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ABSTRACT: A methodology is presented for determining the probability of dikes failing due to uplifting and 
piping using directional sampling. The study concerns one dike section in the lower river area of The Nether­
lands. For this dike section, the three most important random quantities are: the North-Sea water level, the 
river Rhine discharge, and the critica! head (n theevent of uplifting and piping. Dike failure due to uplifting 
and piping is defined as the event in which the resistance (the critica! head) drops below the stress (the outer 
water level, a combination of both sea level and river discharge, minus the inner water level). Since the criti­
cal head is correlated over the length of a dike, the spatial variation and correlation is modelled using a Mark­
ovian dependency structure. Three-dimensional directional sampling on the basis of the polar coordinates of 
the sea water level, the river discharge, and the critica! head is used to determine the failure probability. 

1 INTRODUCTION 

The aim of the paper is deterrnining the probability 
of dikes failing due to uplifting and pi ping. Uplifting 
occurs when the covering layer of a dike bursts due 
to the high water pressure, whereas piping under 
dikes occurs due to the entrainment of soil particles 
by the erosive action of seepage flow. 

This study concerns one dike section of the dike 
ring Hoeksche Waard (dike section 13.1), which is 
situated in the lower river area of The Netherlands. 
The three most important random quantities repre­
senting inherent uncertainties are: the North-Sea 
water level, the river Rhine discharge, and the criti­
cal head in the event of uplifting and piping. In this 
situation, dike failure due to uplifting and piping is 
defined as the event in which the resistance (the 
critica! head) drops below the stress (the outer water 
level, a combination of both sea level and river dis­
charge, minus the inner water level). The statistica! 
uncertainties represent the uncertainties in the pa­
rameters of the probability distributions of the sea 
water leveland the river discharge. 

Since the critica! head is correlated over the 
length of a dike section, the spatial variation and cor­
relation of the critica! head in the event of uplifting 
and piping is modelled using a Markovian depend­
ency structure. This means that the random quanti­
ties representing the inherent uncertainties in the 
critica! head of one dike subsection only depend on 
the values of the corresponding random quantities in 
the two adjacent dike subsections. 

The probabilities of failure due to uplifting and 
piping are calculated in three steps. 

First, a dike section is subdivided into smaller 
subsections by assuming the limit-state function of 
uplifting and piping to be a Gaussian stationary 
process and using the theory of the level-crossing 
problem. 

Second, the failure probabilities of one dike sub­
section and two adjacent dike subsections are calcu­
lated using directional simulation. 

Third, the failure probability of one dike section 
is determined by approximating the Gaussian sta­
tionary process by a Markov process with respect to 
failure of dike subsections. 

Three-dimensional directional sampling is used to 
determine the probability of failure due to uplifting 
and piping. An advantage of three-dimensional di­
rectional sampling is that large sample sizes are not 
required. The results of directional sampling are 
compared to the results of First Order Reliability 
Method (FORM). 

The outline of the paper is as follows. The limit­
state functions of uplifting and pi ping are introduced 
in Section 2. The rnadelling of the spatial correlation 
and variation of the critica! head for uplifting and 
piping, as well as determining the failure probability 
of a dike ring (series system of dike subsections) is 
studied in Section 3. The directional sampling tech­
nique, which is used to obtain the probability of fail ­
ure due to uplifting and piping, is presented in Sec­
tion 4. Results and conclusions can be found in the 
last section. 
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2 FAILURE DUE TO UPLIFTING AND PIPING 

Uplifting occurs when the covering layer of a dike 
bursts, due to the high water pressure, whereas pip­
ing under dikes occurs due to the entrainment of soil 
particles by the erosive action of seepage flow. The 
limit-state function of uplifting and piping is given 
by (see also Figure 1) 

Z = Hup -Mh(H +M, - Hb) (1) 

and 

Hup = max{MuHu,M PHP) 

with 

H = outer water level [m +NAP], 
Hb = inner water level [m +NAP], 
Hp = critica! head in theevent of pi ping [m], 
Hu = critica! head in the eventof uplifting [m], 
Hup = critica! head for uplifting and piping [m], 
Mh = model factor water level [-], 
Mp = model factor pi ping [-], 
Mu = model factor uplifting [-], 

(2) 

M, = model factor water-flow model ZWENDL [m]. 

