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ABSTRACT 

 
This contribution proposes a methodological approach 

based on a coupled canopy-atmosphere radiative transfer 
model and a Bayesian optimization algorithm, which allows 
the use of a priori data in the retrieval. This approach was 
used to estimate LAI and leaf chlorophyll content (Cab) in 
the agricultural test site Oensingen, Switzerland, from at-
sensor radiance data of the new airborne APEX imaging 
spectrometer. The Bayesian optimization allowed having up 
to 7 free variables in the optimization. The obtained maps of 
estimated LAI and Cab values at the field level show a good 
agreement with our expectations in terms of the values 
themselves, but also their variation range and spread. 
 

Index Terms—canopy-atmosphere coupling, radiative 
transfer, Bayesian optimization, at-sensor radiance, APEX 
 

1. INTRODUCTION 
 

Leaf area index (LAI) and leaf chlorophyll content (Cab) 
are physiological variables which are related to the plant 
growth and are therefore important inputs in agricultural and 
climate models. These variables can be estimated and 
monitored by means of remote sensing. Two main 
categories of methods can be used to obtain LAI and Cab: 
empirical approaches which rely on statistical relationships 
between the remote sensing data and the variable of interest, 
and physically-based approaches which mostly rely on 
canopy radiative transfer (RT) models. The second category 
of approaches is more general because it can easily be 
adapted to different acquisition geometry, remote sensor and 
vegetation type [1]. However, the RT model has to be 
inverted to obtain the estimates of LAI and Cab. This is an 
ill-posed problem which has to be regularized by using a 
priori information and/or spatio-temporal constraints [2, 3]. 

Currently, most estimation algorithms use top-of-canopy 
(TOC) reflectance data to invert the canopy RT model. The 
pre-processing of the data from at-sensor level to TOC level, 
which includes atmospheric correction, and, eventually, 
corrections for topographic, adjacency, and directional 
effects, is a complex process and is subject to limitations. 
Indeed the corrections for each individual effect are usually 

applied independently and sequentially, which creates error 
propagation issues, and does not reflect the physical 
interactions between these effects [4]. Moreover, the main 
pre-processing step, the atmospheric correction, relies on the 
inversion of an atmospheric RT model, which creates a 
number of limitations. In practice, it is necessary to make 
assumptions about topographic, adjacency, and directional 
effects, and to interpolate between the entries of a pre-
computed look-up table [5]. 

Coupling the canopy and atmospheric RT models, one 
obtains a coupled system able to simulate the radiance of the 
vegetation as seen by the sensor [6]. It is then possible to 
directly invert this model using the at-sensor radiance data. 
The same regularization methods can be used as when 
working with TOC reflectance data, and the same inversion 
algorithms can be applied. In addition, topographic, 
adjacency, and directional effects can be included in the 
forward model, which would be more accurate than the 
successive corrections applied to obtain the TOC reflectance 
data [7]. Therefore, working directly with the radiance data 
allows reducing the pre-processing and its associated 
uncertainties. Thanks to its minimal pre-processing 
(calibration, geometric correction, ortho-rectification), using 
a coupled canopy-atmosphere approach facilitates multi-
sensor and data assimilation. 

In this contribution, we propose a methodological 
approach based on a coupled canopy-atmosphere RT model 
and a Bayesian optimization algorithm, which allows the 
use of a priori data in the retrieval. The approach is used to 
invert at-sensor radiance data of the new airborne APEX 
imaging spectrometer for retrieving the biogeophysical 
vegetation variables LAI and Cab within the agricultural test 
site Oensingen, Switzerland.  
 

2. MATERIALS 
 

The Oensingen test site is a flat agricultural area located 
in the Swiss midlands, at +47° 16’ 44” N, +7° 43’ 53” E, 
523 m above sea level (a.s.l.). The climate is temperate 
continental, with annual rainfall of 1100 mm and an average 
annual temperature of 9°C. The study area consists of large 
homogeneous and well cultivated fields of various crops.  

Data of the Airborne Prism EXperiment (APEX) 



instrument were acquired on June 25th, 2010, with north 
heading and a flight height of 5000m a.s.l., resulting in a  
2 m ground pixel size. APEX is a dispersive pushbroom 
imaging spectrometer covering the spectral region between 
380 nm and 2500 nm in 313 spectral bands with a sampling 
interval varying between 0.4 and 10nm [8, 9]. The 
radiometric calibration was applied to the raw data, resulting 
in an at-sensor radiance image.  

