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Abstract. To increase tolerance to abiotic stresses in breeding programmes, typically families and 
collections of genotypes are evaluated in series of trials (environments) representing different levels of 
stress. The statistical analysis of the data from such trials concentrates on modelling the phenotypic 
behaviour of the genotypes across the set of environments. This phenotypic behaviour can be modelled in 
the form of genotype-specific linear and non-linear response curves in relation to environmental 
characterizations. Non-parallelism of the response curves indicates genotype × environment interaction. 
Identification of the genetic basis of the parameters determining the response curves will help in the 
development of breeding programmes for improving abiotic stress tolerance and understanding genotype 
× environment interaction. In this paper we present two strategies for locating quantitative trait loci for 
response-curve parameters and estimation of their allele effects. The procedures are illustrated by an 
application to drought stress in maize. 

INTRODUCTION 

Strategies for improving tolerance to abiotic stress in plant breeding almost 
invariably test collections of genotypes, whether segregating or not, across a series 
of trials chosen to represent as well as possible an environmental gradient relevant to 
the stress of interest. In such experiments, the genotypes will show differential 
performance across the stress gradient, as tolerant genotypes will do relatively better 
under stress conditions, whereas this advantage will disappear in the absence of 
stress. The differential performance of tolerant versus non-tolerant genotypes in 
relation to the severity of stress produces genotype × environment interaction (GEI), 
i.e., the phenomenon that differences between genotypes are environment-
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dependent. An adequate analysis of GEI is a prerequisite for success in breeding 
programmes for abiotic-stress tolerance. In plant breeding, GEI is mostly modelled 
within the context of analysis of variance models with emphasis on test procedures 
for detecting GEI. When GEI is found significant, the consequence is that genotypes 
that perform well under non-stress conditions, cannot automatically be 
recommended for stress environments. Of course, after the establishment of the 
existence of GEI, one may be interested to identify the genetic and environmental 
causes for the observed GEI. Various classes of statistical models have been 
developed that describe GEI in terms of differential genotypic sensitivities to 
environmental variables, where the models differ with respect to the character of the 
explanatory variables that are included (for reviews, see Van Eeuwijk et al. 1996; 
Van Eeuwijk 2006).  

In plant breeding there is a tendency to describe GEI in terms of differences in 
linear responses to environmental variables, probably because restricted 
environmental gradients allow linear functions to give acceptable fits. In contrast, 
physiology-based approaches to modelling plant responses in relation to abiotic-
stress gradients typically come in the form of non-linear functions. Whatever the 
chosen specification for the functional relationship between plant phenotype and 
stress intensity, an attractive option for studying the genetic basis of stress tolerance 
and GEI is the mapping of quantitative trait loci (QTLs) for the parameters 
underlying genotype-specific response curves. By treating estimated curve 
parameters as standard phenotypic traits, QTLs can be identified for the curve 
parameters and for the genetic basis of GEI. However, although this approach to the 
identification of the genetic basis of stress tolerance and GEI is straightforward and 
requires only standard QTL-mapping software, it has some drawbacks. These 
drawbacks include neglect of estimation error and correlations between parameters, 
which can lead to faulty inference on QTLs. A solution is given by an integrated 
modelling approach to GEI and QTL mapping.  

In this paper, we present strategies to identify the genetic basis of GEI and 
response curves. We first give a brief general repository of QTL-mapping methods. 
Next, we look at a two-step QTL-mapping approach, in which in the first step the 
parameters are estimated, and in the second step, these estimates are treated as 
standard phenotypic traits. The following section describes an integrated modelling 
framework for GEI and QTL mapping. Finally, some of the methods are illustrated 
by an example on drought stress in maize. 

QTL MAPPING FOR SIMPLE TRAITS BY REGRESSION AND  
MIXED MODELS 

In the regression interpretation of QTL mapping, QTLs can be found by regressing 
the phenotypic response for genotype i, Pi, on a quantitative or categorical variable, 
xi, where xi represents a function of QTL genotype probabilities (Haley and Knott 
1992; Lynch and Walsh 1998). We will use the convention to underline random 
variables. As the QTL genotypes cannot be observed, but the marker genotypes can, 
QTL genotype probabilities are estimated from observed marker genotypes. To give 
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an example, consider a population of doubled haploids. In such a population, at each 
locus there are only two possible, homozygous genotypes, say A and B, 
corresponding to the genotypes of the first and second parent, respectively. For a 
particular marker locus, xi then takes the value 1 whenever the marker genotype is 
equal to A and –1 whenever B is the case. We can calculate for each marker a 
corresponding regressor, or better, genetic predictor, xi, and then correlate this 
predictor with the phenotypic response Pi. Everywhere where a test statistic, like the 
F-statistic, for the regression of Pi on xi is significant according to some pre-set 
criterion, we can conclude that a QTL must be close, with the best estimate for the 
position depending on the maximum of the test statistic over a certain genome 
region.  

