers on Si(111), the 

influence of X-ray photo diffraction (XPD) on the XPS signal had to be accounted for.37, 51 

It has been shown that the variations of the Si2p intensity were similar after each periodic 

variation of 120° on a hydrogen-terminated Si(111) surface, and this arises three times, 

symmetrically, on the crystalline silicon (111) substrate.51 Therefore, the samples were 
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rotated 120° around the surface normal, yielding rotationally averaged C1s and Si2p 

spectra. The rotation X-ray photoelectron emissions yielded a truly quantitative C/Si ratio, 

which is now independent of the orientation of the sample.40 All XPS spectra were 

evaluated by Casa XPS software (version 2.3.15). The binding energies were calibrated on 

the hydrocarbon (CH2) peak with a binding energy of 285.0 eV.  

3.3.3 Infrared Reflection Absorption Spectroscopy (IRRAS) 

IRRAS spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer using a 

commercial variable angle reflection unit (Auto Seagull, Harrick Scientific). A Harrick 

grid polarizer was installed in front of the detector and was used to measure the spectra 

with p-polarized (parallel) respect to the plane of incidence at the sample surface. All 

spectra were obtained at an incident angle of 68° with respect to the sample. 2048 scans 

were made. The resolution was set at 4 cm-1. All spectra were recorded at room 

temperature in dry nitrogen atmosphere. A slight linear baseline correction was applied.  

3.3.4 Ellipsometry  

The ellipsometric thickness of the modified surfaces was measured using a rotating 

Sentech Instruments (Type SE-400) ellipsometer, operating at 632.8 nm (He–Ne laser), 

and an angle of incidence of 70°. The optical constants of a freshly etched H-terminated 

Si(111) surface were taken as n = 3.821 and k = 0.051.37 The thicknesses of the 

monolayers were determined with a planar three layer (ambient, monolayer, substrate) 

isotropic model, with assumed refractive indices of 1.00 and 1.44 for ambient and the 

monolayer, respectively. The reported values are the average of at least 8 measurements 

and the error is less than 1 Å.  

3.3.5 Contact Potential Difference (CPD)  

CPD measurements were performed with a custom-made Kelvin Probe set-up, based on 

a commercial Besocke Delta Phi Kelvin probe + controller, which are placed in a glove 

box with controlled 10% relative humidity. The surface potential of the monolayers was 

measured, relative to that of a vibrating Au grid that was calibrated prior to the 

measurements against freshly peeled highly ordered pyrolytic graphite (HOPG). 

 

3.3.6 Current-Voltage (I-V)  

I-V measurements were performed on n-Si/monolayer/Hg junctions, formed by placing 

a Hg (99.9999% purity) drop on the monolayer, using a controlled growth hanging 

mercury drop (HMD) electrode (Polish Academy of Sciences, Poland). The samples were 
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contacted on the back by applying In-Ga eutectic, after scratching the surface with a 

diamond knife. Measurements were carried out in a controlled environment glove box 

with 10% relative humidity. The contact area between the Hg drop and the monolayer 

(typically 0.6 mm in diameter) was determined using an optical microscope and used to 

calculate the current density (J). Measurements were made with a Keithley 6430 sub-fA 

current/voltage source-measure unit. Several scans from -1 to +1 V (applied to Hg) were 

measured for each junction with a scan rate of 20 mV/s. At least 7 junctions were made on 

each sample, and the results represent the average of all the measurements. None of the 

measurements was rejected. 

3.3.7 Near Edge X-ray Absorption Fine Structure (NEXAFS) 

NEXAFS spectra were collected at the National Synchrotron Light Source (NSLS) U7A 

beamline at Brookhaven National Laboratory, using an elliptically polarized beam with 

~85% p-polarization. This beam line utilizes a monochromator and 600 l/mm grating 

provides a full-width at half-maximum (FWHM) resolution of ~0.15 eV at the carbon K-

edge. The monochromator energy scale was calibrated using the intense C1s - π* 

transition at 285.35 eV of a graphite transmission grid placed in the path of the X-rays. 

Partial electron yield was monitored by a detector with the bias voltage maintained at -150 

V. Samples were mounted to allow rotation and allow changing the angle between the 

sample surface and the synchrotron X-rays. The NEXAFS angle is defined as the angle 

between the incident light and the sample surface. The spectra were brought to the 

standard form by linear pre-edge background subtraction and normalizing to the unity 

edge jump, defined by a horizontal plateau, 4050 eV above the absorption edge. 

3.3.8 Molecular modeling 

For the molecular modeling study, the same method is followed as reported by Scheres 

and co-workers.38 In short, Materials Studio software (version 5.0) was used to construct 

and optimize the monolayers. All monolayers were formed from five standard cells 

containing a decenyl chain (representing the bonding situation obtained after attachment 

of one of the alkynes) attached in an all-trans conformation to four Si atoms. The Si atoms 

represent the first four layers of the Si substrate and this substrate model was obtained by 

cleaving a Si crystal along the (111) plane. The structures were placed in a box to obtain 

the standard unit cell (as depicted in Figure 2). The standard cells were copied in the 

directions of the Si substrate to form larger unit cells. By replacing some of the attached 

chains with hydrogen atoms, different substitution patterns and substitution percentages 

were obtained. 
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Unit cells were copied to form the final big simulation cells, representing the whole 

modified Si surface. The unit cells and the big simulation cells were optimized, using a 

polymer consistent force field (PCFF) (bottom two rows of Si atoms were constrained) as 

present in the Forcite module package in Materials Studio, using the ultra-fine settings of 

the “Smart Minimizer” routine, “high-convergence” criteria and periodic boundary 

conditions. 

 

Figure 2. Structure ball and stick model of the F1-C18-yne unit cell. The color coding scheme is yellow 

(silicon atom), gray (carbon atom), light-blue (hydrogen atom) and purple (fluorine atom at the top). 
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3.4 RESULTS AND DISCUSSION 

Monolayers with different chain lengths were studied to determine the influence of 

chain length on the quality of mono--fluorinated 1-alkyne-derived monolayers. To this 

end five different mono--fluorinated 1-alkynes were synthesized with total chain lengths 

C10, C12, C14, C16 and C18. The synthesis and characterization of these compounds is 

provided in the Appendix B.3.2 to B.3.6, and they will be referred to as F1-C10-yne, F1-

C12-yne, F1-C14-yne, F1-C16-yne and F1-C18-yne, respectively. These alkynes were 

attached to oxide-free, hydrogen-terminated Si(111) at 80 C under an inert atmosphere, 

according to the procedure described by Scheres et al.,34, 37, 52 which resulted in covalently 

bound monolayers with Si-C=C bonds near the surface (see Figure 1).  

3.4.1 Static contact angles  

The obtained monolayers were analyzed with static water and hexadecane contact angle 

measurements to probe polar and dispersive interactions with the surface, respectively 

(Table 1). With an increase in chain length the static water contact angle increases from 

94 (C10) to 110 (C18). While the data for F1-C18-yne are similar to the data for non-

fluorinated C18 chains, for shorter chains the contact angle is somewhat lower than for 

non-fluorinated alkynes (~110-111 for non-fluorinated C12-C18 1-alkynes.37, 38 This 

increase in hydrophobicity with increasing chain lengths for the mono-F monolayers is 

likely caused by a higher monolayer density, as discussed below in more detail.  

 

Table 1. Static contact angle measurements for water and hexadecane of F1-C10-yne, F1-C12-yne, 

F1-C14-yne, F1-C16-yne and F1-C18-yne Monolayers on H-Si(111) 

Monolayers 
Contact Angle ()±1 

Water Hexadecane 

F1-C10-yne 94 39 

F1-C12-yne 96 41 

F1-C14-yne 106 43 

F1-C16-yne 110 46 

F1-C18-yne 110 46 

 

The static hexadecane contact angle increased slightly from 39 (C10) to 46 (C18). 

These slight increases likely reflect two opposing trends. On the one hand they reflect a 

decrease in the dispersive interaction between the increasing amount of fluorine atoms and 

hexadecane as caused by the increasing density of F atoms on the surface. To some degree 
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this is counterbalanced by the effect of an increase of the C-C-C-F torsion angle with 

increased packing density, as observed by modeling (see Supporting Information S.3.7), 

and more in-depth studies would be needed to probe this balance more in detail.53 

3.4.2 X-ray photoelectron spectroscopy 

Figure 3 presents the results of XPS analyses of surfaces modified with a series of F1-

Cx-YNEs of various chain lengths (x = 10, 12, 14, 16 and 18). Detailed investigation of 

the C1s and Si2p regions of the XPS spectra (Figure 3A and 3C, respectively) confirms 

the successful formation of the surface F1-Cx-YNE. The C1s and Si2p narrow scans are 

aligned at the baseline to show the differences in the various monolayers. In the 

deconvoluted C1s narrow scan (Figure 3B), the peak at 283.7 eV corresponds to the 

carbon, bound to the silicon substrate, while a higher binding energy contribution at 287.9 

eV is assigned to the carbon, bound to fluorine. The peak at 285.9 eV corresponds to the 

carbon, which is next to the carbon bound to fluorine and the large peak at 285.0 eV – 

which was used as reference peak – corresponds to the rest of the predominant aliphatic 

chain. In addition, the C1s XPS spectrum of (E)-F(CH2)14CH═CH─Si(SiH3)3  (see 

overlapped DFT in Figure 3B) was simulated using a B3LYP/6-311G(d,p)-derived 

method,54 yielding a reasonable agreement with experiment. In narrow Si2p spectra 

(Figure 3C), the attenuation of the doublet Si2p3/2 and Si2p1/2 at 99.5 and 100.1 eV, due 

to an increased attenuation of the Si substrate signal upon thickening of the monolayer, 

becomes clearly visible after monolayer attachment to the surface. For all monolayers a 

completely flat baseline within 103 - 104 eV was obtained, indicating a (nearly) oxide-

free Si surface. 

 

 

Figure 3. XPS spectra of mono--fluorinated 1-alkyne-derived monolayers on H-terminated Si(111). 

(A) C1s narrow scan of monolayers derived from F1-Cx-YNE. (B) C1s narrow scan of F1-C16-YNE 

with deconvolution peaks and overlapped with B3LYP/6-311G(d,p)-simulated C1s spectrum of (E)-

F(CH2)14CH═CH─Si(SiH3)3, and (C) Si2p region of monolayers derived from F1-Cx-YNE (x = 10 – 18).  
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Quantitative information on the packing density was obtained from XPS data, via 

rotational averaging of the observed C/Si ratio of the different monolayers to correct for 

any diffraction effects caused by the crystallinity of the Si substrate.55, 56 Since variations 

in the C/Si ratio up to 1 - 2 % can be observed, rotational averaging was carried out by 

measuring this ratio at 13 angles over a 120 range, corresponding to the symmetry of the 

Si substrate.37, 40, 51  These ratios are then converted into monolayer thicknesses (dML) by 

the following equation:37 

 

     (1) 

 

with  = attenuation length of Si 2p photoelectrons in the organic monolayers ( = 

39.5 Å), and φ = takeoff angle between the surface and the detector (in this experiment: φ 

= 90). For all monolayers, the C/Si ratios and the corresponding calculated thicknesses 

are shown in Table 2. As evident, the C/Si ratio and the derived thicknesses increase 

monotonously with increasing chain length. 

The surface coverage and tilt angle was calculated by comparing the formed 

monolayers with a previous study on alkane-thiol monolayer on gold.57 Tilt angles can be 

easily converted to monolayer thicknesses and vice versa (with Equation 2). The surface 

coverage can therefore also be calculated with monolayer thicknesses. The surface 

coverage of the monolayers was calculated with the following equation:37, 51 

 

         (2) 

 

in which DAu is the surface density of chains in a perfect alkane-thiol monolayer on gold 

with a tilt angle of 30 (DAu = 4.65·1014 cm-2), DSi is the surface atom density on Si(111) 

(DSi = 7.8·1014 cm-2) and dTH(30˚) is the theoretical thickness of an organic monolayer on Si 

with a tilt angle of 30. The theoretical thickness can be calculated with the following 

equation.37, 51, 58 
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where n is the number of carbon atoms per alkyne chain and θ is the tilt angle of the 

chains. 

The monolayer thickness was also obtained by ellipsometry, NEXAFS (using 

NEXAFS-derived values of tilt angles) and by molecular modeling studies (Material 

Studio); see Figure 4. All these measurements show that the monolayer thickness 

increases monotonously with increasing chain length, and display an increase in thickness 

of ca. 10 Å in going from C10 to C18. There are some systematic variations between the 

different methods, but overall experiments and theory in good agreement and the observed 

monolayer thicknesses comparable to reported values for non-fluorinated monolayers.37 

 

Figure 4. Molecular modeling studies at 60 % coverage (orange) estimated thickness compared with 

measured by ellipsometry (red column), XPS (green column), and NEXAFS (blue column) of F1-Cx-

YNE (x = 10 – 18) monolayers on H-Si(111). 

 

The surface coverage was calculated for the prepared monolayers, the results are shown 

in Table 2. The calculated surface coverage ranges from 51 ± 2 % for the F1-C10-yne up 

to 58 ± 2 % for F1-C18-yne monolayers. This is somewhat lower than the reported 55 - 

65% for non-fluorinated C12 - C18 1-alkynes,37, 38 but still appreciably higher than 

obtained for any 1-alkene-derived monolayer, for which values between 50 - 55% for 

C16/C18 monolayers are more typical.37 The observed values are the balance between 

having the narrower CH=CH moiety (in comparison to CH2-CH2) near the Si surface and 

having the polar and slightly larger C-F moiety at the terminus.43 The surface coverage 

increases with increasing chain length of monolayers. This is supported by data from 

IRRAS, NEXAFS and molecular modeling (which will be explained in the next section). 
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Table 2. Quantitative XPS Data of F1-C10-yne, F1-C12-yne, F1-C14-yne, F1-C16-yne and F1-C18-

yne Monolayers on H-Si(111). Atomic C/Si Ratios, Resulting Monolayer Thicknesses dML and Surface 

Coverages (θML).  

Monolayers C/Si ratio 
SAM thickness, 

Expt.(dML (Å)) 

SAM thickness, 

Theory(dTH (Å)) 

Surface 

coverage, 

θML (%) 

F1-C10-yne 23.8/76.2 10.6 12.3 51 

F1-C12-yne 28.5/71.5 13.1 14.5 54 

F1-C14-yne 32.7/67.3 15.5 16.8 55 

F1-C16-yne 37.1/62.9 18.1 19.1 56 

F1-C18-yne 41.2/58.8 20.7 21.3 58 

3.4.3 Infrared reflection absorption spectroscopy 

The absence of -CH3 peak at 2950 cm-1 confirms that the formed monolayers are indeed 

-CH2F terminated. Analysis of the CH2 stretch vibrations of the prepared monolayers by 

IRRAS reveals a high degree of short-range ordering of the monolayers. The peak 

positions for the anti-symmetric stretching (υaCH2, anti-sym) at 2918 ± 1 cm-1 and the 

symmetric stretching (υsCH2, sym) at 2851 ± 1 cm-1 for the F1-C16-yne-derived and F1-

C18-yne-derived monolayer are indicative of densely packed layers with a high degree of 

short-range ordering, in which all chains adopt a trans conformation.59, 60 As depicted in 

Figure 5, the peaks of the methylene stretching vibrations shift to higher wavenumbers 

with decreasing chain length, to 2922 cm-1 for the F1-C10-yne derived monolayer (see 

Table 3). This is attributed to a lower packing density for the monolayers derived from 

shorter alkynes.37 

 

Figure 5. IRRAS spectra (CH2 stretching area) for F1-C10-yne, F1-C12-yne, F1-C14-yne, F1-C16-yne 

and F1-C18-yne monolayers on H-Si(111). 
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Table 3. IRRAS νa-CH2 anti-symmetric and νs-CH2 symmetric frequencies with p-Polarized Light, of 

the F1-C10-yne, F1-C12-yne, F1-C14-yne, F1-C16-yne and F1-C18-yne Monolayers on H-Si(111). 

 

Monolayers 
Wavenumbers (cm-1) 

νa-CH2 anti-symmetric νs-CH2 symmetric 

F1-C10-yne 2922.1 2852.2 

F1-C12-yne 2920.1 2849.2 

F1-C14-yne 2918.7 2848.8 

F1-C16-yne 1918.2 2847.8 

F1-C18-yne 1918.4 2847.4 

3.4.4 Near Edge X-Ray Absorption Fine Structure (NEXAFS) 

NEXAFS spectra were taken at the Carbon K-edge to determine the chain lengths of 

dipolar mono--fluorinated 1-alkyne-derived molecules of SAMs on silicon. Data were 

acquired at 90°, 70°, 55°, 30° and 20° and are presented in Figure 6 (A-E). NEXAFS 

spectroscopy is known to be a powerful tool in the investigation of organic molecules at 

surfaces. It provides unique information both on the empty orbitals of organic molecules 

and on their orientation with respect to the substrate.40, 61 On the basis of previous findings 

on Si(111) surfaces40, 62 the first pronounced peak at 284.7 eV is associated to the π*(C=C) 

resonance involving the C atoms of the alkene; the second peak at 287.4 eV is assigned to 

transitions involving the σ* C-H atoms in the methylene units, and the peaks around 

~293.2 and ~303.0 eV are assigned to (C-C/σ*, C-F/σ*) and C═C/σ* resonances 

respectively. Castner et al.63 reported the C-F* peak in Teflon (PTFE) and assigned the 

sharp peak at 292.3 eV to the C-F* absorption, and the peaks at 295.7 and 299.0 eV to the 

C-C* and other C-F* absorption, respectively. In contrast we did not observe these 

specific peaks for C-F* at these positions, likely because of signal/noise issues with only 

one fluorine atom buried in the C-C/σ* and C=C/σ* resonance peak.  

In figure 6 (A-E) all fluorinated monolayers have the same peak energies and shapes, 

indicating that Si-C=C, C-H, C-C, and C-F bonds are in very similar chemical 

environments. Note that these are normalized spectra; however, in absolute terms, the 

π*(C=C) peak is stronger for F1-C10-YNE (A), F1-C12-YNE (B) and F1-C14-YNE (C) 

than for F1-C16-YNE (D) and F1-C18-YNE (E). The σ* C-H, C-C/σ*, and C-F/σ* peaks 

are stronger for F1-C16-YNE (D) and F1-C18-YNE (E) because the molecules are much 

more densely packed in the SAM structure than for F1-C10-YNE (A), F1-C12-YNE (B) 

and F1-C14-YNE (C). 
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Figure 6. C K-edge NEXAFS spectra of SAMs prepared from F1-C10-YNE (A), F1-C12-YNE (B), F1-

C14-YNE (C), F1-C16-YNE (D), and F1-C18-YNE (E) at 25 °C under ambient light, acquired at X-ray 

absorption spectra taken at different angles (90°, 70°, 55°, 30°, and 20°) between the surface plane 

and the electric field vector. 

3.4.5 Controlled modification of the surface/interface potential and its 

application in metal/monolayer/semiconductor (MOMS) junctions  

To demonstrate the potential application of the chemical modification (substituting H 

with an F atom in the terminal CH3 group) of the molecular monolayer in possible future 

electronic devices, we compared the J-V behavior of a junction with the modified F1-C16-

yne monolayer with that of the previously reported C16-yne monolayers (Figure 7).33 
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We showed previously that organic monolayers on oxide-free Si play two important 

roles in determining the J-V behavior of a MOMS junction.17, 19, 64 The first is electronic 

passivation of the Si surface, i.e., reducing the density of surface states. This makes the Si 

surface more similar to an ideal surface that acts according to the Schottky-Mott limit, as 

given in eq 4:65 

 

 b,n = m - sc                 (4) 

 

where b,n is the barrier for charge transport inside the semiconductor, Φm is the metal 

work function, and χsc is the semiconductor electron affinity. 

The second important role is that of introducing a surface dipole that strongly depends 

on the dipole of the precursor molecule, as used for monolayer formation. Once the 

surface is electronically passivated, eq 4 shows that the barrier for charge transport (b,n)  

depends on the semiconductor electron affinity (χsc), which in turn depends on the surface 

dipole that is introduced by the monolayer. 

Substituting an H with an F atom in the terminal group of the alkenyl chain is expected 

to increase the work function (thus increasing the electron affinity) of the Si-monolayer 

surface. This increase is due to the direction of the bond dipole between C-F in 

comparison to C-H.66 Indeed, multiple CPD measurements indicate that the work function 

of the F1-C16-yne sample is 100 ± 20 meV larger than that of the previously reported 

C16-yne sample (the error represents the standard deviation between measurements). 

According to eq 4, the higher work function should be expressed as a lower barrier for 

transport in the full MOMS junction. From the data presented in Figure 7 it is clear that 

b,n is indeed 100 meV lower for the F1C16-yne monolayer than for the non-fluorinated 

monolayer65, which is consistent with the work function, obtained from CPD  

measurements. The agreement between the CPD and J-V results indicates that the 

electronic passivation of the Si surface is indeed of high quality, which is attributed to the 

high density of the molecular monolayer obtained from 1-alkynes. Furthermore, it 

demonstrates how the surface potential of Si can be controllably modified by chemical 

modification of the monolayer and that the modification of the surface potential can be 

translated into interface modification in a full MOMS junction. 
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Figure 7. Comparison between the J-V curves of Hg/F1C16-YNE-Si (red) and Hg/C16-YNE-Si (black) 

junctions.  

3.4.6 Molecular modeling 

Finally, all experimentally prepared monolayers were studied by molecular modeling. 

Furthermore, the influence of molecule chain lengths with different substitution 

percentages and substitution patterns were studied. The different substitution percentages 

were 25, 33, 40, 50, 60, 67 and 75%. The 50-75% unit cells were used as reported by 

Scheres et al.38  

 
 

Figure 8. Overview of the unit cells with 25, 33 and 40% substitution. Each C (in red) represents an 

attached chain and each H corresponds to an unoccupied H-Si site. 
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The unit cells with 25, 33 and 40% coverage are depicted in Figure 8. Two different 

unit cells were made for the 25 and 33% substitution percentages and three unit cells for 

all other substitution percentages. The different unit cells per surface coverage have 

different substitution patterns (denoted as A, B and C). A top view of the unit cells is 

depicted in Figure 8. Each H represents an unoccupied position and each C an attached 

chain. The unit cells were copied in the plane of the silicon substrate until the simulations 

cells were 10  15 or 12  15 attachment places in size. These cells are large enough to 

give data that are independent of the number of chains.38, 68 

Periodic boundary conditions were used to mimic an infinitely large surface, which is 

not affected by edge effects. An example of an optimized enlarged unit cell is shown in 

Figure 9. To study the interchain interactions, the packing energy per chain is calculated. 

The packing energy is the energy that is consumed or released by adding a chain, close to 

another chain. The packing energy can be calculated with the following equation: 

 

            (5) 

 

With Echains the total potential energy of all chains in an optimized simulation cell, n the 

total number of chains in the same unit cell and Erelaxed chain is the potential energy of a 

single free optimized alkene, which represents an attached alkyne chain. To obtain the 

potential energy of the chains the silicon layer has to be cut off, i.e., all Si-C bonds were 

cleaved. It turned out that by adding hydrogen atoms to the carbons that were linked to the 

Si atoms, the conformations of the chains were altered. This is unwanted because then the 

information about the interchain interactions is lost. It was therefore examined if the 

formed radicals could also be used for the comparison of the monolayers. This is done by 

measuring the angles between the double bond and the remaining hydrogen after the 

removal of the silicon layer, see Figure 10. By measuring these angles, it could be seen 

whether the radicals of different chain lengths were treated in the same way and, thereby, 

whether the packing energies could be compared. 

chainrelaxed
chains

packing E
n

E
E .
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Figure 9. (left) Side view of simulation cell 60A after enlargement and optimization with F1-C16-yne. 

Yellow is silicon, gray is carbon, purple is fluorine and light blue is hydrogen. (right) Angle (β) 

measured after removal of the silicon layer. 

Three angles per monolayer were measured and averaged. The results are shown in 

Figure 10 (A). Three main conclusions can be drawn from this plot. First, all angles are 

between 116.0 and 119.5˚, which is only a small deviation from the normal sp2 hybridized 

orbitals. This indicates that the program treated the radicals as almost normal bonds. 

Secondly, the measured angles per surface coverage are within one degree. 

 

Figure 10. (A) Averaged angles (β) between the double bound and remaining hydrogen after removal 

of the silicon layer of the F1-C10-yne, F1-C12-yne, F1-C14-yne, F1-C16-yne and F1-C18-yne 

monolayers at different substitution percentages. (B) Averaged packing energies of F1-C10-yne, F1-

C12-yne, F1-C14-yne, F1-C16-yne and F1-C18-yne monolayers on H-Si(111) at different surface 

coverages. The lines are added as a guide to the eye. 

This result shows that the radicals of different alkenyl chains are treated in the same 

way. It allows us therefore to compare the packing energies calculated for the different 

chain lengths. However, the absolute values of the packing energy may be incorrect. 

Finally it can be seen that that the angles decrease with increasing surface coverage. This 

trend is ascribed to the smaller tilt angles with higher substitution percentages.37, 38 In 
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Figure 10 (B), the packingenergies shown are calculated by the ‘radical approach’. The 

monolayers are formed by a meandering functionalization37, 58, 69, 70 and it therefore occurs 

via a near-random process.38 It is therefore likely that experimentally the monolayer 

possess several substitution patterns. Therefore, the packing energies of the two or three 

unit cells were averaged for each surface coverage. The minima of the packing energies 

lie between 50 and 60%, which is just slightly higher than the experimentally found 

surface coverage of the monolayers. The trend is not very clear, but the surface coverage 

also increases slightly, if the monolayers are built from longer chain lengths. The 

optimized C-C-C-F torsional angles are shown to increase slightly with respect to chain 

length from 160 (C10) to 166 (C18) at 60 % surface coverage, implying that the fluorine 

atoms are rotated more and more “away” from the surface with increasing chain length. 

This result is in line with the ellipsometry-derived thickness, IRRAS and contact angle 

measurements. In addition, the packing energies of longer chains are lower for each 

substitution percentage. This is attributed to the more favorable Van der Waals 

interactions that occur if longer chains are placed next to one another. As stated by 

Scheres et al.,38 the packing energy itself is not always sufficient to verify whether a 

certain substitution percentage or substitution pattern is favorable or not. The binding 

energy is the main driving force for monolayer formation, which is not included in the 

packing energy, but in the current cases all monolayers were formed from the same type 

of 1-alkynes. Therefore trends in the packing energies are expected to accurately mimic 

the overall energy of monolayer formation, and yield that for mono-F alkyne-derived 

monolayers the surface coverage is around 55%. 

3.5 CONCLUSIONS 

A series of mono--fluorinated 1-alkyne-derived monolayers of various thicknesses 

was prepared on oxide-free hydrogen-terminated Si(111) were obtained from mono--

fluorinated 1-alkynes. A combination of experimental and theoretical studies shows that 

high-quality monolayers can be obtained (e.g. monolayer derived from F1-C18-yne has a 

packing density of 58 ± 2 %). It was demonstrated that by substitution of CH3 to CH2F in 

the terminal group,  it is possible to controllably and stepwise modify the surface potential 

and barrier for charge transport in a full metal/monolayer-semiconductor (MOMS) 

junction. The work function of silicon surfaces can thus be altered to accommodate 

specific application needs, and therefore this technique extends the potential of using Si-C 

derived monolayers in the fabrication of  MEMS and NEMS derived electronic devices. 
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S.3.1 EXPERIMENTAL SECTION 

S.3.1.1 Materials 

Tetrahydro-2-(2-propynyloxy)-2H-pyran (THP, Aldrich, 98%), n-butyllithium (BuLi, 

1.6 M in hexane, Aldrich), p-toluenesulfonic acid monohydrate (PTSA, Aldrich, 98%), 

potassium fluoride (KF, Sigma, +99.5%), 18-crown-6 (Fluka, +99.0%), 2-decyn-1-ol 

(Aldrich, 97%), 1-bromoundecane (Aldrich, 98%), 1-bromopentadecane (Aldrich, 97%), 

potassium tert-butoxide (t-BuOK, Aldrich) pyridine (Acros Organics, reagent ACS), 

Acetonitrile (Acros Organics, +99.5%), methanol (MeOH, VWR, +99.8%), 1,3-

diaminopropane (Aldrich, +99%), 9-dodecyn-1-ol (ABCR, 97%), silica gel 60 (Fluka) and 

p-toluenesulfonyl chloride (TsCl, Molekula) were used as received. Tetrahydrofuran 

(THF, VWR, 99%) was distilled from sodium benzophenone and stored on sodium wires. 

Hexamethylphosphoramide (HMPA, Aldrich, 99%) was dried over Linde type molecular 

sieves of 4Å. Dichloromethane (DCM, Fisher Chemical, +99%) was distilled before use.  

S.3.1.2 Analysis 

All reactions were monitored by thin layer chromatography (TLC) and carried out on 

0.25 mm silica gel PET foil plates with a medium pore size of 60 Å and a fluorescent 

indicator of 254 nm. Vanillin coloring reagent and heat were used as developing agents. 

The synthesized compounds were purified by automatic column chromatography with the 

Biotage Isolera One UV-VIS Flash Purification System using Biotage SNAP Cartridges 

(KP-Sil 50 g or 100 g).  
1H-NMR (400 MHz) and 13C-NMR (100 MHz) spectra were recorded on a Bruker 400 

MHz spectrometer with CDCl3 as solvent and internal standard (1H-NMR: 7.26 ppm and 
13C-NMR: 77.16 ppm ). In the reported data below the following abbreviations are used: s 

= singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet. Chemical 

shifts are reported in ppm. High resolution mass spectra were recorded using Electron 

Spray Ionization (ESI) or Direct Analysis in Real Time (DART) ionization coupled to a 

high resolution mass spectrometer from Thermo Scientific. Samples were measured in 

acetone.  

Attenuated total reflectance (ATR) infrared spectra of pure compounds were recorded 

on a Alpha-P spectrometer from Bruker. The wavenumbers are reported in reciprocal 

centimeters and the appearances are denoted as weak (w), medium (m) or strong (s).  

The purities of the synthesized compounds were checked with GC-MS using an Agilent 

HP-5MS column (30 m × 0.250 mm × 0.25 µm). If necessary, the final products were 
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subsequently purified by preparative HPLC using an Altima C18 column (250 × 22 mm) to 

afford 100% pure compounds.  

S.3.2 Synthesis of 10-fluorodec-1-yne 

 

S.3.2.1 Dec-9-yn-1-ol (1a) 

 To a three-necked round-bottom flask, which was flushed with nitrogen and closed 

with a calcium chloride tube, small pieces of Li (2.73 g, 389.28 mmol) and 186 ml of 1,3-

diaminopropane were added. The mixture was allowed to stir and heated in an oil bath at 

70 ˚C until the blue color discharges (1 h) and a white suspension was formed. After 

cooling down to room temperature, potassium tert-butoxide (29.12 g, 259.52 mmol) was 

added to the mixture. The mixture was stirred for 20 min and then dec-2-yn-1-ol (10 g, 

64.88 mmol) was added. Residual dec-2-yn-1-ol was washed into the mixture with a small 

portion of 1,3-diaminipropane (15 ml). The reaction mixture was stirred overnight at room 

temperature. Plenty of ice water was added to the reaction mixture and the mixture was 

extracted with ether three times. The organic layers were combined, washed with brine 

and water and dried over anhydrous MgSO4. The solvent was removed under reduced 

pressure. The residue was purified by automatic column chromatography (heptane : ethyl 

acetate = 5:1) to afford dec-9-yn-1-ol (7.44 g, 48.23 mmol, 74%) as a clear oil. The 

reaction was monitored with TLC (heptane : ethyl acetate = 5:1). 
1H-NMR (δppm): 3.60-3.57 (t, 2H, R-CH2-OH), 2.17-2.12 (dt, 2H, R-CH2-C≡C-H), 1.95 

(s, 1H, R-OH), 1.92-1.90 (t, 1H, R-C≡C-H), 1.56-1.46 (m, 4H, alkyl), 1.39-1.30 (m, 8H, 

alkyl). 13C-NMR (δppm): 84.77 (1C, R-C≡C-H), 68.19 (1C, R-C≡C-H), 62.90 (1C, R-CH2-

OH), 32.77 (1C, alkyl), 29.23 (1C, alkyl), 29.20 (1C, alkyl), 28.72 (1C, alkyl), 28.50 (1C, 

akyl), 25.76 (1C, alkyl), 18.42 (1C, alkyl). IR (cm-1): 3346 (m, OH), 3307, 624 (m, s, 
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C≡C-H), 2928, 2855, 1463 (s, s, m, CH2), 2117 (w, C≡C). MS (DART): calculated for 

C10H22ON (M + NH4) 172.1696, found 172.1695. 

S.3.2.2 Dec-9-ynyl 4-methylbenzenesulfonate (1b) 

To a 250 ml three-necked round-bottom flask, flushed with nitrogen, was added dec-9-

yn-1-ol (7.34 g, 47.62 mmol) at 0 ˚C, to dichloromethane (58 ml) and pyridine (7.6 ml). 

The mixture was stirred at 25 ˚C for 10 min. The flask was cooled down to 0 ˚C with an 

ice bath and p-toluenesulfonyl chloride (13.57 g, 71.43 mmol) was added to the reaction 

mixture. The mixture was stirred at 0 ˚C for 1 hour and then overnight at room 

temperature. The reaction was quenched with 35 ml of water at 0 ˚C and then warmed to 

23 ˚C. The resulting layers were separated and the aqueous layer was washed with DCM. 

The combined organic layers were washed with brine and water and dried over MgSO4. 

The solvent was removed by rotary evaporation. The crude extract was purified with 

automatic column chromatography (heptane : ethyl acetate = 13:1). The solvents were 

removed under reduced pressure to afford a white solid of dec-9-ynyl 4-

methylbenzenesulfonate (10.25 g, 33.23 mmol, 70%). The reaction was monitored with 

TLC (heptane : ethyl acetate = 9:1). 
 1H-NMR (δppm): 7.80-7.78 (d, 2H, Ph), 7.36-7.34 (d, 2H, Ph), 4.04-4.00 (t, 2H, R-

CH2-OTs), 2.45 (s, 3H, R-Ph-CH3), 2.19-2.14 (m, 2H, R-CH2-C≡C-H), 1.94-1.93 (t, 1H, 

R-C≡C-H), 1.67-1.60 (m, 2H, alkyl), 1.53-1.46 (m, 2H, alkyl),  1.39-1.27 (m, 8H, alkyl). 
13C-NMR (δppm): 144.58 (1C, Ph), 133.28 (1C, Ph), 129.76 (2C, Ph), 127.84 (2C, Ph), 

84.57 (1C, R-C≡C-H), 70.58 (1C, R-CH2-OTs), 68.12 (1C, R-C≡C-H), 28.77, 28.75, 

28.71, 28.48, 28.32 (5C, alkyl), 25.23 (1C, alkyl), 21.58 (1C, R-CH3), 18.31 (1C, alkyl). 

IR (cm-1): 3290, 662 (m, s, C≡C-H), 2930, 2857, 1464 (m, m, m, CH2), 2116 (w, 

C≡C),1174, 1356 (s, s, S=O). MS (DART): calculated for C17H28O3NS (M + NH4) 

326.1784, found 326.1785. 

S.3.2.3 10-Fluorodec-1-yne (1c) 

In a three-necked round-bottom flask, equipped with a condenser and a dropping 

funnel, potassium fluoride (3.86 g, 66.48 mmol) and 18-crown-6 (17.56 g, 66.48 mmol) 

were dissolved in 60 ml of acetonitrile. Nitrogen was flushed through the mixture. The 

solution was heated to 60 ˚C with an oil bath. A solution of dec-9-ynyl 4-

methylbenzenesulfonate (10.11 g, 33.24 mmol) in 65 ml of acetonitrile was drop wise 

added. The solution was refluxed for 24 h and after that, additional equivalents of 

potassium fluoride (1.93 g, 33.24 mmol) and 18-crown-6 (8.78 g, 33.24 mmol) were 

added. The reaction mixture was refluxed for another 24 h. The solvent was removed by 
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rotary evaporation. The residue was dissolved in ether and washed with water. The 

organic layers was dried with MgSO4 and the solvent was removed under reduced 

pressure. The residue was purified by automatic column chromatography (heptane) to 

afford 10-fluorodec-1-yne (3.80 g, 24.33 mmol, 73%) as a clear oil. The reaction was 

monitored with TLC (heptane). 
1H-NMR (δppm) 4.43-4.40 (t, 1H, F-CH2-R), 4.32-4.28 (t, 1H, F-CH2-R), 2.13-2.09 (dt, 

2H, R-CH2-C≡C-H), 1.87-1.85 (t, 1H, R-C≡C-H), 1.70-1.55 (m, 2H, alkyl), 1.49-1.42 (m, 

2H, alkyl), 1.35-1.27 (m, 8H, alkyl). 13C-NMR (δppm): 85.10, 83.47 (1C, F-CH2-R), 84.79 

(1C, R-C≡C-H), 68.23 (1C, R-C≡C-H), 30.62-30.43 (1C, R-CH2-CH2-F), 29.23 (1C, 

alkyl), 29.10 (1C, alkyl), 28.75 (1C, alkyl), 28.75 (1C, alkyl),  25.28-25.24 (1C, R-CH2-

CH2-CH2-F), 18.51 (1C, alkyl). IR (cm-1): 3304, 627 (m, s, C≡C-H), 2931, 2858, 1464 (s, 

s, m, CH2), 2118 (w, C≡C). MS (DART): calculated for C10H21NF (M + NH4) 174.1653, 

found 174.1655. 

S.3.3 Synthesis of 12-fluorododec-1-yne  

 

S.3.3.1 Dodec-11-yn-1-ol (2a) 

The procedure described for dec-9-yn-1-ol (1a) was used with 9-dodecyn-1-ol (12.00 g, 

65.83 mmol), lithium (2.74 g, 390.59 mmol), potassium tert-butoxide (29.5 g, 262.90 

mmol) and 187 ml of 1,3-diaminopropane to afford dodec-11-yn-1-ol (10.44 g, 57.27 

mmol, 87%).  
 1H-NMR (δppm): 3.61-3.57 (t, 2H, R-CH2-OH), 2.17-2.12 (dt, 2H, R-CH2-C≡C-H), 

1.91-1.90 (t, 1H, R-C≡C-H), 1.77 (s, 1H, R-OH), 1.56-1.45 (m, 4H, alkyl), 1.38-1.26 (m, 

12H, alkyl). 13C-NMR (δppm): 84.71 (1C, R-C≡C-H), 68.04 (1C, R-C≡C-H), 62.89 (1C, R-

CH2-OH), 32.72 (1C, alkyl), 29.49 (1C, alkyl), 29.36 (2C, alkyl), 29.03, 28.69, 28.44, 

25.70, 18.34 (5C, alkyl). IR (cm-1): 3310, 628 (m, s, C≡C-H), 2924, 2853, 1463 (s, s, m, 
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CH2), 2118 (w, C≡C). MS (DART): calculated for C12H26ON (M + NH4) 200.2009, found 

200.2010. 

S.3.3.2 Dodec-11-ynyl 4-methylbenzenesulfonate (2b) 

The procedure described for dec-9-ynyl 4-methylbenzenesulfonate (1b) was used with 

dodec-11-yn-1-ol (10.42 g, 57.16 mmol), pyridine (9.25 ml, 114.45 mmol), 69 ml of 

dichloromethane and p-toluenesulfonyl chloride (16.36 g, 86.11 mmol) to give dodec-11-

ynyl 4-methylbenzenesulfonate (12.57 g, 37.36 mmol, 65%).  
 1H-NMR (δppm): 7.74-7.72 (d, 2H, Ph), 7.30-7.28 (d, 2H, Ph), 3.97-3.94 (t, 2H, R-

CH2-OTs), 2.39 (s, 3H, R-Ph-CH3), 2.13-2.12 (dt, 2H, R-CH2-C≡C-H), 1.92 (t, 1H, R-

CH2-C≡C-H), 1.60-1.53 (quin, 2H, alkyl), 1.48-1.41 (quin, 2H, alkyl), 1.37-1.23 (m, 12H, 

alkyne) 13C-NMR (δppm): 144.55 (1C, Ph), 133.27 (1C, Ph), 129.74 (2C, Ph), 127.82 (2C, 

Ph), 84.67 (1C, R-C≡C-H), 70.62 (1C, R-CH2-OTs), 68.04 (s, 1C, R-C≡C-H), 29.24 (2C, 

alkyl), 28.95, 28.82, 28.76, 28.63, 28.40 (5C, alkyl), 25.26 (1C, alkyl), 21.57 (1C, alkyl), 

18.33 (1C, alkyl). IR (cm-1): 3292, 664 (m, s, C≡C-H), 2927, 2855, 1465 (s, s, m, CH2), 

2116 (w, C≡C), 1176, 1359 (s, s, S=O). MS (DART): calculated for C19H32O3NS (M + 

NH4) 354.2097, found 354.2102.  

S.3.3.3 12-Fluorotetradec-1-yne (2c) 

The procedure described for 10-fluorodec-1-yne (1c) was used with dodec-11-ynyl 4-

methylbenzenesulfonate (12.57 g, 37.36 mmol), potassium fluoride (4.33 g, 74.53 mmol 

and 2.17 g, 37.36 mmol), 18-crown-6 (19.7 g, 74.53 mmol and 9.85 g, 37.36 mmol) and 

60 and 75 ml of acetonitrile to afford 12-fluorododec-1-yne (6.63 g, 35.98 mmol, 95%). 

The product was purified with subsequently automatic column chromatography and 

preparative HPLC to afford a colorless oil.  
1H-NMR (δppm): 4.51-4.48 (t, 1H, F-CH2-R), 4.39-4.36 (t, 1H, F-CH2-R), 2.20-2.16 (dt, 

2H, R-CH2-C≡C-H), 1.94-1.93 (t, 1H, R-C≡C-H), 1.72-1.64 (m, 2H, alkyl), 1.54-1.51 (m, 

2H, alkyl), 1.41-1.30 (m, 12H, alkyl). 13C-NMR (δppm): 85.00, 83.37 (1C, F-CH2-R), 84.74 

(1C, R-C≡C-H), 68.02 (1C, R-C≡C-H), 30.48-30.29 (1C, R-CH2-CH2-F), 29.41, 29.34, 

29.18, 29.03, 28.70, 28.46 (6C, alkyl), 25.28-25.24 (1C, R-CH2-CH2-CH2-F), 18.51 (1C, 

alkyl). IR (cm-1): 3305, 627 (m, s, C≡C-H), 2927, 2855, 1464 (s, s, m, CH2), 2117 (w, 

C≡C). MS (DART): calculated for C12H25NF (M + NH4) 202.1966, found 202.1969. 
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S.3.4 Synthesis of 14-fluorotetradec-1-yne 

 

S.3.4.1 2-Tetradec-2-ynoxytetrahydropyran (3a) 

In an oven-dried 500 ml three-necked round-bottom flask, a solution of tetrahydro-2-(2-

propynyloxy)-2H-pyran (11.95 ml, 85.00 mmol) in 212 ml of dry THF was cooled to 0 ˚C 

in an ice bath. The mixture was flushed with nitrogen and the round-bottom flask was 

closed with a calcium chloride tube. The mixture was treated with n-butyllithium in 

hexane (16.02 ml of a 1.6 M solution) Thereafter, 1-bromoundecane (18.97 ml, 85.00 

mmol) in 149 ml of dry HMPA was added at 0 ˚C. The reaction mixture was stirred 

overnight at room temperature. The reaction was quenched with 50 ml of saturated 

aqueous NH4Cl solution and extracted with heptane. The combined organic layers were 

washed with demineralized water and dried over MgSO4. The solvent was removed by 

rotary evaporation. Remaining starting material was removed using a with silica gel filled 

glass filter (heptane). After that, the residue was purified by automatic column 

chromatography (heptane: ethyl acetate = 9:1). The solvents were removed under reduced 

pressure to afford 2-tetradec-2-ynoxytetrahydropyran (8.26 g, 28.05 mmol, 33%) as a 

clear oil. The reaction was monitored with TLC (heptane : ethyl acetate = 9:1). 
 1H-NMR (δppm): 4.82-4.80 (t, 1H, R-O-CH-O-R), 4.30-4.18 (tq, 2H, R-C≡C-CH2-

O-R), 3.88-3.82, 3.55-3.50 (m, 2H, R-O-CR-O-CH2-CH2-R), 2.23-2.19 (tt, 2H, R-CH2-

C≡C-R), 1.897-1.47 (m, 6H, alkyl), 1.38-1.26 (m, 18H, akyl), 0.90-0.86 (t, 3H, R-CH3). 
13C-NMR (δppm):  96.81 (1C, R-O-CH-O-R), 86.94 (1C, R-C≡C-CH2-O-R), 75.89 (1C, R-

C≡C-CH2-O-R), 62.16 (1C, R-C≡C-CH2-O-R), 54.82 (1C, R-O-CR-O-CH2-CH2-R), 

OH
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32.07, 30.49, 29.77, 29.68, 29.49, 29.29, 29.05, 28.79, 25.57, 22.84, 19,32, 18.99 (13C, 

alkyl and ring structure), 14.25 (1C, R-CH3).  IR (cm-1): 2922, 2852, 1463 (s, s, m, CH2), 

2217 (w, C≡C), 1117 (s, C-O). MS (DART): calculated for C19H38O2N (M + NH4) 

312.2897, found 312.2902. 

S.3.4.2 Tetradec-2-yn-1-ol (3b) 

The reaction was carried out in a 250 ml three-necked round-bottom flask which was 

flushed with nitrogen gas and closed with a calcium chloride tube.  p-Toluenesulfonic acid 

monohydrate (1.87 g, 9.85 mmol) was added to a solution of 2-tetradec-2-

ynoxytetrahydropyran (5.80 g, 19.70 mmol) and 100 ml of methanol. The reaction 

mixture was stirred overnight at room temperature. The reaction was checked with TLC 

(heptane: ethyl acetate 8:2). If still starting material remains, another portion of PTSA can 

be added. The reaction was quenched with 10 ml of ice cold demineralized water. The 

methanol was removed by rotary evaporation. More water was added and the mixture was 

extracted with ether. The organic layers were washed with saturated NaCl solution and 

dried over anhydrous MgSO4. The solvent was removed under reduced pressure and the 

remaining residue was purified by automatic column chromatography (heptane: ethyl 

acetate = 9:1) to give tetradec-2-yn-1-ol (3.05 g, 14.51 mmol, 74%) as a white wax-like 

solid. The reaction was monitored with TLC (heptane : ethyl acetate = 8:2).  
 1H-NMR (δppm): 4.27-4.25 (td, 2H, RCC-CH2-OH), 2.24-2.19 (tt, 2H, R-CH2-

CCR), 1.55-1.49 (quin, 2H, R-CH2-CH2-CCR), 1.40-1.27 (m, 17H, alkyl/R-OH), 0.91-

0.87 (t, 3H, R-CH3). 
13C-NMR (δppm): 86.88 (1C, R-CC-CH2-OH), 78.42 (1C, RCC-

CH2-OH), 51.63 (1C, R-CH2-OH), 32.07, 29.77, 29.67, 29.48,  29.30,  29.03,  28.77,  

22.83,  18.89 (10C, alkyl), 14.26 (1C, R-CH3). IR (cm-1): 3294 (m, OH), 2955, 2871 (m, 

m, CH3), 2915, 2849, 1470 (s, s, s, CH2), 2119 (w, C≡C). MS (DART): calculated for 

C14H30ON (M + NH4) 228.2322, found 228.2324. 