The two critica! heads Hu and Hp are functions of the 
following random quantities: the volume weights of 
sand and water; the angular rolling friction; the con­
stant of White; the sizes of sand particles; the per­
meability; the thickness of the co vering layer and the 
sand layer; and the dike width. These random quan­
tities are independent, lognormally distributed, and 
represent inherent uncertainties in the critica! head 
and are correlated over the length of the dike on the 
basis of the quadratic exponential correlation func­
tion in Eq. (3). 

The probability distribution of the outer water 
level H is a mixture of both the probability distribu­
tion of the North-Sea water level at Hoek of Hol­
land, denoted by S [m +NAP], and the probability 
distribution of the river Rhine discharge at Lobith, 
denoted by Q [m3/s]. The further down the river, the 
more the sea water level S affects the local water 
level H, and the less the river discharge Q affects the 
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F1gure I. Cross-sectiOn of a d1ke. 

local water level H. Given a particular sea water 
level and a particular river discharge, the down­
stream water level can be obtained with the one­
dimensional water-flow model ZWENDL. On the basis 
of ZWENDL calculations, the local water level H has 
been approximated by a bilinear function of the sea 
water levelS and the river discharge Q. 

The probability distribution of the annual maxi­
mum sea water level is a generalized Pareto distri­
bution, whereas the probability distribution of the 
annual maximum river discharge is a piecewise ex­
ponential distribution. Besides the inherent uncer­
tainties, the uncertainties in the statistica! parameters 
of these two probability distributions are taken into 
acount. 

The subject of study is the probability of dike 
faiture due to uplifting and piping per two days. 
Therefore, the probability distributions of annual 
maximal sea level and discharge must be trans­
formed to probability distributions of maxima over 
two days. These transformed random quantities are 
denoted by S2days and Q2days. respectively, and they 
are independent. 

The other random quantities are distributed as 
follows. The inner water level Hb and the model 
factor of the water-flow model M, have a normal 
distribution; the model factor for uplifting Mu and 
the model factor for piping Mp have a lognormal 
distribution; and the model factor of the water level 
Mh has a beta distribution. The two critica! heads for 
uplifting and piping, the outer and inner water level, 
and the four model factors are mutually independent. 

For further details about the probability distribu­
tion representing inherent and statistica! uncertain­
ties, we refer to Cooke & Van Noortwijk (1998). 

3 SPATIALCORRELATION AND VARlATION 

In order to model the spatial variation and correla­
tion of the random quantities representing the inher­
ent uncertainties in the critica! head, Vrouwenvelder 
(1993, Chapter 2) used the quadratic exponential 
correlation function 

p(x) = exp(- [; J) , (3) 

where p(x) is the product moment correlation, x is 
the distance between the two points at which the sto­
chastic process is studied [m], and dx is the fluctua­
tion scale [m]. The fluctuation scale represents the 
spatial variation: the larger the fluctuation scale, the 
less spatial variation, and the larger the correlation 
coefficient. The parameters used to model the spatial 
variation can be found in Cooke & Van Noortwijk 
(1998). 

The failure probability of a dike section can be 
approximated by regarding a dike section as a 
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(series) system of smaller dike subsections. Depend­
encies between failure events of the dike subsections 
can then be modelled on the basis of a Markovian 
dependency structure. For rnadelling the spatial 
variation, this means that the random quantltles m 
one dike subsection only depend on the values of the 
corresponding random quantities in the two adjacent 
dike subsections. The question arises how a dike 
section can best be subdivided into smaller subsec­
tions of length x* and which value of the fluctuation 
scale dx should be chosen. In this subsection, we pre­
sent a methodology to obtain both the dike subsec­
tion length and the fluctuation scale. 

