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Wedefine loeal probabilistie sensitivity measures as proportional to aE(X;IZ = z ) / Bz, where Z is a funetion of random 
variables X1, .. .• Xn. These measures are loeal in that they depend only on the neighborhood of Z = z, but unlike other 
loeal sensitivity measures, the loeal probabilistic sensitivity of X; does not depend on values of other input variables. For 
the independent linear normal model, or indeed for any model for whieh X; has linear regression on Z, the above measure 
equals crx,p(Z, X;)/crz. When linear regression does not hold, the new sensitivity measures ean be eompared with the 
eorrelation eoeffieients to indieate degree of departure from linearity. 

We say that Z is probabilistieally dissonant in X; at Z = z if Z is inereasing ( deereasing) in X; at z , but probabilistieally 
deereasing (inereasing) at z. Probabilistie dissananee is rather eommon in eomplieated models. The new measures are able 
to piek up this probabilistie dissonanee. 

These notions are illustrated with data from an ongoing uneertainty analysis of dike ring reliability. © l 999 Elsevier 
Seienee B.V. 

Keywords: Local sensitivity measures; First Order Reliability Methods; Linear models; Dike ring reliability; Uncertainty analysis 
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1. Introduetion 

The Dutch government is currently undertaking an extensive uncertainty analysis of dike ring reliability. The 
reliability of dike section i is expressed in terms of the limit-state function, 

Z; = model factor strength; x Strength; ( Xil, . . . X;11 ) - model factor load; x Load; ( Xil , ... X;11 ) , 
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where strength and load are functions of uncertain parameters ( global and section-specific) Xi1 , ... , X in· The 
model factors are used to express uncertainty in the modeHing of strength and load. For dike section i the 
strength is proportional to 

grass factor; x roughness0·25 

[ 1 + 0.8 *log( storm length) ]3 x tan(inner slopei)075 · 

Roughness and storm length are global variables, although uncertain, which take the same value for each dike 
section. The grass factor and inner angle are specific for each dike section. In the preliminary 'in house' 
analysis, the grass factor was treated as a constant. Evidently, Zi is increasing in model factor strengthi and in 
roughness, and decreasing in storm length. 

The load is a complicated model depending on the river Rhine discharge, the North-Sea water level, wind, 
and wave attack. Th is model does not !end itself for presentation he re ( see Van Der Meer & Janssen [I]). 

The limit-state function for a dike ring consisting of k dike sections is 

Z =min{ Z1, ... , Zk}. 

The example discussed below involves one faiture mechanism, overtopping, and some 300 uncertain param­
eters. Since all dike sections are exposed to the same sea water levels, the same Rhine discharge and the same 
winds, there are significant dependencies in the reliabilities of different dike sections. Monte Carlo (MC) and 
First Order Reliability Methods (FORM) have been used with an 'in house' assessment of uncertainty for 
the purpose of comparing the dependency modeHing and comparing the relative importance of various input 
parameters. 

In the next section, we review the FORM approach to identifying important parameters. In Section 3, we 
discuss the assumptions underlying the FORM approach in the present case. Section 4 illu~trates a phenomenon 
called 'local probabi listic dissonance'. Section 5 develops a 'Local Pro babilistic Sensitivity Measure' (LPSM), 
Sectîon 6 presents some preliminary results, and a final section gathers conclusions. 

2. FORM 

Suppose Z ( X1, ... , X11 ) is a 'deterministic' function of the random vector X= ( X1, ... , X11 ). Assuming that 
Z is analytic, we can linearize it a bout some point x* = ( xj, ... , x~), 

Z(X) = Z(x*) + 2::;~ 1 (Xi- xnaiZ(x*) +· ·· HOT (higher order terms), 

where ai denotes ajaxi. The point x* is chosen as the 'design point', that is, the point with greatest probability 
density satisfying Z (x*) = 0. 