S.3.4.3 Tetradec-13-yn-1-ol (3c) 

The procedure described for dec-9-yn-1-ol (1a) was used with tetradec-2-yn-1-ol (5.81 

g, 27.64 mmol), lithium (1.16 g, 165.84 mmol), potassium tert-butoxide (12.40 g, 110.56 

mmol) and 79 ml of 1,3-diaminopropane to afford tetradec-13-yn-1-ol (4.80 g, 22.84 

mmol, 83%)  
 1H-NMR (δppm): 3.67-3.63 (t, 2H, R-CH2-OH), 2.19-2.13 (dt, 2H, R-CH2-C≡C-H), 

1.95-1.94 (t, 1H, RC≡C-H), 1.61-1.45 (m, 4H, alkyl), 1.41-1.28 (m, 17H, alkyl). 13C-

NMR (δppm): 84.79 (1C, R-C≡C-H), 67.99 (1C, RC≡C-H), 62.92 (1C, R-CH2-OH), 32.80 

(1C, alkyl), 29.56, 29.54, 29.52, 29.46, 29.40, 29.07, 28.73, 28.48 (8C, alkyl) 25.72 (1C, 
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alkyl), 1837 (1C, alkyl). IR (cm-1): 3312 (m, OH), 3287, 628 (m, C≡C-H), 2923, 2853, 

1462 (s, s, m, CH2), 2118 (w, C≡C). MS (DART): calculated for C14H30ON (M + NH4) 

228.2322, found 228.2321. 

S.3.4.4 Tetradec-13-ynyl 4-methylbenzenesulfonate (3d) 

The procedure described for dec-9-ynyl 4-methylbenzenesulfonate (1b) was used with 

tetradec-13-yn-1-ol (4.67 g, 22.22 mmol), pyridine (3.59 ml, 44.44 mmol), p-

toluenesulfonylchloride (5.07 g, 26.69 mmol) and 27 ml of dichloromethane to give 

tetradec-13-ynyl 4-methylbenzenesulfonate (3.32 g, 9.12 mmol). The product was 

obtained with a good yield.  
1H NMR (δppm): 7.80-7.78 (d, 2H, Ph), 7.35-7.33 (d, 2H, Ph), 4.03-4.00 (t, 2H, R-CH2-

OTs), 2.45 (s, 3H, R-Ph-CH3), 2.2-2.16 (dt, 2H, R-CH2-C≡C-H), 1.94-1.92 (t, 1H, RC≡C-

H), 1.66-1.60 (quin, 2H, alkyl), 1.56-1.48 (quin, 2H, alkyl), 1.39-1.22 (m, 16H, alkyl). 13C 

NMR (δppm): 144.56 (1C, Ph), 133.32 (1C, Ph), 129.76 (2C, Ph), 127.85 (2C, Ph), 84.73 

(1C, R-C≡C-H), 70.66 (1C, R-CH2-OTs), 68.02 (1C, RC≡C-H), 29.48 (1C, alkyl), 29.42 

(2C, alkyl), 29.33, 29.05, 28.89, 28.80, 28.71, 28.46, 25.30, 21.59, 18.37 (9C, alkyl). IR 

(cm-1): 3293, 663 (m, s, C≡C-H), 2918, 2851, 1471 (s, s, m, CH2), 2116 (w, C≡C), 1173, 

1354 (s, s, S=O). MS (DART): calculated for C21H36O3NS (M + NH4) 382.2410, found 

382.2410. 

S.3.4.5 14-Fluorotetradec-1-yne (3e) 

The procedure described for 10-fluorodec-1-yne (1c) was used with tetradec-13-ynyl 4-

methylbenzenesulfonate (3.20 g, 8.79 mmol), potassium fluoride (1.02g, 17.55 mmol and 

0.51 g, 8.78 mmol), 18-crown-6 (4.64 g, 17.55 mmol and 2.32 g, 8.78 mmol) and 18 and 

16 mol of acetonitrile to afford 14-fluorotetradec-1-yne (1.44 g, 6.78 mmol, 77%). The 

product was purified by preparative HPLC. A pure colorless oil was obtained.  
1H NMR (δppm) 4.51-4.48 (t, 1H, F-CH2-R), 4.39-4.36 (t, 1H, F-CH2-CH2), 2.21-2.16 

(m, 2H, R-CH2-C≡C-H), 1.94-1.93 (t, 1H, R-C≡C-H), 1.76-1.63 (m, 2H, alkyl), 1.57-1.49 

(m, 2H, alkyl), 1.41-1.29 (m, 16H, alkyl). 13C NMR (δppm): 85.01, 83.38 (1C, F-CH2-R), 

84.76 (1C, R-C≡C-H), 68.00 (1C, R-C≡C-H), 30.50, 30.31 (1C, FCH2-CH2-R), 29.53, 

29.48, 29.46, 29.22, 29.08, 28.74, 28.49 (8C, alkyl), 25.16, 25.11 (1C, FCH2-CH2-CH2-R), 

18.38 (1C, alkyl). IR (cm-1): 3310, 626 (m, s, C≡C-H), 2924, 2854, 1465 (s, s, m, CH2), 

2119 (w, C≡C). MS (DART): calculated for C14H29NF (M + NH4) 230.2279, found 

230.2280. 
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S.3.5 Synthesis of 16-fluorohexadec-1-yne 

 

S.3.5.1 Hexadec-15-yn-1-ol (4a) 

The procedure described for dec-9-yn-1-ol (1a) was used with hexadec-7-yn-1-ol (20 g, 

83.9. mmol), Lithium (3.49 g, 503.3 mmol), 1,3 diaminopropane (240 mL) and potassium 

tert-butoxide (37.6 g, 335.54 mmol) to give hexadec-15-yn-1-ol as a colorless oil (13.95 

g, 58.51 mmol, 73%) 
1H-NMR (δppm) 3.62-3.59 (t, 2H,  R-CH2-OH), 2.17-2.13 (dt 2H, R-CH2-C≡C-H), 1.91-

1.90 (t, 1H, R-C≡C-H), 1.61 (s, 1H, R-OH),  1.56-1.46 (m, 4H, Alkyl), 1.38-1.24 (m, 20H, 

alkyl). 13C-NMR (400 MHz, CDCl3, δppm): 85.08 (1C, R-C≡C-H), 68.34 (1C, C≡C-H), 

63.29 (1C, R-CH2-OH), 33.10 (1C, alkyl), 29.93, 29.92, 29.90 (5C, alkyl), 29.80 (1C, 

alkyl), 29.74 (1C, alkyl), 29.41 (1C, alkyl), 29.06 (1C, alkyl), 28.81 (1C, alkyl), 26.06 

(1C, alkyl), 18.70 (1C, alkyl). IR (cm-1): 3286, 628 (m, s, C≡C-H), 2917, 2849, 1472 (s, s, 

m, CH2), 2114 (w, C≡C). MS (DART): calculated for C16H31O (M + H) 239.2375, found 

239.2367. 

S.3.5.2 Hexadec-15-ynyl 4-methylbenzenesulfonate (4b) 

The procedure described for dec-9-ynyl (1b) was used with hexadec-15-yn-1-ol  (10.00 

g, 42.0 mmol) and p-toluenesulfonyl chloride (9.60 g, 50.4 mmol) to give hexadec-15-

ynyl 4-methylbenzenesulfonate as a white solid (13.35 g, 34.04 mmol, 81%):  
1H-NMR (δppm): 7.79-7.77 (d, 2H,  Ph), 7.34-7.32 (d, 2H,  Ph), 4.03-3.99 (t, 2H, R-CH2-

OTs), 2.44 (s, 3H, R-Ph-CH3), 2.19-2.15 (m 2H, R-CH2-C≡C-H), 1.93-1.91 (t, 1H, R-

C≡C-H), 1.65-1.58 (m, 2H, alkyl), 1.54-1.48 (m, 2H, alkyl),  1.41-1.21(m, 20H, alkyl). 
13C NMR (δppm): 144.90 (1C, Ph), 133.67 (1C, Ph), 130.10 (1C, Ph), 128.19 (1C, Ph), 

85.09 (1C, R-C≡C-H), 71.00 (1C, R-CH2-OTs), 68.35 (1C, R-C≡C-H), 29.90, 29.89, 

29.80, 29.79, 29.69, 29.42, 29.24, 29.15, 29.07, 28.82 (13C, alkyl), 25.64 (1C, alkyl), 

21.92 (1C, alkyl), 18.71 (1C, alkyl). IR (cm-1): 3288, 667 (m, s, C≡C-H), 2916, 2850, 

OH
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1472 (s, s, m, CH2), 2116 (w, C≡C), 1175, 1357 (s, s, S=O). MS (ESI): calculated for 

C23H36O3NaS (M + Na) 415.2283, found 415.2273.  

S.3.5.3 16-Fluorohexadec-1-yne (4c) 

The procedure described for 10-fluorodec-1-yne (1c) was used with potassium tert-

butoxide (3.26 g, 56.09 mmol and 1.62 g, 28.04 mmol) and 18-crown-6 (14.8 g, 56.09 

mmol and 7.4 g, 28.04 mmol) in 50 ml of acetonitrile and hexadec-15-ynyl 4-

methylbenzenesulfonate (11.0 g, 28.04 mmol) in 55 mL of acetonitrile to give 16-

fluorohexadec-1-yne (6.40 g, 26.64 mmol, 95%) as a clear oil.  
1H-NMR (δppm) 4.49-4.46 (t, 1H, F-CH2-R), 4.37-4.34 (t, 1H, F-CH2-R), 2.19-2.15 (m, 

2H, R-CH2-C≡C-H), 1.92-1.91(t, 1H, R-C≡C-H), 1.74-1.61 (m, 2H, alkyl), 1.55-1.48 (m, 

2H, alkyl), 1.40-1.26 (m, 20H, alkyl). 13C-NMR (δppm): 85.29, 83.66 (1C, F-CH2-R), 85.05 

(1C, R-C≡C-H), 68.35 (1C, R-C≡C-H), 30.86, 30.67 (1C, alkyl), 29.96, 29.93, 29.89, 

29.85 (6C, alkyl), 29.59 (1C, alkyl), 29.45 (1C, alkyl), 29.10 (1C, alkyl), 28.85 (1C, 

alkyl), 25.52, 25.47 (1C, F-CH2-CH2-R), 18.73 (1C, alkyl). IR (cm-1): 3311, 626 (m, s, 

C≡C-H), 2923, 2853, 1465 (s, s, m, CH2), 2117 (w, C≡C). MS (ESI): calculated for 

C16H30NF (M + H) 241.2332, found 241.2325. 

S.3.6 Synthesis of 18-fluorooctadec-1-yne 
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S.3.6.1 Octadec-2-yn-1-ol (5a)  

The procedure described for 2-tetradec-2-ynoxytetrahydropyran (3a) was used with 

THP (11.91 g, 85.00 mmol) in 212 ml of dry THF, n-butyl lithium (10.89 g, 170.00 

mmol) and 1-bromopentadecane (24.26 g, 85.00 mmol) in 149 ml of HMPA. The product 

was directly used in the next step without purification. The procedure described for 

tetradec-2-yn-1-ol (3b) was used with p-toluenesulfonic acid monohydrate (8.08 g, 42.50 

mmol). 
 1H-NMR (δppm): 4.26-4.25 (t, 2H, RCC-CH2-OH), 2.23-2.19 (m, 2H, R-CH2-

CCR), 1.52-1.47 (quin, 2H, R-CH2-CH2-CCR), 1.39-1.26 (m, 25H, alkyl), 0.90-0.86 (t, 

3H, R-CH3). 
13C-NMR (δppm): 86.66 (1C, RCC-CH2-OH), 78.24 (1C, RCC-CH2-OH), 

51.41 (1C, R-CH2-OH), 31.92 (1C, alkyl), 29.69 (3C, alkyl), 29.65 (3C, alkyl), 29.63, 

29.52, 29.35, 29.14, 28.88 (5C, alkyl), 22.68, (1C, alkyl), 18.72 (1C, alkyl), 14.71 (1C, 

alkyl). IR (cm-1): 3302 (m, OH), 2954, 2871 (m, m, CH3), 2914, 2848, 1470 (s, s, s, CH2), 

2118 (w, C≡C). MS (DART): calculated for C18H38ON (M + NH4) 284.2948, found 

284.2950. 

S.3.6.2 Octadec-17-yn-1-ol (5b) 

The procedure described for dec-9-yn-1-ol (1a) was used with lithium (0.39 g, 56.07 

mmol), 29 mol of 1,3-diaminopropane, potassium tert-butoxide (4.53 g, 37.38 mmol) and 

octadec-2-yn-1-ol (2.49 g, 9.35 mmol) to give octadec-17-yn-1-ol (1.20 g, 4.51 mmol, 

48%). 
 1H-NMR (δppm): 3.64-3.61 (t, 2H, R-CH2-OH), 2.19-2.15 (dt, 2H, R-CH2-C≡C-H), 

1.93-1.92 (t, 1H, RC≡C-H), 1.60-1.44 (m, 4H, alkyl), 1.40-1.25 (m, 25H, alkyl). 13C-

NMR (δppm): 84.77 (1C, R-C≡C-H), 67.99 (1C, RC≡C-H), 62.91 (1C, R-CH2-OH), 32.79 

(1C, alkyl), 29.63, 29.58, 29.48, 29.42, 29.09, 28.74, 28.48 (13C, alkyl) 25.72 (1C, alkyl), 

18.37 (1C, alkyl). IR (cm-1): 3286, 628 (m, s, R-C≡C-H), 2917, 2849, 1472 (s, s, m, CH2), 

2115 (w, C≡C). MS (DART): calculated for C18H38ON (M + NH4) 284.2948, found 

284.2953. 

S.3.6.3 Octadec-17-ynyl-4-methylbenzenesulfonate (5c) 

The procedure described for dec-9-ynyl 4-methylbenzenesulfonate (1b) was used with 

octadec-17-yn-1-ol (1.20 g, 4.51 mmol), pyridine (0.70 ml, 9.01 mmol), p-

toluenesulfonylchloride (0.88 g, 4.61 mmol) and 50 ml of dichloromethane to give 

octadec-17-ynyl-4-methylbenzenesulfonate (1.20 g, 2.85 mmol, 63%). 
 1H-NMR (δppm): 7.79-7.77 (d, 2H, Ph), 7.35-7.32 (d, 2H, Ph), 4.03-4.00 (t, 2H, R-

CH2-OTs), 2.44 (s, 3H, R-Ph-CH3), 2.19-2.15 (dt, 2H, R-CH2-C≡C-H), 1.93-1.92 (t, 1H, 
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R-CH2-C≡C-H), 1.66-1.59 (quin, 2H, alkyl), 1.55-1.49 (quin, 2H, alkyl), 1.44-1.21 (m, 

24H, alkyne) 13C-NMR (δppm): 144.56 (1C, Ph), 133.32 (1C, Ph), 129.76 (2C, Ph), 127.85 

(2C, Ph), 84.73 (1C, R-C≡C-H), 70.67 (1C, R-CH2-OTs), 68.02 (1C, R-C≡C-H), 29.61 

(4C, alkyl), 29.57 (2C, alkyl), 29.47, 29.36, 29.09, 28.90, 28.80, 28.73, 28.48 (7C, alkyl), 

25.30 (1C, alkyl), 21.58 (1C, alkyl), 18.37 (1C, alkyl). IR (cm-1): 3293 (m, s, C≡C-H), 

2916, 2850, 1471 (s, s, m, CH2), 2115 (w, C≡C). MS (DART): calculated for C25H44NO3S 

(M + NH4) 438.3036, found 438.3032. 

S.3.6.4 18-Fluorooctadec-1-yne (5d) 

The procedure described for 10-fluorodec-1-yne (1c) was used with potassium tert-

butoxide (3.26 g, 5.70 mmol and 1.62 g, 2.85 mmol) and 18-crown-6 (14.8 g, 5.70 mmol 

and 7.4 g, 2.85 mmol) in 10 ml of acetonitrile and hexadec-15-ynyl 4-

methylbenzenesulfonate (1.2 g, 2.85 28.04 mmol) in 12 mL of acetonitrile to afford 18-

fluorooctadec-1-yne (0.6 g, 2.23 mmol, 78%) 
1H-NMR (δppm) 4.50-4.47 (t, 1H, F-CH2-R), 4.38-4.35 (t, 1H, F-CH2-R), 2.20-2.15 (m, 

2H, R-CH2-C≡C-H), 1.93-1.92 (t, 1H, R-C≡C-H), 1.75-1.62 (m, 2H, alkyl), 1.56-1.49 

(quin, 2H, alkyl), 1.41-1.27 (m, 24H, alkyl). 13C NMR (δppm): 84.92, 83.28 (1C, F-CH2-R), 

84.67 (1C, R-C≡C-H), 67.98 (1C, R-C≡C-H), 30.50, 30.30 (1C, FCH2-CH2-R), 29.59, 

29.57, 29.52, 29.49, 29.48, 29.22, 29.08, 28.74, 28.64, 28.48 (12C, alkyl), 25.16, 25.10 

(1C, FCH2-CH2-CH2-R), 18.36 (1C, alkyl). IR (cm-1): 3311, 627 (m, s, C≡C-H), 2923, 

2853, 1465 (s, s, m, CH2), 2118 (w, C≡C). MS (DART): calculated for C18H37NF (M + 

NH4) 286.2905, found 286.2915. 

S.3.7 Torsional angle measured of C-C-C-F 
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Figure S1. (Left) Simulation cells of surface coverage of 60 % after optimization and average torsional 

angle of C-C-C-F, (Right) torsional angle measured of C-C-C-F. 
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  4 
Ultra-Low Adhesion and Friction of Fluoro-Hydro 

Alkyne-Derived Self-Assembled Monolayers on H-

terminated Si(111) 

New fluorine-containing terminal alkynes were synthesized and self-assembled onto 

Si(111) substrates to obtain fluorine-containing organic monolayers. The monolayers were 

analyzed in detail by ellipsometry, X-ray photoelectron spectroscopy (XPS), Fourier 

transform infrared reflection absorption spectroscopy (FT-IRRAS), static water contact 

angle measurements (CA) and atomic force microscopy (AFM). The SAMs exhibit 

excellent hydrophobicity, with static water contact angles up to 119 and low critical 

surface tensions of 5 - 20 mN/m, depending on the number of F atoms per molecule. 

IRRAS confirmed the formation of highly ordered monolayers, as indicated by the anti-

symmetric and symmetric stretching vibrations of the CH2 moieties at 2918 - 2920 cm-1 

and 2850 - 2851 cm-1, respectively. Upon increasing the number of fluorine atoms in the 

alkyne chains from 0 to 17, the adhesion of bare silica probes to the SAMs in air reduces 

from 11.6±0.20 mJ/m2 for fluorine-free (F0) alkyne monolayers to as low as 3.2±0.03 

mJ/m2 for a heptadecafluoro-hexadecyne (F17) based monolayer. Likewise, the friction 

coefficient decreases from 5.7 × 10-2 to 1.2 × 10-2. The combination of high ordering, 

excellent hydrophobicity, low adhesion and low friction make these fluoro-hydro alkyne-

derived monolayers highly promising candidates for use in high-performance micro-

electronic devices. 

 

 

 

This Chapter has been published as: 

“Ultralow Adhesion and Friction of Fluoro-Hydro Alkyne-Derived Self-Assembled 

Monolayers on H-Terminated Si(111)”. Sidharam  P. Pujari, Evan Spruijt, Martien A. 

Cohen Stuart, Cees J. M. van Rijn, Jos M. J. Paulusse, and Han Zuilhof. Langmuir 2012 

28 (51), 17690-17700 
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4.1 INTRODUCTION 

Studies on low adhesion and low frictional surfaces are particularly important for high 

performance technological devices. One of the great challenges in many micro-component 

devices, such as micro-and nano-electro-mechanical systems (MEMS and NEMS), is to 

reduce adhesion and friction to surfaces as much as possible, while keeping the surface 

highly robust and resistant against wear. The typical dimensions of MEMS and NEMS are 

a few to several hundreds of microns and they are primarily made from silicon. At these 

small scales, surface properties, such as Van der Waals and capillary forces, greatly 

influence the performance of these mechanical systems.1-3 Without a suitable surface 

modification Si shows high friction, adhesion, and wear.4-6 Therefore, several types of thin 

films have been investigated as coating for Si with enhanced tribological properties of 

silicon.7 In particular, thin organic fluorocarbon-hydrocarbon films have been found to 

produce low-adhesion and low-friction lubricants.8-12 In practice, polytetrafluoroethylene 

(PTFE) is now the primary coatings material in many micro-electro-mechanical systems.5 

However, these films are not covalently bound to the silicon and are therefore prone to 

wear. Moreover, PTFE films are relatively thick, which may still lead to high adhesion 

and friction forces when high loads are applied and the films are compressed. Here, we 

report on ultra-thin covalently bound fluoro-hydro alkyne-derived monolayers as high 

quality, low-adhesion and low-friction surface coatings on silicon for use in micro-

component devices. 

Densely packed organic monolayers, which are covalently bound via Si-CH=C linkages 

to crystalline silicon surfaces without an interfacial silicon oxide (SiO2) layer, are 

receiving increasing interest,13-15 mainly due to the potential of Si-C bound monolayers for 

application in micro- and nano-electronics, as well as in bio-chemical sensors.16-22 This 

field has recently been reviewed.23 With the advent of nanotechnology, lubricating 

monolayers are highly desired because they are covalently attached to the substrate, 

therefore not easily damaged and even if they break, do not yield particulates that may 

cause damage. Among the different organic monolayers grafted on the surface, fluorinated 

organic thin films have drawn much attention due to their outstanding chemical stability, 

thermal stability, unique wettability, and non-adhesive properties.24, 25 On a nanometer 

scale, the physical state of thin film systems may be influenced by a number of forces, 

including intermolecular interactions between molecules making up the film,26 surface 

interactions in adsorbed films, and solvent interactions in detached film systems.27 

The formation of a dipole between the last fluorinated carbon (R-CH2-CF2-R
1) and the 

first methylene group (R-CH2-CF2-R
1) in fluorinated organic monolayers causes the 

electronegative groups to be oriented normal to the surface. This gives rise to an important 
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decrease in adhesion to and friction of the fluorinated monolayers. In addition, 

fluorination leads to an enhancement of the hydrophobicity and oleophobicity.28, 29 The 

diverse effects that varying degrees of fluorination cause as well as the ratio between 

fluorocarbons and hydrocarbons, are under extensive study, with the aim to improve the 

tribological properties and to enhance the hydrophobicity of these monolayers.30-32  

A range of synthetic methods has been successfully used to prepare covalently bound 

monolayers on solid surfaces. For silicon, extensive reviews are provided by Gooding et 

al.33, 34 and Zuilhof et al.23, 35 The formation of a silicon-carbon bond via hydrosilylation is 

a key step in the coating of a silicon surface with a monolayer, as it greatly improves both 

packing and stability of SAMs.34 Grafting of alkynes onto the Si surface can be achieved 

in various ways.36-41 The mildest approach already allows for the preparation of high-

quality covalently bound organic monolayers at room temperature.42 As the assembly on 

the silicon surface progresses, interchain steric hindrance of CH2 and CF2 becomes 

dominant and prevents the bonding of alkyl chains to every silicon atom of the substrate. 

Since the resistance towards oxidation depends on the density of monolayer packing,15 a 

technique to develop tightly packed monolayers is desired in order to minimize water 

penetration, oxide formation, and consequently, degradation of the silicon substrate. 

In this paper, we prepare alkyne-based SAMs, which are known to be stable and to form 

densely packed monolayers.23, 43 By contrast, alkene-based SAMs, in which a Si- CH2-

CH2 single bond allows for higher degree of free rotation around the chain axis, give rise 

to a lower packing density. Apart from the enhanced rotation, the saturation of the carbon 

chain is another important feature: when an alkyne is attached to silicon, an alkene (Si-

CH=C linkage) remains, which takes up a smaller volume and thus causes less interchain 

repulsion than caused by the Si-CH2-CH2 linkage that is formed upon attaching an alkene 

to silicon. The enhanced packing density of alkyne-derived monolayers compared to 

alkene is furthermore due to the smaller tilt angle with respect to the surface normal, and 

higher ordering of the remaining alkene moieties, facilitated by attractive - 

interactions.15 Finally, it is remarked that the packing density increases with longer carbon 

chains for alkyne-derived monolayers as well as alkene-derived monolayers.13, 44-46 

Studying the characteristics of our S-CH=C linked monolayers together with the 

requirements for ultra-low surface tensions and adhesion properties, we expect that 

partially fluorinated monolayers on hydrogenated, oxide-free Si (H-Si) surface will 

combine several of the highly desirable characteristics strived for in this field. The current 

paper presents the synthesis of novel fluoro-hydro alkynes with a varying number of 

fluorine atoms (#F atoms: 0 – 17) at a constant chain length (C16) (Figure 1), and their 

application in monolayer formation onto oxide-free H-Si(111) surfaces. The resulting 
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monolayers are characterized by ellipsometry, X-ray photoelectron spectroscopy (XPS), 

Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS), advancing, 

and static water contact angle measurements (CA) and critical surface tension 

measurements. Subsequently, the adhesion and friction of these monolayers were studied 

as a function of fluorine content by colloidal probe atomic force microscopy (CP-AFM), 

to reveal unprecedentedly low surface tensions and adhesion properties. 

 

Figure 1. Fluoro-hydro alkynes employed in monolayer formation. 

 

4.2 EXPERIMENTAL SECTION  

4.2.1  Materials 

The synthetic procedures and spectroscopic characterization for hexadec-1-yne (F0), 

16-fluorohexadec-1-yne (F1), 16,16,16-trifluorohexadec-1-yne (F3), 13,13,14,14, 

15,15,16,16,16-nonafluoro-hexadec-1-yne (F9), and 9,9,10,10,11,11,12,12,13,13,14, 

14,15,15,16,16,16-heptadecafluoro-hexadec-1-yne (F17) are described in the Supporting 

Information S.4.2 to S.4.5. For rinsing and contact angle measurements, Milli-Q water 

(resistivity 18.3 MΩ×cm) was used. Hexadecane (C16, 99%); tetradecane (C14, 99%); 

dodecane (C12, 99%); decane (C10, 99%); heptane (C7, 99%); and hexane (C6, 99%) are 

used to determine the critical surface tension and were obtained from Aldrich and used as 

received. Sulfuric acid (Sigma Aldrich, 95-97%), hydrogen peroxide (Acros Organics, 

F F
FF

F F
FF

F F
FF

F F
FF

F

F F
FF

F F
FF

F

F

F17F9F3F0

F

F1

F

F



Chapter 4 

 98 

35%), ammonium fluoride (Riedel-de Haën, 40%, semiconductor grade VLSI PURANAL 

Honeywell 17600), and acetone (Aldrich, semiconductor grade VLSI PURANAL 

Honeywell 17617) were used as received. Silicon wafers were (111)-oriented single-side 

and doubly polished 500 - 550 μm thick, phosphorus-doped n-type, and have a resistivity 

of 2.0 - 8.0 Ω×cm with a 0.2° miscut angle along the <112> plane (Siltronix). 

4.2.2  Hydrogen-Terminated Si(111) surfaces 

Hydrogen-terminated Si(111) surfaces (“H-Si”) were prepared by chemical etching as 

previously reported.45, 47 All liquid reagents were continuously purged with an argon flow. 

N-type Si(111), was cut into an appropriately size substrate (10 × 10 mm2) and 

subsequently cleaned in a sonication bath with acetone and then with Milli-Q water. The 

Si wafer was oxidized in freshly prepared piranha solution (H2SO4/H2O2 3 : 1) for at least 

20 min. After piranha treatment, the substrates were immersed immediately in water and 

rinsed thoroughly, followed by drying with a stream of argon. Subsequently, the 

substrates were etched in an argon-saturated 40% aqueous NH4F solution for 15 min, 

rinsed by Milli-Q water, and finally dried with a stream of argon. 

4.2.3  Preparation of Fluoro-Hydro Alkyne Derived Monolayers on Si(111) 

A three-necked flat-bottom flask, connected with a thin capillary as the argon inlet and 

a reflux-condenser connected to a vacuum pump, was charged with individual neat fluoro-

hydro alkyne (Scheme 1), flushed with argon, and heated to 80 °C in order to remove 

traces of oxygen and moisture. The freshly etched Si(111) substrate was placed in fluoro-

hydro alkyne. The reaction was carried out at 80 °C, under an argon atmosphere at an 

argon pressure of 2 - 5 mbar for 16 h. After the reaction had been stopped, the modified 

surfaces were rinsed and sonicated with CH2Cl2 for 5 min to remove any physisorbed 

fluoro-hydro alkynes. 

4.3  MONOLAYER CHARACTERIZATION 

4.3.1 Contact Angle Measurements 

Contact angle measurements were performed on a Krüss DSA 100 contact angle 

goniometer with an automated drop dispenser and image video capture system. The static 

contact angles of six small droplets 3.0 μL volume of liquid, dispensed on modified 

silicon surfaces with a microliter syringe with stainless steel needle (diameter = 0.51 mm), 

were determined using a Tangent 2 fitting model. The digital drop images were processed 

by the image analysis system, which calculated both the left and right contact angles from 

the drop shape with an accuracy of ±1.0°. For advancing contact angle determinations on 
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the same polymer samples droplets of 1 µL total volume were applied at 10 µL/min and 

monitored by video recording. Reported angles are averaged over at least five droplets  

4.3.2 Ellipsometry 

The thickness of the modified silicon surfaces (in the dry state) was measured using a 

rotating analyzer ellipsometer (Sentech Instruments type SE-400), operating at 632.8 nm 

(He–Ne laser), with an angle of incidence of 70°. The optical constants of the substrate 

were determined with a piece of freshly etched H-Si(111) (n = 3.819 and k = 0.057). The 

thicknesses of the monolayers were determined with a planar three-layer (ambient, 

monolayer, substrate) isotropic model with a refractive index for the organic monolayers 

of 1.46 (F0), 1.44 (F1), 1.40 (F3), 1.38 (F9), and 1.35 (F17).48 The reported values for the 

layer thickness are the average of eight measurements taken at different locations on the 

substrate with an error < 1 Å. 

4.3.3 Atomic Force Microscopy 

Force measurements are performed on a Nanoscope IIIA AFM (Digital Instruments) 

equipped with a PicoForce scanner. Spherical silica particles (R = 3.0 µm, rms roughness 

value of 6.83 ± 2.06 nm)49 were attached to triangular standard silicon nitride cantilevers 

(Bruker probes, NP-B, spring constant between 0.10 and 0.16 N/m) using Norland optical 

adhesive 61, and cured by UV light (365 nm). Before use, the colloidal probes were 

cleaned by excessive amounts of ethanol followed by 5 min air plasma cleaning. Both 

adhesion and friction measurements were carried out in air, at relative humidity of 44 ± 2 

%.  

Adhesion forces were measured using a scan range of 1.0 µm for modified surfaces and 

10 µm for oxide surfaces at a scan rate of 0.5 Hz. At least 200 separate force curves were 

recorded for every surface. For each cantilever the normal spring constant was determined 

using the thermal tuning method introduced by Hutter and Bechhoefer,50 correcting for 

non-ideality of the spring and the fact that the deflection sensitivity was measured for a 

supported cantilever.51 The overall error in measured adhesion forces is the sum of 

uncertainties in the voltage measurement, deflection sensitivity, and spring constant, and 

was estimated to be ±10%.32, 52 

Friction forces were obtained from trace and retrace of 5 × 5 µm2 lateral force images 

under varying normal loads (FN = 0 to 80 nN). The lateral force images are measured at a 

constant speed of 5 µm/s under a 90° angle with respect to the cantilever’s long axis. The 

average lateral force difference signal ([µtrace – µretrace]/2, in V) was converted directly into 

friction force, following the method of Liu et al.53 Cantilevers were calibrated using the 
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reversible bending of a 8.9 µm thick glass fiber, leading to a lateral conversion factor of 

approximately 17.7 nN/V. The overall error in the conversion factor determined in this 

way, was estimated to be 15%.53 

4.3.4 X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements were performed using a JPS-9200 photoelectron spectrometer 

(JEOL, Japan). A monochromatic Al Kα X-ray source (hν = 1486.7 eV) 12 kV and 20 mA 

using an analyzer pass energy of 10 eV was used. The base pressure in the chamber 

during measurements was 3 × 10–7 Torr, and spectra were collected at room temperature. 

The intensity of XPS core level electron was measured as the peak area after standard 

background subtraction according to the linear procedure. The takeoff angle φ (angle 

between sample and detector) of 80 is defined with a precision 1°. The typical sample 

size was 1 × 1 cm2. All XPS spectra were evaluated using the Casa XPS software (version 

2.3.15). The symmetrical GL(30) line shape was employed, which is constituted of a 

Gaussian (70%) and a Lorentzian (30%) component. The FWHM of each component was 

constrained to ~1.0 eV. The relative areas of each component peak were fixed by the 

stoichiometry of the main hydrocarbon (CH2), which were assigned as aliphatic carbon to 

a binding energy of 285.00 eV. 

4.3.5 Infrared Reflection Absorption Spectroscopy (IRRAS) 

IRRA spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer using a 

variable angle reflection unit (Auto Seagull, Harrick Scientific). A Harrick grid polarizer 

was installed in front of the detector and was used to record spectra with p-polarized 

(parallel) radiation with respect to the plane of incidence at the sample surface. All spectra 

were obtained at an incident angle of 68 (2048 scans). The resolution was set at 2 cm-1 

per modulation center. The final spectra were obtained using a piranha-oxidized reference 

surface as background. Data were collected as differential reflectance versus wavenumber. 

All spectra were recorded at room temperature in dry atmosphere. 

4.3.6 Molecular modeling 

For the molecular modeling study, the same method is followed as reported by Scheres 

et al.43, 54 In short, Materials Studio software (version 5.0) was used to construct and 

optimize the monolayers. All monolayers were formed from five standard cells containing 

a decenyl chain (representing one of the alkynes) attached in all-trans conformation to 

four Si atoms. The Si atoms represent the first four layers of the Si substrate and it was 

obtained by cleaving a Si crystal along the (111) plane. The structures were placed in a 
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box to obtain the standard cells. The standard cells were copied in the directions of the Si 

substrate to form larger unit cells. By replacing some of the attached chains by hydrogen 

atoms, different substitution patterns and substitution percentages were obtained. All unit 

cells were finally copied to form the final big simulation cells, representing the whole 

modified Si surface. The unit cells and the big simulation cells were optimized using a 

polymer consistent force field (PCFF) with the “Smart Minimizer” routine and “high-

convergence” criteria. Periodic boundary conditions were applied. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Synthesis of Fluoro-Hydro Alkynes 

The synthesized fluoro-hydro alkynes are depicted in Figure 1. Fluorine-free 1-

hexadecyne (F0) was obtained by tosylation of 1-tetradecanol, followed by nucleophilic 

substitution with lithium acetylide. F3 was synthesized in six steps (see Scheme 1; full 

experimental details in Supporting Information S.4.4), consisting of coupling of THP-

protected propargyl alcohol to 1-bromododecane, followed by deprotection of the THP-

group affording pentadec-2-yn-1-ol. Isomerization of pentadec-2-yn-1-ol afforded the 

terminal alkyne, which was again tosylated and subsequently converted into the 

corresponding iodide, to increase reactivity for the final reaction with Me3SiCF3 to yield 

F3. A similar procedure was followed for preparing F1 from commercially available 

hexadec-7-yn-1-ol. After isomerization and tosylation, treatment with KF afforded F1. 

The heptadecafluoro alkyne F9 was obtained via a four step reaction (see in Supporting 

Information S.4.2 Scheme S1). Radical chain addition of 1,1,1,2,2,3,3,4,4-nonafluoro-4-

iodobutane to 9-decene-1-ol afforded 11,11,12,12,13,13,14,14,14-nonafluoro-9-

iodotetradecan-1-ol, and was followed by reduction of the iodide to give the reduced 

11,11,12,12,13,13,14,14,14-nonafluorotetradecan-1-ol. Tosylation of 

11,11,12,12,13,13,14,14,14-nonafluoro-tetradecan-1-ol was followed by nucleophilic 

substitution with lithium acetylide to obtain fluoro-hydro-alkyne F9. F17 was synthesized 

following the same procedure, but starting with 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-

heptadecafluoro-8-iodooctane and 5-hexen-1-ol. 
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Scheme 1. Synthetic procedure used to create fluoro-hydro alkynes (F3 is given as an example). 

 

4.4.2 Monolayer formation 

In search of a mild and generally applicable method for grafting the newly synthesized 

fluoro-hydro containing alkynes onto Si substrates, different reaction times and 

temperatures were investigated (data not shown). Typically, the Si substrate was 

immersed in neat alkyne under oxygen-free and water-free conditions. While high-quality 

monolayers were formed on Si(111) with F0 even at room temperature and ambient 

light,42 the modification with fluorinated alkynes were not completed under these 

conditions, and physisorption dominated based on weak Van der Waals interaction or 

hydrogen bonding between C-F….H-C.55 Hence, grafting of the fluorinated alkynes 

required reaction conditions of at least 80 °C for 16 h.  

Advancing and static water contact angle measurements were determined for all 

monolayers (see Supporting Information S.4.6 Table S1). The hexadecyne (F0) based 

monolayer displayed a static water contact angle of 110°, in agreement with earlier 

observed values.42 The hydrophobicity of the SAMs based on F1 - F17 are typical for the 

presence of fluorinated moieties.28 The water contact angle rises with increasing number 

of fluorines in the monolayer (static water contact angle up to 119° for F17), and 

compares favorably with that of PTFE = (115°). For F9 and F17 higher contact angles 

were observed, because of weak dipole-dipole interaction between the CF3 terminus and 

water molecules. In comparison, a PTFE surface displays a lower static water contact 
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angle, because the CF2 groups are less capable of reducing the surface energy than CF3 

groups.56 The lower polarizability of fluorine compared to hydrogen leads to very weak 

Van der Waals interactions among the CF3 terminus and polar water molecules.57 There 

has been a number of studies on the influence of terminal groups.58, 59 Colorado et al. 

obtained for a Au..S-(CH2)15-x(CF2)xCF3 series of monolayers a smaller contact angle 

(108°) for x = 0 (comparable to our F3 monolayer;  = 113°).28 This lower contact angle 

is likely due to a more horizontal organization of the CH2-CF3 terminus, thus exposing the 

CH2 moiety. In our case, the monolayer is likely more organized, presenting only the CF3 

group head up, yielding a higher hydrophobicity.)  

From the advancing water contact angle the apparent work of adhesion can be 

calculated. Figure 2 shows how the work of adhesion decreases with an increasing 

number of fluorine atoms. The strongest decrease occurs between F3 and F9, as discussed 

above. Between F9 and F17 little change is observed.  

A similar trend is found in the critical surface tension of the monolayers. Critical 

surface tensions are obtained from Zisman plots of static contact angles of a series of 

linear alkanes on the monolayers. A Zisman plot can be used to investigate the surface 

energy of a low-energy solid surface.60 When the surface energy of the solid is 

comparable to that of the liquid, a transition from partial to complete wetting is observed. 

Surfaces with very low surface energies are difficult to wet and may never reach complete 

wetting. 

  

Figure 2. (a) Zisman plot showing the linear regression of cos θ vs different n-alkanes (from C6 to 

C16) on F17 (empty squares), F9 (circles), F3 (empty triangles), F1 (circles empty), and F0 (squares) 

monolayers on H-terminated Si(111). The line coefficient r
2
 = 0.98 ± 0.01 indicates a high degree of 
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confidence. (b) Critical surface tension (circles) and work of adhesion (squares) on SAMs derived from 

the hexadecyne series as a function of the total number of fluorine atoms per chain. Critical surface 

tensions (γc) are obtained from extrapolation to cos  = 1 at 24 ± 2 
o
C. 

In that case, measuring the wetting contact angle () for different values of the liquid 

surface tension (L) and extrapolating to cos  = 1, i.e. complete wetting, will yield a 

critical surface tension (c), which is a measure for the solid surface energy and an 

essential parameter in many practical applications.61 In general, the critical surface tension 

and the details of the extrapolation depend on the molecular characteristics of the liquid.61 

However, in a homologous series of simple molecular liquids, such as n-alkanes, the Van 

der Waals forces dominate the liquid surface energy, and Zisman found that cos  depends 

linearly on L.60 Using this approach, Zisman determined critical surface tensions for a 

variety of solids with a low-energy surface. The lowest critical surface tension found was 

6 mN/m for condensed monolayers of perfluorolauric acid on platinum, whereas Teflon 

has a critical surface tension of 18.5 mN/m.  

The monolayers under current study stand out by displaying extraordinarily low surface 

tensions. Figure 2a shows Zisman plots for the fluoro-hydro alkyne-derived monolayers 

F0 to F17, using a homologous series of n-alkanes. In all cases, a linear relation is found 

between cos() and L, in agreement with the original findings of Zisman.60 The 

corresponding critical surface tensions are shown in Figure 2b. Surfaces with a low 

critical surface tension are expected to suffer least from adhesion to the surface, which is 

desirable in many microelectronic devices. First of all, the critical surface tension for F0 is 

found to be 20.1 mN/m, which is lower than characteristic values reported for CH3-

termination in literature (22 - 24 mN/m),62 revealing the high organization of the 

monolayer. Increasing the number of F atoms in the monolayer further decreases the 

critical surface tension to 5.6±0.21 mN/m for F17, which is – as far as we know – 

currently the lowest for any solid surface. Consequently, only condensed inert gases 

would show complete wetting on this surface.60, 63 

Table 1 summarizes monolayer thicknesses measured by ellipsometry as well as XPS.13 

The observed refractive index (RI) of the F17 monolayer on Si(111) is close to that of the 

analogous F17 silane reported by Geer et al.48 Monolayers prepared from compounds F9 

and F17 display slightly lower thicknesses than those obtained from F0, F1 and F3. The 

relaxed fluoro-hydro alkyne molecules in the SAMs are most likely not straight, but 

helical and bent, similar to fluorinated alkyl thiols on Au. Such monolayers were reported 

to display tilt angles of 30 - 35 with respect to the surface normal.31, 64, 65 The lower 

thicknesses may also relate to differences in the effective cross-sectional area of the -CF2-
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CF3 and -CH2-CH3 moieties (28 Å2 and 18 Å2, respectively), and fit it less optimally with 

the intersite distances on the Si(111) surface.66 

 

Table 1. XPS Data Atomic C/Si Ratios and XPS and Ellipsometry Thickness. 

Monolayer C/Si 
C/F ratio 

Theory 

C/F ratio 

Expt. 

XPS 

Thickness 

[nm] 

Ellipsometry 

Thickness 

[nm] 

Refractive 

index 

F0 40.9/59.1 -- -- 2.07 2.09 1.46 

F1 38.7/61.3 16.0 15.0 2.01 2.02 1.44 

F3 38.4/61.6 5.3 5.2 1.91 1.95 1.40 

F9 37.2/62.8 1.8 1.9 1.84 1.91 1.39 

F17 37.8/62.2 0.9 1.0 1.89 1.93 1.35 

 

The fluoro-hydro alkyne-derived monolayers were analyzed by XPS as well, and the 

resulting C1s and Si2p high-resolution spectra of an F9-based monolayer are depicted in 

Figure 3. The peak labels in the spectra correspond to the carbon atoms having different 

environments in the modified monolayer which was deconvoluted into six distinct 

components. The hydrocarbon CH2 C1s (2) calibrated at a binding energy of 285.0 eV 

corresponds to carbon atoms involved in CH2 moieties of F9, whereas signal (1) at 283.6 

eV is assigned to the carbon bound to the less electronegative Si.42 The relative intensity 

of this Si-C signal is ~1/16 of the total C signal, in line with expectations. C1s signal (3) at 

286.1 eV corresponds to the methylene carbon atom involved in the -CF2-CH2- group. The 

shoulder peak observed at 290.9 eV corresponds to the -CF2-CH2- group (4). C1s signal (5) 

at 291.6 eV corresponds to the other CF2 groups, whereas the highest binding energy 

(293.8 eV) is observed for the terminal CF3 group (Figure 3b). 636363This assignment is in 

excellent agreement with computational C1s and F1s XPS data obtained by B3LYP/6-

311G(d,p) calculations (Supporting Information S.4.7.1 Figure S4).67 

The Si2p high-resolution spectrum (Figure 3a) shows binding energies of the Si 2p1/2 

and Si 2p3/2 doublet at 100.1 and 99.5 eV, respectively. Importantly, no contribution 

related to oxide or suboxide species in the energy range 101 - 104 eV was observed, 

indicating the oxide-free nature of the silicon substrate underneath this partially 

fluorinated monolayer. Whereas excellent surface passivation has been shown before for 

alkyne-derived F0 monolayers,13 apparently fluorination does not hamper the formation of 

a fully surface-covering monolayer. 
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Figure 3. High-resolution XPS data of a F9-based monolayer on an oxide-free H-Si(111) surface. a) Si 

2p and b) C 1s. (c) Schematic representation of F9 monolayer on Si(111). 

 

4.4.3 Infrared Reflection-Absorption Spectroscopy 

Qualitative differences in the conformational order of the alkyl chains in the 

monolayers were evaluated using infrared reflection-adsorption spectroscopy (IRRAS) by 

monitoring the anti-symmetric and symmetric CH2 stretching vibrations (Figure 4a).13, 68, 

69 For increases in fluorine content from F0 to F17, the SAMs exhibited slightly 

increasing values for the anti-symmetric CH2 stretching vibrations from 2918 to 2920 cm-

1, as well as symmetric stretching vibrations ranging from 2850 to 2851 cm-1. The low 

values observed for F0 are – as reported before13 – attributed to the high degree of short-

range ordering in these monolayers. Since higher values of this peak frequencies are 

typically correlated with diminished ordering, it may be thought that the higher values 

observed for e.g. F17 display a reduced ordering. However, another, electronic factor 

comes into play here. The increased electronegativity of the chain yields an upward shift 

of the CH2 stretching vibrations, as exemplified by B3LYP/6-311G(d,p) data obtained for 

frequencies of the C-H stretching vibrations of model compounds CH3-(CH2)7-(CH2)7CH3 

(i.e. n-hexadecane), and CH3-(CH2)7-(CF2)7CF3 using scaled (0.9679)70 optimized 

B3LYP/6-311G(d,p) data. As can be seen (Figure 4b) fluorination by itself decreases the 

C-H stretching vibration frequencies by approximately 3 cm-1. If one thus compensates for 

this electronic effect on the CH2 stretching vibrations, the degree of ordering in our 

fluorinated monolayers seems to equal that observed for F0, pointing to highly ordered 

monolayers throughout the entire fluoro-hydro alkyne series. This high ordering, of 
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course, does not imply identical conformations, as the F9 and F17 chains may well 

display helical conformations.71   

 

 

Figure 4. (a) IRRAS spectra (between 2800 and 3000 cm
−1

) for fluorinated monolayers on H-Si(111). 

