
Spatial and temporal aspects of Verticillium wilt in trees and resistance against V. dahliae

Jelle Hiemstra

Göttingen, May 6th 2013

Contents

- Introduction
 - Tree hosts, symptoms, damage
- Disease cycle in trees
 - Special features of trees: size & long life
 - Secondary inoculum & distribution in field
- Infection & Colonization
 - Xylem anatomy & distribution of Vd in tree
- Recovery & Resistance
 - Mechanisms
- Integrated control

Symptoms in woody hosts

- 3 main types of effects:
 - Leaf symptoms: wilt, discolouration, defoliation, drying/necrosis
 - Vascular symptoms: discolouration of xylem, plugging of vessels
 - Decline: stunting, dieback, death
 - Occasionally: elongated dead areas of bark on stem/branches;
 flower and fruit mummification

Tree hosts of VW

Forest/street/shade trees		Fruiting species		
Host	Non-host	Host	Non-host	
Acer Aesculus Ailanthus Castanea Catalpa Cercis Fraxinus Liriodendron Magnolia Robinia Tilia Ulmus	Alnus Betula Fagus Populus Quercus Salix	Coffea Cydonia Olea Persea Pistacia Prunus Rubus Theobroma	Malus Pyrus	

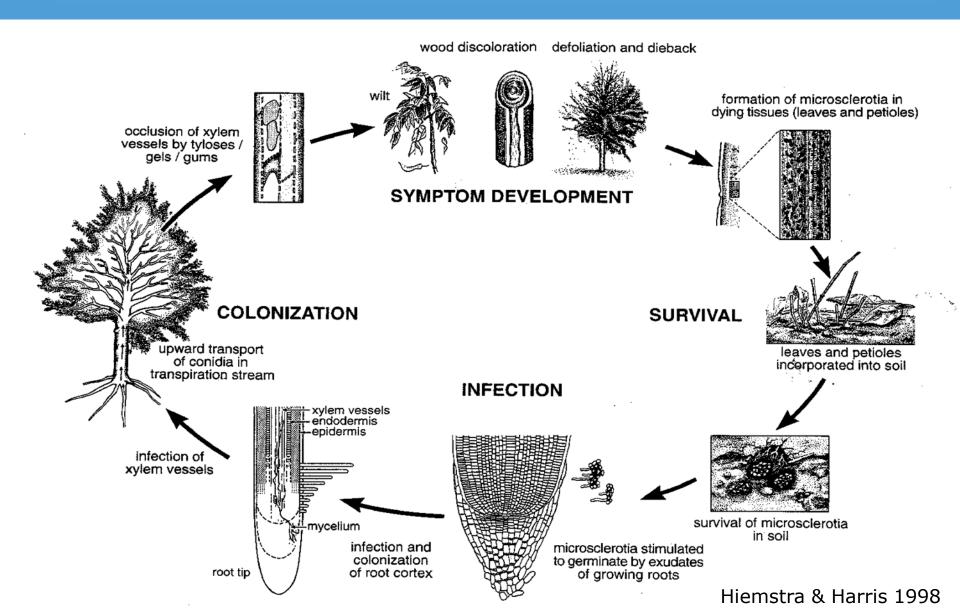
Cause of VW in trees: V. dahliae ("microsclerotial form of Vaa")

Tree hosts and damage

- Different categories
 - Fruit production: olive, stone fruits, pistachio
 - Tree nursery: shade trees & ornamentals
 - Urban and Landscape trees
 - Forest trees ???

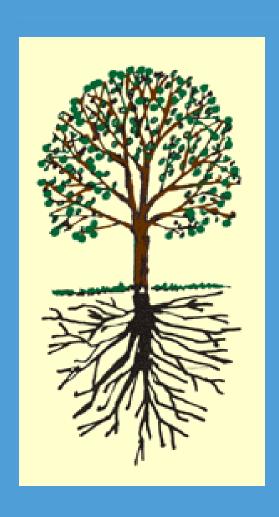
Verticillium wilt in forest stands?

- NL; 1970's-1980's: VW of Fraxinus excelsion
 - Young forest plots in Flevopolders
 - Landscape / recreational plantings
 - Not in older forests


Verticillium wilt in forest stands?

- Literature: very limited number of reports
 - Ceanothus integerrimus (Harrington & Cobb; 1984)
 - Coastal forest in California -- Vaa
 - Liriodendron tulipifera (Donahue & Morehart; 1978)
 - Urban and forest settings in Delaware -- Vd and Vaa
 - Ailanthus altissima (Schall and Davis; 2009)
 - Mixed hardwood forests in Pennsylvania Vaa
 - → Verticillium nonalfalfae!
- Mature (natural ?) forests VW very rare !!
 - Reason?