Let /Li and (]"i denote the mean and standard deviation of Xi, respectively. Neglecting the HOT's, we have 

Z(X),...., Z(x*) + 2::;~ 1 (Xi- xnaiZ(x*), 

E(Z),...., Z(x*) + 2::;~ 1 (/Li- xnaiZ(x*), 

Var(Z) rv I:;~l (]"T(aiZ) 2 + L~=l 'L7=1,j*iai(Z)a;(Z) Cov(Xi,X;), ( I ) 

and if the Xi's are all independent, Var (Z) ,...., 2::;~ 1 dCaiZ) 2. Now suppose that Z is indeed linearand the 
X/s are independent. Then 

Cov (Z, Xi) = p(Z, Xi)(]"z(]"i = aiz Cov (Xi, Xi) = (]"Taiz, 

so that 

p(Z, Xi)(]"z/(]"i = aiZ(x*). (2) 
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Note that the !.h.s. involves 'global' parameters, whereas the r.h.s. depends on the design point x;. It is 
characteristic of linear mode Is that these global and local concepts coincide. p( Z, X;) is taken to represent the 
importance of X; for Z. No te that in the FORM model this has both a global and a local interpretation. No te 
also that the above makes no assumptions regarding the distributions of the X; except the existence of the first 
two moments. In order to estimate the probability of {Z = 0}, the FORM method assumes that the X; have 
been transformed to standard normal variables. 

Continuing, 

CT~= I:;~ 1 CT~(a;z) 2 = I:;~ 1 p2 (Z,X;)CT~ 

or 

R2 = L;~ 1 p 2 (Z, X;) =I. 

In the terminology of linear mode Is, R2 = I:;~ 1 p 2 ( Z, X;) is the percentage of the varianee of Z that is 

explained by the linear model ( l). If R2 is less than one, this may be caused either by dependencies in the 
X; 's or by contributions from HOT's in ( 1). 

Several authors (see McKay [2]) propose the correlation ratio CR; to replace p2(Z,X;) for cases when Z 
is not linear, 

CR;= Var(E(Zix;))/Var(Z). 

Note that CR; generalizes the global interpretation of importance in (2), but not the local interpretation. 
Moreover, CR; cannot be computed in a straightforward way by MC methods. 

3. How linear is Zi? 

For dike section i, Z; is computed from a model invalving many cutoffs, edges, and nonlinearities. Nonetheless, 
because of its complexity, the question "how linear is Z;?" cannot be answered by inspection. Using the MC 
calculation for section i, we can assess the linearity of Z; simply by computing R2 . We find R2 = 0.977, with 
the largest contribution 0.903 coming from one variabie (a 'strength model factor'). Th is does not correspond 
at all to the partial derivatives computed at the design point, which were dominated by the North-Sea level. 
On the other hand, performing a conditional R2 near the region of greatest failure probability we find that (i) 
the conditional correlations are sensitive to how the conditionalization is performed, and (ii) the conditionat 
R2 is quite small, though still dominated by the globally dominant parameter. This strongly suggests that Z 
is globally linear, as it is dominated by one variable, but in the region of interest, Z rv 0, which has very 
low probability mass, Z's behavior is highly nonlinear. For this reason it is difficult to interpret the FORM 
importance parameters in terms of ( conditional) correlations from a MC calculation. 

4. Local probabilistic dissonance 

The present data set affords many examples of a curious behavior which underscores the need for Iocal 
probabilistic sensitivity concepts. It may be the case that Z is strictly increasing in some variabie x;, but for 
some value z, the condition al distribution X; I ( Z = z) is stochastically decreasing in z, in the sen se that for all 
X, 

Pr{X; > xiZ = z + 8} < Pr{X; > xiZ = z}, 

for suitably small positive 8. In this case we speak of local probabilistic dissonance. 
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Fig. 1. Percentile cobweb plot of the joint distribution, in percentiles, of the limit-state function 'Z' and 15 explanatory variables. 

A very simple example illustrates how this may arise. Let Z = X + Y with X and Y independent. Let X be 
uniformly distributed on [ 0, 1] and let Y be uniformly distributed on [ 0, I] u (2, 3]. Th en Z is concentrated 
on [ 0, 4] . As Z -+ 2 from below, the conditional distri bution of X[ Z becomes concentrated at l; however, as 
Z -+ 2 from above, the conditional distribution of X[Z becomes concentrated at 0. Hence for 2 > o > 0, 

Pr{X > x[Z = 2 + a}< Pr{X > x[Z = 2}. 

In such cases, local sensitivity measures, Iike a partial derivative; indeed the partial derivatives of Z with respect 
to X and Y are equal. Global measures will not reveal the local probabilistic influence in the neighborhood of 
z = 2. 