(b) DFT calculations of relevant vibrational frequencies of CH3-(CH2)7-(CX2)7CX3, for X = H and F)) 

optimized by B3LYP/6-311G(d,p) using a scaling factor of 0.9679. 

 

4.4.4 Adhesion and Friction 

To assess the adhesion and friction characteristics of the modified Si(111) surfaces 

atomic force microscopy was used. Both adhesion to and friction on surfaces greatly 

influence the performance of micro-electronic devices. Colloidal probe AFM allows 

measuring both properties with high accuracy. The colloidal probe acts as a model solid 

object that can interact with the modified surfaces. Previously, covalently bound alkene 

SAMs and adsorbed fluorine-containing surface coatings have been shown to reduce 

adhesion and increase lubrication significantly in solution.52, 72 However, most devices 

operate in air or vacuum, where adhesion is expected to be much larger. Moreover, 

capillary condensation may occur between surfaces that are hydrophilic enough, leading 

to even stronger adhesive interactions. Under these conditions a candidate surface coating 

should still effectively reduce adhesion and provide sufficient lubrication. Therefore, 

fluoro-hydro alkyne-derived monolayers were subjected to the most stringent adhesion 

and friction test by carrying out the AFM measurements in air with a smooth silica probe 

as a hydrophilic solid particle. 
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The fluorinated monolayers under current study display very low adhesion forces. 

Figure 5 shows the adhesion of a silica probe particle to the monolayers when the surfaces 

are compressed at a load of 10 nN. Adhesion forces decrease with increasing fluorine 

content in the monolayers from 35 nN (11.6±0.20 mJ/m2) for the F0-based monolayer to 

as low as 9.8 nN (3.2±0.03 mJ/m2) for the F17-based monolayer. This is as far as we 

know the lowest adhesion force observed for any flat surface. This low adhesion is 

attributed to the high degree of ordering in the monolayer, which allows little 

reorganization within the monolayer to increase attractive interactions between the 

monolayer and the probe. Only in the case of F0 monolayers a small, non-zero attraction 

was measured upon approach of the surfaces.  

The measured adhesion originates from Van der Waals interactions between the probe 

particle and the fluoro-hydro alkyne-coated Si(111) surface. Stable water capillary bridges 

cannot be formed, due to the high water contact angle of the SAMs and the low relative 

humidity.73 The low adhesion forces and thus low surface energies of the F9- and F17-

based monolayers confirm the low polarizability of the terminal CF2-CF3 groups. The F9- 

and F17-based monolayers show lower a adhesion than (-(CH2)n-CF2-CF3) SAMs on silica 

surfaces, and are even comparable to rough surfaces of PEG-grafted and fluorinated 

nanoparticles in air.72 Clearly, the high quality of these monolayers further reduces the 

surface energy and leads to minimal adhesion. Combining these monolayers with 

structured surfaces would thus be highly interesting for the construction of robust 

superhydrophobic surfaces.  

Figure 5. (B) Representative force-distance curves for SAMs with different fluorinated 
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monolayers. In all cases a load of 10 nN is applied. (B) The adhesion force, defined as the 

minimum in the force-distance plot, for different monolayers.  

 

The low thickness of the monolayers compared to other PTFE coatings74 leads to a 

limited compressibility and this suggests that the adhesion will not increase significantly 

when the applied load is increased. Figure 6 shows the increase in adhesion with 

increasing load for all monolayers in air. Indeed, adhesion increases only slightly (30%), 

with the increase being largest for the F0-based monolayer. The increasing adhesion 

originates from elastic compression of the surfaces, which yields a larger contact area 

between the solid probe and the monolayers. The JKR model can be used to predict the 

load deformation of compressed surfaces when their interaction is governed by short-

range adhesion only.75 In this case, the total compression is determined by three materials 

with very different elastic moduli: the silica probe, the Si(111) substrate and the fluoro-

hydro alkyne-derived monolayer. Therefore, a two-layer substrate JKR model was used in 

which a transition function describes the change of elastic modulus of the substrate from 

the top of the SAM (150 - 300 MPa) to deep inside the Si(111) (160 GPa).76 The solid 

lines in Figure 6 represent fits of the data to this modified JKR model with a fixed layer 

thickness of 2.0 nm in all cases. The elastic modulus of the monolayer decreases with 

increasing fluorine content by a total factor of two (from F0 to F17). This decrease may 

be explained by a higher order and crystallinity of F0, F1 and F3-based monolayers than 

of F9 and F17-based monolayers. In addition, the model gives a prediction for the 

compression of the SAM and the area of contact between the silica probe and the SAM as 

a function of normal load. Using these values, the work of adhesion between the silica 

probe and the fluoro-hydro alkyne-coated Si(111) and an effective Hamaker constant can 

be calculated using the Derjaguin approximation. A typical indentation of the SAM at a 

normal load of 10 nN is 1.3 nm, leading to a contact area of 0.030 m2. Combined with 

the adhesion forces in Figure 5, the effective Hamaker constant is found to decrease from 

15.4 kBT for the F0-derived monolayer to 5.1 kBT for the monolayer obtained from F17. 

There is a good agreement between the Hamaker constant for the F0 monolayer with the 

theoretical prediction for the interaction between a silica probe and Si(111) covered by a 

crystalline hydrocarbon layer.77 
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Figure 6. Adhesion forces of a colloidal silica probe as a function of normal load for different 

monolayers. Solid lines are fits of the data with a JKR model of a soft layer with 1.8 nm thickness on 

top of H-Si(111).  

Besides adhesion, friction of laterally moving or rolling objects on the surfaces of 

microelectronic devices is an important aspect that governs their performance. Minimal 

friction coefficients or high lubrication are desirable. The lateral friction force on the 

fluorinated monolayers was measured using the same colloidal probe set-up as for the 

adhesion measurements. The load was varied from 0 to 75 nN and the lateral friction was 

recorded on several 5 × 5 µm2 areas (see Supporting Information S.4.8 Figure S5). The 

mean friction forces are depicted in Figure 7. The friction forces follow an apparent 

Gaussian distribution around the mean values and the typical relative standard deviation is 

shown in Figure 7(A) as well. Variations between the mean friction forces on three 

independently modified surfaces were found to be smaller than the variations in friction 

force on one surface. The friction coefficients are calculated from the slopes of the data in 

Figure 7(B). At zero load a small but nonzero friction results from the adhesion between 

probe and monolayer. The magnitude of this apparent adhesion, obtained by extrapolating 

to zero friction force, is lower than the adhesion found in normal force measurements 
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(Figure 6). This is probably due to the weak stick-slip nature of the frictional motion, for 

which the mean friction force can be lower than for smooth sliding.78, 79 

This friction at zero load decreases with increasing fluorine content, in agreement with 

the adhesion measurements. For F0-based monolayers a friction coefficient of 5.7∙10-2 is 

found, in good agreement with the results for SAMs on gold.52 Upon increasing the 

fluorine content in the monolayers, the friction coefficient decreases to the rather low 

value of 1.2∙10-2 for F17-based monolayers. These values are comparable with data 

reported for C16H33 thiol monolayers on Au (3.0∙10-3), and C16H33 alcohol monolayers on 

silicon (1.3∙10-2).80 Interestingly, for SAMs on Au the friction coefficient goes up with an 

increase in fluorination 81 or shows no change,52 in marked contrast with our data. Kim et 

al. have summarized the factors that can influence friction: (i) chemical structure and 

binding to organic molecule to substrate, (ii) packing density and order of monolayer, (iii) 

gauche conformation and or surface coverage, (iv) mechanical properties such as elastic 

constant, rigidity of the monolayer, (v) terminal polar or non-polar functional groups, and 

(vi) surface dipole orientations.66, 82 In this case, the fluorine-rich monolayers (especially 

F9 and F17) are expected to have a lower polarizability at their surface, as a result of the 

dipole orientation of the last fluorinated carbon and the first methylene group (R-CH2-

CF2-R
1), are densely packed and display a high short-range organization, leading to an 

overall low friction coefficient. 

 

Figure 7. (A) Lateral friction force of fluorinated SAMs on Si(111), as a function of applied normal 

load. The error bars represent the standard deviation in mean friction force between three 

independently modified surfaces. The highlighted error bar at a normal load of 75 nN shows the 

relative variation in the friction force on a single surface (see Supporting Information S.4.8 Figure S5). 
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(B) The friction coefficients, obtained from the slope of the friction force versus normal load, for 

different monolayers. 

4.4.5 Molecular Modeling 

To substantiate the optimum substitution percentages of the fluoro-hydro alkyne-

derived monolayers on H-Si(111), and to investigate the structural differences between 

different fluorinated monolayers, models of the monolayers were studied by molecular 

mechanics (see Supporting Information S.4.9 Figure S6-S7). Packing energies of SAMs 

on H-Si(111) for different surface coverage are depicted in Figure 8. The average packing 

energy per chain was then calculated according to the literature,43, 54 and the optimal 

surface coverage obtained after fitting to a parabolic function. The optimum surface 

coverage decreases from 56% for F0, to 42% for F17, due to the larger cross section of 

the CF2/CF3 moieties. These values are confirmed by the experimentally determined 

monolayer thicknesses (displayed in Table 1), with a clear trend in the direction of greater 

surface coverage for the F0 as compared to the F17. 

 

 

Figure 8. Surface coverage for fluoro-hydro alkyne-derived monolayers F0 to F17 on H-Si(111). 
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4.5 CONCLUSIONS 

Partially fluorinated, Si-CH=C bound monolayers on oxide-free Si(111) surfaces 

display an extremely low surface tension and adhesion. Such self-assembled organic 

monolayers are uniform and densely packed, and characterized by a high degree of short-

range ordering. This set of properties yields a highly uniform, upward presentation of CF3 

moieties, yielding this low interaction with the outside world, as evidenced by a critical 

surface tension of 5.6±0.21 mN/m, adhesion forces of 3.2±0.03 mJ/m2 and a friction 

coefficient of 1.2∙10-2 for an F17 monolayer (Si-(HC=CH)-(CH2)6-C8F17). Each of these 

values is either the lowest currently measured for any flat surface, or close to it. The 

present study suggests that fluoro-hydro alkyne-derived monolayers on silicon surfaces 

significantly expand the scope of strong covalently bound nanometer monolayers and 

display significant potential in MEMS/NEMS applications. 
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S.4.1 Synthesis and characterization. 

S.4.1.1 General procedures.  

Commercially available reagents were purchased and used as supplied. 

Dichloromethane was distilled from CaCl2 stored away from bright light in a brown bottle 

with Linde type 4Å molecular sieves, in an atmosphere of dry argon. Diethyl ether, 

heptane, ethyl acetate, DMSO (dimethyl sulfoxide), acetic acid were degassed before use. 

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm 

silica gel foils 60 F254 plates using UV light as visualizing agent and ceric ammonium 

molybdate (CAM) and vanilla stain and heat as developing agents. 

 
1H NMR (400 MHz), 13C NMR (100 MHz) and 19F NMR (376 MHz) spectra were 

recorded on a Bruker 400 spectrometer and calibrated using residual undeuterated solvent 

(CDCl3: δH = 7.26 ppm, δC = 77.36 ppm ) as an internal reference.[1] The following 

abbreviations were used to designate the multiplicities: s = singlet, d = doublet, t = triplet, 

q = quartet, quin = quintet, m = multiplet. Elemental analysis was carried out using DART 

(Direct Analysis in Real Time) mass spectrometer[2-4] Samples for DART was prepared 

by adding a solution of the corresponding compound in toluene (1 mL, c=10 mg/mL). IR 

spectra (Bruker). were recorded in the range of 400-4000 cm-1 for the synthesized 

compounds in a KBr disk Heptadecafluoro-1-iodooctane (98%) was purchased from 

Fluka, 2,2-azobis(isobutyronitrile)(AIBN) was purchased from Acros and recrystallized in 

acetone,  nonafluoro-1-iodobutane (98%), 5-hexen-1-ol (98%), 9-decen-1-ol (98%), and 

lithium acetylide ethylenediamine complex (90%), was purchased from Merck used as 

received.  
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S.4.2 Synthesis of 13,13,14,14,15,15,16,16,16-

Nonafluoro-hexadec-1-yne (F9) 

 

Scheme S1. Synthetic routes for 13,13,14,14,15,15,16,16,16-Nonafluoro-hexadec-1-yne (F9). 

S.4.2.1 11,11,12,12,13,13,14,14,14-nonafluoro-9-iodotetradecan-1-ol 

(1a).   

Nonafluoro-1-iodobutane  (15.0 g, 43.4 mmol), 9-decen-1-ol (6.64 g, 42.5 mmol)  and 

2,2-azobis(isobutyronitrile) (2.08 g, 12.69 mmol) was added without using any solvent 

under a flow of argon, in a  two necked 250 mL round bottom flask equipped with a 

condenser and heated at 65 ºC for 1 hr. The mixture was stirred overnight at 80 ºC. The 

progress of the reaction was monitored by thin layer chromatography. After completion of 

the reaction flask has cooled to room temperature. The product was purified by silica 

column chromatography (Rf = 0.50, heptane/ethyl acetate 1:1.5). the product was obtained 

as clear oil as 96% yield 20.45 gm, 40.7 mmol, of 11,11,12,12,13,13,14,14,14-nonafluoro-

9-iodotetradecan-1-ol (1a):  

1H NMR (400 MHz, CDCl3,) δ in ppm: 4.36-4.29 (m, 1H,  CHI), 3.65-3.62(t, 2H, 

CH2-OH), 2.99-2.70 (m, 2H, CF2-CH2), 1.88-1.68 (m, 2H, alkyl), 1.64-1.54 (m, 4H, 

alkyl), 1.44-1.33 (m, 9H, alkyl, OH). 13C NMR (100 MHz, CDCl3, δ ppm): 122.08-

105.94 (m, 4C, CF3-CF2-CF2-CF2), 63.09 (s, 1C, CH2-OH), 41.96, 41.76, 41.55 (t, 1C, 

CF2-CH2), 40.48, 40.46 (d, 1C, alkyl), 32.87 (s, 1C, alkyl), 29.66 (s, 1C, alkyl), 29.44,  

29.42 (d, 2C, alkyl), 28.55 (s, 1C, alkyl), 25.81 (s, 1C, alkyl), 20.83 (s, 1C, alkyl). FTIR 
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(neat, cm-1): 3345 (CH2-OH), 2931 (νa CH2), 2879 (νs CH2), 1235 (νa CF2), 1135 (νa CF2). 

HRMS (DART-TOF) [M - H]- calcd. for C14H19F9IO, 501.0336; found, 501.0329. 

S.4.2.2 11,11,12,12,13,13,14,14,14-Nonafluoro-tetradecan-1-ol (1b). 

The (19.77 g, 39.36 mmol) of 11,11,12,12,13,13,14,14,14-nonafluoro-9-iodotetradecan-

1-ol (1a) was dissolved in 100 ml of glacial acetic acid (HOAc). Zinc dust (7.55 g 118.10 

mmol) was added at room temperature under argon. The mixture was stirred for 16 hr. 

The solution was then vacuum-filtered through a Buchner funnel, and 1.0 M NaOH was 

added to the acidic solution until the mixture exhibited a neutral pH as indicated by pH 

paper. The mixture was extracted with diethyl ether (3 x 100 mL), and the solution was 

washed with water (2 x 100 mL), saturated aqueous NaHCO3 solution (1 x 100 mL), and 

brine (1 x 100 mL), and then dried over MgSO4. Removal of the solvent afforded the 

crude 1b. The crude product was purified by column chromatography on silica gel (Rf = 

0.54, heptane/ethyl acetate  1:1). Yield 12.45 g, 33.10 mmol, 84% of 

11,11,12,12,13,13,14,14,14-Nonafluoro-tetradecan-1-ol (1b) as white solid: 
1H NMR (400 MHz, CDCl3, δppm): 3.63-3.60 (t, 2H,  CH2-OH), 2.09-1.96 (m, 2H, CF2-

CH2), 1.68 (s, 1H, -OH), 1.62-1.52(m, 4H, alkyl), 1.36-1.29 (m, 12H, alkyl). 13C NMR 

(100 MHz, CDCl3, δppm): 122.23-105.77 (m, 4C, CF3-CF2-CF2-CF2), 63.10 (s, 1C, CH2-

OH), 32.91 (s, 1C, alkyl), 31.16, 30.93, 30.72 (t, 1C, CF2-CH2), 29.62, 29.52, 29.43, 

29.33, 29.22 (m, 5C, alkyl), 25.87 (s, 1C, alkyl), 20.23, 20.20, 20.16 (t, 1C, alkyl). HRMS 

(DART-TOF) [M - H]- calcd for C14H20F9O, 375.1370; found, 375.1367. 

S.4.2.3 Toluene-4-sulfonic acid 11,11,12,12,13,13,14,14,14-nonafluoro-

tetradecyl ester (1c). 

To an oven-dried and argon-purged 250 mL round-bottom flask were added the  

11,11,12,12,13,13,14,14,14-nonafluoro-tetradecan-1-ol (1b) (12.45 g, 33.10 mmol ) at 0 
oC in absolute dichloromethane (DCM) (40 mL) pyridine (5.33mL, 66.19 mmol) and the 

mixture was stirred at 25 °C for 10 min. The flask was cooled to 0 °C with an ice bath, 

and recrystallized p-toluenesulfonyl chloride (9.46 g, 49.64 mmol) was added to the 

reaction. The mixture was stirred at 0°C for 1 h, then kept at room temperature for 3 hr. 

The reaction was quenched with distilled water at 0 °C and warmed to 23 °C. The layers 

were separated, and the aqueous layer was extracted with ether. The combined organic 

layers were washed with brine and dried over MgSO4. The mixtures was sequentially 

washed with 2 N HCl (10 mL), saturated NaHCO3 solution (2 x 25 mL) and (3 x 50 mL) 

water. The organic layer extract was dried (MgSO4), concentrated in vacuo, and 

purification of the crude product by silica gel column chromatography (Rf = 0.52, 
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Heptane/EtOAc, 2:1) afforded 13.11 g, 24.72 mmol, 75% of the Toluene-4-sulfonic acid 

11,11,12,12,13,13,14,14,14-nonafluoro-tetradecyl (1c) as a white solid: 1H NMR (400 

MHz, CDCl3, δppm): 7.80-7.78 (d, 2H,  Ph), 7.34-7.33 (d, 2H,  Ph), 4.04-4.00 (t, 2H, CH2-

OTs), 2.45 (s, 3H, Ph-CH3), 2.11-1.97 (m, 2H, CF2-CH2), 1.67-1.55 (m, 4H, Alkyl), 1.38-

1.24(m, 12H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 144.75 (s, 1C, Ph), 133.49 (s, 1C, 

Ph), 129.93 (s, 1C, Ph), 128.03 (s, 1C, Ph), 121.88-105.34 (m, 4C, CF3-CF2-CF2-CF2), 

70.79 (s, 1C, CH2-OTs), 31.16, 30.94, 30.71 (t, 1C, CF2-CH2), 29.40, 29.33, 29.28, 29.19, 

29.02, 28.98 (m, 6C, alkyl), 25.47 (s, 1C, alkyl), 21.74 (s, 1C, Ph-CH3),  20.24, 20.21, 

20.17 (t, 1C, alkyl). HRMS (DART-TOF) [M - H]- calcd for C21H26O3F9S, 529.1459; 

found, 529.1465. 

S.4.2.4 13,13,14,14,15,15,16,16,16-nonafluoro-hexadec-1-yne (1d). 

To an oven-dried, three-necked, round-bottom flask equipped with a magnetic stirring 

bar, argon line, pressure-equalizing dropping funnel and reflux condenser, protected from 

moisture by a calcium chloride-filled drying tube was flushed with argon and charged 

with lithium acetylide ethylenediamine (2.14 g, 23.23 mmol) dimethyl sulfoxide was then 

added to make the slurry ~2 M in lithium acetylide ethylenediamine (11 mL of DMSO). 

The solution was rapidly stirred under a dry argon atmosphere and the temperature was 

brought to 0 oC in ice bath. The toluene-4-sulfonic acid 11,11,12,12,13,13,14,14,14-

nonafluoro-tetradecyl (1c) (9.47 g, 17.87 mmol) was dissolved in 20 mL dimethyl 

sulfoxide  then added dropwise for 25 min with the temperature maintained 0 oC external 

cooling. When the addition was complete the reaction mixture was heated to 50 oC for 

four hours. The brown mixture was hydrolyzed with 60 mL of H2O, and the aqueous 

phase was extracted with heptane (3 x 100 mL). The organic layer was washed with brine 

solution and dried over MgSO4. The solvent was evaporated in vacuo to yield a colorless 

oil was obtained after by purification by silica gel column chromatography (Rf = 0.54, 

Heptane) afforded 5.53 g, 14.39 mmol, 80% of the 13,13,14,14,15,15,16,16,16-

Nonafluoro-hexadec-1-yne (1d): 1H NMR (400 MHz, CDCl3, δppm): 2.21-2.17 (m, 2H, 

Alkyl), 2.12-1.99 (m, 2H, CF2-CH2), 1.95-1.93 (t, 1H, C≡C-H), 1.64-1.50 (m, 4H, Alkyl), 

1.42-1.31(m, 12H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 121.89-105.36 (m, 4C, CF3-

CF2-CF2-CF2), 84.88 (s, 1C, C≡C-H), 68.19 (s, 1C, C≡C-H), 31.18, 30.96, 30.73 (t, 1C, 

CF2-CH2), 29.51, 29.44, 29.33, 29.24, 29.19, (m, 5C, alkyl), 28.86 (s, 1C, alkyl), 28.62 (s, 

1C, alkyl), 20.25, 20.22, 20.18 (t, 1C, alkyl). 18.54 (s, 1C, alkyl); HRMS (DART-TOF) 

[M + H]+ calcd for C16H22F9, 385.1578; found, 385.1560. 19F NMR (500 MHz, CDCl3, 
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δppm): -82.26, -82.28, -82.30 (triplet); -115.72, -115.75, -115.78, -115.81, -115.85 (pentet 

or quintet); -125.66 (singlet); -127.34, -127.22, -127.25(triplet). 

S.4.3 9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-

heptadecafluorohexadec-1-yne  (F17). 

 

Scheme S2. Synthetic routes for 9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-

heptadecafluorohexadec-1-yne   (F17). 

S.4.3.1 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluoro-5-

iodotetradecan-1-ol (2a). 

The procedure described for 11,11,12,12,13,13,14,14,14-nonafluoro-9-iodotetradecan-

1-ol (1a) was used with Heptadecafluoro-1-iodooctane (41.34 g 75.71 mmol) and 5-

Hexen-1-ol (7.36 g, 73.45 mmol) to give 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-

heptadecafluoro-5-iodotetradecan-1-ol (2a) as an off-white solid (38.73 g, 59.96 mmol,  

82%): 1H NMR (400 MHz, CDCl3, δppm): 4.37-4.30 (m, 1H,  CHI), 3.70-3.3.66(q, 2H, 

CH2-OH), 3.00-2.71 (m, 2H, CF2-CH2), 1.92-1.77 (m, 2H, alkyl), 1.69-1.47 (m, 5H, alkyl, 

OH). 13C NMR (100 MHz, CDCl3, δppm): 121.93-105.64 (m, 8C, CF3-CF2-CF2-CF2-CF2-

CF2-CF2-CF2), 62.65 (s, 1C, CH2-OH), 42.07, 41.86, 41.66 (t, 1C, CF2-CH2), 40.24, 40.22 

(d, 1C, alkyl), 31.69 (s, 1C, alkyl), 26.16 (s, 1C, alkyl), 20.53 (s, 1C, alkyl). HRMS 

(DART-TOF) [M - H]- calcd for C14H11OF17I, 644.9583; found, 644.9587. 
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S.4.3.2 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-

heptadecafluorotetradecan-1-ol (2b). 

The procedure described for 11,11,12,12,13,13,14,14,14-Nonafluoro-tetradecan-1-ol 

(1b) was used with 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluoro-5-

iodotetradecan-1-ol (36.75 g 56.89 mmol) and zinc powder (10.91 g, 107.67 mmol) to 

give 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecan-1-ol (2b) as 

an off-white solid (27.87 g, 53.59 mmol, 94%): 1H NMR (400 MHz, CDCl3, δppm): 3.66-

3.63 (t, 2H, CH2-OH), 2.12-1.99 (m, 2H, CF2-CH2), 1.68-1.52 (m, 4H, alkyl), 1.43-1.40 

(m, 5H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 122.17-105.29 (m, 8C, CF3-CF2-CF2-

CF2-CF2-CF2-CF2-CF2), 62.90 (s, 1C, CH2-OH), 32.60 (s, 1C, alkyl), 31.60, 31.00, 30.78 

(t, 1C, CF2-CH2), 29.05 (m, 1C, alkyl), 25.59 (s, 1C, alkyl), 20.27 (t, 1C, alkyl). HRMS 

(DART-TOF) [M - H]- calcd for C14H12F17O, 519.0617; found, 519.0616. 

S.4.3.3 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-

heptadecafluorotetradecyl 4-methylbenzenesulfonate  (2c). 

The procedure described for Toluene-4-sulfonic acid 11,11,12,12,13,13,14,14,14-

nonafluoro-tetradecyl ester (1c) was used with 7,7,8,8,9,9,10,10,11,11,12,12,13,13, 

14,14,14-heptadecafluorotetradecan-1-ol (2b) (10.00 g 19.23 mmol) and p-

Toluenesulfonyl chloride (4.03 g, 21.15 mmol) to give 7,7,8,8,9,9,10,10,11,11,12,12, 

13,13,14,14,14-heptadecafluorotetradecyl 4-methylbenzenesulfonate (2c) as an shine 

white solid (10.27gm, 15.24 mmol, 79%): 1H NMR (400 MHz, CDCl3, δppm): 7.79-7.77 

(d, 2H, Ph), 7.35-7.33 (d, 2H,  Ph), 4.05-4.02 (t, 2H, CH2-OTs), 2.44 (s, 3H, Ph-CH3), 

2.07-1.94 (m, 2H, CF2-CH2), 1.69-1.62 (m, 2H, Alkyl), 1.58-1.51 (m, 2H, Alkyl),  1.40-

1.28 (m, 4H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 144.91(s, 1C, Ph), 133.44(s, 1C, 

Ph), 129.97 (s, 1C, Ph), 128.02 (s, 1C, Ph), 121.59-105.70(m, 8C, CF3-CF2-CF2-CF2), 

70.40 (s, 1C, CH2-OTs), 31.10, 30.88, 30.65 (t, 1C, CF2-CH2), 28.72 (s, 1C, alkyl), 28.53 

(s, 1C, alkyl), 25.23 (s, 1C, alkyl), 21.64 (s, 1C, Ph-CH3),  20.15, 20.12, 20.08 (t, 1C, 

alkyl). FTIR (neat, cm-1): 2978, 2954 (phenyl), 2926 (νa CH2), 2865 (νs CH2),  1216 (νa 

CF2), 1134 (νa CF2). HRMS (DART-TOF) [M - H]- calcd for C21H18F17O3S, 673.0705; 

found, 673.0710.  

S.4.3.4 9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-

heptadecafluorohexadec-1-yne (2d). 

 

The procedure described for 13,13,14,14,15,15,16,16,16-Nonafluoro-hexadec-1-yne 

(1d) was used with 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-
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heptadecafluorotetradecyl 4-methylbenzenesulfonate (2c) (10.29 g 15.27 mmol) and 

lithium acetylide ethylenediamine (2.25 g, 24.44 mmol) to give 

9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadec-1-yne (2d) as 

an shine white solid (4.84 g, 8.99 mmol, 60%):  1H NMR (400 MHz, CDCl3, δppm): 2.21-

2.19 (m, 2H,  Alkyl), 2.14-2.00 (m, 2H, CF2-CH2), 1.96-1.95 (t, 1H, C≡C-H), 1.66-1.52 

(m, 4H, Alkyl), 1.50-1.40(m, 4H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 121.42-

105.15(m, 8C, CF3-CF2-CF2-CF2-CF3-CF2-CF2-CF2), 84.26 (s, 1C, C≡C-H), 68.31 (s, 1C, 

C≡C-H), 31.05, 30.82, 30.60 (t, 1C, CF2-CH2), 28.54 (s, 1C, alkyl), 28.21, 28.09 (d, 2C, 

alkyl), 20.03, 19.99, 19.96 (t, 1C, alkyl). 18.26 (s, 1C, alkyl); HRMS (DART-TOF) [M + 

NH4] calcd for C16H13F17, 546.10895; found, 546.10720. 19F NMR (500 MHz, CDCl3, 

δppm): -82.05, -82.07, -82.09 (triplet); -115.53, -115.56, -115.60, -115.63, -115.66 (pentet 

or quintet); -112.91, -123.11 (doublet); -123.91 (singlet); -124.70 (singlet); -127.31, -

127.34, -127.36 (triplet). 

 

S.4.4 16,16,16-trifluorohexadec-1-yne (F3) 

 

Scheme S3. Synthetic routes for 16,16,16-trifluorohexadec-1-yne (F3). 
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S.4.4.1 2-(Pentadec-2-yn-1-yloxy)tetrahydro-2H-pyran (3a). 

To an oven-dried and argon-purged 100 mL round-bottomed flask were added the  a 

solution of tetrahydro-2-(2-propynyloxy)-2H-pyran  (0.98 mL, 6.98 mmol) in dry THF 

(20 mL) was cooled to 0 °C in an ice bath and treated with 1.6 M solution of n-

butyllithium in hexane (1.89 mL, 8.02 mmol). Thereafter, 1-bromoalkane (1.93 mL 8.02 

mmol) in dry distilled HMPA (14 mL) was added at 0 °C and the resulting reaction 

mixture stirred 1.5 h at room temperature. The reaction was quenched with saturated 

aqueous NH4Cl solution followed by extraction with pentane. The combined organic 

extracts were washed with water and dried (MgSO4). The residue was purified by column 

chromatography to afford 2-(pentadec-2-yn-1-yloxy)tetrahydro-2H-pyran (3a) (0.69 g, 

2.23 mmol) as a clear oil:  (hepatane/EtOAc=9:1). . 1H NMR (400 MHz, CDCl3, δppm) 

4.82-4.80(t, 1H, O-CH-O), 4.27-4.18(m, 2H, alkyl), 3.84-3.81(m, 1H, alkyl), 3.53-3.50(m, 

1H, alkyl), 2.23-2.18(m, 2H, alkyl), 1.73-1.64(m, 2H, alkyl), 1.63-1.46(m, 6H, alkyl), 

1.38-1.26(m, 18H, alkyl), 0.89-0.26(t, 3H, CH2-CH3).  
13C NMR (100 MHz, CDCl3, δppm): 

96.61 (s, 1C, C≡C-CH2-O-), 86.73 (s, 1C, C≡C-CH2-O-), 61.97 (s, 1C, alkyl), 54.63 (s, 

1C, alkyl), 31.89(s, 1C, alkyl), 30.30 (s, 1C, alkyl), 29.66, 29.60, 29.51, 29.32, 29.11, 

28.86, 28.60 (m, 8C, alkyl), 25.39 (s, 1C, alkyl), 22.65 (s, 1C, alkyl), 19.13(s, 1C, alkyl), 

18.80 (s, 1C, alkyl), 14.07 (s, 1C, CH2-CH3). HRMS (DART-TOF) [M + NH4] calcd for 

C20H40O2N, 326.3059; found, 326.3043. 

S.4.4.2 Pentadec-2-yn-1-ol (3b). 

To a 0.61 g (1.96 mmol) solution of 2-(pentadec-2-yn-1-yloxy)tetrahydro-2H-pyran 

(3a) in 10 mL methanol was added 0.19 g (0.98 mmol) of 4-toluene sulfonic acid 

monohydrate at room temperature. The mixture was allowed to stir overnight at room 

temperature and then quenched with 10 mL of ice-cold water. The organic layer was 

washed with saturated NaCl and dried over anhydrous MgSO4. The solvent was removed 

by rotary evaporation.  The residue was purified by silica column chromatography (9:1, 

heptane/ether) to give 0.362 g (83%) of a light yellow oil: (9:1, heptane/ether). 1H NMR 

(400 MHz, CDCl3, δppm): 4.25-4.24 (t, 2H, HO-CH2-), 2.22-2.18 (m, 2H, C≡C-CH2-CH2), 

1.60-1.59 (t, 1H, HO-CH2-), 1.53-1.46 (m, 2H, alkyl), 1.38-1.26 (m, 18H, alkyl), 0.89-

0.86 (t, 3H, CH2-CH3). 
13C NMR (100 MHz, CDCl3, δppm): 87.02 (s, 1C, C≡C-CH2-OH), 

78.62 (s, 1C, CH2-C≡C-CH2-OH), 51.77 (s, 1C, CH2-OH), 32.26 (s, 1C, alkyl), 30.00, 

29.97, 29.86, 29.69, 29.49, 29.23, 28.96 (m, 8C, alkyl), 23.02(s, 1C, alkyl), 19.08(s, 1C, 

alkyl), 14.44 (s, 1C, CH2-CH3). HRMS (DART-TOF) [M + H]+ calcd for C15H29O, 

225.2218; found, 225.2205. 
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S.4.4.3 Pentadec-14-yn-1-ol (3c). 

The procedure described for dec-9-yn-1-ol (Appendix B 1a) was used with Pentadec-2-

yn-1-ol (4b) (0.307 g 1.37 mmol), lithium, 0.06 g (8.01 mmol), 1,3 diaminopropane 10 

mL and potassium tert-butoxide (0.61 g, 5.47 mmol) to give Pentadec-14-yn-1-ol (4c) as 

an clear oil (0.276 g, 1.23 mmol, 90%): 1H NMR (400 MHz, CDCl3, δppm) 3.64-3.61 (t, 

2H,  CH2-OH), 2.19-2.15 (dt 2H, CH2-CH2-C≡C-H), 1.93-1.92 (t, 1H, C≡C-H), 1.59-1.48 

(m, 4H, Alkyl), 1.45-1.26 (m, 19H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 85.14(s, 

1C, C≡C-H), 68.36 (s, 1C, C≡C-H), 63.40 (s, 1C, -CH2-OH), 33.15 (s, 1C, alkyl), 29.94, 

29.91, 29.82, 29.76(m, 6C, alkyl),  29.44(s, 1C, alkyl), 29.09(s, 1C, alkyl), 28.84(s, 1C, 

alkyl), 26.08(s, 1C, alkyl), 18.73 (s, 1C, alkyl). HRMS (DART-TOF) [M + H]+ calcd for 

C15H29O, 225.2218; found, 225.2207. 

S.4.4.4 Pentadec-14-yn-1-yl 4-methylbenzenesulfonate (3d). 

The procedure described for Toluene-4-sulfonic acid 11,11,12,12,13,13,14,14,14-

nonafluoro-tetradecyl ester (1c) was used with Pentadec-14-yn-1-ol 3c (0.195 g 0.87 

mmol) and p-Toluenesulfonyl chloride (0.18 g , 0.95 mmol) to give Pentadec-14-yn-1-yl 

4-methylbenzenesulfonate (3d) as an shine white solid 0.31 g, 0.82 mmol, 93%): 1H NMR 

(400 MHz, CDCl3, δppm ): 7.80-7.78 (d, 2H,  Ph), 7.35-7.33 (d, 2H,  Ph), 4.04-4.00 (t, 2H, 

CH2-OTs), 2.45 (s, 3H, Ph-CH3), 2.20-2.16 (dt, 2H, CH2-CH2-C≡C-H), 1.94-1.92 (t, 1H, 

C≡C-H), 1.66-1.60 (m, 2H, alkyl), 1.56-1.49 (m, 2H, alkyl), 1.40-1.22(m, 18H, alkyl). 13C 

NMR (100 MHz, CDCl3, δppm): 144.93 (s, 1C, Ph), 133.71 (s, 1C, Ph), 130.13(s, 1C, Ph), 

128.24 (s, 1C, Ph), 85.15 (s, 1C, C≡C-H), 71.04 (s, 1C, CH2-OTs), 68.38 (s, 1C, C≡C-H), 

29.90, 29.82, 29.72 (m, 5C, alkyl), 29.45 (s, 1C, alkyl), 29.28 (s, 1C, alkyl), 29.19 (s, 1C, 

alkyl), 29.11 (s, 1C, alkyl), 28.85 (s, 1C, alkyl), 25.68 (s, 1C, alkyl), 21.97 (s, 1C, alkyl), 

18.75 (s, 1C, alkyl). HRMS (DART-TOF) [M + H]+ calcd for C22H35O3S, 379.2307; 

found, 379.2294. 

S.4.4.5 15-iodopentadec-1-yne (3e). 

To a stirred mixture of sodium iodide (1.64 g, 10.95 mmol) in acetone (100 mL), a 

solution of 14-yn-1-yl 4-methylbenzenesulfonate (3d) (2.07 g, 5.47 mmol) in acetone (25 

mL) was added and the reaction mixture was stirred and heated under reflux for 8 h under 

nitrogen atmosphere and then concentrated in vacuo to remove the acetone. The obtained 

residue was diluted with water and extracted with ethyl acetate (2 x 40 mL). The 

combined ethyl acetate extract was washed with water, brine and dried over Na2SO4. The 

concentration of organic layer in vacuo followed by silica gel column chromatographic 

purification of the resulting residue using ethyl acetate/heptane (1:5) as an eluent afforded 
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pure product 15-iodopentadec-1-yne (3e) as a colorless oil (1.86 g, 5.57 mmol, 99%). 1H 

NMR (400 MHz, CDCl3, δppm ): 3.05-3.02 (t, 2H, CH2-I), 2.08-2.01(dt, 2H, CH2-CH2-

C≡C-H), 1.79-1.78(t, 1H, C≡C-H), 1.71-1.63 (m, 2H, alkyl), 1.41-1.33 (m, 2H, alkyl), 

1.25-1.07 (m, 18H, alkyl). 13C NMR (100 MHz, CDCl3, δppm): 84.61(s, 1C, C≡C-H), 

67.82(s, 1C, C≡C-H), 33.40 (s, 1C, alkyl), 30.32 (s, 1C, alkyl), 29.37, 29.33, 29.28, 29.22 

(m, 6C, alkyl), 28.90 (s, 1C, alkyl), 28.60 (s, 1C, alkyl), 28.35 (s, 1C, alkyl), 18.21 (s, 1C, 

alkyl), 7.07 (s, 1C, -CH2-I). HRMS (DART-TOF) [M + H]+ calcd for C15H28I, 335.1256; 

found, 335.1250. 

S.4.4.6 16,16,16-trifluorohexadec-1-yne (4f). 

Under an argon atmosphere, a mixture of dried CsF (1.62 g, 10.77 mmol) 15-crown-5 

(2.13 mL, 10.77 mmol) and dry 1,2-dimethoxyethane (DME) 25 mL was stirred for 5 min 

at -20 ºC (ice:NaCl 33:66). Then a mixture of Me3SiCF3 (1.58 mL, 10.77 mmol) and 15-

iodopentadec-1-yne (3e) (1.80 g, 5.39 mmol) in 25 mL DME was slowly added to the 

reaction flask.  The reaction temperature was raised to 10 ºC in 4 hr, followed by adding 

H2O (20 mL) to the reaction mixture. The organic phase was combined and washed with 

saturated NaCl(Brine), then dried over anhydrous Na2SO4. The solvent was evaporated 

under vacuum. The residue was purified by silica gel column chromatography (Heptane) 

to afford 17,17,17-trifluoroheptadec-1-yne 3f (1.30 g, 4.76 mmol 88%) as colorless oil. 1H 

NMR (400 MHz, CDCl3, δppm): 2.20-2.16 (m, 2H, CH2-CH2-C≡C-H), 2.10-2.00 (m, 2H, 

CF3-CH2), 1.94-1.93 (t, 1H, C≡C-H), 1.57-1.49 (m, 4H, Alkyl), 1.40-1.25(m, 12H, alkyl). 

13C NMR (100 MHz, CDCl3, δppm): 141.11, 126.55, 110.78, 103.68(q, 1C, CF3-CH2-), 

85.17(s, 1C, C≡C-H), 68.37(s, 1C, C≡C-H), 34.41, 34.19, 33.96, 33.73(q, 1C, CF3-CH2), 

30.05, 29.92, 29.88, 29.83, 29.70, 29.53, 29.45, 29.11, 28.84 (m, 11C, alkyl), 22.21, 

22.19, 22.17, 22.15(q, 1C, CF3-CH2-CH2-). 18.75 (s, 1C, alkyl). HRMS (DART-TOF) [M 

+ H]+ calcd for C16H28F3, 277.2143; found, 277.2152. 19F NMR (500 MHz, CDCl3, 

δppm): -67.48, -67.50, -67.52 (triplet). 

 

S.4.5 16-fluorohexadec-1-yne 

 

Experimental procedure explained in Supporting Information S.3.5 Synthesis of 16-

fluorohexadec-1-yne. 19F NMR (500 MHz, CDCl3, δppm): -218.81, -218.86, -218.91, -

218.96, -219.01, -219.06, -219.11 (septet). 
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S.4.6 Contact angle 

Table S1. Advancing (θa) and Static Contact Angles of Liquids on Fluoro-Hydro Alkyne Monolayers on 

Si(111) a,b,c.  

Monolayers Water 
1,5 

pentanol 
C16 C14  C12 C10 C7 C6 

F0 116 [110] 79 37 34 30 26 a a 

F1 116 [113] 81 45 42 40 37 a a 

F3 118 [115] 95 61 62 58 54 43 35 

F9 123 [117] 99 78 76 74 70 62 57 

F17 124 [119] 104 81 79 77 74 63 62 

[a] Not measurable. [b] The number in square brackets denotes static contact angles measurement. [c] Contact angle error < 
±2ᵒ. 

 

S.4.7 XPS and DFT calculation of C1s and F1s binding 

energy. 

S.4.7.1 DFT calculation of XPS chemical shifts of carbon and fluorine 

atoms 

The assignment of the C 1s XPS spectra is supported by density functional theory 

B3LYP/6-311G(d,p) calculations of the core orbital energy levels by “initial state 

approximation”. The absolute values of calculated binding energies cannot be compared 

directly with the experimental data because of the difference in reference energies in 

theory and experiment. As a point of reference the CH2 moiety in the center of the 

aliphatic hydrocarbon chain was positioned at a binding energy of 285 eV. For every 

carbon atom, a gaussian centered at the corresponding binding energy was used with a 

fwhm of 1.0437 eV. The sum of all Gaussians gave the simulated XPS spectra. Electronic 

Core Level Calculations: All calculations were done using the GAUSSIAN09 

program.[5,6] The geometries of the different systems were optimized at the B3LYP/6-

311G(d,p) level of theory. Natural bond orbital (NBO) analysis was employed to obtain 

the core orbital energies. 
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Figure S4. Experimental and calculated (DFT) core level C1s XPS spectra of F0, F1, F3, F9, and F17 

alkyne monolayer on H-Si(111); the bottom right spectra are of the F1s. 
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S.4.8 Friction image 

 

Figure S5. AFM friction images with lateral force mode on the F9 SAMs. 

 

S.4.9 Molecular modeling (Material studio) 

 

The average packing energy per chain was then calculated according to [ Epacking = 

(Echains/n)-Esingle ] in which Echains is the total packing energy of the layer, n is the number 

of chains in the layer, and Esingle is the energy of a separately optimized chain.[7,8]  
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Figure S6. Average packing energies of fluoro-hydro alkyne derived (■) F0, (●) F1, (▲) F3, (▼) F9, 

and (◄) F17 monolayers on Si(111); the fits are to parabolic functions. 

 

Figure S7. Side view of simulation cell 60A after optimization. The gold color represent (Silicon), gray 

(carbon), white (hydrogen), and aqua(fluorine). Top is F0 and bottom F17 optimized model on Si(111). 
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  5 
Highly Wear-Resistant Ultra-Thin Per-fluorinated 

Organic Monolayers on Silicon (111) Surfaces 

 

This study reports on fluorine-containing alkyne-derived monolayers onto Si(111) 

substrates to obtain densely packed, highly wear-resistant surfaces. The nano-wear 

properties were measured using atomic force microscopy (AFM). The presence of the 

fluorinated monolayers was found to enhance the wear properties of the silicon surfaces, 

with a decrease of the depth of wear scratches of up to 120 times as compared to the 

unmodified surface. Ultimately, the scratch depth was only 6 nm for a heptadecafluoro-

alkyl based monolayer for scratching normal forces as high as 38 µN. 
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5.1 INTRODUCTION 

Silicon and other electronic materials are increasingly being used to manufacture 

devices which can achieve mechanical operations.1-4 Several typical integrated circuit (IC) 

preparation methods are used, especially layer deposition, lithography, etching, doping, 

together with special etching and bonding processes. With these approaches 3D 

MEMS/NEMS can be generated. The combination of various specific parts such as 

motors, gears, and actuators enables the manufacturing of micro-machines.5 At small 

scales like this, the surface-to-volume ratios are very high, and surface forces become 

highly important, especially for in intrinsically rather brittle materials as silicon. As a 

result, stiction and wear form technical barriers for the production of good Si-based 

devices.6, 7 

A pair of solid surfaces in contact exhibits two types of stiction: release-related stiction 

and in-use stiction. In-use stiction happens during the process when two surfaces come 

into contact. If adhesion forces go beyond the restoring forces, the surfaces will not 

separate, causing device failure. Organic monolayers are widely used to minimize release-

related stiction in MEMS fabrication. The effects of organic monolayers on friction and 

wear of Si, SiC, SiN and CrN based surfaces were studied in more detail by various 

research groups.4, 8-11 As a result, outstanding wear resistance properties were developed 

on fluorinated alkyne-derived monolayers onto SiC and CrN surfaces, caused by the 

strong C-O-C and Cr-O-C covalent bond and high monolayer density.9, 11, 12  

The wear resistance is a key factor for organic coatings to be used as nanometer-scale 

lubricants. In particular, ultrathin organic monolayers have been shown to efficiently 

lubricate surfaces while showing low adhesion, low friction and low wear resistance.9, 11, 

13-16 Jennings and co-worker16 studied the tribological stability of various alkyl silane 

monolayer films on silicon by using pin-on-disk tribometry at ambient conditions. For 

monolayers derived from n-octadecyltrichlorosilane, a critical load was identified to be 

approximately 250 mN (200 MPa, 4 mm diameter), above which failure of films occurred 

within 100 cycles of testing. In fact, on H-terminated Si(111) surfaces, fluorinated alkyne-

derived monolayers have recently even been shown to yield the lowest friction and 

adhesion forces of any flat surface, reducing the adhesion and friction by a factor of ~4 

compared to polytetrafluoroethylene (PTFE).17 This is highly relevant, since PTFE is used 

as a primary key coating material in many MEMS/NEMS.18 However, those polymer 

films are not covalently bound to the surface and therefore vulnerable to high wear.19 

Moreover, PTFE coatings are relatively thick, which may eventually lead to high adhesion 

and friction forces when high loads are applied and the films are compressed.19 
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In those early investigations, wear tests were carried out using a traditional pin-on-disk 

or ball-on-disk tribotester under relatively large normal loads ranging from 0.1 to 0.15 

N.20 Thus, the relevance of these tests is questionable for MEMS/NEMS applications. 

