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ABSTRACT: A methodology is presented for determining the probability of dikes failing due to uplifting and
piping using directional sampling. The study concerns one dike section in the lower river area of The Nether-
lands. For this dike section, the three most important random quantities are: the North-Sea water level, the
river Rhine discharge, and the critical head in the event of uplifting and piping. Dike failure due to uplifting
and piping is defined as the event in which the resistance (the critical head) drops below the stress (the outer
water level, a combination of both sea level and river discharge, minus the inner water level). Since the criti-
cal head is correlated over the length of a dike, the spatial variation and correlation is modelled using a Mark-
ovian dependency structure. Three-dimensional directional sampling on the basis of the polar coordinates of

the sea water level, the river discharge, and the critical head is used to determine the failure probability.

1 INTRODUCTION

The aim of the paper is determining the probability
of dikes failing due to uplifting and piping. Uplifting
occurs when the covering layer of a dike bursts due
to the high water pressure, whereas piping under
dikes occurs due to the entrainment of soil particles
by the erosive action of seepage flow.

This study concerns one dike section of the dike
ring Hoeksche Waard (dike section 13.1), which is
situated in the lower river area of The Netherlands.
The three most important random quantities repre-
senting inherent uncertainties are: the North-Sea
water level, the river Rhine discharge, and the criti-
cal head in the event of uplifting and piping. In this
situation, dike failure due to uplifting and piping is
defined as the event in which the resistance (the
critical head) drops below the stress (the outer water
level, a combination of both sea level and river dis-
charge, minus the inner water level). The statistical
uncertainties represent the uncertainties in the pa-
rameters of the probability distributions of the sea
water level and the river discharge.

Since the critical head is correlated over the
length of a dike section, the spatial variation and cor-
relation of the critical head in the event of uplifting
and piping is modelled using a Markovian depend-
ency structure. This means that the random quanti-
ties representing the inherent uncertainties in the
critical head of one dike subsection only depend on
the values of the corresponding random quantities in
the two adjacent dike subsections.

/

The probabilities of failure due to uplifting and
piping are calculated in three steps.

First, a dike section is subdivided into smaller
subsections by assuming the limit-state function of
uplifting and piping to be a Gaussian stationary
process and using the theory of the level-crossing
problem.

Second, the failure probabilities of one dike sub-
section and two adjacent dike subsections are calcu-
lated using directional simulation.

Third, the failure probability of one dike section
is determined by approximating the Gaussian sta-
tionary process by a Markov process with respect to

. failure of dike subsections.

Three-dimensional directional sampling is used to
determine the probability of failure due to uplifting
and piping. An advantage of three-dimensional di-
rectional sampling is that large sample sizes are not
required. The results of directional sampling are
compared to the results of First Order Reliability
Method (FORM).

The outline of the paper is as follows. The limit-
state functions of uplifting and piping are introduced
in Section 2. The modelling of the spatial correlation
and variation of the critical head for uplifting and
piping, as well as determining the failure probability
of a dike ring (series system of dike subsections) is
studied in Section 3. The directional sampling tech-
nique, which is used to obtain the probability of fail-
ure due to uplifting and piping, is presented in Sec-
tion 4. Results and conclusions can be found in the
last section.
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2 FAILURE DUE TO UPLIFTING AND PIPING

Uplifting occurs when the covering layer of a dike
bursts, due to the high water pressure, whereas pip-
ing under dikes occurs due to the entrainment of soil
particles by the erosive action of seepage flow. The
limit-state function of uplifting and piping is given
by (see also Figure 1)

Z=H,-M,(H+M,-H,) (1)
and

H,=max{M H, M H,} 2)
with

H = outer water level [m +NAP],

H, = inner water level [m +NAP],

H, = critical head in the event of piping [m],

H, = critical head in the event of uplifting [m],

H,, = critical head for uplifting and piping [m],

M, = model factor water level [-],

M, = model factor piping [-],

M, = model factor uplifting [-],

M, = model factor water-flow model ZWENDL [m].