We can illustrate this phenomenon with percentile cobweb plots. The percentile cobweb plot of Fig. I shows 
the joint distribution, in percentiles, of Z ( 'relia') and 10 explanatory variables. From left to right the variables 
are: roughness ( 'rough'), storm length ( 'storm'), model factors for load, strength, significant wave period, 
significant wave height, and local water level ( 'mload', 'mstrn ' , 'mwvpr', 'mwvht', and 'mi wat', respectively), 
wind ('wind'), North Sea ('nsea') and Rhine discharge ('rhine'). Each vertical Iine represents one variabie 
and each broken line represents one sample, intersecting each vertical line in the appropriate percentage point. 
These data are obtained by first conditionalizing on high, but not critica!, sea and river water levels, giving 1354 
samples. In 2% of these samples the dike ring actually fails corresponding to the lowest 2% of the variabie 
Z . These 1354 samples are uniformly distributed over all vertic al !i nes ( for black and white visualization only 
200 samples are shown in Fig. 1) . Since the water levels are obtained as a sum of contributions from the North 
Sea and the Rhine, this conditionalization has the effect of negatively correlating the North Sea and the Rhine 
discharge. These are uncorrelated in the unconditional sample. The negative correlation is shown by the fact 
that samples with high values for 'nsea' tend to have low values for 'rhine'; 'wind' and 'nsea' show a strong 
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positive correlation. 
Figs. 2, 3 show four conditional percentile cabweb plots, where conditioning is done on various values of 

Z. The four cabweb plots correspond to conditionalizing on Z 2: Zgs, Z3s 2: Z 2: ZJo, z15 2: Z 2: Ziü, and 
z5 2: Z. Departure from uniformity indicates that conditionalization affects the distribution of the corresponding 
variable. 

In the top cabweb plot of Fig. 2, the variables 'storm' and 'mstrn' differ most strongly from uniform. 'mstrn' 
is a global model factor to which the variables 'Strength;' are positively coupled. We see that very high values 
of Z are associated with high values of 'mstrn' and low values of 'storm'. From the bottorn cabweb plot of 
Fig. 2, we see that values of Z near the 30th percentile are associated with low values of 'mstrn' and high 
values of 'storm'. From the bottorn cabweb plot of Fig. 3, however, we see that values of Z between the Oth and 
5th percentile are associated with distributions of 'mstrn' and 'storm' which more resembie the unconditional 
(uniform) distributions. Hence, in rnaving from Z = z5 to Z = z3o, the conditional distribution of 'mstrn' is 
stochastically decreasing, and 'storm' is stochastically increasing. These variables are dissonant in this region. 
Very low values of Z characteristic of dike ring failure are strongly associated with very high values of North 
Sea, and 'mstrn' and 'storm' regress to their unconditional distributions. In spite of this, Z is strictly increasing 
in 'mstrn' and is strictly decreasing in 'storm'. 

5. Local probabilistic sensitivity 

In the literature, 'local sensitivity' is taken to refer to one point (x 1, ... , X 11 ) in the sample space. Thus 
az; a x; is a loc al measure. For other measures, see, e.g., Strozzi et al. [ 3]. 

In the present case we wish to focus on a unique value of a function of the uncertain parameters, and 
hence we focus on a manifold of lower dimension, typically a hypersurface. For convenience in the following 
discussion, we denote this manifold as the set 

{Z = 0} ={x E lR 11 jZ(x) = 0}. 

We wish to identify those components of X which are important for { Z = 0}. For this purpose we focus on 
the conditional random vector Xj(Z = 0), and two approaches suggest themselves, 
- campare Xj(Z = 0) with X, and 
- consider the rate of change with respect to Z of ( some function of) XI Z at Z = 0. 

The first approach may miss important local behavior at { Z = 0}. Thus the conditio na! distribution of the 
storm length given { Z = 0} resembles its unconditional distribution, but it is nat independent of Z. Using the 
conditional expectation in the second approach affords good results which will coincide with FORM results 
when the linear model ( 1) hol ds. 