With the development of AFM techniques,1, 9, 11 researchers successfully characterized the 

nano-tribological properties of organic monolayers and polymer coatings. Previous studies 

showed that silane monolayers improved wear resistance properties on Si(111).8 However, 

the stability of silane-based monolayers is eventually diminished at physiological pH,21 

due to the hydrolytic liability of Si-O bonds. In addition, the relatively low dissociation 

energy of Si-O bonds accounts for the weak mechanical stability of silane monolayers at 

high normal loads, whilst the higher dissociation energy of Si-C bonds might strengthen 

the monolayer stability.11, 22 However, to the best of our knowledge, no detailed wear 

study has been reported yet of covalently attached, Si-C linked monolayers on silicon, nor 

of a systematic variation of the fluorine content in such monolayers. 

 

 

Figure 1.  Schematic depiction of the fluorinated organic monolayers on Si(111) and the wear study 

detailed in this paper. 

 

In a previous study of fluorinated monolayers on the Si(111)surface the focus was 

mainly on the physical properties of this system, specifically adhesion, surface tension, 

and friction forces as a function of the number of fluorine atoms in the organic 

monolayer.17 Since these systems thus yielded such superb adhesion and friction 

properties, it is of interest to also study their wear properties in detail. In this work 

therefore the surface chemistry and wear resistance of Si(111) surfaces coated with a 

covalently bound alkyne-derived monolayer are investigated using AFM and SEM. 

Specifically, various C16 monolayers are studied - to warrant a constant layer thickness - 

with a varying number of fluorine atoms (#F atoms = 0 – 17) as shown in Figure 1. The 
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results outline the potential of covalently attached fluorinated monolayers as high-quality 

lubricants. 

 

5.2 EXPERIMENTAL METHODS AND TEST PROCEDURE 

5.2.1 Monolayer formation 

Perfluorinated alkyne-derived monolayers on NH4F-etched Si(111) surfaces were prepared 

as  described in detail elsewhere.17 In brief, a piece of an n-type Si(111) wafer was first rinsed 

several times with acetone, followed by sonication for 10 min in acetone. The Si wafer was 

then oxidized in freshly prepared piranha solution (H2SO4/H2O2 3:1) for at least 20 min. After 

piranha treatment, the substrates were immersed immediately in water and rinsed thoroughly, 

followed by drying with a stream of argon. Subsequently, the Si(111) substrates were etched 

in an argon-saturated 40% aqueous NH4F solution for 15 min under an argon atmosphere. 

After being etched, the samples were rinsed with water and finally blown dry with a stream of 

nitrogen. A three-necked flat-bottomed flask connected to a thin capillary as the argon inlet 

and to a reflux condenser connected to a vacuum pump was charged with individual neat 

fluoro-hydro alkyne (Scheme 1), flushed with argon, and heated to 80 °C in order to remove 

traces of oxygen and moisture. The freshly etched Si(111) substrate was placed in fluoro-

hydro alkyne. The reaction was carried out at 80 °C under an argon atmosphere at an argon 

pressure of 2 – 5 mbar for 16 h. After the reaction had been stopped, the modified surfaces 

were rinsed and sonicated with CH2Cl2 for 5 min to remove any physisorbed fluoro-hydro 

alkynes. The monolayers were extensively analyzed by XPS, IR and contact angle 

measurements, as described elsewhere.17, 23, 24 

5.2.2 Wear Resistance 

Nanowear/machining experiments on single-crystal silicon(111) were conducted by using 

an Asylum MFP-3D atomic force microscope (AFM) in contact mode. All AFM 

measurements were carried out in ambient conditions (temperature = 25 °C, relative humidity 

= 40%), and at least in duplicate. Rectangular silicon cantilevers a with spring constant of 49 

N/m were used in this study. The radius of the tip is about 20 nm, which was confirmed by 

scanning electron microscope (SEM). Organic monolayers were scanned in a direction 

vertical to the long axis of the cantilever beam with a scanning speed of 1 µm/s during the 

nanowear and at a resolution of 258 × 258 pixels. In all wear experiments, an area of 200 × 

200 nm2 was scanned at normal loads ranging from 1 to 35 µN for one scan cycle. A force 

was applied at one edge of the scan area till the other edge. All AFM scanning experiments 

were performed vertical (90) to the long axis of the cantilever at a scan velocity of 1 Hz. The 

wear images and corresponding wear depth measurements were done with a larger specimen 
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surface area. The specimen area was scanned before and after the nanowear test, using the 

same silicon nitride (Si3N4) tip at a normal load of about 392 nN.   

5.3 RESULTS AND DISCUSSION 

5.3.1 Wear mark at lower load 

Fluoro-hydro alkynes were covalently attached to oxide-free hydrogen-terminated 

silicon surfaces via Si-C=C bonds.23, 25 This type of organic monolayers are typically 

densely packed, display a high degree of short-range ordering as indicated from IRRAS 

spectroscopy data, and exhibit remarkable hydrophobic properties including static water 

contact angles up to 123°.17 The resulting monolayers were first studied by adhesion and 

frictional force measurements at low forces from 5 to 75 nN. Under this lower force these 

monolayers did not show any nano-wear properties, as e.g. shown by an AFM topographic 

image after applied normal load 75 nN (Figure 2). 

 

 
 

Figure 2. (A) AFM topographic image after an applied normal load of 75 nN; marked area 200 × 200 

nm
2 

and use of same silicon nitride (Si3N4) tip at a normal load of about 5 nN to obtain the image. (B) 

SEM image of silicon nitride (Si3N4) tip; tip spring constant = 0.12 N/m. 

 

While an interesting result by itself, it stimulated us to push to the limits of wear 

resistance under significantly higher, industrially relevant forces. Therefore the current 

study was extended to extreme loads from 8 to 38 µN force (Figure 3). Typical wear 

marks with the size of 200 × 200 nm2, generated at different normal loads for one scan 

cycle, were subsequently imaged by AFM at scan velocities from 0.5 to 2 Hz (0.2 to 1 
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µm/s) in contact mode. There was no dependence on the scanning speed obtained at a 

given normal force, which is in agreement with result shown by Bhushan et al.26 The same 

cantilever was used for the AFM imaging of the wear mark. The scan area for imaging the 

wear marks was 2 × 2 µm2 or 1 × 1 µm2, and the normal load was about 394 nN. 

 

5.3.2 Wear mark at higher load 

The surface topography images of the wear marks for four different loads (11.8, 15.7, 19.6 

and 27.4 µN) for the F17 monolayer are shown in Figure 3A to D. Increasing the normal 

force from 8 µN to 27 µN resulted in the change of the wear depth from 0.3 nm to 1.8 nm, 

which is close to the thickness of the monolayers. If the force was further increased to 31 µN 

and 38 µN, the wear depth increased drastically to 3.1 nm and 6.1 nm, respectively. The 

increasing wear depths by growing forces are consistent with the results of Bhushan et al.8, 18, 

27 Interestingly, the observed wear depth is negligible under normal forces up to 8 µN. 

Apparently, up to these already quite significant loads, the monolayers can undergo 

orientation changes that can accommodate the applied force. The scratching depth only 

increases with a further increase in the normal force to above 8 µN. In the range from 8 to 23 

µN, the wear depth increases slowly from 0.2 to 2 nm with a rate of about 0.15 nm/µN. In 

addition, the wear fragments produced at higher loads throughout the wear marking are not 

sticky, and could be moved out of the scan area by the light load during the AFM topographic 

scan (lower load 392 nN; no observed stick slip effect). It should be remarked that these 

monolayer-coated Si surfaces perform superiorly over uncoated Si.4 At a force of 6 µN, the 

monolayer-coated samples are still basically undamaged, while an uncoated Si surface 

displays already scratching marks of 8 nm deep.  For higher loads this difference becomes 

even larger: for loads of ca. 20 µN, the uncoated Si surfaces would display data points off the 

scale, while none of the monolayer-coated samples displays wear marks of more than a 

nanometer, i.e. typically show only some damaging of the organic coating.  

 

Only for loads above 25 µN do we observe the monolayer-coated surfaces to break down, 

but even then a force of 38 µN induces less damage to a F17-coated Si surface than a 6 µN 

force to a non-coated sample. In more detail, Figure 3F shows that with the higher loads from 

24 to 38 µN, the wear depth for F0, F1 and F3 coated surfaces increases rapidly, from 2 nm to 

30 nm with a slope of about 2.0 - 2.8 nm/ µN. The fluorinated monolayers F9 and F17 

showed an even better wear resistance: at loads from 24 to 38 µN, the wear depth only 

increases gradually from 2 to 5 nm with a slope of about 0.3 nm/ µN. As suggested,17 a 

fluoro-hydro monolayer (F9 and F17) is more rigid than more hydrocarbon-like monolayers 

(F0, F1 and F3). These results are in good agreement with previously reported findings for 
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alkyl monolayers on Si surfaces.30 However, all these monolayers display a highly beneficial 

wear-resisting effect, even when the hard AFM tip penetrates into the monolayer, or - at 

higher loads (critical load) - into the Si surface. In this condition, F9 and F17 monolayers do 

not only help as protective monolayer, but also reduce wear by acting to minimize friction 

between the tip and substrate. 

 

 

  

Figure 3. (A to D) AFM images of wear marks produced at different normal load after one scan cycle, 

the normal force and the average wear depth are shown on the right side. (E and F) Wear depth as a 

function of normal load on unmodified Si(111) and on a F17 monolayer (E), and comparison between 

various fluoro-hydro monolayers at lower load after one scan cycle (F). Schematic depiction of the 

wear mechanism of monolayers (G) with increasing normal load, yielding nanowear-induced depths 

from ~0.3 nm (8 µN) to ~6.1 nm (38 µN). 

5.3.3 Bond dissociation energy and chain deformation 

The different rates of depth increase in different load ranges may be attributed to different 

material removal mechanisms, like bond dissociation energy and chain deformation. Only at 

the critical normal loads from 24 to 38 µN, the Si3N4 tip approaches the interface to sever 
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monolayers away from the substrate. This might be due to the interface chemical adsorption 

bond strength. For uncoated Si this is the Si-O bond [242.7 kJ/mol], which is effectively the 

top layer, and which is generally weaker than the other chemical bonds in monolayers (see 

Table 1). For Si-C bound monolayers with many C-C bonds the relevant bond strengths [C-C 

bond: 418 kJ/mol; Si-C=C bond: 360 kJ/mol; C-F bond: 475 kJ/mol] are higher than the Si-Si 

[340 kJ/mol] and Si-O [242.7 kJ/mol] bonds.1 This explains why the rigid fluorinated 

monolayers have higher wear resistance as compared with non-fluorinated monolayers and 

unmodified Si(111) surfaces. In fact, these fluorinated monolayers display even better wear 

resistance properties (critical normal load > 24 N) than previously reported by Bhushan et al. 

for monolayers of fluorinated and non-fluorinated SAMs on aluminium surfaces (critical 

normal loads - 20 N).31 They hypothesized that the shearing of the monolayers occurred due 

to the weak interfacial bonds. We think that our data support that hypothesis, and that the 

combination of the high density of the fluorinated monolayers under study,17 and the use of 

Si-C=C linking groups (vide infra) may give rise to the currently observed high wear 

resistance.  

 

TABLE 1. Bond strengths of the chemical bonds in monolayers.28, 29
 

Bond 
Bond strength 

kJ/mol 
Bond 

Bond strength 

kJ/mol 

Si─O 242.7 Si─C═C ~360 

Si─Si 340 Si─C─C 360, 435 

Si─H 393 C═C─C 418 

C═C 682 C─CH2F 368 

C─C 347 C─CH3 301 

CH2─CF2 ~ >347 C─CF3 423.4 

C─F 475 C─H 414 

 

 

In addition, Shchukin et al.32 reported that the C–C bond strength increases when the 

hydrogen is replaced with fluorine. When the maximum force required for bond cleavage is 

taken as a measure for bond strength, this could be a possible explanation for the higher wear 

resistance of fluorinated monolayers F9 and F17. In addition, the high density of strong Si-

C=C bonds in this well-ordered dense monolayer additionally offers a significant resistance to 

water or other chemical penetration that would otherwise lead to the formation of monolayer-

weakening oxide layers during mechanical movements. 
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5.3.4 Wear in silicon nitride tips sliding on monolayers 

Furthermore, the radius of curvature sharp tip (Figure 4A) before measurement is < 20 nm 

(limits of resolution of our instrumentation). However, the SiNx tip undergoes a gradual 

change in tip shape with scanning upon AFM imaging in contact mode and after extensively 

applied higher forces from 1 to 38 µN. SEM imaging (Figure 4B) indeed confirms that the tip 

became blunt, with the sharpness reduced by roughly a factor 5, yielding a radius of the AFM 

tip of about 110 nm, analogous to previous work done by various research groups.33-35 To 

avoid this degradation problem each single measurement thus was, and needs to be, measured 

with a new AFM tip. 

 

 

Figure 4. SEM images of a Si3N4 tip before (A) and after (B) wear tests for 9 cycles in ambient 

conditions with various normal loads (1-38 µN); the AFM tip radius changed from ~20 nm (before) to 

~111 nm (after).  
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5.4 CONCLUSIONS 

Covalently bound, densely packed fluoro-alkyl monolayers on Si(111) [e.g. ~Si-

CH=CH-(CH2)6-(CF2)8CF3] surfaces display an excellent wear resistance. Typically, no 

wear marks are seen to AFM-induced pressures of 8 N, while even for pressures up to 24 

N the underlying Si is hardly damaged. Below these critical normal loads, the SAMs can 

accommodate the external forces by reorientation of the chains. These Si-C=C bound 

monolayers display such excellent wear-resistance due to the high bond strengths of the 

involved chemical bonds, and the high density of the monolayers that minimizes external 

penetration. Due to these superior wear resistance properties, fluoro-alkyl monolayers 

show a robustness that makes them useful for application in MEMS/NEMS. 
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  6 
Covalently Attached Organic Monolayers onto 

Silicon Carbide from 1-Alkynes: Molecular Structure 

and Tribological Properties 

 

In order to achieve improved tribological and wear properties at semiconductor 

interfaces, we have investigated the thermal grafting of both alkylated and fluorine-

containing (CxFx+1)-(CH2)n-) 1-alkynes and 1-alkenes onto silicon carbide (SiC). The 

resulting monolayers display static water contact angles up to 120°. The chemical 

composition of the covalently bound monolayers was studied by X-ray photoelectron 

spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), and near-edge 

X-ray absorption fine structure (NEXAFS) spectroscopy. These techniques indicate the 

presence of acetal groups at the organic-inorganic interface of alkyne-modified SiC 

surfaces. The tribological properties of the resulting organic monolayers with fluorinated 

or non-fluorinated endgroups were explored using atomic force microscopy (AFM). It was 

found that the fluorinated monolayers exhibit a significant reduction of adhesion forces, 

friction forces and wear resistance compared with non-fluorinated molecular coatings and 

especially bare SiC substrates. The successful combination of hydrophobicity and 

excellent tribological properties makes these strongly bound, fluorinated monolayers 

promising candidates for application as a thin film coating in high-performance micro-

electronic devices. 
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“Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: 

Molecular Structure and Tribological Properties.” Sidharam P. Pujari, Luc Scheres, 

Tobias Weidner, Joe E. Baio, Martien A. Cohen Stuart, Cees J. M. van Rijn, and Han 

Zuilhof. Langmuir 2013 29 (12), 4019-4031 
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6.1 INTRODUCTION 

Due to its remarkable physico-chemical stability, mechanical hardness and the large 

band gap (2.0 eV ≲ Eg ≲ 7.0 eV, depending on polytype), silicon carbide (SiC) is one of 

the most used semiconductor materials for building high-performance microelectronic 

devices.1-3 SiC has a higher breakdown electric field than silicon (0.3 and 3.0 MV/cm, 

respectively).1 Consequently SiC has been considered as a possible alternative for Si 

under high temperature and highly oxidative conditions.4 In addition, also the physical 

properties of SiC such as low friction coefficient, high wear resistance, and chemical 

inertness make this material attractive for micromechanical device applications.5, 6 

The modification of SiC with covalently bound organic monolayers is an attractive and 

rapidly growing research area from both fundamental and applied perspectives. So far, 

four approaches have been developed for the formation of dense and well-defined organic 

monolayers onto SiC for biofunctionalization: 1) photochemical attachment (254 nm) of 

1-alkenes,7-9 2) thermal grafting of 1-alkenes,10, 11 3) radical attachment using 2,2′-

azobisisobutyronitrile (AIBN),12 and 4) silane chemistry.13-15 The attachment of 1-alkynes 

onto SiC has not been investigated systematically, but seems interesting as recently it has 

been found that on oxide-free silicon the use of 1-alkynes provided significant 

improvements in term of reaction rate, surface coverage and (oxidative) stability 

compared to the analogous 1-alkene-derived surfaces.16-18 

Such increased stability would also be of interest for tribological studies. Understanding 

adhesion, friction and wear at the molecular scale is of significant importance for many 

regular applications, including nanoscale modules that laterally slide over a surface, such 

as in MEMS/NEMS. Many inorganic surfaces display relatively high adhesion and 

friction forces due to a native oxide layer present on top, which yields H-bond formation 

and capillary forces with surface-bound water, and thereby greatly influences the 

tribological performance of these mechanical systems.19, 20 Therefore, thin organic films 

on silicon, alumina and gold surfaces have been investigated, to obtain reduced adhesive 

forces and friction coefficients at both the micro- and nanoscale.20, 21 In particular, 

ultrathin organic fluorinated monolayers have been found to yield lubricating surfaces 

with low adhesion, low friction and low wear resistance.21-23 In fact, fluorinated 

monolayers on Si surfaces24, 25 have been found to even yield the lowest friction 

coefficient for any solid surface, even about 4x lower than Teflon.25 However, to the best 

of our knowledge, no tribological study of covalently attached organic monolayers onto 

SiC has been reported yet. In practice, polytetrafluoroethylene (PTFE) is now the primary 

coating material in many micro-electromechanical systems.26 These films are, however, 

not covalently bound to the surface and are therefore susceptible to wear. Moreover, 
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PTFE films are relatively thick, which may eventually lead to high adhesion and friction 

forces when high loads are applied and the films are compressed. 

Finally, the prospect of covalent bonding also induced us to study the nature of the 

bonding of the organic monolayer to the surface. Such bonding is by no means trivial to 

predict. Whereas 1-alkynes react with a hydrogen-terminated Si(111) surface under 

exclusive formation of Si-C=C-bonds,16 on aluminium oxide alkynes R-CC-H react 

under formation of a surface-bound R-C(OH)-COOH moiety.27 Since HF etching of SiC 

yields OH-terminated surfaces,28 it is not clear which binding mode could be expected for 

this. For comparison, for the binding of 1-alkenes to SiC the development of CH3-bands in 

the IR spectrum upon the attachment of ‘CH3-free’ alkenes like H2C=CH-(CH2)nF, 

prompted the hypothesis of binding via ~OC(CH3)H-R groups, i.e. a Markovnikov-type 

addition.7, 10  

 

 
 

Scheme 1. Schematic representation of the preparation of hydroxyl-terminated SiC surface by wet 

chemistry method and reacted with F9-C16-YNE at 130 °C for 16 hr. Bottom right (inset): alkynes 

used to modify the SiC with identical conditions. 

 

The goal of this study is to investigate whether 1-alkynes could be bound to silicon 

carbide surfaces in such a manner that this would provide improved access to low 

adhesion, low friction and high wear resistance properties on SiC surfaces. Here, we 

report a method for the thermally induced formation of novel covalently bound, 1-alkyne- 
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derived (fluorinated and non-fluorinated) monolayers on HF-etched 3C-SiC surfaces (see 

Scheme 1). The structure of the resulting monolayers is investigated in detail by XPS, 

water contact angle, IRRAS, AFM, and NEXAFS measurements, which are 

complemented by ab-initio calculations. This combination of data leads to a detailed 

proposal for the mode of attachment for 1-alkynes onto SiC. Finally, the resulting 

modified SiC surfaces are studied in view of their remarkable tribological properties and 

wear resistance, to outline their potential to further improve the performance of micro-

electronic devices. 

6.2 MATERIALS AND METHODS 

6.2.1 Materials 

Acetone (semiconductor grade VLSI PURANAL Honeywell 17617), dichloromethane 

(DCM, Fisher), hydrogen peroxide (Acros Organics, 35%), Milli-Q water (resistivity 18.3 

MΩ cm), and pentane (VWR, 95%) were used as received. Hydrofluoric acid (HF, Merck, 

40%) was diluted with deionized water to get a 2.5% solution (Warning: Hydrofluoric 

acid is an extremely corrosive acid: HF readily penetrates human skin, allowing it to 

destroy soft tissues and decalcify bone, and should be handled with extreme care!). 

Stoichiometric polycrystalline 3C-SiC films (thickness 183 nm, surface rms roughness 

determined with AFM 2.11 ± 0.2 nm) were obtained by chemical vapor deposition (CVD) 

on Si(100),29 as generous gifts by Prof. Roya Maboudian, University of California, 

Berkeley, USA. 1-Hexadecene (Aldrich, ≥99%, C16-ENE), 1-dodecyne (Aldrich, 98% 

C12-YNE), 1-tetradecyne (Aldrich, ≥97%, C14-YNE), and 1-hexadecyne (ABCR, 

Germany 90%, C16-YNE) were purified by column chromatography (hexane) to remove 

trace amounts of 1-bromoalkane or other impurities, and subsequently distilled twice 

under reduced pressure before use. The synthesis procedure for 1-octadecyne (C18-YNE) 

has been described in detail elsewhere.30 13,13,14,14,15,15,16,16,16-Nonafluorohexadec-

1-yne (F9-C16-YNE) and 9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadeca-

fluorohexadec-1-yne (F17-C16-YNE) were synthesized and purified according to 

previously published procedures.25  

6.2.2 Monolayer formation 

Pieces of SiC (1  1 cm2) wafers were first rinsed several times with acetone (p.a. 

grade). These samples were sonicated for 10 min in acetone, and then dried with a stream 

of argon. The samples were further cleaned using air plasma (Harrick PDC-002 setup) for 

10 min. Subsequently, the SiC substrates were etched in 2.5% aqueous HF solution for 2 
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min.7, 10 After etching, the samples were thoroughly rinsed with Milli-Q water and finally 

blown dry with a stream of argon. The monolayer preparation is described elsewhere.10 

These freshly etched and dried surfaces were then quickly transferred into a three-necked 

flask, which was charged with 2 mL of alkyne or alkene. This setup was purged with 

argon under reduced pressure (10 mbar) for 30 min, while being heated up to 80 °C, and 

the reaction mixture was kept at 130 °C for 16 h. The modified samples were removed 

from the flask and immediately rinsed extensively with pentane and DCM, sonicated for 5 

min in DCM to remove physisorbed molecules and blown to dry using an argon stream. 

The modified surfaces were directly subjected to surface characterization unless specified 

otherwise. 

6.3 MONOLAYER CHARACTERIZATION 

6.3.1 Contact angle  

Contact angle measurements were performed on a Krüss DSA 100 contact angle 

goniometer with an automated drop dispenser and image video capture system. The static 

contact angles of six small droplets (3.0 μL volume of deionized water) dispensed on 

modified silicon surfaces, were determined using the implemented Tangent 2 fitting 

model. The digital drop images were processed by the image analysis system, which 

calculated both the left and right contact angles from the drop shape with an accuracy of 

±1.0°. For advancing contact angle determinations on the same samples droplets of 1 µL 

total volume were applied at 1 µL/min, and monitored by video recording. Reported 

angles are the average of at least five droplets. 

6.3.2 Ellipsometry 

To measure the thickness of the organic layer on top of the silicon carbide surfaces (in 

the dry state), a rotating analyzer ellipsometer from Sentech Instruments (Type SE-400) 

was used. The operating wavelength was 632.8 nm (He–Ne laser), and the incident angle 

was 70°. The optical constants of the substrate were determined with a piece of freshly 

etched SiC, and yielded refractive index (ns = 3.38) and imaginary refractive index (ks = 

0.54). These refractive indices were very high as compared to the literature value of 2.64 

for SiC,31 because the optical model does not include the thin film of (non-stoichiometric) 

oxycarbide layers.28 Monolayer thicknesses were determined with a planar three-layer 

(ambient, monolayer, substrate) isotropic model with a refractive index of 1.46 for the 

organic monolayers.10 The reported values for the layer thicknesses are the average of 
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minimum eight measurements taken at different locations on the substrate with an error 

±3 Å. 

6.3.3 X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements were performed using a JPS-9200 photoelectron spectrometer 

(JEOL, Japan). A monochromatic Al Kα X-ray source (hν = 1486.7 eV) 12 kV and 20 mA 

using an analyzer pass energy of 10 eV was used. The base pressure in the chamber 

during measurements was 3 × 10–7 Torr, and spectra were collected at room temperature. 

The takeoff angle φ (angle between sample and detector) of 80° is defined with a 

precision 1°. The intensity of core level electrons was measured as the peak area after a 

standard, linear background subtraction. The typical sample size was 1 × 1 cm2. All XPS 

spectra were fitted using the Casa XPS software (version 2.3.15).  

6.3.4 Near-edge X-ray absorption (NEXAFS)  

NEXAFS spectra were collected at the National Synchrotron Light Source (NSLS) U7A 

beamline at Brookhaven National Laboratory, using an elliptically polarized beam with 

~85% p-polarisation. This beam line utilizes a monochromator and 600 l/mm grating 

providing a full-width at half-maximum (FWHM) resolution of ~0.15 eV at the carbon K-

edge. The monochromator energy scale was calibrated using the intense C 1sπ* 

transition at 285.35 eV of a graphite transmission grid placed in the path of the X-rays. 

Partial electron yield was monitored by a detector with the bias voltage maintained at 

150 V. Samples were mounted to allow rotation and changing the angle between the 

sample surface and the synchrotron X-rays. The NEXAFS angle is defined as the angle 

between the incident light and the sample surface. The spectra were brought to the 

standard form by linear pre-edge background subtraction and normalising to the unity 

edge jump defined by a horizontal plateau 4050 eV above the absorption edge. The SAM 

spectra were normalized to spectra of reference SiC substrate to remove blurring of the 

overlayer spectra by carbon in the substrate material.  

6.3.5 Infrared reflection absorption spectroscopy (IRRAS)  

IRRAS was performed on a Bruker TENSOR 27, using a Harrick Auto SeaguIITM 

sample holder and a MCT (Mercury, Cadmium, Telluride) detector. Measurements were 

done using the Auto SeaguII Pro v1.50 software. P-polarized spectra were recorded at a 

mirror angle of 68°. Per measurement 2048 scans were taken at a resolution of 4 cm-1. The 

spectra were analyzed using the Opus 6.5 software. The final spectra were obtained as the 

raw data divided by the data recorded on a plasma-oxidized reference surface as 
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background. All spectra were recorded at room temperature in a dry, nitrogen atmosphere. 

A linear baseline correction was applied. 

6.3.6 Atomic force microscope (AFM) 

Tribological and wear testing experiments were performed using an Asylum MFP-3D 

atomic force microscope (AFM) in contact and tapping mode. All AFM measurement 

were carried out under ambient conditions (25 °C, relative humidity = 40 %). For 

adhesion and friction measurements, the experimental setup and procedure have been 

described previously.25 Nanowear/machining experiments were performed using 

diamond-like carbon (DLC) coating on tip side of the cantilever, 15 nm thick; aluminum 

coating on detector side of the cantilever, 30 nm thick, cantilevers with spring constant of 

43 N/m (Tap300DLC Budgetsensors). The radius of the tip was about 100 nm, as 

confirmed by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) 

were scanned in a direction perpendicular to the long axis of the cantilever beam with a 

scanning speed of 50 µN/s during the nanowear and at a resolution of 480 × 480 pixels. In 

all wear experiments, an area of 25 µm × 25 µm was scanned at normal loads ranging 

from 1 to 14 µN for one scan cycle. A force was applied from one edge of the scan area to 

the other edge. All AFM scans were performed at a 90 angle to the long axis of the 

cantilever at a velocity of 0.5 Hz. The wear images and corresponding wear depth 

measurements were done with a larger specimen surface area. The latter was scanned 

before and after the nanowear test; using the same DLC tip the wear marks were observed 

by scanning a larger 50 µm × 50 µm area with the wear mark at the center at zero normal 

load.  

 

6.4 RESULTS AND DISCUSSION 

6.4.1 Etching of SiC by HF. 

Scheme 1 shows the various alkynes and alkene that were attached to SiC surfaces via 

thermally induced monolayer formation. Pieces of freshly oxidized oxycarbide (SiCxOy) 

wafers were etched with aq. 2.5% HF (2 min), and subsequently exhibited a static contact 

angle (SCA) of 14° (see Table 1). As previously reported, this hydrophilicity might be 

attributed to the formation of a high density hydroxyl-terminated SiC surface.8, 14, 28 

Moreover, Dhar et al. reported contact angles for the C and Si face of 3C-SiC are 24 ± 1o 

and 4 ± 1o, respectively,28 considerably more hydrophilic than freshly etched H-terminated 

Si(111) which has a contact angle of 83°.18  
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To confirm the absence of silicon oxide layer after HF etching, the etched SiC surfaces 

were studied with X-ray photoelectron spectroscopy (XPS).10, 28 Table 1 shows the peak 

assignment and elemental concentration (in Atom %) derived from the XPS 

measurements (see Supporting Information S.6.2 Figure S2) after each step of the SiC 

etching procedure. According to Dhar et al. the C-face of SiC shows a binding energy of 

C1s in the top surface carbon layer at 283.6 eV and a Si2p core level component at 100.1 

eV, which indicates that each surface silicon atom is bound to one oxygen atom.28 The 

percentage of oxygen significantly decreased after etching with HF (from 31.4% to 7.6%). 

After etching ~1 oxygen monolayer was obtained, this was determined using the intensity 

of the measured O1S core levels on etched SiC, which is in accordance with data reported 

earlier by Dhar et al. 28 (see Supporting Information S.6.3). A survey scan showed the 

appearance of a small fluorine signal (0.5%) after the etching step assigned to Si-F 

bonds.10, 28  

Table 1. Sequential Wetting behavior and XPS-derived elemental composition (in atom %) after series 

of surface treatments. 

Substrate 
Contact 

Angle 

C1s Si2p O1s F1s 

(283.6 eV) (100.1 eV) (532.6 eV) (686.9 eV) 

Bare SiCa 40° 32.5% 42.6% 24.9% -- 

Air Plasma 

cleaning 
10°b 26.3% 42.3% 31.4% -- 

2 min in 

2.5 % HF 
14° 43.8% 48.1% 7.6% 0.5% 

a
 After 5 min sonication in acetone. 

b 
10° is limit of measurement 

 

6.4.2 Water Contact Angle and Monolayer Thickness 

The etched SiC wafers were immersed in deoxygenated neat fluorinated or non-

fluorinated alkynes and alkene at 130 °C for 16 h to obtain covalently bound monolayers 

on SiC.10 Static and advancing water contact angle measurements are a quick and useful 

tool in monolayer characterization. It can be used in particular to study the stability and 

quality of the monolayers. The static and advancing water contact angles as determined 

for the alkyne and alkene derived monolayers are shown in Table 2.7, 10 The static water 

contact angles of the methyl-terminated monolayers were in the range of θ = 106 - 111°, 

analogous to observations made for covalently bound monolayers on Si(100),30 SiC,7, 10 

SiN,7 and Si(111)17, 18, 32 and thiols on gold.33 As expected, the static water contact angle 
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was higher for the fluorinated monolayers (θ = 116 - 120°), due to the low Van der Waals 

interactions between water and F-containing alkyl chains.25, 34  

 The advancing water contact angles of the methyl-terminated layers were in the range 

of θ = 110 - 117°, similar results were observed for methyl-terminated monolayers on 

Au,33 while for the fluorinated monolayers values of θ = 124 - 126° were found. 

Subsequently, these wettability data can be used to calculate the work of adhesion (WA) of 

a surface. The work of adhesion is the reversible free energy associated with the creation 

and destruction of interfaces. In case of water drops on solid surfaces, WA can be 

calculated using the Young−Dupré equation:35 

 

�� = ���(1 + ���	��)                                                        (1) 

 

where θa is the advancing water contact angle, ��� is the surface tension of the air/water 

interface and approximately 72.8 mN/m. Table 2 show the calculated works of adhesion 

using Equation (1) as a function of chain length for the CH3 and CF3-terminated 

monolayers on SiC. For all monolayers, the total work of adhesion decreases with 

increasing chain length. The decrease in WA is related to a decrease in the intercalation of 

water as the interface becomes more highly ordered.36 For comparison a C16 alkene-

derived monolayer was also prepared, which showed static and advancing contact angles 

of 106° and 110°, respectively, which was significantly lower than obtained for the 

corresponding C16-YNE-derived monolayer: 110° and 115°, respectively. This suggests 

that the packing density of alkyne-derived monolayers on SiC is indeed better than 

obtainable with 1-alkenes. The work of adhesion is very low for fluorinated monolayers 

F9-C16-YNE (advancing contact angle = 124; 32.1 mJ/m2) and F17-C16-YNE 

(advancing contact angle = 126; 30.0 mJ/m2), e.g in comparison to literature values for 

poly(tetrafluoroethylene) (PTFE), 34.2 mJ/m2,36 and similar to Wa values for fluorinated 

thiols on gold surfaces, 30.0 mJ/m2.34 These contact angles are slightly higher, and work 

of adhesion data slightly lower than for similar fluorinated alkyne-derived monolayers on 

Si(111) (for F17-C16-YNE advancing contact angle = 123.7; Wa = 32.4 mJ/m2),25 and 

most probably induced by the difference in surface roughness of SiC (Ra = 2 nm) and 

Si(111) (Ra = 0.1 nm).37 
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Table 2. Wettabilities and Ellipsometric Thickness of Alkyne-Derived Monolayers on SiC: Static Water 

Contact Angle (SCA), Advancing Water Contact Angle (ACA), work of adhesion (WA) and Ellipsometry 

Thickness. 

Monolayers 
SCA 

(θ) ± 1° 

ACA 

(θ) ± 2° 

Work of 

Adhesion WA 

[mJ/m2] 

Ellipsometry 

thickness 

± 3 Å 

C12-YNE 107 110 47.9 15 

C14-YNE 109 112 45.5 16 

C16-YNE 110 115 42.0 19 

C18-YNE 111 117 39.7 24 

F9-C16-YNE 116 124 32.1 17 

F17-C16-YNE 120 126 30.0 16 

 

In addition, the monolayer thicknesses obtained by ellipsometry measurements on SiC 

are shown in Table 2. Previously our group reported on difficulties to distinguish between 

various layer thicknesses and optical constants by ellipsometry on SiC, and we found 

monolayer thicknesses of about 70% lower than theory values for 1-docosene on SiC.10 

These problems could be related to the optical constants used in the ellipsometry. We 

determined for freshly HF-etched SiC the refractive index Ns = 3.38 and imaginary 

refractive index Ks = 0.54. Using these values, the observed ellipsometric layer 

thicknesses range from 15 ± 3 Å for C12-YNE to 24 ± 3 Å for C18-YNE. These values 

are in excellent agreement with predicted values as obtained via molecular mechanics 

calculations in Materials Studio for a fully extended, configuration of the molecules 

oriented normal to the surface: 15 Å for C12-YNE to 23 Å for C18-YNE. 

6.4.3 Infrared Reflection Absorption Spectroscopy 

Infrared reflection absorption spectroscopy (IRRAS) is a useful technique that not only 

provides direct evidence for the presence of particular functional groups at the monolayer 

terminus, but also gives an indication about the mode of attachment of monolayers on 

these reflective substrates. In Figure 1, selected ranges of the IRRAS data for C18-YNE, 

C16-ENE and F17-YNE monolayers on SiC are depicted, showing among other 

absorptions, clear stretching peaks assigned to CH2 (antisymmetric and symmetric) and 

CH3, (Figure 1). 

 



Chapter 6 

 160

 

Figure 1. IRRA spectrum in dry air of C18-YNE (bottom), C16-ENE (middle), and F17-C16-YNE (top) 

derived monolayer on SiC at 130 °C for 16 h only C-H stretching region after spectra are shown after 

linear baseline correction. 

The positions of the antisymmetric (νa CH2) and symmetric (νs CH2) methylene 

stretching can be used to distinguish between monolayers that display short-range order 

(~2918/2850 cm-1) or disorder (~2928/2854 cm-1).38 It is obvious that F17-C16-YNE 

monolayers are disordered, with CH2 stretching frequencies of 2927.6 and 2853.5 cm-1, 

respectively. For C12-YNE to C18-YNE monolayers νa CH2 stretching decreased 

monotonously from 2925.0 to 2922.5 cm-1, and νs CH2  stretching decreased monotonously 

from 2852.9 to 2851.1 cm-1 (Table 3), indicating a low to intermediate short-range 

ordering. This shift in wavenumber suggests that the longer alkynes result in a more dense 

molecular coating than the shorter alkynes. Interestingly, a C16 alkene-derived monolayer 

displayed IRRAS peaks at about the same positions as the C12-YNE, i.e. confirming that 

alkyne-derived monolayer are denser and thus display a higher degree of short-range 

order. Similar IRRAS peaks were observed for alkenes on as SixN4,
7 SiC,10 and 

fluorinated thiols on Au.39 
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Table 3. IRRAS peaks of Antisymmetric (νa CH2) and Symmetric Methylene Stretching (νs CH2) and 

Antisymmetric Methyl Stretching (νa CH3) for Alkyne-Derived Monolayers. 

Monolayers [νa  (CH2)]  [νs  (CH2)]  [νa  (CH3)] 

C12-YNE 2925.0 2852.9 2962.0 

C14-YNE 2924.2 2852.6 2961.5 

C16-YNE 2923.5 2851.3 2960.6 

C18-YNE 2922.5 2851.1 2960.3 

F9-C16-YNE 2925.3 2852.5 2962.1 

F17-C16-YNE 2927.6 2853.5 2962.5 

 

Rosso et al. reported that 11-fluoroundec-1-ene reacted with hydroxyl-terminated SiC 

surfaces via a Markovnikov addition, given the development of IR-visible methyl peaks 

during monolayer formation.10 This -CH3 peak around 2960 cm-1 was also observed in the 

case of the alkyne-terminated monolayers, both for the methyl-terminated ones as well as 

for the CF3-terminated ones (Figure 1 and Table 3). Given the stability of a CF3 moiety 

under these reaction conditions, we propose also for 1-alkyne derived monolayers the 

formation of surface-bound methyl groups. Figure 2 depicts schematically our hypothesis 

of an alkyne reacts with a hydroxyl-terminated SiC surface. Most probably, nucleophilic 

attack of the alkyne π bond on H-O-C (from SiC surface) (Figure 2a) leads to the 

formation of a vinyl carbocation at the most substituted position, following the 

Markovnikov selectivity, and then to enol ether formation (Figure 2b) Subsequently, this 

enol ether can either remain on the surface as is, or be protonated by another surface-

bound proton, yielding an –O-C+(CH3)R ion, which can attack a neighboring hydroxyl 

group to yield a stable six-membered ring (Figure 2c). Hence, it is hypothesized that 

alkynes react twice to hydroxyl-terminated silicon carbide substrates via a double 

Markovnikov addition. 

 

Figure 2. Proposed mechanism of the reaction between an alkyne and an OH-terminated SiC surface. 
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6.4.4 X-ray Photoelectron Spectroscopy (XPS) 

The results of XPS analysis carried out on the C16-ENE and C16-YNE samples are 

shown in Figure 3. Detailed investigation of the C1s and Si2p region of the XPS spectra 

(Figure 3A - D, respectively) further confirm the formation of C16-ENE and C16-YNE 

derived monolayers on SiC. 

 

 

Figure 3.  Narrow-scan C1s and Si2p XPS data of C16-ENE (top) and C16-YNE (bottom) derived 

monolayers on SiC.  

 

The emissions from the C1s core levels of C16-ENE (Figure 3A) are in line with the 

formation of –O-CH(CH3)-R monolayer structures, as explained in detail elsewhere.40 The 

C1s narrow scan of C16-YNE is shown in Figure 3C and reveals the same three 

contributions as for C16-ENE onto SiC; however, the C16-YNE spectrum clearly also 

shows a fourth peak and was therefore deconvoluted into four main contributions. For the 

first three contributions, the assignment is similar to C16-ENE, but a new peak at 289.0 

eV is also present, and is attributed to an acetal-like linkage (O-C-O) to the SiC surface, 

an assignment in good agreement with literature values for acetyl-protected derivatives.41, 

42 This was confirmed by DFT-simulated XPS spectra (B3LYP/6-311G(d,p) level), which 
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showed that a C-O peak is to be expected at 287.3 eV, while an acetal (O-C-O) carbon 

atom should yield a peak at 289.2 eV, in near-perfect agreement with experiment. The 

DFT data for the C16-ENE and C16-YNE attachments are provided in the Supporting 

Information S.6.1 Figure S1. 

 

Figure 4. Schematic representation of the monolayer structure for 1-alkenes10 and 1-alkynes reacting 

with a hydroxyl-terminated SiC surface. 

Since a narrow scan C1s XPS spectrum of a freshly etched SiC surface shows no 

significant carbon peaks at 287 - 290 eV, and the ratio of the peak areas of the different 

carbons (-C-O and =C-O versus O-C-O) of the alkyne-derived monolayer is 

approximately 2.6 : 1, it is likely that the alkyne functionality reacts in a Markovnikov-

type addition reaction to either one (to remain sp2-hybridized) or two (to become sp3-

hybridized) hydroxyl carbons on the SiC surfaces, as shown in Figure 4. Unfortunately, 

the signal/noise ratio in the IRRAS data in Figure 1 is such that these data cannot confirm 

this assignment. Similar addition reactions have been reported in organic synthesis using 

metal-catalyzed additions of oxygen nucleophiles to alkenes and alkynes,43 and therefore, 

from these spectra, it is concluded that the acetal and ether peak were uniquely associated 

with the attachment of alkynes on HO-terminated SiC via a Markovnikov-type addition 

reaction.  

The Si2p narrow scan of the SiC modified with C16-ENE and C16-YNE reveals a 

broad peak at ca. 100 eV (see Figure 3B and D), which can be deconvoluted into three 

main peaks, as reported earlier.10 The main component at 100.1 eV corresponds to bulk 

silicon in SiC, the second peak at 100.9 eV to surface silicon - because every surface Si 

atom is bounded to one oxygen atom only - and the third and weakest peak at 102.0 eV is 

typical of a residual silicon oxycarbide layer.44 This oxycarbide layer was weakly visible 

even on freshly prepared SiC surfaces (after 2.5% HF etching). In addition, there is no 

sign of SiO2 around 103 - 104 eV after modification.44 
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Table 4. XPS C 1s Binding Energies, Curve Fittings in % and Calculated Thickness of Fluorinated and 

Non-Fluorinated 1-Alkyne-derived Monolayers. 

Species & 

Binding energy 

[eV] 

C12 

YNE 

C14 

YNE 

C16 

YNE 

C18 

YNE 

F9C16 

YNEa 

F17C16 

YNEa 

Si─C 

[283.6] 
59.6 52.3 44.3 38.9 55.9 52.9 

C─C 

[285.0] 
28.1 35.6 44.0 51.7 28.3 16.6 

C─O 

[286.7] 
9.8 9.5 8.4 7.3 -- -- 

O─C─O 

[289.0] 
2.5 2.6 3.3 2.1 2.2 1.9 

C─O, CH2-

CF2 

[286.4] 

-- -- -- -- 7.1 4.5 

─CF2─ 

[292.0] 
-- -- -- -- 4.7 18.4 

─CF3 

[294.3] 
-- -- -- -- 1.8 5.7 

Monolayer 

Thickness (nm) 
1.5 1.8 2.3 2.6 1.6 1.8 

a
 for F9C16YNE and F17C16YNE narrow  scan XPS are shown in Supporting Information S.6.4  

Figure S4. 

 

By averaging the observed (C-H + C-O + C-F)/Si-C ratio in the C1s narrow scan, 

quantitative information on the monolayer thickness can obtained by XPS. Of course, on 

this rough surface, these XPS results can only provide a rough estimate of the thickness, 

as the outcome strongly depends on the attenuation length and atomic density of the 

substrate and the monolayers.8 The corresponding data are shown in Table 4. 

Subsequently, these ratios can be converted into monolayer thicknesses (t) by the 

following equation:7 

 

� = 		 ���. cos(�) . �� �1 +
���.��.��

��.���.���
�                           (2)           
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where  is the take-off angle between the surface plane and the detector, ICH (C-H, C-O, 

or C-F) and IS (Si-C) are the intensities of the C1s narrow scan XPS signal from the 

organic film (ICH) and from the substrate (IS), respectively. The CH and S are the 

elemental densities of carbon in the monolayer and in the SiC substrate, and were 

estimated at 0.054 and 0.08 mol.cm-3, respectively. The attenuation length of C1s 

photoelectrons in alkyl monolayers is CH = 2.8 nm (data form alkanethiols on gold 

surface),45 and the attenuation length of C1s photoelectrons in SiC is S = 2.35 nm.46 For 

all monolayers, the (C-H, + C-O + C-F)/Si-C ratios and the corresponding calculated 

thicknesses are shown in Table 4. As evident for non-fluorinated monolayers, the Si-C 

contribution (283.6 eV) decreases with increasing chain length and thicknesses increase 

linearly with increasing chain length. In addition, we would like to note that in general the 

XPS-determined thicknesses are higher than the thicknesses obtained by ellipsometry (see 

Table 2). 

 

6.4.5 Near Edge X-ray Absorption Fine Structure (NEXAFS)  

NEXAFS spectra can provide information about the chemical bonds and their 

orientation and order on surfaces by probing characteristic absorption resonances related 

to electronic transitions from atomic core levels to unoccupied molecular orbitals.47 Figure 

5 shows carbon K-edge NEXAFS spectra of C16-YNE monolayers on SiC recorded at 

different X-ray incidence angles. The spectra exhibit the expected absorption edge related 

to the transition of C1s core level electrons into continuum states and a number of 

absorption resonances. A strong Rydberg/C-H (R*) resonance visible near 288.0 eV is 

mostly related to the alkyl chains. Broad σ* resonances related to CC and C-O bonds are 

present at higher photon energies (293 eV and 302 eV, respectively). Chemical impurities 

such as C=O a common contaminant in low fidelity SAMs - are not detectable. An 

interesting finding is the presence of a pronounced π*(C=C) resonance near 284.8 eV 

assigned to C=C groups in the SAM. This observation clearly supports our the hypothesis 

stated in Figure 5, that both vinyl ether and acetyl formation takes place upon SAM 

binding, which underlines the coexistence of mono- and bidentate surface coordination. 