Extensive field measurements were carried out in five 
fields concurrently to the APEX flight: corn (Co), winter 
wheat (W), pea (P), sugar beet (S), and clover (Cl). In each 
field, four areas of about 2 m2 were chosen and 
characterized by measuring radiometric signals and 
biogeochemical canopy variables including LAI, Cab, leaf 
dry matter (Cdm) and water (Cw) content [10]. Other crop 
types in the area were bean (B), rapeseed (R), and grass (G). 
 

3. METHODS 
 

The hybrid canopy RT model Soil-Leaf-Canopy (SLC) 
[11] was coupled to the atmosphere RT model MODTRAN4 
[12]. The SLC model couples the 4SOIL soil model with the 
PROSPECT leaf model and the 4SAIL2 canopy model. The 
coupling between canopy and atmosphere has been 
implemented according to the 4-stream theory, as described 
in [7], and allows making full use of the directional 
information contained in the four canopy reflectance 
components provided by SLC. 

The variable estimation was performed for each field in 
the study area by Bayesian optimization of the coupled 
SCL-MODTRAN model. The Bayesian cost function χ is 
defined as [13]:  
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where L is the vector of simulated radiance, Lo is the vector 
of observed radiance, Co is the diagonal matrix containing 
the noise variance for each spectral band (here, the noise 
variance was taken equal to 1 [mW/(m2.sr.nm)]2 for all 
spectral bands), v is the vector of variable values, va is the 
vector of a priori variable values, and Ca is the diagonal 
matrix containing the variance of the a priori parameters.  

From the cost function, one can derive the following rule 
for updating the parameter values in of the optimization 
algorithm: 
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where J is the Jacobian matrix which contains in each 
column the derivative of the model output with respect to 
each parameter, and ΔL = (Lo - L), and µ is a damping 
factor whose initial value is zero. If the variable step leads to 
a cost increase, µ is set to one, and then multiplied by 10 
until a better point is found in the variable space.  

The starting point for each variable was the middle of its 

Table 1. Values used for the fixed SLC parameters 
Parameter W S P Co Cl B R G 
greenCs 0.05 0.05 0.05 0.2 0 0.05 0.05 0.05 
brownCab 5 µg/cm2 
brownCw 0.001 cm 
brownCdm 0.005 g/cm2 
brownCs 1 
brownN 2 
D 0 
LIDFa -0.7 0 -0.35 -0.35 0.8 1 -0.35 -.35 
LIDFb 0 -1 -0.15 -0.15 0 0 -0.15 -0.15 
Zeta 0.5 1 1 1 1 0.5 0.5 1 
Hot 0.05 0.2 0.05 0.05 0.05 0.05 0.05 0.05 
 
a priori range, except for LAI whose starting point was 2. 
Throughout the iterations, transformed variables were used 
in order to constrain the variables within their a priori range. 
The maximum number of iterations allowed was set to 10. 
The free variables in the optimization were: LAI, canopy 
cover (Cv), Cab, Cdm, leaf mesophyll parameter (N), and 
fraction of brown material in the canopy (fB) for the wheat, 
grass, and rapeseed fields. 

The optimization algorithm was applied once for each 
field in the study area, using the average signature as the 
reference signature Lo. The fields were digitized by hand, 
avoiding mixed pixels at the field boundaries. The crop type 
of each field was determined by classifying the ten first 
bands of the minimum noise fraction (MNF) image and 
taking the dominant crop as the crop type. For each crop 
type, the set of fixed parameter values (Table 1), a priori 
values (dotted lines in Fig. 1, for wheat) and parameter 
ranges (boundary values of the y axes on Fig. 1, for wheat) 
was chosen based on expert knowledge. The atmospheric 
parameters were kept constant, with rural aerosol profile, 1 
cm-1 band model, visibility of 20 km, and water column of 
2.070 g/cm2. 

 
4. RESULTS AND DISCUSSION 

 
The Bayesian optimization converges to a stable solution 

in usually less than five iterations, as can be seen on Fig. 1, 
which presents the variation of the variables through the 
iteration steps for a winter field (id = 6).  