Disease cycle of *V. dahliae* in trees



Special features of VW in trees

- Size of host
- Long-life of host
- Xylem anatomy

VW in Trees → Size effects

- Root system
 - covers large soil volume
 - each year major part fine roots renewed
 - roots not only in top layer
 - low IC → still contact many ms
- Damage threshold level often low
 - Acer & Catalpa (Goud, 2003):5% damage threshold = 1-2 CFU/g soil
 - Pistachio (Ashworth & Zimmerman, 1976)
 10-14% died at ID 1-2 ms/g soil
 - Olive?

Special features of VW in trees

- Size of host
- Long-life of host
 - VW is mono-cyclic (year) BUT poly-cyclic (life-time)
 - → repeated infections possible in life of tree
 - Secondary inoculum may affect same tree

Secondary inoculum: Acer platanoides

Hiemstra, 1997

>50% petioles infected (10-94%) inoculation experiment \rightarrow 10% VW in young *A.plat.* trees

Secondary inoculum: Fraxinus excelsior

Rijkers et al., 1997

14% of soil incubated petioles contained Vd ms Avg 1500 ms/cm (not equally spread)

Secondary inoculum & trees

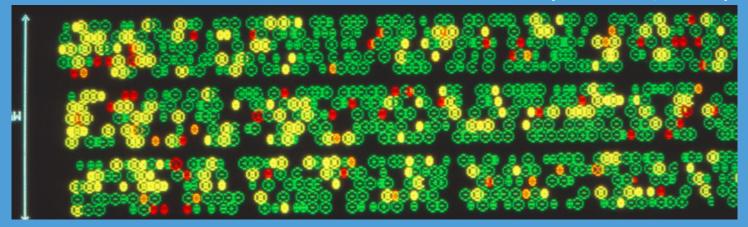
Petioles

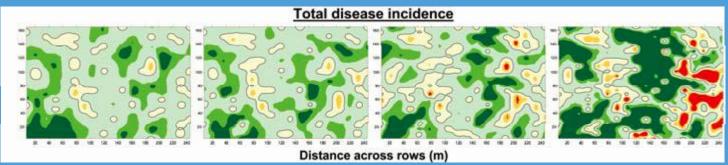
- Acer (Zimm, 1918; Townsend et al., 1990; Hiemstra, 1997): **50%**
- Fraxinus (Rijkers et al., 1992) **14%**
- Liriodendron (Morehart & Melchior, 1982) +
- Olea (Tjamos&Botseas,1987: 68%; Tjamos&Tsougriani,1990: 10%)

Inflorescences

• **Olea** (Trapero *et al.*, 2011):

up to over **70 ppg** (peduncles) / **7 ppg** (flowers)


■ Sec. inoc. can substantially contribute to VW in trees



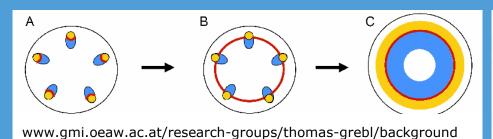
Distribution pattern of VW

- Patches of higher density superimposed on a general distribution at lower density
 - VW of Fraxinus excelsior in forests in NL (Hiemstra, 1995)

• VW of Olea europaea in orchards in SP (Navas et al., 2011)

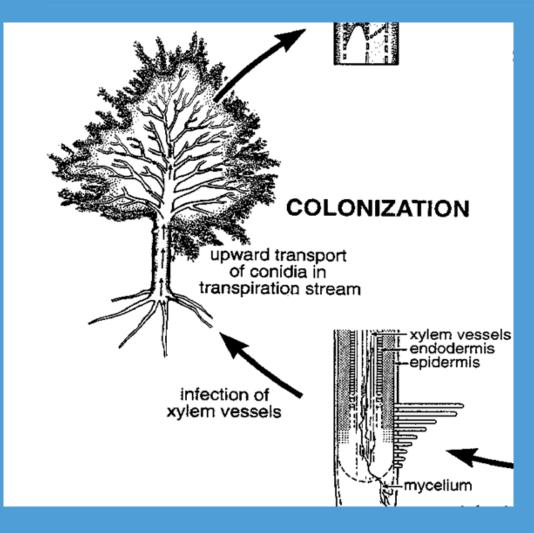
Special features of VW in trees

- Size of host
- Long-life of host & secondary inoculum
- Xylem anatomy
 - Anatomy affects colonization and symptom development
 - Annual production of new vascular tissue =