NEXAFS also probes structural parameters of the film by monitoring intensity 

variations of resonances with the X-ray incidence angle, and, thus, the angle between the 

X-ray electric field vector and the transition dipole moment (TDM) of the respective 

chemical bond.47 This effect, the so-called linear dichroism of X-ray absorption, can be 

directly observed in difference spectra between normal (90°) and glancing (20°) X-ray 

incidence angles. The difference spectrum in Figure 5 shows a weak but discernible 
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dichroism for the C–H resonances near 288 eV. Since a strong dichroism is a signature of 

well-aligned films, the weak dichroism underlines the results of the IR analysis in that 

C16-YNE forms films on SiC with a slight short-range order. This is also in line with the 

roughness of the SiC substrate (see also AFM data below), which, will also decrease the 

apparent overall film order. The positive sign of the difference signal indicates a mostly 

upright orientation of the alkyl chains. The lack of a significant difference peak for the 

C=C groups (284.8 eV) indicates a relatively low degree of chain alignment close to 

substrate surface. 

 

Figure 5. NEXAFS C K-edge spectra of C16-YNE monolayers on SiC surfaces at different X-ray 

incidence angles, along with a difference spectrum of spectra recorded at 90° and 20°. 

 

6.4.6 Atomic Force Microscopy (AFM) 

To explore the ability of modified SiC surfaces for application in high-performance 

MEMS/NEMS devices, atomic force microscopy has been used to examine the 

nanotribology properties of these modified SiC surfaces.23 In general, the adhesion, 
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friction and wear of a film that is deposited onto a surface depend on the top layer of this 

film (monolayer, lubricants or polymer). In addition, tip shape, materials and applied 

normal force might also affect the outcome of these measurements.20 A colloidal probe or 

spherical AFM probe allows a precise measurement of adhesion and friction forces on the 

surface. Moreover, such a probe shape allows an easy a comparison between experimental 

results and theoretical models such as the Derjaguin-Muller-Toporov (DMT) or the 

Johnson-Kendall-Roberts (JKR) models.48 The Van der Waals forces intensify the elastic 

contact area between the colloidal probe and the modified surfaces.49 As described in 

literature, covalently bound alkyl monolayers on various substrates have been studied with 

colloidal probes in different environments, such as solution phases50 and air.51 However, 

most of the high-performance MEMS/NEMS devices were analyzed in air, where 

typically higher adhesion and friction force are expected due to capillary condensation in 

air. Moreover, low-surface energy materials possess lower capillary condensing 

properties, which implies a lower adhesion and lower friction on the surfaces.  

 

 

Figure 6. Tapping-mode atomic force microscope (AFM) of SiC surfaces. (A) after 10 min oxygen 

plasma cleaning, (B) after 2 min 2.5 % HF etching, and (C) after modification with F9-C16-YNE. 

 

SiC is a very hard ceramic material that has high wear resistance properties as compared 

to Si.5 Therefore with the aim to obtain superior tribological properties fluorinated alkyne-

derived monolayers were prepared and subjected to adhesion and friction tests by AFM in 

air with a smooth silica probe as hydrophilic solid particle. For wear resistance studies by 

AFM a sharp diamond-like carbon (DLC) tip was used. A DLC tip is typically used for 

wear testing on surfaces, because it is virtually fully resistant to wear at the macroscale.52 
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All nano-tribological measurements were done on modified SiC surfaces with similar 

roughness (Ra = ~2 nm). Figure 6 shows the AFM topographical height image of SiC 

substrates after various activation processes: 10 min air plasma cleaning of SiC (Figure 

6A); 2.5% HF etching for 2 min (Figure 6B), and after modification with F9-C16-YNE 

(Figure 6C). We found that the surface roughness increases to 2.68 ± 0.3 nm after etching 

with 2.5% HF (2 min). After monolayer grafting, the roughness slightly reduced again to 

2.08 ±0.2 nm, indicating formation of a cushioning monolayer. 

 

6.4.6.1 Adhesion 

The adhesion force measurements between a silica sphere and the modified SiC 

surfaces are shown in Figure 7. The force required to detach the silica particle from the 

modified surface (pull-off force) is given as a function of advancing water contact angles 

(see Table 2). A clear trend is observed for C12-YNE to C18-YNE monolayers: the lower 

the contact angle the higher the adhesion force. For instance, the adhesion force for the 

C12-YNE monolayer is 13.1 mJ/m2 (39.3 nN), whereas for C18-YNE 10.4 mJ/m2 (31.3 

nN) was found (Figure 7A). The adhesion force between the organic monolayer and silica 

probe is mostly non-bonding (electrostatic, hydrogen bond, and Van der Waals) in origin. 

The attraction of the silica probe to a rough surface is much weaker than to a smooth 

surface, due to the reduced contact area between the surface and the silica probe.20 In case 

of fluorinated monolayers F9-C16-YNE and F17-C16-YNE, in fact, extremely low 

adhesion forces were observed 2.2 mJ/m2 (6.7 nN) and 1.9 mJ/m2 (5.9 nN), respectively. 

These findings were consistent with published work on more rough surfaces of PEG-

grafted and fluorinated nanoparticles,50 poly(perfluoroalkyl methacrylate) film,53 and 

nano-patterned fluorinated surfaces.54 The intrinsic properties of these covalently bound 

fluorinated monolayers, become evident in the comparison with atomically flat Si(111) 

surface modified with F9-C16-YNE and F17-C16-YNE: those show the lowest measured 

adhesion for any flat surface (3.6 mJ/m2 (10.8 nN) and 3.2 mJ/m2 (9.8 nN)),25 while those 

slightly higher adhesion values are most probably caused by the maximal contact area 

between the silica probe and the ultra-smooth Si(111) surfaces. The very low intrinsic 

adhesion force observed here for the fluorinated monolayers on SiC is attributed to the 

weak Van der Waals forces between the probe particle and the fluorocarbon SiC surface, 

and follows the decrease in surface energy in the order of CH2 (36 mNm-1) > CH3 (30 

mNm-1) > CF2 (23 mNm-1) > CF3 (15 mNm-1).53 
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Figure 7. (A) Mean forces of adhesion as measured from pull-off curves ~200 of each monolayers at 

10 nN force. (B) Adhesion forces of a colloidal silica probe as a function of normal load for different 

monolayers. Solid lines are fits of the data with a JKR model of a soft layer with 15 Å to 24 Å thickness 

on top of SiC. 

These denser and more ordered ultra-thin monolayers have a lower compressibility as 

compared to conventional polymer coated surfaces, because the adhesion is not increasing 

significantly with higher normal loading force.20 Figure 7B shows that with increasing 

normal load the adhesion raises for both non-fluorinated and fluorinated monolayers only 

up to 25%. At any stage at the same applied normal load the adhesion is considerably 

smaller for fluorinated monolayers as compared to non-fluorinated monolayers. These 

adhesion force are very low in comparison to literature values, for e.g. 

perfluorophosphonate monolayers on Al/Si surface the adhesion shows 17 nN to a Si3N4 

tip.55 Analogously, monolayers made of F17-C16-YNE on hydrogen-terminated Si(111) 

showed an increase in adhesion up to 30% with respect to those on SiC. This might be due 

to the fact that Si(111) is atomically flat surface and therefore the contact area between 

silica probe and the surface is larger. Also the Young’s modulus is higher for SiC as 

compared to Si(111), resulting in a lower elastic compression for SiC.20  

The solid lines in Figure 7B represent fits of the data to this modified JKR model with a 

fixed layer thickness as determined by to XPS and ellipsometry measurements. The elastic 

modulus of the monolayer decreases in fluorinated monolayers by a total factor of 2 as 

compared to non-fluorinated monolayers. In addition, the model gives a prediction for the 

compression of the monolayer and the area of contact between the silica probe and the 

monolayer as a function of normal load. Using these values, the work of adhesion between 

the silica probe and the monolayers and an effective Hamaker constant can be calculated 

using a Derjaguin approximation. A typical indentation of the monolayer at a normal load 

of 10 nN is 1.3 nm, leading to a contact area of 0.030 m2. Combining these values with 
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the adhesion forces in Figure 7A, the effective Hamaker constant is calculated to range 

from 44.6 kBT (C12-YNE) to 67.29 kBT (C18-YNE), and decreases to 7.49 kBT for 

fluorinated monolayers. Although, of course, the SiC roughness leads to lower Van der 

Waal forces, these results show a very low Hamaker constant for the fluorinated surfaces 

as compared to bare SiC surface, for which values in range of 60-107 kBT have been 

observed.56  

6.4.6.2 Friction 

Covalently bound fluorinated monolayers hold great promise in nano-lubrication. 

Therefore, the lateral friction force on the fluorinated and non-fluorinated monolayers was 

measured using the same silica probe set-up as for the adhesion measurements. The 

normal load was increased from 0 to 65 nN, and the corresponding lateral friction was 

recorded on several 5 × 5 µm2 areas at a scan rate of 0.5 Hz. Due to use of a low scan 

speed of 6.22 µm/s on the surface, we observed boundary friction but not hydrodynamic 

friction. As shown in Figure 8A, the average frictional forces are linearly proportional to 

the normal loads, with a slope that can be correlated to the friction coefficient values in 

Figure 8B. The friction at zero load decreases for the fluorinated monolayers, which is in 

agreement with the adhesion measurements, whereas the friction coefficient for non-

fluorinated monolayers varies from 0.013 (C12-YNE) to 0.020 (C18-YNE), in good 

agreement with the results for monolayers on Si(111).57 For the fluorinated monolayers, 

the friction coefficient remarkably decreases to 0.008 for F17-C16-YNE and 0.01 for F9-

C16-YNE, The three major factors for this decrease in friction are: 1) fluorinated 

monolayers are expected to have a lower polarizability at their surface; 2) due to the 

surface roughness, it could be that there is significant stick-slip motion of the probe on the 

surface. In that case the net friction for the trace and retrace might be the same, and 3) 

higher Young’s modulus materials decrease the friction coefficient.5 The overall resulting 

low friction coefficient value of covalently bound fluorinated monolayers indicates this 

system to have excellent lubrication properties in air. Also, no wear was observed even at 

a maximum force of 65 nN. For bare SiC a friction coefficient of 0.02 is found, which is 

in good agreement with the experimental results for polished SiC (Rms = 0.89 nm)5 and 

molecular dynamics (MD) simulations on SiC, which yield a value of 0.02 ± 0.01.58 
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Figure 8. Lateral friction forces of SAMs. (A) Representative lateral friction force data versus applied 

normal load for the all fluorinated and non-fluorinated SAMs on SiC. [The solid lines are linear 

regression lines.] (B) The friction coefficients for different monolayers, obtained from the slope of the 

friction force versus normal load. 

The correlation between the dynamic friction coefficient and the adhesion energy F/R 

(in mJ/m2) is shown in Figure 9. The adhesion energy was taken at constant applied load 

of 10 nN force for different monolayers. For the fluorinated monolayers (point 1, 2), we 

observed that the adhesion energy (F/R) is around 2 mJ/m2 and the dynamic friction 

coefficient is small (between 0.008 – 0.010). In case of non-fluorinated monolayers (point 

3-7), we observe that the adhesion energy (F/R) is higher than ~10 mJ/m2, and that there is 

also a rapid increase in the friction coefficient. Clearly, the friction coefficient is 

correlated to the properties of the surface, showing that the sliding of the probe over the 

surface causes dissipative molecular bonding and debonding events (both normally 

noncovalent in nature) to occur. The larger the adhesion forces, the larger the energy 

barrier associated with debonding events and the higher the friction coefficient. This is in 

line with a sum of a constant term and an Arrhenius term: 

  

�� = ��	(0) + ���
�	����/��                                         (3) 

where A is an effective contact area, k is Boltzmann’s constant and t is the absolute 

temperature and kf  a constant. The data shown in the inset to Figure 9 is calculated by 

using the equation 3. The effective contact area (A) calculated from the slope of the linear 

line is shown in the inset to Figure 9. An effective contact area of 30 nm2 was found for 

the silica colloidal probe, which was used to measure adhesion and friction on rough SiC 
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modified surfaces. A possible explanation of such low contact area is the low elastic–

plastic deformation of such organic monolayers. 

 

Figure 9. Correlation between dynamic friction coefficient and adhesion energy F/R(mJ/m
2
) at applied 

normal load 10 nN on different monolayers on SiC (from F17-YNE (), F9-YNE (), C18-YNE (), 

C16-YNE (), C16-ENE (), C14-YNE (), and C12-YNE ().The inset shows the linear Arrhenius 

plot drawn with natural log of friction coefficient verses adhesion energy. The obtained slope gives the 

effective contact area of probe to the surface. 

6.4.6.3 Wear 

As explained in earlier section the resulting monolayers have been characterized for 

their nano-lubrication properties by the frictional force measurements at pressures from 0 

to 65 nN. In this range of force these monolayers do not show any wear marks. This is 

already an interesting result, but to further proof the potential of the wear properties of 

these monolayers, experiments at higher normal forces were carried out. The applied 

normal load was in the range of 1 N to 14 N (Figure 10 and Figure 11). Typical wear 

marks with the size of 25 × 25 m were generated during one scan cycle, and 

subsequently imaged by AFM at scan velocity of 0.5 Hz in contact mode. The same 

cantilever was used for the AFM imaging of the wear mark. The scan area for imaging the 

wear marks was 50 × 50 µm2, and zero normal load was applied to capture the image. The 
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surface topography images of the wear marks are depicted in Figure 11. At higher load, 

the wear fragments produced throughout the wear marking area are not sticky, and could 

be moved out of the scan area by the light load during scanning (no stick slip effect was 

observed). 

The observed wear-induced depth increases linearly with an increasing normal load, as 

is shown in Figure 10. The surfaces modified with organic monolayers showed a lower 

wear-induced depth than unmodified SiC, even at a high normal force (14 N). In short 

chain length non-fluorinated monolayers, the wear depth is greater than for the longer 

chain length monolayers (2.8 nm and 1.5 nm for C12-YNE and C18-YNE, respectively). 

This decrease in wear-induced depth is attributed to a more dense monolayer. The 

fluorinated monolayers clearly exhibit extreme wear resistivity compared to the non-

fluorinated monolayers, indicating that fluorinated monolayers significantly improve the 

mechanical properties of the surface. The enhanced wear resistivity of fluorinated 

monolayers is at least partially due less cleavage of the top layer, –(CF2)nCF3,
59 because 

the strength of the -CF2-CF3 bond (dissociation energy ~423 kcal/mol) is higher than that 

for the -CH2-CH3 bond (~301 kcal/mol). For both fluorinated and non-fluorinated 

monolayers, increasing the chain length decreases the wear-induced depth for any given 

normal load, similar to what Bhushan et al. observed with modified Al and Si oxide 

surfaces.59 

 

Figure 10. Wear depth for single cycle at various loads and for evolution of wear at different 

monolayers on SiC. 
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Figure 11. AFM images of wear marks produced at different normal load after one scan cycle, the 

normal pressure and the average wear depth are shown on the bottom side of the figure (profile width: 

50 micron for all images; the square drawn to test the wear resistance is 25  25 micron). 
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6.5 CONCLUSIONS 

In this work, we have successfully demonstrated the formation of covalently bound, 

highly stable fluorinated and non-fluorinated monolayers via the thermal reaction of 1-

alkynes with SiC substrates. The alkyne group reacts with the hydroxyl-terminated surface 

via a double Markovnikov addition, forming a doubly bound, acetal-containing 

heteroatomic six-membered ring. This suggests a new pathway for the reaction 

mechanism of un-substituted hydrocarbons with hydroxyl-terminated surfaces. In 

addition, fluorinated monolayers on SiC were shown to display minimal friction (friction 

coefficient down to 0.008) and adhesion energies.  In combination with the extraordinary 

wear resistance of SiC surfaces that are coated with these fluorinated monolayers, this 

shows that these covalently bound fluorinated monolayers on SiC provide a promising 

alternative to currently used stable lubricants in high-performance micro-electronic 

devices. 
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S.6.1 Density functional theory (DFT) 

Electronic core level calculations were used to simulate core levels of C 1s XPS spectra. 

All electronic core level calculations were done with the GAUSSIAN09 program.1 The 

effect of the bulk substrate on Si-C-O-C bound monolayers was mimicked by attaching 

the organic species to a (SiH3)3C–O- moiety. The geometries of the different systems were 

optimized at the B3LYP/6-311G(d,p) level of theory. Natural bond orbital (NBO) 

analysis2 was employed to obtain the core orbital energies. Assuming that the core orbital 

energy levels are directly related to the binding energies of the core electrons, the DFT 

calculations can be compared with the XPS spectrum. Because of the difference in 

reference energy between theory and experiment,3 absolute values of calculated binding 

energies were referenced to the measured BE of CH2 moieties in the aliphatic hydrocarbon 

chain by multiplying with a scaling factor (1.0438).4 An assumption for equal contribution 

by each carbon atom was made and for every carbon atom a Gaussian centered at the 

corresponding BE was used with an fwhm of 0.94 eV. The simulated XPS spectra were 

used to facilitate the peak fitting procedure for overlapping contributions in the 

experimental XPS data. 
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Figure S1. DFT Simulated core level C1s XPS-spectra  for the hexadecene (A) monolayer  

(C) and hexadecyne (B) monolayer (D). 
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S.6.2 XPS data of bare SiC and 2.5 % HF etched SiC 

surfaces 

 

 

 

Figure S2.  Narrow-scan C1s (A) and Si2p (B), O1s (C), and F1s (D) XPS data of bare SiC and 2.5 % 

HF etched SiC surfaces. O1s narrow-scan spectra of C16-YNE derived monolayers on SiC only 

compare the after modification changes.  
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S.6.3 Coverage of oxygen layer after HF etching 

According to Dhar et al. the estimated coverage of oxygen layer after HF etching C-

term. SiC is 0.93 ±0.1 ML. Using these method in our system we found similar results that 

is 1.03 ±0.14 ML.  Assuming that the last layer of the SiC sample is composed of these 

two components (see figure R3) (e.g. expt-1 - %C1s283.6 = 7.10% and Si2p101.1 = 2.11%) 

the coverage of oxygen can then be derived from the intensity of the measured O1s core 

levels as follows: 

 

2.5 % HF etch C1s C1s C1s Si2p Si2p O1s 

Binding Energy 
(eV) 

283.6 284.8 286.2 100.1 101.3 532.6 

Extpt.1 
% of components 

36.95 7.10 0.85 44.85 2.11 8.14 

Extpt.2 
% of components 37.02 6.20 0.85 44.10 2.07 9.76 

 

Expt.1 

%O1s532.6 / (%C1s283.6 + %Si2p101.1) = [8.14% / (7.10%+2.11%)] ≈ 0.88 ±0.1 ML 

Expt.2 

%O1s532.6 / (%C1s283.6 + %Si2p101.1) = [9.76% / (6.2%+2.07%)] ≈ 1.18 ±0.1 ML 

 

 

Figure S3. C1s (left) and Si2p (right) deconvolution XPS spectra of 2.5% HF etching on SiC surfaces.  
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S.6.4 XPS spectra of fluorinated monolayers on SiC 

 

 

 

 

Figure S4. Narrow-scan C1s, Si2p, F1s XPS data of F17YNE (top) and F9YNE (bottom) derived 

monolayers on SiC. 
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  7 
Organic Monolayers from 1-Alkynes Covalently 

Attached to Chromium Nitride: Alkyl and Fluoroalkyl 

Termination 

Strategies to modify chromium nitride (CrN) surfaces are important because of the 

increasing applications of these materials in various areas such as hybrid electronics, 

medical implants, diffusion barrier layers, corrosion inhibition, and wettability control. 

The present work presents the first surface immobilization of alkyl and perfluoro-alkyl 

(from C6 to C18) chains onto CrN substrates using appropriately functionalized 1-alkynes, 

yielding covalently bound, high-density organic monolayers with excellent hydrophobic 

properties and a high degree of short-range order. The obtained monolayers were 

characterized in detail by water contact angle, X-ray photoelectron spectroscopy (XPS), 

ellipsometry, and Infrared Reflection Absorption Spectroscopy (IRRAS). 
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7.1 INTRODUCTION  

Surface modification using nanostructures such as organic monolayers has become an 

elegant and frequently used route to enhancing surface properties such as resistance to 

wear, corrosion, passivation and oxidation.1-3 This has great potential for micro- and 

nanoelectromechanical systems (MEMS and NEMS) made of non-metallic materials such 

as silicon nitride (SiN) and silicon carbide (SiC). Compared to main group nitrides and 

carbides, SiN-derived and SiC-derived ceramics modified with organic monolayers are 

useful in many important engineering applications, particularly because of their high 

corrosion resistance and hardness. However, these materials also suffer from a low 

fracture toughness and high sintering temperatures.4 As a consequence, there is an 

ongoing search for alternative materials with improved properties. CrN is such an 

upcoming material, with at least five properties of interest that provide the potential to 

replace the ceramics mentioned above: 1) outstanding wear5 and high-temperature 

corrosion resistance that protects the material from chemical attack and tarnishing,6 and 

even greater than that of TiN, presently the most commonly used hard coating.7 2) low 

friction coefficient, which makes it ideal for die cast and plastic molding components 

helping to reduce galling.6 3) a greater hardness (25 GPa or HK 2800), and not shattering 

as easily, as other ultrahard, but nonmetallic carbides or diamonds.8 4) low electrical 

resistivity (640 μΩ cm) and high melting point (~1770 °C for 1:1 CrN).9 5) unlike 

hexavalent chromium, CrN is rather biocompatible, with minimal toxicity. This allows its 

use in medical implants and corrosion-resistant steels that are now becoming 

commercially available.6 Such use would likely become even more promising if the 

surface properties of CrN could be tuned to be optimal for high-wear conditions, or could 

be fine-tuned to minimize the response by the immune system upon placement of a 

medical implant in the body.  Such applications would require a precisely tuned 

modification of the surface, such as that obtainable via covalently attached organic 

monolayers or polymers.  

Chemical modifications via the covalent attachment of organic monolayers are 

employed via a wide variety of approaches, depending on the nature of the substrate. This 

includes, for example, the adsorption of alkanethiols, dialkyl disulfides and dialkyl 

sulfides on gold10 and GaAs(001),11 fatty acids12 and alkenes13 on indium tin oxide (ITO), 

alkenes on oxide-free Cu,14 alkanephosphonic acids on titanium,15 and organosilanes on 

silicon surfaces used for the development of MEMS and NEMS.16 However, although 

interesting for a wide variety of properties - ranging from electronic modification such as 

band bending and surface dipoles to mechanical changes including friction and adhesion 

control, these monolayers are not always very stable.  This need for a high stability of 



Chapter 7 

 188

these molecular coatings in real-life applications motivated researchers to use other 

interesting functional groups such as alkynes on SiC and SiN surfaces, which show a very 

high stability (e.g. stable in refluxing acid at pH <0). This high stability is induced by two 

factors:17 1) the strong and nonpolar covalent bond between Si and C,18-20 and 2) the high 

chemical stability of SiC and SiN, which effectively hampers the loss of the monolayer 

via etching of the substrate (i.e. minimizes the formation of monolayer defects via the 

‘eating away’ of the underlying material by acid or base).21  

To our knowledge, only a few studies have been reported that describe the formation of 

organic monolayers on native-oxide-covered Cr surfaces.22-26 For example, to study the 

electrical properties of ferrocene-containing monolayers, the attachment of these 

functional groups was achieved via isonitrile and thiol groups.23 Monolayers derived from 

sulfonic acid, hydroxamic acid, and carboxylic acids were studied to obtain lithography-

based surface patterning, and the reactivity of these moieties toward the surface was 

investigated.24, 25 However, none of these monolayers are very stable, and they are easily 

desorbed in air, upon sonication and even upon room-temperature rinsing in organic 

solvents.23, 27 The study of monolayer formation on chromium-rich surfaces is also 

relevant from a catalysis point of view. For example, chromium-containing catalysts are 

frequently used, but the catalyst might suffer from poisoning due to fouling by a variety of 

unsaturated compounds, including thiophenes, pyridine, and carboxylic acid-terminated 

molecules.28 Monolayers derived from silanes currently display the highest quality 

(yielding e.g. a NEXAFS-determined tilt angle of 9.3° ± 1.3° for monolayers of 

octadecyltrimethoxysilane),24 although they are somewhat slow to form (more than 3 

days),25 and whereas they are slightly more stable, all silane-based monolayers are 

typically prone to hydrolytic detachment reactions. 

To circumvent such hydrolytic reactivity and to obtain a wider access to surface-

modified substrates, our group has recently shown the potential of the modification with 

1-alkenes or 1-alkynes of hydroxyl-terminated surfaces such as silica,29 indium tin oxide 

(ITO),13 alumina,30 and silicon carbide (SiC).20 On such surfaces, the surface properties 

(wettability, and surface dipole/band bending) can be tuned in great detail via 

modification of the top group.  For example, replacement of the terminal -CH3 by a -CF3 

group strongly diminishes the adhesion and friction forces on hydroxyl-terminated SiC,20 

analogous to observations made for fluorinated monolayers on Si.31, 32  The extremely 

high hardness and mechanical robustness of CrN, therefore suggest that the development 

of novel monolayer chemistry may also allow the development of CrN with extremely 

low friction and adhesion properties, which would open up new applications of this 

material. In addition, biofunctional monolayers may significantly widen the biological use 
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of these materials. The growing interest in CrN and other Cr-containing surfaces thus 

motivated us to study the analogous monolayer formation with these precursors on oxide-

covered CrN.  

In this chapter, we describe for the first time the formation of stable organic monolayers 

on plasma-activated, hydroxyl-terminated CrN surfaces through covalent bond formation 

with anchoring alkyne molecules. We describe the use of various 1-alkynes to form 

monolayers on hydroxyl-terminated CrN surfaces via Cr-O-C linkages under thermal 

conditions (Figure 1). We compare various approaches to activating CrN and then outline 

the optimal conditions for monolayer formation.  Subsequently, the kinetics are discussed 

for alkyne- and alkene-derived monolayers. Then, the monolayer structure is analyzed by 

ellipsometry, wetting properties, and detailed IR measurements as a function of the 

reactive group and the length of the alkyl chain. Subsequently, the mode of binding to the 

surface was studied by IR and XPS measurements and compared to monolayers derived 

from 1-hexadecene and 2-hydroxyhexadecanoic acid (2HHDA). Finally, various degrees 

of alkyl fluorination were used to study the influence of fluorination on the monolayer 

formation, packing of the monolayer, and wetting properties. The results outline the 

potential of such covalently bound monolayers on CrN for a wide range of follow-up 

studies. 

 

Figure 1. Schematic representation of the formation of alkyne and alkene-derived fluorinated and 

nonfluorinated organic monolayers on a plasma-activated, hydroxyl-terminated CrN surface. 
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7.2 MATERIALS AND METHODS 

7.2.1 Materials 

Acetone (semiconductor-grade VLSI PURANAL Honeywell 17617), dichloromethane 

(DCM, Fisher), and other solvents used were either of analytical grade or distilled prior to 

use. The wafers with nonstoichiometric chromium nitride films (thickness 1 m, surface 

root-mean-square (rms) roughness determined with AFM ~5.0 nm) were obtained by 

sputter deposition on Si(100). Short-chain-length molecules 1-hexyne (Aldrich, 97%, 

C6YNE), 1-octyne (Aldrich, 98%, C8YNE), and 1-decyne (Aldrich, 98%, C10YNE) were 

purified by distillation before use. The longer chain length alkynes 1-dodecyne (Aldrich, 

98%, C12YNE), 1-tetradecyne (Aldrich, ≥97%, C14YNE), and 1-hexadecyne (ABCR, 

Germany, 90%, C16YNE) were purified by column chromatography (hexane) to remove 

trace amounts of 1-bromoalkane or other impurities and subsequently distilled twice under 

reduced pressure before use. 1-Hexadecene (Aldrich, ≥99%, C16ENE) was purified by 

distillation under reduced pressure before use. 1-Octadecyne20 (C18YNE), 

13,13,14,14,15,15,16,16,16-nonafluoro-hexadec-1-yne31 (F9YNE) and 9,9,10,10,11,11, 

12,12,13,13,14,14,15,15,16,16,16-heptadecafluoro-hexadec-1-yne31 (F17YNE) were 

synthesized using literature procedures. 2-Hydroxyhexadecanoic acid (ABCR, 95%, 

2HHDA), and palmitic acid (Sigma, >99%, PMA) were used as received.  

7.2.2 Monolayer formation 

A chromium nitride (CrN) epilayer on a Si(100) substrate was diced into 10 mm × 10 

mm wafers with a diamond-tipped pen. The CrN surface was first cleaned by rinsing 

several times with dichloromethane and sonication for 10 min in acetone. Subsequently, 

the samples were further activated using an air plasma (PDC-002 plasma cleaner, Harrick 

Scientific Products, Inc. Ossining, NY) for 10 min (0.3 SCFH air flow, 29.6 W power, at 

300 mTorr pressure) to remove adventitious organic contamination. After being activated, 

the samples were blown dry with a stream of argon. These freshly plasma-activated and 

dried surfaces were then quickly transferred to a screw-capped bottle under argon 

atmosphere, which was charged with 1 mL of alkynes at 100 °C for 16 h, or for the time 

and at the temperature indicated at the text. After reaction, the samples were removed 

from the flask, rinsed extensively with DCM, and sonicated for 5 min in acetone to 

remove physisorbed reagents. Samples were stored in a glovebox between measurements, 

rinsed with fresh DCM, and blown dry with argon immediately before characterization. 

2-Hydroxyhexadecanoic acid (2HHDA)-modified surfaces were prepared using an 

activation process as similar to that described elsewhere.30 In this case, after plasma 
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activation the samples were rinsed in ethanol and immersed in a 1 mM solution of 2-

hydroxyhexadecanoic acid in ethanol at 65 °C for 16 h. This same procedure was used to 

prepare palmitic acid (PMA)-derived monolayers. 

7.2.3 Surface characterization 

The static and advancing water contact angles of the bare and modified CrN surfaces 

were measured using the sessile drop method on a DSA100 optical contact angle meter 

(Krüss instrument). The thickness of the alkynes grafted onto the CrN substrate was 

determined using a Sentech Instruments (type SE-400) automated ellipsometry. The 

optical constants of the substrate were determined with a piece of freshly plasma-oxidized 

CrN refractive index of ns = 2.73 and an imaginary refractive index of ks = 2.48. Each 

reported values of the layer thicknesses is the average of a minimum of eight 

measurements taken at different locations on the substrate with an error ± 0.3 nm. The 

elemental composition of the modified CrN surfaces was determined by X-ray 

photoelectron spectroscopy (XPS) using a JPS-9200 photoelectron spectrometer (JEOL, 

Japan). All spectra were corrected with a slight linear background before fitting. All XPS 

spectra were evaluated using the Casa XPS software (version 2.3.15) and the C1s 

hydrocarbon CH2 peak was calibrated at a binding energy (BE) of 285.0 eV. Calculated 

atomic percentages were normalized by the corresponding atomic sensitivity factors [C1s 

(1.00), Cr2p (10.6), N1s (1.80), O1s (2.93), F1s (4.43), S2p (1.68) and Cl2p (2.29); 

http://www.casaxps.com/] for the X-rays incident at 80 from the analyzer: as shown in 

Table 1 (vide infra).  Infrared reflection absorption spectroscopy (IRRAS) spectra were 

measured using a Bruker TENSOR 27 equipped with a liquid-nitrogen-cooled MCT 

(Mercury, Cadmium, Telluride) detector using a Harrick Auto SeaguIITM with a variable 

angle (10 - 85°) attachment. For our experiments, the angle of p-polarized light incidence 

was 80° with respect to the surface normal. Typically, 2048 scans were taken at a 

resolution of 4 cm-1 for each spectrum, and from the resulting spectrum a background 

spectrum was divided by a plasma-oxidized CrN reference sample. The topography of the 

plasma-activated CrN surfaces was studied with an Asylum MFP-3D atomic force 

microscope (AFM) in tapping mode. Note that all characterization techniques were 

performed after acetone or dichloromethane rinsing and sonication for 5 min. 

 

http://www.casaxps.com/
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7.3 RESULTS AND DISCUSSION 

7.3.1 Plasma-oxidized CrN surfaces 

Plasma-oxidized CrN surfaces were used to yield alkyne-derived monolayers onto CrN 

surfaces via thermal initiation (Figure 1). The aim of the air-generated plasma was to 

remove any carbon contamination from the surface, while simultaneously introducing 

surface hydroxylation. In general, the plasma process results in an oxide layer that is only 

a few atomic layers thick and introduces hydroxyl termination. The static contact angle 

(SCA) of untreated (as-received) CrN substrates of 106 was reduced to <10 after plasma 

activation, demonstrating the conversion of an adventitious carbon-contaminated, 

hydrophobic CrN surface to a clean, hydrophilic surface consisting primarily of hydroxyl-

terminated groups.17, 33, 34 The hydrophobic nature of untreated Cr-derived surfaces was 

previously described for chromium oxynitride (contact angle: ~90),35 and has been 

ascribed to the high chromium content as well as surface roughness of 6.1 ± 0.1 nm as 

shown in Supporting Information figure S2.  

  

 

Figure 2. (A) XPS wide scans measured on CrN surface with various treatment: a) bare (before 

activation), b) after air plasma activation for 10 min, c) HF (2.5%) for 2 min, d) piranha for 10 min. (B) 
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XPS Cr2p narrow scan of CrN and after plasma treatment. (C) XPS O1s narrow scan of CrN before 

and after plasma treatment. (D) XPS N1s narrow scan of CrN before and after plasma treatment. (E) 

AFM tapping mode image of plasma-activated CrN surface. 

 

In addition to plasma activation, we also studied common wet chemical activation 

routines such as, like 2.5% aqueous HF, piranha solution (H2SO4:H2O2) and concentrated 

HCl. As shown in Table 1, a concentrated HCl solution also created a hydrophilic CrN 

substrate with water contact angles below 10; however, this surface treatment yields 

other elemental contaminations (e.g. Cl) resulting from surface complexation and CrN 

dissolution.36 As also demonstrated by the XPS wide scans in Figure 2A, etching with 

2.5% HF leaves trace amounts of fluorine on the surface whereas piranha solution 

introduces sulfur. Such etching remnants are not found upon plasma activation, but even 

for that method (as for all the others) after the full surface etching procedure, some 

persistent carbon contamination remains on the CrN surface, as detected by XPS (BE = 

285.0 eV). Altough its nature cannot be certified beyond doubt, it is different from that of 

chromium carbide (CrC), which appears at 283.2 eV in the C1s XPS narrow scan.37 The 

Cr2p XPS narrow scan of an air-plasma activated CrN sample, as depicted in Figure 2B, 

displays a broad Cr2p peak in the region of 570 eV to 605 eV. Typically, components 

around 577 (2p3/2) and 587 eV (2p1/2) are assigned to chromium in a nitrogen and/or 

oxygen environment (chromium oxynitride CrNxOy, Cr2O3, and CrO(OH)).38,39, 40 XPS 

analysis of our chromium nitride samples suggests a bulk nonstoichiometric Cr/N 

composition of roughly 2:1, with significant oxidation products on the surface and some 

unremovable carbon (vide infra). Upon plasma activation, the %C goes down, while the 

%O goes up (see Table 1).  This oxidation step does not yield significant differences in 

the formal oxidation state of Cr, as the Cr2p XPS narrow scan is basically identical before 

and after the plasma treatment.  The overall chemical reaction is thus the “burning away” 

of carbon contaminants, and the replacement of N with O. Given the increased %O and 

the sharp decrease in the water contact angle, we conclude that activating the surface with 

air plasma introduces oxygen-containing functional groups on the surface, most likely 

hydroxyl moieties. This is confirmed by the O1s narrow scan in Figure 2C, which showed 

that upon plasma treatment the O1s peak shifts slightly to higher binding energies (the 

peak maximum moves from 530 eV to 532 eV), as expected for the formation of Cr(OH)x 

compounds from the original oxynitride; cf. the O1s binding energy of Cr2O3 is 530.0 eV, 

whereas that of CrO(OH) is 531.6 eV, whereas organic compounds show XPS O1s peaks 

around 533.0 eV.27  Finally, AFM analysis reveals slight changes in surface roughness 

upon air plasma treatment, with an rms surface roughness of 5.9 ± 0.1 nm (Figure 2E). 
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Table 1. Static water contact angle and XPS-based elemental composition (in atom %) of chromium 

nitride after various surface treatments 

Surface 

Treatments 

C1s 

(285eV) 

Cr2p 

(575.0 

eV) 

N1s 

(397 

eV) 

O1s 

(531 

eV) 

Other 

(F1s(684 eV) 

S2p 

(168 eV)) 

Conta

ct 

angle 

() 

Untreated CrN 37.2 26.8 17.2 18.7 -- 106 

Air Plasma 9.2 33.3 16.4 41.1 -- <10 

HF (2.5%)a 8.7 33.3 16.1 36.2 F1s, 5.6 <10 

Piranhaa 8.2 30.3 15.4 42.6 S2p, 3.3 <10 

1 M HCl 10.0 32.5 15.1 40.3 Cl2p, 2.1  
a The CrN substrate was pretreated with 10 min of air plasma. 

 

7.3.2 Kinetic study of the attachment of 1-alkynes and 1-alkenes onto 

plasma-activated CrN surface 

Freshly plasma-activated CrN surfaces were modified at 100 °C with pure 1-alkene or 

1-alkyne. To this aim, freshly plasma-activated CrN wafers were placed in screw-capped 

bottle with 1 - 2 mL of an alkene or alkyne, which was put in a water or oil bath to reach 

the required temperature.  The resulting surfaces were analyzed by water contact angle, 

XPS and IR measurements. As depicted in Figure 1, nine different nonfluorinated and 

fluorinated 1-alkenes and 1-alkynes of different chain lengths were used. 

The degree of completion and progress of monolayer formation can be expressed 

through the XPS atomic ratio of C1s to Cr2p, N1s, and O2p, respectively.  In addition, the 

development of the surface wettability was evaluated via static water contact angle 

measurements. A kinetics study was carried out by keeping one parameter – viz. time or 

temperature – constant while varying the other. The resulting kinetics of the reaction of 1-

hexadecene and 1-hexadecyne on the hydroxyl-terminated CrN surface are shown in 

Figure 3. As shown in Figure 3A, for both 1-alkenes and 1-alkynes, the water contact 

angle gradually increases with temperature.  Clearly, monolayer formation proceeds faster 

with 1-hexadecyne than with 1-hexadecene. For the fixed reaction time of 12 h, a limiting 

contact angle of 110 was obtained at 100 C or higher for 1-hexadecyne, while for 1-

hexadecene the attachment required 12 h of reaction at 160 C to be complete. In line with 

this, the C1s composition (Figure 3B) initially increases gradually while approaching an 

asymptotic value at 100 and 160 C for 1-hexadecyne and 1-hexadecene, respectively. 
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The higher reactivity of alkynes is likely due to a combination of the higher 

nucleophilicity of alkynes versus that of alkenes, and the increased ease of oxidation of 

alkynes versus that of alkenes. Interestingly, as the data in Figure 3C show, the carbon 

content for the 1-alkyne reaches a constant value after 12 h at 100 C.  This likely means 

that at that (and lower) temperatures, likely no multilayer formation takes place because 

this would lead to a continuous increase in the C1s signal over time, as observed for a 

wide variety of other oxide surfaces such as glass,41 SiC19 and TiO2.
42 

 

Figure 3. (A) Static water contact angle of organic monolayers derived from 1-hexadecene (blue open 

circles) and 1-hexadecyne (red filled circles) on hydroxyl-terminated CrN as a function of the reaction 

temperature at 12 h. (B) XPS C1s atomic ratio and (C) hexadecyne-derived monolayers on the CrN 

surface with different times at 100 C with symbols for XPS elemental ratio Cr2p, N1s, and O1s (red, 

half-filled squares), C1s (purple, half-filled circle) and static water contact angle (green, filled circle). 

The lines in A-C are guides to the eye. Contact angle data points in the graph represent an average of 

two independent series of experiments. Each series consists of two separately prepared (partially 

completed) monolayers. Contact angle values were obtained by measuring at 3-4 different spots on 

the surface, per monolayer. See Supporting Information S.7.3 Table S1 and S2. 

7.3.3 Wettability and ellipsometric thickness 

The wettability of optimally modified CrN surfaces (12 h at 100 C) was monitored by 

contact angle measurements with water and hexadecane. The water contact angle strongly 

depends on the molecular structure, surface roughness, and packing density of the 

monolayer. In general, a densely packed -CF3 or -CH3 terminated monolayer always 

results in water contact angles ≥110°. The water contact angle deceases with decreasing 

packing density. Table 2 shows the static contact angle (SCA) and advancing contact 

angle (ACA) water on the fluorinated and nonfluorinated alkyne-derived and alkene-

derived monolayers as a function of chain length. Henceforth, the respective monolayers 

are referred to by their number of carbon or fluorine atoms and reactive group on the 

surface that is, as C6YNE, C8YNE, C10YNE, C12YNE, C14YNE, C16YNE, C18YNE, 

F9YNE, and F17YNE for the various alkyne-derived monolayers, and C16ENE for the 
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hexadecene-derived monolayers. Static water contact angles ≥110° were obtained for 

alkyne monolayers with more than 12 carbons per chain (>C12), whereas the alkynes with 

fewer than 10 carbon atoms per chain (<C10) reveal static water contact angles lower than 

110°. The advancing water contact angles were larger than 112° for chain length of >C12, 

while those of the <C10 were lower than 112°. In studies with alkanethiols on gold, 

alkyne, and alkene monolayers on Si similar water contact angles in the range of 110 - 

115 have been reported for densely packed alkyl monolayers with methyl termination.43, 

44 This indicates for shorter alkynes that the packing density at optimal attachment is less 

than fully dense, but that for the C12 and longer alkynes a densely packed monolayer is 

formed. Interestingly, the static water contact angle of these densely packed layers are 

significantly higher than obtainable for analogous C16 monolayers on various other 

ceramic surfaces of similar roughness, e.g. SiC (SCA = 107°), and SiN (SCA = 106°),18, 20 

which points to the high quality of these chromium nitride-bound monolayers.  

 

Table 2. Static contact angles (SCA) and advancing contact angles (ACA) of water and ellipsometric 

thicknesses of alkyne-derived monolayers on hydroxyl-terminated CrN (12 h at 100 C). 

 

Monolayers 

Water Contact angle 

(±1) 

Monolayer 

Thickness 

(±0.3 nm)a 

Estimated 

Thicknessb 
SCA ACA 

CHC-C
4
H

9
 85 91 0.6 0.75 

CHC-C
6
H

13
 93 98 0.8 1.00 

CHC-C
8
H

17
 102 106 1.0 1.26 

CHC-C
10

H
21
 110 112 1.6 1.51 

CHC-C
12

H
25
 108 112 1.8 1.76 

CHC-C
14

H
29
 110 116 1.9 2.19 

CHC-C
16

H
33
 112 116 2.2 2.27 

CHC-C
16

H
24

F9 116 128 1.7 -- 

CHC-C
16

H
16

F17 119 130 1.6 -- 
a Refractive index of activated CrN surface used to determine the ellipsometric 

thickness: ns =2.73 and ks = 2.45. bNominal thicknesses computed by ChemBio3D for 

“all-trans”, vertically aligned alkyl chains from Cr to –CH3 
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For the fluorinated monolayers, static water contact angles as high as 116 and 119 

were obtained for F9YNE and F17YNE, respectively.  Analogously, advancing water 

contact angles of 128 and 130 were obtained, indicating the high quality of these 

modified surfaces, especially given the unchanged surface roughness (rms = 5.7 ± 0.1 nm, 

as confirmed by AFM See Supporting Information S.7.3 Figure S2) in comparison to that 

of the plasma-activated CrN surface (rms = 6.1 ± 0.1 nm) displayed in Figure 2E. This is 

similar to what is observed on modified SiC surfaces.20 These contact angles display the 

low van der Waals interactions between water and these -CF3 containing monolayers. 

These results are similar to previously reported monolayers on H-Si(111) and SiC 

surfaces.20, 31 In addition, the contact angles to hexadecane (surface tension = 27 mN/m) 

were measured.  For all CH3-terminated monolayers both the hexadecane SCA and ACA 

are <10, whereas for the CF3-terminated monolayers the hexadecane contact angles are 

around 40. This indicates that CH3-terminated monolayers are oleophilic whereas the CF3 

monolayers are only somewhat more oleophobic. These values of <10 and 40 for the –

CH3 and –CF3 monolayer are somewhat lower than the values of 37 and 81 for the 

analogous monolayers on Si(111).31 Becasue the final wetting state is the Wenzel state in 

both cases,45 we attribute this to the higher surface roughness of CrN (RMS = 5.7 ± 0.1 

nm See Supporting Information S.7.3 Figure S2) versus that of Si(111) (~0.1 nm). A 

combination of hydrophobic and oleophilic properties as obtained for our CH3-terminated 

materials might be useful for oil and water separation in the oil refinery industry.46  

Ellipsometry was used to determine the thickness of the obtained monolayers on the 

CrN surface. First, the optical constants of the freshly plasma activated CrN substrate 

were determined to be ns = 2.73 ± 0.02 and ks = 2.45 ± 0.02. These values are similar to 

the ones obtained by the same technique for the effective refractive index (RI) for a range 

of chromium oxides of ns = 2.6 and ks = 2.18 - 2.55, as found by other researchers.47 The 

thicknesses of monolayers reported here were determined with these RI values as 

determined on the same unmodified CrN substrate. In addition, we note that the accuracy 

of measurement of the thickness might be affected by the substrate roughness.48 The 

observed monolayer thicknesses range from 0.6 ± 0.3 nm to 2.2 ± 0.3 nm for C6YNE to 

C18YNE monolayers, respectively. This is in line with the formation of dense monolayers 

with all-trans alkyl chains, and confirms the lack of multilayer formation for any of the 

materials. Furthermore, the estimated film thicknesses are lower than the estimated 

thickness based on “all trans” conformations, and may be related to a previously reported 

contraction of monolayers on surfaces with nanoscopic roughness.49  However, for 

C16ENE the maximum ellipsometric thickness was determined to be 1.7 ± 0.3 nm, which 
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indicates a slightly less dense monolayer and might be related to a lower coverage as 

compared to that of the C16YNE monolayer (1.9 ± 0.3 nm).   