On the one hand, we assume the limit-state func­
tion of uplifting and pi ping to be a Gaussian station­
ary process and we use the theory of the so-called 
level-crossing problem [see, e.g., Vrouwenvelder 
(1993), Papoulis (1965, Chapter 14), and KarJin & 
Taylor (1975, Chapter 9)]. On the other hand, we 
approximate this Gaussian stationary process by a 
Markov process. • 

The level-crossing problem reads as follows. Let 
a Gaussian stationary process Z(x) be given with 
mean 0, standard deviation 1, and correlation func­
tion p(x), where x is the distance between the two 
points at which the stochastic process is studied [m]. 
The correlation function must satisfy p"(O) < = . An 
upper bound for the probability of exceeding the 
level f3 in a dike subsection of x metres can be writ­
ten as 

p(x) = ~exp{-1?:_}~- p"(O). 
2n 2 

(4) 

The smaller x, the better this upper bound can be 
used as an approximation. For the quadratic expo­
nential correlation function, Eq. (3) transfarms into 

p(x) = .fi exp{-J?:_}~ . 
2n 2 dx 

(5) 

According to Vrouwenvelder (1993), we can choose 
the length of the dike subsection, denoted by x*, as 
such that the corresponding probability of ex­
ceedence p(x*) equals ct>( -/3): 

1 { f3 2
} p(x*) =ci>(-/3)"' ~exp -- (6) 

f3...;2n 2 

or, similarly, 

• dx.Jii x=--
/3 . 

(7) 

The approximation for ct>(-/3) in Eq. (6) can only be 
applied when f3 > 2. For example, by using direc­
tional simulation, the f3 for one subsection of dike 
section 13.1 has the value (see Section 4) 

13 = -ct> -• (1.65 w-6 ) = 4.65. (8) 

On the basis of the quadratic exponential correla­
tion functions of the random quantities representing 
the inherent uncertainties in the critica! head, the 
fluctuation scale dx of the limit-state function or 
process Z(x) remains to be determined. 

A dike subsection is assumed to have a length of 
x* metres. Standard Monte Carlo simulation canthen 
be used to calculate the correlation coefficient of 
Z(x*) and Z(2x*), denoted by p(x*). According to the 
quadratic exponential correlation function, the corre­
lation coefficient p(x*) equals 

p(x*) = exp( - [ ~~ J) (9) 

or 

x* 
d = . 

x ~-!n(p(x* )) 
(10) 

Using f3 = 4.65, substitution of (7) into (9) results in 

p(x*) =exp{- ; 2 }=0.86. (11) 

The subsection length x* satisfyfng Eq. (11) can be 
determined with the aid of the following Picard it­
eration process: 

x;Jii -
X:., = /3~- !n(p(x;)), n - 1,2,3, ... , 

(12) 

where x; is the initia! estimate. 
The subsection length x* can now be determined 

in the following seven steps: 
First, we calculate the probability of failure due to 

uplifting and pi ping of the first dike subsection using 
directional simulation (see Section 4) and substitute 
the resulting f3 into Eq. (12). 

Second, we sample from the probability distribu­
tions of the outer water level (a bilinear function of 
the sea water leveland the river discharge), the inner 
water level, and the four model factors using stan­
dard Monte Carlo sampling. These random quanti­
ties do not depend on the dike subsection studied. 

Third, we make an initia! estimate of the subsec­
tion length x*. 

Fourth, we sample from the (lognormal) distribu­
tions representing the inherent uncertainties in the 
critica! head of the first dike subsection and we cal­
culate the corresponding samples of the critica! head 
for uplifting and piping denoted by Hupl· 

Fifth, we sample from the conditionat 
(lognormal) distributions representing the inherent 
uncertainties in the critica! head of the second dike 
subsection given the corresponding samples of the 
first dike subsection and we calculate the corre­
sponding values of the critica! head for uphftmg and 
piping denoted by Hup2. Reeall that for all mherent 
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uncertainties in the critica! head, the correlation be­
tween the first and second dike subsection is defined 
by a quadratic exponential correlation function at the 
value x' . 