We will elaborate these ideas more formally. We start by defining a model for 
the r-th phenotypic observation on genotype i, again underlining random variables, 
as  

 Pir = µ + Gi + εir (1) 

with Pir the phenotypic observation, µ the general mean, Gi the underlying genotypic 
contribution as deviation from the mean, and εir a random error. For the random 
variables, we will assume that they are normally distributed. Fitting a QTL model to 
the response Pir, merely means partitioning the genotypic effect, Gi, in a part due to 
regression on xi, and a random residual *

iG : 

 Pir = µ + xi α + *
iG + εir (2) 

The parameter α represents a QTL effect for a putative QTL locus at the position 
corresponding to the genetic predictor xi. Model (2) is a mixed model because it 
contains two random terms besides the fixed general mean and the QTL effect, α. 
Most general-purpose statistical packages, like SAS, SPSS, Genstat, S-Plus and R, 
have facilities to fit mixed models like Model (2) and other mixed models that will 
be mentioned below. A general test for the significance of fixed parameters, like α, 
in a mixed model, like (2), cannot be a standard F-test. An appropriate test for such a 
parameter in a mixed-model framework is the Wald test (Verbeke and Molenberghs 
2000), which is produced by the packages just mentioned. 

The use of Model (2) for a genome scan with genetic predictors calculated 
exclusively at marker positions is called marker regression, while Model (2) with 
genetic predictors calculated at and in between marker positions is called simple 
interval mapping (Lynch and Walsh 1998). To change Model (2) into a multiple 
QTL model with nQ QTLs, we can write  

 Pir = µ + ∑ =

Qn

1q qiqx α + *
iG + εir. (3) 

Model (3) shows that the building of a multiple QTL model can be interpreted as a 
subset-selection problem (Broman and Speed 2002), i.e., we want to find the set of 
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genetic predictors that best explains the phenotypic response in terms of QTLs. As a 
strategy to identify such a subset, composite interval mapping has been developed. 
Analogously to the situation for simple interval mapping, in composite interval 
mapping, genome scans are performed by evaluating the effect of individual genetic 
predictors on a one-dimensional grid along the genome. However, to improve 
power, the effects of possible QTLs elsewhere on the genome are neutralized as 
much as possible by a set of so-called co-factors, a set of markers close to putative 
QTLs identified earlier, for example, in a simple interval-mapping genome scan 
(Lynch and Walsh 1998). A mixed model that can be used for composite interval 
mapping is  

 Pir = µ + qiqCc cic xx αα +∑ ∈ + *
iG + εir, (4) 

with C representing the set of co-factors appropriate for use in combination with xq, 
the genetic predictor being tested for possible association with a QTL. The set of co-
factors varies in relation to the genome position as individual genetic predictors, xc, 
are dropped from the co-factor set when their position comes too close to that of xq. 

QTL MAPPING OF EARLIER ESTIMATED CURVE PARAMETERS 

In the previous section, we presented mixed-model methodology for QTL mapping 
of simple phenotypic traits. For identifying the genetic basis of response curves, we 
can apply the above methodology without modifications when we are willing to 
interpret estimated curve parameters as if they were simple phenotypic traits. The 
consequence of the latter assumption is that we need to ignore the precision of the 
estimated parameters in subsequent analyses and this can lead to incorrect 
conclusions on QTL existence, location and effects, where the degree of inaccuracy 
will increase with the imprecision of the estimates. A very simple approach to QTL 
mapping of response curves, thus, consists of two steps. First, estimate curve 
parameters for individual genotypes by means of linear or non-linear regression. 
Second, treat the curve parameters of the first step as a phenotypic trait in its own 
right, and apply a QTL-mapping approach to this ‘trait’.  