 

7.3.4 Monolayer Ordering  

7.3.4.1 Infrared Reflection Absorption Spectroscopy (IRRAS)  

To examine in more detail the structure of the organic monolayers, we employed 

IRRAS. This allows to derive information regarding the short-range order and packing 

density, the overall molecular orientation (tilt angle), and the presence of functional 

groups within the monolayers.50 In Figure 4, the C-H stretching vibration peaks for short 

chain C6YNE (Figure 4A) and long chain C18YNE (Figure 4B) are depicted. For 

comparison purposes, with relevant modes assigned, the exact IR peak positions are 

shown in Figure 4C. To extract quantitative information concerning the methylene bands, 

this spectral region was deconvoluted.33, 51 Five independent C-H stretch vibrations are 

distinguished.  First, the antisymmetric and symmetric CH2 stretch vibrations are observed 

around 2920 and 2852 cm-1, respectively. In addition, we also observed a Fermi resonance 

peak of sCH2 (FR) at 2894 - 2901 cm-1 the symmetric stretching of CH3 at 2871 - 2876 cm-

1 
,
 and the in-plane and out-of-plane antisymmetric CH3 stretches at 2954 - 2964 cm-1. The 

detailed peak positions and interpretation thereof will be discussed in more detail below 

(Figure 4A and 4B). 

The exact position of the anti-symmetric (a CH2) and symmetric (s CH2) methylene 

stretching vibrations for the long chain C18YNE appear at ~2919.8/2849.6 cm-1, whereas 

for the short chain C6YNE layers these vibrations are detected at ~2927.8/2856.6 cm-1, as 

shown in Figure 4C.52, 53 These values indicate a remarkably high degree of short-range 

order for the long alkyne-derived monolayers, while the short alkyne-based monolayers 

are typically disordered. For organic monolayers (from C12YNE to C18YNE) on Si54 and 

SiC20 surfaces similar peak shifts from short-chain and disordered to long-chain and 

ordered monolayers have been reported. In line with the contact angle data (vide supra) 

the wavenumbers obtained for the C18YNE indicate that monolayers on CrN are ordered 

like those on H-terminated Si(111) surfaces, and significantly more ordered than those on 

e.g. SiC. Batteas et al. have shown that for a nanoparticle-like film with nanoparticles of > 

40 nm the nanoparticle size no longer has any bearing on the monolayer assembly, and 

that the surface appears essentially flat to an individual molecule.49, 55 In our case, the 

large-scale roughness of the CrN (nanoparticle like film diameter ~250 nm as shown by 
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AFM, see Supporting Information S.7.3 Figure S2) thus does not affect the observed high 

order of the monolayers. 

 

 

Figure 4. Deconvoluted IRRAS spectrum: (A) C6YNE, (B) C18YNE monolayers on CrN surfaces 

spectra most visible peak are deconvoluted, and (C) overview peak position of C8YNE to C18YNE 

monolayers symmetric methylene stretch (a CH2, half-filled square), anti-symmetric methylene 

stretch (a CH2, half-filled circle), and anti-symmetric methylene stretch (a CH3, half-filled triangle). 

(D) Tilt angle with respect to the surface normal for varying molecular lengths, calculated with eq 1. 

 

 The relative peak areas of the anti-symmetric methylene stretch (a CH2) and anti-

symmetric methyl stretch (a CH3) can be used to estimate the average chain tilt angles 

(see Figure 4D) with respect to the surface normal via the following equation:50  
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where I is  the peak area, m is the number of methylene groups,  is the tilt angle, and 

90 and 35 the direction of the stretches with respect to the molecular axis. On this 

surface, the IR data that can be obtained are particularly nice, which here allows for a 

proper deconvolution of the absorption components that cannot be obtained on many other 

surfaces. In Figure 4D the resulting tilt angles are shown, and it is evident that the average 

chain tilt decreases with increasing chain length, from 36 for C8YNE to 24 for C18YNE 

layers, suggesting a crystalline densely packed monolayer structure composed of mainly 

fully extended all-trans chains.   

Yet another IR-based parameter to provide information about the structure of the 

monolayer is the precise position of the antisymmetric CH3 peak. This anti-symmetric 

CH3 stretch appears at 2964 cm-1 when it occurs in-plane (terminal C-C bond parallel to 

the surface normal) and at 2954 cm-1 when it is out-of-plane (terminal C-C bond parallel 

to the surface).  In the IRRAS spectra, the in-plane anti-symmetric stretching band has a 

low intensity for the C18YNE as compared to out-of-plane anti-symmetric stretch.56  

Firstly, the modes of the anti-symmetric stretching band are clearly seen for the methyl 

group (-CH3) direction of ┴ C-CH3 bond, in plane C-C backbone in the C-H stretching 

region for C6YNE-C18YNE are 2958 and 2963 cm-1, respectively.57, 58 Due to more 

favorable interchain van der Waals interactions, C18YNE-derived monolayers exhibit 

similar packing densities as long chain thiol-based monolayers on gold, as described by 

Nuzzo and co-workers,57-59 as clearly revealed by the low relative intensity of the in-plane 

CH3 stretching mode compared to the antisymmetric CH2 vibration, corresponding to an 

average chain tilt angle of 25° with respect to the surface normal. On the other hand, short 

C6YNE monolayers, lacking the interchain van der Waals stabilization, are more tilted 

with respect to the surface normal as confirmed by the more pronounced out-of-plane CH3 

stretching vibration. It is obvious that increasing chain length induces more favorable 

interchain Van der Waals interactions, significantly improves the ordering, and therefore 

might enhance the overall stability of the monolayer. This is in excellent agreement with 

average chain tilted angles extracted from the IR data as given in Figure 4D. Moreover, 

for C16ENE-derived monolayers (modification conditions: 160 C for 16 h) an average 

chain tilt angle of 30.4 was deduced, which is approximately 5° higher than for C16YNE 

layers, as shown in Table 3. This tilt angle is in the same order as for C12YNE-derived 

monolayers, and confirms that alkyne-derived monolayers are more densely packed, and 

display a higher degree of short-range order. Analogous information on the average chain 

tilt angle can in principle be obtained from the effective thickness by ellipsometry. Taking 

the ellipsometry thickness for C6YNE (0.75 nm) and C18YNE (2.20 nm) monolayers 

yields estimated tilt angles of 14.5° and 20.5°, respectively. However, in our experience 
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ellipsometry thickness data typically overestimate the monolayer thickness,54 making this 

a less reliable source of information.  

Table 3. IRRAS peaks of 1-hexadecene (C16ENE) derived monolayers on CrN surfaces with varying 

different reaction temperature for 16 h. Tilt angle calculated using anti-symmetric methylene and 

methyl peak area according to equation 1. 

Reaction Temp. a CH2 s CH2 a CH3 C=O 
Tilt 

angle 

100 C 2926.6 2855.4 2859.5 1739.7 35.3 

130 C 2924.5 2853.2 2860.2 1741.2 34.1 

160 C 2921.1 2850.7 2961.7 1741.6 30.4 

 

Finally, IRRAS was used to study the influence of the reaction temperature on the 

reactivity and resulting packing density of 1-alkene-derived monolayers. Comparison of 

the data depicted in Table 3 and Figure 4, clearly demonstrates that in comparison with 1-

alkene monolayers, 1-alkyne monolayers are denser and more ordered already at lower 

reaction temperatures (100 °C). This is e.g. evidenced by the position of the antisymmetric 

methylene stretching vibrations (CH2 a) and the IR derived tilt angle: C16YNE at 100 °C 

gives CH2 a = 2918 cm-1 with tilt angle ~24, while C16ENE even at 160 °C results in  

CH2 a = 2921.1 cm-1 with tilt angle ~30.4. Furthermore, a clear temperature-dependent 

peak shift was found for the methylene stretching modes from 100 to 160 °C. This trend 

indicates a gradual transition from a disordered, liquid-like assembly at 100 C towards a 

denser, closer-packed monolayer structure at 160 C. In line with this, the tilt angle 

decreases for this alkene-derived monolayer with increasing reaction temperature from 

35.3 to 30.4. This increased order at elevated modification temperatures is attributed to 

the higher activation energy required to fill the finally vacant sites in an almost complete 

monolayer. 

7.3.5 Mode of Attachment 

To investigate the monolayer structure further, detailed analyses with XPS were 

performed. The XPS wide scans after modification with CH3-(CH2)n-CCH (n = 3 – 15) 

on plasma-activated CrN surfaces are shown in Figure 5A, whereas the C1s narrow scans 

are displayed in Figure 5B. As expected for monolayer formation without contributions of 

multilayer formation, both the wide and C1s narrow scans show that the peak intensity for 

C1s (at BE of 285 eV) correlates well with the number of carbons in the chain. The C1s 

spectra are deconvoluted into three main peaks (see Figure 6C): (i) the alkyl peak at 285.0 
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eV, (ii) a peak assigned to –C-C=O around 286.7 eV, and (iii) a –C=O peak at 288.5 eV. 

For all of these CH3-(CH2)n-CCH (n = 3 – 15) derived monolayers, a peak area ratio of 

n+1 : 1 : 1 was obtained, which closely resembled the expected ratio. This was confirmed 

by DFT-simulated XPS spectra (B3LYP/6-311G(d,p) level),60 which showed that a C=O 

peak is to be expected at 289.5 eV, while –C-C=O carbon atom should yield a peak at 

287.6 eV, in close to agreement with experiment. The DFT data for the C16-YNE and 

2HHDA attachments are provided in the Supporting Information S.7.1 Figure S1.   We 

note that similar data with carbonyl-related peaks were observed for the attachment of 1-

alkynes on alumina surfaces,30 while this contrasts strongly with the formation of the 

signals obtained for Si-CH=CH-bound monolayers obtained from 1-alkynes on H-

terminated Si(111) surfaces.3, 61 

 

Figure 5. XPS data measured on monolayers derived from CH3-(CH2)n-CCH (n = 3 – 15) on plasma-

activated CrN surfaces. (A) wide scans, (B) C1s narrow scans. 

Stimulated by earlier work in our group on the oxidative binding of C16YNE on porous 

anodic alumina,30 we also used 2-hydroxyhexadecanoic acid (2HHDA) as a reference. Ter 

Maat et al. observed a remarkable resemblance between the XPS and IR spectra obtained 

from C16YNE-modified and 2HHDA-modified porous anodic alumina surfaces.30 

Analogously, as shown in Figure 6A and 6B, the IRRAS spectra of 2HHDA and  

C16YNE modified CrN show great similarity, both possessing clear absorptions at 1720 

and 1444 cm-1, assigned to C=O stretching and C-H bending vibrations, respectively. In 

addition to IRRAS, the XPS C1s narrow scans confirm the oxidative binding structures of 

alkynes and alkenes onto plasma-activated CrN surfaces. As shown in Figure 6 C and D, 

the peak positions and peak area of the C1s narrow scan of a C16YNE-derived monolayer 

are in excellent agreement with the C1s narrow scan of a 2HHDA monolayer. These 

results imply the oxidative adsorption of terminal alkynes on plasma-activated CrN 

surfaces under the formation of 2-hydroxy-carboxylic acids (see Figure 6). 
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Figure 6. (A) IRRAS spectra of a 2HHDA-derived monolayer dotted line and (B) C16YNE-monolayer 

on freshly plasma-oxidized CrN surfaces after baseline correction. Schematic representation (left side) 

of the binding of 2HHDA onto the oxidized CrN surface, resulting from the oxidative adsorption of 

terminal alkyne functionality. (C & D) XPS C1s narrow scan of (C) 1-hexadecyne (C16YNE), (D) 2-

hydroxyhexadecanoic acid (2HHDA) monolayers on plasma-activated CrN surfaces, together with the 

indicated deconvolution. 

 Analogously, the chemical bonding of alkene-derived monolayers onto CrN surface 

was also studied. IRRAS shows the formation of strong C=O stretching mode around 

1742 cm-1, which also suggests an oxidative addition reaction of 1-alkenes onto plasma-

activated CrN, in good agreement with the binding of palmitic acid (PMA) on alumina 

surfaces.62 In addition, the C1s narrow scan for C16ENE and palmitic acid (PMA) 

monolayers (figure 7 C and D) displays a high degree of similarity, supporting the IRRAS 

data. 

 

Figure 7. IRRAS spectra of the C-O region and C-H region of hexadecene-derived monolayers (A) 

and PMA monolayers (B) on plasma-activated CrN surfaces, with a schematic depiction of the mode 

of binding for alkene-derived monolayers. (C & D) XPS C1s narrow scan of (C) 1-hexadecene 
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(C16ENE) and (D) palmitic acid (PMA) derived monolayers on plasma-activated CrN surfaces, 

together with the indicated deconvolution. 

 

The proposed chemical bonding for both alkyne and alkene on freshly oxidized CrN is 

shown in Figure 6 and 7. Most probably, these structures can be explained by the 

nucleophilic attack of the π bond of the alkene/alkyne functionality on surface hydroxyl 

groups present on the CrN surface after plasma activation and subsequent oxidation of the 

alkyne/alkene. Interestingly, the carbonyl group formation likely uses the oxygen present 

on chromium oxynitride surface becasue this oxidatively adsorbed monolayer is formed 

even upon rigorous exclusion of oxygen from the reaction vessel. This finding is strongly 

supported by the analogous reaction of 1-alkynes on the η-alumina surface, which also 

displays surface-bound carbonyl groups.30 In contrast, alkynes were shown to bind to the 

silicon carbide surface via a double Markovnikov addition,20 but that bonding situation 

yields significantly different spectra. 

7.3.6 Fluorinated Monolayers 

Compared to the hydrogenated C16YNE layers, the fluorinated alkyne-derived 

monolayers (F9YNE and F17YNE) are somewhat more disordered, as shown by the 

positions of the antisymmetric (2924 cm-1 and 2926 cm-1) and symmetric (2852 cm-1 and 

2853 cm-1) methylene stretching vibrations, respectively. Such high wavenumbers for the 

CH2 stretches are due to the CF2/3 part of the chains adopting helical conformations, with a 

relatively large footprint, which allows for a concomitantly lower order of the CH2 

moieties as compared to that of the nonfluorinated chains. In addition, for fluorinated 

monolayers F9YNE, the thickness is 1.7 ± 0.3 nm, and for F17YNE it is 1.6 ± 0.3 nm (see 

Table 2). This is again in line with a somewhat reduced monolayer density, as was e.g. 

also observed for fluorinated monolayers on hydroxyl-terminated SiC.20 The fluorohydro 

alkyne-derived (F9YNE) monolayers were also analyzed by XPS, and the resulting C1s 

and F1s high-resolution spectra are depicted in Figure 8. The C1s narrow scan was 

deconvoluted into seven distinct components representing the different carbon atoms in 

the fluoro monolayer. The C1s contributions at a binding energy of 285.0 eV correspond 

to carbon atoms involved in CH2 moieties of F9YNE. The signal at 286.3 eV corresponds 

to -CF2-CH2- group, whereas the -CF2-CH2- signal is found at 290.7 eV. In between the 

two carbonyl related peaks show up at ~287.2 eV for –CH2-C=O and at 288.8 eV for -

C=O. Finally, the C1s signal at 292.1 eV corresponds to the other CF2 groups, whereas the 

highest binding energy (294.4 eV) was observed for the terminal CF3 group. In addition, 

the C1s XPS spectrum of F9YNE (see in Figure 8B) was simulated using a B3LYP/6-
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311G(d,p)-derived method, yielding a reasonable agreement with experiment (See 

Supporting Information S.7.1 Figure S1).  The F 1s region (see figure 8B) displays a 

single peak at 689.2 eV, which is consistent with what is previously reported for other 

substrates.31, 32 Similar features were also found for the F17YNE-derived monolayers. The 

XPS wide scan C/F atomic ratio calculated as an average of three different sample 

modifications was C1s(16)/F1s(9) = 1.86 ± 0.10 for F9YNE. and C1s(16)/F1s(17) = 0.78 

± 0.2 for F17YNE is, which is in excellent agreement with theoretical values of 1.77 and 

0.94, respectively. 

 

 

Figure 8. High-resolution XPS data of a F9YNE monolayer on plasma-activated CrN surface modified 

at 100 C for 16 h. (A) C1s narrow scan; (B) F1s narrow scan.  

  

7.4 CONCLUSIONS 

We have developed a novel method for obtaining high-quality, covalently bound 

monolayers on CrN surfaces via the thermal reaction of 1-alkynes with air plasma-

activated CrN surfaces. The monolayers are readily formed (8 - 12 h), and are densely 

packed with a high degree of short-range order. Analogous monolayers can be derived 

from 1-alkenes, but these are of lower quality. Initial binding studies indicate an oxidative 

adsorption mode of attachment, with the concomitant formation of surface-bound C=O 

groups. These monolayers thus provide substantial potential for further studies that would 

combine the unique properties of CrN (chemical stability and mechanical robustness) with 

the tunability of covalently attached monolayers.  
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S.7.1 Density Functional Theory (DFT)1 

 

Figure S1. (A) Simulated XPS spectra of C16YNE (A and C) and F9YNE (B and D) using the 

B3LYP/6-311G(d,p)-calculated binding energies corrected with slope and offset. Color code: blue 

(nitrogen), orange (chromium), red (oxygen), gray (carbon), white (hydrogen), and yellow (fluorine). 
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S.7.2 Kinetic study of the attachment of 1-alkynes and 

1-alkenes onto plasma-activated CrN surface: 

Table S1. Static water contact angle of organic monolayers derived from 1-hexadecene and 1-

hexadecyne on hydroxyl-terminated CrN as function of reaction temperature at 12 h. 

Contact angle : effects of temperature  (Figure 3A) 

1-hexadecene  1-hexadecyne  

Temp. ᵒC Surf-I Std(± ᵒ) Surf-II Std(± ᵒ) Temp. ᵒC Surf-I Std(± ᵒ) Surf-II Std(± ᵒ) 

6 64.5 0.8 65.2 0.6 6 75.0 0.6 74.3 0.6 

15 71.1 1.4 69.5 0.8 15 78.5 0.6 79.0 0.6 

20 71.8 0.8 71.7 1.2 20 81.7 1.0 82.4 0.6 

40 81.5 1.1 82.5 0.8 40 93.0 0.6 93.2 0.7 

60 90.7 1.0 92.6 1.2 60 97.5 1.1 99.5 1.2 

80 98.0 0.7 98.2 0.9 80 106.5 0.7 106.4 0.9 

100 105.4 0.6 105.0 1.0 100 110.2 0.6 110.0 0.6 

130 108.7 0.6 107.8 0.5 130 110.0 0.5 110.7 0.5 

160 109.4 0.9 110.5 1.3 160 110.4 0.7 110.2 0.6 

 

Table S2. Hexadecyne-derived monolayers on the CrN surface with different time at 100 C for static 

water contact angle. 

Contact angle : Time (hr) at 100 oC  (Figure 3C) 

1-hexadecyne 

Time (hr) Surf-I Std(± ᵒ) Surf-II Std(± ᵒ) 

0.0 0.0 0.0 0.0 0.0 

1.0 80.1 0.4 81.0 0.8 

2.0 92.7 0.6 92.5 1.2 

3.0 95.2 0.7 95.0 0.8 

4.0 99.0 0.6 98.0 1.2 

8.0 105.3 0.5 105.4 0.9 

12.0 109.6 0.6 109.4 1.0 

16.0 110.0 1.0 110.0 0.5 

24.0 110.2 0.6 110.0 1.3 

 

S.7.3 AFM image and roughness: 

Figure S2 shows the AFM topographical height image of CrN substrates after various 

activation processes and alkyne modification: Bare (before activation) acetone cleaning of 

CrN (Figure S2A), 10 min air plasma activation (Figure S2B), after modification with 

C16YNE (Figure S2C), and after modification with F9YNE (Figure S2D). We found that 

the surface roughness decreases to 5.9 ± 0.1 nm after air plasma activation 10 min. After 
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monolayer grafting, the roughness slightly reduced again in both C16YNE and F9YNE to 

5.8 ± 0.1 nm and 5.7 ± 0.1 nm, demonstrating that the formation of a cushioning 

monolayer. The similar effect we observed in the SiC surfaces.2 

 

Figure S2. AFM tapping mode topographic images of CrN surface. (A) bare CrN (untreated) surface, 

(B) air plasma activation for 10 min, (C) after modification with C16YNE on CrN surfaces, and (D) after 

modification with F9YNE on CrN surfaces. Section Analyses for corresponding surfaces shown in 

below. 

1. Giesbers, M.; Marcelis, A. T. M.; Zuilhof, H., Simulation of XPS C1s Spectra of 

Organic Monolayers by Quantum Chemical Methods. Langmuir 2013, 29, (15), 4782-

4788. 

2. Pujari, S. P.; Scheres, L.; Weidner, T.; Baio, J. E.; Stuart, M. A. C.; Rijn, C. J. M. 

v.; Zuilhof, H., Covalently Attached Organic Monolayers onto Silicon Carbide from 1-

Alkynes: Molecular Structure and Tribological Properties. Langmuir 2013, 29, (12), 

4019–4031. 
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  8 
Tribology and Stability of Organic Monolayers on 

CrN: A Comparison among Silane, Phosphonate, 

Alkene, and Alkyne Chemistries 

 

The fabrication of chemically and mechanically stable monolayers on the surfaces of 

various inorganic hard materials is crucial to the development of biomedical/electronic 

devices. In this chapter, monolayers based on the reactivity of silane, phosphonate, 1-

alkene, and 1-alkyne moieties were obtained on the hydroxyl-terminated chromium nitride 

surface. Their chemical stability and tribology were systematically investigated. The 

chemical stability of the modified CrN surfaces was tested in aqueous media at 60 C at 

pH 3, pH 7 and pH 11, and monitored by static water contact angle measurements, X-ray 

photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform infrared reflection 

absorption spectroscopy (FT-IRRAS). The tribological properties of the resulting organic 

monolayers with different end groups (fluorinated or nonfluorinated) were studied using 

atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a 

dramatic reduction of adhesion and friction force as well as excellent wear resistance 

compared to those of nonfluorinated coatings and bare CrN substrates. The combination 

of remarkable chemical stability and superior tribological properties makes these 

fluorinated monolayers promising candidates for the development of robust high-

performance devices.  

 

 

 

 

This Chapter is submitted for publication as: 

‘Tribology and Stability of Organic Monolayers on CrN: A Comparison among Silane, 

Phosphonate, Alkene, and Alkyne Chemistries’. Sidharam P. Pujari, Yan Li, Remco 

Regeling, and Han Zuilhof.  Langmuir  2013, in press, DOI: 10.1021/la401981b 
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8.1 INTRODUCTION 

Chromium nitride (CrN) is a material of significant industrial importance, due to a 

unique combination of interesting properties, including a low friction coefficient, a low 

wear rate, a high thermal stability and corrosion resistance, and a large bulk modulus (K0 

 361 GPa).1-4 Another important property of CrN is its high electrical conductivity, 

which enables the application as anode material for high-temperature fuel cells.5 Recently, 

CrN has also been heavily investigated for biomaterials, such as artificial joints, medical 

devices (armamentarium) and cutting tools.6 There is a great demand for lower-adhesion, 

friction, and wear hard materials with stable lubricants under high load conditions. Such 

demands occur in micro-and nano-electro-mechanical systems (MEMS and NEMS) and in 

miniature motors with nano/micronewton loads or harsh chemical environments.7-11 In this 

regard, it is noteworthy that many inorganic surfaces display relatively high adhesion and 

friction forces and a low wear resistance. This is due to a native oxide layer present on top 

of the surface, which yields H-bonding interactions and capillary forces with surface-

bound water, thereby exhibiting a negative influence on the tribological performance of 

these mechanical systems.9 Overcoming these constraints represents a critical challenge 

for the quality and performance assurance of many manufacturing processes.12  

With the ongoing further miniaturization of moving components in many technological 

devices, the need has arisen to control the tribology to an unprecedented level. One 

approach to this has been the attachment of nanometer-thick organic monolayers to the 

surfaces of various materials.9,13-15 Such organic monolayers provide the chance to modify 

and enhance the tribological properties. The incorporation of chemical functionalities at 

the top of the monolayer allows for systematic variation of the chemical and physical 

properties of the exposed SAM surface, making SAMs a powerful tool for controlled 

surface modification.16,17 To investigate the tribological properties of a thus-modified 

surface with nanometer-scale features accurately, AFM has been widely used.18-20 

Through recent investigations of the adhesion, friction, and wear behavior of densely 

packed monolayers,16, 21 it has been recognized that the adhesion energy can be 

significantly reduced within the nanometer-scale ranges.22 The adhesion/friction strength 

(force or energy) is well known to be highly dependent on numerous factors, such as the 

terminal group (e.g. -CH3 or -CF3), chain length, packing, and density of monolayers.22 

The obtained interaction strengths are also dependent on the surface properties of the 

AFM tip that is used during such measurements. For example, an AFM tip modified with 

a monolayer shows an increase in adhesion/friction forces with increases in chain length 

as a result of the more effective interdigitation that occurs between the surface monolayer 
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and the modified probe.23 However, in the case where a nonmodified Si3N4 probe was 

used, higher adhesion/friction forces were detected with decreasing chain length.  This 

was attributed to the formation of disordered monolayers with loosely packed structures 

and weaker van der Waals interactions in the case of the shorter chains. This allows 

stronger molecular contact between the inorganic probe and the monolayer as a result of  

the increased ease of surface penetration into the shorter-chain-length monolayer.22 

The schematic treatment of SAM-forming monomers highlights three domains: a 

surface-anchoring group that typically responsible for the achieved stability, a 

hydrocarbon chain (typically polymethylene) to promote monolayer packing and 

organization, and a terminal functional group that ultimately defines the exposed surface 

functionality and dominates the resulting tribology. Various anchoring groups, such as 

thiols, alcohols, alkynes, alkenes, siloxanes, and phosphonates, can readily self-assemble 

on a wide variety of active surfaces having hydrogen, metal, hydroxyl- and/or oxide 

termination, making them particularly attractive for surface modification in a variety of 

applications.21, 24-28 However, each type of monolayer has advantages and disadvantages. 

Regarding the chemical stability, for example, thiol-, carboxylate-, siloxane-, and 

phosphonate-derived monolayers on metal oxide surfaces typically show poor stability in 

aqueous environments as a result of the protonation of the carboxylate group at low pH 

and hydrolysis at pH > 9.29 Phosphonate-derived monolayers on ITO electrode studied in 

three different media.  They show that monolayers are in PBS solution are more stable 

than in pure water, and extremely stable under ambient air conditions. This improved 

stability of phosphonate monolayers in PBS solution was attributed to the stabilized pH in 

this system, as hydrolysis can be catalyzed under acidic or basic conditions.30 However, 

silane-based monolayers on Ti-6Al-4V at physiological pH are liable to hydrolyze surface 

Si-O bonds.31 On the contrary, alkene/alkyne-derived covalently attached layers exhibit 

remarkable stability in aqueous environments with pH ranging from 1 to 10.27, 28, 32, 33  

In particular, ultrathin organic fluorinated monolayers have been found to yield 

lubricating surfaces with low adhesion, low friction and low wear resistance.34 In fact, 

coating SiC and Si surfaces with covalently linked fluorinated monolayers yields the 

lowest friction coefficient for any solid surface, even about 4 times lower than for Teflon. 
16, 21 In addition, fluorinated monolayers increase the wear resistance by 5 times on SiC 

surfaces and even up to 20 times on Si surfaces.21, 35 Despite these significant successes, to 

the best of our knowledge, neither systematic study of covalently attached organic 

monolayers on CrN nor their tribology has yet been reported. In practice, 

polytetrafluoroethylene (PTFE) is now the primary coating material of CrN in many 

microelectromechanical systems.36 However, these films are not covalently bound to the 
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surface and are therefore susceptible to wear. Moreover, PTFE films are relatively thick, 

which may eventually lead to high adhesion and friction forces when high loads are 

applied and the films are compressed. 

 

 

Figure 1. Schematic representation of tentative chemical binding structures of the anchoring groups 

(alkyne or 2-hydroxyl acid, alkene or carboxylic acid, silane, and phosphonate) used in this work (n + x 

= 16 or 18). Method of monolayer formation: (a) pure 1-alkyne, 100 C, 16 hr, (b) 1 mM 2-HHDA (2-

hydroxyhexadecanoic acid) in ethanol, 65 °C, 16 h, (c) pure 1-hexadecene, 160 C, 16 hr, (d) 1 mM 

PMA (palmitic acid) in ethanol, 65 °C, 16 h, (e) 1 mM ODTS (trichloro(octadecyl)silane) in dry 

cyclohexane, 25 °C , 30 min, and (f) 1 mM HDPA (hexadecylphosphonic acid) in dry THF, 60 °C, 3 h. 

In this chapter, we investigate the chemical stability and tribological (adhesion, friction, 

and wear) of a series of covalently linked organic monolayers on CrN. These properties 

were studied as a function of different anchoring groups and varying chain length and 

with the replacement of the methyl group by the fluorinated terminal group (Figure 1). To 

test the chemical stability, we used three different media: acid (pH  3), base (pH  11) and 

neutral water, all at 65 C. The tribology was studied by colloidal probe atomic force 

microscopy (CP-AFM), to reveal the enhancements provided by the surface coatings, 

while and DLC (diamond-like carbon)-coated probes were used to study the reduction of 

the wear resistance. The obtained results provide a valuable reference for the development 

of high-performance devices or CrN and other robust inorganic materials. 
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8.2 MATERIALS AND METHODS 

8.2.1 Materials 

Wafers with nonstoichiometric chromium nitride films (thickness 1 m, surface root-

mean-square (rms) roughness determined with AFM ~5.0 nm) obtained by sputter 

deposition on Si(100) were kindly provided by ASML The Netherlands B.V. 1-

Hexadecene (≥99%, C16ENE), 1-hexyne (97%, C6YNE), 1-octyne (98%, C8YNE), 1-

decyne (98%, C10YNE), 1-dodecyne (98%, C12YNE), and 1-tetradecyne (≥97%, 

C14YNE), were purchased from Aldrich and purified by distillation before use. 1-

Hexadecyne and 1-octadecyne (C18YNE) were synthesized according to literature 

procedures.16 2-Hydroxyhexadecanoic acid (ABCR, 95%, 2HHDA), 

trichloro(octadecyl)silane (Aldrich, >90%, ODTS), hexadecylphosphonic acid (Aldrich, 

97%, HDPA), and N-ethyldiisopropylamine (Aldrich, 98%) were used as received. 

13,13,14,14,15,15,16,16,16-Nonafluorohexadec-1-yne (F9YNE) and 9,9,10,10,11,11, 

12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadec-1-yne (F17YNE) were 

synthesized using literature procedures.16 Other reagents or solvents were purchased from 

major chemical suppliers and used as received unless otherwise noted. 

8.2.2 Monolayer formation 

CrN samples (10 mm × 10 mm) were cut from a Si(100) substrate with a CrN epilayer, 

and these surfaces were first cleaned by rinsing with dichloromethane followed by 

sonication for 10 min in acetone. Subsequently, the samples were further activated using 

air plasma (PDC-002-plasma cleaner, Harrick Scientific Products, Inc. Ossining, NY) for 

10 min (0.3 SCFH air flow, 29.6 W power, at 300 mTorr pressure), to remove any organic 

contaminations and to obtain a hydroxyl-terminated surface. After being activated, the 

samples were dried under a stream of argon. These freshly etched and dried surfaces were 

then quickly transferred to a screw-capped bottle under an argon atmosphere, which was 

charged with 1 mL of alkynes, and subsequently heated to 100 °C for 16 h. After the 

thermal reaction, the samples were removed from the flask, immediately rinsed 

extensively with DCM, sonicated for 5 min in acetone to remove physisorbed reagents 

and dried under a stream of argon. Samples were stored in a glovebox (O2, H2O < 0.1 

ppm) between measurements. Samples were rinsed with fresh DCM and blown dry with 

argon immediately before any characterization. 

2-Hydroxyhexadecanoic acid (2HHDA)-derived monolayers and palmitic acid (PMA)-

derived monolayers were prepared using a similar activation process.  In this case, after 

plasma activation the samples were rinsed in ethanol, and immersed in a 1 mM solution of 
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2-hydroxyhexadecanoic acid or palmitic acid in ethanol at 65 °C for 16 h.26 

Trichloro(octadecyl)silane-derived monolayers were obtained upon immersing plasma-

oxidized CrN surfaces in 10 ml of 1 mM trichloro(octadecyl)silane (ODTS) in anhydrous 

cyclohexane [dried with molecular sieves 4 Å] in the presence of Hunig's base (N-

ethyldiisopropylamine) (1 mM). The reaction was allowed to proceed for 10 min at room 

temperature, after which time the CrN surface was removed, washed with water, ethanol, 

and dichloromethane, and dried under argon. Hexadecylphosphonic acid (HDPA)-derived 

monolayers were obtained by immersing plasma-oxidized CrN surfaces in a 1 mM 

solution of HDPA in tetrahydrofuran (THF) in a simple glass tube.37 The solution was 

heated in a water bath to 60 °C until complete evaporation of THF was achieved (∼3 h). 

After modification, the surfaces were washed with water, ethanol, and dichloromethane, 

and the samples were dried under a stream of argon. Then this HDPA-modified surface 

was cured in a vacuum oven at 140 C for 1 h. 

8.2.3 Chemical Stability 

We carried out chemical stability (desorption kinetics) experiments by placing the 

modified surfaces in glass vials having rubber stoppers. The desorption kinetics 

procedures for  organic monolayers have been described in detail elsewhere.32 The 

stability of these monolayers was measured at 65 C in three different aqueous media: 

deionized water, at pH  3 (HCl solution), and at pH  11 (NaOH solution). In all cases, the 

surfaces were rinsed with fresh deionized water and dichloromethane, dried in a flow of 

dry argon and stored under vacuum (~10 mbar) for 30 min before the measurement. These 

surfaces were characterized using contact angle measurements, XPS, IRRAS and 

ellipsometry. After these measurements, the samples were transferred back to the same 

vial filled with freshly prepared solutions for continuation of stability study. 

8.2.4 Monolayer Characterization 

The static and advancing water contact angles were measured with an automated Krüss 

DSA 100 goniometer. At least six small droplets of 3.0 l deionized water were dispensed 

and the contact angles were determined using a Tangent 2 fitting model. The error in the 

contact angles is < 1. The ellipsometric thicknesses were measured with a Sentech 

Instruments (Type SE-400) ellipsometer, operating at 632.8 nm (He-Ne-laser) and an 

angle of incidence of 70. First the optical constants of the substrate were determined with 

a piece of freshly plasma-oxidized CrN surfaces (ns = 2.73 and ks = 2.48). The thicknesses 

of the monolayers were determined with a planar three-layer (ambient, organic 

monolayer, substrate) isotropic model with assumed refractive indices of 1.00 and 1.46 for 
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ambient and the organic monolayer, respectively. The reported values for the layer 

thicknesses are the average of at least eight measurements taken at various locations on 

the substrate with an error of ± 3 Å. The elemental composition of the modified CrN 

surfaces was determined by X-ray photoelectron spectroscopy (XPS) using a JPS-9200 

Photoelectron Spectrometer (JEOL, Japan). High-resolution spectra were obtained under 

UHV conditions using monochromatic Al K X-ray radiation at 12 kV and 20 mA, using 

an analyzer pass energy of 10 eV. All high-resolution spectra were corrected with a linear 

background before fitting. All XPS spectra were evaluated using the Casa XPS software 

(version 2.3.15). Infrared Reflection Absorption Spectroscopy (IRRAS) spectra were 

obtained using an IR-ATR Bruker TENSOR 27. A Harrick Auto SeaguIITM grid polarizer 

was installed in front of the detector and was used to record spectra with p-polarized 

(parallel) radiation with respect to the plane of incidence at the sample surface with a 

MCT (Mercury, Cadmium, Telluride) detector and a grazing angle (80°) attachment. 

Typically, 2048 scans were taken at a resolution of 4 cm-1 for each spectrum. The final 

spectra were obtained using a plasma-activated CrN reference surface as background. 

Data were collected as differential reflectance versus wavenumber. All spectra were 

recorded at room temperature in dry nitrogen atmosphere. 

8.2.5 Tribological experiments 

Tribological experiments were performed using an Asylum MFP-3D atomic force 

microscope (AFM) in contact and tapping mode. All AFM measurements were carried out 

in ambient conditions (25 °C, relative humidity = 40 %). For adhesion and friction 

measurements, the experimental setup and procedure have been described previously.16 

Nanowear/machining experiments were performed using a diamond-like carbon (DLC) 

tip, with a 15 nm thick DLC coating on the tip side of the cantilever, and an 30 nm thick 

aluminum coating on the detector side of the cantilever. The cantilevers had a spring 

constant of 43 N/m (Tap300DLC Budgetsensors), and a tip radius of ca. 100 nm, as 

confirmed by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) 

were scanned in a direction perpendicular to the long axis of the cantilever beam with a 

scanning speed of 50 µN/s (0.5 Hz) during the nanowear and at a resolution of 480 × 480 

pixels. In all wear experiments, an area of 25 µm × 25 µm was scanned at larger loads 

ranging from 1 to 14 µN for one scan cycle. A force was applied from one edge of the 

scan area to the other edge. All AFM scans were performed at a 90 angle to the long axis 

of the cantilever at a velocity of 0.5 Hz. The wear images and corresponding wear depth 

measurements were obtained with a larger specimen surface area. The latter was scanned 

before and after the nanowear test; using the same DLC tip the wear marks were observed 
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by scanning a larger 50 µm × 50 µm area with the (25 µm × 25 µm) wear mark at the 

center at zero normal load. 

 

8.3 RESULTS AND DISCUSSION 

8.3.1 Monolayer formation 

The reactions of a an air plasma-activated chromium nitride surface with various 

alkynes, alkenes, 2-hydroxyhexadecanoic acid (2HHDA), palmitic acid (PMA), 

trichloro(octadecyl)silane (ODTS) and hexadecylphosphonic acid (HDPA) have been 

investigated. The tentative structures of the surface anchoring groups used are indicated in 

Figure 1. The aim of the variation of the surface anchoring group is twofold: study of the 

structure of the resulting monolayers, and investigation of the chemical and mechanical 

stability of the self-assembled monolayers on CrN. Monolayers derived from 1-alkynes, 

1-alkenes, 2-hydroxycarboxylic acids (2HHDA) and palmitic acid (PMA) were prepared 

according to standard procedures (see for details the Chapter 7).38  Briefly, C16YNE and 

C16ENE monolayers were prepared on plasma-activated CrN surfaces by heating the 

alkyne/alkene for 16 hr to 100 C and 160 C, respectively. 2HHDA and PMA 

monolayers were prepared using the same procedure: after plasma activation the samples 

were rinsed in ethanol, and immersed in a 1 mM solution of 2-hydroxyhexadecanoic acid 

or palmitic acid in ethanol at 65 °C for 16 h. Phosphonic acid (HDPA) monolayer 

formation was achieved in analogy to a procedure from Chabal and co-workers and cured 

at 140 C for 1 hr.37 ODTS-derived monolayers were prepared from a 1 mM silane 

solution in cyclohexane at room temperature for 10 min, in the presence of Hunig's base 

(N-ethyldiisopropylamine) (1 mM). After the formation of ODTS and HDPA derived 

monolayers, these were thoroughly washed with ethanol, water and DCM. The washing 

step was performed to make sure that this process was not leaving any residue that could 

affect contact angle determinations. 

8.3.2 Wettability and Ellipsometric Thickness 

Water contact angle and ellipsometric thickness measurements of the freshly prepared 

surfaces were performed to ascertain the resulting monolayer quality. A dense, methyl-

terminated monolayer on CrN typically yields static water contact angles of ~ 110 and 

advancing water contact angles of ~115, as observed for C16YNE, C16ENE, and ODTS. 

In line with this, ODTS (C18 silane) monolayers on CrN show a advancing contact angle 

of 115. This is, in fact, significantly higher than the 105 (ODTS (C18 silane)) previously 
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obtained on CrN from solution (toluene, 70 C, 3 days), 39 or the 103 (HDTS (C16 silane)) 

obtained from vapor phase deposition.40 Monolayers prepared from 2HHDA, PMA and 

HDPA exhibit slight lower contact angles (static ~107 and advancing ~112). These 

results are consistent with observations made on analogous surface OH-bound monolayers 

on oxide surfaces studied by our lab21, 26, 27 and other groups.41-43  

Additionally, ellipsometric thickness measurements were performed to investigate the 

monolayer quality. The thickness of the all monolayers under study was 1.7 - 2.5 ± 0.3 

nm, which in all cases agreed within experimental error with the theoretical estimated 

thickness (assuming an all-trans orientation of the chains) of 1.8 - 2.2 nm as shown in 

Table 1. Combined with the contact angle data, this indicates the formation of densely 

packed organic monolayers for all six anchoring groups.  

  

Table 1. Characterization of Methyl-Terminated Monolayers with Six Anchor Groups on CrN: Static 

and Advancing Water Contact Angle (θH2O) and Ellipsometry Thicknesses (data in triplicate). 

Monolayers 
Static Contact 

Angle error ± 1ᵒ 

Advancing 

Contact Angle 

error ± 1ᵒ 

Ellipsometric 

Thickness 

error ± 0.3 nm 

C16YNE 110 116 1.9 

C16ENE 109 115 1.7 

2HHDA 107 112 1.8 

PMA 107 112 1.7 

ODTS 110 115 2.5 

HDPA 107 112 2.0 

 

8.3.3 IRRAS and XPS 

The structures of monolayers formed were characterized in more detail by IRRAS and 

XPS spectroscopy. IR absorption provides direct evidence for the presence of the 

expected chemical groups on the surface, and the degree of short-range ordering,25 

whereas XPS can provide detailed information on the bonding situation, as has been 

shown elsewhere for the C16YNE, C16ENE, 2HHDA, and PMA monolayers on plasma-

activated CrN.38 Figure 2 presents the FT-IRRAS spectra for ODTS (open square, purple) 

and HDPA (open circle, red), showing the C–H vibrations in anti-symmetric a-CH2 

(2918, 2921 cm–1) and symmetric s-CH2 (2848 cm–1) stretching modes. These values 

indicate highly ordered ODTS monolayers, whereas HDPA yields monolayers with 
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intermediate short-range order. Similar data are reported for alkyl phosphonic acids, 

adsorbed onto other substrates such as TiO2, GaAs, HfO2, La2/3Sr1/3MnO3 and Al2O3.
37, 44-

46 

 

Figure 1. FT-IRRAS characterization of C–H stretching region, showing a spectra of ODTS (open 

square, purple) and HDPA (open circle, red) after the baseline correction. 

XPS was used to characterize the structure of ODTS and HDPA modified CrN surfaces. 

C1 and Si2p XPS spectra of ODTS on CrN are given in Figure 3A and 3B, respectively. 

The C1s signal contributes only one peak binding energy at 285.0 eV that can be assigned 

to the carbon of the aliphatic chain (C-C/C-H). The binding energy for Si2p is found at 

102.3 eV, while the calculated Si/C atomic ratio is 1.0 : 18.9, i.e. in good agreement with 

theoretical expectations (1 : 18). The Cr : C : N : O : Si ratio is 21.0 : 36.0 : 13.3 : 20.9 : 

1.9, which is very close to C18YNE monolayers is Cr : C : N : O  ratio is 22.3 : 36.8 : 18.4 

: 22.5, indicating formation of a monolayer. We also note here that if the reaction time 

exceeds more than 10 min, then multilayer formation is observed.  
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Figure 2. XPS narrow scan spectra of CrN surfaces. ODTS monolayer: (A) C1s spectrum, (B) Si2p 

spectrum. HDPA monolayer: (C) C1s spectrum, (D) P2p spectrum, the curves were fitted taking into 

account the spin-orbit splitting of  0.8 eV and ratio of 2p1/2:2p3/2 components as 0.5, and simulated 

XPS spectra of C1s using the B3LYP/6-311G(d,p)-calculated binding energies for ODTS (E) and 

HDPA (F). 

 

For the HDPA monolayer C1s and P2p XPS narrow scan spectra are shown in Figures 

3C and 3D. The C1s spectra are deconvoluted in to two main peaks: (i) the C-C peak at 

285.0 eV corresponds to CH2 moieties; (ii) the shoulder at 286.1 eV is attributed to the 

carbon bonded to phosphorus, CH3–(CH2)14–CH2–PO(OH)2. This shift towards higher 

energy is likely due to an inductive electron attractive effect on this carbon by the three 

oxygen atoms connected to phosphorus in the PO(OH)2 group. Furthermore, the C1s XPS 

spectrum of ODTS and HDPA (see DFT in Figure 3E and 3F respectively) was simulated 

using a B3LYP/6-311G(d,p)-derived method,47 which showed that a C–P peak in HDPA 

is to be expected at 286.2 eV, yielding an excellent agreement with experiment. In 

addition, the deconvolution of the high-resolution scan of P2p (Figure 3D) fitted two 

peaks: (i) the 2p3/2 peak at around 132.7 eV (66.5%), and (ii) the 2p1/2 peak at around 

133.5 eV (33.5%).48 The observed P/C atomic ratio is 1.0 : 15.3, i.e are within the limits 

of the obtained signal/noise ratio in good agreement with theoretical expectations (1 : 16). 



Tribology and Stability of Organic Monolayers on CrN 

 225 

8.3.4 Chemical Stability 

Since these experiments constituted the first systematic modification of the CrN surface 

by a range of organic monolayers, the chemical stability of the modified surfaces was 

investigated in various chemical environments. In general, the stability of monolayers is 

dependent on the binding state of the anchoring group, chemical environment, 

susceptibility to hydrolysis under thermal conditions49 or just in water,30,50 and on the 

stability of the substrate itself.26, 51, 52 In order to study the stability of the attached 

monolayers in aqueous environments, we immersed grafted films in deionized water, and 

in solutions of pH 3 and pH 11, all at in 65 C. Figure 4 shows the XPS C 1s/Cr 2p vs 

immersion time for each medium; in each case the data are normalized to the height at the 

start of the experiment. Data are shown for four different anchoring groups (alkene, 

alkyne, silane and phosphate) attached on CrN.  

 

Figure 4. XPS-derived desorption kinetics of monolayers with different anchoring groups using wide 

scan C 1s and Cr 2p elemental composition of C16YNE (A), C16ENE (B), HDPA (C), and ODTS (D), 

on CrN surfaces in deionized (DI) water (black squares), at pH 3 (red circles), at pH 11 (blue 

triangles). 
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All monolayers on CrN were remarkably more stable compared to the analogous 

monolayers on other oxide substrates. For example, in neutral water, upon immersion for 

40 h at 65 C only ~7% loss of the alkyne-derived C16YNE monolayers was noted 

(Figure 4A), while the alkene-derived C16ENE monolayer and the HDPA monolayer 

decayed ~9% and ~8%, respectively (Figure 4B, and C). In contrast, the ODTS (Figure 

4D) monolayer was degraded upto ~22% under same conditions. This edge acuity is 

slightly larger than observed through IRRAS technique (see supporting information 

Figure S1). It might be due to the slight organic contamination in stability study used 

water, which cannot be observed in IRRAS due to the low signal to noise ratio. In 

addition, upon prolonged immersion for 24 days, a loss of (carbon content) in total ~12% 

was observed for C16-YNE monolayers. Also in warm acid or base the C16YNE 

monolayers were found to be most stable: after an initial loss of ~12% within in the 40 h, 

prolonged immersion for 24 days leads to an overall loss of ~26%. The increased loss has 

been attributed to protonation and deprotonating of the surface ligands,32 and follow-up 

reactions. HDPA monolayers were also shown similar stability under these conditions. 