The two critical heads H, and H, are functions of the
following random quantities: the volume weights of
sand and water; the angular rolling friction; the con-
stant of White; the sizes of sand particles; the per-
meability; the thickness of the covering layer and the
sand layer; and the dike width. These random quan-
tities are independent, lognormally distributed, and
represent inherent uncertainties in the critical head
and are correlated over the length of the dike on the
basis of the quadratic exponential correlation func-
tion in Eq. (3).

The probability distribution of the outer water
level H is a mixture of both the probability distribu-
tion of the North-Sea water level at Hoek of Hol-
land, denoted by S [m +NAP], and the probability
distribution of the river Rhine discharge at Lobith,
denoted by Q [m>/s]. The further down the river, the
more the sea water level S affects the local water
level H, and the less the river discharge Q affects the

Figure 1. Cross-section of a dike.

local water level H. Given a particular sea water
level and a particular river discharge, the down-
stream water level can be obtained with the one-
dimensional water-flow model ZWENDL. On the basis
of ZWENDL calculations, the local water level H has
been approximated by a bilinear function of the sea
water level S and the river discharge Q.

The probability distribution of the annual maxi-
mum sea water level is a generalized Pareto distri-
bution, whereas the probability distribution of the
annual maximum river discharge is a piecewise ex-
ponential distribution. Besides the inherent uncer-
tainties, the uncertainties in the statistical parameters
of these two probability distributions are taken into
acount.

The subject of study is the probability of dike
failure due to uplifting and piping per two days.
Therefore, the probability distributions of annual
maximal sea level and discharge must be trans-
formed to probability distributions of maxima over
two days. These transformed random quantities are
denoted by Sadays and Qaaays, respectively, and they
are independent.

The other random quantities are distributed as
follows. The inner water level H, and the model
factor of the water-flow model M, have a normal
distribution; the model factor for uplifting M, and
the model factor for piping M, have a lognormal
distribution; and the model factor of the water level
M}, has a beta distribution. The two critical heads for
uplifting and piping, the outer and inner water level,
and the four model factors are mutually independent.

For further details about the probability distribu-
tion representing inherent and statistical uncertain-
ties, we refer to Cooke & Van Noortwijk (1998).

3 SPATIAL CORRELATION AND VARIATION

In order to model the spatial variation and correla-
tion of the random quantities representing the inher-
ent uncertainties in the critical head, Vrouwenvelder
(1993, Chapter 2) used the quadratic exponential
correlation function

p(x) =exp{—{di:' }, (3)

where p(x) is the product moment correlation, x is
the distance between the two points at which the sto-
chastic process is studied [m], and d, is the fluctua-
tion scale [m]. The fluctuation scale represents the
spatial variation: the larger the fluctuation scale, the
less spatial variation, and the larger the correlation
coefficient. The parameters used to model the spatial
variation can be found in Cooke & Van Noortwijk
(1998).

The failure probability of a dike section can be
approximated by regarding a dike section as a
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(series) system of smaller dike subsections. Depend-
encies between failure events of the dike subsections
can then be modelled on the basis of a Markovian
dependency structure. For modelling the spatial
variation, this means that the random quantities in
one dike subsection only depend on the values of the
corresponding random quantities in the two adjacent
dike subsections. The question arises how a dike
section can best be subdivided into smaller subsec-
tions of length x* and which value of the fluctuation
scale d, should be chosen. In this subsection, we pre-
sent a methodology to obtain both the dike subsec-
tion length and the fluctuation scale.

On the one hand, we assume the limit-state func-
tion of uplifting and piping to be a Gaussian station-
ary process and we use the theory of the so-called
level-crossing problem [see, e.g., Vrouwenvelder
(1993), Papoulis (1965, Chapter 14), and Karlin &
Taylor (1975, Chapter 9)]. On the other hand, we
approximate this Gaussian stationary process by a
Markov process. i

The level-crossing problem reads as follows. Let
a Gaussian stationary process Z(x) be given with
mean 0, standard deviation 1, and correlation func-
tion p(x), where x is the distance between the two
points at which the stochastic process is studied [m].
The correlation function must satisfy p”(0) <eo. An
upper bound for the probability of exceeding the
level B in a dike subsection of x metres can be writ-
ten as

_x ) B 4
p(x)—meXP{ 5 }\/ p"(0). @)

The smaller x, the better this upper bound can be
used as an approximation. For the quadratic expo-
nential correlation function, Eq. (3) transforms into