More important than the statistical-technical difference between linear and non-
linear regression models is the type of environmental variables that is used in the set 
of explanatory environmental variables. We can distinguish two types of 
environmental variables or characterizations: those that refer to explicitly measured 
physical and biological variables, like temperature, rainfall and disease pressure, and 
those that are implicit in the sense that they are calculated from the phenotypic 
responses in the environment. For example, the mean response of all genotypes in an 
environment can serve as an implicit, integrated indicator of environmental quality.  

Examples of implicit environmental descriptions occur in some well-known 
statistical models for describing GEI. A popular class of models for GEI describes 
GEI by differential genotypic sensitivity to environmental characterizations that are 
themselves linear functions of observed phenotypes. In the regression on the mean 
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model, probably better known as the Finlay-Wilkinson model (Finlay and Wilkinson 
1963), the characterization for a particular environment, j, is just the average 
phenotypic performance across all genotypes minus the grand mean, denoted by Ej. 
The model for the phenotypic mean of genotype i in environment j, ijP  , reads  

 ijP  = µ + Gi + βi Ej + δij (5) 

with µ as the general mean, Gi the average performance of genotype i across all 
environments given as a deviation from the general mean, a measure for wide 
adaptation, βi the sensitivity of genotype i to the environmental characterization Ej, 
with iβ =1, and δij the error attached to the mean for genotype i in environment j. 
The parameters Gi and βi can first be estimated by linear regression and the 
estimates iĜ and iβ̂ can subsequently be introduced as ordinary phenotypic variables 
in a QTL-mapping procedure.  

Model (5) can also be written in a form that better emphasizes the connection of 
the regression on the mean model with models for GEI by replacing the slopes βi, 
which are on average 1, by the slopes bi, which are on average zero, 

 ijP  = µ + Gi + Ej + bi Ej + δij (6) 

The regression on the mean model, (5)/(6), has rather restricted versatility for 
modelling differences in phenotypic responses between genotypes across 
environments. A more flexible model, following the same philosophy, 
characterizing the environment on the basis of the phenotypic trait itself, is the 
‘additive main effects and multiplicative interactions’ model (Gollob 1968; Mandel 
1969; Gabriel 1978; Gauch Jr 1988): 

 ijP = µ + Gi + Ej + ∑
=

K

k
kjki ba

1
+ δij (7) 

with hypothetical environmental characterizations bkj that create maximum 
discrimination for the corresponding genotypic sensitivities, aki. The number of 
multiplicative terms necessary for an adequate description of the data is K. Various 
test procedures have been developed to assess K (Gollob 1968; Cornelius et al. 
1996). Estimates for the genotypic sensitivities, kiâ , and environmental 
characterizations, kjb̂ , can be obtained by least-squares estimation procedures. 
Estimated genotypic sensitivities according to Model (7) can be mapped by ordinary 
QTL-mapping procedures. 

The response Models (5) and (7) are attractive for plant breeders, because they 
do not require an explicit environmental characterization. However, when physical 
or biological descriptions of the environment are available, physiologically more 
attractive models would include explicit references to such descriptions. Factorial 
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regression models are linear models with multiplicative terms for GEI that can 
model differential genotypic responses to one or more physical or biological 
environmental characterizations (Denis 1988; Van Eeuwijk et al. 1996). An example 
with one environmental variable, zj, has the form 

 ijP  = µ + Gi + Ej + bi zj + δij (8) 

where zj could be a function of temperature during a critical growth stage, radiation, 
nitrogen, water, etc., and bi then is the corresponding genotypic sensitivity. 
Equivalently, zj, can be a stress index obtained from a crop growth simulation. 
Model (8) can also model non-linear responses, for example by including 
polynomial terms,  

 ijP  = µ + Gi + Ej + b1i zj + b2i
2
jz  + δij (9) 

where b1i and b2i represent the sensitivity of genotype i to the linear and quadratic 
term in the environmental variable z. Even the inclusion of response surfaces in 
various dimensions does not present statistical-technical problems, although the 
number of environments necessary for sufficiently precise estimation of the 
increasing number of regression parameters will not often be reached in plant-
breeding programmes.  