The alkene-derived C16ENE monolayers were slightly less stable, and least stability 

was observed for the silane-based materials, in line with the low stability of Cr-O-Si 

bonds.51 The monolayers prepared from 2HHDA and PMA display just a slightly lower 

stability than the respective C16YNE and C16ENE monolayers (see supporting 

information Figure S2), in line with the chemical similarity between these monolayers. 

The monolayers formed by C16YNE and C16ENE shown better stability than previously 

studied on alumina surfaces.26 Because the Cr-O-C bond is stronger compared to Al-O-C 

bond, thus providing a more stable attachment.53 Again, XPS results show that C16YNE 

and HDPA layers exhibit excellent stability in neutral, acidic, and basic condition. 

Overall, these six monolayers display a very good long-term stability in warm water, with 

the stability order C16YNE ~ 2HHDA > HDPA ~ PMA > C16-ENE > ODTS. 

8.3.5 Tribology 

Adhesion, friction, and wear on surfaces greatly influence the performance of micro-

electronic devices with moving components. To assess the adhesion, friction and wear 

characteristics of the modified CrN surfaces, atomic force microscopy (AFM) was used. 

Colloidal probe AFM (see Figure 5A) allows measuring both adhesion and friction 

properties with high accuracy. The colloidal probe acts as a model solid object with well-

defined contact area that can interact with the modified surfaces. While many tribological 

studies have been performed in solution, most devices do in fact operate in air or vacuum, 

where adhesion is expected to be much larger. Moreover, capillary condensation may 
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occur between surfaces that are leading to even stronger adhesive interactions. Under 

these conditions, an ideal surface coating should not only effectively reduce the adhesion, 

but also provide sufficient lubrication. Therefore, non-fluorinated and fluorinated alkyne, 

alkene, silane, and phosphonic-derived monolayers were subjected to a stringent 

adhesion/friction test, namely examination by AFM measurements in air with a smooth 

silica probe as a model for a hydrophilic solid particle. 

 

 

Figure 5. Scanning electron microscopy images: (A) AFM silicon nitride cantilever with a silica 

colloidal particle (R= 3 µm) glued to its tip. (B) SEM image of glass fiber one end fixed on glass 

substrate to estimate the torsional spring constant for friction measurements. 

8.3.5.1 Adhesion 

Figure 6 shows the adhesion of a silica probe particle to the monolayers when the 

surfaces are compressed at a load of 10 nN. Adhesion forces decrease with increasing 

chain length of the monolayers, i.e., from 8.85 ± 0.95 mJ/m2 for the C6YNE (0.6 ± 0.3 

nm) derived monolayer to as low as 6.78 ± 0.63 mJ/m2 for the C12YNE-derived 

monolayer (1.6 ± 0.3 nm). A further increase of the monolayer thickness, up to 2.2 nm 

(C18YNE, 6.24 ± 0.78 mJ/m2) slightly decrease the adhesion force. This is attributed to a 

higher degree of ordering and hence a more closely packed molecular layer. Several 

studies have reported on the effect of the length of the monolayer-forming chains on the 

adhesion force.23, 54 Generally, a decrease of the adhesion force is found as the chain 

length increased,55 which is in agreement with our result. Similar results are observed on 

monolayers obtained from C16ENE, 2HHDA ODTS, and HDPA, namely 6.42 ± 0.60, 

6.34 ± 0.81, 6.62 ± 1.24 and 6.85 ± 0.85 mJ/m2, respectively. For fluorinated alkyne-

derived monolayer adhesion forces as low as 3.32 ± 0.34 mJ/m2 and 2.99 ± 0.17 mJ/m2 

were obtained, for the F9YNE and F17YNE monolayers, respectively.  



Chapter 8 

 228 

 

Figure 6. Mean value of adhesion forces as measured from pull-off curves: ~200 of each monolayer at 

10 nN force.  

These adhesion forces are considerably lower than the recently published results for 

analogous high-density monolayers on flat Si(111) and SiC.16, 21 The main reason for the 

current, lower adhesion energy can be attributed by the lower roughness of Si(111) (0.1 

nm) and SiC (2.0 nm),16, 21 as a higher surface roughness reduces the surface contact area 

to the spherical particle. 

8.3.5.2 Friction 

Besides adhesion, the friction of laterally moving or rolling objects on the surfaces of 

microelectronic devices is an important aspect that can govern device performance. 

Minimal friction coefficients, or high lubrication, are often desirable, and the monolayers 

under study display excellent behavior in this category. The lateral friction force on the 

monolayers was measured using the same colloidal probe setup as for the adhesion 

measurements. The average lateral force difference signal ([μtrace – μretrace]/2, in V) was 

converted directly into friction force, following the method of Liu et al.56 The Figure 5B 

shows the SEM image of a representative glass fiber, which was used to calibrate the 

cantilever. The cantilever calibration method is explained in more detail in the supporting 

information (Figure S3).  
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Figure 7A shows the friction coefficient of alkyne-derived monolayers of varying chain 

length, as well as the combination with fluorinated and non-fluorinated, whereas Figure 

7B shows the effects of a different anchoring group attached to hydroxyl-terminated CrN 

surfaces. The friction coefficients are compared with unmodified plasma cleaned bare 

CrN surfaces as shown in Figure 7B. A significant decrease in the friction coefficient is 

observed upon lengthening the monolayer-forming chains: from C6YNE (0.0133 ± 

0.0006) to C18YNE (0.0057 ± 0.0004). A further decrease of the friction coefficient is 

observed for F9YNE and F17YNE, which display extremely low friction coefficients (for 

F9YNE = 0.0028 ± 0.0007 and for F17YNE = 0.0028 ± 0.0006).  These values are low, 

not just compared to the non-fluorinated surfaces mentioned above, but also as compared 

to analogous monolayers on Si(111)16 (for F9YNE = 0.01826 ± 0.0040 and for F17YNE = 

0.0121 ± 0.0037) and SiC21 (for F9YNE = 0.0101 ± 0.0001 and for F17YNE = 0.0079 ± 

0.0008).  

The major factors, which may cause the decrease in friction are:32 (1) packing density 

and terminal groups (alkylated versus fluorinated) of the monolayer, (2) the surface 

roughness, as this determines the contact area with the probe. As discussed above, 

monolayers are composed of molecules with different chemical structures. The carbon 

backbone is similar, but different anchoring groups are used that affect the packing 

density, and in turn, the friction coefficient. Figure 7B shows that friction coefficient of 

C16YNE is slightly lower than that of monolayers derived from other anchoring groups. 

This is because, as discussed previously, an increased packing density decreases the 

friction coefficient, as defects form more readily in less dense monolayers during sliding. 

Flater et al. attributed an increase in the friction coefficient to several factors: defects 

create a more rough surface, expose a larger fraction of methylene groups to the surface, 

and create additional channels for frictional energy dissipation during sliding.57 The 

defects in the chains most likely form outside of the area of contact, where there is more 

free volume.  

Such solid, ultralow-friction coefficient materials are interesting for application in high-

performance devices, because they act as superior stable lubricants. For unmodified, 

plasma-cleaned bare CrN surfaces, a friction coefficient of 0.0734 ± 0.0006 was found, 

which is roughly 25 times higher than our fluorinated surfaces, due to highly hydrophilic 

groups such as hydroxyls on the interface. The friction coefficient we obtained on bare 

CrN was in good agreement with literature.58  
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Figure 7. Friction coefficient of SAMs. (A) The friction coefficients for different alkyne derived 

fluorinated and non-fluorinated monolayers. (B) The friction coefficients for different monolayers, 

obtained from the slope of the friction force versus normal load. 

8.3.5.3 Wear 

As discussed above the adhesion and frictional force measurements were carried out at 

a lower pressure from 5 nN to 75 nN. At this lower force, these monolayers did not show 

any nano-wear effects. While that was a nice result by itself, the more relevant question 

for practical industrial application might be the wear resistance under significantly higher 

pressures. Therefore, the current wear study was carried out at high loads from 1.6 - 14.0 

µN (Figure 8 and 9).  

A typical 25 × 25 μm2 wear mark on monolayers with different anchoring groups – 

generated at a normal load of 7.8 μN (5 volt) for one scan cycle and imaged using AFM 

with a scan size of 50 × 50 μm2 – is shown in Figure 8A-E. The cross line profile of wear 

marks indicates the uniform removal of material at the bottom of the wear mark. The 

AFM image of the wear mark did not shows any debris at the edges, swiped during AFM 

scanning. Thus, the debris is loose or powdered (not sticky) and it may be removed during 

the AFM scanning. 

The effects of the wear resistance (at various normal loads) and different anchoring 

groups are shown in Figure 8F, which demonstrates that the C16YNE monolayer 

performs better than other monolayers. Silane (ODTS) and phosphate (HDPA) 

monolayers display a critical load – at which the monolayer is just removed by the 

scratching tip – at ca. 3 µN, which is similar to shorter chain alkyne-derived monolayers 

on CrN. Compared to the monolayers on CrN, the approximated critical normal load is 
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lower than for SiC and Si(111),16, 21 but higher than for silane and thiol monolayers on 

gold, silicon and alumina surfaces.9, 10, 17 The likely explanation is packing density, 

interface chemical adsorption bond strength of anchoring groups surfaces.9, 10, 17 Bare CrN 

surfaces shows a wear depth that is more than two order of magnitude higher (at 14 µN: 

12.2 ± 0.6 nm) as compared to modified surfaces. These results are consistent with the 

literature values for nano-multilayer carbon and CrN surfaces.1 

 

 

Figure 8. Wear images on various modified CrN surfaces studied at 5 volt (7.8 µN force); wear mark 

size: 25 × 25 µm2, and image size: 50 × 50 µm2. (A) C16YNE, (B) C16ENE, (C) ODTS, (D) HDPA CrN 

surfaces. (F) Wear depth for single cycle of at various normal loads for different anchoring groups on 

modified CrN surfaces and the plasma-activated, bare CrN surface. 

 

Wear depth as a function of normal load was shown in Figure 9, which indicates the 

wear depth increased with the rising of loads on monolayer on CrN. The wear property is 

not only influenced by the molecular chain length, but also the terminal functional group 

In the completely testing range, the longer of the molecular chain and terminal head 

group, the better the wear resistance. Among them, the F17YNE monolayer on CrN 

exhibits the best wear resistance. For all of the tested monolayers, there appears to be a 

critical normal load in the wear depth. For shorter chain (C6 - C14), the critical normal 

load is ~3 µN. These results are consistent with the monolayers reported by Bhushan et. 

al. for monolayers on silicon, gold and alumina surfaces.10, 17 However, for longer chain 

and fluorinated monolayer, the approximated critical normal load is > 7.8 µN as shown in 

Figure 9, indicating a very high wear resistance of these fluoro-alkyne-modified CrN 

surfaces.  
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Figure 9. Wear depth for single cycle of at various normal loads and for evolution of wear at alkyne-

derived fluorinated and non-fluorinated monolayers on CrN. 

 

A two-dimensional computer-controlled piezo transducer was used that can apply and 

monitor normal and lateral forces on an AFM DLC (diamond-like carbon) tip (see SEM 

image in Figure 10A), with a force resolution in the nano/micro-Newton range during 

sliding and scanning motions. This ability affords unique opportunities, outside the 

function of visualization alone, for investigation of the wear properties of these 

nanometer-thick monolayers. Figure 10B shows the tip wear of a DLC tip with a spring 

constant of about 43 ± 3 N/m, after a single 25 × 25 µm2 contact mode scan with an 

applied load of 14 µN. After these high load (wear mark generation) and low load (wear 

mark imaging) AFM scans, giving a scanning distance of 512 mm, the tip apex of the 

DLC probe was slightly worn as shown in Figure 10B. The effect of just this one ‘wear 

mark generation – wear mark imaging’ cycle shows the mechanical robustness of CrN 
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surfaces, as DLC is very hard itself. This induced us to use a new DLC tip for every 

measurement to ensure the same pressure on the surfaces. 

 

Figure 10. Comparative SEM images of DLC tip (A) before use and (B) after applying force 14 µN (9 

volt) and acquiring AFM image on modified CrN surfaces. 

 

8.4 CONCLUSIONS 

Fluorine-containing alkyne-derived monolayers on CrN yield a superior chemical 

stability and wear resistance. This conclusion was reached via a systematic study of the 

chemical and mechanical properties of modified CrN by varying the anchoring group, 

chain length and most importantly fluorinated and non-fluorinated carbon chain. The 

chemical stability of monolayers in warm aqueous solution at various pH was found to be: 

alkyne ~ 2-hydroxy carboxylic acids > phosphonic acids > alkenes ~ carboxylic acids > 

silanes. Molecules with at least 12 carbon atoms in the chain were found to exhibit less 

adhesion, friction and higher wear resistance when compared to molecules with shorter 

chain lengths, as the latter display a lower packing density and reduced hydrophobicity. 

Finally, fluorinated monolayers on CrN demonstrate excellent tribological properties, thus 

making them ideal candidates for application in high-performance devices. 
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S.8.1 Chemical stability studied by IRRAS 

 

Figure S1. IRRAS-derived desorption kinetics at 65 C of different anchoring types monolayers 

(C16YNE, C16ENE, HDPA and ODTS) on CrN surfaces in deionized (DI) water (black filled squares), 

at pH = 3 (red filled circles), at pH = 11 (blue filled triangles). 

S.8.2 Chemical stability of 2HHDA and PMA 
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Figure S2. IRRAS-derived desorption kinetics of different anchoring types monolayers 2HHDA (left), 

and PMA (right) onto CrN surfaces studied under glass vials containing deionized (DI) water (black 

filled squares), an acidic solution at pH = 3 (red circles), a basic solution at pH = 11(blue triangles) at 

65 C oven. 

S.8.3 Lateral Spring Constant (Cantilevers calibration) 

Cantilevers were calibrated using the reversible bending of an 16.2-μm-thick glass fibre, as 

shown in Figure 6B. The bending force F for such a cantilever can be calculated via 

following equation. (Rev Sci Instrum. 2007 June; 78(6): 063707.) 

F =
3E�πr

�

4L�
	∆y 

where Eg is the Young’s modulus (6.80 × 1010 Pa); r is the radius (8.85 × 10-6 m); and L is the 

length of the glass fibre (1.60 × 10-3 m) and y is the slope of bending fibres trace and retrace 

see Figure S3. The calculated lateral conversion factor of approximately 17.7 nN/V. The 

overall error in the conversion factor determined in this way was estimated to be 6 %.  

 

Figure S3. A plot of the lateral force (Volatge) vs the glass fiber defelction. The left corresponds to the 

trace (forward) and the right to the retrace (backward) motion of the cantiliver. The black line is the 

average of the curves. The slope of this curve corresponds to 1/Kc. 
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  9 
Superoleophobic and Highly Stable Perfluorinated 

Monolayers on Polymer Surfaces 

Superoleophobic polymer surfaces of polymethyl methacrylate (PMMA), polyether 

ether ketone (PEEK), and polydimethyl siloxane (PDMS) are fabricated in a two-step 

process: 1) plasma nanotexturing (i.e. ion-enhanced plasma etching with simultaneous 

roughening), with varying chemistry depending on the polymer, and subsequently 2) 

grafting of self-assembled perfluorododecyltrichlorosilane monolayers (SAMs). 

Depending on the absence or not of an etch mask (i.e. a polymer surface without or with 

colloidal microparticle self-assembly on it) random or ordered hierarchical micro and 

nanotexturing can be obtained. We demonstrate that highly stable organic monolayers can 

be grafted onto all these etched polymer surfaces. After the monolayer deposition, the 

initially hydrophilic polymeric surfaces become superoleophobic, with static contact 

angles for water >165°, soya oil >150° and hexadecane ~140° for all surfaces. This 

approach thus provides a simple and generic method to obtain superoleophobicity on 

polymers. Hydrolytic stability tests prove that this superoleophobicity is robust against 

degradation in water for more than 40 days. 
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9.1 INTRODUCTION 

A major goal of surface and coating research is to design and fabricate self-cleaning 

surfaces, which repel not only water,1 but also other low surface-energy liquids.2 

Nanostructuring as well as chemical modification of polymeric surfaces using low surface 

energy organic  layers has been extensively studied and used to improve macroscopic as 

well as microscopic surface properties, such as coating adhesion, mechanical strength, 

suitability for  microfluidics,3, 4 and amphiphobicity.5-7 Such “smart” modified polymers 

display a significant potential for a range of biomedical applications, in the semiconductor 

and automobile industry, in micro-contact printing,8 as lubricant,9 in protection against 

environmental fouling,10 in self-cleaning,10, 11, antifogging,12 anti-icing,13 and other useful 

properties.14 Incorporation of such surfaces into miniaturized components allows further 

development of “smart” multifunctional devices and systems (MEMS/NEMS).3  

With flat surfaces, the use of an ultra-low surface-energy coating is by itself not 

sufficient to achieve super-hydrophobic/oleophobic properties: with flat ultra-low 

adhesion, perfluorinated flat surfaces water contact angles (CA) up to ~120° can be 

obtained,15 and the oleophobicity is typically worse. In order to obtain 

superhydrophobicity as well as superoleophobicity (contact angle with water and oil both 

> 150°, and small hysteresis), two factors are required: a) chemical surface modification 

using low-surface energy molecules,15, 16 and b) a well-designed topography with re-

entrant curvature structures with predesigned spacing and height.17 Tuteja et al. designed a 

re-entrant curvature geometry using fluorinated polyhedral oligomeric silsesquioxane 

(POSS) coating material. They obtained a CA for hexadecane close to 150 by 

overhanging structures. However, fabrication by this method is labor intensive and 

expensive. Recently, many new methods to fabricate amphiphobic/superamphiphobic 

surfaces are found in the literature that follow either stochastic18, 19 or biomimetic bottom-

up approaches,20 or microfabrication top-down approaches.6 Typically these modifications 

are done on silicon and little work can be found on superamphiphobic polymer substrates. 

A recent review paper that includes all the progress made on polymers21 stresses the need 

for a simple generic fabrication method that can be applied in almost any polymer 

substrate (PDMS, PMMA, PEEK and PS) with  consistent results. 

A facile method to obtain superamphiphobic polymers is to randomly plasma 

nanotexture surfaces  and deposit a  fluorocarbon plasma coating as shown by Gnanappa 

et al.5 Another method to fabricate ordered, hierarchical topography is the use of colloidal 

lithography followed by plasma etching of the polymer and fluorocarbon plasma 

deposition, as shown by Ellinas et al.22 We obtained a superamphiphobic PMMA surface, 
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exhibiting 168° and 153° static CAs for water and diiodomethane, respectively, and small 

hysteresis. However, the static contact angle measured with hexadecane was ‘only’ 101°, 

due to the non-minimized surface energy of the C4F8 plasma coating. This example 

showed that plasma treatment may be a generic technique towards superoleophobicity of 

polymeric surfaces, but that further improvements were required in order to obtain also 

high CAs towards alkanes. 

In contrast to disordered fluorocarbon coatings with typical surface energy values of 

18.5 mN/m (the surface energy for polytetrafluoroethylene (Teflon)),23 much lower 

surface energies have been reported for ordered perfluoroalkyl monolayers, in fact as low 

as 5.6 mN/m for perfluorinated alkyne-derived monolayers on Si(111) surfaces.15 To 

make use of this feature, perfluoroalkyl monolayers have been used for superoleophobic 

Si-containing inorganic surfaces.24-26 Typically such surfaces require pre-activation to 

allow efficient attachment reactions, e.g. by HF or strong acids, which severely limits 

their use for polymers. 

 An alternative to surface-activating reactions in solution is plasma activation with 

subsequently covalent surface reaction with liquid-repellent perfluoroalkyl trichlorosilane-

based materials.  However, it is difficult to obtain perfluoroalkyl monolayers attached to 

the surface, since condensation of silanol is described to lead to the formation of cross-

linked siloxane networks, covalently bound to the substrate through occasional 

condensation with surface silanol groups. First efforts to obtain such monolayers on 

polymers have been described in the literature.27, 28  

 

Figure 1. Two-step approach to obtain superoleophobic surfaces via plasma-induced texturing and 

follow-up reaction with FDTS (Cl3SiCH2CH2-C10F21) 

 

In the current paper, we combine the plasma-induced nanotexturing of polymeric 

surfaces with a covalently attached perfluorinated monolayer. The resulting stochastic or 

ordered surfaces were characterized in detail by IR spectroscopy and XPS analyses. Static 
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CAs and the concomitant hysteris are measured with a variety of liquids, ranging from 

water to hexadecane and soya oil, not just for freshly prepared samples, but also after 

prolonged (> 1 month) exposure to aqueous media. The resulting data show that non-

degrading superoleophobicity can be produced on polymeric surfaces using a simple and 

generic technology suitable for most polymers.  

9.2 EXPERIMENTAL 

9.2.1 Materials 

Optically transparent 2 mm thick PMMA plates were purchased from IRPEN (Spain), 

and opaque grey 1.5 mm thick PEEK plates from RTP Company (USA), and both were 

cleaned using isopropyl alcohol (IPA) and deionized (DI) water prior to plasma 

processing. PDMS prepolymer was mixed with its curing agent and a thickness of ~15-20 

µm was coated on silicon wafer. 1H,1H,2H,2H-Perfluorododecyltrichlorosilane (FDTS, 

97%, Aldrich) was used as received. Cyclohexane CHROMASOLV® Plus, for HPLC, 

≥99.9% was purchased from Aldrich. Polysterene spheres 1 and 3 μm diameter were 

purchased from microParticles GmbH and were used as described elsewhere.22 

9.2.2 Plasma-induced nanotexturing of polymers 

Plasma processes were performed in the Micromachining Etching Tool (MET) from 

Alcatel at NCSR Demokritos, equipped with a helicon source (at 13.56 mHz) providing 

RF power up to 2,000 W. Typical values for the O2 plasma used in the texturing of 

organic polymers were 1,900 W, 0.75 Pa, 100 sccm, –100 V bias voltage, 15 °C. Surfaces 

after the O2 plasma treatment became amphiphilic. The same reactor was also used for the 

inorganic polymers etching using SF6 chemistry at conditions: 1900 W, 1.33 Pa, 172 

sccm, 15 °C, -100 V bias voltage. Under these anisotropic conditions polymers become 

nanotextured in a highly reproducible manner. Nanotexturing is mainly formed due to the 

anisotropic etching conditions and the simultaneous co-deposition of minute amounts of 

alumina fragments sputtered from the alumina Helicon reactor dome. Alumina is 

unetchable in oxygen or SF6 plasmas, and when present in trace amounts, it initiates the 

formation of the “nanograss”-like structures locally, which grow gradually higher since 

alumina preferentially sticks to the protruding parts of the topography, causing a 

roughness instability, as discussed in detail elsewhere.29 Similar nanotexturing results 

have been observed by other authors.30, 31 We note that the nanotexture obtained after 1 

min plasma texturing is dual scale comprising approximately 600 nm high columnar 

structures with 200 nm spacing , as well as shorter structures on the foot of the taller 
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columns with approximately 50 nm spacing.. For long plasma treatments, the resulting 

filamenetal nanostructures are not mechanically stable. To stabilize the PEEK and PMMA 

surfaces before hydrophobization, the surfaces were immersed into water and upon drying 

the nanofilaments coalesce in shorter more compact hierarchical microhills, due to 

capillary forces. Wetted-dried surfaces are mechanically stable and described elsewhere.5 

PDMS surfaces are stabilized during the silanization step, and there is no need for water 

immersion (see Supporting Information S.9.4 figure S6 and section 3.2.3). To produce 

ordered hierarchical surfaces, polystyrene microspheres are spin-coated on polymer 

surfaces resulting in hexagonally packed microsphere arrays. The same plasma processes 

as before are performed, followed by a short isotropic oxygen plasma etching step to 

produce undercut profiles, as described in detail by Ellinas et al.22 These surfaces do not 

need additional water-immersion stabilization. 

9.2.3 Substrate reactivation 

Since the plasma nanotexturing took place in Athens, and the follow-up SAM 

preparation was always performed in Wageningen several weeks later, a brief air plasma 

reactivation of the surface was necessary in order to regenerate OH or COOH groups lost 

due to ageing.32 To this aim, a polymeric substrate was placed in the plasma reaction 

chamber (PDC-002 (plasma cleaner) PDC-FMG-2 (plasmaFlo), Harrick Scientific 

Products, Inc. Ossining, NY). The reaction chamber was pumped down to less than (1.2 ± 

0.2)  10-2 mbar prior to the introduction of air plasma. Pieces of polymeric substrates 

were placed in the plasma cleaner and oxidized for 2 min with 0.3 SCFH air flow, 29.6 W 

power, at 300 mtorr pressure.  

9.2.4 SAM Preparation 

Polymeric substrates were degreased by immersion for 2 min in an ultrasonic bath 

containing ethanol and then allowed to dry in a stream of argon, and reactivated in the 

plasma as described in section 2.3. Immediately after removal from the plasma cleaner, 

these activated substrates were immersed for 60 min in a solution of 1 mM FDTS in 

cyclohexane, thoroughly rinsed with cyclohexane and dried in a stream of dry argon. 

Evidence for the successful surface modification was obtained from a detailed surface 

characterization (vide infra). 

9.2.5 Contact Angle Measurements 

Contact angle analysis was performed with a Krüss DSA 100 Contact Analyzer System. 

Static contact angle were measured using typically 5 μL droplets. Advancing, and 
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receding angles were measured as the droplet volume was continuously increased and 

decreased, to estimate contact angle hysteresis. The contact angle was determined with the 

software suite and via graphical fitting of the contact tangents method-2 (polynomial 

method) in the captured image. Both approaches gave the same nominal value, typically 

within 1°, and always within ±2°. For each sample, a minimum of four different readings 

in different spots on the surface were recorded. 

9.2.6 Surface Characterization 

An X-ray photoelectron spectrometer (XPS; JEOL JPS-9200 photoelectron 

spectrometer) was used for elemental composition of surfaces. The mono-chromatized Al-

Kα X-ray source was operated at 12 kV and 20 mA. Photoelectrons were collected at a 

take-off angle of 80° relative to the sample surface. Wide-scan survey spectra were 

acquired using analyzer pass energy of 100 eV and a step size of 1 eV. To avoid any 

surface charging of the polymer surface, a charge neutralizer was employed at a setting of 

5.1 A and 2.8 V. Atomic and mass percentages were calculated from the areas of 

representative elemental peaks using the library of relative sensitivity factors provided by 

the manufacturer. After a linear-type background subtraction, the raw spectra were fitted 

using nonlinear least squares fitting program adopting Gaussian−Lorentzian peak shapes 

for all the peaks. The atomic compositions were evaluated using sensitivity factors as 

provided by CasaXPS Version 2.3.15 software. Attenuated Total Reflectance Infrared 

(ATR-IR) Spectra were collected with an α ALPHA-P Bruker equipped with an 

exchangeable QuickSnap™ sampling and platinum ATR single reflection diamond ATR 

module. All spectra were built up from 150 scans (resolution: 1 cm−1), and referenced to a 

clean plasma-activated polymer surface. 

9.2.7 Hydrolytic Stability tests of the monolayers 

We carried out the water stability experiments by placing the modified polymer 

surfaces inside a tailor-made glass beaker, which  has two connections, one for  fresh 

deionized (DI) water 2000 mL/day (25 C), and another for draining (see circulating water 

bath Figure S7 in Supporting Information S.9.5).  Samples remained in the bath for a pre-

determined period, and then were taken out for contact angle measurement. In all cases, 

the surfaces were rinsed with fresh deionized water and ethanol, dried in a flow of dry 

argon and subjected to high vacuum (~10 mbar) for 30 min before the contact angle was 

measured.  Samples were then returned to the same circulating water bath for monitoring 

of the stability for a longer period. 
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9.3 RESULTS AND DISCUSSION 

9.3.1 Perfluorododecyltrichlorosilane monolayer on smooth polymer 

surfaces. 

Smooth fluorinated polymer surfaces were for PMMA, PEEK and PDMS surfaces 

obtained by air plasma activation of the polymers, directly followed by reacting the –OH 

or COOH functionalized surfaces for 1 h with a solution of FDTS (1 mM, dry 

cyclohexane).  This typically yielded formation of a smooth fluorinated monolayer upon a 

single immersion, as indicated below. 

9.3.1.1 Characterization of the modified smooth surfaces: XPS and IR. 

To characterize in detail the variation in the surface chemistry of the substrates – 

untreated, air plasma-activated, and FDTS-grafted smooth PDMS, PMMA, and PEEK 

substrates – they were analyzed by X-ray photoelectron spectroscopy (XPS). The XPS-

based elemental analysis showed a decrease in the carbon composition at the surface after 

plasma activation and a clear increase of the oxygen content.  This confirms the surface 

oxidation of the substrates. At this stage no visible F signal is present on any of the 

polymers. Upon subsequent grafting of FDTS, fluorine appears in the XPS data in line 

with monolayer attachment (see Table 1, and Supporting Information S.9.2, Figure S2-

S4). The percentage of Si on PDMS substrates before and after plasma treatment remains 

approximately the same, while upon grafting of FDTS it is slightly decreased, in line with 

the formation of a signal-attenuating overlayer, i.e. the fluorinated monolayer (see 

Supporting Information S.9.2 figure S2-S4). These data are analogous to data in the 

literature.32 

 

Peak-fitted narrow-scan C1s spectra of FDTS-modified PEEK, PDMS, and PMMA are 

shown in Figure 2 a, c & e. A large shift (typically on the order of several eV) towards 

higher binding energies was typically observed in these XPS measurements due to surface 

charging of the polymer surfaces during the analysis. Therefore, all measurements 

required the use of a charge neutralizer, and the spectra were calibrated afterwards by 

setting the major C–C/C–H peak at 285.0 eV (PDMS & PMMA) and 284.7 eV (PEEK).33  

The composition of all three modified surfaces was also confirmed in more detail by 

narrow scan C1s XPS measurements.  The deconvolution of the C1s signal for the FDTS-

functionalized PEEK revealed the contributions of seven main carbon signals. The main 

C1s signal is centered at 284.7 eV and was assigned to the contribution of aromatic C-C 

bonds together with C=C and Si-C carbon atoms. The chemical shifts relative to this peak 
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were quoted in parenthesis. The contributions of C1s electrons from C-O groups and CH2-

CF2 at 286.2 eV (ΔE = 1.5 eV) were too close together to be resolved and therefore were 

summed together. The peak at 287.2 eV (ΔE = 2.5 eV) was attributed to carbonyl carbon, 

while the small component at 289.2 eV is a characteristic shake-up satellite due to the π-

π* transitions in aromatic groups. The signals and their corresponding percentage with 

high binding energies were assigned to the CF2-CH2 at 290.7 eV (ΔE = 6.0 eV ), CF2 at 

291.8 eV (ΔE = 7.1 eV ), and terminal -CF3 groups at 294.0 eV (ΔE = 9.3 eV) (Figure 2a). 

The relative concentrations (%) of the peaks for FDTS-grafted PEEK are (C–H/C=C, Si-

C) 48.2 %, CH2-CF2 3.6 % and C-O 16.5 %, the π-π* shake-up satellite 1.9 %, CF2-CH2 

2.9 %, CF2-CF2/3 23.7 % and the CF3 3.1 %. 

 

Table 1. XPS-Based elemental composition of untreated, plasma-activated, and FDTS-grafted smooth 

PMMA, PDMS, and PEEK substrates (theoretical composition of untreated substates is shown in 

parentheses). 

Substrate PMMA PDMS PEEK 

Untreated:               %C                      74.3 (71.5) 46.5 (50) 87.6 (86.4) 

%O 25.7 (28.5) 24.6 (25) 12.4 (13.6) 

%Si -- 28.9 (25) -- 

Plasma-activated:    %C           65.9 18.5 79.7 

%O 34.1 52.1 20.3 

%Si -- 29.4 -- 

FDTS grafted:         %C                  54.3 24.9 55.2 

%O 11.1 25.5 9.3 

%Si 3.0 18.0 1.8 

%F 31.6 31.1 33.8 
a 

See for survey scan XPS spectra the Supporting Information S.9.2, (Figure S2-S4). 

 

For FDTS-modified PDMS, the C1s XPS spectrum was deconvoluted into five 

components (Figure 2c), with the chemical shift relative to the (C–H/C–C, Si-C) 

contribution and their percentage quoted in parentheses. Hydrocarbon C atoms (C–H/C–

C, Si-C) were found at 285.0 eV (ΔE = 0 eV, 37.3 %), CH2-CF2 at 286.6 eV (ΔE = 1.6 eV, 

5.3 %), CF2-CH2 at 291.2 eV (ΔE = 6.2 eV, 5.7 %), CF2-CF2/3 at 292.0 eV (ΔE = 7.0 eV, 

45.9 %), and the terminal CF3 moieties at 294.1 eV (ΔE = 9.1 eV, 5.7 %), as shown 

in Figure 2b. 
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The C1s deconvoluted spectrum of the FDTS-grafted PMMA substrate in Figure 2e 

represent the contributions of the C1s electrons from hydrocarbon (C-C/C-H and Si-C) at 

a binding energy of 285.0 eV (ΔE = 0 eV, 47.4%), with α-shifted carbon (C-C=O) and the 

CH2-CF2 contributions summed together and found at 286.4 eV (ΔE = 1.4 eV, 14.6%). 

The methoxy group contribution is found at 287.5 eV (ΔE = 2.5 eV, 5.7%), while the 

carbonyl carbon in the ester group has a binding energy of 290.0 eV (ΔE = 5.0 eV, 6.2%). 

The components at 291.0 eV (ΔE = 6.0 eV, 2.8%), 292.0 eV (ΔE = 7.0 eV, 20.7%) and 

294.2 eV (ΔE = 9.2 eV, 2.6%) were assigned to the CF2-CH2, CF2-CF2/3 and CF3 groups, 

respectively. 

 

Figure 2. Peak-fitted C1s and Si2p XPS spectra of FDTS-modified PEEK (a & b), PDMS (c & d), and 

PMMA (e & f). 
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To estimate the relative coverage of these monolayers, one can compare the 

contribution of the clearly distinguishable contribution of the CF3 group (one of the 12 C 

atoms of FDTS).  If one of those CF3 groups would be bound per polymer repeat unit on 

the surface (5 C for PMMA, 2 C for PDMS and 19 C for PEEK), then the CF3 peak would 

constitute 5.8% on PMMA, 7.1% on PDMS, and 3.2% on PEEK.  In fact, the CF3 

contributions amount to 2.6% on PMMA, 5.7% on PDMS and 3.1% on PEEK.  This 

implies a somewhat denser monolayer formation on PDMS and PEEK than on PMMA.  

To confirm the presence of Si-O, Si-C and O-Si-O bonds, the Si2p XPS peak was 

deconvoluted (Figure 2b, d & f) into two components at 102.7 eV (Si-C) and 104.6 eV 

(Si-O), respectively, in accordance with the incorporation of a silane on the PEEK and 

PMMA interfaces (Figure 2b and 2f, respectively). The experimental ratios of these two 

components (Si-O & Si-C) are 3.1 : 1, in close agreement with the theoretical ratio of 3 : 

1. The deconvoluted Si2p XPS peak of FDTS-grafted PDMS revealed three contributions 

(Figure 2d). They were assigned to O-Si-O Si atoms at 105.0 eV, Si-O at 103 eV, and Si-

C at 102.7 eV. The XPS narrow scans of the O1s and F1s regions further supported the 

successfully grafted polymer substrates (see Supporting Information S.9.2, Figure S2-S4). 

The successful formation of a FDTS overlay was also confirmed by IR spectroscopy 

(see Supporting Information S.9.6, Figure S8). This revealed not only the appearance of 

characteristic C-H stretching vibrations (especially clear on PMMA), but also 

characteristic C-F absorptions in the 1130 – 1250 cm-1 region.34 

9.3.1.2 Wettability of smooth untreated, plasma-activated, and FDTS-

grafted polymer surfaces. 

Contact angle (CA) measurements are sensitive indicators of the surface properties of a 

monolayer.35-39 The obtained monolayers on smooth surfaces were analyzed with static 

CA measurements and a variety of test liquids, namely water, soya oil and hexadecane. 

Low-surface-tension liquids such as hexadecane (γlv = 27.5 mN/m) and soya oil (γlv = 34.1 

mN/m) were chosen as probe liquids to observe the oleophobicity on the surface. Data for 

all relevant samples are summarized in Table 2. Before modification these surfaces were 

thoroughly rinsed in pentane and dried by an argon stream. The native PDMS had a water 

CA of 114°, while water contact angles of 82° and 60° were found for native PEEK and 

PMMA, respectively. Upon plasma-activation, these values drop, to <40°, which confirms 

formation of hydroxyl and carboxyl groups. After silanization, the water contact angles 

were increased, to 125° for PMMA, 123° for PDMS and 119° for PEEK. Such values are 

in line with the attachment of a fluorinated monolayer,15, 26, 37, 40, 41 and imply the presence 
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of weak dipole-dipole interactions between the CF3 terminus and water molecules. In 

comparison, a PTFE surface displays a lower static water CA (typically ~115°),42 because 

the CF2 groups are less capable of reducing the surface energy than CF3 groups.43 The 

lower polarizability of fluorine compared to hydrogen leads to weak Van der Waals 

interactions among the CF3 terminus and polar water molecules.15, 44, 45 The differences 

between the different polymer surfaces are attributed to the effects of differences in the 

AFM-observed surface roughnesses (PMMA: 1.7 nm, PDMS: 6.7, and PEEK: 5.5 nm) 

and the degree to which the polymer is swelled by cyclohexane, i.e. the solvent in which 

the FDTS attachment takes place, which affects the degree of fluorination. 

 

Table 2. Static contact angle and hysteresis data on smooth PMMA, PDMS and PEEK before and 

after silanization. (Hysteresis is shown in parentheses.) (Error ±2°) 

  PMMA PDMS PEEK 

Bare surface (water) 60° 114° 82° 

Soon after air plasma activation (water) 40° 25° 25° 

 

After silanization 

Water 125° (15°) 123 (17°) 119° (18°) 

Soya oil 90° 87° 92° 

Hexadecane 75° 76° 76° 

 

After coating with FDTS, the polymer surfaces became repellent to soya oil and water, 

and contact angles for all surfaces. 

9.3.2 Wettability of Nanotextured Polymer Surfaces. 

 In this section, we discuss the superhydrophobic and superoleophobic properties of the 

polymeric surfaces that were nanostructured in a hierarchical manner – either randomly or 

in an ordered fashion – using plasma-induced texturing (see section 2.2.),22, 32, 46 and 

subsequently coated with a perfluorosilane-based monolayer.  

9.3.2.1 Random nanotextured PMMA, and PEEK surfaces. 

Oxygen plasma etching was used to micro-nano texture PMMA and PEEK surfaces, 

yielding a high-aspect ratio, random topography.32  However, this topography is not stable 

upon immersion in water and drying, and eventually yields coalesced micro hills.5, 47  

Figure 3 shows PEEK and PMMA surfaces after texturing with O2 plasma for 20 min, 

immersion in water, drying, subsequent plasma-induced reactivation and grafting by 

FDTS. The PMMA surface is affected during silane modification (swells slightly in 

cyclohexane), yielding small changes in the morphology, and penetration of monolayer-
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forming silanes into the swelled polymer. In contrast, PEEK is not attacked by 

cyclohexane. 

 

Figure 3. SEM images of micro-nano textured, water-immersed and dried PEEK (left) and PMMA 

(right) surfaces after perfluorosilane modification in cyclohexane (70 degrees tilted). 

The dynamic contact angle measurements on micro-nano textured PMMA and PEEK 

after 20 min O2 plasma treatment and subsequent FDTS grafting are provided in Table 3. 

Superoleophobicity is observed for all liquids tested, including hexadecane. This 

represents a significant improvement compared to plasma-deposited fluorocarbon coatings 

(using C4F8 plasma5). These findings of the current study are consistent and the PMMA 

data even improve slightly upon the superoleophobic surfaces reported by Zimmermann et 

al.,24 who obtained a contact angle for hexadecane of 140 ± 5 on silicon nanofilaments 

with FOTS coatings.  

Table 3. Static, advancing, receding contact angles and hysteresis (all: in degrees) for water, soya oil 

and hexadecane on silane-modified, hierarchical randomly rough surfaces of PMMA and PEEK.* 

Liquid 
Contact 

Angle 

PMMA 20 min 

O2 plasma 

PEEK 20 min 

O2 plasma 

Water 
Static 167 168 

Adv/Rec (Hyster) 168/166 (2) 168/166 (2) 

Soya Oil 
Static 157 159 

Adv/Rec (Hyster) 157/153 (4) 159/145 (14) 

Hexadeca

ne 

Static 142 138 

Adv/Rec (Hyster) 145/135 (10) 142/130 (12) 
* 5 µL liquid , error in Static ±2 advancing and receding ±5 
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9.3.2.2 Ordered hierarchical micro and nanotextured PMMA surface.  

Figure 4 shows SEM images of uniform, mushroom-like micropillars produced on 

PMMA by the combination of colloidal lithography using PS particles and plasma etching 

as described before.22 These mushroom-like micropillars do not display any coalescence 

after immersion in water or silane solution for 1 h. High-resolution SEM images of 

surfaces show the same morphology before and after silanization (see Supporting 

Information S.9.4, Figure S5-S6). 

 

 

Figure 4. SEM images of PMMA surfaces (60 degrees tilted) displaying the hierarchical, hexagonically 

ordered packed pillars obtained upon plasma etching using (A) 1 µm and (B) 3 µm polystyrene 

particles. 

The contact angle results are shown in Table 4 for FDTS-modified, ordered (using both 

1 and 3 µm PS particles) PMMA surfaces. In addition, this table presents the comparison 

with contact angles from our previous reported work13 (red font in parentheses) using the 

same re-entrant topography with the C4F8 plasma-deposited layer (film thickness 30 nm). 

In all cases the current CAs with water, soya oil or hexadecane are higher to significantly 

higher than previous results. This highlights the efficient functionalization with FDTS, 

which results in a high local CF3 density concentration that yields a superhydrophobic 

material with a low surface energy. These CA results are better or equal to those obtained 

on POSS-coated surfaces, as reported by Tuteja et al.17  

The contact angle hysteresis are for water <4, soya oil ~7 and hexadecane ~10. Such 

values indicate a Cassie or impregnating Cassie state. 5-μl water and soya oil drops roll-

off easily from these surfaces, by tilting approximately for only ~1 for water, while <8 

for soya. This rolling-off movements were captured in videos (see only pictures 

Supporting Information S.9.1, Figure S1). 
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Table 3. Contact angle measurements for water, soya oil and hexadecane on silane-modified 

hierarchical ordered PMMA surfaces with PS microparticles. Hystereris is shown in parenthesis for 

Adv/Rec measurements. 

Solvent 
Contact 

angle 

1 µm PS on PMMA 

1.30 min (anisotropic) 

+0.30 min (isotropic) 

3 µm PS on PMMA 

4.30 min (anisotropic) 

+1.30 min (isotropic) 

Water 

(l = 72.1 mN m-1) 

Static 166                [165] 167                          [168] 

Adv/Rec 168/166 (2)  [≤ 2] 168/164 (4)          [≤ 5] 

Soya Oil 

(l = 34.1 mN m-1) 

Static 153                 [125] 154                          [134] 

Adv/Rec   159/152 (7)  157/150(7)           [>15] 

Hexadecane 

(l = 27.5 mN m-1) 

Static 140                   [96] 142                         [101] 

Adv/Rec 142/133(9)  [>30] 143/133(10)         [>30] 

 

Note: The corresponding contact angles and hysteresis when a plasma-deposited fluorocarbon layer 

was used instead of the current FDTS grafting are shown in [square brackets], to reveal the 

improvement using the FDTS monolayer compared to reference 22.  

* 5 µL liquid, uncertainty in static CA ±2; receding CA: ±5.  

9.3.2.3 Random nanotextured PDMS surfaces 

SF6 plasma etching was used to texture PDMS surfaces, resulting in high aspect ratio 

topography. The resulting topography for 10 min plasma processing is shown in Figure 5. 

These surfaces are not stable upon water immersion. However, the silanization process is 

used for the stabilization of the topography (see also Supporting Information S.9.4, Figure 

S6). Similar results for stabilization of the topography have been also observed for other 

polymer surfaces and will be reported elsewhere. 
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Figure 5. SEM images of SF6 plasma-nanotextured PDMS surfaces (a) before silanization (b) after 

silanization. After 10 min SF6 etching, the surface in (a) is modified with silane in cyclohexane (b). 

The filamental topography that is produced after several minutes of plasma texturing 

(section 2.5) enhances the resulting oleophobicity. For example, the soya oil static contact 

angle upon texturing for 10 min becomes 152. PDMS exhibits grass-like, re-entrant 

structures after the silanization, but the resulting surface is less homogeneous than PMMA 

and PEEK. As a result, PDMS exhibits a slightly lower CA with hexadecane than PMMA 

and PEEK, as indicated above. The static and advancing contact angle and the hysteresis 

for water, soya oil and hexadecane are shown in Table 4. 

  

Table 4. Static, advancing and receding contact angles for water, soya oil and hexadecane on 

perfluorosilane-modified hierarchical randomly rough PDMS surfaces (in degrees).  

Solvent 
Contact  

angle 

PDMS  

10 min  

SF
6
 plasma 

Water 

(γ
lv 

=72.1 mN/m) 

Static  167 

Adv/Rec  168/165 (3) 

Soya Oil 

(γ
lv 

=34.1 mN/m) 

Static 152 

Adv/Rec 157/145 (12) 

Hexadecane 

(γ
lv 

=27.5 mN/m) 

Static 135 

Adv/Rec 142/129 (13) 
* 5 µL liquid; uncertainty in static CA ±2; receding CA: ±5.  

9.3.3 Stability testing of the fluorosilane-coated polymer surfaces  

9.3.3.1 Hydrolytic Stability test on smooth non-plasma textured 

surfaces 

For practical applications of such monolayer-coated polymeric surfaces, either in 

outdoor uses or inside microchannels, it is important that the monolayer is stable. The 

stability of the attached monolayers is dependent on the stability of the substrate itself, on 

the surface morphology, on the anchoring group, and on the environment. In order to 

study the stability of the attached monolayers in aqueous environments, monolayer-coated 

polymers were immersed in continuously flowing deionized water. The properties of the 

fluorinated layers were hardly influenced upon immersion for a day. Therefore long-term 

stability tests were performed by immersion of the modified surfaces in water for 40 days.  
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Figure 6. The advancing, receding and hysteresis water contact on smooth non-plasma textured 

surfaces of PMMA, PDMS, and PEEK. 