Consider 

If X; were independent of Z, then this conditional expectation would be simply E( X;). If X; = Z, then clearly 
E(X;jZ = z) = z. This suggests alocal probabilistic sensitivity measure proportional to 

JE(X; jZ = z) I . 
Jz z=O 

By requiring agreement with the FORM measure in the case the FORM assumptions hold, we can determine 
the appropriate proportionality constants. Proposition 1 relates this measure to the partial derivatives of a FORM 
linear approximation. This proposition is normally proved using properties of the joint normal distribution; 



R.M. Cooke, J.M. van Noortwijk/Computer Physics Communications 117 (1999) 86-98 

Fig. 2. Two conditional percentile cobweb plots, where conditioning is done on the limit-state function Z 

ZJ) :::: Z :::: Z30· 

91 

'relia' for Z ::=: Z95 and 
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Fig. 3. Two conditional percentile cobweb plots, where conditioning is doneon the limit-state function Z = 'relia' for ZJs 2: Z 2: ZIO and 

zs 2: Z. 
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however, the more general proof methad sketched in the appendix can be used to obtain results under other 
distributional and functional assumptions, examples of which are given in Propositions 3 and 4. 

Proposition I. Let the random vector X= ( X1, ••• , Xn) have independent standard normal coordinates and let 

then XI Z is normal with 

E(XiiZ = z) = zai/C2 , 

- 2 
Var (XiiZ = z) = (CijC) , 

p(Xi,X;) = -aiai/[ËiË;], 

h fi2 "'" 2 d li2 "'" 2 w ere t. = ~i=I ai an t.; = ~i=I,i*.i ai. 

Assume now that for X i "' N (,Ui, O'i), 

for Y; = (x i - .Ui) I O'i rv N ( 0, 1). Applying the above proposition, we find 

aE(XiiZ = z) aE(O'iY; + .UiiZ = z) O'iaE(Y;IZ = z) 
"'" 2 2 . ~-l(T.a . 

.1- .I .I 

From (2) we have O'iai = p(Xi, Z)O'z, and since 2:::;=, O'JO:J = 0'~, we have 

aE(Xi/Z = z) p(Xi, Z)O'i 

az O'z 

We therefore take 

LPSMi = O'zaE(XiiZ = z) 
O'iaz 

as a local probabilistic sensitivity measure. 

(3) 

In the case of the linear model (1), we have LPSMi = p(Xi,Z) in agreement with the FORM measure. 
However, if Iinearity does not hold, LPSM can be used to capture the local interpretation of (2) and it can be 
easily computed in MC calculations. 

More generally, the above result holds whenever the regression of Xi on Z is Iinear: 

Proposition 2. Let E(XiiZ) = kZ forsome constant k, then 

LPSMi = O'zaE(X;z = z) = p(Xi, Z). 
O'i z 

Propositions 3 and 4 present the local probabilistic sensitivity measures for sums of independent gamma 
variates ( with equal scale parameters) and sums of independent exponential variates ( with different means), 
respectively. 

Proposition 3. Let X1 , .•• , X 11 be independent gamma variates with mean ai/ f3 and varianee ai/ [32 , where 
ai > 0 and f3 > 0 for i = 1, ... , n. Suppose further that W = 2:::;~ , Xi and Z = W - a 0 for a 0 > 0. It is well 
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known that the conditional probability distribution of X; when W = w is a transformed beta distribution, i.e., 
that 

f ( I ) _ rcz;';=l a;) [X;]a;-1 [1 X;] (~;=i.;~;aj)-1 1 
X;fW X; W - n - - - -

F(a;)F(~i=IJFi a;) w w w 

for 0 ::; x; ::; w and zero otherwise. The conditional expectation of X; when W = w equals 

E(X;I W = w) = wa;j[~';=l a;]. 

The local probabilistic sensitivity measure for the sum of independent gamma distributed random quantities can 
be written as 

a; 
"'n . L-j=l a; 

Note that the LPSM does not depend on ao. 

Proposition 4. Let X1, ••• , X 11 be independent exponential variates with mean a; and varianee a~, where a; > 0 
and a; =I a; unless i= j, i = I, ... , n. Suppose further that W = ~;~ 1 X; and Z = W - a 0 for a 0 > 0. The 
conditional expectation of X; when W = w = z + a 0 equals 

E(X;I W = w) = g;(w)j fw(w), 

where the function g;( w) can be found in Eq. (A.7) and the probability density function of the sum W = ~;~ 1 X; 

is called the general Erlang or general gamma distribution, 

11 1 1 { w} fw(w) = L 11 . x --: exp ---: . 
i=l IT;=IJFi [1- a.~/ a;] a, a, 

(4) 

The general Erlang distribution has been used in theories of radioactive decay, queuing, psychology, and 
reliability ( see, e.g., Jensen [ 4], McGill & Gibbon [ 5], and Speijker et al. [ 6]) . The loc al pro babilistic 
sensitivity measure for the sum of independent exponentially distributed random quantities can be written as 

(5) 

where g;(ao) can be found in Eq. (A.8) . A special case of the general Erlang distribution, suggested by 
Jensen [ 4], arises when a; = a/ ( b + i- 1) for i= I, . . . , n, 

F(b+n) [ { w}]b-1 [ { w}]n-1 I { w} fw(w) = exp -- I - exp - - - exp -- . 
F(b)F(n) a a a a 

The latter probability density function can be recognized as a transformed beta distribution. 