Sixth, we estimate the sample correlation coeffi­
cient p(x') on the basis of the Monte Carlo samples 
of Z(x') and Z(2x'), and substitute it into Eq. (12). 

Seventh, we determine a new estimate of the sub­
section length x' using Eq. (12). 

As long as the (n+ 1)-th estimate of x' differs from 
the n-th estimate, we repeat steps 5-7. For dike sec­
tion 13.1, the Picard iteration process results in sub­
section length x*= 50 metres. For convenience, the 
subsection length is rounded off to units of 5 metres. 

Probability plots of the Monte Carlo samples of 
Hupt and Hup2 give evidence of lognormally distrib­
uted critica! heads. Therefore, lognormal distribu­
tions can be fitted to the critica! heads for the first 
and second dike subsection. Also the critica! head 
for the combination of the first and second dike sub­
section, denoted by 

Hupl2 =min{Hupl'Hup2), (13) 

appears to be lognormally distributed. For further 
details about the parameters of these lognormal dis­
tributions, we refer to Cooke & Van Noortwijk 
(1998). 

Given the subsection length, the probabilities of 
failure due to uplifting and pi ping must be calculated 
both for one dike subsection separately and for two 
adjacent dike subsections combined. On the basis of 
these two probabilities, the probability of failure for 
a (series) system of dike subsections can be ap­
proximated by regarding the failure of dike subsec­
tions as a Markov process. In mathematica! terms, 
the probability of failure of a dike section of length I, 
denoted by p(l), can now be written as a function of 
the failure probability of one subsection p(x') and the 
failure probability of two adjacent subsections p(2x') 
in the following manner: 

p(l) = 1- Pr{no failure # 1}x 

x[Pr{nofailure#2lnofailure#1}]u'x">-t = (14) 

[1- p(2x')]CI'x">-t 
= 1 . , 

[1- p(x')](llx )-2 

where Pr{failure #i} denotes the probability of fail­
ure in the i-th dike subsection. By applying Eq. (14), 
the probability of failure of a dike section can be 
easily computed. 

4 DIRECTIONAL SIMULATION 

The aim of this section is to calculate the probabili­
ties of dike failure due to uplifting and piping both 
for one subsection separately and for two adjacent 
subsections combined. In calculating these failure 

probabilities using standard Monte Carlo simulation, 
the problem arises that there are not enough samples 
in the failure region to obtain reliable results. To 
speed up Monte Carlo simulation, we use directional 
sampling. 

Roughly speaking, directional simulation means 
the following. Rather than sampling straight from 
the probability distributions of the sea water level S, 
the river discharge Q, and the critica] head Hup, we 
sample the directional angle and the directional ra­
dius in the (s, q, hup)-p!ain. This pays off when we 
have the fortune of being able to calculate the condi­
tional probability that the length of the radius be­
Jongs to the failure region in explicit form. For ex­
ample, when n random quantities have a multivariate 
normal distribution it is well-known that the condi­
tional distribution of the squared radius, when the 
value of the directional vector is given, is a chi­
square distribution with n degrees of freedom (see 
Ditlevsen & Madsen, 1996, Chapter 9). 

The number of random quantities employed in the 
directional sampling program have been reduced to 
three on the basis of graphical steering. Cooke & 
Van Noortwijk (1999) visualised the effects of the 
residual random quantities using scatter plots. Using 
these plots they argued that the most important ran­
dom quantities are the river discharge, the sea water 
level, and the critica] head. 