When good explicit environmental characterizations are available, it is often 
preferable to model the genotypic responses by parametric linear and non-linear 
regression functions based on physiological insights, control equations (Reymond et 
al. 2003; Tardieu 2003; Tardieu et al. 2005) or meta-mechanisms (Hammer et al. 
2005), instead of working with polynomial approximations to these non-linear 
functions. A general expression for non-linear genotypic responses in one dimension 
is 

 ijP  = f(θi, zj )+ δij (10) 

with f representing a non-linear function in the parameter vector θi for genotype i 
and zj, as before, the value for the environmental variable z in environment j. Model 
(10) is equally applicable in temporal contexts, with z related to time, as in spatial 
contexts, where z typically is related to soil and management conditions. When z is 
time related, the error term δij demands careful modelling of possible auto-
correlations between observations at short intervals. Two illustrative examples of 
physiological modelling of response curves followed by QTL mapping of the 
estimated curve parameters are Reymond et al. (2003) for linear parameters and Yin 
et al. (2005) for non-linear parameters.  

For all models discussed in this section, genotype-specific parameters can first 
be estimated and then subjected to a standard QTL analysis. This practice will work 
reasonably well as long as the hypothesized curves fit the observed data well across 
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the full set of genotypes and the standard errors for the parameter estimates are 
relatively small in comparison to the parameter estimates themselves. Still, a better 
approach is to model the curve parameters directly as functions of underlying QTLs. 
The next section describes how to do this.  

MODELLING GENOTYPIC RESPONSES AS FUNCTIONS OF QTLS 

An integrated approach to the problem of mapping the genetic basis of response 
curves departs from the development of a multi-environment model for genotypic 
responses observed across a series of environments. A QTL model for the mean of 
genotype i in environment j with the possibility of the QTL effect being 
environment-specific is  

 Pij = µ + Ej + xi αj + δij (11) 

with αj standing for the environment-specific QTL effect in environment j. The 
generalization of Model (11) to a multi-QTL model would look like  

 Pij = µ + Ej +∑ =

Qn

1q jqiqx α + δij (12) 

In Model (12) not necessarily each QTL needs to exhibit environment-specific 
expression. For some QTLs, the expression across environments may be more or 
less constant, so that a single, main QTL effect would suffice. A more correct QTL 
model for a multi-environment trial is then 

 Pij = µ + Ej + ∑ =
*Qn

1*q *q*iqx α + ∑ =

Qn

1q jqiqx α + δij (13) 

with the first set of QTLs, Q*, just having constant expression across environments 
and the second set, Q, having environment-specific expression. The variance–
covariance matrix for the residuals δij should be flexible enough to allow for 
heterogeneity of variance across environments and heterogeneity of correlations 
between environments due to genetic effects not modelled by the QTL part of the 
model (Piepho 2000; Verbyla et al. 2003; Malosetti et al. 2004; Piepho and Pillen 
2004).  

A QTL model in which QTL expression is modelled in direct dependence on 
environmental variables can be obtained from Model (11) by regressing the QTL 
effects, αj, on an environmental variable zj, αj = a0 + a1 zj + *

jα : 

 Pij = µ + Ej + xi a0 + xi a1 zj + xi
*
jα + δij (14) 

where a0 represents the QTL main-effect expression, the part that is constant across 
environments, while a1 is a proportionality constant that shows how much the 
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phenotype will change per unit change in the environmental variable z, this 
phenotypic change being conditioned on the QTL genotype information contained in 
xi. The part of the QTL effect αj that is not described by the regression on z 
determines a random residual QTL effect, *

jα . Model (14) can be extended in 
obvious ways by the incorporation of further polynomial terms in z, and by 
incorporating different environmental variables for different QTLs. 

For non-linear response curves as described in Model (10), a QTL model can be 
constructed by modelling each of the genotypic parameters in the parameter vector θ 
in terms of underlying linear (multi-)QTL models. The QTL model for the k-th 
genotypic parameter is then 

 k
i

n

1q
k
qiq

kk
i

kQ x εαμθ ++= ∑ =
,  (15) 

with the superscript k referring to the parameter within the vector θ, μ k an intercept 
term, k

qα  the effect of the q-th QTL for the parameter θk, q = 1...nQ, Qk the set of 
QTLs underlying θk, and k

iε a residual term. The set of QTLs underlying a particular 
genotypic parameter can differ between parameters. Substituting Model (15) for 
each of the parameters θk in Model (10) will convert the latter phenotypic model 
into a QTL model for non-linear responses.  

All QTL models treated so far, except the model for the non-linear responses, are 
linear mixed models, and parameter estimation and testing follow standard theory 
for this type of models (Verbeke and Molenberghs 2000). The QTL model for the 
non-linear responses is a non-linear mixed model (Davidian and Giltinan 2003; 
Malosetti et al. 2006). Estimation and testing for this class of models is more 
complex and requires special procedures. Such procedures are present in SAS and S-
Plus/R.  