built-in mechanism for recovery

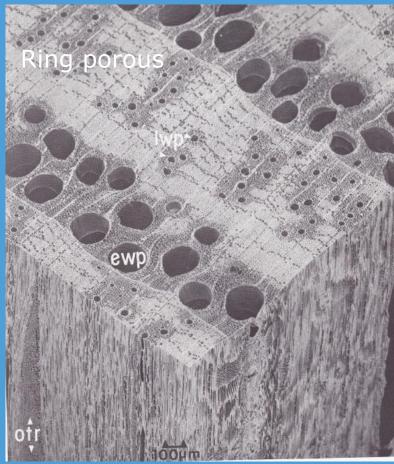

Anatomy may contribute to resistance

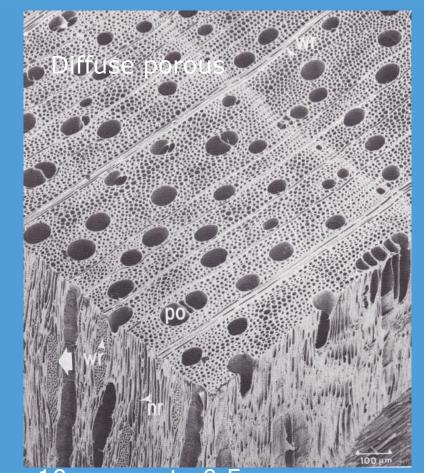
Xylem anatomy of trees → Secondary growth



Colonization of tree body

- Penetration of root
- Colonization of cortex
- Penetration of endodermis
- Entry into xylem
- Behaviour changes:only in xylem vesselsconidia → fast upward transport


(see Prieto et al., 2009)

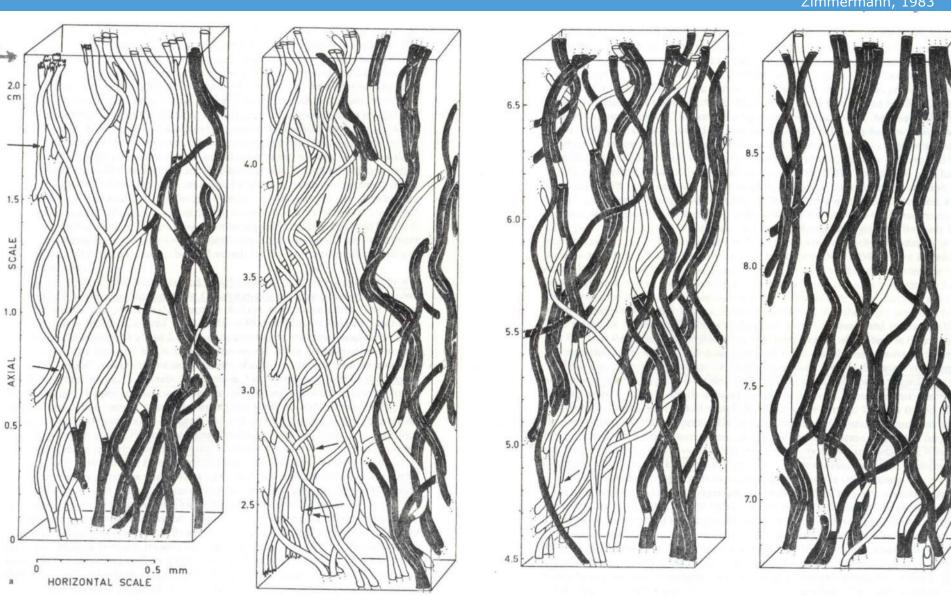


Xylem anatomy of trees

Core et al., 1976

3 m; up to > 10 m 16-45 m/h

10 cm; up to 0.5 m 1-6 m/h



Xylem vessel network

Zimmermann, 1983

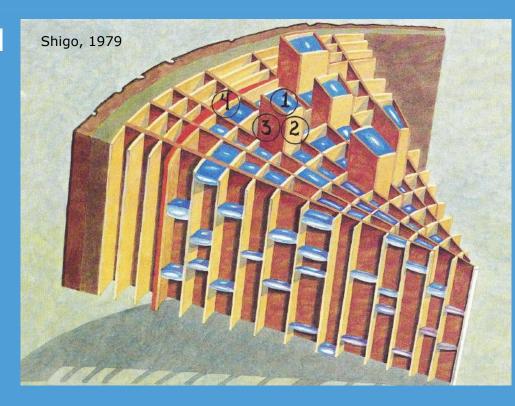
Vessel network & distribution of conidia

- Passive transport by sapstream
 - Upward & tangential distribution
 - Extent depends on species
 - Influenced by active reaction of host
- Examples
 - Ash: strongly interconnected vessels (Zimmermann, 1983)
 - Olive: ind. roots strong connection with ind. branches (Lavee, 1996)

Xylem build-up enables recovery of trees

A.L. Shigo: CODIT-model

- highly compartmented
- active response
- "multiple" plant
- new xylem every year


Tippett & Shigo, 1981:

Wall 1: vascular occlusions

Wall 2: margins of growth rings

Wall 3: sheets of ray cells

Wall 4: formation of barrier zone

Recovery from VW in tree hosts

Cherry Van der Meer, 1925

Peach Ciccarese et al., 1990

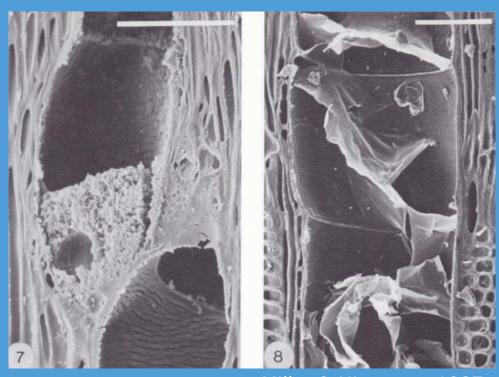
Apricot Taylor & Flentje, 1968; Vigouroux & Castelain, 1969;

Harrison & Glare, 1970

Almond Cirulli et al., 1998

Cacao Emechebe et al., 1974

Olive Wilhelm & Taylor, 1965; Vigouroux, 1975


Ash Hiemstra, 1995

Maple Sinclair et al., 1981

Active response of *Fraxinus excelsior*

Miller & Hiemstra, 1987

- Extensive vascular occlusion
- No barrier zone → marginal parenchyma band

Recovery can be very effective

Ash (Fraxinus excelsior)

		% recovery	% dieback/dead
Natural infection	Forest trees Landscape trees	40 56	40 13
Inoculated trees	Lariascape trees	100	0

Hiemstra, 1995

Infection type matters

11th International Verticillium Symposium 2013

Recovery can be very effective

Olive (Olea europaea)

ND		D	
86 % R IS S S	100 90 81 56	24 %	83 36 9

Resistance level of cv

Virulence of pathogen (D/ND)

López-Escudero & Blanco-López, 2005

Recovery - summary

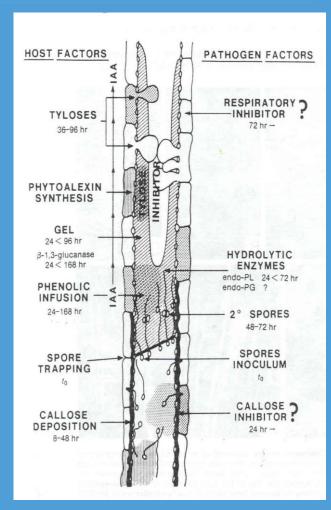
- Mechanism
 - Confinement of pathogen
 - Formation of new uninfected xylem
 - Dieback/death only when pathogen reaches cambium
 - Pathogen seems to "disappear" gradually

Anatomy provides structure and opportunity;

active response by host (and interaction with pathogen) is decisive

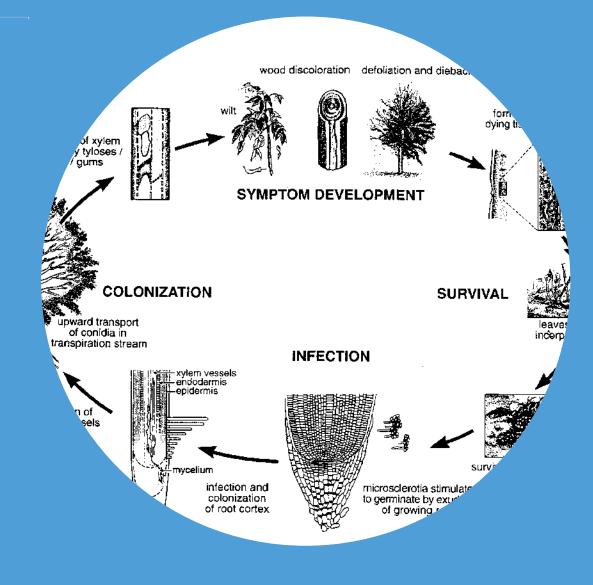
→ Link to Resistance

Resistance to VW


- 2 types (Fradin & Thomma, 2006)
 - Polygenic: alfalfa, cotton, potato, strawberry
 - Single dominant R-gene: cotton, sunflower, potato, tomato
- Tree hosts
 - Long history of screening & selection for R
 - Olive, maple, prunus, pistacia
 - No information on R-genes
 - Processes similar as described for recovery
 - Anatomical factors contribute
 - Active response of the host decisive

Response of host

- Many mechanisms available
 - To avoid vascular infection
 - To block vascular distribution
 - To eliminate the pathogen once established
- Probably "there is no magic key to understanding all Verticillium infections" (J. Robb, 2007)
- Concept of time/space frame still valid and very useful


Implications for integrated control

- Trees live long → prevent building-up of sec. inoculum
 - Make sure planting material is not infected
 - Remove diseased trees from new plantations
- Trees have a built-in recovery system
 - Pruning diseased branches may stimulate recovery
- Individuals often vary in susceptibility
 - Rootstock with increased level of resistance may protect susceptible commercially important cultivars

Thank you for your attention