In order to calculate the probability of failure due 
to uplifting and piping, we now apply directional 
simulation to three standard exponentially distrib­
uted random quantities that are statistically inde­
pendent. The reason for this is that we can easily 
transfarm the river discharge Q2days' the sea water 
level S2days• and the critica! head in the event of up­
lifting and pi ping Hup to three standard exponentially 
distributed random quantities. This can be achieved 
by applying the transformation 

FQ,.,,, (q) = exp{-x}, 

F5, .,, , (s) = exp{-y}, 

FH,, (h) = exp{-w}, 

or, equivalently, 

x= -ln(~2d"'' (q)) = rsin(8)sin(lf!), 

y = -ln(fs (s)) = rcos(8)sin(lf!), 
2d.ayJ 

w = -ln(FH,., (h)) = rcos(lf!) , 

(15) 

(16) 

where ris the directional radius, and 8 and 1f! are the 
directional angles. Since the random quantities 
Qzdays. S2days, and Hup are independent, the standard 
exponentially distributed random quantities X, Y, and 
Ware also independent. Hence, since the Jacobian of 
transformation (16) equals r2sin(1f!), the joint prob­
ability density function of the directional coordinates 
(R,8 ,'I') can be written as 

1168 

!R.e.'l' (r ,8 ,1/f) = r 2 sin(lf!)exp{ -g(8 ,1jf)r) x 

X l ro.-) (r)lro.n/2] (8)/ro.n/2] (1/f), 
(17) 

with 

g(8 , 1/f) = sin(8) sin(lf!) +cos(8)sin(lf!) + cos(lf!), (18) 

where IA(x) = 1 if x E A and IA(x) = 0 if x e A for 
every set A. Accordingly, the joint probability den­
sity function of 8 and 'I' becomes 

2sin(1f!) 
f e.'l'(8 ,1jf) = [g(8 ,1jf)]3 / [O.n/2](8)/[0.n/2 ](1/f) · (19) 

From the probability density function of the ran­
dom vector (R,8,'I'), and the probability density 
function of the random vector (8,'!'), the conditional 
probability density function of R for fixed values of 
8 and 'I' writes as 

fR]e.'l'(rl8,1jf)= 

[g(8 ;1f!)]3 r 2 exp{-g(8, 1f!)r}I10.-> (r) 
(20) 

with cumuialive distribution function 

FR]e.'l' (r I 8 ,1/f) = 

( 
[ (8 )r]2 Î (21) 

=1- 1+g(8,1jf)r+ g ·: txp{-g(8,1jf)r) . 

The conditional distri bution of R when (8,'!') = 
(8,1/f) is given, can be recognised as a gamma distri­
bution with shape parameter 3 and scale parameter 
g(8,1f!). Given the value of (8,'!'), the probability of 
failure can now be written as 

Pr{R > r' (8 ,1jf) I 8 =8, 'I' =ljf) = 

= 1- FR]9.'l' (r' (8 ,1/f) I 8, 1/f), 
(22) 

where r*( 8, lf!) is the zero of the limit-state function 
z(q,s,h) described inSection 2: 

z( ~~~,, (exp{ - r ' (8, lf!) sin(8) sin(lf!)} ), 

fs-1 (exp{-r' (8,1jf)cos(8)sin(lj!)}), (23) 
2days 

F';/ (exp{-r' (8 ,1jf)cos(1j!)})) = 0. 
"' 

Unfortunately, the zero r'(8,1f!) cannot be obtained in 
explicit form and has to be determined numerically. 

In order to sample values of (8,'!'), both the 
marginal probability density function of 8 and the 
conditional probability density function of 'I', when 
the value 8 = 8 is given, remain to be determined. 
After some algebra, the marginal probability density 
function of 8 can be written as 

n/2 2sin(1jf) 
f e (8) = J 3 /[O.n/2 ](8) dljf = 

Vf=O [g(8,1j!)] 