 

First, the stability was studied on FDTS-modified smooth polymer surfaces, with the 

contact angle measurements as shown Figure 6. Figure 6 shows that PMMA and PDMS 

exhibit good hydrolytic stability. The advancing CAs of PMMA and PDMS decrease only 

slightly, from 128 to 115 and from 125 to 118, respectively, while the receding CA 

decreases from 115 to 91 and from 112 to 89, respectively. PEEK shows a smaller 

stability than PMMA and PDMS, and displays an increase in the CA hysteresis from 17 

to 36. We suspect that there are two main factors for the lower stability of PEEK: First, it 

is possible that not enough surface OH groups are generated by the plasma reactivation 

step on this polymer. Second, it is known that PEEK is not attacked by cyclohexane, while 

PMMA48 and PDMS49 are affected and probably slightly swelled by the solvent. We thus 

expect that silanization of PMMA and PDMS could extend a few nanometers from the 

surface into the swollen layer. Further swelling will be prevented since the multifunctional 

silylating agent causes crosslinking on the surface. This surface-only swelling and 

0 200 400 600 800 1000
0

20

40

60

80

100

120

C
o

n
ta

c
t 

A
n

g
le

 (
)

Time (hr)

 Receding (Flat PMMA)

 Advancing (Flat PMMA)

 Hysteresis (Flat PMMA)

 Receding (Flat PDMS)

 Advancing  (Flat PDMS)

 Hysteresis (Flat PDMS)

 Receding (Flat PEEK)

 Advancing  (Flat PEEK)

 Hysteresis (Flat PEEK)



Chapter 9 

 258

silylation would make that layer more stable in hydrolysis, by analogy to surface silylation 

of photoresists which become stable (unetchable) in oxygen plasmas.50 

9.3.3.2 Hydrolytic stability of plasma-micro and nanotextured surfaces 

Figure 7 presents the advancing and receding CA of water on perfluorosilane-modified 

hierarchical plasma-textured surfaces. The stability of the perfluorosilane-coated PMMA 

surface is shown in Figure 7A. The advancing CA did not change upon immersion in 

water for 40 days (168 ± 2), but the receding CA slightly decreased from 164 to 154, 

and from 166 to 159, for PMMA surfaces that were plasma-etched for 10 min and 20 

min, respectively. As this indicates, especially the 20 min-etched PMMA shows a 

remarkably high resistance to water. This suggests that the SAM is densely packed over 

the whole surface and acts as a very good barrier to prevent water from attacking the 

hydrolysis of the Si-O-C bond that links the monolayer to the substrate. In Figure 7b, the 

monolayer stability of 10 min etched PEEK surfaces is shown. Both the advancing and 

receding CA are reduced after 40 days water flow over the PEEK surface. The advancing 

CA is reduced from 168 to 140 and the receding CA from 166 to 135. This 

observation reflects that the perfluorosilane-derived monolayer is less stable on the 

plasma-textured PEEK surface than on PMMA, in line with the observations made for 

smooth PMMA and PEEK surfaces above.  

The stability of ordered plasma-textured PMMA surfaces (using 1 or 3 μm PS particles 

as etch masks) are shown in Figure 7C. In this case, water flow for 40 days affected the 

surface wetability only slightly, with the advancing CA values remaining constantly high 

at 168±1, whereas the receding CA gradually decreased slightly, to approximately 162 

±1 after 40 days.  Such low hysteresis suggests that multiscale roughness (roughness in 

the micron, hundred-nanometer, and ten-nanometer range) that is present in these 

overhanging pillars enhances the hydrolytic stability of these surfaces compared to the 

randomly textured surfaces.    

The hydrolytic stability of the 10 min plasma-textured PDMS surface is shown in figure 

7D. The data clearly show that also on PDMS the attachment of a perfluorosilane-derived 

monolayer coating effectively stabilizes the superoleophobicity of the surface. Even after 

40 days in water, the advancing CA only reduces from 168 to 165, while the hysteresis 

stays under 10. This again shows that structuring the polymer surface in a hierarchical 

manner that encompasses both the nano and micrometer scale allows for the formation of 

a highly stable coating, with a concomitantly stable superoleophobicity. 

 



Superoleophobic and Highly Stable Polymer Surfaces 

 259

 

Figure 7. Advancing, receding and hysteresis contact angles of water used to study the layer 

desorption kinetics of different fluorinated silane modified hierarchical rough surfaces (A) 20 min 

plasma textured PMMA. (B) 20 min plasma-textured PEEK. (C) PMMA surfaces masked with 1 µm or 

3 µm PS microparticles and plasma etched. (D) 10 min plasma-etched PDMS. 

 

9.4 CONCLUSIONS 

 

We have shown a generic method to produce superoleophobic polymer surfaces that 

display a high long-term stability in water. Our approach involves two steps: 1) 

Hierarchical nanotexturing of the surfaces (PEEK, PMMA and PDMS) by a plasma 
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etching step.  Especially when plasma etching is performed using as a mask a self-

assembled layer of monodisperse micrometer-sized particles, this yields an ordered micro 

and nanotextured surface structure. 2) Grafting of these etched surfaces with a 

perfluorosilane, which yields superoleophobic polymeric surfaces. Such surfaces display a 

long-term hydrolytic stability, with minimal loss of the superoleophobicity, as indicated 

by immersion measurements in water for a period of >40 days. This simple approach will 

allow the construction of a wide range of long-lasting superoleophobic surfaces, which are 

attractive for a variety of outdoor uses as well as in MEMS, microfluidics and (bio-) 

sensor applications. 
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S.9.1 Water contact angle 

 

Figure S1. Droplets (colored with different dyes) of water (/ν = 72.1 mN/m), soya oil (/ν = 34.1 

mN/m), and Hexadecane (/ν = 27.5 mN/m) on a FDTS modified textured polymer surfaces. 
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S.9.2 X-ray photoelectron spectroscopy (XPS) 
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Figure S2. XPS spectra of bare, plasma-activated and FDTS modified PEEK surfaces 
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Figure S3. XPS spectra of bare, plasma-activated and FDTS modified PDMS surfaces. 
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Figure S4. XPS spectra of bare, plasma-activated and FDTS modified PMMA surfaces. 
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S.9.3 Atomic Force Microscopy (AFM) 

 

AFM of smooth polymer surfaces (as received, after air plasma 

activation, and after FDTS modification) 
 

The surface topography was imaged using a scanning probe microscope (Jeol JSPM-

5400) in tapping mode (AC-AFM) with a standard silicon cantilever (320 kHz, 

NSC35/AIBS, ULTRASHARP). The bare PMMA PEEK and PDMS surfaces were 

relatively smooth, with small roughness (Figure S2A). Upon air plasma activation some 

increased roughness is evident (see Figure S2B). .Such roughness features can be ascribed 

to a surface change during the plasma process, most likely cross-linking of the polymer-

surface or preferential etching. Clearly the air plasma treatment is milder compared to 

oxygen plasma etching performed in vacuum, and roughness is much smaller compared to 

the rough topographies observed on PMMA and PEEK after O2 plasma nanotexturing1 

The plasma treatment of polymer surfaces induces also removable nanoscale structures, 

such as tiny bubbles or low-molecular-weight fragments which form at the interface.2, 3 

The consecutive exposure to solvents (cyclohexane, pentane, water, ethanol) washes-off 

such low-molecular-weight fragments3. Similar behavior is observed on polystyrene and 

PMMA surfaces.3 4 

After being modified by FDTS in cyclohexane solution, the PMMA, PEEK, and PDMS 

surfaces showed a correspondingly increased roughened character, which was shown is 

due to FDTS solution concentration interference5 (Figure S2C). 

S.9.4 Solvent effect on plasma nanotextured surfaces 

The surface topography of plasma nanotextured samples was imaged using SEM 

microscopy to observe changes in the texture during the silanization process. For PMMA 

and PEEK, the surface was first immersed in water and dried, in order to stabilize the 

morphology using the capillary collapse phenomenon. For PDMS, no water immersion 

was done prior to silanization.  

It is clear that small changes occur in all polymers as expected. In the case of PDMS 

and PMMA, the cyclohexane solution seems to affect the texture in a more severe way. 

More accurately, PDMS texture bends and sometimes breaks, a fact that proves that the 

solvent mildly attacks PDMS, while in PMMA it reduces the roughness, despite the prior 

water/drying immersion-stabilization process. On the contrary, during PEEK silanization 

process, the texture seems to be affected much less. This mild solvent attack in PMMA 
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and PDMS favours the coating stability and packing, while in PEEK the unstable coating 

leads in poor hydrolytic stability as shown in section 3.3.2. 

 

 

Figure S5. AFM images (2 µm × 2µm) of PMMA (left column), PEEK (middle column) and PDMS 

(right column); roughness are shown in parentheses. (A) bare substrate, (B) air plasma-activated 

substrate, and (C) after modification with FDTS.  
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before silanization 

 
after silanization 

Nanotextured PMMA for 20 min in O2 plasma 

 
before silanization 

 
after silanization 

Nanotextured PEEK for 20 min in O2 plasma 

 
before silanization 

 
after silanization 

Nanotextured PS (1μm) on PMMA for 2 min in O2 plasma 
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before silanization 

 
after silanization 

Nanotextured PDMS for 10 min in SF6 plasma 

 

Figure S6. SEM images from all plasma nanotextured polymer surfaces before and after  silanization 

in the cyclohexane solution 

S.9.5 Stability test experimental setup 

 
 

Figure S7: Setup for stability study of FDTS coated polymer surfaces. See the circulating water bath. 
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S.9.6 IR spectroscopy of smooth polymeric samples.  

 The fluorinated smooth PDMS, PMMA, and PEEK surfaces were characterized by 

ATR-IR spectroscopy (Figure S5). The C-H stretching is shown in Figure 1A. For PDMS, 

the peak at 2961 cm-1 can be assigned to methyl C-H bond stretching, and is present both 

for the untreated surface (not shown) and for FDTS-grafted  surface, showing  no obvious 

difference in the spectra in that region. For the modified PDMS and PEEK, the symmetric 

CH2 stretching vibration peaks were not clearly observed in the present study, because of 

the order of magnitude lower intensity of this band. However, both bands were observed 

in the spectrum of PMMA at 2924 and 2852 cm-l for anti-symmetric and symmetric CH2, 

stretching vibrations, a(CH2,) and s(CH2), respectively. This spectrum matches earlier 

reports for PMMA surfaces coated with a monolayer of OTS,6 as well as after deposition 

onto PMMA of alkyl carboxylic acid monolayers via Langmuir−Blodgett methods.7 The 

ATR-FTIR spectra of the modified PDMS and PMMA surfaces displayed no clear 

infrared absorption over large areas in the region from 2000-400 cm-1 (Figure S5B). 

However, a band at ca. 1131 cm-1 was observed in the modified PMMA spectrum which 

was attributed to C-F stretching vibration. In the case of modified PDMS substrate, the 

signals at 1209 cm-l and 1151 cm-l were assigned to the C-F stretch vibrations. Figure S5 

(C) for PEEK shows a clear indication for C-F stretch vibration at 1278 cm-1, 1215 cm-1, 

1184 cm-1, and 1155 cm-1. This result confirmed that FDTS was successfully attached on 

these surfaces.  

 

Figure S8. ATR-IR spectra of FDTS on PDMS, PMMA, and PEEK surfaces, (A) C-H stretching bands 

2700-3200 cm-1; (B) fingerprint region of PMMA and PDMS; (C) fingerprint region of PEEK. These 

spectra were obtained from clean unmodified surfaces and subtracted from FDTS modified polymer 

spectra. 
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  10 
General Discussion 

 

This chapter gives a brief overview of the most striking achievements as presented in 

this thesis. In particular, the organic synthesis of new molecules, formation, tribology, 

wettability, and stability of organic monolayers on various inorganic and organic surfaces 

are discussed for the various approaches that were applied. We will focus on some 

preparation methods and highlight results obtained for specific surfaces. Remaining 

questions, additional ideas, and recommendation will also be addressed to enable further 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10 

 276

Table of Contents 

10   General Discussion .................................................................................... 275 

10.1 Introduction ....................................................................................................... 277 

10.2 Organic Monolayer  Formation  and  Electronic Properties ................................ 277 

10.3 Tribological Application .................................................................................... 279 

10.4 Conclusions ....................................................................................................... 285 

10.5 Reference ........................................................................................................... 285 

 

  



General Discussion 

 277 

10.1 INTRODUCTION 

Low adhesion and low frictional surfaces are particularly important for high performance 

technological devices. One of the great challenges in many micro-component devices is to 

reduce adhesion and friction to surfaces as much as possible, while keeping the surface highly 

robust and resistant against wear. At small dimensions surface properties, such as Van der 

Waals and capillary forces, greatly influence the performance of mechanical systems. Without 

a suitable surface modification uncoated substrates may show a high friction, a strong 

adhesion, and considerable wear. In particular, thin organic fluorocarbon-hydrocarbon films 

have been found to produce low-adhesion and low-friction lubricants. In practice, 

polytetrafluoroethylene (PTFE) is currently a primary coating material in many micro-electro-

mechanical systems. However, these films are not covalently bound to the substrate and are 

therefore prone to wear and delamination. Moreover, PTFE films are relatively thick, which 

may still lead to high adhesion and friction forces when high loads are applied and films get 

compressed. Here we discuss in more detail on ultra-thin covalently bound fluoro-hydro 

alkyne-derived monolayers as high quality, low-adhesion and low-friction surface coatings for 

many applications. 

 

10.2 ORGANIC MONOLAYER FORMATION AND 

ELECTRONIC PROPERTIES 

 

As presented in previous  chapters, we have succeeded in the formation of stable, 

covalently anchored  novel fluorinated and non-fluorinated monolayers on Si(111), silicon 

carbide, chromium nitride, and on both organic polymeric (PEEK, PMMA, PS) and inorganic 

polymeric (PDMS) substrates with enhanced tribological properties. Monolayers could be 

formed chemically stable and with a high chain density; also their physical and theoretical 

predicted structures were discussed. 

 

The principal process for monolayer formation was described in chapter 2. Here we 

showed that the novel molecule hexadecadienyl reacts faster with the silicon substrate 

molecules than alkyne molecules and that it possibly is a better reagent for dense monolayer 

formation. Organic monolayer formation on hydrogen-terminated silicon (H–Si) surfaces with 

the novel molecule gave a more dense monolayer as compared with the use of the hitherto 

best agents. It is anticipated that this might be due to the increased delocalization of β-carbon 

radicals by the enyne group. Monolayers formed at room temperature yielded plateau values 

for hexadec-3-en-1-yne and 1-hexadecyne after 8 and 16 h, respectively. The newly 
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developed monolayer chemistry could be useful for electrochemical sensing and/or 

passivation applications, facilitated through the high reactivity, high chain density, and fast 

formation of the monolayer under ambient conditions. It is still unknown what causes the 

higher packing density when using enynes: both π-π and/or Van der Waals interactions could 

contribute. To answer this question, shorter chain length (e.g. C10) monolayers were studied;. 

this would increase the π-π and depress the Van der Waals interactions.  

 

 

Figure 1. Preliminary molecular modeling results. Left average packing energy of C16-YNE (half-filled 

square), C16-YNE-ENE (half-filled circle) and C10-YNE-ENE (half-filled triangle). Right side view of 

simulation cell 67A after optimization. The pink dashed line represents the close contacts. Upper right 

C10-YNE-ENE and lower right C16-YNE-ENE. 

 

Figure 2. Schematic representations of silicon nano-wire (SiNW) modification with shorter chain length 

monolayers (e.g. C10), and sensing bio-molecule and gas molecules (eg. CO2, NO2…..). 

 

In Figure 1 we show preliminary results of molecular modeling of (C10-YNE-ENE) (half-

filled triangle) molecules on Si(111) in comparison with C16-YNE (half-filled square) and 

C16-YNE-ENE(half-filled circle). The simulation clearly shows a higher surface coverage of 
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the short chain length C10-YNE-ENE monolayers. It favors the interpretation that Van der 

Waals radii of CH2 groups higher close contacts in C16-YNE-ENE as compared to C10-YNE-

ENE. 

Application of these higher density and shorter chain length functional monolayers seem 

highly usefull in silicon nano-wire modification,1 which might enhance sensitivity of bio-

sensors2 and/or gas sensors3 as shown figure 2.4 The electrical detection of biomolecular 

interactions in strong ionic solutions is difficult. In ionic solutions, a charged surface forms an 

electrical double layer that effectively screens the surface charges within the range of the 

Debye length (3 nm in 10 mM ionic solution).4    

 

In Chapter 3 we studied monolayer formation with mono-fluorinated (-CH2F) alkyne 

molecules on Si(111). Such mono-fluorinated monolayers are characterized by low surface 

energies and have an ability to reduce the Van der Waals interaction. This originates from the 

low polarizability and high ionization potential of the carbon-fluorine bond.  In addition, the 

presence of dipolar groups in the monolayer can also have a significant effect on the electrical 

properties of the junction. It is shown that high-quality monolayers can be obtained (e.g. a 

monolayer derived from F1-C18-yne has a packing density of 58 ± 2 %). It was demonstrated 

that by substitution of CH3 to CH2F in the terminal group, it is possible in a controlled manner 

to stepwise modify the surface potential and corresponding barrier for charge transport in a 

full metal/monolayer-semiconductor (MOMS) junction. A discrepancy was found for the 

dipolar effect in wettability; an anticipated trendline was not observed. The static hexadecane 

contact angle increased slightly from 39 (F1-C10-YNE) to 46 (F1-C18-YNE). These slight 

increases likely reflect two opposing trends. On the one hand they reflect a decrease in the 

dispersive interaction between the increasing amount of fluorine atoms and hexadecane as 

caused by the increasing density of F atoms on the surface.5  

 

The exact effect on the wettability and exact orientation of F-CH2- in this mono-fluorinated 

monolayer is still unclear and more in-depth studies will be needed and to probe this balance 

more in detail.6  The interrelation between wettability, electronic structure, and exact 

orientation of the terminal groups would become more clear by e.g. substitution of groups on 

the surface (F-CH2- substituted by X-CH2- with X = D, I, Br, or Cl). 

  

10.3 TRIBOLOGICAL APPLICATION 

 

In Chapter 4 and 5 novel fluoro-hydro alkynes with a varying number of fluorine 

atoms (#F atoms: 0 – 17) at a constant chain length (C16) were synthesized, high density 
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monolayer formation onto oxide-free H-Si(111) surfaces was performed and 

corresponding physical and tribological properties were characterized. The obtained F1-

F17 monolayers displayed a hydrophobicity that is  typical for fluorinated moieties. The 

water contact angle increased at higher fluorine content in the monolayer.  For F17 a static 

water contact angle of 119° was measured, which is higher than PTFE = (115°).  A PTFE 

surface displays a lower static water contact angle, because the CF2 groups in PTFE are 

less capable of reducing the surface energy than the CF3 groups present in F17.7  

Monolayers based on F0 were characterized by a very low critical surface tension. 

Values of 20.1 mN/m were found, which is lower than characteristic values reported for 

CH3-termination in literature (22 - 24 mN/m),8 revealing the high organization of the 

monolayer. Increasing the number of F atoms in the monolayer further decreased the 

critical surface tension to 5.6 ± 0.21 mN/m for F17, which is – as far as we know – 

currently the lowest value for any solid surface.  In view of possible applications for 

micro-devices the stability of these layers also in an aqueous environment have to be 

studied. Higher fluorinated alkyne induced monolayer formation on Si(111) seems 

interesting  for both micro-nano fluidics and electronic devises. Special care should be 

taken for that alkynes are highly reactive to H-Si and other multi-fluorine components. 

Some Lab-on-Chip devices require hydrophobic fluidic channels and a sufficient chemical 

stability of these monolayers with a few nanometer thicknesses is desirable. In some cases 

Lab-on-Chip devices require a segmented flow with regions having a distinct 

hydrophobicity. Currently these fluidic channels are being modified using a fluorinated 

silane modification which is relatievely unstable in a basic environment. Another 

application of the fluoriated molecules is to use them in copper-catalyzed azide–alkyne 

cycloaddition (CuAAC) reactions, because the molecules are relatively easy to synthesize 

and soluble in polar aprotic/apolar solvents.  The CuAAC  chemistry is reliable and 

widely utilized, in both bio-medical and material chemistry.9 

 

Moreover interfaces with a minimized surface energy have a great potential in 

MEMS/NEMS. It is  shown that a highly uniform, upward presentation of CF3 moieties, 

yields a very low interaction with the outside world, as evidenced by measured  adhesion 

forces as low as 3.2 ± 0.03  mJ/m2 and a friction coefficient of 1.2∙10-2 for an F17 

monolayer (Si-(HC=CH)-(CH2)6-C8F17). Each of these values is either the lowest 

currently measured for any flat surface, or close to it. Furthermore, currently ongoing 

experiments in our lab to place on an atomically flat silicon surface a fluorinated polymer 

brush can further improve the tribological properties.10  

 



General Discussion 

 281 

Adhesive and friction forces can be measured with AFM using a molecularly modified 

colloidal probe. The organic monolayers (terminating  with -CH3 or –CF3) can be placed 

in a lithographically defined pattern.11 Adhesive interactions between unmodified silica 

(Si-OH) and those with a monolayer (CH3/CH3, CH3/CF3, CH3/COOH, COOH/CF3 or 

COOH/CH3) can be easily compared. Also using a modified AFM probe with different 

functional groups is a more sensitive technique to characterize adhesional, frictional and 

chemical properties.12 

 

As discussed in Chapter 3 the electronic transport properties of fluorinated alkyne on 

silicon did show clearly a molecular dipole effect. Substituting the H with an F atom in 

the terminal group of the alkenyl chain revealed an increase of the workfunction (thus 

increasing the electron affinity) of the Si-monolayer surface. This increase is due to the 

altered direction/orientation of the C-F bond in comparison to that of the C-H bond. 

Examining the tuning of the Si workfunction at higher fluorine number with fixed number 

of carbon (See figure 3) still need to be studied in more detail.13 

 

 

Figure 3. Tuning of the workfunction on Si substrates is possible with different novel synthesized 

fluorinated alkynes. 

 

In Chapter 6 both 1-alkynes (fluorinated and non-fluorinated) and 1-alkenes bound to 

silicon carbide surfaces provide improved access to low adhesion, low friction and high 

wear resistance properties. In literature only few results were shown for alkynes or 

alkenes reacting to hydroxyl terminated surfaces.14, 15  Therefore it is still not clear how 

alkynes react to hydroxyl terminated16 SiC surface.  To guide (quantum) theoretical 
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understanding on the mechanistic structure more experiments may help. Our results show 

that the alkyne reacts twice to the hydroxyl-terminated silicon carbide substrates via a 

double Markovnikov addition. For future understanding deuterated alkyne or alkene 

chemistry may be helpful (see Figure 4) to elucidate the binding structure, especially via 

characterization of the corresponding infrared spectra.17 In infrared spectra the C-D 

stretching band appears at a distinctive lower region 2200 cm−1. The similar applies for 

using deuterated alkene.18, 19 

 

Figure 4. Proposed mechanism of the reaction between deuterated Alkyne (R-C≡C-D) and an OH-

terminated SiC surface. 

 

Fluorinated monolayers on SiC were shown to display minimal friction (friction 

coefficient down to 0.008) and corresponding low adhesion energies.  In combination with 

the already low wear resistance of SiC surfaces itself; it is shown that these covalently 

bound fluorinated monolayers on SiC provide a promising alternative to currently used 

stable lubricants for high-performance micro-electronic devices. We will discuss here the 

example of an improved wafer chuck as can be used in wafer stepper lithography. 

Conventionally a wafer is clamped on a wafer chuck with a force originating from e.g. an 

applied vacuum or from a controlled electrostatic actuation method. Nowadays wafer 

chucks are being employed with a large number of mesas or flattened protrusions that 

define a second elevated surface (see Figure 5). The top surfaces of the mesas are 

therefore made of very hard and nonabrasive thin film substrate material, such as CrN, 

TiN, Si, SiC, SiN and SiSiC.  The mesa top surface configuration defines a single plane 

for wafer support that is perfectly leveled and orientable into suitable directions with use 

of electrostatic clamping techniques. However even with a plurality of mesas providing a 

reduced contact surface, there remains a relatively large contact surface of the mesas 

physically in contact with the substrate. This may introduce a binding force, in the art 

known as "sticking", between the top faces of the mesas and the backside of the wafer. 
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Under vacuum operating conditions, such sticking may be considerable. In practice, this 

means that releasing the wafer from the wafer chuck can take a substantial amount of time 

causing a delay in the availability of the wafer stepper for a next lithographic round. 

 
Figure 5.  Shows a new generation wafer chuck, comprising a substrate with mesas defining a flat 

surface for clamping a wafer, A: Topview, B: Sideview. 

 

As depicted in Figure 5 a fluorinated monolayer 3 is covalently bound to the top surface 

2 of a substrate 1 having mesas 5 defining a flat surface for clamping a silicon wafer 4. 

The fluorinated monolayers exhibiting a minimum in friction and adhesion enable 

beneficially the lifting of the wafer from the wafer chuck in a controlled way with a 

minimal actuation force. 

 

Also the developed high density, chemical and mechanical stable monolayers may be 

used in bio-chemical and bio-mechanical applications. For instance it would be readily 

possible to study further functionalizing of the monolayer by grafting it with a stable 

protein-repellent zwitterionic polymer brush. Schematic presentation as shown in figure 6 

for zwitterionic polymer brush grafted on SiC surfaces. 20, 21 

 

In Chapter 7 and 8 for the first time, we have developed a novel method to obtain 

high-quality, covalently bound monolayers on CrN surfaces via the thermal reaction of 1-

alkynes with an air plasma-activation of the CrN surface. We found in comparing alkyne 

and alkene, that the higher reactivity of 1-alkynes is attributed to the higher 

nucleophilicity of alkynes in comparison to that of alkenes. We also focused on the 
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ordering and mode of attachment of the alkene and alkyne molecules in the monolayers. 

Initial binding studies indicate an oxidative adsorption mode of attachment, with 

concomitant formation of surface-bound C=O groups. Difference in the alkyne and alkene 

chemistry for forming the monolayers needs further attention. In literature mechanistic 

information on both surface and catalyst may be available. Experimental observation 

might help for studying theoretical (quantum calculation) models of the CrN surface. 

 

 
 

Figure 6.  Schematic representations of zwitterionic (sulfobetaine or carboxybetaine) polymer brushes 

on SiC or CrN surfaces. Example of medical shoulder implant model (www.zimmer.com). 

 

Furthermore, monolayers based on the reactivity of various anchoring groups like 

silane, phosphonate, 1-alkene and 1-alkyne moieties were obtained on the hydroxyl-

terminated chromium nitride surface. We also investigated chemical stability and 

tribological properties (adhesion, friction, and wear) of organic monolayers on CrN. 

Strategies to modify chromium nitride (CrN) surfaces are important because of the 

increased applications of these materials in various areas such as hybrid electronics, 

medical implants, diffusion barrier layers, corrosion inhibition, and wettability control. 

Especially for medical (implant) application the modified substrate should be bio-

compatibility. Zwitterionic polymer brush grafted on CrN surfaces have to be studied for 

antifouling properties, see figure 6.  Modified CrN substrates has now been proven to 

comprise excellent tribological and chemical stable properties.  

 

In Chapter 9 we studied for the first time plasma-induced nanotexturing of polymeric 

surfaces with a covalently attached perfluorinated silane monolayer. Such surfaces 

displayed a long-term hydrolytic stability, with a minimal loss of superoleophobicity, as 

http://www.zimmer.com/ctl?template=MP&op=global&action=1&id=10212
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indicated by immersion measurements in water for a period of >40 days. The resulting 

stochastic or ordered surfaces were characterized in detail by IR spectroscopy and XPS 

analyses with a variety of liquids, including water, hexadecane and soya oil. Our coatings 

can also be useful for other researchers, e.g. Tuteja et al.22 We are thus confident that if a 

different low-surface energy coating is used similar results would be obtained with our 

structures as well.  

10.4 CONCLUSIONS 

The research described in this thesis evaluates the chemical stability and tribological 

properties of high quality homogeneously formed monolayers. Formation was performed 

using various anchoring and terminal groups(both fluorinated and non-fluorinated), and 

also on many different substrates. Fundamental understanding of the basic underlying 

chemical reaction mechanisms during formation has been obtained and this will not only 

bring progress in the scientific world, but will also enable a wide range of long-lasting 

chemical and mechanical stable modified surfaces, which are attractive for a variety of 

outdoor uses as well as in MEMS, medical, microfluidics and (bio-)sensor applications. 
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Summary 
 Organic monolayers as described in this thesis are ultrathin (1 - 2 nm) layers of organic 

molecules covalently bound to an inorganic surface. To thoroughly understand and further 

improve the formation of monolayers detailed research is needed on corresponding 

anchoring molecules that provide the bond with the substrate. Knowledge has to be 

obtained in the precise mechanism of relevant reactions at the various interfaces that can 

be distinguished: molecule – substrate, liquid phase – forming monolayer, and in between 

monolayer-forming molecules. Selection of the right surface and anchoring molecules 

may provide a flexible tool to develop materials with desired properties both at the 

molecular and material level. Particularly in many micro and nano components, such as 

MEMS and NEMS, silicon is the main component material, and typical dimensions of 

such devices are a few to several 100s of microns. At these small scales, surface 

properties, such as Van der Waals and capillary forces, greatly influence the performance 

of these devices. Surface properties like minimal wear and low friction are therefore 

essential for application of tailor-made surfaces in these high-performance technological 

devices.  

Several types of thin films have been investigated as coatings for inorganic surfaces 

with enhanced tribological properties. In particular, the nano-tribological behavior of 

fluorinated hydrocarbon-based organic coatings has been widely studied in order to 

produce durable and low-friction lubricant surfaces. These fluorinated hydrocarbon-based 

organic coatings on hard surfaces improve the tribological properties to a great extent. 

However (apart from silane coupling chemistry), those films are not covalently bound to 

the silicon and are therefore prone to wear.  Fluorinated alkyne-derived monolayers on 

various surfaces will significantly expand their scope, as such monolayers are nanometer 

thin and strongly bound to the substrate, and display excellent tribological behavior.  As 

such they display significant potential in MEMS/NEMS.  

The aim of this thesis is to study the formation of such fluorinated monolayers on a 

variety of organic and inorganic surfaces, so as to minimize the surface energy with a 

greatly improved chemical stability in order to enable outstanding tribological properties.  

In Chapter 2, we successfully developed a novel precursor, hexadeca-3-en-1-yne 

(HCC-HC=CH-C12H25), for the formation of high-quality monolayers on H-terminated 

silicon surfaces. Detailed kinetic and XPS studies show that hexadeca-3-en-1-yne reacts 

faster than the corresponding C16 alkyne and displays a higher packing density than the 

monolayers which had been reported up to now on H-Si(111). From Infrared and 



Summary 

 288

NEXAFS studies, in combination with molecular modeling, our data confirm that the 

enyne-derived monolayers are more highly ordered, stable and densely packed than 

monolayers derived from the corresponding C16 alkyne (hexadecyne). These unique 

properties of enyne-derived monolayers make enynes (HCC-HC=CH-R) the agent of 

choice if a supreme monolayer quality is desired. Also a more stable oxide-free silicon 

interface is formed with an enyne-derived monolayer. This development facilitates a 

successful application of organic monolayers on silicon in electronic and biosensor 

devices. 

In Chapter 3, we prepared a series of mono--fluorinated 1-alkyne-derived monolayers 

of various thicknesses on oxide-free hydrogen-terminated Si(111). A combination of 

experimental and theoretical studies shows that high-quality monolayers can be obtained 

(e.g. a monolayer derived from F1-C18-yne has a packing density of 58 ± 2 %). It was 

demonstrated that by substitution of CH3 to CH2F in the terminal group, it is possible to 

controllably and stepwise modify the surface potential and barrier for charge transport in a 

full metal/monolayer-semiconductor (MOMS) junction. The work function of silicon 

surfaces can thus be altered to accommodate specific application needs, and therefore this 

technique extends the potential of using Si-C derived monolayers in the fabrication of 

MEMS and NEMS derived electronic devices. 

Chapter 4, deals with the tribology of partially fluorinated monolayers grafted on 

oxide-free Si(111). These uniform and densely packed monolayers display a high degree 

of short-range ordering due to an upward presentation of the terminal CF3 moieties. This 

resulted in a modified surface with an extremely low surface tension and adhesion as 

evidenced by the lowest critical surface tension currently measured for any flat surface, 

and correspondingly low adhesion forces, and friction coefficient. The present study 

expands the scope of application of strong covalently bound monolayers  

Following chapter 4, in Chapter 5 we focus on the nano-scale wear of such fluorinated 

monolayers. Covalently bound, densely packed fluoro-alkyl monolayers on Si(111) [e.g. 

~Si-CH=CH-(CH2)6-(CF2)8CF3] surfaces display an excellent wear resistance. Typically, 

no wear marks are seen to AFM-induced pressures of 8 N, while even for pressures up to 

24 N the underlying Si is hardly damaged. Below these critical normal loads, the SAMs 

can accommodate the external forces by reorientation of the chains. These Si-C=C bound 

monolayers display such excellent wear-resistance due to the high bond strengths of the 

involved chemical bonds, and the high density of the monolayers that minimizes external 

penetration. Due to these superior wear resistance properties, fluoro-alkyl monolayers 

show a robustness that makes them useful for application in MEMS/NEMS. 
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Chapter 6 describs the formation of fluorinated and non-fluorinated monolayers of 

various chain lengths onto SiC surfaces, via a double Markovnikov addition, forming 

an acetal heteroatomic six membered ring. A new reaction mechanism for the reaction 

of un-substituted alkynes with hydroxyl-terminated surfaces is proposed. With the help 

of AFM studies we determined that fluorinated monolayers on SiC have a high 

durability, low adhesion and friction, as well as an extraordinary resistance to wear, 

when compared to non-fluorinated mono-layers. 

In Chapter 7, we have developed a novel method to obtain high-quality, covalently 

bound monolayers on CrN surfaces via the thermal reaction of 1-alkynes with air plasma-

activated CrN surfaces. The monolayers are readily formed (8 - 12 h), and are densely 

packed with a high degree of short-range order. Analogous monolayers derived from 1-

alkenes are of lower quality. This was related in detail to the mode of attachment of 1-

alkyne and 1-alkene derived monolayers. These monolayers provide substantial potential 

for further studies and can combine the unique material properties of CrN with the 

tunability of covalently attached monolayers. 

Chapter 8 outlines a systematic chemical and mechanical stability study on CrN 

substrates with respect to anchoring, chain length-dependence, and structural changes in 

the fluorinated hydrocarbon. The chemical stability of the monolayer in aqueous solution 

on varying the pH was found in the following order: Alkyne ~ 2-hydroxy carboxylic acid 

> Phosphonic acid ~ Carboxylic acid > Alkene > Silane. Monolayers with longer chain 

length (# CH2 units > 12) exhibited a lower adhesion, friction and higher wear resistance 

as compared to short chain ( # CH2 units < 12) monolayers. In conclusion, fluorinated 

monolayers on CrN were shown to have excellent tribological properties as compared to 

non-fluorinated counterparts. 

Chapter 9 discusses the fabrication of superoleophobic polymer surfaces using a novel 

yet very simple two-step generic method of plasma etching followed by grafting of these 

etched surfaces with a perfluorosilane. These surfaces displayed a long-term hydrolytic 

stability, with minimal loss of the superoleophobicity, making them ideal candidates for 

application in a wide range of long-lasting superoleophobic surfaces, which are attractive 

for a variety of outdoor uses as well as in MEMS, microfluidics and (bio-) sensor 

applications. 

Finally, in Chapter 10 an overview is given of the most important findings presented in 

the thesis. Recommendation are being presented, as well as additional ideas on how to 

direct this research to novel fundamental aspects that are just getting within reach and also 

towards a wider industrial application of these exciting materials that demonstrate the 

‘small is (very) beautiful’ theme. 
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Samenvatting 
Onder organische monolagen, zoals beschreven in dit proefschrift, verstaan we 

ultradunne lagen (1-2 nm) van organische moleculen, die covalent gebonden zijn aan een 

anorganisch oppervlak (substraat). Om de vorming van deze monolagen diepgaand te 

kunnen begrijpen en om dit te verbeteren, is gedetailleerd onderzoek nodig naar 

moleculen met verschillende bindingsmogelijkheden met het anorganische oppervlak. 

Kennis moet worden vergaard over het precieze mechanisme van relevante reacties en 

interacties die aan alle betrokken grensvlakken plaats kunnen vinden, te weten: moleculen 

in oplossing met het anorganisch oppervlak en met de zich vormende monolaag en tussen 

de monolaag-vormende moleculen onderling. Door moleculen te gebruiken die de juiste 

reactiviteit voor een bepaald substraat bezitten kunnen gewenste oppervlakte-

eigenschappen verkregen worden op zowel molecuulniveau (chemische reactiviteit) als 

materiaalniveau (fysische eigenschappen). Voor met name micro- en nano-componenten, 

zoals aanwezig in MEMS en NEMS, is silicium een belangrijk materiaal. De afmetingen 

van deze onderdelen variëren van enkele tot enkele honderden micrometers. Op deze 

kleine schaal spelen oppervlakte-eigenschappen, zoals Van der Waals krachten en 

capillaire werking, een grote rol in de prestaties van deze componenten. Oppervlakte-

eigenschappen zoals slijtvastheid en lage wrijving zijn daarom essentieel voor de 

toepasbaarheid van deze op maat gemaakte anorganische oppervlakken in high-

performance technologische apparaten.  

Verschillende typen dunne lagen zijn onderzocht als coatings voor anorganische 

substraten om hun tribologische eigenschappen te verbeteren. Met name coatings 

gebaseerd op fluor-bevattende koolwaterstoffen zijn in detail onderzocht op hun nano-

tribologische eigenschappen om duurzame en gladde oppervlakken met lage wrijving te 

produceren. Op harde oppervlakken verbeteren deze coatings gebaseerd op fluor-

bevattende koolwaterstoffen de tribologische eigenschappen aanzienlijk. Behalve coatings 

gebaseerd op silaanchemie, zijn deze coatings echter niet covalent gebonden en zullen dus 

onderhevig zijn aan slijtage. Covalent gebonden fluor-bevattende monolagen op basis van 

alkynen kunnen gebonden worden aan verschillende oppervlakken en zullen beter 

presteren en breder inzetbaar zijn, omdat zulk soort monolagen ultradun zijn, sterk 

gebonden zijn aan het oppervlak en uitstekende tribologische eigenschappen laten zien. 

Hierdoor hebben deze monolagen veel potentie voor gebruik in MEMS en NEMS. 

Het doel van dit proefschrift is om de vorming van zulke fluor-bevattende monolagen 

aan een breed scala van organische en anorganische oppervlakken te bestuderen om de 
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oppervlakte-energie te minimalizeren en tegelijkertijd de chemische stabiliteit te 

verbeteren om zodoende uitstekende tribologische eigenschappen mogelijk te maken.  

In hoofdstuk 2 is met succes een nieuwe precursor ontwikkeld voor de vorming van 

hoge kwaliteit monolagen op waterstof-getermineerd silicium (H-Si(111)), namelijk 

hexadeca-3-en-1-yn (HCC-HC=CH-C12H25). Gedetailleerd onderzoek naar de kinetiek 

van de reactie en analyse met XPS experimenten wijzen uit dat hexadeca-3-en-1-yn 

sneller reageert dan het overeenkomstige hexadec-1-yn (HCC-C14H29) en dat monolagen 

gevormd met hexadeca-3-en-1-yn de hoogste pakkingsgraad hebben van alle bekende 

monolagen op H-Si(111). Infrarood en NEXAFS metingen in combinatie met moleculair 

modelleren bevestigen dat de enyn monolagen beter geordend zijn, stabieler zijn en een 

hogere pakkingsgraad hebben dan overeenkomstige monolagen afgeleid van hexadec-1-

yn. Deze unieke eigenschappen van enyn monolagen maken enynen (HCC-HC=CH-R) 

het beste reagens om monolagen met een extreem hoge kwaliteit te verkrijgen. Verder 

wordt een stabielere en beter zuurstof-vrij silicium oppervlak gevormd met de enyn 

monolaag. Deze ontwikkeling draagt bij aan succesvolle toepassing van organische 

monolagen op silicium in biosensors en electronische componenten.  

In hoofdstuk 3 wordt de synthese van een serie monolagen met verschillende lengtes 

op zuurstof-vrij H-Si(111) beschreven. Deze monolagen zijn gebaseerd op 1-alkynen, 

welke een enkel F-atoom hebben op de ω-positie. De combinatie van experimenteel en 

theoretisch onderzoek wijst uit dat monolagen van hoge kwaliteit verkregen worden (een 

monolaag gebaseerd op F1-C18-yne heeft bijvoorbeeld een pakkingsgraad van 58 ± 2 %). 

Door substitutie van de eindstandige CH3 groep met CH2F is het mogelijk om de 

oppervlaktepotentiaal en de ladingstransportbarrière op een gecontroleerde manier 

stapsgewijs aan te passen in een full metal/monolayer-semiconductor (MOMS) junction. 

De werkfunctie van siliciumoppervlakken kan zodoende worden aangepast aan de 

specifieke eisen van de toepassing. Hierdoor wordt de toepasbaarheid van monolagen op 

silicium carbide (SiC) voor fabricage van MEMS en NEMS onderdelen verhoogd. 

Hoofdstuk 4 behandelt de tribologische eigenschappen van gedeeltelijk fluor-

bevattende monolagen op zuurstof-vrij Si(111). Deze uniforme en dicht gepakte 

monolagen vertonen een hoge mate van korte afstand ordening doordat de terminale CF3 

groepen verticaal op het oppervlak staan. Dit resulteert in een gemodificeerd oppervlak 

met een extreem lage adhesie en oppervlaktespanning, blijkend uit de laagste kritische 

oppervlaktespanning ooit gemeten voor een vlak substraat, alsmede de ermee 

corresponderend lage adhesiekrachten en frictiecoëfficienten. Het huidige onderzoek 

verbreedt de toepassingsmogelijkheden van sterke covalent gebonden monolagen.  



Samenvatting 

 293 

Als vervolg op hoofdstuk 4, wordt in hoofdstuk 5 verder ingegaan op de slijtage op 

nanoschaal van zulke fluor-bevattende monolagen. Covalent gebonden, dichtgepakte 

fluor-alkyl monolagen op Si(111) [bijvoorbeeld ~Si-CH=CH-(CH2)6-(CF2)8CF3] 

oppervlakken vertonen een uitstekende weerstand tegen slijtage. Er werd geen slijtage 

waargenomen bij AFM-geïnduceerde druk tot 8 N, terwijl zelfs bij 24 N het 

onderliggende Si substraat nauwelijks schade ondervindt. Beneden deze kritische 

belasting kan de monolaag de externe krachten opvangen door het heroriënteren van de 

ketens. Deze Si-C=C gebonden monolagen vertonen zulke uitstekende slijtagebestendige 

eigenschappen door de sterke chemische bindingen en de hoge pakkingsgraad van de 

monolagen, waardoor externe penetratie wordt geminimaliseerd. Deze superieure 

bestendigheid tegen slijtage maken fluor-alkyl monolagen robuust en nuttig voor 

MEMS/NEMS toepassingen.  

In hoofdstuk 6 wordt de synthese van al dan niet fluor-bevattende monolagen met 

verschillende ketenlengtes op silicium carbide (SiC) oppervlakken beschreven. Via een 

dubbele Markovnikov additie wordt hierbij een heterocyclische zesring met een acetaal 

gevormd. Een nieuw mechanisme voor de reactie van ongesubstitueerde alkynen met 

hydroxyl-getermineerde oppervlakken wordt voorgesteld. Met behulp van AFM is 

vastgesteld dat de fluor-bevattende monolagen in vergelijking met monolagen zonder 

fluoratomen op SiC een hogere duurzaamheid en lagere adhesie en frictie vertonen. 

Verder is een uitzonderlijk hoge bestendigheid tegen slijtage gevonden.  

In hoofdstuk 7 wordt een nieuwe methode beschreven om hoge kwaliteit, covalent 

gebonden monolagen op chromium nitride (CrN) oppervlakken te verkrijgen. In deze 

thermische reactie worden 1-alkynen gereageerd met plasma-geactiveerde CrN 

oppervlakken. De monolagen worden makkelijk gevormd (8 – 12 h) en hebben een hoge 

pakkingsgraad met een hoge mate van korte afstandsordening. Analoge monolagen, 

verkregen via de reactie van 1-alkenen met CrN oppervlakken leveren monolagen op met 

een lagere kwaliteit. Dit wordt in detail uitgelegd aan de hand van de reactiemechanismen 

van 1-alkynen en 1-alkenen met CrN oppervlakken. Deze monolagen vertonen potentieel 

voor verder onderzoek en kunnen de unieke materiaaleigenschappen van CrN combineren 

met de afstembaarheid van covalent gebonden monolagen.  

In hoofdstuk 8 wordt een systematische studie naar de chemische en mechanische 

stabiliteit van fluor-bevattende koolwaterstof monolagen op CrN substraten beschreven. 

Variabelen zijn de hechtingsmethode aan het oppervlak, ketenlengte en 

structuurveranderingen van de fluor-bevattende koolwaterstoffen. De chemische stabiliteit 

van de monolaag in waterige oplossingen met verschillende pH werd als volgt vastgesteld: 

Alkyne ~ 2-hydroxy carboxylic acid > Phosphonic acid ~ Carboxylic acid > Alkene > 
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Silane. Monolagen met een langere ketenlengte (> 12 CH2 eenheden) vertonen een lagere 

adhesie, frictie en hogere slijtvastheid dan monolagen met korte ketens (< 12 CH2 

eenheden). Fluor-bevattende monolagen op CrN vertonen uitstekende tribologische 

eigenschappen vergeleken met monolagen zonder fluoratomen.  

In hoofdstuk 9 wordt de fabricage behandelt van superoleophobische 

polymeeroppervlakken, gemaakt met behulp van een nieuwe maar eenvoudige twee-staps 

procedure, waarin het oppervlak eerst geëtst wordt met plasma, gevolgd door reactie met 

een perfluorosilaan. Deze oppervlakken vertonen langdurige stabiliteit tegen hydrolyse 

met minimale afname in superoleophobiciteit. Dit maakt deze oppervlakken uitermate 

geschikt voor toepassingen waarbij een langdurige oleophobiciteit van het oppervlak 

wenselijk is, zoals in buitenhuistoepassingen, in MEMS onderdelen, microfluidica en 

(bio)sensoren.  

Tenslotte geeft hoofdstuk 10 een overzicht van de belangrijkste bevindingen van dit 

proefschrift. Aanbevelingen en nieuwwe ideeën worden aangegeven om dit onderzoek uit 

te breiden naar nieuwe, fundamentele aspecten, waarvan de bestudering pas recent binnen 

bereik zijn gekomen en naar bredere industriële toepassingen van deze materialen die het 

“klein is (heel) fijn” thema laten zien.  
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