V2 B*| x
p(x) == 2 {2 5
) 21 GXP{ 2 |d -’ ©)

b 1

According to Vrouwenvelder (1993), we can choose
the length of the dike subsection, denoted by x', as
such that the corresponding probability of ex-
ceedence p(x") equals @(—p):

. 1 B
= = =~ — 6
p(x")=@(-p) N GXP{ 2 } (6)
or, similarly,
dm
i it iy (@)
i

The approximation for ®@(—f) in Eq. (6) can only be
applied when > 2. For example, by using direc-
tional simulation, the 8 for one subsection of dike
section 13.1 has the value (see Section 4)

B=-®"(1.6510°)=4.65. (8)

On the basis of the quadratic exponential correla-
tion functions of the random quantities representing
the inherent uncertainties in the critical head, the
fluctuation scale d, of the limit-state function or
process Z(x) remains to be determined.

A dike subsection is assumed to have a length of
x* metres. Standard Monte Carlo simulation can then
be used to calculate the correlation coefficient of
Z(x") and Z(2x"), denoted by p(x"). According to the
quadratic exponential correlation function, the corre-
lation coefficient p(x") equals

p() =exp{—{ﬂ } ©)

or
P (10)

* (G

Using = 4.65, substitution of (7) into (9) results in
. T
p(x )=exp{—F}:0.86. (11)

The subsection length x* satisfying Eq. (11) can be
determined with the aid of the following Picard it-
eration process:

xrwl & ¥ ’
B+—1n(p(x,))

where x; is the initial estimate.

The subsection length x* can now be determined
in the following seven steps:

First, we calculate the probability of failure due to
uplifting and piping of the first dike subsection using
directional simulation (see Section 4) and substitute
the resulting 8 into Eq. (12).

Second, we sample from the probability distribu-
tions of the outer water level (a bilinear function of
the sea water level and the river discharge), the inner
water level, and the four model factors using stan-
dard Monte Carlo sampling. These random quanti-
ties do not depend on the dike subsection studied.

Third, we make an initial estimate of the subsec-
tion length x".

Fourth, we sample from the (lognormal) distribu-
tions representing the inherent uncertainties in the
critical head of the first dike subsection and we cal-
culate the corresponding samples of the critical head
for uplifting and piping denoted by Hyp1.

Fifth, we sample from the conditional
(lognormal) distributions representing the inherent
uncertainties in the critical head of the second dike
subsection given the corresponding samples of the
first dike subsection and we calculate the corre-
sponding values of the critical head for uplifting and
piping denoted by H,. Recall that for all inherent

2 n=123,.., (12)
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uncertainties in the critical head, the correlation be-
tween the first and second dike subsection is defined
by a quadratic exponential correlation function at the
value x".

Sixth, we estimate the sample correlation coeffi-
cient p(x") on the basis of the Monte Carlo samples
of Z(x") and Z(2x"), and substitute it into Eq. (12).

Seventh, we determine a new estimate of the sub-
section length x* using Eq. (12).

As long as the (n+1)-th estimate of x differs from
the n-th estimate, we repeat steps 5-7. For dike sec-
tion 13.1, the Picard iteration process results in sub-
section length x" = 50 metres. For convenience, the
subsection length is rounded off to units of 5 metres.

Probability plots of the Monte Carlo samples of
H,p1 and H,p give evidence of lognormally distrib-
uted critical heads. Therefore, lognormal distribu-
tions can be fitted to the critical heads for the first
and second dike subsection. Also the critical head
for the combination of the first and second dike sub-
section, denoted by
H,,=min{H,H,}, (13)

upl2

appears to be lognormally distributed. For further
details about the parameters of these lognormal dis-
tributions, we refer to Cooke & Van Noortwijk
(1998).