The total cost χ consists almost entirely of the part of the 
cost due to mismatch between the simulation and the 
observed APEX radiance signature (model cost). Its high 
values (e.g. final value of 900) are due to the very high 
number of bands. The part of the cost due to the difference 
between the current variable values and the a priori values 
(apriori cost) is several orders of magnitude smaller than the 
model cost. Therefore, the a priori has virtually no influence 
on the optimization process, which is then almost entirely 
controlled by the radiometric match between model 
simulation and APEX data. The variations of the N 
parameter to the minimum and then to the maximum value 
shows that the variable transformation is an effective means 
of constraining the variables in their a priori ranges. The 
damping factor µ can be seen as an indicator of the degree 



 
Figure 1. Variation of the costs, variables, and damping 

factor through the optimization process 
 for a winter wheat field (id = 6).  

 
of linearity of the model: the smaller the µ value, the more 
linear the model. A value of 10-1 indicates that no damping 
was used, as is the case in the first iterations. 
The estimated values for the variables are the values 
obtained at the last iteration. For the winter wheat field used 
in Fig. 1, LAI was well estimated, whereas the estimates of 
Cab, Cdm, and Cw were less good. This may be due to the 
quality of the lab measurements, as the leaves may dry 
between the field and the lab, and coefficients for specific 
transfer functions applied to the SPAD measurements were 
taken from past field campaigns in France. The canopy 
cover was constrained in a realistic range, and the estimated 
value for fB is also plausible, as the wheat was very mature, 
with some brown leaves in the canopy and well-developed 
wheat ears. In addition, a value of 1.2 for the N parameter is 
common for leaves of monocot plants. 

The final simulated radiance signature for the winter 
wheat field (id = 6) is presented in Fig. 2, as well as the 
spectral profile of the absolute error. As can be seen on the 
plots, the Bayesian optimization achieved a very good 

 
Figure 2. Optimized simulation and final absolute error  

for the winter wheat field (id = 6.) 
 
match with the APEX radiance signature, especially in the 
SWIR region (absolute error smaller than  
2 mW/(m2.sr.nm)). A small discrepancy remained in the 
blue region, maybe due to atmospheric parameters. The 
highest errors remain in the NIR region, with values up to  
± 15 mW/(m2.sr.nm). This may be due to minor spectral 
shifts in the APEX data and to the spiky nature of the 
radiance curve in this domain due to atmospheric absorption 
features. These two factors combined can cause significant 
differences when convolving the simulated radiance (1 nm 
resolution) with the APEX spectral bands [14]. 
The map of the crop types used for selecting the a priori data 
to use in the Bayesian optimization is presented on the left 
of Fig 3. It was obtained by selecting the dominant crop for 
each field, based on the pixel-based maximum likelihood 
classification of the first ten bands of MNF image. Bands  
5-10 of the MNF image, however, had visible striping in the 
along-track direction, which caused visible vertical patterns 
in the pixel-based classification. This may have decreased 
the accuracy of the crop type selected for each field, and 
therefore the quality of the a priori data used in the Bayesian 
optimization. This can have very negative effect on the 
accuracy on the estimates, especially when a crop with a 
different leaf inclination distribution function (LIDF) has 
been selected. 

The maps of the estimates of LAI and Cab obtained 
through the Bayesian optimization of all the fields in the 
study area are presented in the middle and right part of Fig. 
3. For both variables, a very large range of values is present 
on the map, including very high LAI values above 6, mostly 
for winter wheat fields, but also grass and beans for 



 
Figure 3. Maps of crop type, estimated LAI and Cab for the fields in the study area  

(raw image coordinates, north is to the top of the maps) 
 
example. This shows the capacity of the estimation set-up to
estimate very high LAI values. The Cab of a majority of 
fields was estimated between 20 and 50 µg/cm2, which 
corresponds to the values usually found in the literature. 
 

5. CONCLUSION 
 
This study showed that the coupled SLC-MODTRAN 

model is able to simulate crop vegetation canopies. The 
Bayesian optimization of the coupled model was able to 
provide estimates for up to 7 free variables, including LAI 
and Cab. The maps of the estimates of LAI and Cab show a 
good coverage of the expected range for these parameters. 
Choosing appropriate values for the fixed parameters, 
especially the LIDFa and LIDFb parameters, is essential for 
accurate estimation of LAI, Cab and the other free variables. 
Based on the field results presented here, further research 
will focus on estimating LAI and Cab at the pixel level. 
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