6. Results 

Table I shows the LPSM results for (some of) the variables in Fig. 1. FORM results for the dike ring are 
not available at present. Both the FORM and the Monte Carlo calculations identify dike Section 11 as the most 
critica! dike section. Results for dike Section 11 can be compared. 
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Table I 
Probabilistic sensitivity in terms of LPSM and FORM 

Variabie Dike Ring LPSM Di,ke Section 11 LPSM Dike Section 11 FORM 

No1th Sea location 0.29 -0.18 -0.043 
N mth Sea shape -0.046 0.23 -0.0084 
N011h Sea scale -0.083 0.083 -0.054 
Rhine location -0.060 0.12 -0.024 
Rhine scale -0.16 0.54 -0.078 
Wind angle variability 0.30 0.13 0.063 
Roughness -0.22 -0.24 0.012 
Storm length 0.48 -0.10 -0.013 
Independent wind location 0 0 -0.0038 
Independent wind scale -0.27 -0.068 0.051 
Model factor strength -0.47 -0.11 na 
Nmth Sea -1.57 -0.70 -0.72 
Dependent wind -1.41 -0.78 na 
Rhine discharge -0.041 -0.12 -0.56 

The low LSPM contribution of the Rhine discharge may be exaggerated by the negative correlation with the 
North Sea induced by the sampling technique. Other variables would not be affected in this way. We see that 
there are significant differences between the LPSM and the FORM measures. In light of Proposition 1, this is 
most likely explained by nonlinearities in the Z function. No te that the variabie 'rough' is quite dissonant for 
dike section 11. This indicates that low values of roughness are strongly associated with values of Z somewhat 
above zero, but near zero, roughness regresses to its unconditional distribution. Evidently, numerical measures 
like LPSM or indeed the FORM measures must not be used uncritically. Whi1e they can be used to focus 
attention on interesting variab1es, a full understanding of their role should be based on graphical inspeetion of 
the joint distribution, as in Figs. 2, 3. 

7. Summary and conclusions 

For large models whose input parameters are uncertain, we are often confronted with the problem of choosing 
a small set of 'important' parameters. Globa1 measures like (rank) correlations, or correlation ratio 's may not 
be appropriate when we are interested in a specific region of the output variable( s). Thus, in modelling dike 
ring reliabi1ity, we are not interested in the variables driving dike ring reliability on normal days with low 
wind and water. Rather we are interested in the driving variables when the dike is near failure. Of course, on 
most days the dike integrity is not threatened, and global measures will be predominantly influenced by what 
happens on 'most days'. 

Sensitivity measures such as partial derivatives, which are local in the input variables may miss important 
local probabilistic behavior. 'Probabilistic dissonance' is said to arise when variables are 'deterministically 
increasing' and yet 'probabilistic decreasing' ( or vice versa) in certain regions. Such behavior is not at all 
uncommon in complex models, and cannot be discerned by 'deterministic' local sensitivity measures. 

The 1ocal pro babilistic sensitivity measures proposed here ( 3) are intended to identify variables which are 
active in a submanifold defined by a given point of the output variable. In the case of linear regression of input 
on output, these measures coincide with the product moment correlation. In other cases, camparing the local 
probabilistic sensitivity measures with correlations may be used to assess the departure from linearity. 
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Appendix A 

Proof of Proposition I . The proposition can be proved using the conditionalization formula for the joint normal 
distribution applied to (X1, ••• , X11 , Z), even though the covariance matrix is singular (Rao [7]) . However, a 
more flat-footed proof gives more insight. The basic steps are as follows. 

(i) Express X1 as a function g( Z, X2 , • •• , X11 ) . 