-f 2 tan(lj!) _ ___ .:..:..._:_-:;-3 lro n/2] (8) d tan(lj!)-
tan(Vf )=O [v(8) tan(lj!) + 1] · 

__ 110."121(8) . 2v(8) tan(lj!) + 1~-
- [v(8)]2 [v(8) tan(lj!) + 1]2 tan(IJI)=O 

1 
= [v(8 )]2 lro.n/21(8), 

where 

v(8) = sin(8) + cos(8) 

with cumuialive distribution function 

1 
F9 (8)=1 - ---

1 + tan(8) 

(24) 

(25) 

(26) 

Accordingy, the conditional probability density 
function of 'I' when the value 8 = 8 is given follows 
from Eqs. (19) and (24) : 

2 sin(lf!)[ v(8)]2 
f'l']e(lf! 18) = [g(8 ,1f!)f /[O.n /;](1/f) 

with cumuialive distribution function 

F'l'le (lf! I 8) = fe ~8) ife.'l' (8 ,iif) diif = 

_ 1 _ 2v(8) tan(lf!) + 1 
- [v(8)tan(1j!)+1]2 · 

(27) 

(28) 

Let P 1 and P2 be independent and standard uni­
formly distributed random quantities, then values of 
the random vector (8,'!') can be generaled as fol­
lows: 

8 = arctan(__!i_J , 
1- Pt 

[ 1 ..;p;J 1f! = arctan · --- . 
[sin(8)+cos(8)] 1-..jp; 

(29) 

Note that for two-dimensional directional sam­
pling, the probability density function of ~he direc­
tional angle 8 is also Eq. (24). The conditwnal dis­
tribution of the directional radius R, when the 
directional angle 8 is given, is a gamma distri bution 
with shape parameter 2 and scale parameter v( (]) . 

5 RESULTS AND CONCLUSIONS 

In this section, the results are presented for dike 
section 13.1 of the Dutch dike ring the Hoeksche 
Waard. The probability of dike failure due to uplift­
ing and piping per two days can be calculated usmg 
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Directienar sampling lor dike sectien 13.1 

~ 
~ 

1 o·7o.'---=o'=".2--='o.':-4 --::-o.6:---o:':.8:---7, ---:,':-.2--71.':-4 -:",.6:-----:':,.8:--~ 
Number of samples x 1 o• 

Figure 2. The probability of failure of one subsection ('PO I ') 
and two subsections ('P12') of dike section 13.! determined on 
the basis of 20,000 samples using three-dimensional directional 
sampling. 

directional sampling on the basis of the sea water 
level, the river discharge, and the critica! head in the 
eventof uplifting and pi ping. 

Furtherrnore, the spatial varlation and correlation 
of the critica! head in the event of uplifting and pip­
ing can be modelled using a Markovian dependency 
structure. This means that the random quantities, 
representing the inherent uncertainties in the critica! 
head, of one dike subsectien only depend on the val­
ues of the corresponding random quantities in the 
two adjacent dike subsections. 

The results of the three-dimensional directional 
simuiatien (on the basis of 20,000 samples) and the 
subsequent dike ring reliability calculations are as 
follows: 

• the expected probability of failure due to uplifting 
and piping of one subsectien of length x*= 50 
metres is p(x*) = 1.65 10'6; 

• the expected probability of failure due to uplifting 
and piping of two adjacent subsections is 
p(2x*) = 2.76 10'6; 

• since the length of dike section 13.1 is l = 100 
metres, the expected probability of failure due to 
uplifting and piping of the dike section 13.1 
p(l) = 2.76 10·6 (note that if dike section 13.1 
would be 1,000 metres of length, Eq. (14) would 
lead to a failure probability of 2.27 10·\ 

The iteration process which resulted in this failure 
probability is shown in Figure 2. It clearly illustrates 
how fast the three-dimensional directional sirnula­
tien converges! The advantage of three-dimensional 
directional sampling is that large sample sizes .are 
not required (sample sizes of about 20,000 samples 
already supply satisfactory results). The directional 
simuiatien results above have been compared to re­
sults obtained using First Order Reliability Method. 

According to Vrouwenvelder (1998), FORM results 
in a probability of failure due to uplifting and pi ping 
of 2.1 10·6. Hence, both results are quite close to 
each other. 
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