Given the subsection length, the probabilities of
failure due to uplifting and piping must be calculated
both for one dike subsection separately and for two
adjacent dike subsections combined. On the basis of
these two probabilities, the probability of failure for
a (series) system of dike subsections can be ap-
proximated by regarding the failure of dike subsec-
tions as a Markov process. In mathematical terms,
the probability of failure of a dike section of length [,
denoted by p(I), can now be written as a function of
the failure probability of one subsection p(x") and the
failure probability of two adjacent subsections p(2x")
in the following manner:

p(l) =1-Pr{no failure #1} X
X[Pr{no failure # 2| no failure #1}]*" = (14)
_-pexy©
[L-pG 2

where Pr{failure #i} denotes the probability of fail-
ure in the i-th dike subsection. By applying Eq. (14),
the probability of failure of a dike section can be
easily computed.

=1

4 DIRECTIONAL SIMULATION

The aim of this section is to calculate the probabili-
ties of dike failure due to uplifting and piping both
for one subsection separately and for two adjacent
subsections combined. In calculating these failure

probabilities using standard Monte Carlo simulation,
the problem arises that there are not enough samples
in the failure region to obtain reliable results. To
speed up Monte Carlo simulation, we use directional
sampling.

Roughly speaking, directional simulation means
the following. Rather than sampling straight from
the probability distributions of the sea water level S,
the river discharge Q, and the critical head H,,, we
sample the directional angle and the directional ra-
dius in the (s, g, h,p)-plain. This pays off when we
have the fortune of being able to calculate the condi-
tional probability that the length of the radius be-
longs to the failure region in explicit form. For ex-
ample, when n random quantities have a multivariate
normal distribution it is well-known that the condi-
tional distribution of the squared radius, when the
value of the directional vector is given, is a chi-
square distribution with n degrees of freedom (see
Ditlevsen & Madsen, 1996, Chapter 9).

The number of random quantities employed in the
directional sampling program have been reduced to
three on the basis of graphical steering. Cooke &
Van Noortwijk (1999) visualised the effects of the
residual random quantities using scatter plots. Using
these plots they argued that the most important ran-
dom quantities are the river discharge, the sea water
level, and the critical head.

In order to calculate the probability of failure due
to uplifting and piping, we now apply directional
simulation to three standard exponentially distrib-
uted random quantities that are statistically inde-
pendent. The reason for this is that we can easily
transform the river discharge Qauays, the sea water
level Saaqys, and the critical head in the event of up-
lifting and piping H,, to three standard exponentially
distributed random quantities. This can be achieved
by applying the transformation

F,,, (@ = exp{-x},

D2days
F;,  (s) = exp{-y}, (1s)
F, (h) = exp{-w},

or, equivalently,

x=-In(Fy,, (¢)=rsin(®)sin(y),

y=~In(F;,, (s)) =rcos(®)sin(y), (16)
w=—In(F, (h)) =rcosy),

where r is the directional radius, and 6 and y are the
directional angles. Since the random quantities
Q2days, S2days, and H,, are independent, the standard
exponentially distributed random quantities X, ¥, and
W are also independent. Hence, since the Jacobian of
transformation (16) equals rzsin(u/), the joint prob-
ability density function of the directional coordinates
(R,®,¥) can be written as

1168

frow (r0,9) =r*sin(y) exp{-g 0.y)r}x

17)
XI[O,N)(r)l[o,n/zl(e)llo,nm(ll/)’

with
g(0,y) =sin(0)sin(y) +cos(8)sin(y) +cos(y) , (18)

where Ii(x)=1 if x€ A and I4(x) =0 if x¢ A for
every set A. Accordingly, the joint probability den-
sity function of ® and ¥ becomes

2sin
Jow©.¥)= [g(@,f[/w)} Li0.2121O0) 10 21y (W) . (19)

From the probability density function of the ran-
dom vector (R,0,%¥), and the probability density
function of the random vector (©,¥), the conditional
probability density function of R for fixed values of
© and ¥ writes as

fme,v(r |60,y)=

R ICAD) (20)
2

3 exp{—g@,y)r} I[O,w)(r)

with cumulative distribution function

FR|6,‘[’ (r|9,l//) =

2 @1
= 1—(1+ g(0,w)r+%m)exp{—g(9,w)r}.