None of the QTL models discussed so far is critically dependent on the use of 
segregating populations of offspring from crosses between inbred parents. The 
models are equally applicable to the analysis of arbitrary collections of varieties as 
in marker–trait association analyses. The difference between the former linkage and 
the latter linkage disequilibrium analyses resides mainly in the incorporation of extra 
random terms to correct for the varying level of genetic relatedness that 
characterizes arbitrary collections of varieties (Malosetti 2006; Yu et al. 2006).  

EXAMPLE 

To illustrate some of the concepts above, we reanalysed data from the CIMMYT 
maize-breeding programme on drought tolerance, consisting of yield evaluations for 
211 F2-derived F3 families across eight trials with varying levels of water and 
nitrogen stress. Detailed descriptions and more analyses of these data can be found 
in Malosetti et al. (in press), Van Eeuwijk et al. (2001; 2002) and Vargas et al. 
(2006). In this chapter, we will present some results related to chromosome 1. 

To model GEI in the maize data, we fitted a regression on the mean Model (5), 
an AMMI model (7) with two terms for interaction, and a number of factorial 
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regression models (8) trying out a series of environmental variables, among which 
the minimum temperature during flowering and an environmental contrast between 
trial performance at the location of Poza Rica versus that at Tlaltizapán. The latter 
contrast is an example of a qualitative environmental variable. Figure 1 shows LOD 
profiles of simple interval-mapping scans with MapQTL (Van Ooijen 2004) for a 
selection of five parameters estimated in the GEI analyses. Figure 1 shows that there 
is some indication for a QTL main effect (intercept) in the region of 140-180 cM 
and no proof for QTLs related to the slopes in the regression on the mean model. For 
the AMMI-2 scores, the slopes for minimum temperature during flowering, and the 
genotypic contrasts for performance at Poza Rica versus Tlaltizapán, the LOD 
profiles look very similar, indicating a significant QTL for those parameters at 130-
150 cM. All three parameters represent differential genotypic sensitivity to the same 
environmental contrast. The minimum temperature at flowering was higher at 
Tlaltizapán than at Poza Rica. The same environmental contrast between those two 
locations determined the second AMMI axis. 
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Figure 1. LOD profiles for simple interval scans for chromosome 1 on different parameters 
characterizing phenotypic responses across environments for a set of F2-derived F3 lines in 
the CIMMYT drought-stress programme for maize. Intercept = genotypic mean across 
environments, FW = genotypic slope from the regression on the mean model, AMMI2 = 
genotypic score for the second multiplicative term in an AMMI model, min-temp = genotypic 
slope from factorial regression with minimum temperature during flowering, PR vs TL = 
genotypic contrasts for the average difference in performance between the locations Poza 
Rica and Tlaltizapán. Threshold for significance was chosen at an LOD score of 3 

We subsequently modelled the whole of the genotype × environment data by a 
mixed model with environment-specific QTLs, Model (11) and detected again a 
QTL in the region from 130 to 150 cM. The next step in a mixed-model QTL 
analysis of multi-environment data then consists of searching for environmental 
variables that can explain the differential QTL expression across environments. 
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Figure 2 shows the regression of the QTL effects on the minimum temperature 
during flowering. With increasing temperature, the QTL allele coming from the 
high-yielding, drought-susceptible parent gives less advantage. At minimum 
temperatures around 10 °C, the temperature at Tlaltizapán, the QTL allele of the 
drought-susceptible, but high-yielding parent, still confers a yield increase of around 
0.6 tons per hectare in comparison to the QTL allele from the drought-tolerant 
parent. At temperatures around 20 °C, the temperature at Poza Rica, the yield 
advantage of the QTL allele from the high-yielding parent has disappeared. 

In the Sections QTL mapping of earlier estimated curve parameters and 
Modelling genotype responses as functions of QTLs, we discussed the step-wise 
QTL analysis on estimated parameters and the mixed-model QTL analysis of multi-
environment data. Both types of QTL analyses for response curves produced similar 
conclusions for the example data. However, in general the multi-environment 
mixed-model QTL analysis would have our preference because of its more 
appropriate representation of variances and correlations and its more transparent 
statistical properties.  
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Figure 2. QTL effect at chromosome 1 as function of minimum temperature during flowering 
time 
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