(i i) Write the conditional probability density function of X1, ••• , X 11 , given Z as proportional to 

fx,(g) fT~2fx,(x;), 

where f x, (x;) is the probability density function of X;. 
(iii) Reduce the above, and set the coefficients of x;, x;, and x;xi equal to the corresponding terms in the 

joint normal density for n- 1 variables. This involves solving a system of simultaneous equations. Terms 
without any x's are absorbed into the proportionality constant. 

( iv) Since the system of simultaneous equations has a solution, it follows that the conditional distri bution is 
joint normal, and the parameters can be obtained from the appropriate coefficients. 

Rather than giving a general proof, we illustrate the proof with an index-free version for n = 3. Let 

Z = aW + bX + cY. 

The conditional probability density function given Z = z is proportional to 

z - bx- cy 1 

{ [ ( ) 2 ] } exp - ~ a + x- + l . 

If the probability density function is joint normal, this must be proportional to 

{ [( )2 ( )2 ( ) ( )]} 1 X - f.Lx Y-JL\' X -f.Lx Y-JLr 
exp - 1 --- + ---· - 2p --- - - - · . 

2 ( 1 - p-) O'x O'y 0' x O'y 

Expanding these expressions, and dropping terms not invalving x or y, leads to the equations 

x2 [ 1 + ( bI a) 2 ] = x2 I [ 0'; (I - p2) ] , 

l [ 1 + c c I a) 2 J = l 1 [ (7'; c 1 - p2 ) J , 

zb( I - /) la2 = f.LxiO';- Pf.Ly i [O'xO'y], 

ze( 1 - /)I a2 = f.Lvl 0'; - Pf.Lxl [ O'xO'y] , 

bcla2 = - pi[O'xO'r( 1 - p2 )] . 

Solving these equations for f.Lx, f.Ly, 0' x, 0'.1., and p leads to the des i red expressions. 

Some hints in sol ving these are as follows. Put D = J ( a2 + b2 ) ( a2 + c2 ) . From Eq. ( A. l) follows 

a2 I [ ( 1 - /) D] = O'xO'" · 

Eqs. (A.5) and (A.6) give p = - beiD. Putting this into (A.1) and (A.2) gives 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

where 1!.2 = a2 + b2 + c2. Solving (A.3) and (A.4) for f.Lx and f.L.v proves the proposition for n = 3. D 
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Proof of Proposition 2. Since 

E(X;Z) = E(E(X;IZ)Z) = kE(Z 2 ) 

and 

E(X;)E(Z) = ke2(Z), 

it follows that 

D 

Proof of Proposition 4. Let X1, . • . , Xn be independent exponential variates with mean a; and varianee af, 
where a; > 0 and a; =I a1 unless i= j, i = I, ... , n. Suppose further that W = 2::;~ 1 X; and Z = W - a 0 for 
a 0 > 0. By using the general Erlang distribution given in Eq. ( 4) twice, the conditional probability distri bution 
of X; when W = w can be written as 

~ exp { - X;. } x t 11 
1 x _!_ exp { - w - x; } 

al al k=Z [11=2J,.k [1- aJfak] ak a k 

fx;~w(x;l w) = 11 1 1 { w } 
L 11 x - exp - -
k=l nj=lJFk [1- aifak] ak ak 

for 0 ::::; x; ::::; w and zero otherwise. The conditional expectation of X; when W = w = z +/ a 0 equals 

w 

I _ -~ exp{-wjak}/ak jx· { [I IJ } I E(X; W- w)-~ 11 x ....!..exp - --- x; dx; x--
k=2 ni=2,j#k [1- a; / ak] a; a; ak fw(w) 

x;::::::O 

1 
x--

fw(w) 

= L 11 x exp -- - exp ---: 
( 

11 
I 1 [ { W } { W }] 

k=2 nj=l,j#k [1- a ifak] [ak/a;- t] ak al 

+ -[1-::7:-= 1-• .~-· ,.-; ..,...[~-_-a_;_/ a-~.".] x ; exp { - ; } ) 

g;(w) 

fw(w) · 

I 
x -­

fw(w) 

Taking the partial derivative of E(X;i W = z + a 0 ) with respect to z proves Eq. (5), where 

11 I [ { } { } ] , """' 1 1 a k ao ao 
g;(ao) = ~ 11 x exp ----:- - exp --

k=2 f1;=1.;,.k [I - aifak] [ak/a; - 1] al ak 

1/a; ao { ao} 
- 11 x - exp -- . 

nj=l,j#i [1- a;/ a;] a; a; 

(A.7) 

( A.8) 
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