The conditional distribution of R when (©,%)=
(6,y) is given, can be recognised as a gamma distri-
bution with shape parameter 3 and scale parameter
g(6,y). Given the value of (©,¥), the probability of
failure can now be written as

Pr{R>r'(0,y)|©=0,¥=y}=
=1-Fpoy (r"©@.v)|0.y),
where r°(0,y) is the zero of the limit-state function
2(q,s,h) described in Section 2:

2(F,;} (exp{-r"(0,y)sin(0)sin(y)}),

2days

g (exp{-r"(0,y)cos(®)sin)}), (23)

S2day:

Fy! (exp{=r"(0,¥)cosw)}) = 0.

(22)

Unfortunately, the zero *(6,¥) cannot be obtained in
explicit form and has to be determined numerically.

In order to sample values of (©,¥), both the
marginal probability density function of © and the
conditional probability density function of ¥, when
the value © = 0 is given, remain to be determined.
After some algebra, the marginal probability density
function of © can be written as

2 2sin(y)
)= | =i
= Wio[g(G,W)F
7 2tan(y)

" o V(@) tan(y) +17

__Loam®) 2v@)tan@)+1 [
@Y  [O)tan(y)+11’

where

v(0) =sin(0) +cos(0) (25)

I[o,n/zl(e) dy =

Lo22(0) d tan(y) =
(24)

tan(y )=0

with cumulative distribution function

1

AT . 26
1+tan(0) 26)

Fy(0)=1

Accordingy, the conditional probability density
function of ¥ when the value © = 0 is given follows
from Egs. (19) and (24):

_ 2sin@)vO)I’ -
SueW |0)= 2@V I[O,n/f](u/) @n
with cumulative distribution function
{ [P 4 o g

Fw|e(l/’|9)= ,[fe.‘v(e’l//) ay =

fo®) = 5

_ 2v(@)tan(y) +1
[v(0) tan(y) +11*

Let P; and P, be independent and standard uni-
formly distributed random quantities, then values of
the random vector (©,%) can be generated as fol-
lows:

6 = arctan| 2L |,
1-p

V= arctan{

(29)

1 \[IZ].

[sin(@) +cos®)] 1-yps

Note that for two-dimensional directional sam-
pling, the probability density function of the direc-
tional angle @ is also Eq. (24). The conditional dis-
tribution of the directional radius R, yvhg:n .the
directional angle 6 is given, is a gamma distribution
with shape parameter 2 and scale parameter v(0).

5 RESULTS AND CONCLUSIONS

In this section, the results are presented for dike
section 13.1 of the Dutch dike ring the Hoeksqhe
Waard. The probability of dike failure due to uplift-
ing and piping per two days can be calculated using
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Directional sampling for dike section 13.1
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Figure 2. The probability of failure of one subsection (‘P01’)
and two subsections (‘P12’) of dike section 13.1 determined on
the basis of 20,000 samples using three-dimensional directional
sampling.
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directional sampling on the basis of the sea water
level, the river discharge, and the critical head in the
event of uplifting and piping.

Furthermore, the spatial variation and correlation
of the critical head in the event of uplifting and pip-
ing can be modelled using a Markovian dependency
structure. This means that the random quantities,
representing the inherent uncertainties in the critical
head, of one dike subsection only depend on the val-
ues of the corresponding random quantities in the
two adjacent dike subsections.

The results of the three-dimensional directional
simulation (on the basis of 20,000 samples) and the
subsequent dike ring reliability calculations are as
follows:

o the expected probability of failure due to uplifting
and piping of one subsection of length x" =50
metres is p(x*) = 1.65 10°;

o the expected probability of failure due to uplifting
and piping of two adjacent subsections is
p(2x") =2.76 10°;

e since the length of dike section 13.1 is /=100
metres, the expected probability of failure due to
uplifting and piping of the dike section 13.1
p()=2.76 10°¢ (note that if dike section 13.1
would be 1,000 metres of length, Eq. (14) would
lead to a failure probability of 2.27 107).

The iteration process which resulted in this failure
probability is shown in Figure 2. It clearly illustrates
how fast the three-dimensional directional simula-
tion converges! The advantage of three-dimensional
directional sampling is that large sample sizes are
not required (sample sizes of about 20,000 samples
already supply satisfactory results). The directional
simulation results above have been compared to re-
sults obtained using First Order Reliability Method.

According to Vrouwenvelder (1998), FORM results
in a probability of failure due to uplifting and piping
of 2.1 10, Hence, both results are quite close to
each other.
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